A tiny Open POWER ISA softcore written in VHDL 2008
 
 
 
 
 
 
Go to file
Paul Mackerras 36130f1db3 tests/fpu: Add tests for frsp
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
.github/workflows
constraints
fpga core: Add support for floating-point loads and stores
hello_world Enhance hello_world
include
lib
litedram fpga: Add support for Genesys2
liteeth
media
micropython
openocd
rust_lib_demo
scripts core: Add framework for an FPU
sim-unisim
tests tests/fpu: Add tests for frsp
uart16550
verilator
.gitignore
LICENSE
Makefile core: Add framework for an FPU
README.md
cache_ram.vhdl
common.vhdl core: Add framework for an FPU
control.vhdl core: Add support for floating-point loads and stores
core.vhdl core: Add framework for an FPU
core_debug.vhdl
core_dram_tb.vhdl
core_flash_tb.vhdl
core_tb.vhdl
countzero.vhdl core: Add support for single-precision FP loads and stores
countzero_tb.vhdl
cr_file.vhdl core: Don't generate logic for log data when LOG_LENGTH = 0
cr_hazard.vhdl
crhelpers.vhdl
dcache.vhdl dcache: Ease timing on wishbone data and byte selects
dcache_tb.vhdl
decode1.vhdl FPU: Implement the frsp instruction
decode2.vhdl FPU: Implement fmr and related instructions
decode_types.vhdl FPU: Implement fmr and related instructions
divider.vhdl
divider_tb.vhdl
dmi_dtm_dummy.vhdl
dmi_dtm_tb.vhdl
dmi_dtm_xilinx.vhdl
dram_tb.vhdl
execute1.vhdl core: Add framework for an FPU
fetch1.vhdl core: Implement 32-bit mode
fpu.vhdl FPU: Implement the frsp instruction
glibc_random.vhdl
glibc_random_helpers.vhdl
gpr_hazard.vhdl core: Add support for floating-point loads and stores
helpers.vhdl core: Add support for single-precision FP loads and stores
icache.vhdl core: Implement big-endian mode
icache_tb.vhdl
icache_test.bin
insn_helpers.vhdl FPU: Implement remaining FPSCR-related instructions
loadstore1.vhdl core: Add support for single-precision FP loads and stores
logical.vhdl core: Implement BCD Assist instructions addg6s, cdtbcd, cbcdtod
microwatt.core core: Add framework for an FPU
mmu.vhdl loadstore1: Generate busy signal earlier
multiply.vhdl execute1: Take an extra cycle for OE=1 multiply instructions
multiply_tb.vhdl multiplier: Generalize interface to the multiplier
nonrandom.vhdl Add random number generator and implement the darn instruction
plru.vhdl
plru_tb.vhdl
ppc_fx_insns.vhdl core: Implement the cmpeqb and cmprb instructions
random.vhdl Add random number generator and implement the darn instruction
register_file.vhdl core: Add support for floating-point loads and stores
rotator.vhdl
rotator_tb.vhdl
sim_16550_uart.vhdl
sim_bram.vhdl
sim_bram_helpers.vhdl
sim_bram_helpers_c.c
sim_console.vhdl
sim_console_c.c
sim_jtag.vhdl
sim_jtag_socket.vhdl
sim_jtag_socket_c.c
sim_no_flash.vhdl
sim_pp_uart.vhdl
sim_vhpi_c.c
sim_vhpi_c.h
soc.vhdl core: Add support for floating-point loads and stores
spi_flash_ctrl.vhdl
spi_rxtx.vhdl
sync_fifo.vhdl
syscon.vhdl
utils.vhdl
wishbone_arbiter.vhdl
wishbone_bram_tb.bin
wishbone_bram_tb.vhdl
wishbone_bram_wrapper.vhdl
wishbone_debug_master.vhdl
wishbone_types.vhdl
writeback.vhdl core: Add framework for an FPU
xics.vhdl
xilinx-mult.vhdl execute1: Take an extra cycle for OE=1 multiply instructions

README.md

Microwatt

Microwatt

A tiny Open POWER ISA softcore written in VHDL 2008. It aims to be simple and easy to understand.

Simulation using ghdl

MicroPython running on Microwatt

You can try out Microwatt/Micropython without hardware by using the ghdl simulator. If you want to build directly for a hardware target board, see below.

  • Build micropython. If you aren't building on a ppc64le box you will need a cross compiler. If it isn't available on your distro grab the powerpc64le-power8 toolchain from https://toolchains.bootlin.com. You may need to set the CROSS_COMPILE environment variable to the prefix used for your cross compilers. The default is powerpc64le-linux-gnu-.
git clone https://github.com/micropython/micropython.git
cd micropython
cd ports/powerpc
make -j$(nproc)
cd ../../../

A prebuilt micropython image is also available in the micropython/ directory.

  • Microwatt uses ghdl for simulation. Either install this from your distro or build it. Microwatt requires ghdl to be built with the LLVM or gcc backend, which not all distros do (Fedora does, Debian/Ubuntu appears not to). ghdl with the LLVM backend is likely easier to build.

    If building ghdl from scratch is too much for you, the microwatt Makefile supports using Docker or Podman.

  • Next build microwatt:

git clone https://github.com/antonblanchard/microwatt
cd microwatt
make

To build using Docker:

make DOCKER=1

and to build using Podman:

make PODMAN=1
  • Link in the micropython image:
ln -s ../micropython/ports/powerpc/build/firmware.bin main_ram.bin

Or if you were using the pre-built image:

ln -s micropython/firmware.bin main_ram.bin
  • Now run microwatt, sending debug output to /dev/null:
./core_tb > /dev/null

Synthesis on Xilinx FPGAs using Vivado

  • Install Vivado (I'm using the free 2019.1 webpack edition).

  • Setup Vivado paths:

source /opt/Xilinx/Vivado/2019.1/settings64.sh
  • Install FuseSoC:
pip3 install --user -U fusesoc

Fedora users can get FuseSoC package via

sudo dnf copr enable sharkcz/danny
sudo dnf install fusesoc
  • Create a working directory and point FuseSoC at microwatt:
mkdir microwatt-fusesoc
cd microwatt-fusesoc
fusesoc library add microwatt /path/to/microwatt/
  • Build using FuseSoC. For hello world (Replace nexys_video with your FPGA board such as --target=arty_a7-100):
fusesoc run --target=nexys_video microwatt --memory_size=16384 --ram_init_file=/path/to/microwatt/fpga/hello_world.hex

You should then be able to see output via the serial port of the board (/dev/ttyUSB1, 115200 for example assuming standard clock speeds). There is a know bug where initial output may not be sent - try the reset (not programming button) on your board if you don't see anything.

  • To build micropython (currently requires 1MB of BRAM eg an Artix-7 A200):
fusesoc run --target=nexys_video microwatt

Testing

  • A simple test suite containing random execution test cases and a couple of micropython test cases can be run with:
make -j$(nproc) check

Issues

This is functional, but very simple. We still have quite a lot to do:

  • There are a few instructions still to be implemented
  • Need to add caches and bypassing (in progress)
  • Need to add supervisor state (in progress)