@ -24,9 +24,20 @@ entity fpu is
end entity fpu;
architecture behaviour of fpu is
type fp_number_class is (ZERO, FINITE, INFINITY, NAN);
constant EXP_BITS : natural := 13;
type fpu_reg_type is record
class : fp_number_class;
negative : std_ulogic;
exponent : signed(EXP_BITS-1 downto 0); -- unbiased
mantissa : std_ulogic_vector(63 downto 0); -- 10.54 format
end record;
type state_t is (IDLE,
DO_MCRFS, DO_MTFSB, DO_MTFSFI, DO_MFFS, DO_MTFSF);
DO_MCRFS, DO_MTFSB, DO_MTFSFI, DO_MFFS, DO_MTFSF,
DO_FMR);
type reg_type is record
state : state_t;
@ -41,9 +52,14 @@ architecture behaviour of fpu is
is_cmp : std_ulogic;
single_prec : std_ulogic;
fpscr : std_ulogic_vector(31 downto 0);
b : std_ulogic_vector(63 downto 0);
a : fpu_reg_type;
b : fpu_reg_type;
r : std_ulogic_vector(63 downto 0);
result_sign : std_ulogic;
result_class : fp_number_class;
result_exp : signed(EXP_BITS-1 downto 0);
writing_back : std_ulogic;
int_result : std_ulogic;
cr_result : std_ulogic_vector(3 downto 0);
cr_mask : std_ulogic_vector(7 downto 0);
end record;
@ -51,6 +67,72 @@ architecture behaviour of fpu is
signal r, rin : reg_type;
signal fp_result : std_ulogic_vector(63 downto 0);
signal opsel_r : std_ulogic_vector(1 downto 0);
signal result : std_ulogic_vector(63 downto 0);
-- Split a DP floating-point number into components and work out its class.
-- If is_int = 1, the input is considered an integer
function decode_dp(fpr: std_ulogic_vector(63 downto 0); is_int: std_ulogic) return fpu_reg_type is
variable r : fpu_reg_type;
variable exp_nz : std_ulogic;
variable exp_ao : std_ulogic;
variable frac_nz : std_ulogic;
variable cls : std_ulogic_vector(2 downto 0);
begin
r.negative := fpr(63);
exp_nz := or (fpr(62 downto 52));
exp_ao := and (fpr(62 downto 52));
frac_nz := or (fpr(51 downto 0));
if is_int = '0' then
r.exponent := signed(resize(unsigned(fpr(62 downto 52)), EXP_BITS)) - to_signed(1023, EXP_BITS);
if exp_nz = '0' then
r.exponent := to_signed(-1022, EXP_BITS);
end if;
r.mantissa := "000000000" & exp_nz & fpr(51 downto 0) & "00";
cls := exp_ao & exp_nz & frac_nz;
case cls is
when "000" => r.class := ZERO;
when "001" => r.class := FINITE; -- denormalized
when "010" => r.class := FINITE;
when "011" => r.class := FINITE;
when "110" => r.class := INFINITY;
when others => r.class := NAN;
end case;
else
r.mantissa := fpr;
r.exponent := (others => '0');
if (fpr(63) or exp_nz or frac_nz) = '1' then
r.class := FINITE;
else
r.class := ZERO;
end if;
end if;
return r;
end;
-- Construct a DP floating-point result from components
function pack_dp(sign: std_ulogic; class: fp_number_class; exp: signed(EXP_BITS-1 downto 0);
mantissa: std_ulogic_vector) return std_ulogic_vector is
variable result : std_ulogic_vector(63 downto 0);
begin
result := (others => '0');
result(63) := sign;
case class is
when ZERO =>
when FINITE =>
if mantissa(54) = '1' then
-- normalized number
result(62 downto 52) := std_ulogic_vector(resize(exp, 11) + 1023);
end if;
result(51 downto 0) := mantissa(53 downto 2);
when INFINITY =>
result(62 downto 52) := "11111111111";
when NAN =>
result(62 downto 52) := "11111111111";
result(51 downto 0) := mantissa(53 downto 2);
end case;
return result;
end;
begin
fpu_0: process(clk)
@ -85,14 +167,18 @@ begin
fpu_1: process(all)
variable v : reg_type;
variable adec : fpu_reg_type;
variable bdec : fpu_reg_type;
variable fpscr_mask : std_ulogic_vector(31 downto 0);
variable illegal : std_ulogic;
variable j, k : integer;
variable flm : std_ulogic_vector(7 downto 0);
variable int_input : std_ulogic;
begin
v := r;
illegal := '0';
v.busy := '0';
int_input := '0';
-- capture incoming instruction
if e_in.valid = '1' then
@ -101,6 +187,7 @@ begin
v.fe_mode := or (e_in.fe_mode);
v.dest_fpr := e_in.frt;
v.single_prec := e_in.single;
v.int_result := '0';
v.rc := e_in.rc;
v.is_cmp := e_in.out_cr;
if e_in.out_cr = '0' then
@ -108,11 +195,19 @@ begin
else
v.cr_mask := num_to_fxm(to_integer(unsigned(insn_bf(e_in.insn))));
end if;
v.b := e_in.frb;
int_input := '0';
if e_in.op = OP_FPOP_I then
int_input := '1';
end if;
adec := decode_dp(e_in.fra, int_input);
bdec := decode_dp(e_in.frb, int_input);
v.a := adec;
v.b := bdec;
end if;
v.writing_back := '0';
v.instr_done := '0';
opsel_r <= "00";
fpscr_mask := (others => '1');
case r.state is
@ -133,6 +228,8 @@ begin
else
v.state := DO_MTFSF;
end if;
when "01000" =>
v.state := DO_FMR;
when others =>
illegal := '1';
end case;
@ -177,7 +274,9 @@ begin
v.state := IDLE;
when DO_MFFS =>
v.int_result := '1';
v.writing_back := '1';
opsel_r <= "10";
case r.insn(20 downto 16) is
when "00000" =>
-- mffs
@ -191,7 +290,7 @@ begin
-- mffscrn
fpscr_mask := x"000000FF";
v.fpscr(FPSCR_RN+1 downto FPSCR_RN) :=
r.b(FPSCR_RN+1 downto FPSCR_RN);
r.b.mantissa(FPSCR_RN+1 downto FPSCR_RN);
when "10111" =>
-- mffscrni
fpscr_mask := x"000000FF";
@ -216,19 +315,48 @@ begin
for i in 0 to 7 loop
k := i * 4;
if flm(i) = '1' then
v.fpscr(k + 3 downto k) := r.b(k + 3 downto k);
v.fpscr(k + 3 downto k) := r.b.mantissa(k + 3 downto k);
end if;
end loop;
v.instr_done := '1';
v.state := IDLE;
when DO_FMR =>
v.result_class := r.b.class;
v.result_exp := r.b.exponent;
if r.insn(9) = '1' then
v.result_sign := '0'; -- fabs
elsif r.insn(8) = '1' then
v.result_sign := '1'; -- fnabs
elsif r.insn(7) = '1' then
v.result_sign := r.b.negative; -- fmr
elsif r.insn(6) = '1' then
v.result_sign := not r.b.negative; -- fneg
else
v.result_sign := r.a.negative; -- fcpsgn
end if;
v.writing_back := '1';
v.instr_done := '1';
v.state := IDLE;
end case;
-- Data path.
-- Just enough to read FPSCR for now.
v.r := x"00000000" & (r.fpscr and fpscr_mask);
case opsel_r is
when "00" =>
result <= r.b.mantissa;
when "10" =>
result <= x"00000000" & (r.fpscr and fpscr_mask);
when others =>
result <= (others => '0');
end case;
v.r := result;
fp_result <= r.r;
if r.int_result = '1' then
fp_result <= r.r;
else
fp_result <= pack_dp(r.result_sign, r.result_class, r.result_exp, r.r);
end if;
v.fpscr(FPSCR_VX) := (or (v.fpscr(FPSCR_VXSNAN downto FPSCR_VXVC))) or
(or (v.fpscr(FPSCR_VXSOFT downto FPSCR_VXCVI)));