This implements most of the architected PMU events. The ones missing
are mostly the ones that depend on which level of the cache hierarchy
data is fetched from. The events implemented here, and their raw
event codes, are:
Floating-point operation completed (100f4)
Load completed (100fc)
Store completed (200f0)
Icache miss (200fc)
ITLB miss (100f6)
ITLB miss resolved (400fc)
Dcache load miss (400f0)
Dcache load miss resolved (300f8)
Dcache store miss (300f0)
DTLB miss (300fc)
DTLB miss resolved (200f6)
No instruction available and none being executed (100f8)
Instruction dispatched (200f2, 300f2, 400f2)
Taken branch instruction completed (200fa)
Branch mispredicted (400f6)
External interrupt taken (200f8)
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The architecture states that when MMCR0[PMCC] = 0b11, PMC5 and PMC6
are not part of the Performance Monitor, meaning that they are not
controlled by bits in MMCRs, and counter negative conditions in PMCs 5
and 6 don't generate Performance Monitor alerts, exceptions or
interrupts. It doesn't say that PMC5 and PMC6 are frozen in this
case, so presumably they should continue to count run instructions and
run cycles.
This implements that behaviour.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The verilator build fails with warnings and errors, because NGPIO
is 0 and we do things like:
gpio_out : out std_ulogic_vector(NGPIO - 1 downto 0);
Set NGPIO to something reasonable (eg 32) and add HAS_GPIO to avoid
building the macro entirely if it isn't in use.
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
Experimenting with using ghdl to do VHDL to Verilog conversion (instead
of ghdl+yosys), verilator complains that a signal is a SystemVerilog
keyword:
%Error: microwatt.v:15013:18: Unexpected 'do': 'do' is a SystemVerilog keyword misused as an identifier.
... Suggest modify the Verilog-2001 code to avoid SV keywords, or use `begin_keywords or --language.
We could probably make this go away by disabling SystemVerilog, but
it's easy to rename the signal in question. Rename di at the same
time.
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
This is the start of an implementation of a PMU according to PowerISA
v3.0B. Things not implemented yet include most architected events,
the BHRB, event-based branches, thresholding, MMCR0[TBCC] field, etc.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
We've been investigating why the barrel rotator uses an enormous
number of cells on the yosys ECP5 target. Eventually it was narrowed
down to the -abc9 -nowidelut options, which see the cell count go from
4985 cells to 841 cells.
Using the same options on an Orange Crab build reduces the cell count
from 50864 to 36085. The main differences:
LUT4 31040 -> 25270
PFUMX 6956 -> 0
L6MUX21 1746 -> 0
CCU2C 2066 -> 1759
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
This adds a load before a floating-point load which should generate a
floating-point unavailable interrupt, to test for the bug where
unavailability interrupts can get dropped while loadstore1 is
executing instructions.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
At present the logic prevents any interrupts from being handled while
there is a load/store instruction (one that has unit=LDST) being
executed. However, load/store instructions can still get sent to
loadstore1. Thus an instruction which should generate an interrupt
such as a floating-point unavailable interrupt will instead get
executed.
To fix this, when we detect that an interrupt should be generated but
loadstore1 is still executing a previous instruction, we don't execute
any new instructions, and set a new r.intr_pending flag. That results
in busy_out being asserted (meaning that no further instructions will
come in from decode2). When loadstore1 has finished the instructions
it has, the interrupt gets sent to writeback. If one of the
instructions in loadstore1 generates an interrupt in the meantime, the
l_in.interrupt signal gets asserted and that clears r.intr_pending, so
the interrupt we detected gets discarded.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
litesdcard provides a macro per vendor (eg xilinx, lattice) and not per
board, so modify the fusesoc generator to take a vendor. This will make
it easier to add litesdcard to more boards.
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
Unfortunately the CSR layout has shifted on upstream litex, so this
is built with the following litex patch backed out:
aad56a047a33 ("integration/soc: Use CSR automatic allocation.")
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
csr_data_width is no longer required. Add ntxslots and nrxslots
parameters but set them to the default value.
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
This option was added in the commit but is no longer needed for github
CI to work.
commit ef0dcf3bc6
Author: Michael Neuling <mikey@neuling.org>
Date: Thu Jul 2 14:36:14 2020 +1000
Add SYNTH_ECP5_FLAGS option for building
Removing noflatten has the added advantage that it gets our builds
from 75% down to 59% usage on ECP5 85K.
Signed-off-by: Michael Neuling <mikey@neuling.org>
The icache RAM is currently LUT ram not block ram. This massively
bloats the icache size. We think this is due to yosys not inferencing
the RAM correctly but that's yet to be confirmed.
Work around this for now by reducing the default size of the icache
RAM for the ECP5 builds.
On the ECP5 85K builts, this gets us from 95% down to 76% and helps
our CI to pass.
Signed-off-by: Michael Neuling <mikey@neuling.org>