Compare commits

..

34 Commits

Author SHA1 Message Date
Paul Mackerras 35e0dbed34
Merge pull request #353 from tianrui-wei/master
fix: fix icache_tb not finishing correctly
2 years ago
Michael Neuling cd52390bf1
Merge pull request #373 from antonblanchard/icache-insn-u-state
icache: Don't output X on i_out.insn
2 years ago
Michael Neuling b983d5080e
Merge pull request #376 from antonblanchard/loadstore-init
loadstore1: reduce U state being output
2 years ago
Michael Neuling d4db331467
Merge pull request #374 from antonblanchard/icache-unused-sig
core: Remove unused icache_inv signal
2 years ago
Michael Neuling ee5e3778ed
Merge pull request #364 from shenki/readme-updates
Readme updates
2 years ago
Michael Neuling c43692f4c7
Merge pull request #372 from antonblanchard/dcache-unused-sig
dcache: remove unused do_write signal
2 years ago
Michael Neuling 956df2c863
Merge pull request #371 from antonblanchard/unused-sig
execute1: sub_mux_sel and result_mux_sel are unused
2 years ago
Michael Neuling 3627f102db
Merge pull request #370 from antonblanchard/divider-init
divider: Fix d_out.overflow U state issue
2 years ago
Paul Mackerras 6e1e763c02
Merge pull request #368 from antonblanchard/icache-pmu-events
icache: Hook up PMU events
2 years ago
Anton Blanchard 1047239a37
Merge pull request #377 from antonblanchard/fpu-init
fpu: Reduce uninitialised signals
2 years ago
Anton Blanchard 9d35340bb1 fpu: Reduce uninitialised signals
Reduce uninitialised signals coming out of the FPU.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
2 years ago
Michael Neuling b82eea5933
Merge pull request #366 from antonblanchard/hello-world-bss
Zero BSS in hello world test
2 years ago
Anton Blanchard d3aff67fa7
Merge pull request #375 from antonblanchard/core_debug-init
core_debug: Initialise gspr_index
2 years ago
Anton Blanchard b47b71821e loadstore1: reduce U state being output
While these signals should only be read when valid is true, they
are only a small number of bits and we want to reduce the amount of
U/X state bouncing around the chip.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
2 years ago
Anton Blanchard 71d4b5ed20 core_debug: Initialise gspr_index
Another case of U state being driven out of a module.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
2 years ago
Anton Blanchard a527d9b959 core: Remove unused icache_inv signal
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
2 years ago
Anton Blanchard e7f0a7c7ac icache: Don't output X on i_out.insn
decode1 has a lot of logic that uses i_out.insn without first looking at
i_iout.valid. Play it safe and never output X state.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
2 years ago
Anton Blanchard 39220be311 dcache: remove unused do_write signal
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
2 years ago
Anton Blanchard 843361f2be execute1: sub_mux_sel and result_mux_sel are unused
Remove them.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
2 years ago
Anton Blanchard d3a7517318 divider: Fix d_out.overflow U state issue
While we should only look at this when d_out.valid = 1, we may as remove
some U state across interfaces.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
2 years ago
Anton Blanchard 1ff852b012
Merge pull request #369 from antonblanchard/loadstore-pmu-init
loadstore1: Initialise PMU events
2 years ago
Anton Blanchard e2438071a1 loadstore1: Initialise PMU events
The loadstore1 PMU events are U state until a load and a store completes.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
2 years ago
Anton Blanchard b7c4d3c5c3
Merge pull request #367 from antonblanchard/fpu-typo
fpu: Fix capitalisation of Execute1ToFPUType
2 years ago
Anton Blanchard f06abb67ad icache: Hook up PMU events
We weren't connecting the icache PMU events up.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
2 years ago
Anton Blanchard 64d2def0c6 fpu: Fix capitalisation of Execute1ToFPUType
While this is not an issue in VHDL, I noticed this when running
a script over the source and we may as well fix it.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
3 years ago
Anton Blanchard ff442d1bdb Zero BSS in hello world test
While trying to reduce U/X state issues, I notice that our BSS is not
being initialised in the hello world test.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
3 years ago
Anton Blanchard b8fc5636a4
Merge pull request #365 from antonblanchard/less-fpga-init
Remove some FPGA style signal inits
3 years ago
Anton Blanchard ebdddcc402 Remove some FPGA style signal inits
These don't work on the ASIC flow, so remove them and initialise
them explicitly where required.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
3 years ago
Anton Blanchard a750365ffa Remove some FPGA style signal inits
These don't work on the ASIC flow, so remove them and initialise
them explicitly where required.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
3 years ago
Joel Stanley 9ec22af256 README: Add Linux on Microwatt instructions
These instructions are similar to those at

 https://ozlabs.org/~joel/microwatt/README

except they describe how to build the artifacts from scratch instead of
downloading them.

Signed-off-by: Joel Stanley <joel@jms.id.au>
3 years ago
Joel Stanley a31725d989 README: Add uart to fusesoc instructions
The SoC defaults to using the uart16550 so provide instructions on how
to fetch that library when seetting up fusesoc.

Also remove the text about a working directory; fusesoc doesn't need
one.

Signed-off-by: Joel Stanley <joel@jms.id.au>
3 years ago
Michael Neuling f5e06c2d4b
Merge pull request #361 from antonblanchard/alt-reset-address
Allow ALT_RESET_ADDRESS to be overridden
3 years ago
Anton Blanchard 948f6f43a7 Allow ALT_RESET_ADDRESS to be overridden
This allows us to boot from flash for example.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
3 years ago
Tianrui Wei 844ca0e6b5
fix: fix icache_tb not finishing correctly
Setting icache to be privileged and accessing physical memory directly.
And set big_endian to 0 to correspond to the testbench result.

Signed-off-by: Tianrui Wei <tianrui@tianruiwei.com>
3 years ago

@ -55,18 +55,15 @@ all = core_tb icache_tb dcache_tb dmi_dtm_tb \

all: $(all)

base_core_files = decode_types.vhdl common.vhdl wishbone_types.vhdl fetch1.vhdl \
utils.vhdl plru.vhdl icache.vhdl \
core_files = decode_types.vhdl common.vhdl wishbone_types.vhdl fetch1.vhdl \
utils.vhdl plru.vhdl cache_ram.vhdl icache.vhdl \
decode1.vhdl helpers.vhdl insn_helpers.vhdl \
control.vhdl decode2.vhdl \
control.vhdl decode2.vhdl register_file.vhdl \
cr_file.vhdl crhelpers.vhdl ppc_fx_insns.vhdl rotator.vhdl \
logical.vhdl countbits.vhdl divider.vhdl execute1.vhdl \
logical.vhdl countbits.vhdl multiply.vhdl divider.vhdl execute1.vhdl \
loadstore1.vhdl mmu.vhdl dcache.vhdl writeback.vhdl core_debug.vhdl \
core.vhdl fpu.vhdl pmu.vhdl

core_files = $(base_core_files) register_file.vhdl cache_ram.vhdl multiply.vhdl
asic_core_files = $(base_core_files) asic/register_file.vhdl asic/cache_ram.vhdl asic/multiply.vhdl

soc_files = wishbone_arbiter.vhdl wishbone_bram_wrapper.vhdl sync_fifo.vhdl \
wishbone_debug_master.vhdl xics.vhdl syscon.vhdl gpio.vhdl soc.vhdl \
spi_rxtx.vhdl spi_flash_ctrl.vhdl
@ -163,7 +160,7 @@ ICACHE_NUM_LINES=4

clkgen=fpga/clk_gen_ecp5.vhd
toplevel=fpga/top-generic.vhdl
dmi_dtm=dmi_dtm_jtag.vhdl dmi_dtm_dummy.vhdl
dmi_dtm=dmi_dtm_dummy.vhdl
LITEDRAM_GHDL_ARG=

# OrangeCrab with ECP85 (original v0.0 with UM5G-85 chip)
@ -221,6 +218,7 @@ GHDL_IMAGE_GENERICS=-gMEMORY_SIZE=$(MEMORY_SIZE) -gRAM_INIT_FILE=$(RAM_INIT_FILE
-gRESET_LOW=$(RESET_LOW) -gCLK_INPUT=$(CLK_INPUT) -gCLK_FREQUENCY=$(CLK_FREQUENCY) -gICACHE_NUM_LINES=$(ICACHE_NUM_LINES) \
$(LITEDRAM_GHDL_ARG)


ifeq ($(FPGA_TARGET), verilator)
RESET_LOW=true
CLK_INPUT=50000000
@ -228,41 +226,22 @@ CLK_FREQUENCY=50000000
clkgen=fpga/clk_gen_bypass.vhd
endif

ifeq ($(FPGA_TARGET), caravel)
MEMORY_SIZE=4096
RESET_LOW=true
CLK_INPUT=100000000
CLK_FREQUENCY=100000000
endif

fpga_files = fpga/soc_reset.vhdl \
fpga/pp_fifo.vhd fpga/pp_soc_uart.vhd fpga/main_bram.vhdl \
nonrandom.vhdl

asic_files = fpga/pp_fifo.vhd fpga/pp_soc_uart.vhd asic/main_bram.vhdl \
asic/top-asic.vhdl $(dmi_dtm) nonrandom.vhdl

synth_files = $(core_files) $(soc_files) $(soc_extra_synth) $(fpga_files) $(clkgen) $(toplevel) $(dmi_dtm)

asic_synth_files = $(asic_core_files) $(soc_files) $(asic_files)

microwatt.json: $(synth_files) $(RAM_INIT_FILE)
$(YOSYS) $(GHDLSYNTH) -p "ghdl --std=08 --no-formal $(GHDL_IMAGE_GENERICS) $(synth_files) -e toplevel; read_verilog $(uart_files) $(soc_extra_v); synth_ecp5 -abc9 -nowidelut -json $@ $(SYNTH_ECP5_FLAGS)"

microwatt.v: $(synth_files) $(RAM_INIT_FILE)
$(YOSYS) $(GHDLSYNTH) -p "ghdl --std=08 --no-formal $(GHDL_IMAGE_GENERICS) $(synth_files) -e toplevel; write_verilog $@"

microwatt_asic.v: $(asic_synth_files)
$(YOSYS) $(GHDLSYNTH) -p "ghdl --std=08 --no-formal $(GHDL_IMAGE_GENERICS) $(asic_synth_files) -e toplevel; write_verilog $@"

microwatt-verilator: microwatt.v verilator/microwatt-verilator.cpp verilator/uart-verilator.c
$(VERILATOR) $(VERILATOR_FLAGS) -CFLAGS "$(VERILATOR_CFLAGS) -DCLK_FREQUENCY=$(CLK_FREQUENCY)" -Iuart16550 --assert --cc --exe --build $^ -o $@ -top-module toplevel
@cp -f obj_dir/microwatt-verilator microwatt-verilator

microwatt_asic-verilator: microwatt_asic.v asic/microwatt_asic-verilator.cpp verilator/uart-verilator.c verilator/jtag-verilator.c
$(VERILATOR) $(VERILATOR_FLAGS) -CFLAGS "$(VERILATOR_CFLAGS) -DCLK_FREQUENCY=$(CLK_FREQUENCY)" -Iuart16550 -Iasic/behavioural -Ijtag_tap --assert --cc --exe --build $^ -o $@ -top-module toplevel
@cp -f obj_dir/microwatt_asic-verilator microwatt_asic-verilator

microwatt_out.config: microwatt.json $(LPF)
$(NEXTPNR) --json $< --lpf $(LPF) --textcfg $@.tmp $(NEXTPNR_FLAGS) --package $(PACKAGE)
mv -f $@.tmp $@
@ -345,7 +324,6 @@ _clean:
rm -f scripts/mw_debug/mw_debug
rm -f microwatt.bin microwatt.json microwatt.svf microwatt_out.config
rm -f microwatt.v microwatt-verilator
rm -f microwatt_asic.v microwatt_asic-verilator
rm -rf obj_dir/

clean: _clean

@ -103,14 +103,8 @@ sudo dnf install fusesoc

```
fusesoc init
```

- Create a working directory and point FuseSoC at microwatt:

```
mkdir microwatt-fusesoc
cd microwatt-fusesoc
fusesoc library add microwatt /path/to/microwatt/
fusesoc fetch uart16550
fusesoc library add microwatt /path/to/microwatt
```

- Build using FuseSoC. For hello world (Replace nexys_video with your FPGA board such as --target=arty_a7-100):
@ -128,6 +122,68 @@ You should then be able to see output via the serial port of the board (/dev/tty
fusesoc run --target=nexys_video microwatt
```

## Linux on Microwatt

Mainline Linux supports Microwatt as of v5.14. The Arty A7 is the best tested
platform, but it's also been tested on the OrangeCrab and ButterStick.

1. Use buildroot to create a userspace

A small change is required to glibc in order to support the VMX/AltiVec-less
Microwatt, as float128 support is mandiatory and for this in GCC requires
VSX/AltiVec. This change is included in Joel's buildroot fork, along with a
defconfig:
```
git clone -b microwatt https://github.com/shenki/buildroot
cd buildroot
make ppc64le_microwatt_defconfig
make
```

The output is `output/images/rootfs.cpio`.

2. Build the Linux kernel
```
git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
cd linux
make ARCH=powerpc microwatt_defconfig
make ARCH=powerpc CROSS_COMPILE=powerpc64le-linux-gnu- \
CONFIG_INITRAMFS_SOURCE=/buildroot/output/images/rootfs.cpio -j`nproc`
```

The output is `arch/powerpc/boot/dtbImage.microwatt.elf`.

3. Build gateware using FuseSoC

First configure FuseSoC as above.
```
fusesoc run --build --target=arty_a7-100 microwatt --no_bram --memory_size=0
```

The output is `build/microwatt_0/arty_a7-100-vivado/microwatt_0.bit`.

4. Program the flash

This operation will overwrite the contents of your flash.

For the Arty A7 A100, set `FLASH_ADDRESS` to `0x400000` and pass `-f a100`.

For the Arty A7 A35, set `FLASH_ADDRESS` to `0x300000` and pass `-f a35`.
```
microwatt/openocd/flash-arty -f a100 build/microwatt_0/arty_a7-100-vivado/microwatt_0.bit
microwatt/openocd/flash-arty -f a100 dtbImage.microwatt.elf -t bin -a $FLASH_ADDRESS
```

5. Connect to the second USB TTY device exposed by the FPGA

```
minicom -D /dev/ttyUSB1
```

The gateware has firmware that will look at `FLASH_ADDRESS` and attempt to
parse an ELF there, loading it to the address specified in the ELF header
and jumping to it.

## Testing

- A simple test suite containing random execution test cases and a couple of

@ -1,24 +0,0 @@
module Microwatt_FP_DFFRFile (
`ifdef USE_POWER_PINS
inout VPWR,
inout VGND,
`endif
input [6:0] R1, R2, R3, RW,
input [63:0] DW,
output [63:0] D1, D2, D3,
input CLK,
input WE
);

reg [63:0] registers[0:95];

assign D1 = registers[R1];
assign D2 = registers[R2];
assign D3 = registers[R3];

always @(posedge CLK) begin
if (WE)
registers[RW] <= DW;
end

endmodule

@ -1,40 +0,0 @@
module RAM32_1RW1R #(
parameter BITS=5
) (
`ifdef USE_POWER_PINS
inout VPWR,
inout VGND,
`endif
input CLK,

input EN0,
input [BITS-1:0] A0,
input [7:0] WE0,
input [63:0] Di0,
output reg [63:0] Do0,

input EN1,
input [BITS-1:0] A1,
output reg [63:0] Do1
);

reg [63:0] RAM[2**BITS-1:0];

always @(posedge CLK) begin
if (EN1)
Do1 <= RAM[A1];
end

generate
genvar i;
for (i=0; i<8; i=i+1) begin: BYTE
always @(posedge CLK) begin
if (EN0) begin
if (WE0[i])
RAM[A0][i*8+7:i*8] <= Di0[i*8+7:i*8];
end
end
end
endgenerate

endmodule

@ -1,42 +0,0 @@
module RAM512 #(
parameter BITS=9,
parameter FILENAME="firmware.hex"
) (
`ifdef USE_POWER_PINS
inout VPWR,
inout VGND,
`endif
input CLK,
input [7:0] WE0,
input EN0,
input [63:0] Di0,
output reg [63:0] Do0,
input [BITS-1:0] A0
);

reg [63:0] RAM[2**BITS-1:0];

always @(posedge CLK) begin
if (EN0)
Do0 <= RAM[A0];
else
Do0 <= 64'b0;
end

generate
genvar i;
for (i=0; i<8; i=i+1) begin: BYTE
always @(posedge CLK) begin
if (EN0) begin
if (WE0[i])
RAM[A0][i*8+7:i*8] <= Di0[i*8+7:i*8];
end
end
end
endgenerate

initial begin
$readmemh(FILENAME, RAM);
end

endmodule

@ -1,22 +0,0 @@
module multiply_add_64x64
#(
parameter BITS=64
) (
`ifdef USE_POWER_PINS
inout VPWR,
inout VGND,
`endif
input clk,
input [BITS-1:0] a,
input [BITS-1:0] b,
input [BITS*2-1:0] c,
output [BITS*2-1:0] o
);
reg [BITS*2-1:0] o_tmp;

always @(posedge clk) begin
o_tmp = (a * b) + c;
end

assign o = o_tmp;
endmodule

@ -1,99 +0,0 @@
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.math_real.all;

entity cache_ram is
generic(
ROW_BITS : integer := 5;
WIDTH : integer := 64;
TRACE : boolean := false;
ADD_BUF : boolean := false
);

port(
clk : in std_logic;

rd_en : in std_logic;
rd_addr : in std_logic_vector(ROW_BITS - 1 downto 0);
rd_data : out std_logic_vector(WIDTH - 1 downto 0);

wr_sel : in std_logic_vector(WIDTH/8 - 1 downto 0);
wr_addr : in std_logic_vector(ROW_BITS - 1 downto 0);
wr_data : in std_logic_vector(WIDTH - 1 downto 0)
);

end cache_ram;

architecture rtl of cache_ram is
component RAM32_1RW1R port(
CLK : in std_logic;

EN0 : in std_logic;
A0 : in std_logic_vector(4 downto 0);
WE0 : in std_logic_vector(7 downto 0);
Di0 : in std_logic_vector(63 downto 0);
Do0 : out std_logic_vector(63 downto 0);

EN1 : in std_logic;
A1 : in std_logic_vector(4 downto 0);
Do1 : out std_logic_vector(63 downto 0)
);
end component;

signal wr_enable: std_logic;
signal rd_data0_tmp : std_logic_vector(WIDTH - 1 downto 0);
signal rd_data0_saved : std_logic_vector(WIDTH - 1 downto 0);
signal rd_data0 : std_logic_vector(WIDTH - 1 downto 0);
signal rd_en_prev: std_ulogic;
begin
assert (ROW_BITS = 5) report "ROW_BITS must be 5" severity FAILURE;
assert (WIDTH = 64) report "Must be 64 bit" severity FAILURE;
assert (TRACE = false) report "Trace not supported" severity FAILURE;

wr_enable <= or(wr_sel);

cache_ram_0 : RAM32_1RW1R
port map (
CLK => clk,

EN0 => wr_enable,
A0 => wr_addr,
WE0 => wr_sel,
Di0 => wr_data,
Do0 => open,

EN1 => rd_en,
A1 => rd_addr,
Do1 => rd_data0_tmp
);

-- The caches rely on cache_ram latching the last read. Handle it here
-- for now.
process(clk)
begin
if rising_edge(clk) then
rd_en_prev <= rd_en;
if rd_en_prev = '1' then
rd_data0_saved <= rd_data0_tmp;
end if;
end if;
end process;
rd_data0 <= rd_data0_tmp when rd_en_prev = '1' else rd_data0_saved;

buf: if ADD_BUF generate
begin
process(clk)
begin
if rising_edge(clk) then
rd_data <= rd_data0;
end if;
end process;
end generate;

nobuf: if not ADD_BUF generate
begin
rd_data <= rd_data0;
end generate;

end architecture rtl;

@ -1,63 +0,0 @@
library ieee;
use ieee.std_logic_1164.all;

library work;

entity main_bram is
generic(
WIDTH : natural := 64;
HEIGHT_BITS : natural;
MEMORY_SIZE : natural;
RAM_INIT_FILE : string
);
port(
clk : in std_logic;
addr : in std_logic_vector(HEIGHT_BITS - 1 downto 0) ;
din : in std_logic_vector(WIDTH-1 downto 0);
dout : out std_logic_vector(WIDTH-1 downto 0);
sel : in std_logic_vector((WIDTH/8)-1 downto 0);
re : in std_ulogic;
we : in std_ulogic
);
end entity main_bram;

architecture behaviour of main_bram is
component RAM512 port (
CLK : in std_ulogic;
WE0 : in std_ulogic_vector(7 downto 0);
EN0 : in std_ulogic;
Di0 : in std_ulogic_vector(63 downto 0);
Do0 : out std_ulogic_vector(63 downto 0);
A0 : in std_ulogic_vector(8 downto 0)
);
end component;

signal sel_qual: std_ulogic_vector((WIDTH/8)-1 downto 0);

signal obuf : std_logic_vector(WIDTH-1 downto 0);
begin
assert (WIDTH = 64) report "Must be 64 bit" severity FAILURE;
-- Do we have a log2 round up issue here?
assert (HEIGHT_BITS = 9) report "HEIGHT_BITS must be 10" severity FAILURE;
assert (MEMORY_SIZE = 4096) report "MEMORY_SIZE must be 4096" severity FAILURE;

sel_qual <= sel when we = '1' else (others => '0');

memory_0 : RAM512
port map (
CLK => clk,
WE0 => sel_qual(7 downto 0),
EN0 => re or we,
Di0 => din(63 downto 0),
Do0 => obuf(63 downto 0),
A0 => addr(8 downto 0)
);

-- The wishbone BRAM wrapper assumes a 1 cycle delay
memory_read_buffer: process(clk)
begin
if rising_edge(clk) then
dout <= obuf;
end if;
end process;
end architecture behaviour;

@ -1,83 +0,0 @@
#include <stdlib.h>
#include "Vtoplevel.h"
#include "verilated.h"
#include "verilated_vcd_c.h"

/*
* Current simulation time
* This is a 64-bit integer to reduce wrap over issues and
* allow modulus. You can also use a double, if you wish.
*/
vluint64_t main_time = 0;

/*
* Called by $time in Verilog
* converts to double, to match
* what SystemC does
*/
double sc_time_stamp(void)
{
return main_time;
}

#if VM_TRACE
VerilatedVcdC *tfp;
#endif

void tick(Vtoplevel *top)
{
top->ext_clk = 1;
top->eval();
#if VM_TRACE
if (tfp)
tfp->dump((double) main_time);
#endif
main_time++;

top->ext_clk = 0;
top->eval();
#if VM_TRACE
if (tfp)
tfp->dump((double) main_time);
#endif
main_time++;
}

void uart_tx(unsigned char tx);
unsigned char uart_rx(void);

int main(int argc, char **argv)
{
Verilated::commandArgs(argc, argv);

// init top verilog instance
Vtoplevel* top = new Vtoplevel;

#if VM_TRACE
// init trace dump
Verilated::traceEverOn(true);
tfp = new VerilatedVcdC;
top->trace(tfp, 99);
tfp->open("microwatt-verilator.vcd");
#endif

// Reset
top->ext_rst = 0;
for (unsigned long i = 0; i < 5; i++)
tick(top);
top->ext_rst = 1;

while(!Verilated::gotFinish()) {
tick(top);

uart_tx(top->uart0_txd);
top->uart0_rxd = uart_rx();
}

#if VM_TRACE
tfp->close();
delete tfp;
#endif

delete top;
}

@ -1,127 +0,0 @@
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library work;
use work.common.all;

entity multiply is
generic (
PIPELINE_DEPTH : natural := 2
);
port (
clk : in std_logic;

m_in : in MultiplyInputType;
m_out : out MultiplyOutputType
);
end entity multiply;

architecture behaviour of multiply is
signal m: MultiplyInputType := MultiplyInputInit;

type multiply_pipeline_stage is record
valid : std_ulogic;
is_32bit : std_ulogic;
not_res : std_ulogic;
end record;
constant MultiplyPipelineStageInit : multiply_pipeline_stage := (valid => '0',
is_32bit => '0',
not_res => '0');

type multiply_pipeline_type is array(0 to PIPELINE_DEPTH-1) of multiply_pipeline_stage;
constant MultiplyPipelineInit : multiply_pipeline_type := (others => MultiplyPipelineStageInit);

type reg_type is record
multiply_pipeline : multiply_pipeline_type;
end record;

signal r, rin : reg_type := (multiply_pipeline => MultiplyPipelineInit);
signal overflow : std_ulogic;
signal ovf_in : std_ulogic;

signal mult_out : std_logic_vector(127 downto 0);

component multiply_add_64x64 port(
clk : in std_logic;
a : in std_logic_vector(63 downto 0);
b : in std_logic_vector(63 downto 0);
c : in std_logic_vector(127 downto 0);
o : out std_logic_vector(127 downto 0)
);
end component;
begin
multiply_0: process(clk)
begin
if rising_edge(clk) then
m <= m_in;
r <= rin;
overflow <= ovf_in;
end if;
end process;

multiplier : multiply_add_64x64
port map (
clk => clk,
a => m.data1,
b => m.data2,
c => m.addend,
o => mult_out
);

multiply_1: process(all)
variable v : reg_type;
variable d : std_ulogic_vector(127 downto 0);
variable d2 : std_ulogic_vector(63 downto 0);
variable ov : std_ulogic;
begin
v := r;
v.multiply_pipeline(0).valid := m.valid;
v.multiply_pipeline(0).is_32bit := m.is_32bit;
v.multiply_pipeline(0).not_res := m.not_result;

loop_0: for i in 1 to PIPELINE_DEPTH-1 loop
v.multiply_pipeline(i) := r.multiply_pipeline(i-1);
end loop;

if v.multiply_pipeline(PIPELINE_DEPTH-1).not_res = '1' then
d := not mult_out;
else
d := mult_out;
end if;

ov := '0';
if v.multiply_pipeline(PIPELINE_DEPTH-1).is_32bit = '1' then
ov := (or d(63 downto 31)) and not (and d(63 downto 31));
else
ov := (or d(127 downto 63)) and not (and d(127 downto 63));
end if;
ovf_in <= ov;

m_out.result <= d;
m_out.overflow <= overflow;
m_out.valid <= v.multiply_pipeline(PIPELINE_DEPTH-1).valid;

rin <= v;
end process;
end architecture behaviour;


library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity short_multiply is
port (
clk : in std_ulogic;

a_in : in std_ulogic_vector(15 downto 0);
b_in : in std_ulogic_vector(15 downto 0);
m_out : out std_ulogic_vector(31 downto 0)
);
end entity short_multiply;

architecture behaviour of short_multiply is
begin
m_out <= std_ulogic_vector(signed(a_in) * signed(b_in));
end architecture behaviour;

@ -1,103 +0,0 @@
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library work;
use work.common.all;

entity register_file is
generic (
SIM : boolean := false;
HAS_FPU : boolean := true;
LOG_LENGTH : natural := 0
);
port(
clk : in std_logic;

d_in : in Decode2ToRegisterFileType;
d_out : out RegisterFileToDecode2Type;

w_in : in WritebackToRegisterFileType;

dbg_gpr_req : in std_ulogic;
dbg_gpr_ack : out std_ulogic;
dbg_gpr_addr : in gspr_index_t;
dbg_gpr_data : out std_ulogic_vector(63 downto 0);

sim_dump : in std_ulogic;
sim_dump_done : out std_ulogic;

log_out : out std_ulogic_vector(71 downto 0)
);
end entity register_file;

architecture behaviour of register_file is
component Microwatt_FP_DFFRFile port (
CLK : in std_ulogic;

R1 : in std_ulogic_vector(6 downto 0);
R2 : in std_ulogic_vector(6 downto 0);
R3 : in std_ulogic_vector(6 downto 0);

D1 : out std_ulogic_vector(63 downto 0);
D2 : out std_ulogic_vector(63 downto 0);
D3 : out std_ulogic_vector(63 downto 0);

WE : in std_ulogic;
RW : in std_ulogic_vector(6 downto 0);
DW : in std_ulogic_vector(63 downto 0)
);
end component;

signal d1: std_ulogic_vector(63 downto 0);
signal d2: std_ulogic_vector(63 downto 0);
signal d3: std_ulogic_vector(63 downto 0);
begin

register_file_0 : Microwatt_FP_DFFRFile
port map (
CLK => clk,

R1 => d_in.read1_reg,
R2 => d_in.read2_reg,
R3 => d_in.read3_reg,

D1 => d1,
D2 => d2,
D3 => d3,

WE => w_in.write_enable,
RW => w_in.write_reg,
DW => w_in.write_data
);

x_state_check: process(clk)
begin
if rising_edge(clk) then
if w_in.write_enable = '1' then
assert not(is_x(w_in.write_data)) and not(is_x(w_in.write_reg)) severity failure;
end if;
end if;
end process x_state_check;

-- Forward any written data
register_read_0: process(all)
begin
d_out.read1_data <= d1;
d_out.read2_data <= d2;
d_out.read3_data <= d3;

if w_in.write_enable = '1' then
if d_in.read1_reg = w_in.write_reg then
d_out.read1_data <= w_in.write_data;
end if;
if d_in.read2_reg = w_in.write_reg then
d_out.read2_data <= w_in.write_data;
end if;
if d_in.read3_reg = w_in.write_reg then
d_out.read3_data <= w_in.write_data;
end if;
end if;
end process register_read_0;

end architecture behaviour;

@ -1,285 +0,0 @@
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library work;
use work.wishbone_types.all;

entity toplevel is
generic (
MEMORY_SIZE : integer := 8192;
RAM_INIT_FILE : string := "firmware.hex";
RESET_LOW : boolean := true;
CLK_INPUT : positive := 100000000;
CLK_FREQUENCY : positive := 100000000;
HAS_FPU : boolean := true;
HAS_BTC : boolean := false;
NO_BRAM : boolean := false;
DISABLE_FLATTEN_CORE : boolean := false;
ALT_RESET_ADDRESS : std_logic_vector(63 downto 0) := (27 downto 0 => '0', others => '1');
SPI_FLASH_OFFSET : integer := 0;
SPI_FLASH_DEF_CKDV : natural := 4;
SPI_FLASH_DEF_QUAD : boolean := false;
SPI_BOOT_CLOCKS : boolean := false;
LOG_LENGTH : natural := 0;
UART_IS_16550 : boolean := true;
HAS_UART1 : boolean := false;
HAS_JTAG : boolean := true;
ICACHE_NUM_LINES : natural := 4;
ICACHE_NUM_WAYS : natural := 1;
ICACHE_TLB_SIZE : natural := 4;
DCACHE_NUM_LINES : natural := 4;
DCACHE_NUM_WAYS : natural := 1;
DCACHE_TLB_SET_SIZE : natural := 2;
DCACHE_TLB_NUM_WAYS : natural := 2;
HAS_GPIO : boolean := true;
NGPIO : natural := 32
);
port(
ext_clk : in std_ulogic;
ext_rst : in std_ulogic;

-- UART0 signals:
uart0_txd : out std_ulogic;
uart0_rxd : in std_ulogic;

-- SPI
spi_flash_cs_n : out std_ulogic;
spi_flash_clk : out std_ulogic;
spi_flash_sdat_i : in std_ulogic_vector(3 downto 0);
spi_flash_sdat_o : out std_ulogic_vector(3 downto 0);
spi_flash_sdat_oe : out std_ulogic_vector(3 downto 0);

-- GPIO
gpio_in : in std_ulogic_vector(NGPIO - 1 downto 0);
gpio_out : out std_ulogic_vector(NGPIO - 1 downto 0);
gpio_dir : out std_ulogic_vector(NGPIO - 1 downto 0);

-- JTAG signals:
jtag_tck : in std_ulogic;
jtag_tdi : in std_ulogic;
jtag_tms : in std_ulogic;
jtag_trst : in std_ulogic;
jtag_tdo : out std_ulogic;

-- simplebus
simplebus_clk : out std_logic;
simplebus_bus_out : out std_logic_vector(7 downto 0);
simplebus_parity_out : out std_logic;
simplebus_bus_in : in std_logic_vector(7 downto 0);
simplebus_parity_in : in std_logic;
simplebus_enabled : out std_logic;
simplebus_irq : in std_ulogic;

-- Add an I/O pin to select fetching from flash on reset
alt_reset : in std_ulogic
);
end entity toplevel;

architecture behaviour of toplevel is
-- reset signals
signal system_rst : std_ulogic;

-- simplebus wishbone connection
signal wb_simplebus_out : wishbone_master_out;
signal wb_simplebus_in : wishbone_slave_out;

-- simplebus split out wishbone
signal wb_simplebus_adr : wishbone_addr_type;
signal wb_simplebus_dat_o : wishbone_data_type;
signal wb_simplebus_cyc : std_ulogic;
signal wb_simplebus_stb : std_ulogic;
signal wb_simplebus_sel : wishbone_sel_type;
signal wb_simplebus_we : std_ulogic;
signal wb_simplebus_dat_i : wishbone_data_type;
signal wb_simplebus_ack : std_ulogic;
signal wb_simplebus_stall : std_ulogic;

-- simplebus I/O wishbone
signal wb_ext_io_in : wb_io_master_out;
signal wb_ext_io_out : wb_io_slave_out;
signal wb_ext_is_simplebus : std_ulogic;

-- simplebus I/O split out wishbone
signal wb_simplebus_ctrl_adr : std_ulogic_vector(29 downto 0);
signal wb_simplebus_ctrl_dat_o : std_ulogic_vector(31 downto 0);
signal wb_simplebus_ctrl_cyc : std_ulogic;
signal wb_simplebus_ctrl_stb : std_ulogic;
signal wb_simplebus_ctrl_sel : std_ulogic_vector(3 downto 0);
signal wb_simplebus_ctrl_we : std_ulogic;
signal wb_simplebus_ctrl_dat_i : std_ulogic_vector(31 downto 0);
signal wb_simplebus_ctrl_ack : std_ulogic;
signal wb_simplebus_ctrl_stall : std_ulogic;

component simplebus_host port(
clk : in std_logic;
rst : in std_logic;

wb_cyc : in std_logic;
wb_stb : in std_logic;
wb_we : in std_logic;
wb_adr : in wishbone_addr_type;
wb_dat_w : in wishbone_data_type;
wb_sel : in std_logic_vector;
wb_ack : out std_logic;
wb_stall : out std_logic;
wb_dat_r : out wishbone_data_type;

wb_ctrl_cyc : in std_logic;
wb_ctrl_stb : in std_logic;
wb_ctrl_we : in std_logic;
wb_ctrl_adr : in std_logic_vector(29 downto 0);
wb_ctrl_dat_w : in std_logic_vector(31 downto 0);
wb_ctrl_sel : in std_logic_vector(3 downto 0);
wb_ctrl_ack : out std_logic;
wb_ctrl_stall : out std_logic;
wb_ctrl_dat_r : out std_logic_vector(31 downto 0);

clk_out : out std_logic;
bus_out : out std_logic_vector(7 downto 0);
parity_out : out std_logic;
bus_in : in std_logic_vector(7 downto 0);
parity_in : in std_logic;
enabled : out std_logic
);
end component simplebus_host;

begin

system_rst <= not ext_rst when RESET_LOW else ext_rst;

-- Main SoC
soc0: entity work.soc
generic map(
MEMORY_SIZE => MEMORY_SIZE,
RAM_INIT_FILE => RAM_INIT_FILE,
SIM => false,
CLK_FREQ => CLK_FREQUENCY,
HAS_FPU => HAS_FPU,
HAS_BTC => HAS_BTC,
HAS_DRAM => true,
DRAM_SIZE => 0,
DRAM_INIT_SIZE => 0,
DISABLE_FLATTEN_CORE => DISABLE_FLATTEN_CORE,
ALT_RESET_ADDRESS => ALT_RESET_ADDRESS,
HAS_SPI_FLASH => true,
SPI_FLASH_DLINES => 4,
SPI_FLASH_OFFSET => SPI_FLASH_OFFSET,
SPI_FLASH_DEF_CKDV => SPI_FLASH_DEF_CKDV,
SPI_FLASH_DEF_QUAD => SPI_FLASH_DEF_QUAD,
SPI_BOOT_CLOCKS => SPI_BOOT_CLOCKS,
LOG_LENGTH => LOG_LENGTH,
UART0_IS_16550 => UART_IS_16550,
HAS_UART1 => HAS_UART1,
HAS_GPIO => HAS_GPIO,
NGPIO => NGPIO,
HAS_JTAG => HAS_JTAG,
ICACHE_NUM_LINES => ICACHE_NUM_LINES,
ICACHE_NUM_WAYS => ICACHE_NUM_WAYS,
ICACHE_TLB_SIZE => ICACHE_TLB_SIZE,
DCACHE_NUM_LINES => DCACHE_NUM_LINES,
DCACHE_NUM_WAYS => DCACHE_NUM_WAYS,
DCACHE_TLB_SET_SIZE => DCACHE_TLB_SET_SIZE,
DCACHE_TLB_NUM_WAYS => DCACHE_TLB_NUM_WAYS
)
port map (
-- System signals
system_clk => ext_clk,
rst => system_rst,

-- UART signals
uart0_txd => uart0_txd,
uart0_rxd => uart0_rxd,

-- SPI signals
spi_flash_sck => spi_flash_clk,
spi_flash_cs_n => spi_flash_cs_n,
spi_flash_sdat_o => spi_flash_sdat_o,
spi_flash_sdat_oe => spi_flash_sdat_oe,
spi_flash_sdat_i => spi_flash_sdat_i,

-- GPIO signals
gpio_in => gpio_in,
gpio_out => gpio_out,
gpio_dir => gpio_dir,

-- JTAG signals
jtag_tck => jtag_tck,
jtag_tdi => jtag_tdi,
jtag_tms => jtag_tms,
jtag_trst => jtag_trst,
jtag_tdo => jtag_tdo,

-- simplebus 64-bit wishbone
wb_dram_in => wb_simplebus_out,
wb_dram_out => wb_simplebus_in,

-- simplebus 32-bit external IO wishbone
wb_ext_io_in => wb_ext_io_in,
wb_ext_io_out => wb_ext_io_out,
wb_ext_is_dram_csr => wb_ext_is_simplebus,

ext_irq_eth => simplebus_irq,

-- Reset PC to flash offset 0 (ie 0xf000000)
alt_reset => alt_reset
);

-- simplebus wishbone
wb_simplebus_adr <= wb_simplebus_out.adr;
wb_simplebus_dat_o <= wb_simplebus_out.dat;
wb_simplebus_cyc <= wb_simplebus_out.cyc;
wb_simplebus_stb <= wb_simplebus_out.stb;
wb_simplebus_sel <= wb_simplebus_out.sel;
wb_simplebus_we <= wb_simplebus_out.we;

wb_simplebus_in.dat <= wb_simplebus_dat_i;
wb_simplebus_in.ack <= wb_simplebus_ack;
wb_simplebus_in.stall <= wb_simplebus_stall;

-- simplebus I/O wishbone
wb_simplebus_ctrl_adr <= wb_ext_io_in.adr;
wb_simplebus_ctrl_dat_o <= wb_ext_io_in.dat;
wb_simplebus_ctrl_cyc <= wb_ext_io_in.cyc and wb_ext_is_simplebus;
wb_simplebus_ctrl_stb <= wb_ext_io_in.stb and wb_ext_is_simplebus;
wb_simplebus_ctrl_sel <= wb_ext_io_in.sel;
wb_simplebus_ctrl_we <= wb_ext_io_in.we;

wb_ext_io_out.dat <= wb_simplebus_ctrl_dat_i;
wb_ext_io_out.ack <= wb_simplebus_ctrl_ack;
wb_ext_io_out.stall <= wb_simplebus_ctrl_stall;

simplebus_0: simplebus_host
port map(
clk => ext_clk,
rst => system_rst,

wb_cyc => wb_simplebus_cyc,
wb_stb => wb_simplebus_stb,
wb_we => wb_simplebus_we,
wb_adr => wb_simplebus_adr,
wb_dat_w => wb_simplebus_dat_o,
wb_sel => wb_simplebus_sel,
wb_ack => wb_simplebus_ack,
wb_stall => wb_simplebus_stall,
wb_dat_r => wb_simplebus_dat_i,

wb_ctrl_cyc => wb_simplebus_ctrl_cyc,
wb_ctrl_stb => wb_simplebus_ctrl_stb,
wb_ctrl_we => wb_simplebus_ctrl_we,
wb_ctrl_adr => wb_simplebus_ctrl_adr,
wb_ctrl_dat_w => wb_simplebus_ctrl_dat_o,
wb_ctrl_sel => wb_simplebus_ctrl_sel,
wb_ctrl_ack => wb_simplebus_ctrl_ack,
wb_ctrl_stall => wb_simplebus_ctrl_stall,
wb_ctrl_dat_r => wb_simplebus_ctrl_dat_i,

clk_out => simplebus_clk,
bus_out => simplebus_bus_out,
parity_out => simplebus_parity_out,
bus_in => simplebus_bus_in,
parity_in => simplebus_parity_in,
enabled => simplebus_enabled
);

end architecture behaviour;

@ -1,72 +0,0 @@
#!/usr/bin/python

import argparse
import re

module_regex = r'[a-zA-Z0-9_:\.\\]+'

# match:
# module dcache(clk, rst, d_in, m_in, wishbone_in, d_out, m_out, stall_out, wishbone_out);
# A bit of a hack - ignore anything contining a '`', and assume that means we've already
# processed this module in a previous run. This helps when having to run this script
# multiple times for different power names.
multiline_module_re = re.compile(r'module\s+(' + module_regex + r')\(([^`]*?)\);', re.DOTALL)
module_re = re.compile(r'module\s+(' + module_regex + r')\((.*?)\);')

# match:
# dcache_64_2_2_2_2_12_0 dcache_0 (
hookup_re = re.compile(r'\s+(' + module_regex + r') ' + module_regex + r'\s+\(')

header1 = """\
`ifdef USE_POWER_PINS
{power}, {ground},
`endif\
"""

header2 = """\
`ifdef USE_POWER_PINS
inout {power};
inout {ground};
`endif\
"""

header3 = """\
`ifdef USE_POWER_PINS
.{power}({parent_power}),
.{ground}({parent_ground}),
`endif\
"""

parser = argparse.ArgumentParser(description='Insert power and ground into verilog modules')
parser.add_argument('--power', default='VPWR', help='POWER net name (default VPWR)')
parser.add_argument('--ground', default='VGND', help='POWER net name (default VGND)')
parser.add_argument('--parent-power', default='VPWR', help='POWER net name of parent module (default VPWR)')
parser.add_argument('--parent-ground', default='VGND', help='POWER net name of parent module (default VGND)')
parser.add_argument('--verilog', required=True, help='Verilog file to modify')
parser.add_argument('--module', required=True, action='append', help='Module to replace (can be specified multiple times')

args = parser.parse_args()

with open(args.verilog, 'r') as f:
d = f.read()
# Remove newlines from module definitions, yosys started doing this as of
# commit ff8e999a7112 ("Split module ports, 20 per line")
fixed = multiline_module_re.sub(lambda m: m.group(0).replace("\n", ""), d)

for line in fixed.splitlines():
m = module_re.match(line)
m2 = hookup_re.match(line)
if m and m.group(1) in args.module:
module_name = m.group(1)
module_args = m.group(2)
print('module %s(' % (module_name))
print("")
print(header1.format(power=args.power, ground=args.ground))
print(' %s);' % module_args)
print(header2.format(power=args.power, ground=args.ground))
elif m2 and m2.group(1) in args.module:
print(line)
print(header3.format(parent_power=args.parent_power, parent_ground=args.parent_ground, power=args.power, ground=args.ground))
else:
print(line)

@ -1,37 +0,0 @@
#!/bin/bash -e

# process microwatt verilog

FILE_IN=microwatt_asic.v
FILE_OUT=microwatt_asic_processed.v

# Rename top level
sed 's/toplevel/microwatt/' < $FILE_IN > $FILE_OUT

# Add power to all macros, and route power in microwatt down to them
caravel/insert_power.py --verilog=$FILE_OUT --parent-power=vccd1 --parent-ground=vssd1 --power=vccd1 --ground=vssd1 --module=microwatt --module=core_0_4_1_4_4_1_2_2_452bf2882a9b5f1c06340d5059c72dbd8af3bf8b --module=execute1_0_47ec8d98366433dc002e7721c9e37d5067547937 --module=multiply_2 --module=soc_4096_100000000_0_0_4_0_4_0_4_1_4_4_1_2_2_32_529beb193518cdd5546a21170d32ebafc9f9cb89 --module=icache_64_8_4_1_4_12_0_5ba93c9db0cff93f52b521d7420e43f6eda2784f --module=dcache_64_4_1_2_2_12_0 --module=cache_ram_5_64_1489f923c4dca729178b3e3233458550d8dddf29 --module=main_bram_64_9_4096_a75adb9e07879fb6c63b494abe06e3f9a6bb2ed9 --module=register_file_0_3f29546453678b855931c174a97d6c0894b8f546 --module=wishbone_bram_wrapper_4096_a75adb9e07879fb6c63b494abe06e3f9a6bb2ed9 --module=fpu > ${FILE_OUT}.tmp1

# Hard macros use VPWR/VGND
caravel/insert_power.py --verilog=${FILE_OUT}.tmp1 --parent-power=vccd1 --parent-ground=vssd1 --power=VPWR --ground=VGND --module=Microwatt_FP_DFFRFile --module=multiply_add_64x64 --module=RAM32_1RW1R --module=RAM512 > ${FILE_OUT}.tmp2

mv ${FILE_OUT}.tmp2 ${FILE_OUT}
rm ${FILE_OUT}.tmp1

# Add defines
sed -i '1 a\
\
/* JTAG */\
`include "tap_top.v"\
\
/* UART */\
`include "raminfr.v"\
`include "uart_receiver.v"\
`include "uart_rfifo.v"\
`include "uart_tfifo.v"\
`include "uart_transmitter.v"\
`include "uart_defines.v"\
`include "uart_regs.v"\
`include "uart_sync_flops.v"\
`include "uart_wb.v"\
`include "uart_top.v"\
`include "simplebus_host.v"' $FILE_OUT

@ -8,7 +8,7 @@ use work.decode_types.all;

package common is
-- Processor Version Number
constant PVR_MICROWATT : std_ulogic_vector(31 downto 0) := x"00630101";
constant PVR_MICROWATT : std_ulogic_vector(31 downto 0) := x"00630000";

-- MSR bit numbers
constant MSR_SF : integer := (63 - 0); -- Sixty-Four bit mode

@ -64,8 +64,8 @@ architecture rtl of control is

signal r_int, rin_int : reg_internal_type := reg_internal_init;

signal gpr_write_valid : std_ulogic := '0';
signal cr_write_valid : std_ulogic := '0';
signal gpr_write_valid : std_ulogic;
signal cr_write_valid : std_ulogic;

type tag_register is record
wr_gpr : std_ulogic;
@ -245,6 +245,8 @@ begin
end if;

if rst = '1' then
gpr_write_valid <= '0';
cr_write_valid <= '0';
v_int := reg_internal_init;
valid_tmp := '0';
end if;

@ -117,21 +117,20 @@ architecture behave of core is
signal complete: instr_tag_t;
signal terminate: std_ulogic;
signal core_rst: std_ulogic;
signal icache_inv: std_ulogic;
signal do_interrupt: std_ulogic;

-- Delayed/Latched resets and alt_reset
signal rst_fetch1 : std_ulogic := '1';
signal rst_fetch2 : std_ulogic := '1';
signal rst_icache : std_ulogic := '1';
signal rst_dcache : std_ulogic := '1';
signal rst_dec1 : std_ulogic := '1';
signal rst_dec2 : std_ulogic := '1';
signal rst_ex1 : std_ulogic := '1';
signal rst_fpu : std_ulogic := '1';
signal rst_ls1 : std_ulogic := '1';
signal rst_wback : std_ulogic := '1';
signal rst_dbg : std_ulogic := '1';
signal rst_fetch1 : std_ulogic;
signal rst_fetch2 : std_ulogic;
signal rst_icache : std_ulogic;
signal rst_dcache : std_ulogic;
signal rst_dec1 : std_ulogic;
signal rst_dec2 : std_ulogic;
signal rst_ex1 : std_ulogic;
signal rst_fpu : std_ulogic;
signal rst_ls1 : std_ulogic;
signal rst_wback : std_ulogic;
signal rst_dbg : std_ulogic;
signal alt_reset_d : std_ulogic;

signal sim_cr_dump: std_ulogic;

@ -154,6 +154,7 @@ begin
stopping <= '0';
terminated <= '0';
log_trigger_delay <= 0;
gspr_index <= (others => '0');
else
if do_log_trigger = '1' or log_trigger_delay /= 0 then
if log_trigger_delay = 255 then

@ -1121,7 +1121,6 @@ begin
rams: for i in 0 to NUM_WAYS-1 generate
signal do_read : std_ulogic;
signal rd_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal do_write : std_ulogic;
signal wr_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal wr_data : std_ulogic_vector(wishbone_data_bits-1 downto 0);
signal wr_sel : std_ulogic_vector(ROW_SIZE-1 downto 0);

@ -42,6 +42,8 @@ begin
quot <= (others => '0');
running <= '0';
count <= "0000000";
is_32bit <= '0';
overflow <= '0';
elsif d_in.valid = '1' then
if d_in.is_extended = '1' then
dend <= '0' & d_in.dividend & x"0000000000000000";

@ -1,302 +0,0 @@
-- JTAG to DMI interface, based on the Xilinx version
--
-- DMI bus
--
-- req : ____/------------\_____
-- addr: xxxx< >xxxxx, based on the Xilinx version
-- dout: xxxx< >xxxxx
-- wr : xxxx< >xxxxx
-- din : xxxxxxxxxxxx< >xxx
-- ack : ____________/------\___
--
-- * addr/dout set along with req, can be latched on same cycle by slave
-- * ack & din remain up until req is dropped by master, the slave must
-- provide a stable output on din on reads during that time.
-- * req remains low at until at least one sysclk after ack seen down.
--
-- JTAG (tck) DMI (sys_clk)
--
-- * jtag_req = 1
-- (jtag_req_0) *
-- (jtag_req_1) -> * dmi_req = 1 >
-- *.../...
-- * dmi_ack = 1 <
-- * (dmi_ack_0)
-- * <- (dmi_ack_1)
-- * jtag_req = 0 (and latch dmi_din)
-- (jtag_req_0) *
-- (jtag_req_1) -> * dmi_req = 0 >
-- * dmi_ack = 0 <
-- * (dmi_ack_0)
-- * <- (dmi_ack_1)
--
-- jtag_req can go back to 1 when jtag_rsp_1 is 0
--
-- Questions/TODO:
-- - I use 2 flip fops for sync, is that enough ?
-- - I treat the jtag_trst as an async reset, is that necessary ?
-- - Dbl check reset situation since we have two different resets
-- each only resetting part of the logic...
-- - Look at optionally removing the synchronizer on the ack path,
-- assuming JTAG is always slow enough that ack will have been
-- stable long enough by the time CAPTURE comes in.
-- - We could avoid the latched request by not shifting while a
-- request is in progress (and force TDO to 1 to return a busy
-- status).
--
-- WARNING: This isn't the real DMI JTAG protocol (at least not yet).
-- a command while busy will be ignored. A response of "11"
-- means the previous command is still going, try again.
-- As such We don't implement the DMI "error" status, and
-- we don't implement DTMCS yet... This may still all change
-- but for now it's easier that way as the real DMI protocol
-- requires for a command to work properly that enough TCK
-- are sent while IDLE and I'm having trouble getting that
-- working with UrJtag and the Xilinx BSCAN2 for now.

library ieee;
use ieee.std_logic_1164.all;
use ieee.math_real.all;

library work;
use work.wishbone_types.all;

entity dmi_dtm_jtag is
generic(ABITS : INTEGER:=8;
DBITS : INTEGER:=32);

port(sys_clk : in std_ulogic;
sys_reset : in std_ulogic;
dmi_addr : out std_ulogic_vector(ABITS - 1 downto 0);
dmi_din : in std_ulogic_vector(DBITS - 1 downto 0);
dmi_dout : out std_ulogic_vector(DBITS - 1 downto 0);
dmi_req : out std_ulogic;
dmi_wr : out std_ulogic;
dmi_ack : in std_ulogic;
-- dmi_err : in std_ulogic TODO: Add error response
jtag_tck : in std_ulogic;
jtag_tdi : in std_ulogic;
jtag_tms : in std_ulogic;
jtag_trst : in std_ulogic;
jtag_tdo : out std_ulogic
);
end entity dmi_dtm_jtag;

architecture behaviour of dmi_dtm_jtag is

-- Signals coming out of the JTAG TAP controller
signal capture : std_ulogic;
signal update : std_ulogic;
signal sel : std_ulogic;
signal shift : std_ulogic;
signal tdi : std_ulogic;
signal tdo : std_ulogic;

-- ** JTAG clock domain **

-- Shift register
signal shiftr : std_ulogic_vector(ABITS + DBITS + 1 downto 0);

-- Latched request
signal request : std_ulogic_vector(ABITS + DBITS + 1 downto 0);

-- A request is present
signal jtag_req : std_ulogic;

-- Synchronizer for jtag_rsp (sys clk -> jtag_tck)
signal dmi_ack_0 : std_ulogic;
signal dmi_ack_1 : std_ulogic;

-- ** sys clock domain **

-- Synchronizer for jtag_req (jtag clk -> sys clk)
signal jtag_req_0 : std_ulogic;
signal jtag_req_1 : std_ulogic;

-- ** combination signals
signal jtag_bsy : std_ulogic;
signal op_valid : std_ulogic;
signal rsp_op : std_ulogic_vector(1 downto 0);

-- ** Constants **
constant DMI_REQ_NOP : std_ulogic_vector(1 downto 0) := "00";
constant DMI_REQ_RD : std_ulogic_vector(1 downto 0) := "01";
constant DMI_REQ_WR : std_ulogic_vector(1 downto 0) := "10";
constant DMI_RSP_OK : std_ulogic_vector(1 downto 0) := "00";
constant DMI_RSP_BSY : std_ulogic_vector(1 downto 0) := "11";

attribute ASYNC_REG : string;
attribute ASYNC_REG of jtag_req_0: signal is "TRUE";
attribute ASYNC_REG of jtag_req_1: signal is "TRUE";
attribute ASYNC_REG of dmi_ack_0: signal is "TRUE";
attribute ASYNC_REG of dmi_ack_1: signal is "TRUE";

component tap_top port (
-- JTAG pads
tms_pad_i : in std_ulogic;
tck_pad_i : in std_ulogic;
trst_pad_i : in std_ulogic;
tdi_pad_i : in std_ulogic;
tdo_pad_o : out std_ulogic;
tdo_padoe_o : out std_ulogic;

-- TAP states
shift_dr_o : out std_ulogic;
pause_dr_o : out std_ulogic;
update_dr_o : out std_ulogic;
capture_dr_o : out std_ulogic;

-- Select signals for boundary scan or mbist
extest_select_o : out std_ulogic;
sample_preload_select_o : out std_ulogic;
mbist_select_o : out std_ulogic;
debug_select_o : out std_ulogic;

-- TDO signal that is connected to TDI of sub-modules.
tdo_o : out std_ulogic;

-- TDI signals from sub-modules
debug_tdi_i : in std_ulogic;
bs_chain_tdi_i : in std_ulogic;
mbist_tdi_i : in std_ulogic
);
end component;

begin
tap_top0 : tap_top
port map (
tms_pad_i => jtag_tms,
tck_pad_i => jtag_tck,
trst_pad_i => jtag_trst,
tdi_pad_i => jtag_tdi,
tdo_pad_o => jtag_tdo,
tdo_padoe_o => open, -- what to do with this?

shift_dr_o => shift,
pause_dr_o => open, -- what to do with this?
update_dr_o => update,
capture_dr_o => capture,

-- connect boundary scan and mbist?
extest_select_o => open,
sample_preload_select_o => open,
mbist_select_o => open,
debug_select_o => sel,

tdo_o => tdi,
debug_tdi_i => tdo,
bs_chain_tdi_i => '0',
mbist_tdi_i => '0'
);

-- dmi_req synchronization
dmi_req_sync : process(sys_clk)
begin
-- sys_reset is synchronous
if rising_edge(sys_clk) then
if (sys_reset = '1') then
jtag_req_0 <= '0';
jtag_req_1 <= '0';
else
jtag_req_0 <= jtag_req;
jtag_req_1 <= jtag_req_0;
end if;
end if;
end process;
dmi_req <= jtag_req_1;

-- dmi_ack synchronization
dmi_ack_sync: process(jtag_tck, jtag_trst)
begin
-- jtag_trst is async (see comments)
if jtag_trst = '1' then
dmi_ack_0 <= '0';
dmi_ack_1 <= '0';
elsif rising_edge(jtag_tck) then
dmi_ack_0 <= dmi_ack;
dmi_ack_1 <= dmi_ack_0;
end if;
end process;

-- jtag_bsy indicates whether we can start a new request, we can when
-- we aren't already processing one (jtag_req) and the synchronized ack
-- of the previous one is 0.
--
jtag_bsy <= jtag_req or dmi_ack_1;

-- decode request type in shift register
with shiftr(1 downto 0) select op_valid <=
'1' when DMI_REQ_RD,
'1' when DMI_REQ_WR,
'0' when others;

-- encode response op
rsp_op <= DMI_RSP_BSY when jtag_bsy = '1' else DMI_RSP_OK;

-- Some DMI out signals are directly driven from the request register
dmi_addr <= request(ABITS + DBITS + 1 downto DBITS + 2);
dmi_dout <= request(DBITS + 1 downto 2);
dmi_wr <= '1' when request(1 downto 0) = DMI_REQ_WR else '0';

-- TDO is wired to shift register bit 0
tdo <= shiftr(0);

-- Main state machine. Handles shift registers, request latch and
-- jtag_req latch. Could be split into 3 processes but it's probably
-- not worthwhile.
--
shifter: process(jtag_tck, jtag_trst, sys_reset)
begin
if jtag_trst = '1' or sys_reset = '1' then
shiftr <= (others => '0');
jtag_req <= '0';
request <= (others => '0');
elsif rising_edge(jtag_tck) then

-- Handle jtag "commands" when sel is 1
if sel = '1' then
-- Shift state, rotate the register
if shift = '1' then
shiftr <= tdi & shiftr(ABITS + DBITS + 1 downto 1);
end if;

-- Update state (trigger)
--
-- Latch the request if we aren't already processing one and
-- it has a valid command opcode.
--
if update = '1' and op_valid = '1' then
if jtag_bsy = '0' then
request <= shiftr;
jtag_req <= '1';
end if;
-- Set the shift register "op" to "busy". This will prevent
-- us from re-starting the command on the next update if
-- the command completes before that.
shiftr(1 downto 0) <= DMI_RSP_BSY;
end if;

-- Request completion.
--
-- Capture the response data for reads and clear request flag.
--
-- Note: We clear req (and thus dmi_req) here which relies on tck
-- ticking and sel set. This means we are stuck with dmi_req up if
-- the jtag interface stops. Slaves must be resilient to this.
--
if jtag_req = '1' and dmi_ack_1 = '1' then
jtag_req <= '0';
if request(1 downto 0) = DMI_REQ_RD then
request(DBITS + 1 downto 2) <= dmi_din;
end if;
end if;

-- Capture state, grab latch content with updated status
if capture = '1' then
shiftr <= request(ABITS + DBITS + 1 downto 2) & rsp_op;
end if;

end if;
end if;
end process;
end architecture behaviour;

@ -99,8 +99,8 @@ architecture behaviour of execute1 is
signal mshort_p : std_ulogic_vector(31 downto 0) := (others => '0');

signal valid_in : std_ulogic;
signal ctrl: ctrl_t := (others => (others => '0'));
signal ctrl_tmp: ctrl_t := (others => (others => '0'));
signal ctrl: ctrl_t;
signal ctrl_tmp: ctrl_t;
signal right_shift, rot_clear_left, rot_clear_right: std_ulogic;
signal rot_sign_ext: std_ulogic;
signal rotator_result: std_ulogic_vector(63 downto 0);
@ -113,8 +113,6 @@ architecture behaviour of execute1 is
signal misc_result: std_ulogic_vector(63 downto 0);
signal muldiv_result: std_ulogic_vector(63 downto 0);
signal spr_result: std_ulogic_vector(63 downto 0);
signal result_mux_sel: std_ulogic_vector(2 downto 0);
signal sub_mux_sel: std_ulogic_vector(2 downto 0);
signal next_nia : std_ulogic_vector(63 downto 0);
signal current: Decode2ToExecute1Type;

@ -406,6 +404,7 @@ begin
r <= reg_type_init;
ctrl.tb <= (others => '0');
ctrl.dec <= (others => '0');
ctrl.cfar <= (others => '0');
ctrl.msr <= (MSR_SF => '1', MSR_LE => '1', others => '0');
else
r <= rin;

@ -16,7 +16,7 @@ entity fpu is
clk : in std_ulogic;
rst : in std_ulogic;

e_in : in Execute1toFPUType;
e_in : in Execute1ToFPUType;
e_out : out FPUToExecute1Type;

w_out : out FPUToWritebackType
@ -549,6 +549,10 @@ begin
r.do_intr <= '0';
r.fpscr <= (others => '0');
r.writing_back <= '0';
r.dest_fpr <= (others =>'0');
r.cr_mask <= (others =>'0');
r.cr_result <= (others =>'0');
r.instr_tag.valid <= '0';
else
assert not (r.state /= IDLE and e_in.valid = '1') severity failure;
r <= rin;

@ -40,8 +40,8 @@ architecture behaviour of gpio is
constant GPIO_REG_DATA_CLR : std_ulogic_vector(GPIO_REG_BITS-1 downto 0) := "00101";

-- Current output value and direction
signal reg_data : std_ulogic_vector(NGPIO - 1 downto 0) := (others => '0');
signal reg_dirn : std_ulogic_vector(NGPIO - 1 downto 0) := (others => '0');
signal reg_data : std_ulogic_vector(NGPIO - 1 downto 0);
signal reg_dirn : std_ulogic_vector(NGPIO - 1 downto 0);
signal reg_in1 : std_ulogic_vector(NGPIO - 1 downto 0);
signal reg_in2 : std_ulogic_vector(NGPIO - 1 downto 0);


@ -60,9 +60,62 @@ _start:

.global boot_entry
boot_entry:
LOAD_IMM64(%r10,__bss_start)
LOAD_IMM64(%r11,__bss_end)
subf %r11,%r10,%r11
addi %r11,%r11,63
srdi. %r11,%r11,6
beq 2f
mtctr %r11
1: dcbz 0,%r10
addi %r10,%r10,64
bdnz 1b

/* setup stack */
LOAD_IMM64(%r1, STACK_TOP - 0x100)
2: LOAD_IMM64(%r1,__stack_top)
li %r0,0
stdu %r0,-32(%r1)
LOAD_IMM64(%r12, main)
mtctr %r12,
mtctr %r12
bctrl
attn // terminate on exit
b .

#define EXCEPTION(nr) \
.= nr ;\
b .

/* More exception stubs */
EXCEPTION(0x300)
EXCEPTION(0x380)
EXCEPTION(0x400)
EXCEPTION(0x480)
EXCEPTION(0x500)
EXCEPTION(0x600)
EXCEPTION(0x700)
EXCEPTION(0x800)
EXCEPTION(0x900)
EXCEPTION(0x980)
EXCEPTION(0xa00)
EXCEPTION(0xb00)
EXCEPTION(0xc00)
EXCEPTION(0xd00)
EXCEPTION(0xe00)
EXCEPTION(0xe20)
EXCEPTION(0xe40)
EXCEPTION(0xe60)
EXCEPTION(0xe80)
EXCEPTION(0xf00)
EXCEPTION(0xf20)
EXCEPTION(0xf40)
EXCEPTION(0xf60)
EXCEPTION(0xf80)
#if 0
EXCEPTION(0x1000)
EXCEPTION(0x1100)
EXCEPTION(0x1200)
EXCEPTION(0x1300)
EXCEPTION(0x1400)
EXCEPTION(0x1500)
EXCEPTION(0x1600)
#endif

Binary file not shown.

Binary file not shown.

@ -35,13 +35,24 @@ a64b5a7d14004a39
a602487d05009f42
a64b5a7d14004a39
2402004ca64b7b7d
3c20000048000004
3d40000048000004
794a07c6614a0000
614a1900654a0000
616b00003d600000
656b0000796b07c6
7d6a5850616b1980
796bd183396b003f
7d6903a641820014
394a00407c0057ec
3c2000004200fff8
782107c660210000
60211f0064210000
618c00003d800000
658c0000798c07c6
7d8903a6618c0414
480000004e800421
6021398064210000
f801ffe138000000
3d8000007c1243a6
798c07c6618c0000
618c1000658c0000
4e8004217d8903a6
4800000000000200
0000000000000000
0000000000000000
0000000000000000
@ -83,6 +94,7 @@ a64b5a7d14004a39
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
@ -98,6 +110,7 @@ a64b5a7d14004a39
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
@ -113,6 +126,7 @@ a64b5a7d14004a39
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
@ -126,148 +140,518 @@ a64b5a7d14004a39
0000000000000000
0000000000000000
0000000000000000
e8010010ebc1fff0
7c0803a6ebe1fff8
3c4000014e800020
7c0802a638428a00
f8010010fbe1fff8
480001edf821ffd1
6000000060000000
4800015538628000
4800004960000000
7c7f1b7860000000
57ff063e5463063e
60000000480000b9
4082ffe02c1f000d
480000a53860000a
4bffffd060000000
0100000000000000
3c40000100000180
6000000038428a00
6000000089228090
2c09000039428088
e92a000041820030
7c0004ac39290014
712900017d204eaa
e86a00004182ffec
7c601eaa7c0004ac
4e8000205463063e
39290010e92a0000
7d204eea7c0004ac
4082ffec71290001
38630008e86a0000
7c601eea7c0004ac
000000004bffffd0
0000000000000000
38428a003c400001
8922809060000000
3942808860000000
4182002c2c090000
39290014e92a0000
7d204eaa7c0004ac
4182ffec71290020
7c0004ace92a0000
4e8000207c604faa
39290010e92a0000
7d204eea7c0004ac
4082ffec71290008
e94a00005469063e
7d2057ea7c0004ac
000000004e800020
0000000000000000
38428a003c400001
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000048000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
384298003c400001
fbe1fff87c0802a6
3be3fffffbc1fff0
f821ffd1f8010010
2c3e00008fdf0001
3821003040820010
4bfffe4438600000
4082000c281e000a
4bffff453860000d
4bffff3d7fc3f378
60000000480001ed
3862800060000000
6000000048000155
6000000048000049
5463063e7c7f1b78
480000b957ff063e
2c1f000d60000000
3860000a4082ffe0
60000000480000a5
000000004bffffd0
0000028001000000
386000007c691b78
2c0a00007d4918ae
386300014d820020
000000004bfffff0
0000000000000000
38428a003c400001
614a00203d40c000
7c0004ac794a0020
3d20c0007d4056ea
61290008794a0600
7c0004ac79290020
712900207d204eea
3d20c00041820018
7929002061290040
0000018001000000
384298003c400001
8922810860000000
3942810060000000
418200302c090000
39290014e92a0000
7d204eaa7c0004ac
4182ffec71290001
7c0004ace86a0000
5463063e7c601eaa
e92a00004e800020
7c0004ac39290010
712900017d204eea
e86a00004082ffec
7c0004ac38630008
4bffffd07c601eea
0000000000000000
3c40000100000000
6000000038429800
6000000089228108
2c09000039428100
e92a00004182002c
7c0004ac39290014
712900207d204eaa
e92a00004182ffec
7c604faa7c0004ac
e92a00004e800020
7c0004ac39290010
712900087d204eea
5469063e4082ffec
7c0004ace94a0000
4e8000207d2057ea
0000000000000000
3c40000100000000
7c0802a638429800
fbc1fff0fbe1fff8
f80100103be3ffff
8fdf0001f821ffd1
408200102c3e0000
3860000038210030
281e000a480001e8
3860000d4082000c
7fc3f3784bffff45
4bffffd04bffff3d
0100000000000000
7c691b7800000280
7d4918ae38600000
4d8200202c0a0000
4bfffff038630001
0000000000000000
3c40000100000000
3d40c00038429800
794a0020614a0020
7d4056ea7c0004ac
794a06003d20c000
7929002061290008
7d204eea7c0004ac
3d00c0007929f804
6108200079290fc3
6000000079080020
3d00001cf9028088
7d4a439261082000
6000000041820084
9922809039200001
6108200c3d00c000
790800203920ff80
7d2047aa7c0004ac
7c0004ace9228088
e92280887d404faa
39290004794ac202
4182001871290020
612900403d20c000
7c0004ac79290020
7929f8047d204eea
79290fc33d00c000
7908002061082000
f902810060000000
610820003d00001c
418200847d4a4392
3920000160000000
3d00c00099228108
3920ff806108200c
7c0004ac79080020
e92281007d2047aa
7d404faa7c0004ac
39400003e9228088
7c0004ac3929000c
e92280887d404faa
7c0004ac39290010
e92280887d404faa
3929000839400007
794ac202e9228100
7c0004ac39290004
e92281007d404faa
3929000c39400003
7d404faa7c0004ac
600000004e800020
99228090394affff
612920183d20c000
7c0004ac79290020
4e8000207d404fea
39290010e9228100
7d404faa7c0004ac
39400007e9228100
7c0004ac39290008
4e8000207d404faa
394affff60000000
3d20c00099228108
7929002061292018
7d404fea7c0004ac
000000004e800020
0000000000000000
3c40000100000000
6000000038428a00
2c09000089228090
e922808860000000
2c23000041820024
4182000878840e28
3929000460840001
7c804faa7c0004ac
2c2400004e800020
6063000241820008
7c0004ac39290020
4e8000207c604fea
384298003c400001
8922810860000000
600000002c090000
41820024e9228100
78840e282c230000
6084000141820008
7c0004ac39290004
4e8000207c804faa
418200082c240000
3929002060630002
7c604fea7c0004ac
000000004e800020
0000000000000000
0000001000000000
e8010010ebc1fff0
7c0803a6ebe1fff8
000000104e800020
00527a0100000000
00010c1b01417804
0000001800000018
00000070fffffc54
00000070fffffc40
9f7e4111300e4600
0000001000000001
00527a0100000000
00010c1b01417804
0000001800000010
00000084fffffc94
00000084fffffc80
0000001000000000
fffffd040000002c
fffffcf00000002c
0000000000000080
0000004000000028
00000060fffffd70
00000060fffffd5c
9e019f0041094500
447e4111300e4302
4106dedf42000e0a
000000100000000b
fffffda40000006c
fffffd900000006c
0000000000000028
0000008000000010
0000012cfffffdb8
0000012cfffffda4
0000001000000000
fffffed000000094
fffffebc00000094
0000000000000068
0000000000000000
0000000000000000
@ -318,6 +702,70 @@ fffffed000000094
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
4f4f6f2e2020200a
0a20202020202e6f
2020202020222e20

@ -1,13 +1,27 @@
SECTIONS
{
_start = .;
. = 0;
_start = .;
.head : {
KEEP(*(.head))
}
. = 0x400;
.text : { *(.text) }
. = 0xA00;
.data : { *(.data) }
.bss : { *(.bss) }
}
. = 0x1000;
.text : { *(.text) *(.text.*) *(.rodata) *(.rodata.*) }
. = 0x1800;
.data : { *(.data) *(.data.*) *(.got) *(.toc) }
. = ALIGN(0x80);
__bss_start = .;
.bss : {
*(.dynsbss)
*(.sbss)
*(.scommon)
*(.dynbss)
*(.bss)
*(.common)
*(.bss.*)
}
. = ALIGN(0x80);
__bss_end = .;
. = . + 0x2000;
__stack_top = .;
}

@ -555,7 +555,11 @@ begin
-- I prefer not to do just yet as it would force fetch2 to know about
-- some of the cache geometry information.
--
i_out.insn <= read_insn_word(r.hit_nia, cache_out(r.hit_way));
if r.hit_valid = '1' then
i_out.insn <= read_insn_word(r.hit_nia, cache_out(r.hit_way));
else
i_out.insn <= (others => '0');
end if;
i_out.valid <= r.hit_valid;
i_out.nia <= r.hit_nia;
i_out.stop_mark <= r.hit_smark;
@ -820,4 +824,7 @@ begin
end process;
log_out <= log_data;
end generate;

events <= ev;

end;

@ -74,6 +74,9 @@ begin
i_out.req <= '0';
i_out.nia <= (others => '0');
i_out.stop_mark <= '0';
i_out.priv_mode <= '1';
i_out.virt_mode <= '0';
i_out.big_endian <= '0';

m_out.tlbld <= '0';
m_out.tlbie <= '0';

@ -1,636 +0,0 @@
//////////////////////////////////////////////////////////////////////
//// ////
//// tap_top.v ////
//// ////
//// ////
//// This file is part of the JTAG Test Access Port (TAP) ////
//// http://www.opencores.org/projects/jtag/ ////
//// ////
//// Author(s): ////
//// Igor Mohor (igorm@opencores.org) ////
//// ////
//// ////
//// All additional information is avaliable in the README.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000 - 2003 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.5 2004/01/18 09:27:39 simons
// Blocking non blocking assignmenst fixed.
//
// Revision 1.4 2004/01/17 17:37:44 mohor
// capture_dr_o added to ports.
//
// Revision 1.3 2004/01/14 13:50:56 mohor
// 5 consecutive TMS=1 causes reset of TAP.
//
// Revision 1.2 2004/01/08 10:29:44 mohor
// Control signals for tdo_pad_o mux are changed to negedge.
//
// Revision 1.1 2003/12/23 14:52:14 mohor
// Directory structure changed. New version of TAP.
//
// Revision 1.10 2003/10/23 18:08:01 mohor
// MBIST chain connection fixed.
//
// Revision 1.9 2003/10/23 16:17:02 mohor
// CRC logic changed.
//
// Revision 1.8 2003/10/21 09:48:31 simons
// Mbist support added.
//
// Revision 1.7 2002/11/06 14:30:10 mohor
// Trst active high. Inverted on higher layer.
//
// Revision 1.6 2002/04/22 12:55:56 mohor
// tdo_padoen_o changed to tdo_padoe_o. Signal is active high.
//
// Revision 1.5 2002/03/26 14:23:38 mohor
// Signal tdo_padoe_o changed back to tdo_padoen_o.
//
// Revision 1.4 2002/03/25 13:16:15 mohor
// tdo_padoen_o changed to tdo_padoe_o. Signal was always active high, just
// not named correctly.
//
// Revision 1.3 2002/03/12 14:30:05 mohor
// Few outputs for boundary scan chain added.
//
// Revision 1.2 2002/03/12 10:31:53 mohor
// tap_top and dbg_top modules are put into two separate modules. tap_top
// contains only tap state machine and related logic. dbg_top contains all
// logic necessery for debugging.
//
// Revision 1.1 2002/03/08 15:28:16 mohor
// Structure changed. Hooks for jtag chain added.
//
//
//
//

// Top module
module tap_top #(parameter
IDCODE_VALUE = 32'h14d57049,
IR_LENGTH = 6)
(
// JTAG pads
tms_pad_i,
tck_pad_i,
trst_pad_i,
tdi_pad_i,
tdo_pad_o,
tdo_padoe_o,

// TAP states
shift_dr_o,
pause_dr_o,
update_dr_o,
capture_dr_o,
// Select signals for boundary scan or mbist
extest_select_o,
sample_preload_select_o,
mbist_select_o,
debug_select_o,
// TDO signal that is connected to TDI of sub-modules.
tdo_o,
// TDI signals from sub-modules
debug_tdi_i, // from debug module
bs_chain_tdi_i, // from Boundary Scan Chain
mbist_tdi_i // from Mbist Chain
);


// JTAG pins
input tms_pad_i; // JTAG test mode select pad
input tck_pad_i; // JTAG test clock pad
input trst_pad_i; // JTAG test reset pad
input tdi_pad_i; // JTAG test data input pad
output tdo_pad_o; // JTAG test data output pad
output tdo_padoe_o; // Output enable for JTAG test data output pad

// TAP states
output shift_dr_o;
output pause_dr_o;
output update_dr_o;
output capture_dr_o;

// Select signals for boundary scan or mbist
output extest_select_o;
output sample_preload_select_o;
output mbist_select_o;
output debug_select_o;

// TDO signal that is connected to TDI of sub-modules.
output tdo_o;

// TDI signals from sub-modules
input debug_tdi_i; // from debug module
input bs_chain_tdi_i; // from Boundary Scan Chain
input mbist_tdi_i; // from Mbist Chain

//Internal constants
localparam EXTEST = 6'b000000;
localparam SAMPLE_PRELOAD = 6'b000001;
localparam IDCODE = 6'b001001;
localparam DEBUG = 6'b000011;
localparam MBIST = 6'b001010;
localparam BYPASS = 6'b111111;

// Registers
reg test_logic_reset;
reg run_test_idle;
reg select_dr_scan;
reg capture_dr;
reg shift_dr;
reg exit1_dr;
reg pause_dr;
reg exit2_dr;
reg update_dr;
reg select_ir_scan;
reg capture_ir;
reg shift_ir, shift_ir_neg;
reg exit1_ir;
reg pause_ir;
reg exit2_ir;
reg update_ir;
reg extest_select;
reg sample_preload_select;
reg idcode_select;
reg mbist_select;
reg debug_select;
reg bypass_select;
reg tdo_pad_o;
reg tdo_padoe_o;
reg tms_q1, tms_q2, tms_q3, tms_q4;
wire tms_reset;

assign tdo_o = tdi_pad_i;
assign shift_dr_o = shift_dr;
assign pause_dr_o = pause_dr;
assign update_dr_o = update_dr;
assign capture_dr_o = capture_dr;

assign extest_select_o = extest_select;
assign sample_preload_select_o = sample_preload_select;
assign mbist_select_o = mbist_select;
assign debug_select_o = debug_select;


always @ (posedge tck_pad_i)
begin
tms_q1 <= tms_pad_i;
tms_q2 <= tms_q1;
tms_q3 <= tms_q2;
tms_q4 <= tms_q3;
end


assign tms_reset = tms_q1 & tms_q2 & tms_q3 & tms_q4 & tms_pad_i; // 5 consecutive TMS=1 causes reset


/**********************************************************************************
* *
* TAP State Machine: Fully JTAG compliant *
* *
**********************************************************************************/

// test_logic_reset state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
test_logic_reset<= 1'b1;
else if (tms_reset)
test_logic_reset<= 1'b1;
else
begin
if(tms_pad_i & (test_logic_reset | select_ir_scan))
test_logic_reset<= 1'b1;
else
test_logic_reset<= 1'b0;
end
end

// run_test_idle state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
run_test_idle<= 1'b0;
else if (tms_reset)
run_test_idle<= 1'b0;
else
if(~tms_pad_i & (test_logic_reset | run_test_idle | update_dr | update_ir))
run_test_idle<= 1'b1;
else
run_test_idle<= 1'b0;
end

// select_dr_scan state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
select_dr_scan<= 1'b0;
else if (tms_reset)
select_dr_scan<= 1'b0;
else
if(tms_pad_i & (run_test_idle | update_dr | update_ir))
select_dr_scan<= 1'b1;
else
select_dr_scan<= 1'b0;
end

// capture_dr state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
capture_dr<= 1'b0;
else if (tms_reset)
capture_dr<= 1'b0;
else
if(~tms_pad_i & select_dr_scan)
capture_dr<= 1'b1;
else
capture_dr<= 1'b0;
end

// shift_dr state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
shift_dr<= 1'b0;
else if (tms_reset)
shift_dr<= 1'b0;
else
if(~tms_pad_i & (capture_dr | shift_dr | exit2_dr))
shift_dr<= 1'b1;
else
shift_dr<= 1'b0;
end

// exit1_dr state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
exit1_dr<= 1'b0;
else if (tms_reset)
exit1_dr<= 1'b0;
else
if(tms_pad_i & (capture_dr | shift_dr))
exit1_dr<= 1'b1;
else
exit1_dr<= 1'b0;
end

// pause_dr state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
pause_dr<= 1'b0;
else if (tms_reset)
pause_dr<= 1'b0;
else
if(~tms_pad_i & (exit1_dr | pause_dr))
pause_dr<= 1'b1;
else
pause_dr<= 1'b0;
end

// exit2_dr state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
exit2_dr<= 1'b0;
else if (tms_reset)
exit2_dr<= 1'b0;
else
if(tms_pad_i & pause_dr)
exit2_dr<= 1'b1;
else
exit2_dr<= 1'b0;
end

// update_dr state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
update_dr<= 1'b0;
else if (tms_reset)
update_dr<= 1'b0;
else
if(tms_pad_i & (exit1_dr | exit2_dr))
update_dr<= 1'b1;
else
update_dr<= 1'b0;
end

// select_ir_scan state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
select_ir_scan<= 1'b0;
else if (tms_reset)
select_ir_scan<= 1'b0;
else
if(tms_pad_i & select_dr_scan)
select_ir_scan<= 1'b1;
else
select_ir_scan<= 1'b0;
end

// capture_ir state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
capture_ir<= 1'b0;
else if (tms_reset)
capture_ir<= 1'b0;
else
if(~tms_pad_i & select_ir_scan)
capture_ir<= 1'b1;
else
capture_ir<= 1'b0;
end

// shift_ir state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
shift_ir<= 1'b0;
else if (tms_reset)
shift_ir<= 1'b0;
else
if(~tms_pad_i & (capture_ir | shift_ir | exit2_ir))
shift_ir<= 1'b1;
else
shift_ir<= 1'b0;
end

// exit1_ir state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
exit1_ir<= 1'b0;
else if (tms_reset)
exit1_ir<= 1'b0;
else
if(tms_pad_i & (capture_ir | shift_ir))
exit1_ir<= 1'b1;
else
exit1_ir<= 1'b0;
end

// pause_ir state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
pause_ir<= 1'b0;
else if (tms_reset)
pause_ir<= 1'b0;
else
if(~tms_pad_i & (exit1_ir | pause_ir))
pause_ir<= 1'b1;
else
pause_ir<= 1'b0;
end

// exit2_ir state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
exit2_ir<= 1'b0;
else if (tms_reset)
exit2_ir<= 1'b0;
else
if(tms_pad_i & pause_ir)
exit2_ir<= 1'b1;
else
exit2_ir<= 1'b0;
end

// update_ir state
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
update_ir<= 1'b0;
else if (tms_reset)
update_ir<= 1'b0;
else
if(tms_pad_i & (exit1_ir | exit2_ir))
update_ir<= 1'b1;
else
update_ir<= 1'b0;
end

/**********************************************************************************
* *
* End: TAP State Machine *
* *
**********************************************************************************/



/**********************************************************************************
* *
* jtag_ir: JTAG Instruction Register *
* *
**********************************************************************************/
reg [IR_LENGTH-1:0] jtag_ir; // Instruction register
reg [IR_LENGTH-1:0] latched_jtag_ir, latched_jtag_ir_neg;
reg instruction_tdo;

always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
jtag_ir[IR_LENGTH-1:0] <= {IR_LENGTH{1'b0}};
else if(capture_ir)
jtag_ir <= 6'b000101; // This value is fixed for easier fault detection
else if(shift_ir)
jtag_ir[IR_LENGTH-1:0] <= {tdi_pad_i, jtag_ir[IR_LENGTH-1:1]};
end

always @ (negedge tck_pad_i)
begin
instruction_tdo <= jtag_ir[0];
end
/**********************************************************************************
* *
* End: jtag_ir *
* *
**********************************************************************************/



/**********************************************************************************
* *
* idcode logic *
* *
**********************************************************************************/
reg [31:0] idcode_reg;
reg idcode_tdo;

always @ (posedge tck_pad_i)
begin
if(idcode_select & shift_dr)
idcode_reg <= {tdi_pad_i, idcode_reg[31:1]};
else
idcode_reg <= IDCODE_VALUE;
end

always @ (negedge tck_pad_i)
begin
idcode_tdo <= idcode_reg[0];
end
/**********************************************************************************
* *
* End: idcode logic *
* *
**********************************************************************************/


/**********************************************************************************
* *
* Bypass logic *
* *
**********************************************************************************/
reg bypassed_tdo;
reg bypass_reg;

always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if (trst_pad_i)
bypass_reg<= 1'b0;
else if(shift_dr)
bypass_reg<= tdi_pad_i;
end

always @ (negedge tck_pad_i)
begin
bypassed_tdo <= bypass_reg;
end
/**********************************************************************************
* *
* End: Bypass logic *
* *
**********************************************************************************/


/**********************************************************************************
* *
* Activating Instructions *
* *
**********************************************************************************/
// Updating jtag_ir (Instruction Register)
always @ (posedge tck_pad_i or posedge trst_pad_i)
begin
if(trst_pad_i)
latched_jtag_ir <= IDCODE; // IDCODE selected after reset
else if (tms_reset)
latched_jtag_ir <= IDCODE; // IDCODE selected after reset
else if(update_ir)
latched_jtag_ir <= jtag_ir;
end

/**********************************************************************************
* *
* End: Activating Instructions *
* *
**********************************************************************************/


// Updating jtag_ir (Instruction Register)
always @ (latched_jtag_ir)
begin
extest_select = 1'b0;
sample_preload_select = 1'b0;
idcode_select = 1'b0;
mbist_select = 1'b0;
debug_select = 1'b0;
bypass_select = 1'b0;

case(latched_jtag_ir) /* synthesis parallel_case */
EXTEST: extest_select = 1'b1; // External test
SAMPLE_PRELOAD: sample_preload_select = 1'b1; // Sample preload
IDCODE: idcode_select = 1'b1; // ID Code
MBIST: mbist_select = 1'b1; // Mbist test
DEBUG: debug_select = 1'b1; // Debug
BYPASS: bypass_select = 1'b1; // BYPASS
default: bypass_select = 1'b1; // BYPASS
endcase
end



/**********************************************************************************
* *
* Multiplexing TDO data *
* *
**********************************************************************************/
always @ (shift_ir_neg or exit1_ir or instruction_tdo or latched_jtag_ir_neg or idcode_tdo or
debug_tdi_i or bs_chain_tdi_i or mbist_tdi_i or
bypassed_tdo)
begin
if(shift_ir_neg)
tdo_pad_o = instruction_tdo;
else
begin
case(latched_jtag_ir_neg) // synthesis parallel_case
IDCODE: tdo_pad_o = idcode_tdo; // Reading ID code
DEBUG: tdo_pad_o = debug_tdi_i; // Debug
SAMPLE_PRELOAD: tdo_pad_o = bs_chain_tdi_i; // Sampling/Preloading
EXTEST: tdo_pad_o = bs_chain_tdi_i; // External test
MBIST: tdo_pad_o = mbist_tdi_i; // Mbist test
default: tdo_pad_o = bypassed_tdo; // BYPASS instruction
endcase
end
end


// Tristate control for tdo_pad_o pin
always @ (negedge tck_pad_i)
begin
tdo_padoe_o <= shift_ir | shift_dr | (pause_dr & debug_select);
end
/**********************************************************************************
* *
* End: Multiplexing TDO data *
* *
**********************************************************************************/


always @ (negedge tck_pad_i)
begin
shift_ir_neg <= shift_ir;
latched_jtag_ir_neg <= latched_jtag_ir;
end


endmodule

@ -275,10 +275,27 @@ begin
if rising_edge(clk) then
if rst = '1' then
r1.req.valid <= '0';
r1.req.tlbie <= '0';
r1.req.is_slbia <= '0';
r1.req.instr_fault <= '0';
r1.req.load <= '0';
r1.req.priv_mode <= '0';
r1.req.sprn <= (others => '0');
r1.req.xerc <= xerc_init;

r2.req.valid <= '0';
r2.req.tlbie <= '0';
r2.req.is_slbia <= '0';
r2.req.instr_fault <= '0';
r2.req.load <= '0';
r2.req.priv_mode <= '0';
r2.req.sprn <= (others => '0');
r2.req.xerc <= xerc_init;

r2.wait_dc <= '0';
r2.wait_mmu <= '0';
r2.one_cycle <= '0';

r3.dar <= (others => '0');
r3.dsisr <= (others => '0');
r3.state <= IDLE;
@ -286,6 +303,8 @@ begin
r3.interrupt <= '0';
r3.stage1_en <= '1';
r3.convert_lfs <= '0';
r3.events.load_complete <= '0';
r3.events.store_complete <= '0';
flushing <= '0';
else
r1 <= r1in;

File diff suppressed because it is too large Load Diff

@ -84,8 +84,7 @@ entity soc is
DCACHE_TLB_NUM_WAYS : natural := 2;
HAS_SD_CARD : boolean := false;
HAS_GPIO : boolean := false;
NGPIO : natural := 32;
HAS_JTAG : boolean := false
NGPIO : natural := 32
);
port(
rst : in std_ulogic;
@ -131,13 +130,6 @@ entity soc is
gpio_dir : out std_ulogic_vector(NGPIO - 1 downto 0);
gpio_in : in std_ulogic_vector(NGPIO - 1 downto 0) := (others => '0');

-- JTAG signals
jtag_tck : in std_ulogic := '0';
jtag_tdi : in std_ulogic := '0';
jtag_tms : in std_ulogic := '0';
jtag_trst : in std_ulogic := '0';
jtag_tdo : out std_ulogic;

-- DRAM controller signals
alt_reset : in std_ulogic := '0'
);
@ -231,15 +223,15 @@ architecture behaviour of soc is
signal dmi_core_ack : std_ulogic;

-- Delayed/latched resets and alt_reset
signal rst_core : std_ulogic := '1';
signal rst_uart : std_ulogic := '1';
signal rst_xics : std_ulogic := '1';
signal rst_spi : std_ulogic := '1';
signal rst_gpio : std_ulogic := '1';
signal rst_bram : std_ulogic := '1';
signal rst_dtm : std_ulogic := '1';
signal rst_wbar : std_ulogic := '1';
signal rst_wbdb : std_ulogic := '1';
signal rst_core : std_ulogic;
signal rst_uart : std_ulogic;
signal rst_xics : std_ulogic;
signal rst_spi : std_ulogic;
signal rst_gpio : std_ulogic;
signal rst_bram : std_ulogic;
signal rst_dtm : std_ulogic;
signal rst_wbar : std_ulogic;
signal rst_wbdb : std_ulogic;
signal alt_reset_d : std_ulogic;

-- IO branch split:
@ -994,46 +986,21 @@ begin
end generate;

-- DMI(debug bus) <-> JTAG bridge
dmi_jtag: if HAS_JTAG generate
dtm: entity work.dmi_dtm_jtag
generic map(
ABITS => 8,
DBITS => 64
)
port map(
sys_clk => system_clk,
sys_reset => rst_dtm,
dmi_addr => dmi_addr,
dmi_din => dmi_din,
dmi_dout => dmi_dout,
dmi_req => dmi_req,
dmi_wr => dmi_wr,
dmi_ack => dmi_ack,
jtag_tck => jtag_tck,
jtag_tdi => jtag_tdi,
jtag_tms => jtag_tms,
jtag_trst => jtag_trst,
jtag_tdo => jtag_tdo
);
end generate;

dmi_xilinx: if not HAS_JTAG generate
dtm: entity work.dmi_dtm
generic map(
ABITS => 8,
DBITS => 64
)
port map(
sys_clk => system_clk,
sys_reset => rst_dtm,
dmi_addr => dmi_addr,
dmi_din => dmi_din,
dmi_dout => dmi_dout,
dmi_req => dmi_req,
dmi_wr => dmi_wr,
dmi_ack => dmi_ack
);
end generate;
dtm: entity work.dmi_dtm
generic map(
ABITS => 8,
DBITS => 64
)
port map(
sys_clk => system_clk,
sys_reset => rst_dtm,
dmi_addr => dmi_addr,
dmi_din => dmi_din,
dmi_dout => dmi_dout,
dmi_req => dmi_req,
dmi_wr => dmi_wr,
dmi_ack => dmi_ack
);

-- DMI interconnect
dmi_intercon: process(dmi_addr, dmi_req,

@ -50,7 +50,7 @@ architecture rtl of spi_flash_ctrl is
constant SPI_REG_INVALID : std_ulogic_vector(SPI_REG_BITS-1 downto 0) := "111";

-- Control register
signal ctrl_reg : std_ulogic_vector(15 downto 0) := (others => '0');
signal ctrl_reg : std_ulogic_vector(15 downto 0);
alias ctrl_reset : std_ulogic is ctrl_reg(0);
alias ctrl_cs : std_ulogic is ctrl_reg(1);
alias ctrl_rsrv1 : std_ulogic is ctrl_reg(2);
@ -58,7 +58,7 @@ architecture rtl of spi_flash_ctrl is
alias ctrl_div : std_ulogic_vector(7 downto 0) is ctrl_reg(15 downto 8);

-- Auto mode config register
signal auto_cfg_reg : std_ulogic_vector(29 downto 0) := (others => '0');
signal auto_cfg_reg : std_ulogic_vector(29 downto 0);
alias auto_cfg_cmd : std_ulogic_vector(7 downto 0) is auto_cfg_reg(7 downto 0);
alias auto_cfg_dummies : std_ulogic_vector(2 downto 0) is auto_cfg_reg(10 downto 8);
alias auto_cfg_mode : std_ulogic_vector(1 downto 0) is auto_cfg_reg(12 downto 11);
@ -126,9 +126,9 @@ architecture rtl of spi_flash_ctrl is
signal auto_latch_adr : std_ulogic;

-- Automatic mode latches
signal auto_data : std_ulogic_vector(wb_out.dat'left downto 0) := (others => '0');
signal auto_cnt : integer range 0 to 63 := 0;
signal auto_state : auto_state_t := AUTO_BOOT;
signal auto_data : std_ulogic_vector(wb_out.dat'left downto 0);
signal auto_cnt : integer range 0 to 63;
signal auto_state : auto_state_t;
signal auto_last_addr : std_ulogic_vector(31 downto 0);

begin
@ -351,6 +351,8 @@ begin
if rst = '1' then
auto_last_addr <= (others => '0');
auto_state <= AUTO_BOOT;
auto_cnt <= 0;
auto_data <= (others => '0');
else
auto_state <= auto_next;
auto_cnt <= auto_cnt_next;

@ -126,10 +126,10 @@ architecture rtl of spi_rxtx is
signal dat_ack_l : std_ulogic;

-- Delayed recv signal for the read machine
signal sck_recv_d : std_ulogic := '0';
signal sck_recv_d : std_ulogic;

-- Input shift register (use fifo ?)
signal ireg : std_ulogic_vector(7 downto 0) := (others => '0');
signal ireg : std_ulogic_vector(7 downto 0);

-- Bit counter
signal bit_count : std_ulogic_vector(2 downto 0);
@ -157,7 +157,7 @@ architecture rtl of spi_rxtx is
end;

type state_t is (STANDBY, DATA);
signal state : state_t := STANDBY;
signal state : state_t;
begin

-- We don't support multiple data lines at this point
@ -349,6 +349,9 @@ begin
shift_in: process(clk)
begin
if rising_edge(clk) then
if rst = '1' then
ireg <= (others => '0');
end if;

-- Delay the receive signal to match the input latch
if state = DATA then

@ -1,196 +0,0 @@
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <poll.h>
#include <signal.h>
#include <fcntl.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#undef DEBUG

/* XXX Make that some parameter */
#define TCP_PORT 13245

static int fd = -1;
static int cfd = -1;

static void open_socket(void)
{
struct sockaddr_in addr;
int opt, rc, flags;

if (fd >= 0 || fd < -1)
return;

signal(SIGPIPE, SIG_IGN);
fd = socket(AF_INET, SOCK_STREAM, 0);
if (fd < 0) {
fprintf(stderr, "Failed to open debug socket\r\n");
goto fail;
}

rc = 0;
flags = fcntl(fd, F_GETFL);
if (flags >= 0)
rc = fcntl(fd, F_SETFL, flags | O_NONBLOCK);
if (flags < 0 || rc < 0) {
fprintf(stderr, "Failed to configure debug socket\r\n");
}

memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(TCP_PORT);
addr.sin_addr.s_addr = htonl(INADDR_ANY);
opt = 1;
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
rc = bind(fd, (struct sockaddr *)&addr, sizeof(addr));
if (rc < 0) {
fprintf(stderr, "Failed to bind debug socket\r\n");
goto fail;
}
rc = listen(fd,1);
if (rc < 0) {
fprintf(stderr, "Failed to listen to debug socket\r\n");
goto fail;
}
#ifdef DEBUG
fprintf(stdout, "Debug socket ready\r\n");
#endif
return;
fail:
if (fd >= 0)
close(fd);
fd = -2;
}

static void check_connection(void)
{
struct sockaddr_in addr;
socklen_t addr_len = sizeof(addr);

cfd = accept(fd, (struct sockaddr *)&addr, &addr_len);
if (cfd < 0)
return;
#ifdef DEBUG
fprintf(stdout, "Debug client connected\r\n");
#endif
}

static bool read_one_byte(char *c)
{
struct pollfd fdset[1];
int rc;

if (fd == -1)
open_socket();
if (fd < 0)
return false;
if (cfd < 0)
check_connection();
if (cfd < 0)
return false;

memset(fdset, 0, sizeof(fdset));
fdset[0].fd = cfd;
fdset[0].events = POLLIN;
rc = poll(fdset, 1, 0);
if (rc <= 0)
return false;
rc = read(cfd, c, 1);
if (rc != 1) {
#ifdef DEBUG
fprintf(stdout, "Debug read error, assuming client disconnected !\r\n");
#endif
close(cfd);
cfd = -1;
return false;
}

#ifdef DEBUG
fprintf(stdout, "Got message: %c\n", *c);
#endif

return true;
}

static void write_one_byte(char c)
{
int rc;

#ifdef DEBUG
fprintf(stdout, "Sending message: %c\r\n", c);
#endif

rc = write(cfd, &c, 1);
if (rc != 1) {
#ifdef DEBUG
fprintf(stdout, "JTAG write error, disconnecting\r\n");
#endif
close(cfd);
cfd = -1;
}
}

struct jtag_in {
uint8_t tck;
uint8_t tms;
uint8_t tdi;
uint8_t trst;
};

static struct jtag_in jtag_in;

struct jtag_in jtag_one_cycle(uint8_t tdo)
{
char c;

if (read_one_byte(&c) == false)
goto out;

// Write request
if ((c >= '0') && (c <= '7')) {
uint8_t val = c - '0';

jtag_in.tck = (val >> 2) & 1;
jtag_in.tms = (val >> 1) & 1;
jtag_in.tdi = (val >> 0) & 1;

goto out;
}

// Reset request
if ((c >= 'r') && (c <= 'u')) {
uint8_t val = c - 'r';

jtag_in.trst = (val >> 1) & 1;
}

switch (c) {
case 'B': // Blink on
case 'b': // Blink off
goto out;

case 'R': // Read request
write_one_byte(tdo + '0');
goto out;

case 'Q': // Quit request
#ifdef DEBUG
fprintf(stdout, "Disconnecting JTAG\r\n");
#endif
close(cfd);
cfd = -1;
goto out;

default:
fprintf(stderr, "Unknown JTAG command %c\r\n", c);
}

out:
return jtag_in;
}

@ -46,14 +46,6 @@ void tick(Vtoplevel *top)
void uart_tx(unsigned char tx);
unsigned char uart_rx(void);

struct jtag_in {
unsigned char tck;
unsigned char tms;
unsigned char tdi;
unsigned char trst;
};
struct jtag_in jtag_one_cycle(uint8_t tdo);

int main(int argc, char **argv)
{
Verilated::commandArgs(argc, argv);
@ -76,19 +68,10 @@ int main(int argc, char **argv)
top->ext_rst = 1;

while(!Verilated::gotFinish()) {
struct jtag_in p;

tick(top);

uart_tx(top->uart0_txd);
top->uart0_rxd = uart_rx();

p = jtag_one_cycle(top->jtag_tdo);

top->jtag_tck = p.tck;
top->jtag_tms = p.tms;
top->jtag_tdi = p.tdi;
top->jtag_trst = p.trst;
}

#if VM_TRACE

Loading…
Cancel
Save