A tiny Open POWER ISA softcore written in VHDL 2008
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Go to file
Paul Mackerras b595963233 dcache: Reduce latencies and improve timing
This implements various improvements to the dcache with the aim of
making it go faster.

- We can now execute operations that don't need to access main memory
  (cacheable loads that hit in the cache and TLB operations) as soon
  as any previous operation has completed, without waiting for the
  state machine to become idle.

- Cache line refills start with the doubleword that is needed to
  satisfy the load that initiated them.

- Cacheable loads that miss return their data and complete as soon as
  the requested doubleword comes back from memory; they don't wait for
  the refill to finish.

- We now have per-doubleword valid bits for the cache line being
  refilled, meaning that if a load comes in for a line that is in the
  process of being refilled, we can return the data and complete it
  within a couple of cycles of the doubleword coming in from memory.

- There is now a bypass path for data being written to the cache RAM
  so that we can do a store hit followed immediately by a load hit to
  the same doubleword.  This also makes the data from a refill
  available to load hits one cycle earlier than it would be otherwise.

- Stores complete in the cycle where their wishbone operation is
  initiated, without waiting for the wishbone cycle to complete.

- During the wishbone cycle for a store, if another store comes in
  that is to the same page, and we don't have a stall from the
  wishbone, we can send out the write for the second store in the same
  wishbone cycle and without going through the IDLE state first.  We
  limit it to 7 outstanding writes that have not yet been
  acknowledged.

- The cache tag RAM is now read on a clock edge rather than being
  combinatorial for reading.  Its width is rounded up to a multiple of
  8 bits per way so that byte enables can be used for writing
  individual tags.

- The cache tag RAM is now written a cycle later than previously, in
  order to ease timing.

- Data for a store hit is now written one cycle later than
  previously.  This eases timing since we don't have to get through
  the tag matching and on to the write enable within a single cycle.
  The 2-stage bypass path means we can still handle a load hit on
  either of the two cycles after the store and return the correct
  data.  (A load hit 3 or more cycles later will get the correct data
  from the BRAM.)

- Operations can sit in r0 while there is an uncompleted operation in
  r1.  Once the operation in r1 is completed, the operation in r0
  spends one cycle in r0 for TLB/cache tag lookup and then gets put
  into r1.req.  This can happen before r1 gets to the IDLE state.
  Some operations can then be completed before r1 gets to the IDLE
  state - a load miss to the cache line being refilled, or a store to
  the same page as a previous store.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
.github/workflows
constraints
fpga
hello_world
include
lib
litedram
media
micropython
openocd
rust_lib_demo
scripts Add core logging 5 years ago
sim-unisim
tests
verilator
.gitignore
LICENSE
Makefile core: Remove fetch2 pipeline stage 5 years ago
README.md
cache_ram.vhdl
common.vhdl core: Use a busy signal rather than a stall 5 years ago
control.vhdl core: Use a busy signal rather than a stall 5 years ago
core.vhdl core: Use a busy signal rather than a stall 5 years ago
core_debug.vhdl Add core logging 5 years ago
core_dram_tb.vhdl
core_flash_tb.vhdl
core_tb.vhdl
countzero.vhdl
countzero_tb.vhdl
cr_file.vhdl Add core logging 5 years ago
cr_hazard.vhdl core: Use a busy signal rather than a stall 5 years ago
crhelpers.vhdl
dcache.vhdl dcache: Reduce latencies and improve timing 5 years ago
dcache_tb.vhdl
decode1.vhdl decode: Work out ispr1/ispr2 in parallel with decode ROM lookup 5 years ago
decode2.vhdl decode: Work out ispr1/ispr2 in parallel with decode ROM lookup 5 years ago
decode_types.vhdl
divider.vhdl
divider_tb.vhdl
dmi_dtm_dummy.vhdl
dmi_dtm_tb.vhdl
dmi_dtm_xilinx.vhdl
dram_tb.vhdl
execute1.vhdl loadstore1: Reduce busy cycles 5 years ago
fetch1.vhdl icache: Improve latencies when reloading cache lines 5 years ago
glibc_random.vhdl
glibc_random_helpers.vhdl
gpr_hazard.vhdl core: Use a busy signal rather than a stall 5 years ago
helpers.vhdl
icache.vhdl icache: Improve latencies when reloading cache lines 5 years ago
icache_tb.vhdl core: Remove fetch2 pipeline stage 5 years ago
icache_test.bin
insn_helpers.vhdl
loadstore1.vhdl loadstore1: Reduce busy cycles 5 years ago
logical.vhdl
microwatt.core multiply: Use DSP48 slices for multiplication on Xilinx FPGAs 5 years ago
mmu.vhdl
multiply.vhdl multiply: Move selection of result bits into execute1 5 years ago
multiply_tb.vhdl multiply: Move selection of result bits into execute1 5 years ago
plru.vhdl
plru_tb.vhdl
ppc_fx_insns.vhdl
register_file.vhdl Add core logging 5 years ago
rotator.vhdl
rotator_tb.vhdl
sim_bram.vhdl
sim_bram_helpers.vhdl
sim_bram_helpers_c.c
sim_console.vhdl
sim_console_c.c
sim_jtag.vhdl
sim_jtag_socket.vhdl
sim_jtag_socket_c.c
sim_no_flash.vhdl
sim_uart.vhdl
sim_vhpi_c.c
sim_vhpi_c.h
soc.vhdl
spi_flash_ctrl.vhdl
spi_rxtx.vhdl
sync_fifo.vhdl
syscon.vhdl
utils.vhdl
wishbone_arbiter.vhdl
wishbone_bram_tb.bin
wishbone_bram_tb.vhdl
wishbone_bram_wrapper.vhdl
wishbone_debug_master.vhdl
wishbone_types.vhdl
writeback.vhdl core: Use a busy signal rather than a stall 5 years ago
xics.vhdl
xilinx-mult.vhdl multiply: Use DSP48 slices for multiplication on Xilinx FPGAs 5 years ago

README.md

Microwatt

Microwatt

A tiny Open POWER ISA softcore written in VHDL 2008. It aims to be simple and easy to understand.

Simulation using ghdl

MicroPython running on Microwatt

You can try out Microwatt/Micropython without hardware by using the ghdl simulator. If you want to build directly for a hardware target board, see below.

  • Build micropython. If you aren't building on a ppc64le box you will need a cross compiler. If it isn't available on your distro grab the powerpc64le-power8 toolchain from https://toolchains.bootlin.com. You may need to set the CROSS_COMPILE environment variable to the prefix used for your cross compilers. The default is powerpc64le-linux-gnu-.
git clone https://github.com/micropython/micropython.git
cd micropython
cd ports/powerpc
make -j$(nproc)
cd ../../../

A prebuilt micropython image is also available in the micropython/ directory.

  • Microwatt uses ghdl for simulation. Either install this from your distro or build it. Microwatt requires ghdl to be built with the LLVM or gcc backend, which not all distros do (Fedora does, Debian/Ubuntu appears not to). ghdl with the LLVM backend is likely easier to build.

    If building ghdl from scratch is too much for you, the microwatt Makefile supports using Docker or Podman.

  • Next build microwatt:

git clone https://github.com/antonblanchard/microwatt
cd microwatt
make

To build using Docker:

make DOCKER=1

and to build using Podman:

make PODMAN=1
  • Link in the micropython image:
ln -s ../micropython/ports/powerpc/build/firmware.bin main_ram.bin

Or if you were using the pre-built image:

ln -s micropython/firmware.bin main_ram.bin
  • Now run microwatt, sending debug output to /dev/null:
./core_tb > /dev/null

Synthesis on Xilinx FPGAs using Vivado

  • Install Vivado (I'm using the free 2019.1 webpack edition).

  • Setup Vivado paths:

source /opt/Xilinx/Vivado/2019.1/settings64.sh
  • Install FuseSoC:
pip3 install --user -U fusesoc

Fedora users can get FuseSoC package via

sudo dnf copr enable sharkcz/danny
sudo dnf install fusesoc
  • Create a working directory and point FuseSoC at microwatt:
mkdir microwatt-fusesoc
cd microwatt-fusesoc
fusesoc library add microwatt /path/to/microwatt/
  • Build using FuseSoC. For hello world (Replace nexys_video with your FPGA board such as --target=arty_a7-100):
fusesoc run --target=nexys_video microwatt --memory_size=16384 --ram_init_file=/path/to/microwatt/fpga/hello_world.hex

You should then be able to see output via the serial port of the board (/dev/ttyUSB1, 115200 for example assuming standard clock speeds). There is a know bug where initial output may not be sent - try the reset (not programming button) on your board if you don't see anything.

  • To build micropython (currently requires 1MB of BRAM eg an Artix-7 A200):
fusesoc run --target=nexys_video microwatt

Testing

  • A simple test suite containing random execution test cases and a couple of micropython test cases can be run with:
make -j$(nproc) check

Issues

This is functional, but very simple. We still have quite a lot to do:

  • There are a few instructions still to be implemented
  • Need to add caches and bypassing (in progress)
  • Need to add supervisor state (in progress)