Paul Mackerras
62b24a8dae
The icache can now detect a hit on a line being refilled from memory, as we have an array of individual valid bits per row for the line that is currently being loaded. This enables the request that initiated the refill to be satisfied earlier, and also enables following requests to the same cache line to be satisfied before the line is completely refilled. Furthermore, the refill now starts at the row that is needed. This should reduce the latency for an icache miss. We now get a 'sequential' indication from fetch1, and use that to know when we can deliver an instruction word using the other half of the 64-bit doubleword that was read last cycle. This doesn't make much difference at the moment, but it frees up cycles where we could test whether the next line is present in the cache so that we could prefetch it if not. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> |
5 years ago | |
---|---|---|
.github/workflows | 5 years ago | |
constraints | ||
fpga | 5 years ago | |
hello_world | ||
include | 5 years ago | |
lib | 5 years ago | |
litedram | 5 years ago | |
media | ||
micropython | ||
openocd | 5 years ago | |
rust_lib_demo | ||
scripts | 5 years ago | |
sim-unisim | ||
tests | 5 years ago | |
verilator | 5 years ago | |
.gitignore | 5 years ago | |
LICENSE | ||
Makefile | 5 years ago | |
README.md | ||
cache_ram.vhdl | 5 years ago | |
common.vhdl | 5 years ago | |
control.vhdl | ||
core.vhdl | 5 years ago | |
core_debug.vhdl | 5 years ago | |
core_dram_tb.vhdl | 5 years ago | |
core_flash_tb.vhdl | 5 years ago | |
core_tb.vhdl | 5 years ago | |
countzero.vhdl | ||
countzero_tb.vhdl | 5 years ago | |
cr_file.vhdl | 5 years ago | |
cr_hazard.vhdl | ||
crhelpers.vhdl | ||
dcache.vhdl | 5 years ago | |
dcache_tb.vhdl | 5 years ago | |
decode1.vhdl | 5 years ago | |
decode2.vhdl | 5 years ago | |
decode_types.vhdl | 5 years ago | |
divider.vhdl | ||
divider_tb.vhdl | 5 years ago | |
dmi_dtm_dummy.vhdl | ||
dmi_dtm_tb.vhdl | ||
dmi_dtm_xilinx.vhdl | 5 years ago | |
dram_tb.vhdl | 5 years ago | |
execute1.vhdl | 5 years ago | |
fetch1.vhdl | 5 years ago | |
glibc_random.vhdl | ||
glibc_random_helpers.vhdl | ||
gpr_hazard.vhdl | ||
helpers.vhdl | ||
icache.vhdl | 5 years ago | |
icache_tb.vhdl | 5 years ago | |
icache_test.bin | ||
insn_helpers.vhdl | 5 years ago | |
loadstore1.vhdl | 5 years ago | |
logical.vhdl | ||
microwatt.core | 5 years ago | |
mmu.vhdl | ||
multiply.vhdl | 5 years ago | |
multiply_tb.vhdl | 5 years ago | |
plru.vhdl | ||
plru_tb.vhdl | 5 years ago | |
ppc_fx_insns.vhdl | ||
register_file.vhdl | 5 years ago | |
rotator.vhdl | ||
rotator_tb.vhdl | 5 years ago | |
sim_bram.vhdl | ||
sim_bram_helpers.vhdl | ||
sim_bram_helpers_c.c | ||
sim_console.vhdl | ||
sim_console_c.c | ||
sim_jtag.vhdl | ||
sim_jtag_socket.vhdl | ||
sim_jtag_socket_c.c | ||
sim_no_flash.vhdl | 5 years ago | |
sim_uart.vhdl | ||
sim_vhpi_c.c | ||
sim_vhpi_c.h | ||
soc.vhdl | 5 years ago | |
spi_flash_ctrl.vhdl | 5 years ago | |
spi_rxtx.vhdl | 5 years ago | |
sync_fifo.vhdl | 5 years ago | |
syscon.vhdl | 5 years ago | |
utils.vhdl | 5 years ago | |
wishbone_arbiter.vhdl | ||
wishbone_bram_tb.bin | ||
wishbone_bram_tb.vhdl | 5 years ago | |
wishbone_bram_wrapper.vhdl | ||
wishbone_debug_master.vhdl | ||
wishbone_types.vhdl | 5 years ago | |
writeback.vhdl | ||
xics.vhdl | 5 years ago | |
xilinx-mult.vhdl | 5 years ago |
README.md
Microwatt
A tiny Open POWER ISA softcore written in VHDL 2008. It aims to be simple and easy to understand.
Simulation using ghdl
You can try out Microwatt/Micropython without hardware by using the ghdl simulator. If you want to build directly for a hardware target board, see below.
- Build micropython. If you aren't building on a ppc64le box you will need a cross compiler. If it isn't available on your distro grab the powerpc64le-power8 toolchain from https://toolchains.bootlin.com. You may need to set the CROSS_COMPILE environment variable to the prefix used for your cross compilers. The default is powerpc64le-linux-gnu-.
git clone https://github.com/micropython/micropython.git
cd micropython
cd ports/powerpc
make -j$(nproc)
cd ../../../
A prebuilt micropython image is also available in the micropython/ directory.
-
Microwatt uses ghdl for simulation. Either install this from your distro or build it. Microwatt requires ghdl to be built with the LLVM or gcc backend, which not all distros do (Fedora does, Debian/Ubuntu appears not to). ghdl with the LLVM backend is likely easier to build.
If building ghdl from scratch is too much for you, the microwatt Makefile supports using Docker or Podman.
-
Next build microwatt:
git clone https://github.com/antonblanchard/microwatt
cd microwatt
make
To build using Docker:
make DOCKER=1
and to build using Podman:
make PODMAN=1
- Link in the micropython image:
ln -s ../micropython/ports/powerpc/build/firmware.bin main_ram.bin
Or if you were using the pre-built image:
ln -s micropython/firmware.bin main_ram.bin
- Now run microwatt, sending debug output to /dev/null:
./core_tb > /dev/null
Synthesis on Xilinx FPGAs using Vivado
-
Install Vivado (I'm using the free 2019.1 webpack edition).
-
Setup Vivado paths:
source /opt/Xilinx/Vivado/2019.1/settings64.sh
- Install FuseSoC:
pip3 install --user -U fusesoc
Fedora users can get FuseSoC package via
sudo dnf copr enable sharkcz/danny
sudo dnf install fusesoc
- Create a working directory and point FuseSoC at microwatt:
mkdir microwatt-fusesoc
cd microwatt-fusesoc
fusesoc library add microwatt /path/to/microwatt/
- Build using FuseSoC. For hello world (Replace nexys_video with your FPGA board such as --target=arty_a7-100):
fusesoc run --target=nexys_video microwatt --memory_size=16384 --ram_init_file=/path/to/microwatt/fpga/hello_world.hex
You should then be able to see output via the serial port of the board (/dev/ttyUSB1, 115200 for example assuming standard clock speeds). There is a know bug where initial output may not be sent - try the reset (not programming button) on your board if you don't see anything.
- To build micropython (currently requires 1MB of BRAM eg an Artix-7 A200):
fusesoc run --target=nexys_video microwatt
Testing
- A simple test suite containing random execution test cases and a couple of micropython test cases can be run with:
make -j$(nproc) check
Issues
This is functional, but very simple. We still have quite a lot to do:
- There are a few instructions still to be implemented
- Need to add caches and bypassing (in progress)
- Need to add supervisor state (in progress)