Commit Graph

165 Commits (0020c132265e5f8f16fda6613678ecced7d52e3c)

Author SHA1 Message Date
Paul Mackerras 5ddd8884fa core: Implement two data watchpoints
This implements the DAWR0, DAWRX0, DAWR1, and DAWRX1 registers, which
provide the ability to set watchpoints on two ranges of data addresses
and take an interrupt when an access is made to either range.

The address comparisons are done in loadstore1 in the second cycle
(doing it in the first cycle turned out to have poor timing).  If a
match is detected, a signal is sent to the dcache which causes the
access to fail and generate an error signal back to loadstore1, in
much the same way that a protection violation would, whereupon a data
storage interrupt is generated.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
6 days ago
Paul Mackerras ff00dc1505 PMU: Fix setting of SIAR and SDAR on trace interrupt
This arranges for SIAR and SDAR to be set when a trace interrupt
is triggered by a non-zero setting of the MSR[TE] field.  According to
the ISA, SIAR should be set to the address of the instruction and SDAR
should be set to the effective address of its storage operand if any.
This also fixes setting of SDAR by the PMU when an alert occurs;
previously it was always just set to zero.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
7 days ago
Paul Mackerras 5a28f76b6f execute1: Implement CIABR
CIABR (Completed Instruction Address Breakpoint Register) is an SPR
that contains an instruction address.  When the instruction at that
address completes, the CPU takes a Trace interrupt before executing
the next instruction (provided the instruction doesn't cause some
other interrupt and isn't an rfid, hrfid or rfscv instruction).

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 week ago
Paul Mackerras 7437f699ca core: Implement the PIR SPR
This reports the CPU core number, currently always 0, but this will be
useful in future for distinguishing which CPU is which in a
multiprocessor system.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2 weeks ago
Paul Mackerras 5121e0f392 core: Implement sync instructions
This implements all the sync variants (sync, lwsync, ptesync, etc.) as
a LSU op that gets sent down to the dcache and completes once the
dcache state machine is idle.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 weeks ago
Paul Mackerras c2dcf4b334 dcache: Generate a DSI on larx/stcx to non-cacheable memory
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 weeks ago
Paul Mackerras ba4614c5f4 dcache: Implement data cache touch and flush instructions
This implements dcbf, dcbt and dcbtst in the dcache.  The dcbst (data
cache block store) instruction remains a no-op because our dcache is
write-through and therefore never has modified data that could need to
be written back.

Dcbt (data cache block touch) and dcbtst (data cache block touch for
store) behave similarly except that dcbtst is a no-op on a readonly
page.  Neither instruction ever causes an interrupt.  If they miss in
the cache and the page is cacheable, they are handled like a load miss
except that they complete immediately the state machine starts
handling the load miss rather than waiting for any data.

Dcbf (data cache block flush) can cause a data storage interrupt.  If
it hits in the cache, the state machine goes to a new FLUSH_CYCLE
state in which the cache line valid bit is cleared.

In order to avoid having more than 8 values in op_t, this combines
OP_STORE_MISS and OP_STORE_HIT into a single state.  A new OP_NOP
state is used for operations which can complete immediately without
changing any dcache state (now used for dcbt/dcbtst causing access
exception or on a non-cachable page, or dcbf that misses the cache).

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 weeks ago
Paul Mackerras b181d28df2 dcache: Cancel reservation on snooped store
This restructures the reservation machinery so that the reservation is
cleared when a snooped store by another agent is done to reservation
address.  The reservation address is now a real address rather than an
effective address.

For store-conditional, it is possible that a snooped store to the
reservation address could come in even after we have asserted cyc and
stb on the wishbone to do the store, and that should cause the store
not to be performed.  To achieve this, store-conditional now uses a
separate state in the r1 state machine, which is set up so that losing
the reservation due to a snooped store cause cyc and stb to be dropped
immediately, and the store-conditional fails.

For load-reserve, the reservation address is set at the end of cycle 1
and the reservation is made valid when the data is available.  For
lqarx, the reservation is made valid when the first doubleword of data
is available.

For the case where a snooped write comes in on cycle 0 of a larx and
hits the same cache line, we detect that the index and way of the
snooped write are the same as the index and way of the larx; it is
done this way because reservation.addr is not set until the real
address is available at the end of cycle 1.  A hit on the same index
and way causes reservation.valid to be set to 0 at the end of cycle 1.

For a write in cycle 1, we compare the latched address in cycle 2 with
the reservation address and clear reservation.valid at the end of
cycle 2 if they match.  In other words we compare the reservation
address with both the address being written this cycle and the address
being written in the previous cycle.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 weeks ago
Paul Mackerras 722f239c02 Reimplement quadword loads and stores
This adds implementations of lq, plq, stq, pstq, lqarx and stqcx.

Because register file addresses are now computed in decode1 before we
have the decode table entry for the instruction, we have to check the
icode directly to know when to read register RS|1 before RS (i.e. for
stq and stqcx in LE mode, but not pstq).

For the second instance of the instruction, loadstore1 uses the EA
from the first instance + 8.  It generates an alignment interrupt for
unaligned lqarx and stqcx and for lq in LE mode with an unaligned
address.  (The reason for the latter case is that it writes RT|1
before RT, and if we have RA = RT|1 and the second instance traps, we
will have overwritten RA.)

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 weeks ago
Paul Mackerras d358981d43 Generate doubled instructions in decode1 rather than decode2
This will allow us to read different source registers for the two
pieces, which will be needed for instructions like stq.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 month ago
Paul Mackerras d7d7a3afd4 Implement VRSAVE SPR
VRSAVE is a 32-bit software-use SPR accessible in user mode.  It is
stored in the SPR RAM.  The value read from the RAM is trimmed to 32
bits at the ramspr_read process.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 month ago
Paul Mackerras d112a7ad94 Implement scv and rfscv
The main quirk here is that scv sets LR and CTR instead of SRR0 and
SRR1, and likewise rfscv uses LR and CTR.  Also, scv uses a set of 128
interrupt vectors starting at 0x17000.  Fortunately, the layout of the
SPR RAM was already such that LR and CTR were in the even and odd
halves respectively at the same index, so reading or writing LR and
CTR instead of SRR0 and SRR1 is quite easy.

Use of scv is subject to an FSCR bit but not an HFSCR bit.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 month ago
Paul Mackerras a88fa9c459 Implement DSCR
The DSCR (Data Stream Control Register) is a user-accessible SPR that
controls aspects of data prefetching.  It has 25 bits of state defined
in the ISA.  This implements the register as a 25 read/write bits that
do nothing, since we don't have any prefetching.

The DSCR is accessible at two SPR numbers, 3 (unprivileged) and 17
(privileged).  Access via these SPR numbers is controlled by an FSCR
bit and an HFSCR bit.  The FSCR bit controls access via SPR 3 in user
mode.  The HFSCR bit controls access via SPR 3 in user mode and either
SPR number in privileged non-hypervisor mode, but since we don't
implement privileged non-hypervisor mode, it does essentially the same
thing as the FSCR bit.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 month ago
Paul Mackerras 205c0e2c78 Implement the wait instruction
This implements the behaviour of the 'wait 0' instruction of pausing
execution of instructions until an exception arises.  The exceptions
that terminate a wait are a pending trace exception, external
interrupt request, PMU interrupt request, or decrementer negative
exception.  These exception conditions terminate a wait even if not
enabled to generate an interrupt (e.g. if MSR[EE] is zero).

This is implemented by having execute1 assert its busy_out signal
while the wait state exists.  The wait state is set by the completion
of the wait instruction and cleared by a pending exception.

If the WC operand of the wait instruction is non-zero, indicating wait
for reservation loss or wait for a short period, then the wait
instruction does not wait, but just acts as a no-op.

In order to make space in the insn_type_t type without going over 64
elements, this combines OP_DCBT and OP_ICBT into a single OP_XCBT,
since they were both no-ops (except for their influence on how SRR1 is
set on a trace interrupt, where they were identical).

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 month ago
Paul Mackerras 7bc7f335f1 Implement CTRL register
The CTRL register has a single bit called RUN.  It has some unusual
behaviours:

- It can only be written via SPR number 152, which is privileged
- It can only be read via SPR number 136, which is non-privileged
- Reading in problem state (user mode) returns the RUN bit in bit 0,
  but reading in privileged state (hypervisor mode) returns the RUN
  bit in bits 0 and 15.
- Reading SPR 152 in problem state causes a HEAI (illegal instruction)
  interrupt, but reading in privileged state is a no-op; this is the
  same as for an unimplemented SPR.

The RUN bit goes to the PMU and is also plumbed out to drive a LED on
the Arty board.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 month ago
Paul Mackerras d2777dd1dd Generate Hypervisor Emulation Assistance Interrupt for illegal instructions
This implements the HEIR register (Hypervisor Emulation Instruction
Register) and arranges for an illegal instruction to cause a
Hypervisor Emulation Assistance Interrupt (HEAI) at vector 0xE40, and
set HEIR to the illegal instruction.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 month ago
Paul Mackerras e3f4ccedec Implement facility unavailable and hypervisor facility unavailable interrupts
This adds the FSCR and HFSCR registers and implements the associated
behaviours of taking a facility unavailable or hypervisor facility
unavailable interrupt if certain actions are attempted while the
relevant [H]FSCR bit is zero.

At present, two FSCR enable bits and three HFSCR enable bits are
implemented.  FSCR has bits for prefixed instructions and accesses to
the TAR register, and HFSCR has those plus a bit that enables access
to floating-point registers and instructions.

FSCR and HFSCR can be accessed through the debug interface using
register addresses 0x2e and 0x2f.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 month ago
Paul Mackerras 12a3d76217 Implement hrfid and make MSR[HV] always 1
Implementations without hypervisor/LPAR support are permitted by the
architecture, but should have MSR[HV] forced to be 1 at all times, not
0, and should implement various instructions and registers that are
only accessible in hypervisor mode.

This commit implements MSR[HV] as a constant 1 bit and adds the hrfid
instruction, which behaves exactly the same as rfid except that it
reads HSRR0/1 instead of SRR0/1.  We already have HSRR0/1 and HSPRG0/1
implemented.

When HV=1, Linux expects external interrupts to arrive as hypervisor
interrupts, so this adds support for hypervisor interrupts (i.e.,
those that set HSRR0/1) and makes the external interrupt be a
hypervisor interrupt.  (If we had an LPCR register, the LPES bit would
control this, but we don't.)  The xics test is updated to read HSRR0/1
after an external interrupt.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 month ago
Paul Mackerras 73b6004ac6 icache: Use next real address to index icache
Now that we are translating the fetch effective address to real one
cycle earlier, we can use the real address to index the icache array.
This has the benefit that the set size can be larger than a page,
enabling us to configure the icache to be larger without having to
increase its associativity.  Previously the set size was limited to
the page size to avoid aliasing problems.  Thus for example a 32kB
icache would need to be 8-way associative, resulting in large numbers
of LUTs being used for tag comparisons in FPGA implementations, and
poor timing.  With this change, a 32kB icache can be 1 or 2-way
associative, which means deeper and narrower tag and data RAMs and
fewer tag comparators.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
Paul Mackerras f9e5622327 Move iTLB from icache to fetch1
This moves the address translation step for instruction fetches one
cycle earlier, so that it now happens in the fetch1 stage.  There is
now a 2-entry mini translation cache ("ERAT", or effective to real
address translation cache) which operates on the output of the
multiplexer that selects the instruction address for the next cycle.
The ERAT consists of two effective address registers and two
corresponding real address registers.  They store the page number part
of the addresses for a 4kB page size, which is the smallest page size
supported by the architecture.

If the effective address doesn't match either of the EA registers, and
address translation is enabled, then i_out.req goes low for two cycles
while the iTLB is looked up.  Experimentally, this delay results in a
0.1% drop in coremark performance; allowing two cycles for the lookup
results in better timing.  The result from the iTLB is placed into the
least recently used ERAT entry and then used to translate the address
as normal.  If address translation is not enabled then the EA is used
directly as the real address.

The iTLB structure is the same as it was before; direct mapped,
indexed using a hashed EA.

The "fetch failed" signal, which indicates a TLB miss or protection
violation, is now generated in fetch1 and passed through icache.
When it is asserted, fetch1 goes into a stalled state until a PTE
arrives from the MMU (which gets put into both the iTLB and the ERAT),
or an interrupt or redirect occurs.

Any TLB invalidations from the MMU invalidate the whole ERAT.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
Paul Mackerras f34a54d295 fetch1: Streamline next NIA generation further
This reduces the number of possible sources for the next NIA from 4
down to 3, by routing interrupt vector addresses through the
r_int.next_nia register, as is already done for reset.  This adds one
extra cycle of latency when taking interrupts.  During this extra cycle,
i_out.req is 0.

Writeback now no longer combines redirects (branches, rfid, isync)
with interrupts; they are presented separately to fetch1.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
Paul Mackerras e92d49375f fetch1: Reorganize fetch1 to provide an asynchronous early next NIA to icache
This adds a next_nia field to the Fetch1ToIcacheType record, which
provides an indication of what will be in the nia field on the next
non-stalled cycle.  This is intended to be as fast as possible, being
a selection from two redirect addresses (from writeback and decode1)
or an internal register (r_int.next_nia).  Reset addresses and
predicted branch targets come through this internal register.

The rearrangement here has the side effect that we can now use the BTC
on the first instruction after a taken branch, whereas previously the
BTC was only active starting with the second instruction after a taken
branch.  This provides a slight improvement in performance.

This also fixes a buglet in icache where it would assert its stall
output when i_in.req was false.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
Paul Mackerras 1c4b5def36 Improve timing of redirect_nia going from writeback to fetch1
This gets rid of the adder in writeback that computes redirect_nia.
Instead, the main adder in the ALU is used to compute the branch
target for relative branches.  We now decode b and bc differently
depending on the AA field, generating INSN_brel, INSN_babs, INSN_bcrel
or INSN_bcabs as appropriate.  Each one has a separate entry in the
decode table in decode1; the *rel versions use CIA as the A input.
The bclr/bcctr/bctar and rfid instructions now select ramspr_result
for the main result mux to get the redirect address into
ex1.e.write_data.

For branches which are predicted taken but not actually taken, we need
to redirect to the following instruction.  We also need to do that for
isync.  We do this in the execute2 stage since whether or not to do it
depends on the branch result.  The next_nia computation is moved to
the execute2 stage and comes in via a new leg on the secondary result
multiplexer, making next_nia available ultimately in ex2.e.write_data.
This also means that the next_nia leg of the primary result
multiplexer is gone.  Incrementing last_nia by 4 for sc (so that SRR0
points to the following instruction) is also moved to execute2.

Writing CIA+4 to LR was previously done through the main result
multiplexer.  Now it comes in explicitly in the ramspr write logic.

Overall this removes the br_offset and abs_br fields and the logic to
add br_offset and next_nia, and one leg of the primary result
multiplexer, at the cost of a few extra control signals between
execute1 and execute2 and some multiplexing for the ramspr write side
and an extra input on the secondary result multiplexer.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
Paul Mackerras c4492c843a Implement interrupts for prefixed instructions
This arranges to generate an illegal instruction type program
interrupt for illegal prefixed instructions, that is, those where the
suffix is not a legal value given the prefix, or the prefix has a
reserved value in the subtype field.  This implementation doesn't
generate an interrupt for the invalid 8LS:D and MLS:D instruction
forms where R = 1 and RA != 0.  (In those cases it uses (RA) as the
addend, i.e. it ignores the R bit.)

This detects the case where the address of an instruction prefix is
equal mod 64 to 60, and generates an alignment interrupt in that case.

This also arranges to set bit 34 of SRR1 when an interrupt occurs due
to a prefixed instruction, for those interrupts where that is required
(i.e. trace, alignment, floating-point unavailable, data storage, data
segment, and most cases of program interrupt).

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2 years ago
Paul Mackerras 39ca675ce3 Decode prefixed instructions
This adds logic to do basic decoding of the prefixed instructions
defined in PowerISA v3.1B which are in the SFFS (Scalar Fixed plus
Floating-Point Subset) compliancy subset.  In PowerISA v3.1B SFFS,
there are 14 prefixed load/store instructions plus the prefixed no-op
instruction (pnop).  The prefixed load/store instructions all use an
extended version of D-form, which has an extra 18 bits of displacement
in the prefix, plus an 'R' bit which enables PC-relative addressing.

When decode1 sees an instruction word where the insn_code is
INSN_prefix (i.e. the primary opcode was 1), it stores the prefix word
and sends nothing down to decode2 in that cycle.  When the next valid
instruction word arrives, it is interpreted as a suffix, meaning that
its insn_code gets modified before being used to look up the decode
table.

The insn_code values are rearranged so that the values for
instructions which are the suffix of a valid prefixed instruction are
all at even indexes, and the corresponding prefixed instructions
follow immediately, so that an insn_code value can be converted to the
corresponding prefixed value by setting the LSB of the insn_code
value.  There are two prefixed instructions, pld and pstd, for which
the suffix is not a valid SFFS instruction by itself, so these have
been given dummy insn_code values which decode as illegal (INSN_op57
and INSN_op61).

For a prefixed instruction, decode1 examines the type and subtype
fields of the prefix and checks that the suffix is valid for the type
and subtype.  This check doesn't affect which entry of the decode
table is used; the result is passed down to decode2, and will in
future be acted upon in execute1.

The instruction address passed down to decode2 is the address of the
prefix.  To enable this, part of the instruction address is saved when
the prefix is seen, and then the instruction address received from
icache is partly overlaid by the saved prefix address.  Because
prefixed instructions are not permitted to cross 64-byte boundaries,
we only need to save bits 5:2 of the instruction to do this.  If the
alignment restriction ever gets relaxed, we will then need to save
more bits of the address.

Decode2 has been extended to handle the R bit of the prefix (in 8LS
and MLS forms) and to be able to generate the 34-bit immediate value
from the prefix and suffix.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2 years ago
Paul Mackerras 7af0e001ad Move insn_codes for mcrfs, mtfsb0/1 and mtfsfi
This moves the insn_code values for mcrfs, mtfsb0/1 and mtfsfi into
the region used for floating-point instructions.  This means that in
no-FPU implementations, they will get turned into illegal instructions
in predecode.  We then don't need the code in execute1 that makes FP
instructions illegal in no-FPU implementations.

We also remove the NONE value for unit_t, since it was only ever used
with insn_type = OP_ILLEGAL, and the check for unit = NONE was
redundant with the check for insn_type = OP_ILLEGAL.  Thus the check
for unit = NONE is no longer needed and is removed here.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2 years ago
Paul Mackerras e02d8060ed Change the multiplier interface to support signed multipliers
This adds an 'is_signed' signal to MultiplyInputType to indicate
whether the data1 and data2 fields are to be interpreted as signed or
unsigned numbers.

The 'not_result' field is replaced by a 'subtract' field which
provides a more intuitive interface for requesting that the product be
subtracted from the addend rather than added, i.e. subtract = 1 gives
C - A * B, vs. subtract = 0 giving C + A * B.  (Previously the users
of the multipliers got the same effect by complementing the addend and
setting not_result = 1.)

The is_32bit field is removed because it is no longer used now that we
have a separate 32-bit multiplier.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2 years ago
Paul Mackerras 21ab36a0c0 Pre-decode instructions when writing them to icache
This splits out the decoding done in the decode0 step into a separate
predecoder, used when writing instructions into the icache.  The
icache now holds 36 bits per instruction rather than 32.  For valid
instructions, those 36 bits comprise the bottom 26 bits of the
instruction word, a 9-bit insn_code value (which uniquely identifies
the instruction), and a zero in the MSB.  For illegal instructions,
the MSB is one and the full instruction word is in the bottom 32 bits.
Having the full instruction word available for illegal instructions
means that it can be printed in the log when simulating, or in future
could be placed in the HEIR register.

If we don't have an FPU, then the floating-point instructions are
regarded as illegal.  In that case, the insn_code values would fit
into 8 bits, which could be used in future to reduce the size of
decode_rom from 512 to 256 entries.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2 years ago
Paul Mackerras c3ee10f013 decode1: Split instruction decoding into two steps
This reduces the block RAM requirements for instruction decoding by
splitting it into two steps.  The first, in a new pipeline stage
called decode0 (implemented by code in decode1.vhdl) maps the
instruction to a 9-bit instruction code using major and row decode
ROMs.  The second maps the 9-bit code to the final decode_rom_t (about
44 bits wide).  Branch prediction done in decode is now done in
decode0 rather than decode1.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2 years ago
Paul Mackerras 932da4c114 FPU: Simplify IDLE state code
Do more decoding of the instruction ahead of the IDLE state
processing so that the IDLE state code becomes much simpler.
To make the decoding easier, we now use four insn_type_t codes for
floating-point operations rather than two.  This also rearranges the
insn_type_t values a little to get the 4 FP opcode values to differ
only in the bottom 2 bits, and put OP_DIV, OP_DIVE and OP_MOD next to
them.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2 years ago
Paul Mackerras 7a60c118ed loadstore1: Simplify address generation in OP_FETCH_FAILED case
Instead of having a multiplexer in loadstore1 in order to be able to
put the instruction address into v.addr, we now set decode.input_reg_a
to CIA in the decode table entry for OP_FETCH_FAILED.  That means that
the operand selection machinery in decode2 will supply the instruction
address to loadstore1 on the lv.addr1 input and no special case is
needed in loadstore1.  This saves a few LUTs (~40 on the Artix-7).

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2 years ago
Paul Mackerras 795b6e2a6b Remove leftover logic for 16-byte loads and stores
This removes some logic that was previously added for the 16-byte
loads and stores (lq, lqarx, stq, stqcx.) and not completely removed
in commit c9e838b656 ("Remove support for lq, stq, lqarx and
stqcx.", 2022-06-04).

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2 years ago
Michael Neuling caf458be37 Metavalue cleanup for common.vhdl
This affects other files which have been included here.

Signed-off-by: Michael Neuling <mikey@neuling.org>
3 years ago
Paul Mackerras d6121cd636 Use register addresses from decode1 for dependency tracking
This improves timing a little because the register addresses now come
directly from a latch instead of being calculated by
decode_input_reg_*.  The asserts that check that the two are the same
are now in decode2 rather than register_file.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras 1d7de2f1da register_file: Make read access to register file synchronous
With this, the register RAM is read synchronously using the addresses
supplied by decode1.  That means the register RAM can now be block RAM
rather than LUT RAM.

Debug accesses are done via the B port on cycles when decode1
indicates that there is no valid instruction or the instruction
doesn't use a [F]RB operand.

We latch the addresses being read in each cycle and use the same
address next cycle if stalled.  Data that is being written is latched
and a multiplexer on each read port then supplies the latched write
data if the read address for that port equals the write address.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras 06c13d4988 decode1: Work out register addresses in decode1
This adds some relatively simple logic to decode1 to compute the
GPR/FPR addresses that an instruction will access.  It always computes
three addresses regardless of whether the instruction will actually
use all of them.  The main things it computes are whether the
instruction uses the RS field or the RC field for the 3rd operand, and
whether the operands are FPRs or GPRs (it is possible for RS to be an
FPR but RA and RB to be GPRs, as for example with stfdx).

At the moment all we do with these computed register addresses is to
assert that they are identical to the ones coming from decode2 one
cycle later.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras af814a0d5e Provide debug access to SPRs in loadstore1 and mmu
They are accessible as GSPR 0x3c - PID, 0x3d - PTCR, 0x3e - DSISR
and 0x3f - DAR.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras d0f319290f Restore debug access to SPRs
This provides access to the SPRs via the JTAG DMI interface.  For now
they are still accessed as if they were GPR/FPRs using the same
numbering as before (GPRs at 0 - 0x1f, SPRs at 0x20 - 0x2d, FPRs at
0x40 - 0x5f).

For XER, debug reads now report the full value, not just the bits that
were previously stored in the register file.  The "slow" SPR mux is
not used for debug reads.

Decode2 determines on each cycle whether a debug SPR access will
happen next cycle, based on whether there is a request and whether the
current instruction accesses the SPR RAM.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras fdb3ef6874 Finish off taking SPRs out of register file
With this, the register file now contains 64 entries, for 32 GPRs and
32 FPRs, rather than the 128 it had previously.  Several things get
simplified - decode1 no longer has to work out the ispr{1,2,o} values,
decode_input_reg_{a,b,c} no longer have the t = SPR case, etc.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras 337b104250 Move LR, CTR and TAR out of the register file
By putting CTR on the odd side and LR and TAR on the even side, we can
read and write CTR for bdnz-style instructions in parallel with
reading LR or TAR for indirect branches and writing LR for branches
with LK=1.  Thus we don't need to double up any of these instructions,
giving a simplification in decode2.

We now have logic for printing LR and CTR at the end of a simulation
in execute1, in addition to the similar logic in register_file and
cr_file.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras bc4d02cb0d Start removing SPRs from register file
This starts the process of removing SPRs from the register file by
moving SRR0/1, SPRG0-3, HSRR0/1 and HSPRG0/1 out of the register file
and putting them into execute1.  They are stored in a pair of small
RAM arrays, referred to as "even" and "odd".  The reason for having
two arrays is so that two values can be read and written in each
cycle.  For example, SRR0 and SRR1 can be written in parallel by an
interrupt and read in parallel by the rfid instruction.

The addresses in the RAM which will be accessed are determined in the
decode2 stage.  We have one write address for both sides, but two read
addresses, since in future we will want to be able to read CTR at the
same time as either LR or TAR.

We now have a connection from writeback to execute1 which carries the
partial SRR1 value for an interrupt.  SRR0 comes from the execute
pipeline; we no longer need to carry instruction addresses along the
LSU and FPU pipelines.  Since SRR0 and SRR1 can be written in the same
cycle now, we don't need the little state machine in writeback any
more.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras 73cc5167ec Use FPU for division instructions if we have an FPU
- Arrange for XER to be written for OE=1 forms
- Arrange for condition codes to be set for RC=1 forms
  (including correct handling for 32-bit mode)
- Don't instantiate the divider if we have an FPU.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras a95f8aab38 FPU: Add integer division logic to FPU
This adds logic to the FPU to accomplish 64-bit integer divisions.
No instruction actually uses this yet.

The algorithm used is to obtain an estimate of the reciprocal of the
divisor using the lookup table and refine it by one to three
iterations of the Newton-Raphson algorithm (the number of iterations
depends on the number of significant bits in the dividend).  Then the
reciprocal is multiplied by the dividend to get the quotient estimate.
The remainder is calculated as dividend - quotient * divisor.  If the
remainder is greater than or equal to the divisor, the quotient is
incremented, or if a modulo operation is being done, the divisor is
subtracted from the remainder.  The inverse estimate after refinement
is good enough that the quotient estimate is always equal to or one
less than the true quotient.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras 2f45e545ed decode2: Rework to make the stall_out signal come from a register
At present the busy/stall signal going to decode1 depends on whether
control thinks it can issue the current instruction, and that depends
on completion and bypass signals coming from execute1 and writeback.

To improve the timing of stall_out, this rearranges decode2 so that
stall_out is asserted when we have a valid instruction that couldn't
be issued in the previous cycle.  This means that decode1 could give
us a new instruction when we haven't issued the previous instruction.

This in turn means that we can only use d_in in the first cycle of
processing an instruction.  After the first cycle, we get register
addresses etc. from dc2 rather than d_in.

Then, to avoid the need to read register operands from register_file
in each cycle until the instruction issues, we bring the bypass path
for data being written to the register file into decode2 explicitly
rather than having it in register_file.

A new process called decode2_addrs does the process of calling
decode_input_reg_* and decode_output_reg and sets up the register file
addresses.  This was split out (and decode_input_reg_* reworked) to
try to reduce the number of passes through the decode2_1 process that
need to be done in simulation.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras 9a8a8e50f8 FPU: Add stage-2 stall ability to FPU
This makes the FPU able to stall other units at execute stage 2 and be
stalled by other units (specifically the LSU).

This means that the completion and writeback for an instruction can
now end up being deferred until the second cycle of a following
instruction, i.e. the cycle when the state machine has gone through
IDLE state into one of the DO_* states, which means we need to latch
the destination FPR number, CR mask, etc. from the previous
instruction so that we present the correct information to writeback.

The advantage of this is that we can get rid of the in_progress signal
from the LSU.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras e030a500e8 Allow integer instructions and load/store instructions to execute together
Execute1 and loadstore1 now send each other stall signals that
indicate that a valid instruction in stage 2 can't complete in this
cycle, and hence any valid instruction in stage 1 in the other unit
can't move to stage 2.  With this in place, an ALU instruction can
move into stage 1 while a LSU instruction is in stage 2.

Since the FPU doesn't yet have a way to stall completion, we can't yet
start FPU instructions while any LSU or ALU instruction is in
progress.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras 3510071d9a Add a second execute stage to the pipeline
This adds a second execute stage to the pipeline, in order to match up
the length of the pipeline through loadstore and dcache with the
length through execute1.  This will ultimately enable us to get rid of
the 1-cycle bubble that we currently have when issuing ALU
instructions after one or more LSU instructions.

Most ALU instructions execute in the first stage, except for
count-zeroes and popcount instructions (which take two cycles and do
some of their work in the second stage) and mfspr/mtspr to "slow" SPRs
(TB, DEC, PVR, LOGA/LOGD, CFAR).  Multiply and divide/mod instructions
take several cycles but the instruction stays in the first stage (ex1)
and ex1.busy is asserted until the operation is complete.

There is currently a bypass from the first stage but not the second
stage.  Performance is down somewhat because of that and because this
doesn't yet eliminate the bubble between LSU and ALU instructions.

The forwarding of XER common bits has been changed somewhat because
now there is another pipeline stage between ex1 and the committed
state in cr_file.  The simplest thing for now is to record the last
value written and use that, unless there has been a flush, in which
case the committed state (obtained via e_in.xerc) is used.

Note that this fixes what was previously a benign bug in control.vhdl,
where it was possible for control to forget an instructions dependency
on a value from a previous instruction (a GPR or the CR) if this
instruction writes the value and the instruction gets to the point
where it could issue but is blocked by the busy signal from execute1.
In that situation, control may incorrectly not indicate that a bypass
should be used.  That didn't matter previously because, for ALU and
FPU instructions, there was only one previous instruction in flight
and once the current instruction could issue, the previous instruction
was completing and the correct value would be obtained from
register_file or cr_file.  For loadstore instructions there could be
two being executed, but because there are no bypass paths, failing to
indicate use of a bypass path is fine.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras 813e2317bf execute1: Restructure to separate out execution of side effects
We now have a record that represents the actions taken in executing an
instruction, and a process that computes that for the incoming
instruction.  We no longer have 'current' or 'r.cur_instr', instead
things like the destination register are put into r.e in the first
cycle of an instruction and not reinitialized in subsequent busy
cycles.

For mfspr and mtspr, we now decode "slow" SPR numbers (those SPRs that
are not stored in the register file) to a new "spr_selector" record
in decode1 (excluding those in the loadstore unit).  With this, the
result for mfspr is determined in the data path.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Paul Mackerras 204fedc63f Move XER low bits out of register file
Besides the overflow and status carry bits, XER has 18 bits which need
to retain the value written by mtxer (in case software wants to
emulate the move-assist instructions (lswi, lswx, stswi, stswx).
Until now these bits (and others) have been stored in the GPR file as
a "fast" SPR, but this causes complications because XER is not really
a fast SPR.

Instead, we now store these 18 bits in the 'ctrl' signal, which exists
in execute1.  This will enable us to simplify the data path in future,
and has the added bonus that with a little bit of plumbing, we can get
the full XER value printed when dumping registers at the end of a
simulation.

Therefore this changes scripts/run_test.sh to remove the greps which
exclude XER from the comparison of actual and expected register
results.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
Anton Blanchard 0b39947f8d Remove unused sequential signal from Fetch1ToIcacheType
GHDL synthesis is flagging a warning about this.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
3 years ago