A tiny Open POWER ISA softcore written in VHDL 2008
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Go to file
Paul Mackerras 1c4b5def36 Improve timing of redirect_nia going from writeback to fetch1
This gets rid of the adder in writeback that computes redirect_nia.
Instead, the main adder in the ALU is used to compute the branch
target for relative branches.  We now decode b and bc differently
depending on the AA field, generating INSN_brel, INSN_babs, INSN_bcrel
or INSN_bcabs as appropriate.  Each one has a separate entry in the
decode table in decode1; the *rel versions use CIA as the A input.
The bclr/bcctr/bctar and rfid instructions now select ramspr_result
for the main result mux to get the redirect address into
ex1.e.write_data.

For branches which are predicted taken but not actually taken, we need
to redirect to the following instruction.  We also need to do that for
isync.  We do this in the execute2 stage since whether or not to do it
depends on the branch result.  The next_nia computation is moved to
the execute2 stage and comes in via a new leg on the secondary result
multiplexer, making next_nia available ultimately in ex2.e.write_data.
This also means that the next_nia leg of the primary result
multiplexer is gone.  Incrementing last_nia by 4 for sc (so that SRR0
points to the following instruction) is also moved to execute2.

Writing CIA+4 to LR was previously done through the main result
multiplexer.  Now it comes in explicitly in the ramspr write logic.

Overall this removes the br_offset and abs_br fields and the logic to
add br_offset and next_nia, and one leg of the primary result
multiplexer, at the cost of a few extra control signals between
execute1 and execute2 and some multiplexing for the ramspr write side
and an extra input on the secondary result multiplexer.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
.github/workflows syscon: Implement a register for storing git hash info 2 years ago
constraints
fpga arty: Change shield I/O pin bus into individual signals 1 year ago
hello_world hello_world: Debug print the gitinfo syscon register 2 years ago
include Merge pull request #404 from CodeConstruct:dev/gpio-interrupt 1 year ago
lib
litedram Regenerate litedram with updated sdram init 2 years ago
liteeth
litesdcard
media
micropython
openocd Merge pull request #406 from shingarov/spi-kintex 2 years ago
rust_lib_demo
scripts Merge pull request #420 from paulusmack/master 1 year ago
sim-unisim
tests tests: Add a test for prefixed instructions 2 years ago
uart16550 Bundle the uart16550 core file 2 years ago
verilator
.gitignore Ignore vunit_out in git 2 years ago
LICENSE
Makefile Makefile: Remove long micropython test from check_light 1 year ago
README.md
cache_ram.vhdl
common.vhdl Improve timing of redirect_nia going from writeback to fetch1 1 year ago
control.vhdl
core.vhdl core_debug: Add support for detecting writes to a memory address 1 year ago
core_debug.vhdl core_debug: Add support for detecting writes to a memory address 1 year ago
core_dram_tb.vhdl Move alt_reset to syscon 2 years ago
core_flash_tb.vhdl
core_tb.vhdl
countbits.vhdl
countbits_tb.vhdl
cr_file.vhdl
crhelpers.vhdl
dcache.vhdl dcache: Make reading of DTLB independent of d_in.valid 1 year ago
dcache_tb.vhdl Fix dcache_tb (and add dump of victim way to dcache) 2 years ago
decode1.vhdl Improve timing of redirect_nia going from writeback to fetch1 1 year ago
decode2.vhdl Improve timing of redirect_nia going from writeback to fetch1 1 year ago
decode_types.vhdl Improve timing of redirect_nia going from writeback to fetch1 1 year ago
divider.vhdl
divider_tb.vhdl
dmi_dtm_dummy.vhdl
dmi_dtm_ecp5.vhdl
dmi_dtm_tb.vhdl
dmi_dtm_xilinx.vhdl
dram_tb.vhdl Move alt_reset to syscon 2 years ago
execute1.vhdl Improve timing of redirect_nia going from writeback to fetch1 1 year ago
fetch1.vhdl fetch1: Change the way predictions from the BTC are sent downstream 2 years ago
foreign_random.vhdl
fpu.vhdl
git.vhdl.in syscon: Implement a register for storing git hash info 2 years ago
glibc_random.vhdl
glibc_random_helpers.vhdl
gpio.vhdl gpio: Add interrupts and trigger registers 2 years ago
helpers.vhdl
icache.vhdl icache: Restore primary opcode to instruction word 1 year ago
icache_tb.vhdl
icache_test.bin
insn_helpers.vhdl Decode prefixed instructions 2 years ago
loadstore1.vhdl Implement interrupts for prefixed instructions 2 years ago
logical.vhdl Implement byte reversal instructions 1 year ago
microwatt.core Merge pull request #415 from ozbenh/uart16550-core 2 years ago
mmu.vhdl
multiply-32s.vhdl
multiply.vhdl
multiply_tb.vhdl
nonrandom.vhdl
plru_tb.vhdl Fix plru_tb to use the new plrufn and take out the old plru.vhdl 2 years ago
plrufn.vhdl icache: Split PLRU into storage and logic 2 years ago
pmu.vhdl
ppc_fx_insns.vhdl
predecode.vhdl Improve timing of redirect_nia going from writeback to fetch1 1 year ago
random.vhdl
register_file.vhdl
rotator.vhdl
rotator_tb.vhdl
run.py Add vhdl_ls.toml dump to run.py 2 years ago
sim_16550_uart.vhdl
sim_bram.vhdl
sim_bram_helpers.vhdl
sim_bram_helpers_c.c
sim_console.vhdl
sim_console_c.c
sim_jtag.vhdl
sim_jtag_socket.vhdl
sim_jtag_socket_c.c
sim_no_flash.vhdl
sim_pp_uart.vhdl
sim_vhpi_c.c
sim_vhpi_c.h
soc.vhdl Merge pull request #409 from CodeConstruct/dev/soc-reset 2 years ago
spi_flash_ctrl.vhdl
spi_rxtx.vhdl
sync_fifo.vhdl
syscon.vhdl Move alt_reset to syscon 2 years ago
utils.vhdl
wishbone_arbiter.vhdl
wishbone_bram_tb.bin
wishbone_bram_tb.vhdl
wishbone_bram_wrapper.vhdl
wishbone_debug_master.vhdl
wishbone_types.vhdl
writeback.vhdl Improve timing of redirect_nia going from writeback to fetch1 1 year ago
xics.vhdl
xilinx-mult-32s.vhdl
xilinx-mult.vhdl

README.md

Microwatt

Microwatt

A tiny Open POWER ISA softcore written in VHDL 2008. It aims to be simple and easy to understand.

Simulation using ghdl

MicroPython running on Microwatt

You can try out Microwatt/Micropython without hardware by using the ghdl simulator. If you want to build directly for a hardware target board, see below.

  • Build micropython. If you aren't building on a ppc64le box you will need a cross compiler. If it isn't available on your distro grab the powerpc64le-power8 toolchain from https://toolchains.bootlin.com. You may need to set the CROSS_COMPILE environment variable to the prefix used for your cross compilers. The default is powerpc64le-linux-gnu-.
git clone https://github.com/micropython/micropython.git
cd micropython
cd ports/powerpc
make -j$(nproc)
cd ../../../

A prebuilt micropython image is also available in the micropython/ directory.

  • Microwatt uses ghdl for simulation. Either install this from your distro or build it. Microwatt requires ghdl to be built with the LLVM or gcc backend, which not all distros do (Fedora does, Debian/Ubuntu appears not to). ghdl with the LLVM backend is likely easier to build.

    If building ghdl from scratch is too much for you, the microwatt Makefile supports using Docker or Podman.

  • Next build microwatt:

git clone https://github.com/antonblanchard/microwatt
cd microwatt
make

To build using Docker:

make DOCKER=1

and to build using Podman:

make PODMAN=1
  • Link in the micropython image:
ln -s ../micropython/ports/powerpc/build/firmware.bin main_ram.bin

Or if you were using the pre-built image:

ln -s micropython/firmware.bin main_ram.bin
  • Now run microwatt, sending debug output to /dev/null:
./core_tb > /dev/null

Synthesis on Xilinx FPGAs using Vivado

  • Install Vivado (I'm using the free 2019.1 webpack edition).

  • Setup Vivado paths:

source /opt/Xilinx/Vivado/2019.1/settings64.sh
  • Install FuseSoC:
pip3 install --user -U fusesoc

Fedora users can get FuseSoC package via

sudo dnf copr enable sharkcz/danny
sudo dnf install fusesoc
  • If this is your first time using fusesoc, initialize fusesoc. This is needed to be able to pull down fussoc library components referenced by microwatt. Run
fusesoc init
fusesoc fetch uart16550
fusesoc library add microwatt /path/to/microwatt
  • Build using FuseSoC. For hello world (Replace nexys_video with your FPGA board such as --target=arty_a7-100): You may wish to ensure you have installed Digilent Board files or appropriate files for your board first.
fusesoc run --target=nexys_video microwatt --memory_size=16384 --ram_init_file=/path/to/microwatt/fpga/hello_world.hex

You should then be able to see output via the serial port of the board (/dev/ttyUSB1, 115200 for example assuming standard clock speeds). There is a know bug where initial output may not be sent - try the reset (not programming button) on your board if you don't see anything.

  • To build micropython (currently requires 1MB of BRAM eg an Artix-7 A200):
fusesoc run --target=nexys_video microwatt

Linux on Microwatt

Mainline Linux supports Microwatt as of v5.14. The Arty A7 is the best tested platform, but it's also been tested on the OrangeCrab and ButterStick.

  1. Use buildroot to create a userspace

    A small change is required to glibc in order to support the VMX/AltiVec-less Microwatt, as float128 support is mandiatory and for this in GCC requires VSX/AltiVec. This change is included in Joel's buildroot fork, along with a defconfig:

    git clone -b microwatt https://github.com/shenki/buildroot
    cd buildroot
    make ppc64le_microwatt_defconfig
    make
    

    The output is output/images/rootfs.cpio.

  2. Build the Linux kernel

    git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
    cd linux
    make ARCH=powerpc microwatt_defconfig
    make ARCH=powerpc CROSS_COMPILE=powerpc64le-linux-gnu- \
      CONFIG_INITRAMFS_SOURCE=/buildroot/output/images/rootfs.cpio -j`nproc`
    

    The output is arch/powerpc/boot/dtbImage.microwatt.elf.

  3. Build gateware using FuseSoC

    First configure FuseSoC as above.

    fusesoc run --build --target=arty_a7-100 microwatt --no_bram --memory_size=0
    

    The output is build/microwatt_0/arty_a7-100-vivado/microwatt_0.bit.

  4. Program the flash

    This operation will overwrite the contents of your flash.

    For the Arty A7 A100, set FLASH_ADDRESS to 0x400000 and pass -f a100.

    For the Arty A7 A35, set FLASH_ADDRESS to 0x300000 and pass -f a35.

    microwatt/openocd/flash-arty -f a100 build/microwatt_0/arty_a7-100-vivado/microwatt_0.bit
    microwatt/openocd/flash-arty -f a100 dtbImage.microwatt.elf -t bin -a $FLASH_ADDRESS
    
  5. Connect to the second USB TTY device exposed by the FPGA

    minicom -D /dev/ttyUSB1
    

    The gateware has firmware that will look at FLASH_ADDRESS and attempt to parse an ELF there, loading it to the address specified in the ELF header and jumping to it.

Testing

  • A simple test suite containing random execution test cases and a couple of micropython test cases can be run with:
make -j$(nproc) check

Issues

  • There are a few instructions still to be implemented:
    • Vector/VMX/VSX