Commit Graph

19 Commits (dcache-nc-fix)

Author SHA1 Message Date
Anton Blanchard 2db89628ab Reformat control
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
4 years ago
Paul Mackerras 17fd069640 core: Allow multiple loadstore instructions to be in flight
The idea here is that we can have multiple instructions in progress at
the same time as long as they all go to the same unit, because that
unit will keep them in order.  If we get an instruction for a
different unit, we wait for all the previous instructions to finish
before executing it.  Since the loadstore unit is the only one that is
currently pipelined, this boils down to saying that loadstore
instructions can go ahead while l_in.in_progress = 1 but other
instructions have to wait until it is 0.

This gives a 2% increase on coremark performance on the Arty A7-100
(from ~190 to ~194).

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
Paul Mackerras 3cd3449b4b core: Move redirect and interrupt delivery logic to writeback
This moves the logic for redirecting fetching and writing SRR0 and
SRR1 to writeback.  The aim is that ultimately units other than
execute1 can send their interrupts to writeback along with their
instruction completions, so that there can be multiple instructions
in flight without needing execute1 to keep track of the address
of each outstanding instruction.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
Paul Mackerras ae2afeca5c core: Track CR hazards and bypasses using tags
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
Paul Mackerras d290d2a9bb core: Restore bypass path from execute1
This changes the bypass path.  Previously it went from after
execute1's output to after decode2's output.  Now it goes from before
execute1's output register to before decode2's output register.  The
reason is that the new path will be simpler to manage when there are
possibly multiple instructions in flight.  This means that the
bypassing can be managed inside decode2 and control.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
Paul Mackerras c0b45e153b core: Track GPR hazards using tags that propagate through the pipelines
This changes the way GPR hazards are detected and tracked.  Instead of
having a model of the pipeline in gpr_hazard.vhdl, which has to mirror
the behaviour of the real pipeline exactly, we now assign a 2-bit tag
to each instruction and record which GSPR the instruction writes.
Subsequent instructions that need to use the GSPR get the tag number
and stall until the value with that tag is being written back to the
register file.

For now, the forwarding paths are disabled.  That gives about a 8%
reduction in coremark performance.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
Paul Mackerras 4b2c23703c core: Implement quadword loads and stores
This implements the lq, stq, lqarx and stqcx. instructions.

These instructions all access two consecutive GPRs; for example the
"lq %r6,0(%r3)" instruction will load the doubleword at the address
in R3 into R7 and the doubleword at address R3 + 8 into R6.  To cope
with having two GPR sources or destinations, the instruction gets
repeated at the decode2 stage, that is, for each lq/stq/lqarx/stqcx.
coming in from decode1, two instructions get sent out to execute1.

For these instructions, the RS or RT register gets modified on one
of the iterations by setting the LSB of the register number.  In LE
mode, the first iteration uses RS|1 or RT|1 and the second iteration
uses RS or RT.  In BE mode, this is done the other way around.  In
order for decode2 to know what endianness is currently in use, we
pass the big_endian flag down from icache through decode1 to decode2.
This is always in sync with what execute1 is using because only rfid
or an interrupt can change MSR[LE], and those operations all cause
a flush and redirect.

There is now an extra column in the decode tables in decode1 to
indicate whether the instruction needs to be repeated.  Decode1 also
enforces the rule that lq with RT = RT and lqarx with RA = RT or
RB = RT are illegal.

Decode2 now passes a 'repeat' flag and a 'second' flag to execute1,
and execute1 passes them on to loadstore1.  The 'repeat' flag is set
for both iterations of a repeated instruction, and 'second' is set
on the second iteration.  Execute1 does not take asynchronous or
trace interrupts on the second iteration of a repeated instruction.

Loadstore1 uses 'next_addr' for the second iteration of a repeated
load/store so that we access the second doubleword of the memory
operand.  Thus loadstore1 accesses the doublewords in increasing
memory order.  For 16-byte loads this means that the first iteration
writes GPR RT|1.  It is possible that RA = RT|1 (this is a legal
but non-preferred form), meaning that if the memory operand was
misaligned, the first iteration would overwrite RA but then the
second iteration might take a page fault, leading to corrupted state.
To avoid that possibility, 16-byte loads in LE mode take an
alignment interrupt if the operand is not 16-byte aligned.  (This
is the case anyway for lqarx, and we enforce it for lq as well.)

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
Paul Mackerras 45cd8f4fc3 core: Add support for floating-point loads and stores
This extends the register file so it can hold FPR values, and
implements the FP loads and stores that do not require conversion
between single and double precision.

We now have the FP, FE0 and FE1 bits in MSR.  FP loads and stores
cause a FP unavailable interrupt if MSR[FP] = 0.

The FPU facilities are optional and their presence is controlled by
the HAS_FPU generic passed down from the top-level board file.  It
defaults to true for all except the A7-35 boards.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
Paul Mackerras 74062195ca execute1: Do forwarding of the CR result to the next instruction
This adds a path to allow the CR result of one instruction to be
forwarded to the next instruction, so that sequences such as
cmp; bc can avoid having a 1-cycle bubble.

Forwarding is not available for dot-form (Rc=1) instructions,
since the CR result for them is calculated in writeback.  The
decode.output_cr field is used to identify those instructions
that compute the CR result in execute1.

For some reason, the multiply instructions incorrectly had
output_cr = 1 in the decode tables.  This fixes that.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 6701e7346b core: Use a busy signal rather than a stall
This changes the instruction dependency tracking so that we can
generate a "busy" signal from execute1 and loadstore1 which comes
along one cycle later than the current "stall" signal.  This will
enable us to signal busy cycles only when we need to from loadstore1.

The "busy" signal from execute1/loadstore1 indicates "I didn't take
the thing you gave me on this cycle", as distinct from the previous
stall signal which meant "I took that but don't give me anything
next cycle".  That means that decode2 proactively gives execute1
a new instruction as soon as it has taken the previous one (assuming
there is a valid instruction available from decode1), and that then
sits in decode2's output until execute1 can take it.  So instructions
are issued by decode2 somewhat earlier than they used to be.

Decode2 now only signals a stall upstream when its output buffer is
full, meaning that we can fill up bubbles in the upstream pipe while a
long instruction is executing.  This gives a small boost in
performance.

This also adds dependency tracking for rA updates by update-form
load/store instructions.

The GPR and CR hazard detection machinery now has one extra stage,
which may not be strictly necessary.  Some of the code now really
only applies to PIPELINE_DEPTH=1.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Benjamin Herrenschmidt 31b55b2a75 core: Improve core reset
The icache would still spit out an instruction which could
cause a 0x700 instead of a reset.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Paul Mackerras b14d982011 execute: Implement bypass from output of execute1 to input
This enables back-to-back execution of integer instructions where
the first instruction writes a GPR and the second reads the same
GPR.  This is done with a set of multiplexers at the start of
execute1 which enable any of the three input operands to be taken
from the output of execute1 (i.e. r.e.write_data) rather than the
input from decode2 (i.e. e_in.read_data[123]).

This also requires changes to the hazard detection and handling.
Decode2 generates a signal indicating that the GPR being written
is available for bypass, which is true for instructions that are
executed in execute1 (rather than loadstore1/dcache).  The
gpr_hazard module stores this "bypassable" bit, and if the same
GPR needs to be read by a subsequent instruction, it outputs a
"use_bypass" signal rather than generating a stall.  The
use_bypass signal is then latched at the output of decode2 and
passed down to execute1 to control the input multiplexer.

At the moment there is no bypass on the inputs to loadstore1, but that
is OK because all load and store instructions are marked as
single-issue.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Anton Blanchard 1c05f330c6 control: Fix build issue with Fedora 31 version of GHDL
I'm hitting an issue with the Fedora 31 version of GHDL that
appears to be fixed upstream:

control.vhdl:105:39:error: actual expression must be globally static

Add a signal to get rid of error.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Benjamin Herrenschmidt e4f475e17f sprs: Store common SPRs in register file
This stores the most common SPRs in the register file.

This includes CTR and LR and a not yet final list of others.

The register file is set to 64 entries for now. Specific types
are defined that can represent a GPR index (gpr_index_t) or
a GPR/SPR index (gspr_index_t) along with conversion functions
between the two.

On order to deal with some forms of branch updating both LR and
CTR, we introduced a delayed update of LR after a branch link.

Note: We currently stall the pipeline on such a delayed branch,
but we could avoid stalling fetch in that specific case as we
know we have a branch delay. We could also limit that to the
specific case where we need to update both CTR and LR.

This allows us to make bcreg, mtspr and mfspr pipelined. decode1
will automatically force the single issue flag on mfspr/mtspr to
a "slow" SPR.

[paulus@ozlabs.org - fix direction of decode2.stall_in]

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Benjamin Herrenschmidt 98bd8b73c0 control: Reduce pipeline depth to 1
To match our one stage execute.

This might change back if we end up adding 2 stages to match the
LSU, but in that case we'll want forwards as well.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Anton Blanchard 813f834012 Add CR hazard detection
To keep things simple we treat the CR as a single entity.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Anton Blanchard bb65d0b899 Remove issue restrictions on a number of instructions
Anything that isn't a load or store and anything that doesn't read the
CR can go as soon as its inputs are ready.

While we could also allow SPR read/write and carry read/write, we plan
to change them to be read in decode2 and written in writeback soon and
they will need separate hazard detection to be added.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Anton Blanchard bdc26b7527 Add GPR hazard detection
Check GPRs against any writers in the pipeline.

All instructions are still marked single in pipeline at
this stage.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Anton Blanchard d5346d0abf Separate issue control into its own unit
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago