Commit Graph

154 Commits (caravel-mpw5-20220322)

Author SHA1 Message Date
Paul Mackerras e08ca4ab8e countzero: Add a register to help make timing
This adds a register in the middle of the countzero computation,
so that we now have two cycles to count leading or trailing zeroes
instead of just one.  Execute1 now outputs a one-cycle stall signal
when it encounters a cntlz* or cnttz* instruction.  With this,
the countzero path no longer fails timing on the Artix-7 at 100MHz.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 5422007f83 Plumb loadstore1 input from execute1 not decode2
This allows us to use the bypass at the input of execute1 for the
address and data operands for loadstore1.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras b14d982011 execute: Implement bypass from output of execute1 to input
This enables back-to-back execution of integer instructions where
the first instruction writes a GPR and the second reads the same
GPR.  This is done with a set of multiplexers at the start of
execute1 which enable any of the three input operands to be taken
from the output of execute1 (i.e. r.e.write_data) rather than the
input from decode2 (i.e. e_in.read_data[123]).

This also requires changes to the hazard detection and handling.
Decode2 generates a signal indicating that the GPR being written
is available for bypass, which is true for instructions that are
executed in execute1 (rather than loadstore1/dcache).  The
gpr_hazard module stores this "bypassable" bit, and if the same
GPR needs to be read by a subsequent instruction, it outputs a
"use_bypass" signal rather than generating a stall.  The
use_bypass signal is then latched at the output of decode2 and
passed down to execute1 to control the input multiplexer.

At the moment there is no bypass on the inputs to loadstore1, but that
is OK because all load and store instructions are marked as
single-issue.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 0c714f1be6 execute: Move popcnt and prty instructions into the logical unit
This implements logic in the logical entity to calculate the results
of the popcnt* and prty* instructions.  We now have one insn_type_t
value for the 3 popcnt variants and one for the two prty variants,
using the length field of the decode_rom_t to distinguish between
them.  The implementations in logical.vhdl using recursive
algorithms rather than the simple functions in ppc_fx_insns.vhdl.

This gives a saving of about 140 slice LUTs on the A7-100 and
improves timing slightly.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras d2ca625b3b execute: Do comparisons using the main adder
This handles OP_CMP like a subtraction; the main adder computes
~RA + RB + 1, and the condition codes are computed from the results.
A direct comparison of the two input operands is used to calculate the
EQ bit of the condition result.  The LT and GT bits are computed from
the MSB of the subtraction result, the carry out from the subtraction,
and the MSBs of the operands.  For a 32-bit comparison, the 32-bit
carry and bit 31 of the result and input operands are used; for a
64-bit comparison, the 64-bit carry and bit 63 of the operands and
result are used.

It turns out to be more convenient to use the 'signed' field of
the decode table to distinguish signed from unsigned comparisons,
rather than the insn_type.  Therefore this uses OP_CMP for both
cmp and cmpl, which also has the benefit of reducing the number
of values in insn_type_t.

Doing this saves over 200 slice LUTs on the Arty A7-100 and improves
timing slightly as well.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras d956846667 execute1: Move EXTS* instruction back into execute1
This moves the sign extension done by the extsb, extsh and extsw
instructions back into execute1.  This means that we no longer need
any data formatting in writeback for results coming from execute1,
so this modifies writeback so the data formatter inputs come
directly from the loadstore unit output.  The condition code
updates for RC=1 form instructions are now done on the value from
execute1 rather than the output of the data formatter, which should
help timing.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras c9a2076dd3 execute1: Remember dest GPR, RC, OE, XER for slow operations
For multiply and divide operations, execute1 now records the
destination GPR number, RC and OE from the instruction, and the
XER value.  This means that the multiply and divide units don't
need to record those values and then send them back to execute1.
This makes the interface to those units a bit simpler.  They
simply report an overflow signal along with the result value, and
execute1 takes care of updating XER if necessary.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 39d18d2738 Make divider hang off the side of execute1
With this, the divider is a unit that execute1 sends operands to and
which sends its results back to execute1, which then send them to
writeback.  Execute1 now sends a stall signal when it gets a divide
or modulus instruction until it gets a valid signal back from the
divider.  Divide and modulus instructions are no longer marked as
single-issue.

The data formatting step that used to be done in decode2 for div
and mod instructions is now done in execute1.  We also do the
absolute value operation in that same cycle instead of taking an
extra cycle inside the divider for signed operations with a
negative operand.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 2167186b5f Make multiplier hang off the side of execute1
With this, the multiplier isn't a separate pipe that decode2 issues
instructions to, but rather is a unit that execute1 sends operands
to and which sends the result back to execute1, which then sends it
to writeback.  Execute1 now sends a stall signal when it gets a
multiply instruction until it gets a valid signal back from the
multiplier.

This all means that we no longer need to mark the multiply
instructions as single-issue.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Anton Blanchard ad3db18dce Fix a ghdysynth inferred latch error in execute
It should never happen in practise, but ghdlsynth is complaining about
an inferred latch here. Fix it

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Anton Blanchard cc8a9e7893 Upper 32 bits of XER should read as 0s
From the architecture:

  bits 0:31 and 35:43 are treated as reserved and return 0s when read
  using mfxer

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Tom Vijlbrief c05441bf47 Implement CRNOR and friends
Signed-off-by: Tom Vijlbrief <tvijlbrief@gmail.com>
5 years ago
Benjamin Herrenschmidt e4f475e17f sprs: Store common SPRs in register file
This stores the most common SPRs in the register file.

This includes CTR and LR and a not yet final list of others.

The register file is set to 64 entries for now. Specific types
are defined that can represent a GPR index (gpr_index_t) or
a GPR/SPR index (gspr_index_t) along with conversion functions
between the two.

On order to deal with some forms of branch updating both LR and
CTR, we introduced a delayed update of LR after a branch link.

Note: We currently stall the pipeline on such a delayed branch,
but we could avoid stalling fetch in that specific case as we
know we have a branch delay. We could also limit that to the
specific case where we need to update both CTR and LR.

This allows us to make bcreg, mtspr and mfspr pipelined. decode1
will automatically force the single issue flag on mfspr/mtspr to
a "slow" SPR.

[paulus@ozlabs.org - fix direction of decode2.stall_in]

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras ec9b27660f execute: Copy XER[SO] to CR for cmp[i] and cmpl[i] instructions
We were copying in XER[SO] for the dot-form instructions but not the
explicit compare instructions.  Fix this.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Benjamin Herrenschmidt 501b6daf9b Add basic XER support
The carry is currently internal to execute1. We don't handle any of
the other XER fields.

This creates type called "xer_common_t" that contains the commonly
used XER bits (CA, CA32, SO, OV, OV32).

The value is stored in the CR file (though it could be a separate
module). The rest of the bits will be implemented as a separate
SPR and the two parts reconciled in mfspr/mtspr in latter commits.

We always read XER in decode2 (there is little point not to)
and send it down all pipeline branches as it will be needed in
writeback for all type of instructions when CR0:SO needs to be
updated (such forms exist for all pipeline branches even if we don't
yet implement them).

To avoid having to track XER hazards, we forward it back in EX1. This
assumes that other pipeline branches that can modify it (mult and div)
are running single issue for now.

One additional hazard to beware of is an XER:SO modifying instruction
in EX1 followed immediately by a store conditional. Due to our writeback
latency, the store will go down the LSU with the previous XER value,
thus the stcx. will set CR0:SO using an obsolete SO value.

I doubt there exist any code relying on this behaviour being correct
but we should account for it regardless, possibly by ensuring that
stcx. remain single issue initially, or later by adding some minimal
tracking or moving the LSU into the same pipeline as execute.

Missing some obscure XER affecting instructions like addex or mcrxrx.

[paulus@ozlabs.org - fix CA32 and OV32 for OP_ADD, fix order of
 arguments to set_ov]

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Benjamin Herrenschmidt 83a8bb0238 spr: Cleanup decoding of SPR numbers
Use a function to obtain the integer number and use constants
with the architected numbers. Replace std_match with a case
statement.

This also has the side effect of returning 0 instead of some
random previous result on mfspr of an unknown SPR.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Anton Blanchard 247d7d4aa0
Merge pull request #113 from mikey/exec-sim-remove
Remove SIM generic from execute1
5 years ago
Michael Neuling bd4ac06243 Remove SIM generic from execute1
This does nothing, so remove.

Signed-off-by: Michael Neuling <mikey@neuling.org>
5 years ago
Benjamin Herrenschmidt 742b21480e insn: Simplistic implementation of icbi
We don't yet have a proper snooper for the icache, so for now make
icbi just flush the whole thing

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Benjamin Herrenschmidt a0d95e791e insn: Implement isync instruction
The instruction works by redirecting fetch to nia+4 (hopefully using
the same adder used to generate LR) and doing a backflush. Along with
being single issue, this should guarantee that the next instruction
only gets fetched after the pipe's been emptied.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Anton Blanchard e67924f55e isel takes a CR bit, not a CR field
Fix a GHDL assert in isel.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Benjamin Herrenschmidt bddc9327cc execute1: Remove mux on "write_data" and "rc" outputs
Only "write_enable" needs to change, this shrinks the core a bit more

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Benjamin Herrenschmidt da0bd89c43 crhelpers: Constraint "crnum" integer
This seems to save quite a few LUTs

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Benjamin Herrenschmidt 4437487ad0 execute1: Reformat
No functional change

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Anton Blanchard 4433118c91
Merge pull request #105 from paulusmack/writeback
Writeback
5 years ago
Paul Mackerras f49a5a99a5 Remove execute2 stage
Since the condition setting got moved to writeback, execute2 does
nothing aside from wasting a cycle.  This removes it.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 9646fe28b0 Do sign-extension instructions in writeback instead of execute1
This makes the exts[bhw] instructions do the sign extension in the
writeback stage using the sign-extension logic there instead of
having unique sign extension logic in execute1.  This requires
passing the data length and sign extend flag from decode2 down
through execute1 and execute2 and into writeback.  As a side bonus
we reduce the number of values in insn_type_t by two.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 86c53aa3f7 Implement neg using OP_ADD
We have all the machinery in place to implement the neg instruction
as OP_ADD.  Doing that means we can ditch OP_NEG, and saves about
66 slice LUTs on the A7-100.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Anton Blanchard 57b7f1ed71 Don't infer latch for newcrf
Always initialize newcrf to avoid inferring a latch.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Paul Mackerras 24a4a796ce execute: Consolidate count-leading/trailing-zeroes implementations
This adds combinatorial logic that does 32-bit and 64-bit count
leading and trailing zeroes in one unit, and consolidates the
four instructions under a single OP_CNTZ opcode.

This saves 84 slice LUTs on the Arty A7-100.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Anton Blanchard b8fb721b81 Consolidate logical instructions
Consolidate and/andc/nand, or/orc/nor and xor/eqv, using a common
invert on the input and output. This saves us about 200 LUTs.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Paul Mackerras f7c393ba7e Add a rotate/mask/shift unit and use it in execute1
This adds a new entity 'rotator' which contains combinatorial logic
for rotating and masking 64-bit values.  It implements the operations
of the rlwinm, rlwnm, rlwimi, rldicl, rldicr, rldic, rldimi, rldcl,
rldcr, sld, slw, srd, srw, srad, sradi, sraw and srawi instructions.
It consists of a 3-stage 64-bit rotator using 4:1 multiplexors at
each stage, two mask generators, output logic and control logic.

The insn_type_t values used for these instructions have been reduced
to just 5: OP_RLC, OP_RLCL and OP_RLCR for the rotate and mask
instructions (clear both left and right, clear left, clear right
variants), OP_SHL for left shifts, and OP_SHR for right shifts.
The control signals for the rotator are derived from the opcode
and from the is_32bit and is_signed fields of the decode_rom_t.

The rotator is instantiated as an entity in execute1 so that we can
be sure we only have one of it.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 7fe84220a5 decode: Avoid multiplexing from instruction reg fields to regfile address ports
This aims to simplify the logic between the instruction image and
the register file read address ports and reduce the size of the decode
tables.  With this patch, the input_reg_a column of the decode tables
can only select RA or zeroes, the input_reg_b column can only select
RB or a constant (0, -1, or an immediate value from the instruction),
and the input_reg_c columns can only select RS or zeroes.

That means that the rotate/shift/logical ops now have their first
input coming in via the input_reg_c column.  That means we need to
add a read_data3 field to the Decode2ToExecuteType record, but that
will go away again when we split out the rotate/mask/logical ops to
their own unit.

As a related but not tightly connected change, this patch also sets
the read1_enable signal to the register file be 0 when RA=0 and the
input_reg_a for the instruction is RA_OR_ZERO (previously it was 1).

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 96b402a4bf Consolidate add/subtract instructions into a single op
All of the PPC add and subtract instructions, including carrying
and extended versions, do much the same arithmetic operation:

	result = (I xor A) + B + C

where A is the value from RA, I provides a logical inversion of A
(i.e. I is 0 or -1), B is either from RB or is a constant 0 or -1,
and C is 0, 1 or the carry bit from XER (CA).

To consolidate all the add/subtract instructions into a single
OP_ADD, we add a column to decode_rom_t to indicate when A should
be inverted, and change the input_carry field to a 3-state selector
to select C in the equation above.

This also adds a new "CONST_M1" value for input_reg_b_t to indicate
that B is a constant -1.  This allows us to implement addme and
subfme.

The addex instruction appears not to exist, so the comments referring
to it are removed.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 58b06eb5f3 decode: Remove const fields from decode_rom_t
The const* fields of decode_rom_t drove multiplexers in decode2 that
picked out various instruction fields and put them into the const*
fields of the Decode2ToExecute1Type record, from where they were
used in execute1.  However, the code in execute1 can just as easily
use the appropriate fields of the original instruction word, since
that is now available in execute1.  This therefore changes the
code to do that, resulting in smaller decode tables.

Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras bbae2d1eda decode: Index minor op table with insn bits for opcode 31
This changes decode_op_31_array from being indexed by a ppc_insn_t
(which is derived from the instruction word by a whole series of
if/elsif statements) to being indexed directly by bits 10...1 of
the instruction word.  With this we no longer need ppc_insn.

This then means that the decode1 stage doesn't distinguish between
mfcr and mfocrf, or between mtcrf and mtocrf, since those are
distinguished by the value in bit 20 of the instruction.  To
accommodate that, execute1 changes so that the one op value (OP_MFCR)
does either the mfcr or the mfocrf behaviour depending on bit 20
of the instruction word; and similarly for mtcrf/mtocrf.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 21d3f8a5ed decode: Index minor op table with insn bits for opcode 30
This comprises the 64-bit rotate and mask instructions.  In order to
reduce the table index to 3 bits, we combine rldcl and rdlcr into a
single op (OP_RLDCX), and choose the right mask at execute time based
on bit 1 of the instruction word.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 00e9f801f6 decode: Index minor op table with insn bits for opcode 19
This changes the decoding of major opcode 19 from using the ppc_insn_t
index to using bits of the instruction word directly.  Opcode 19 has
a 10-bit minor opcode field (bits 10..1) but the space is sparsely
filled.  Therefore we index a table of single-bit entries with the
10-bit minor opcode to filter out the illegal minor opcodes, and
index a table using just 3 bits -- 5, 3 and 2 -- of the instruction
to get the decode entry.  This groups together all the instructions
in 4 columns of the opcode map as a single entry.  That means that
mcrf and all the CR logical ops get grouped together, and bcctr, bclr
and bctar get grouped together.  At present the CR logical ops are not
implemented, so their grouping has no impact.

The code for bclr and bcctr in execute1 is now common, using a single
op, and it now determines the branch address by looking at bit 10 of
the instruction word at execute time.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras c9e92483b8 decode: Push mtspr/mfspr register decoding down into execute1
Instead of doing mfctr, mflr, mftb, mtctr, mtlr as separate ops,
just pass down mfspr and mtspr ops with the spr number and let
execute1 decode which SPR we're addressing.  This will help reduce
the number of instruction bits decode1 needs to look at.

In fact we now pass down the whole instruction from decode2 to
execute1.  We will need more bits of the instruction in future,
and the tools should just optimize away any that we don't end
up using.  Since the 'aa' bit was just a copy of an instruction
bit, we can now remove it from the record.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Benjamin Herrenschmidt 3e6f656a90 Add MCRF instruction
Hopefully it's not too timing catastrophic. The variable newcrf will
be handy for the other CR ops when we implement them I suspect.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Benjamin Herrenschmidt 554ae88540 Implement absolute branches
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Benjamin Herrenschmidt 80a0e7fcf3 execute1: simplify flush_out
It's always set when f_out.redirect is set, so may as well set it once
at the end. It's all combo from the register.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Anton Blanchard b57325ce29 Merge branch 'divider' of https://github.com/paulusmack/microwatt 5 years ago
Anton Blanchard 5a6f8d26d1 Rename OP_SUBFC -> OP_SUBFE, OP_ADDC -> OP_ADDE
These were somewhat badly named.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Paul Mackerras d5bc6c8824 Add a divider unit and a testbench for it
This adds a divider unit, connected to the core in much the same way
that the multiplier unit is connected.  The division algorithm is
very simple-minded, taking 64 clock cycles for any division (even
32-bit division instructions).

The decoding is simplified by making use of regularities in the
instruction encoding for div* and mod* instructions.  Instead of
having PPC_* encodings from the first-stage decoder for each of the
different div* and mod* instructions, we now just have PPC_DIV and
PPC_MOD, and the inputs to the divider that indicate what sort of
division operation to do are derived from instruction word bits.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Anton Blanchard 6d85920068 execute1 no longer needs sim_console
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Michael Neuling 1e1b799382 Remove FIXME comment
This was mistakenly left behind in 4d5abfb430 ("Remove dynamic
ranges from code")

Signed-off-by: Michael Neuling <mikey@neuling.org>
5 years ago
Anton Blanchard a2df2a10a2 Remove sim console
We can force all existing code to use the UART console
by passing 0 in bit zero of the sim config register.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Anton Blanchard a8f8c54b77 Move debug execute output into decode2
This covers all units, and we avoid double printing.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Anton Blanchard 92a7152370 Rework pipeline, add stall and flush signals
This adds stall and flush signals to the pipeline.

Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Michael Neuling 4d5abfb430 Remove dynamic ranges from code
Some VHDL compilers like verific [1] don't like these, so let's remove
them. Lots of random code changes, but passes make check.

Also add basic script to run verific and generate verilog.

1. https://www.verific.com/

Signed-off-by: Michael Neuling <mikey@neuling.org>
5 years ago
Anton Blanchard 0fd18c2455 Add srd and srw
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Anton Blanchard 73daacbcd4 Add sim only divw
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago
Anton Blanchard 5a29cb4699 Initial import of microwatt
Signed-off-by: Anton Blanchard <anton@linux.ibm.com>
5 years ago