soc: Rework interconnect

This changes the SoC interconnect such that the main 64-bit wishbone out
of the processor is first split between only 3 slaves (BRAM, DRAM and a
general "IO" bus) instead of all the slaves in the SoC.

The IO bus leg is then latched and down-converted to 32 bits data width,
before going through a second address decoder for the various IO devices.

This significantly reduces routing and timing pressure on the main bus,
allowing to get rid of frequent timing violations when synthetizing on
small'ish FPGAs such as the Artix-7 35T found on the original Arty board.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
pull/178/head
Benjamin Herrenschmidt 5 years ago
parent 8d64090a68
commit 573b6b4bc4

@ -18,6 +18,8 @@ architecture behave of core_tb is
-- Dummy DRAM
signal wb_dram_in : wishbone_master_out;
signal wb_dram_out : wishbone_slave_out;
signal wb_dram_ctrl_in : wb_io_master_out;
signal wb_dram_ctrl_out : wb_io_slave_out;
begin

soc0: entity work.soc
@ -35,6 +37,8 @@ begin
uart0_txd => open,
wb_dram_in => wb_dram_in,
wb_dram_out => wb_dram_out,
wb_dram_ctrl_in => wb_dram_ctrl_in,
wb_dram_ctrl_out => wb_dram_ctrl_out,
alt_reset => '0'
);

@ -59,6 +63,9 @@ begin
-- Dummy DRAM
wb_dram_out.ack <= wb_dram_in.cyc and wb_dram_in.stb;
wb_dram_out.dat <= x"FFFFFFFFFFFFFFFF";
wb_dram_out.stall <= wb_dram_in.cyc and not wb_dram_out.ack;
wb_dram_out.stall <= '0';
wb_dram_ctrl_out.ack <= wb_dram_ctrl_in.cyc and wb_dram_ctrl_in.stb;
wb_dram_ctrl_out.dat <= x"FFFFFFFF";
wb_dram_ctrl_out.stall <= '0';

end;

@ -65,11 +65,15 @@ architecture behaviour of toplevel is
signal system_clk : std_ulogic;
signal system_clk_locked : std_ulogic;

-- DRAM wishbone connection
signal wb_dram_in : wishbone_master_out;
signal wb_dram_out : wishbone_slave_out;
signal wb_dram_ctrl : std_ulogic;
signal wb_dram_init : std_ulogic;
-- DRAM main data wishbone connection
signal wb_dram_in : wishbone_master_out;
signal wb_dram_out : wishbone_slave_out;

-- DRAM control wishbone connection
signal wb_dram_ctrl_in : wb_io_master_out;
signal wb_dram_ctrl_out : wb_io_slave_out;
signal wb_dram_is_csr : std_ulogic;
signal wb_dram_is_init : std_ulogic;

-- Control/status
signal core_alt_reset : std_ulogic;
@ -104,8 +108,10 @@ begin
uart0_rxd => uart_main_rx,
wb_dram_in => wb_dram_in,
wb_dram_out => wb_dram_out,
wb_dram_ctrl => wb_dram_ctrl,
wb_dram_init => wb_dram_init,
wb_dram_ctrl_in => wb_dram_ctrl_in,
wb_dram_ctrl_out => wb_dram_ctrl_out,
wb_dram_is_csr => wb_dram_is_csr,
wb_dram_is_init => wb_dram_is_init,
alt_reset => core_alt_reset
);

@ -195,8 +201,10 @@ begin

wb_in => wb_dram_in,
wb_out => wb_dram_out,
wb_is_ctrl => wb_dram_ctrl,
wb_is_init => wb_dram_init,
wb_ctrl_in => wb_dram_ctrl_in,
wb_ctrl_out => wb_dram_ctrl_out,
wb_ctrl_is_csr => wb_dram_is_csr,
wb_ctrl_is_init => wb_dram_is_init,

serial_tx => uart_pmod_tx,
serial_rx => uart_pmod_rx,

@ -33,9 +33,15 @@ architecture behaviour of toplevel is
signal system_clk : std_ulogic;
signal system_clk_locked : std_ulogic;

-- Dummy DRAM
signal wb_dram_in : wishbone_master_out;
signal wb_dram_out : wishbone_slave_out;
-- DRAM main data wishbone connection
signal wb_dram_in : wishbone_master_out;
signal wb_dram_out : wishbone_slave_out;

-- DRAM control wishbone connection
signal wb_dram_ctrl_in : wb_io_master_out;
signal wb_dram_ctrl_out : wb_io_slave_out;
signal wb_dram_is_csr : std_ulogic;
signal wb_dram_is_init : std_ulogic;

begin

@ -79,7 +85,12 @@ begin
rst => soc_rst,
uart0_txd => uart0_txd,
uart0_rxd => uart0_rxd,
wb_dram_in => wb_dram_in,
wb_dram_out => wb_dram_out,
wb_dram_ctrl_in => wb_dram_ctrl_in,
wb_dram_ctrl_out => wb_dram_ctrl_out,
wb_dram_is_csr => wb_dram_is_csr,
wb_dram_is_init => wb_dram_is_init,
alt_reset => '0'
);

@ -87,5 +98,8 @@ begin
wb_dram_out.ack <= wb_dram_in.cyc and wb_dram_in.stb;
wb_dram_out.dat <= x"FFFFFFFFFFFFFFFF";
wb_dram_out.stall <= wb_dram_in.cyc and not wb_dram_out.ack;
wb_dram_ctrl_out.ack <= wb_dram_in.cyc and wb_dram_in.stb;
wb_dram_ctrl_out.dat <= x"FFFFFFFF";
wb_dram_ctrl_out.stall <= wb_dram_in.cyc and not wb_dram_out.ack;

end architecture behaviour;

@ -57,11 +57,15 @@ architecture behaviour of toplevel is
signal system_clk : std_ulogic;
signal system_clk_locked : std_ulogic;

-- DRAM wishbone connection
signal wb_dram_in : wishbone_master_out;
signal wb_dram_out : wishbone_slave_out;
signal wb_dram_ctrl : std_ulogic;
signal wb_dram_init : std_ulogic;
-- DRAM main data wishbone connection
signal wb_dram_in : wishbone_master_out;
signal wb_dram_out : wishbone_slave_out;

-- DRAM control wishbone connection
signal wb_dram_ctrl_in : wb_io_master_out;
signal wb_dram_ctrl_out : wb_io_slave_out;
signal wb_dram_is_csr : std_ulogic;
signal wb_dram_is_init : std_ulogic;

-- Control/status
signal core_alt_reset : std_ulogic;
@ -87,8 +91,10 @@ begin
uart0_rxd => uart_main_rx,
wb_dram_in => wb_dram_in,
wb_dram_out => wb_dram_out,
wb_dram_ctrl => wb_dram_ctrl,
wb_dram_init => wb_dram_init,
wb_dram_ctrl_in => wb_dram_ctrl_in,
wb_dram_ctrl_out => wb_dram_ctrl_out,
wb_dram_is_csr => wb_dram_is_csr,
wb_dram_is_init => wb_dram_is_init,
alt_reset => core_alt_reset
);

@ -176,8 +182,10 @@ begin

wb_in => wb_dram_in,
wb_out => wb_dram_out,
wb_is_ctrl => wb_dram_ctrl,
wb_is_init => wb_dram_init,
wb_ctrl_in => wb_dram_ctrl_in,
wb_ctrl_out => wb_dram_ctrl_out,
wb_ctrl_is_csr => wb_dram_is_csr,
wb_ctrl_is_init => wb_dram_is_init,

serial_tx => open,
serial_rx => '0',

@ -7,12 +7,13 @@

#define MEMORY_BASE 0x00000000 /* "Main" memory alias, either BRAM or DRAM */
#define DRAM_BASE 0x40000000 /* DRAM if present */
#define BRAM_BASE 0x80000000 /* Internal BRAM */

#define SYSCON_BASE 0xc0000000 /* System control regs */
#define UART_BASE 0xc0002000 /* UART */
#define XICS_BASE 0xc0004000 /* Interrupt controller */
#define DRAM_CTRL_BASE 0xc0100000 /* LiteDRAM control registers */
#define BRAM_BASE 0xf0000000 /* Internal BRAM */
#define DRAM_INIT_BASE 0xffff0000 /* Internal DRAM init firmware */
#define DRAM_INIT_BASE 0xf0000000 /* Internal DRAM init firmware */

/*
* Register definitions for the syscon registers

@ -14,7 +14,7 @@
* limitations under the License.
*/

#define STACK_TOP 0xffff4000
#define STACK_TOP 0xf0004000

#define FIXUP_ENDIAN \
tdi 0,0,0x48; /* Reverse endian of b . + 8 */ \

@ -8,6 +8,7 @@ SECTIONS
KEEP(*(.head))
}
. = DRAM_INIT_BASE | 0x1000;

.text : { *(.text*) *(.sfpr) *(.rodata*) }
.data : { *(.data*) }
.bss : { *(.bss*) }

@ -15,18 +15,20 @@ entity litedram_wrapper is
port(
-- LiteDRAM generates the system clock and reset
-- from the input clkin
clk_in : in std_ulogic;
rst : in std_ulogic;
system_clk : out std_ulogic;
system_reset : out std_ulogic;
core_alt_reset : out std_ulogic;
pll_locked : out std_ulogic;
clk_in : in std_ulogic;
rst : in std_ulogic;
system_clk : out std_ulogic;
system_reset : out std_ulogic;
core_alt_reset : out std_ulogic;
pll_locked : out std_ulogic;

-- Wishbone ports:
wb_in : in wishbone_master_out;
wb_out : out wishbone_slave_out;
wb_is_ctrl : in std_ulogic;
wb_is_init : in std_ulogic;
wb_in : in wishbone_master_out;
wb_out : out wishbone_slave_out;
wb_ctrl_in : in wb_io_master_out;
wb_ctrl_out : out wb_io_slave_out;
wb_ctrl_is_csr : in std_ulogic;
wb_ctrl_is_init : in std_ulogic;

-- Init core serial debug
serial_tx : out std_ulogic;
@ -128,8 +130,8 @@ architecture behaviour of litedram_wrapper is
signal wb_ctrl_ack : std_ulogic;
signal wb_ctrl_we : std_ulogic;

signal wb_init_in : wishbone_master_out;
signal wb_init_out : wishbone_slave_out;
signal wb_init_in : wb_io_master_out;
signal wb_init_out : wb_io_slave_out;

type state_t is (CMD, MWRITE, MREAD);
signal state : state_t;
@ -138,7 +140,7 @@ architecture behaviour of litedram_wrapper is
constant INIT_RAM_ABITS :integer := 14;
constant INIT_RAM_FILE : string := "litedram_core.init";

type ram_t is array(0 to (INIT_RAM_SIZE / 8) - 1) of std_logic_vector(63 downto 0);
type ram_t is array(0 to (INIT_RAM_SIZE / 4) - 1) of std_logic_vector(31 downto 0);

impure function init_load_ram(name : string) return ram_t is
file ram_file : text open read_mode is name;
@ -150,7 +152,8 @@ architecture behaviour of litedram_wrapper is
exit when endfile(ram_file);
readline(ram_file, ram_line);
hread(ram_line, temp_word);
temp_ram(i) := temp_word;
temp_ram(i*2) := temp_word(31 downto 0);
temp_ram(i*2+1) := temp_word(63 downto 32);
end loop;
return temp_ram;
end function;
@ -162,79 +165,93 @@ architecture behaviour of litedram_wrapper is

begin

-- BRAM Memory slave
-- alternate core reset address set when DRAM is not initialized.
core_alt_reset <= not init_done;

-- BRAM Memory slave. TODO: Pipeline it with an output buffer
-- to improve timing
init_ram_0: process(system_clk)
variable adr : integer;
begin
if rising_edge(system_clk) then
wb_init_out.ack <= '0';
if (wb_init_in.cyc and wb_init_in.stb) = '1' then
adr := to_integer((unsigned(wb_init_in.adr(INIT_RAM_ABITS-1 downto 3))));
adr := to_integer((unsigned(wb_init_in.adr(INIT_RAM_ABITS-1 downto 2))));
if wb_init_in.we = '0' then
wb_init_out.dat <= init_ram(adr);
else
for i in 0 to 7 loop
for i in 0 to 3 loop
if wb_init_in.sel(i) = '1' then
init_ram(adr)(((i + 1) * 8) - 1 downto i * 8) <=
wb_init_in.dat(((i + 1) * 8) - 1 downto i * 8);
end if;
end loop;
end if;
wb_init_out.ack <= not wb_init_out.ack;
wb_init_out.ack <= '1';
end if;
end if;
end process;

wb_init_in.adr <= wb_in.adr;
wb_init_in.dat <= wb_in.dat;
wb_init_in.sel <= wb_in.sel;
wb_init_in.we <= wb_in.we;
wb_init_in.stb <= wb_in.stb;
wb_init_in.cyc <= wb_in.cyc and wb_is_init;
--
-- Control bus wishbone: This muxes the wishbone to the CSRs
-- and an internal small one to the init BRAM
--

-- Init DRAM wishbone IN signals
wb_init_in.adr <= wb_ctrl_in.adr;
wb_init_in.dat <= wb_ctrl_in.dat;
wb_init_in.sel <= wb_ctrl_in.sel;
wb_init_in.we <= wb_ctrl_in.we;
wb_init_in.stb <= wb_ctrl_in.stb;
wb_init_in.cyc <= wb_ctrl_in.cyc and wb_ctrl_is_init;

-- DRAM CSR IN signals
wb_ctrl_adr <= x"0000" & wb_ctrl_in.adr(15 downto 2);
wb_ctrl_dat_w <= wb_ctrl_in.dat;
wb_ctrl_sel <= wb_ctrl_in.sel;
wb_ctrl_we <= wb_ctrl_in.we;
wb_ctrl_cyc <= wb_ctrl_in.cyc and wb_ctrl_is_csr;
wb_ctrl_stb <= wb_ctrl_in.stb and wb_ctrl_is_csr;

-- Address bit 3 selects the top or bottom half of the data
-- Ctrl bus wishbone OUT signals
wb_ctrl_out.ack <= wb_ctrl_ack when wb_ctrl_is_csr = '1'
else wb_init_out.ack;
wb_ctrl_out.dat <= wb_ctrl_dat_r when wb_ctrl_is_csr = '1'
else wb_init_out.dat;
wb_ctrl_out.stall <= wb_init_out.stall when wb_ctrl_is_init else
'0' when wb_ctrl_in.cyc = '0' else not wb_ctrl_ack;

--
-- Data bus wishbone to LiteDRAM native port
--
-- Address bit 3 selects the top or bottom half of the data
-- bus (64-bit wishbone vs. 128-bit DRAM interface)
--
-- XXX TODO: Figure out how to pipeline this
--
ad3 <= wb_in.adr(3);

-- DRAM data interface signals
user_port0_cmd_valid <= (wb_in.cyc and wb_in.stb and not wb_is_ctrl and not wb_is_init)
when state = CMD else '0';
user_port0_cmd_we <= wb_in.we when state = CMD else '0';
-- Wishbone port IN signals
user_port0_cmd_valid <= wb_in.cyc and wb_in.stb when state = CMD else '0';
user_port0_cmd_we <= wb_in.we when state = CMD else '0';
user_port0_wdata_valid <= '1' when state = MWRITE else '0';
user_port0_rdata_ready <= '1' when state = MREAD else '0';
user_port0_cmd_addr <= wb_in.adr(DRAM_ABITS+3 downto 4);
user_port0_wdata_data <= wb_in.dat & wb_in.dat;
user_port0_wdata_we <= wb_in.sel & "00000000" when ad3 = '1' else
"00000000" & wb_in.sel;

-- DRAM ctrl interface signals
wb_ctrl_adr <= x"0000" & wb_in.adr(15 downto 2);
wb_ctrl_dat_w <= wb_in.dat(31 downto 0);
wb_ctrl_sel <= wb_in.sel(3 downto 0);
wb_ctrl_cyc <= wb_in.cyc and wb_is_ctrl;
wb_ctrl_stb <= wb_in.stb and wb_is_ctrl;
wb_ctrl_we <= wb_in.we;

-- Wishbone out signals
wb_out.ack <= wb_ctrl_ack when wb_is_ctrl ='1' else
wb_init_out.ack when wb_is_init = '1' else
user_port0_wdata_ready when state = MWRITE else
user_port0_cmd_addr <= wb_in.adr(DRAM_ABITS+3 downto 4);
user_port0_wdata_data <= wb_in.dat & wb_in.dat;
user_port0_wdata_we <= wb_in.sel & "00000000" when ad3 = '1' else
"00000000" & wb_in.sel;

-- Wishbone OUT signals
wb_out.ack <= user_port0_wdata_ready when state = MWRITE else
user_port0_rdata_valid when state = MREAD else '0';

wb_out.dat <= (x"00000000" & wb_ctrl_dat_r) when wb_is_ctrl = '1' else
wb_init_out.dat when wb_is_init = '1' else
user_port0_rdata_data(127 downto 64) when ad3 = '1' else
wb_out.dat <= user_port0_rdata_data(127 downto 64) when ad3 = '1' else
user_port0_rdata_data(63 downto 0);

-- We don't do pipelining yet.
wb_out.stall <= '0' when wb_in.cyc = '0' else not wb_out.ack;

-- Reset ignored, the reset controller use the pll lock signal,
-- and alternate core reset address set when DRAM is not initialized.
--
core_alt_reset <= not init_done;

-- State machine
-- DRAM user port State machine
sm: process(system_clk)
begin
@ -255,7 +272,7 @@ begin
if user_port0_rdata_valid = '1' then
state <= CMD;
end if;
end case;
end case;
end if;
end if;
end process;

@ -15,18 +15,20 @@ entity litedram_wrapper is
port(
-- LiteDRAM generates the system clock and reset
-- from the input clkin
clk_in : in std_ulogic;
rst : in std_ulogic;
system_clk : out std_ulogic;
system_reset : out std_ulogic;
core_alt_reset : out std_ulogic;
pll_locked : out std_ulogic;
clk_in : in std_ulogic;
rst : in std_ulogic;
system_clk : out std_ulogic;
system_reset : out std_ulogic;
core_alt_reset : out std_ulogic;
pll_locked : out std_ulogic;

-- Wishbone ports:
wb_in : in wishbone_master_out;
wb_out : out wishbone_slave_out;
wb_is_ctrl : in std_ulogic;
wb_is_init : in std_ulogic;
wb_in : in wishbone_master_out;
wb_out : out wishbone_slave_out;
wb_ctrl_in : in wb_io_master_out;
wb_ctrl_out : out wb_io_slave_out;
wb_ctrl_is_csr : in std_ulogic;
wb_ctrl_is_init : in std_ulogic;

-- Init core serial debug
serial_tx : out std_ulogic;
@ -52,7 +54,6 @@ entity litedram_wrapper is
ddram_cke : out std_ulogic;
ddram_odt : out std_ulogic;
ddram_reset_n : out std_ulogic
);
end entity litedram_wrapper;

architecture behaviour of litedram_wrapper is
@ -117,36 +118,47 @@ architecture behaviour of litedram_wrapper is

begin

-- Reset, lift it when init done, no alt core reset
system_reset <= dram_user_reset or not init_done;
core_alt_reset <= '0';

-- Control bus is unused
wb_ctrl_out.ack <= (wb_is_ctrl = '1' or wb_is_init = '1') and wb_ctrl_in.cyc;
else wb_init_out.ack;
wb_ctrl_out.dat <= (others => '0');
wb_ctrl_out.stall <= '0';

--
-- Data bus wishbone to LiteDRAM native port
--
-- Address bit 3 selects the top or bottom half of the data
-- bus (64-bit wishbone vs. 128-bit DRAM interface)
--
-- XXX TODO: Figure out how to pipeline this
--
ad3 <= wb_in.adr(3);

-- DRAM interface signals
user_port0_cmd_valid <= (wb_in.cyc and wb_in.stb and not wb_is_ctrl and not wb_is_init)
when state = CMD else '0';
user_port0_cmd_we <= wb_in.we when state = CMD else '0';
-- Wishbone port IN signals
user_port0_cmd_valid <= wb_in.cyc and wb_in.stb when state = CMD else '0';
user_port0_cmd_we <= wb_in.we when state = CMD else '0';
user_port0_wdata_valid <= '1' when state = MWRITE else '0';
user_port0_rdata_ready <= '1' when state = MREAD else '0';
user_port0_cmd_addr <= wb_in.adr(DRAM_ABITS+3 downto 4);
user_port0_wdata_data <= wb_in.dat & wb_in.dat;
user_port0_wdata_we <= wb_in.sel & "00000000" when ad3 = '1' else
"00000000" & wb_in.sel;

-- Wishbone out signals. CSR and init memory do nothing, just ack
wb_out.ack <= '1' when (wb_is_ctrl = '1' or wb_is_init = '1') else
user_port0_wdata_ready when state = MWRITE else
user_port0_cmd_addr <= wb_in.adr(DRAM_ABITS+3 downto 4);
user_port0_wdata_data <= wb_in.dat & wb_in.dat;
user_port0_wdata_we <= wb_in.sel & "00000000" when ad3 = '1' else
"00000000" & wb_in.sel;

-- Wishbone OUT signals
wb_out.ack <= user_port0_wdata_ready when state = MWRITE else
user_port0_rdata_valid when state = MREAD else '0';
wb_out.dat <= (others => '0') when (wb_is_ctrl = '1' or wb_is_init = '1') else
user_port0_rdata_data(127 downto 64) when ad3 = '1' else

wb_out.dat <= user_port0_rdata_data(127 downto 64) when ad3 = '1' else
user_port0_rdata_data(63 downto 0);
wb_out.stall <= '0' when wb_in.cyc = '0' else not wb_out.ack;

-- Reset, lift it when init done, no alt core reset
system_reset <= dram_user_reset or not init_done;
core_alt_reset <= '0';
-- We don't do pipelining yet.
wb_out.stall <= '0' when wb_in.cyc = '0' else not wb_out.ack;

-- State machine
-- DRAM user port State machine
sm: process(system_clk)
begin

@ -15,18 +15,20 @@ entity litedram_wrapper is
port(
-- LiteDRAM generates the system clock and reset
-- from the input clkin
clk_in : in std_ulogic;
rst : in std_ulogic;
system_clk : out std_ulogic;
system_reset : out std_ulogic;
core_alt_reset : out std_ulogic;
pll_locked : out std_ulogic;
clk_in : in std_ulogic;
rst : in std_ulogic;
system_clk : out std_ulogic;
system_reset : out std_ulogic;
core_alt_reset : out std_ulogic;
pll_locked : out std_ulogic;

-- Wishbone ports:
wb_in : in wishbone_master_out;
wb_out : out wishbone_slave_out;
wb_is_ctrl : in std_ulogic;
wb_is_init : in std_ulogic;
wb_in : in wishbone_master_out;
wb_out : out wishbone_slave_out;
wb_ctrl_in : in wb_io_master_out;
wb_ctrl_out : out wb_io_slave_out;
wb_ctrl_is_csr : in std_ulogic;
wb_ctrl_is_init : in std_ulogic;

-- Init core serial debug
serial_tx : out std_ulogic;
@ -128,8 +130,8 @@ architecture behaviour of litedram_wrapper is
signal wb_ctrl_ack : std_ulogic;
signal wb_ctrl_we : std_ulogic;

signal wb_init_in : wishbone_master_out;
signal wb_init_out : wishbone_slave_out;
signal wb_init_in : wb_io_master_out;
signal wb_init_out : wb_io_slave_out;

type state_t is (CMD, MWRITE, MREAD);
signal state : state_t;
@ -138,7 +140,7 @@ architecture behaviour of litedram_wrapper is
constant INIT_RAM_ABITS :integer := 14;
constant INIT_RAM_FILE : string := "litedram_core.init";

type ram_t is array(0 to (INIT_RAM_SIZE / 8) - 1) of std_logic_vector(63 downto 0);
type ram_t is array(0 to (INIT_RAM_SIZE / 4) - 1) of std_logic_vector(31 downto 0);

impure function init_load_ram(name : string) return ram_t is
file ram_file : text open read_mode is name;
@ -150,7 +152,8 @@ architecture behaviour of litedram_wrapper is
exit when endfile(ram_file);
readline(ram_file, ram_line);
hread(ram_line, temp_word);
temp_ram(i) := temp_word;
temp_ram(i*2) := temp_word(31 downto 0);
temp_ram(i*2+1) := temp_word(63 downto 32);
end loop;
return temp_ram;
end function;
@ -162,79 +165,93 @@ architecture behaviour of litedram_wrapper is

begin

-- BRAM Memory slave
-- alternate core reset address set when DRAM is not initialized.
core_alt_reset <= not init_done;

-- BRAM Memory slave. TODO: Pipeline it with an output buffer
-- to improve timing
init_ram_0: process(system_clk)
variable adr : integer;
begin
if rising_edge(system_clk) then
wb_init_out.ack <= '0';
if (wb_init_in.cyc and wb_init_in.stb) = '1' then
adr := to_integer((unsigned(wb_init_in.adr(INIT_RAM_ABITS-1 downto 3))));
adr := to_integer((unsigned(wb_init_in.adr(INIT_RAM_ABITS-1 downto 2))));
if wb_init_in.we = '0' then
wb_init_out.dat <= init_ram(adr);
else
for i in 0 to 7 loop
for i in 0 to 3 loop
if wb_init_in.sel(i) = '1' then
init_ram(adr)(((i + 1) * 8) - 1 downto i * 8) <=
wb_init_in.dat(((i + 1) * 8) - 1 downto i * 8);
end if;
end loop;
end if;
wb_init_out.ack <= not wb_init_out.ack;
wb_init_out.ack <= '1';
end if;
end if;
end process;

wb_init_in.adr <= wb_in.adr;
wb_init_in.dat <= wb_in.dat;
wb_init_in.sel <= wb_in.sel;
wb_init_in.we <= wb_in.we;
wb_init_in.stb <= wb_in.stb;
wb_init_in.cyc <= wb_in.cyc and wb_is_init;
--
-- Control bus wishbone: This muxes the wishbone to the CSRs
-- and an internal small one to the init BRAM
--

-- Init DRAM wishbone IN signals
wb_init_in.adr <= wb_ctrl_in.adr;
wb_init_in.dat <= wb_ctrl_in.dat;
wb_init_in.sel <= wb_ctrl_in.sel;
wb_init_in.we <= wb_ctrl_in.we;
wb_init_in.stb <= wb_ctrl_in.stb;
wb_init_in.cyc <= wb_ctrl_in.cyc and wb_ctrl_is_init;

-- DRAM CSR IN signals
wb_ctrl_adr <= x"0000" & wb_ctrl_in.adr(15 downto 2);
wb_ctrl_dat_w <= wb_ctrl_in.dat;
wb_ctrl_sel <= wb_ctrl_in.sel;
wb_ctrl_we <= wb_ctrl_in.we;
wb_ctrl_cyc <= wb_ctrl_in.cyc and wb_ctrl_is_csr;
wb_ctrl_stb <= wb_ctrl_in.stb and wb_ctrl_is_csr;

-- Address bit 3 selects the top or bottom half of the data
-- Ctrl bus wishbone OUT signals
wb_ctrl_out.ack <= wb_ctrl_ack when wb_ctrl_is_csr = '1'
else wb_init_out.ack;
wb_ctrl_out.dat <= wb_ctrl_dat_r when wb_ctrl_is_csr = '1'
else wb_init_out.dat;
wb_ctrl_out.stall <= wb_init_out.stall when wb_ctrl_is_init else
'0' when wb_ctrl_in.cyc = '0' else not wb_ctrl_ack;

--
-- Data bus wishbone to LiteDRAM native port
--
-- Address bit 3 selects the top or bottom half of the data
-- bus (64-bit wishbone vs. 128-bit DRAM interface)
--
-- XXX TODO: Figure out how to pipeline this
--
ad3 <= wb_in.adr(3);

-- DRAM data interface signals
user_port0_cmd_valid <= (wb_in.cyc and wb_in.stb and not wb_is_ctrl and not wb_is_init)
when state = CMD else '0';
user_port0_cmd_we <= wb_in.we when state = CMD else '0';
-- Wishbone port IN signals
user_port0_cmd_valid <= wb_in.cyc and wb_in.stb when state = CMD else '0';
user_port0_cmd_we <= wb_in.we when state = CMD else '0';
user_port0_wdata_valid <= '1' when state = MWRITE else '0';
user_port0_rdata_ready <= '1' when state = MREAD else '0';
user_port0_cmd_addr <= wb_in.adr(DRAM_ABITS+3 downto 4);
user_port0_wdata_data <= wb_in.dat & wb_in.dat;
user_port0_wdata_we <= wb_in.sel & "00000000" when ad3 = '1' else
"00000000" & wb_in.sel;

-- DRAM ctrl interface signals
wb_ctrl_adr <= x"0000" & wb_in.adr(15 downto 2);
wb_ctrl_dat_w <= wb_in.dat(31 downto 0);
wb_ctrl_sel <= wb_in.sel(3 downto 0);
wb_ctrl_cyc <= wb_in.cyc and wb_is_ctrl;
wb_ctrl_stb <= wb_in.stb and wb_is_ctrl;
wb_ctrl_we <= wb_in.we;

-- Wishbone out signals
wb_out.ack <= wb_ctrl_ack when wb_is_ctrl ='1' else
wb_init_out.ack when wb_is_init = '1' else
user_port0_wdata_ready when state = MWRITE else
user_port0_cmd_addr <= wb_in.adr(DRAM_ABITS+3 downto 4);
user_port0_wdata_data <= wb_in.dat & wb_in.dat;
user_port0_wdata_we <= wb_in.sel & "00000000" when ad3 = '1' else
"00000000" & wb_in.sel;

-- Wishbone OUT signals
wb_out.ack <= user_port0_wdata_ready when state = MWRITE else
user_port0_rdata_valid when state = MREAD else '0';

wb_out.dat <= (x"00000000" & wb_ctrl_dat_r) when wb_is_ctrl = '1' else
wb_init_out.dat when wb_is_init = '1' else
user_port0_rdata_data(127 downto 64) when ad3 = '1' else
wb_out.dat <= user_port0_rdata_data(127 downto 64) when ad3 = '1' else
user_port0_rdata_data(63 downto 0);

-- We don't do pipelining yet.
wb_out.stall <= '0' when wb_in.cyc = '0' else not wb_out.ack;

-- Reset ignored, the reset controller use the pll lock signal,
-- and alternate core reset address set when DRAM is not initialized.
--
core_alt_reset <= not init_done;

-- State machine
-- DRAM user port State machine
sm: process(system_clk)
begin
@ -255,7 +272,7 @@ begin
if user_port0_rdata_valid = '1' then
state <= CMD;
end if;
end case;
end case;
end if;
end if;
end process;

@ -4,10 +4,10 @@ a602487d05009f42
a64b5a7d14004a39
2402004ca64b7b7d
602100003c200000
6421ffff782107c6
6421f000782107c6
3d80000060213f00
798c07c6618c0000
618c108c658cffff
618c108c658cf000
4e8004217d8903a6
0000000048000002
0000000000000000

@ -1,5 +1,5 @@
//--------------------------------------------------------------------------------
// Auto-generated by Migen (0d16e03) & LiteX (3391398a) on 2020-05-15 13:30:46
// Auto-generated by Migen (0d16e03) & LiteX (3391398a) on 2020-05-16 19:06:01
//--------------------------------------------------------------------------------
module litedram_core(
input wire clk,

@ -15,18 +15,20 @@ entity litedram_wrapper is
port(
-- LiteDRAM generates the system clock and reset
-- from the input clkin
clk_in : in std_ulogic;
rst : in std_ulogic;
system_clk : out std_ulogic;
system_reset : out std_ulogic;
core_alt_reset : out std_ulogic;
pll_locked : out std_ulogic;
clk_in : in std_ulogic;
rst : in std_ulogic;
system_clk : out std_ulogic;
system_reset : out std_ulogic;
core_alt_reset : out std_ulogic;
pll_locked : out std_ulogic;

-- Wishbone ports:
wb_in : in wishbone_master_out;
wb_out : out wishbone_slave_out;
wb_is_ctrl : in std_ulogic;
wb_is_init : in std_ulogic;
wb_in : in wishbone_master_out;
wb_out : out wishbone_slave_out;
wb_ctrl_in : in wb_io_master_out;
wb_ctrl_out : out wb_io_slave_out;
wb_ctrl_is_csr : in std_ulogic;
wb_ctrl_is_init : in std_ulogic;

-- Init core serial debug
serial_tx : out std_ulogic;
@ -128,8 +130,8 @@ architecture behaviour of litedram_wrapper is
signal wb_ctrl_ack : std_ulogic;
signal wb_ctrl_we : std_ulogic;

signal wb_init_in : wishbone_master_out;
signal wb_init_out : wishbone_slave_out;
signal wb_init_in : wb_io_master_out;
signal wb_init_out : wb_io_slave_out;

type state_t is (CMD, MWRITE, MREAD);
signal state : state_t;
@ -138,7 +140,7 @@ architecture behaviour of litedram_wrapper is
constant INIT_RAM_ABITS :integer := 14;
constant INIT_RAM_FILE : string := "litedram_core.init";

type ram_t is array(0 to (INIT_RAM_SIZE / 8) - 1) of std_logic_vector(63 downto 0);
type ram_t is array(0 to (INIT_RAM_SIZE / 4) - 1) of std_logic_vector(31 downto 0);

impure function init_load_ram(name : string) return ram_t is
file ram_file : text open read_mode is name;
@ -150,7 +152,8 @@ architecture behaviour of litedram_wrapper is
exit when endfile(ram_file);
readline(ram_file, ram_line);
hread(ram_line, temp_word);
temp_ram(i) := temp_word;
temp_ram(i*2) := temp_word(31 downto 0);
temp_ram(i*2+1) := temp_word(63 downto 32);
end loop;
return temp_ram;
end function;
@ -162,79 +165,93 @@ architecture behaviour of litedram_wrapper is

begin

-- BRAM Memory slave
-- alternate core reset address set when DRAM is not initialized.
core_alt_reset <= not init_done;

-- BRAM Memory slave. TODO: Pipeline it with an output buffer
-- to improve timing
init_ram_0: process(system_clk)
variable adr : integer;
begin
if rising_edge(system_clk) then
wb_init_out.ack <= '0';
if (wb_init_in.cyc and wb_init_in.stb) = '1' then
adr := to_integer((unsigned(wb_init_in.adr(INIT_RAM_ABITS-1 downto 3))));
adr := to_integer((unsigned(wb_init_in.adr(INIT_RAM_ABITS-1 downto 2))));
if wb_init_in.we = '0' then
wb_init_out.dat <= init_ram(adr);
else
for i in 0 to 7 loop
for i in 0 to 3 loop
if wb_init_in.sel(i) = '1' then
init_ram(adr)(((i + 1) * 8) - 1 downto i * 8) <=
wb_init_in.dat(((i + 1) * 8) - 1 downto i * 8);
end if;
end loop;
end if;
wb_init_out.ack <= not wb_init_out.ack;
wb_init_out.ack <= '1';
end if;
end if;
end process;

wb_init_in.adr <= wb_in.adr;
wb_init_in.dat <= wb_in.dat;
wb_init_in.sel <= wb_in.sel;
wb_init_in.we <= wb_in.we;
wb_init_in.stb <= wb_in.stb;
wb_init_in.cyc <= wb_in.cyc and wb_is_init;
--
-- Control bus wishbone: This muxes the wishbone to the CSRs
-- and an internal small one to the init BRAM
--

-- Init DRAM wishbone IN signals
wb_init_in.adr <= wb_ctrl_in.adr;
wb_init_in.dat <= wb_ctrl_in.dat;
wb_init_in.sel <= wb_ctrl_in.sel;
wb_init_in.we <= wb_ctrl_in.we;
wb_init_in.stb <= wb_ctrl_in.stb;
wb_init_in.cyc <= wb_ctrl_in.cyc and wb_ctrl_is_init;

-- DRAM CSR IN signals
wb_ctrl_adr <= x"0000" & wb_ctrl_in.adr(15 downto 2);
wb_ctrl_dat_w <= wb_ctrl_in.dat;
wb_ctrl_sel <= wb_ctrl_in.sel;
wb_ctrl_we <= wb_ctrl_in.we;
wb_ctrl_cyc <= wb_ctrl_in.cyc and wb_ctrl_is_csr;
wb_ctrl_stb <= wb_ctrl_in.stb and wb_ctrl_is_csr;

-- Address bit 3 selects the top or bottom half of the data
-- Ctrl bus wishbone OUT signals
wb_ctrl_out.ack <= wb_ctrl_ack when wb_ctrl_is_csr = '1'
else wb_init_out.ack;
wb_ctrl_out.dat <= wb_ctrl_dat_r when wb_ctrl_is_csr = '1'
else wb_init_out.dat;
wb_ctrl_out.stall <= wb_init_out.stall when wb_ctrl_is_init else
'0' when wb_ctrl_in.cyc = '0' else not wb_ctrl_ack;

--
-- Data bus wishbone to LiteDRAM native port
--
-- Address bit 3 selects the top or bottom half of the data
-- bus (64-bit wishbone vs. 128-bit DRAM interface)
--
-- XXX TODO: Figure out how to pipeline this
--
ad3 <= wb_in.adr(3);

-- DRAM data interface signals
user_port0_cmd_valid <= (wb_in.cyc and wb_in.stb and not wb_is_ctrl and not wb_is_init)
when state = CMD else '0';
user_port0_cmd_we <= wb_in.we when state = CMD else '0';
-- Wishbone port IN signals
user_port0_cmd_valid <= wb_in.cyc and wb_in.stb when state = CMD else '0';
user_port0_cmd_we <= wb_in.we when state = CMD else '0';
user_port0_wdata_valid <= '1' when state = MWRITE else '0';
user_port0_rdata_ready <= '1' when state = MREAD else '0';
user_port0_cmd_addr <= wb_in.adr(DRAM_ABITS+3 downto 4);
user_port0_wdata_data <= wb_in.dat & wb_in.dat;
user_port0_wdata_we <= wb_in.sel & "00000000" when ad3 = '1' else
"00000000" & wb_in.sel;

-- DRAM ctrl interface signals
wb_ctrl_adr <= x"0000" & wb_in.adr(15 downto 2);
wb_ctrl_dat_w <= wb_in.dat(31 downto 0);
wb_ctrl_sel <= wb_in.sel(3 downto 0);
wb_ctrl_cyc <= wb_in.cyc and wb_is_ctrl;
wb_ctrl_stb <= wb_in.stb and wb_is_ctrl;
wb_ctrl_we <= wb_in.we;

-- Wishbone out signals
wb_out.ack <= wb_ctrl_ack when wb_is_ctrl ='1' else
wb_init_out.ack when wb_is_init = '1' else
user_port0_wdata_ready when state = MWRITE else
user_port0_cmd_addr <= wb_in.adr(DRAM_ABITS+3 downto 4);
user_port0_wdata_data <= wb_in.dat & wb_in.dat;
user_port0_wdata_we <= wb_in.sel & "00000000" when ad3 = '1' else
"00000000" & wb_in.sel;

-- Wishbone OUT signals
wb_out.ack <= user_port0_wdata_ready when state = MWRITE else
user_port0_rdata_valid when state = MREAD else '0';

wb_out.dat <= (x"00000000" & wb_ctrl_dat_r) when wb_is_ctrl = '1' else
wb_init_out.dat when wb_is_init = '1' else
user_port0_rdata_data(127 downto 64) when ad3 = '1' else
wb_out.dat <= user_port0_rdata_data(127 downto 64) when ad3 = '1' else
user_port0_rdata_data(63 downto 0);

-- We don't do pipelining yet.
wb_out.stall <= '0' when wb_in.cyc = '0' else not wb_out.ack;

-- Reset ignored, the reset controller use the pll lock signal,
-- and alternate core reset address set when DRAM is not initialized.
--
core_alt_reset <= not init_done;

-- State machine
-- DRAM user port State machine
sm: process(system_clk)
begin
@ -255,7 +272,7 @@ begin
if user_port0_rdata_valid = '1' then
state <= CMD;
end if;
end case;
end case;
end if;
end if;
end process;

@ -4,10 +4,10 @@ a602487d05009f42
a64b5a7d14004a39
2402004ca64b7b7d
602100003c200000
6421ffff782107c6
6421f000782107c6
3d80000060213f00
798c07c6618c0000
618c108c658cffff
618c108c658cf000
4e8004217d8903a6
0000000048000002
0000000000000000

@ -1,5 +1,5 @@
//--------------------------------------------------------------------------------
// Auto-generated by Migen (0d16e03) & LiteX (3391398a) on 2020-05-15 13:30:49
// Auto-generated by Migen (0d16e03) & LiteX (3391398a) on 2020-05-16 19:06:03
//--------------------------------------------------------------------------------
module litedram_core(
input wire clk,

@ -12,14 +12,17 @@ use work.wishbone_types.all;

-- Memory map. *** Keep include/microwatt_soc.h updated on changes ***
--
-- Main bus:
-- 0x00000000: Block RAM (MEMORY_SIZE) or DRAM depending on syscon
-- 0x40000000: DRAM (when present)
-- 0x80000000: Block RAM (aliased & repeated)

-- IO Bus:
-- 0xc0000000: SYSCON
-- 0xc0002000: UART0
-- 0xc0004000: XICS ICP
-- 0xc0100000: LiteDRAM control (CSRs)
-- 0xf0000000: Block RAM (aliased & repeated)
-- 0xffff0000: DRAM init code (if any)
-- 0xf0000000: DRAM init code (if any)

entity soc is
generic (
@ -37,10 +40,12 @@ entity soc is
system_clk : in std_ulogic;

-- DRAM controller signals
wb_dram_in : out wishbone_master_out;
wb_dram_out : in wishbone_slave_out;
wb_dram_ctrl : out std_ulogic;
wb_dram_init : out std_ulogic;
wb_dram_in : out wishbone_master_out;
wb_dram_out : in wishbone_slave_out;
wb_dram_ctrl_in : out wb_io_master_out;
wb_dram_ctrl_out : in wb_io_slave_out;
wb_dram_is_csr : out std_ulogic;
wb_dram_is_init : out std_ulogic;

-- UART0 signals:
uart0_txd : out std_ulogic;
@ -71,20 +76,28 @@ architecture behaviour of soc is
signal wb_master_in : wishbone_slave_out;
signal wb_master_out : wishbone_master_out;

-- Main "IO" bus, from main slave decoder to the latch
signal wb_io_in : wishbone_master_out;
signal wb_io_out : wishbone_slave_out;

-- Secondary (smaller) IO bus after the IO bus latch
signal wb_sio_out : wb_io_master_out;
signal wb_sio_in : wb_io_slave_out;

-- Syscon signals
signal dram_at_0 : std_ulogic;
signal do_core_reset : std_ulogic;
signal wb_syscon_in : wishbone_master_out;
signal wb_syscon_out : wishbone_slave_out;
signal do_core_reset : std_ulogic;
signal wb_syscon_in : wb_io_master_out;
signal wb_syscon_out : wb_io_slave_out;

-- UART0 signals:
signal wb_uart0_in : wishbone_master_out;
signal wb_uart0_out : wishbone_slave_out;
signal wb_uart0_in : wb_io_master_out;
signal wb_uart0_out : wb_io_slave_out;
signal uart_dat8 : std_ulogic_vector(7 downto 0);

-- XICS0 signals:
signal wb_xics0_in : wishbone_master_out;
signal wb_xics0_out : wishbone_slave_out;
signal wb_xics0_in : wb_io_master_out;
signal wb_xics0_out : wb_io_slave_out;
signal int_level_in : std_ulogic_vector(15 downto 0);

signal xics_to_execute1 : XicsToExecute1Type;
@ -141,7 +154,7 @@ begin
generic map(
SIM => SIM,
DISABLE_FLATTEN => DISABLE_FLATTEN_CORE,
ALT_RESET_ADDRESS => (15 downto 0 => '0', others => '1')
ALT_RESET_ADDRESS => (27 downto 0 => '0', others => '1')
)
port map(
clk => system_clk,
@ -180,90 +193,271 @@ begin
wb_slave_in => wb_master_in
);

-- Wishbone slaves address decoder & mux
slave_intercon: process(wb_master_out, wb_bram_out, wb_uart0_out, wb_dram_out, wb_syscon_out)
-- Selected slave
type slave_type is (SLAVE_SYSCON,
SLAVE_UART,
SLAVE_BRAM,
SLAVE_DRAM,
SLAVE_DRAM_INIT,
SLAVE_DRAM_CTRL,
SLAVE_ICP_0,
SLAVE_NONE);
variable slave : slave_type;
-- Top level Wishbone slaves address decoder & mux
--
-- From CPU to BRAM, DRAM, IO, selected on top 3 bits and dram_at_0
-- 0000 - BRAM
-- 0001 - DRAM
-- 01xx - DRAM
-- 10xx - BRAM
-- 11xx - IO
--
slave_top_intercon: process(wb_master_out, wb_bram_out, wb_dram_out, wb_io_out, dram_at_0)
type slave_top_type is (SLAVE_TOP_BRAM,
SLAVE_TOP_DRAM,
SLAVE_TOP_IO);
variable slave_top : slave_top_type;
variable top_decode : std_ulogic_vector(3 downto 0);
begin
-- Simple address decoder.
slave := SLAVE_NONE;
-- Simple address decoder. Ignore top bits to save silicon for now
slave := SLAVE_NONE;
if std_match(wb_master_out.adr, x"0-------") then
slave := SLAVE_DRAM when HAS_DRAM and dram_at_0 = '1' else
SLAVE_BRAM;
elsif std_match(wb_master_out.adr, x"FFFF----") then
slave := SLAVE_DRAM_INIT;
elsif std_match(wb_master_out.adr, x"F-------") then
slave := SLAVE_BRAM;
elsif std_match(wb_master_out.adr, x"4-------") and HAS_DRAM then
slave := SLAVE_DRAM;
elsif std_match(wb_master_out.adr, x"C0000---") then
slave := SLAVE_SYSCON;
elsif std_match(wb_master_out.adr, x"C0002---") then
slave := SLAVE_UART;
elsif std_match(wb_master_out.adr, x"C01-----") then
slave := SLAVE_DRAM_CTRL;
elsif std_match(wb_master_out.adr, x"C0004---") then
slave := SLAVE_ICP_0;
-- Top-level address decoder
top_decode := wb_master_out.adr(31 downto 29) & dram_at_0;
slave_top := SLAVE_TOP_BRAM;
if std_match(top_decode, "0000") then
slave_top := SLAVE_TOP_BRAM;
elsif std_match(top_decode, "0001") then
slave_top := SLAVE_TOP_DRAM;
elsif std_match(top_decode, "01--") then
slave_top := SLAVE_TOP_DRAM;
elsif std_match(top_decode, "10--") then
slave_top := SLAVE_TOP_BRAM;
elsif std_match(top_decode, "11--") then
slave_top := SLAVE_TOP_IO;
end if;

-- Wishbone muxing. Defaults:
-- Top level wishbone muxing.
wb_bram_in <= wb_master_out;
wb_bram_in.cyc <= '0';
wb_uart0_in <= wb_master_out;
wb_dram_in <= wb_master_out;
wb_dram_in.cyc <= '0';
wb_io_in <= wb_master_out;
wb_io_in.cyc <= '0';
case slave_top is
when SLAVE_TOP_BRAM =>
wb_bram_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_bram_out;
when SLAVE_TOP_DRAM =>
wb_dram_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_dram_out;
when SLAVE_TOP_IO =>
wb_io_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_io_out;
end case;
end process slave_top_intercon;

-- IO wishbone slave 64->32 bits converter
--
-- For timing reasons, this adds a one cycle latch on the way both
-- in and out. This relaxes timing and routing pressure on the "main"
-- memory bus by moving all simple IOs to a slower 32-bit bus.
--
-- This implementation is rather dumb at the moment, no stash buffer,
-- so we stall whenever that latch is busy. This can be improved.
--
slave_io_latch: process(system_clk)
-- State
type state_t is (IDLE, WAIT_ACK_BOT, WAIT_ACK_TOP);
variable state : state_t;

-- Misc
variable has_top : boolean;
variable has_bot : boolean;
begin
if rising_edge(system_clk) then
if (rst) then
state := IDLE;
wb_io_out.ack <= '0';
wb_io_out.stall <= '0';
wb_sio_out.cyc <= '0';
wb_sio_out.stb <= '0';
has_top := false;
has_bot := false;
else
case state is
when IDLE =>
-- Clear ACK in case it was set
wb_io_out.ack <= '0';

-- Do we have a cycle ?
if wb_io_in.cyc = '1' and wb_io_in.stb = '1' then
-- Stall master until we are done, we are't (yet) pipelining
-- this, it's all slow IOs.
wb_io_out.stall <= '1';

-- Start cycle downstream
wb_sio_out.cyc <= '1';
wb_sio_out.stb <= '1';

-- Copy write enable to IO out, copy address as well
wb_sio_out.we <= wb_io_in.we;
wb_sio_out.adr <= wb_io_in.adr(wb_sio_out.adr'left downto 3) & "000";

-- Do we have a top word and/or a bottom word ?
has_top := wb_io_in.sel(7 downto 4) /= "0000";
has_bot := wb_io_in.sel(3 downto 0) /= "0000";

-- If we have a bottom word, handle it first, otherwise
-- send the top word down. XXX Split the actual mux out
-- and only generate a control signal.
if has_bot then
if wb_io_in.we = '1' then
wb_sio_out.dat <= wb_io_in.dat(31 downto 0);
end if;
wb_sio_out.sel <= wb_io_in.sel(3 downto 0);

-- Wait for ack
state := WAIT_ACK_BOT;
else
if wb_io_in.we = '1' then
wb_sio_out.dat <= wb_io_in.dat(63 downto 32);
end if;
wb_sio_out.sel <= wb_io_in.sel(7 downto 4);

-- Bump address
wb_sio_out.adr(2) <= '1';

-- Wait for ack
state := WAIT_ACK_TOP;
end if;
end if;
when WAIT_ACK_BOT =>
-- If we aren't stalled by the device, clear stb
if wb_sio_in.stall = '0' then
wb_sio_out.stb <= '0';
end if;

-- Handle ack
if wb_sio_in.ack = '1' then
-- If it's a read, latch the data
if wb_sio_out.we = '0' then
wb_io_out.dat(31 downto 0) <= wb_sio_in.dat;
end if;

-- Do we have a "top" part as well ?
if has_top then
-- Latch data & sel
if wb_io_in.we = '1' then
wb_sio_out.dat <= wb_io_in.dat(63 downto 32);
end if;
wb_sio_out.sel <= wb_io_in.sel(7 downto 4);

-- Bump address and set STB
wb_sio_out.adr(2) <= '1';
wb_sio_out.stb <= '1';

-- Wait for new ack
state := WAIT_ACK_TOP;
else
-- We are done, ack up, clear cyc downstram
wb_sio_out.cyc <= '0';

-- And ack & unstall upstream
wb_io_out.ack <= '1';
wb_io_out.stall <= '0';

-- Wait for next one
state := IDLE;
end if;
end if;
when WAIT_ACK_TOP =>
-- If we aren't stalled by the device, clear stb
if wb_sio_in.stall = '0' then
wb_sio_out.stb <= '0';
end if;

-- Handle ack
if wb_sio_in.ack = '1' then
-- If it's a read, latch the data
if wb_sio_out.we = '0' then
wb_io_out.dat(63 downto 32) <= wb_sio_in.dat;
end if;

-- We are done, ack up, clear cyc downstram
wb_sio_out.cyc <= '0';

-- And ack & unstall upstream
wb_io_out.ack <= '1';
wb_io_out.stall <= '0';

-- Wait for next one
state := IDLE;
end if;
end case;
end if;
end if;
end process;
-- IO wishbone slave intercon.
--
slave_io_intercon: process(wb_sio_out, wb_syscon_out, wb_uart0_out,
wb_dram_ctrl_out, wb_xics0_out)
-- IO branch split:
type slave_io_type is (SLAVE_IO_SYSCON,
SLAVE_IO_UART,
SLAVE_IO_DRAM_INIT,
SLAVE_IO_DRAM_CSR,
SLAVE_IO_ICP_0,
SLAVE_IO_NONE);
variable slave_io : slave_io_type;

variable match : std_ulogic_vector(31 downto 12);
begin

-- Simple address decoder.
slave_io := SLAVE_IO_NONE;
match := "11" & wb_sio_out.adr(29 downto 12);
if std_match(match, x"F----") then
slave_io := SLAVE_IO_DRAM_INIT;
elsif std_match(match, x"C0000") then
slave_io := SLAVE_IO_SYSCON;
elsif std_match(match, x"C0002") then
slave_io := SLAVE_IO_UART;
elsif std_match(match, x"C01--") then
slave_io := SLAVE_IO_DRAM_CSR;
elsif std_match(match, x"C0004") then
slave_io := SLAVE_IO_ICP_0;
end if;
wb_uart0_in <= wb_sio_out;
wb_uart0_in.cyc <= '0';

-- Only give xics 8 bits of wb addr
wb_xics0_in <= wb_master_out;
wb_xics0_in <= wb_sio_out;
wb_xics0_in.adr <= (others => '0');
wb_xics0_in.adr(7 downto 0) <= wb_master_out.adr(7 downto 0);
wb_xics0_in.adr(7 downto 0) <= wb_sio_out.adr(7 downto 0);
wb_xics0_in.cyc <= '0';

wb_dram_in <= wb_master_out;
wb_dram_in.cyc <= '0';
wb_dram_ctrl <= '0';
wb_dram_init <= '0';
wb_syscon_in <= wb_master_out;
wb_dram_ctrl_in <= wb_sio_out;
wb_dram_ctrl_in.cyc <= '0';
wb_dram_is_csr <= '0';
wb_dram_is_init <= '0';

wb_syscon_in <= wb_sio_out;
wb_syscon_in.cyc <= '0';
case slave is
when SLAVE_BRAM =>
wb_bram_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_bram_out;
when SLAVE_DRAM =>
wb_dram_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_dram_out;
when SLAVE_DRAM_INIT =>
wb_dram_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_dram_out;
wb_dram_init <= '1';
when SLAVE_DRAM_CTRL =>
wb_dram_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_dram_out;
wb_dram_ctrl <= '1';
when SLAVE_SYSCON =>
wb_syscon_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_syscon_out;
when SLAVE_UART =>
wb_uart0_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_uart0_out;
when SLAVE_ICP_0 =>
wb_xics0_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_xics0_out;

case slave_io is
when SLAVE_IO_DRAM_INIT =>
wb_dram_ctrl_in.cyc <= wb_sio_out.cyc;
wb_sio_in <= wb_dram_ctrl_out;
wb_dram_is_init <= '1';
when SLAVE_IO_DRAM_CSR =>
wb_dram_ctrl_in.cyc <= wb_sio_out.cyc;
wb_sio_in <= wb_dram_ctrl_out;
wb_dram_is_csr <= '1';
when SLAVE_IO_SYSCON =>
wb_syscon_in.cyc <= wb_sio_out.cyc;
wb_sio_in <= wb_syscon_out;
when SLAVE_IO_UART =>
wb_uart0_in.cyc <= wb_sio_out.cyc;
wb_sio_in <= wb_uart0_out;
when SLAVE_IO_ICP_0 =>
wb_xics0_in.cyc <= wb_sio_out.cyc;
wb_sio_in <= wb_xics0_out;
when others =>
wb_master_in.dat <= (others => '1');
wb_master_in.ack <= wb_master_out.stb and wb_master_out.cyc;
wb_master_in.stall <= '0';
wb_sio_in.dat <= (others => '1');
wb_sio_in.ack <= wb_sio_out.stb and wb_sio_out.cyc;
wb_sio_in.stall <= '0';
end case;
end process slave_intercon;

end process;

-- Syscon slave
syscon0: entity work.syscon
@ -287,10 +481,6 @@ begin
-- Simulated memory and UART

-- UART0 wishbone slave
-- XXX FIXME: Need a proper wb64->wb8 adapter that
-- converts SELs into low address bits and muxes
-- data accordingly (either that or rejects large
-- cycles).
uart0: entity work.pp_soc_uart
generic map(
FIFO_DEPTH => 32
@ -309,7 +499,7 @@ begin
wb_we_in => wb_uart0_in.we,
wb_ack_out => wb_uart0_out.ack
);
wb_uart0_out.dat <= x"00000000000000" & uart_dat8;
wb_uart0_out.dat <= x"000000" & uart_dat8;
wb_uart0_out.stall <= '0' when wb_uart0_in.cyc = '0' else not wb_uart0_out.ack;

xics0: entity work.xics

@ -20,8 +20,8 @@ entity syscon is
rst : in std_ulogic;

-- Wishbone ports:
wishbone_in : in wishbone_master_out;
wishbone_out : out wishbone_slave_out;
wishbone_in : in wb_io_master_out;
wishbone_out : out wb_io_slave_out;

-- System control ports
dram_at_0 : out std_ulogic;
@ -43,6 +43,9 @@ architecture behaviour of syscon is
constant SYS_REG_CLKINFO : std_ulogic_vector(SYS_REG_BITS-1 downto 0) := "100";
constant SYS_REG_CTRL : std_ulogic_vector(SYS_REG_BITS-1 downto 0) := "101";

-- Muxed reg read signal
signal reg_out : std_ulogic_vector(63 downto 0);

-- INFO register bits
constant SYS_REG_INFO_HAS_UART : integer := 0;
constant SYS_REG_INFO_HAS_DRAM : integer := 1;
@ -99,7 +102,7 @@ begin
SYS_REG_CTRL_BITS-1 downto 0 => reg_ctrl);

-- Register read mux
with wishbone_in.adr(SYS_REG_BITS+2 downto 3) select wishbone_out.dat <=
with wishbone_in.adr(SYS_REG_BITS+2 downto 3) select reg_out <=
SIG_VALUE when SYS_REG_SIG,
reg_info when SYS_REG_INFO,
reg_braminfo when SYS_REG_BRAMINFO,
@ -107,6 +110,8 @@ begin
reg_clkinfo when SYS_REG_CLKINFO,
reg_ctrl_out when SYS_REG_CTRL,
(others => '0') when others;
wishbone_out.dat <= reg_out(63 downto 32) when wishbone_in.adr(2) = '1' else
reg_out(31 downto 0);

-- Register writes
regs_write: process(clk)
@ -116,7 +121,9 @@ begin
reg_ctrl <= (others => '0');
else
if wishbone_in.cyc and wishbone_in.stb and wishbone_in.we then
if wishbone_in.adr(SYS_REG_BITS+2 downto 3) = SYS_REG_CTRL then
-- Change this if CTRL ever has more than 32 bits
if wishbone_in.adr(SYS_REG_BITS+2 downto 3) = SYS_REG_CTRL and
wishbone_in.adr(2) = '0' then
reg_ctrl(SYS_REG_CTRL_BITS-1 downto 0) <=
wishbone_in.dat(SYS_REG_CTRL_BITS-1 downto 0);
end if;

@ -1,8 +1,7 @@
#include <stdint.h>

#define XICS_BASE 0xc0004000

static uint64_t xics_base = XICS_BASE;
#include "microwatt_soc.h"
#include "io.h"

#define XICS_XIRR_POLL 0x0
#define XICS_XIRR 0x4
@ -11,26 +10,20 @@ static uint64_t xics_base = XICS_BASE;

uint8_t xics_read8(int offset)
{
uint32_t val;

__asm__ volatile("lbzcix %0,%1,%2" : "=r" (val) : "b" (xics_base), "r" (offset));
return val;
return readb(XICS_BASE + offset);
}

void xics_write8(int offset, uint8_t val)
{
__asm__ volatile("stbcix %0,%1,%2" : : "r" (val), "b" (xics_base), "r" (offset));
writeb(val, XICS_BASE + offset);
}

uint32_t xics_read32(int offset)
{
uint32_t val;

__asm__ volatile("lwzcix %0,%1,%2" : "=r" (val) : "b" (xics_base), "r" (offset));
return val;
return readl(XICS_BASE + offset);
}

void xics_write32(int offset, uint32_t val)
{
__asm__ volatile("stwcix %0,%1,%2" : : "r" (val), "b" (xics_base), "r" (offset));
writel(val, XICS_BASE + offset);
}

@ -2,6 +2,9 @@ library ieee;
use ieee.std_logic_1164.all;

package wishbone_types is
--
-- Main CPU bus. 32-bit address, 64-bit data
--
constant wishbone_addr_bits : integer := 32;
constant wishbone_data_bits : integer := 64;
constant wishbone_sel_bits : integer := wishbone_data_bits/8;
@ -30,4 +33,22 @@ package wishbone_types is
type wishbone_master_out_vector is array (natural range <>) of wishbone_master_out;
type wishbone_slave_out_vector is array (natural range <>) of wishbone_slave_out;

--
-- IO Bus to a device, 30-bit address, 32-bits data
--
type wb_io_master_out is record
adr : std_ulogic_vector(29 downto 0);
dat : std_ulogic_vector(31 downto 0);
sel : std_ulogic_vector(3 downto 0);
cyc : std_ulogic;
stb : std_ulogic;
we : std_ulogic;
end record;

type wb_io_slave_out is record
dat : std_ulogic_vector(31 downto 0);
ack : std_ulogic;
stall : std_ulogic;
end record;
end package wishbone_types;

@ -30,8 +30,8 @@ entity xics is
clk : in std_logic;
rst : in std_logic;

wb_in : in wishbone_master_out;
wb_out : out wishbone_slave_out;
wb_in : in wb_io_master_out;
wb_out : out wb_io_slave_out;

int_level_in : in std_ulogic_vector(LEVEL_NUM - 1 downto 0);

@ -47,7 +47,7 @@ architecture behaviour of xics is
mfrr : std_ulogic_vector(7 downto 0);
mfrr_pending : std_ulogic;
irq : std_ulogic;
wb_rd_data : wishbone_data_type;
wb_rd_data : std_ulogic_vector(31 downto 0);
wb_ack : std_ulogic;
end record;
constant reg_internal_init : reg_internal_t :=
@ -62,11 +62,11 @@ architecture behaviour of xics is
-- hardwire the hardware IRQ priority
constant HW_PRIORITY : std_ulogic_vector(7 downto 0) := x"80";

-- 32 bit offsets for each presentation
constant XIRR_POLL : std_ulogic_vector(31 downto 0) := x"00000000";
constant XIRR : std_ulogic_vector(31 downto 0) := x"00000004";
constant RESV0 : std_ulogic_vector(31 downto 0) := x"00000008";
constant MFRR : std_ulogic_vector(31 downto 0) := x"0000000c";
-- 8 bit offsets for each presentation
constant XIRR_POLL : std_ulogic_vector(7 downto 0) := x"00";
constant XIRR : std_ulogic_vector(7 downto 0) := x"04";
constant RESV0 : std_ulogic_vector(7 downto 0) := x"08";
constant MFRR : std_ulogic_vector(7 downto 0) := x"0c";

begin

@ -95,62 +95,73 @@ begin
irq_eoi := '0';

if wb_in.cyc = '1' and wb_in.stb = '1' then
-- wishbone addresses we get are 64 bit alligned, so we
-- need to use the sel bits to get 32 bit chunks.
v.wb_ack := '1'; -- always ack
if wb_in.we = '1' then -- write
-- writes to both XIRR are the same
if wb_in.adr = XIRR_POLL then
report "XICS XIRR_POLL/XIRR write";
if wb_in.sel = x"0f" then -- 4 bytes
case wb_in.adr(7 downto 0) is
when XIRR_POLL =>
report "XICS XIRR_POLL write";
if wb_in.sel = x"f" then -- 4 bytes
v.cppr := wb_in.dat(31 downto 24);
elsif wb_in.sel = x"1" then -- 1 byte
v.cppr := wb_in.dat(7 downto 0);
end if;
when XIRR =>
if wb_in.sel = x"f" then -- 4 byte
report "XICS XIRR write word:" & to_hstring(wb_in.dat);
v.cppr := wb_in.dat(31 downto 24);
elsif wb_in.sel = x"f0" then -- 4 byte
v.cppr := wb_in.dat(63 downto 56);
irq_eoi := '1';
elsif wb_in.sel = x"01" then -- 1 byte
elsif wb_in.sel = x"1" then -- 1 byte
report "XICS XIRR write byte:" & to_hstring(wb_in.dat(7 downto 0));
v.cppr := wb_in.dat(7 downto 0);
elsif wb_in.sel = x"10" then -- 1 byte
v.cppr := wb_in.dat(39 downto 32);
else
report "XICS XIRR UNSUPPORTED write ! sel=" & to_hstring(wb_in.sel);
end if;

elsif wb_in.adr = RESV0 then
report "XICS MFRR write";
if wb_in.sel = x"f0" then -- 4 bytes
when MFRR =>
if wb_in.sel = x"f" then -- 4 bytes
report "XICS MFRR write word:" & to_hstring(wb_in.dat);
v.mfrr_pending := '1';
v.mfrr := wb_in.dat(63 downto 56);
elsif wb_in.sel = x"10" then -- 1 byte
v.mfrr := wb_in.dat(31 downto 24);
elsif wb_in.sel = x"1" then -- 1 byte
report "XICS MFRR write byte:" & to_hstring(wb_in.dat(7 downto 0));
v.mfrr_pending := '1';
v.mfrr := wb_in.dat(39 downto 32);
v.mfrr := wb_in.dat(7 downto 0);
else
report "XICS MFRR UNSUPPORTED write ! sel=" & to_hstring(wb_in.sel);
end if;

end if;
when others =>
end case;

else -- read
v.wb_rd_data := (others => '0');

if wb_in.adr = XIRR_POLL then
report "XICS XIRR_POLL/XIRR read";
if wb_in.sel = x"0f" then
case wb_in.adr(7 downto 0) is
when XIRR_POLL =>
report "XICS XIRR_POLL read";
if wb_in.sel = x"f" then
v.wb_rd_data(23 downto 0) := r.xisr;
v.wb_rd_data(31 downto 24) := r.cppr;
elsif wb_in.sel = x"f0" then
v.wb_rd_data(55 downto 32) := r.xisr;
v.wb_rd_data(63 downto 56) := r.cppr;
xirr_accept_rd := '1';
elsif wb_in.sel = x"01" then
elsif wb_in.sel = x"1" then
v.wb_rd_data(7 downto 0) := r.cppr;
elsif wb_in.sel = x"10" then
v.wb_rd_data(39 downto 32) := r.cppr;
end if;
when XIRR =>
report "XICS XIRR read";
if wb_in.sel = x"f" then
v.wb_rd_data(23 downto 0) := r.xisr;
v.wb_rd_data(31 downto 24) := r.cppr;
xirr_accept_rd := '1';
elsif wb_in.sel = x"1" then
v.wb_rd_data(7 downto 0) := r.cppr;
end if;

elsif wb_in.adr = RESV0 then
when MFRR =>
report "XICS MFRR read";
if wb_in.sel = x"f0" then -- 4 bytes
v.wb_rd_data(63 downto 56) := r.mfrr;
elsif wb_in.sel = x"10" then -- 1 byte
if wb_in.sel = x"f" then -- 4 bytes
v.wb_rd_data(31 downto 24) := r.mfrr;
elsif wb_in.sel = x"1" then -- 1 byte
v.wb_rd_data( 7 downto 0) := r.mfrr;
end if;
end if;
when others =>
end case;
end if;
end if;


Loading…
Cancel
Save