You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/icache.vhdl

831 lines
30 KiB
VHDL

--
-- Set associative icache
--
-- TODO (in no specific order):
--
-- * Add debug interface to inspect cache content
-- * Add snoop/invalidate path
-- * Add multi-hit error detection
-- * Pipelined bus interface (wb or axi)
-- * Maybe add parity ? There's a few bits free in each BRAM row on Xilinx
-- * Add optimization: service hits on partially loaded lines
-- * Add optimization: (maybe) interrupt reload on fluch/redirect
-- * Check if playing with the geometry of the cache tags allow for more
-- efficient use of distributed RAM and less logic/muxes. Currently we
-- write TAG_BITS width which may not match full ram blocks and might
-- cause muxes to be inferred for "partial writes".
-- * Check if making the read size of PLRU a ROM helps utilization
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.utils.all;
use work.common.all;
use work.wishbone_types.all;
-- 64 bit direct mapped icache. All instructions are 4B aligned.
entity icache is
generic (
SIM : boolean := false;
-- Line size in bytes
LINE_SIZE : positive := 64;
-- BRAM organisation: We never access more than wishbone_data_bits at
-- a time so to save resources we make the array only that wide, and
-- use consecutive indices for to make a cache "line"
--
-- ROW_SIZE is the width in bytes of the BRAM (based on WB, so 64-bits)
ROW_SIZE : positive := wishbone_data_bits / 8;
-- Number of lines in a set
NUM_LINES : positive := 32;
-- Number of ways
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
NUM_WAYS : positive := 4;
-- L1 ITLB number of entries (direct mapped)
TLB_SIZE : positive := 64;
-- L1 ITLB log_2(page_size)
TLB_LG_PGSZ : positive := 12;
-- Non-zero to enable log data collection
LOG_LENGTH : natural := 0
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
i_in : in Fetch1ToIcacheType;
i_out : out IcacheToDecode1Type;
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
m_in : in MmuToIcacheType;
stall_in : in std_ulogic;
stall_out : out std_ulogic;
flush_in : in std_ulogic;
inval_in : in std_ulogic;
wishbone_out : out wishbone_master_out;
wishbone_in : in wishbone_slave_out;
wb_snoop_in : in wishbone_master_out := wishbone_master_out_init;
events : out IcacheEventType;
log_out : out std_ulogic_vector(53 downto 0)
);
end entity icache;
architecture rtl of icache is
constant ROW_SIZE_BITS : natural := ROW_SIZE*8;
-- ROW_PER_LINE is the number of row (wishbone transactions) in a line
constant ROW_PER_LINE : natural := LINE_SIZE / ROW_SIZE;
-- BRAM_ROWS is the number of rows in BRAM needed to represent the full
-- icache
constant BRAM_ROWS : natural := NUM_LINES * ROW_PER_LINE;
-- INSN_PER_ROW is the number of 32bit instructions per BRAM row
constant INSN_PER_ROW : natural := ROW_SIZE_BITS / 32;
-- Bit fields counts in the address
-- INSN_BITS is the number of bits to select an instruction in a row
constant INSN_BITS : natural := log2(INSN_PER_ROW);
-- ROW_BITS is the number of bits to select a row
constant ROW_BITS : natural := log2(BRAM_ROWS);
-- ROW_LINEBITS is the number of bits to select a row within a line
constant ROW_LINEBITS : natural := log2(ROW_PER_LINE);
-- LINE_OFF_BITS is the number of bits for the offset in a cache line
constant LINE_OFF_BITS : natural := log2(LINE_SIZE);
-- ROW_OFF_BITS is the number of bits for the offset in a row
constant ROW_OFF_BITS : natural := log2(ROW_SIZE);
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
-- INDEX_BITS is the number of bits to select a cache line
constant INDEX_BITS : natural := log2(NUM_LINES);
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
-- SET_SIZE_BITS is the log base 2 of the set size
constant SET_SIZE_BITS : natural := LINE_OFF_BITS + INDEX_BITS;
-- TAG_BITS is the number of bits of the tag part of the address
-- the +1 is to allow the endianness to be stored in the tag
constant TAG_BITS : natural := REAL_ADDR_BITS - SET_SIZE_BITS + 1;
-- WAY_BITS is the number of bits to select a way
constant WAY_BITS : natural := log2(NUM_WAYS);
-- Example of layout for 32 lines of 64 bytes:
--
-- .. tag |index| line |
-- .. | row | |
-- .. | | | |00| zero (2)
-- .. | | |-| | INSN_BITS (1)
-- .. | |---| | ROW_LINEBITS (3)
-- .. | |--- - --| LINE_OFF_BITS (6)
-- .. | |- --| ROW_OFF_BITS (3)
-- .. |----- ---| | ROW_BITS (8)
-- .. |-----| | INDEX_BITS (5)
-- .. --------| | TAG_BITS (53)
subtype row_t is integer range 0 to BRAM_ROWS-1;
subtype index_t is integer range 0 to NUM_LINES-1;
subtype way_t is integer range 0 to NUM_WAYS-1;
subtype row_in_line_t is unsigned(ROW_LINEBITS-1 downto 0);
-- The cache data BRAM organized as described above for each way
subtype cache_row_t is std_ulogic_vector(ROW_SIZE_BITS-1 downto 0);
-- The cache tags LUTRAM has a row per set. Vivado is a pain and will
-- not handle a clean (commented) definition of the cache tags as a 3d
-- memory. For now, work around it by putting all the tags
subtype cache_tag_t is std_logic_vector(TAG_BITS-1 downto 0);
-- type cache_tags_set_t is array(way_t) of cache_tag_t;
-- type cache_tags_array_t is array(index_t) of cache_tags_set_t;
constant TAG_RAM_WIDTH : natural := TAG_BITS * NUM_WAYS;
subtype cache_tags_set_t is std_logic_vector(TAG_RAM_WIDTH-1 downto 0);
type cache_tags_array_t is array(index_t) of cache_tags_set_t;
-- The cache valid bits
subtype cache_way_valids_t is std_ulogic_vector(NUM_WAYS-1 downto 0);
type cache_valids_t is array(index_t) of cache_way_valids_t;
type row_per_line_valid_t is array(0 to ROW_PER_LINE - 1) of std_ulogic;
-- Storage. Hopefully "cache_rows" is a BRAM, the rest is LUTs
signal cache_tags : cache_tags_array_t;
signal cache_valids : cache_valids_t;
attribute ram_style : string;
attribute ram_style of cache_tags : signal is "distributed";
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
-- L1 ITLB.
constant TLB_BITS : natural := log2(TLB_SIZE);
constant TLB_EA_TAG_BITS : natural := 64 - (TLB_LG_PGSZ + TLB_BITS);
constant TLB_PTE_BITS : natural := 64;
subtype tlb_index_t is integer range 0 to TLB_SIZE - 1;
type tlb_valids_t is array(tlb_index_t) of std_ulogic;
subtype tlb_tag_t is std_ulogic_vector(TLB_EA_TAG_BITS - 1 downto 0);
type tlb_tags_t is array(tlb_index_t) of tlb_tag_t;
subtype tlb_pte_t is std_ulogic_vector(TLB_PTE_BITS - 1 downto 0);
type tlb_ptes_t is array(tlb_index_t) of tlb_pte_t;
signal itlb_valids : tlb_valids_t;
signal itlb_tags : tlb_tags_t;
signal itlb_ptes : tlb_ptes_t;
attribute ram_style of itlb_tags : signal is "distributed";
attribute ram_style of itlb_ptes : signal is "distributed";
-- Privilege bit from PTE EAA field
signal eaa_priv : std_ulogic;
-- Cache reload state machine
icache: Fix icache invalidation This fixes two bugs in the flash invalidation of the icache. The first is that an instruction could get executed twice. The i-cache RAM is 2 instructions (64 bits) wide, so one read can supply results for 2 cycles. The fetch1 stage tells icache when the address is equal to the address of the previous cycle plus 4, and in cases where that is true, bit 2 of the address is 1, and the previous cycle was a cache hit, we just use the second word of the doubleword read from the cache RAM. However, the cache hit/miss logic also continues to operate, so in the case where the first word hits but the second word misses (because of an icache invalidation or a snoop occurring in the first cycle), we supply the instruction from the data previously read from the icache RAM but also stall fetch1 and start a cache reload sequence, and subsequently supply the second instruction again. This fixes the issue by inhibiting req_is_miss and stall_out when use_previous is true. The second bug is that if an icache invalidation occurs while reloading a line, we continue to reload the line, and make it valid when the reload finishes, even though some of the data may have been read before the invalidation occurred. This adds a new state STOP_RELOAD which we go to if an invalidation happens while we are in CLR_TAG or WAIT_ACK state. In STOP_RELOAD state we don't request any more reads from memory and wait for the reads we have previously requested to be acked, and then go to IDLE state. Data returned is still written to the icache RAM, but that doesn't matter because the line is invalid and is never made valid. Note that we don't have to worry about invalidations due to snooped writes while reloading a line, because the wishbone arbiter won't switch to another master once it has started sending our reload requests to memory. Thus a store to memory will either happen before any of our reads have got to memory, or after we have finished the reload (in which case we will no longer be in WAIT_ACK state). Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
type state_t is (IDLE, STOP_RELOAD, CLR_TAG, WAIT_ACK);
type reg_internal_t is record
-- Cache hit state (Latches for 1 cycle BRAM access)
hit_way : way_t;
hit_nia : std_ulogic_vector(63 downto 0);
hit_smark : std_ulogic;
hit_valid : std_ulogic;
core: Implement quadword loads and stores This implements the lq, stq, lqarx and stqcx. instructions. These instructions all access two consecutive GPRs; for example the "lq %r6,0(%r3)" instruction will load the doubleword at the address in R3 into R7 and the doubleword at address R3 + 8 into R6. To cope with having two GPR sources or destinations, the instruction gets repeated at the decode2 stage, that is, for each lq/stq/lqarx/stqcx. coming in from decode1, two instructions get sent out to execute1. For these instructions, the RS or RT register gets modified on one of the iterations by setting the LSB of the register number. In LE mode, the first iteration uses RS|1 or RT|1 and the second iteration uses RS or RT. In BE mode, this is done the other way around. In order for decode2 to know what endianness is currently in use, we pass the big_endian flag down from icache through decode1 to decode2. This is always in sync with what execute1 is using because only rfid or an interrupt can change MSR[LE], and those operations all cause a flush and redirect. There is now an extra column in the decode tables in decode1 to indicate whether the instruction needs to be repeated. Decode1 also enforces the rule that lq with RT = RT and lqarx with RA = RT or RB = RT are illegal. Decode2 now passes a 'repeat' flag and a 'second' flag to execute1, and execute1 passes them on to loadstore1. The 'repeat' flag is set for both iterations of a repeated instruction, and 'second' is set on the second iteration. Execute1 does not take asynchronous or trace interrupts on the second iteration of a repeated instruction. Loadstore1 uses 'next_addr' for the second iteration of a repeated load/store so that we access the second doubleword of the memory operand. Thus loadstore1 accesses the doublewords in increasing memory order. For 16-byte loads this means that the first iteration writes GPR RT|1. It is possible that RA = RT|1 (this is a legal but non-preferred form), meaning that if the memory operand was misaligned, the first iteration would overwrite RA but then the second iteration might take a page fault, leading to corrupted state. To avoid that possibility, 16-byte loads in LE mode take an alignment interrupt if the operand is not 16-byte aligned. (This is the case anyway for lqarx, and we enforce it for lq as well.) Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
big_endian: std_ulogic;
-- Cache miss state (reload state machine)
state : state_t;
wb : wishbone_master_out;
store_way : way_t;
store_index : index_t;
store_row : row_t;
store_tag : cache_tag_t;
store_valid : std_ulogic;
end_row_ix : row_in_line_t;
rows_valid : row_per_line_valid_t;
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
-- TLB miss state
fetch_failed : std_ulogic;
end record;
signal r : reg_internal_t;
signal ev : IcacheEventType;
-- Async signals on incoming request
signal req_index : index_t;
signal req_row : row_t;
signal req_hit_way : way_t;
signal req_tag : cache_tag_t;
signal req_is_hit : std_ulogic;
signal req_is_miss : std_ulogic;
signal req_raddr : real_addr_t;
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
signal tlb_req_index : tlb_index_t;
signal real_addr : real_addr_t;
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
signal ra_valid : std_ulogic;
signal priv_fault : std_ulogic;
signal access_ok : std_ulogic;
-- Cache RAM interface
type cache_ram_out_t is array(way_t) of cache_row_t;
signal cache_out : cache_ram_out_t;
-- PLRU output interface
type plru_out_t is array(index_t) of std_ulogic_vector(WAY_BITS-1 downto 0);
signal plru_victim : plru_out_t;
signal replace_way : way_t;
-- Memory write snoop signals
signal snoop_valid : std_ulogic;
signal snoop_index : index_t;
signal snoop_hits : cache_way_valids_t;
-- Return the cache line index (tag index) for an address
function get_index(addr: std_ulogic_vector) return index_t is
begin
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
return to_integer(unsigned(addr(SET_SIZE_BITS - 1 downto LINE_OFF_BITS)));
end;
-- Return the cache row index (data memory) for an address
function get_row(addr: std_ulogic_vector) return row_t is
begin
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
return to_integer(unsigned(addr(SET_SIZE_BITS - 1 downto ROW_OFF_BITS)));
end;
-- Return the index of a row within a line
function get_row_of_line(row: row_t) return row_in_line_t is
variable row_v : unsigned(ROW_BITS-1 downto 0);
begin
row_v := to_unsigned(row, ROW_BITS);
return row_v(ROW_LINEBITS-1 downto 0);
end;
-- Returns whether this is the last row of a line
function is_last_row_wb_addr(wb_addr: wishbone_addr_type; last: row_in_line_t) return boolean is
begin
return unsigned(wb_addr(LINE_OFF_BITS - ROW_OFF_BITS - 1 downto 0)) = last;
end;
-- Returns whether this is the last row of a line
function is_last_row(row: row_t; last: row_in_line_t) return boolean is
begin
return get_row_of_line(row) = last;
end;
-- Return the address of the next row in the current cache line
function next_row_wb_addr(wb_addr: wishbone_addr_type)
return std_ulogic_vector is
variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
variable result : wishbone_addr_type;
begin
-- Is there no simpler way in VHDL to generate that 3 bits adder ?
row_idx := wb_addr(ROW_LINEBITS - 1 downto 0);
row_idx := std_ulogic_vector(unsigned(row_idx) + 1);
result := wb_addr;
result(ROW_LINEBITS - 1 downto 0) := row_idx;
return result;
end;
-- Return the next row in the current cache line. We use a dedicated
-- function in order to limit the size of the generated adder to be
-- only the bits within a cache line (3 bits with default settings)
--
function next_row(row: row_t) return row_t is
variable row_v : std_ulogic_vector(ROW_BITS-1 downto 0);
variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
variable result : std_ulogic_vector(ROW_BITS-1 downto 0);
begin
row_v := std_ulogic_vector(to_unsigned(row, ROW_BITS));
row_idx := row_v(ROW_LINEBITS-1 downto 0);
row_v(ROW_LINEBITS-1 downto 0) := std_ulogic_vector(unsigned(row_idx) + 1);
return to_integer(unsigned(row_v));
end;
-- Read the instruction word for the given address in the current cache row
function read_insn_word(addr: std_ulogic_vector(63 downto 0);
data: cache_row_t) return std_ulogic_vector is
variable word: integer range 0 to INSN_PER_ROW-1;
begin
word := to_integer(unsigned(addr(INSN_BITS+2-1 downto 2)));
return data(31+word*32 downto word*32);
end;
-- Get the tag value from the address
function get_tag(addr: real_addr_t; endian: std_ulogic) return cache_tag_t is
begin
return endian & addr(addr'left downto SET_SIZE_BITS);
end;
-- Read a tag from a tag memory row
function read_tag(way: way_t; tagset: cache_tags_set_t) return cache_tag_t is
begin
return tagset((way+1) * TAG_BITS - 1 downto way * TAG_BITS);
end;
-- Write a tag to tag memory row
procedure write_tag(way: in way_t; tagset: inout cache_tags_set_t;
tag: cache_tag_t) is
begin
tagset((way+1) * TAG_BITS - 1 downto way * TAG_BITS) := tag;
end;
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
-- Simple hash for direct-mapped TLB index
function hash_ea(addr: std_ulogic_vector(63 downto 0)) return tlb_index_t is
variable hash : std_ulogic_vector(TLB_BITS - 1 downto 0);
begin
hash := addr(TLB_LG_PGSZ + TLB_BITS - 1 downto TLB_LG_PGSZ)
xor addr(TLB_LG_PGSZ + 2 * TLB_BITS - 1 downto TLB_LG_PGSZ + TLB_BITS)
xor addr(TLB_LG_PGSZ + 3 * TLB_BITS - 1 downto TLB_LG_PGSZ + 2 * TLB_BITS);
return to_integer(unsigned(hash));
end;
begin
assert LINE_SIZE mod ROW_SIZE = 0;
assert ispow2(LINE_SIZE) report "LINE_SIZE not power of 2" severity FAILURE;
assert ispow2(NUM_LINES) report "NUM_LINES not power of 2" severity FAILURE;
assert ispow2(ROW_PER_LINE) report "ROW_PER_LINE not power of 2" severity FAILURE;
assert ispow2(INSN_PER_ROW) report "INSN_PER_ROW not power of 2" severity FAILURE;
assert (ROW_BITS = INDEX_BITS + ROW_LINEBITS)
report "geometry bits don't add up" severity FAILURE;
assert (LINE_OFF_BITS = ROW_OFF_BITS + ROW_LINEBITS)
report "geometry bits don't add up" severity FAILURE;
assert (REAL_ADDR_BITS + 1 = TAG_BITS + INDEX_BITS + LINE_OFF_BITS)
report "geometry bits don't add up" severity FAILURE;
assert (REAL_ADDR_BITS + 1 = TAG_BITS + ROW_BITS + ROW_OFF_BITS)
report "geometry bits don't add up" severity FAILURE;
sim_debug: if SIM generate
debug: process
begin
report "ROW_SIZE = " & natural'image(ROW_SIZE);
report "ROW_PER_LINE = " & natural'image(ROW_PER_LINE);
report "BRAM_ROWS = " & natural'image(BRAM_ROWS);
report "INSN_PER_ROW = " & natural'image(INSN_PER_ROW);
report "INSN_BITS = " & natural'image(INSN_BITS);
report "ROW_BITS = " & natural'image(ROW_BITS);
report "ROW_LINEBITS = " & natural'image(ROW_LINEBITS);
report "LINE_OFF_BITS = " & natural'image(LINE_OFF_BITS);
report "ROW_OFF_BITS = " & natural'image(ROW_OFF_BITS);
report "INDEX_BITS = " & natural'image(INDEX_BITS);
report "TAG_BITS = " & natural'image(TAG_BITS);
report "WAY_BITS = " & natural'image(WAY_BITS);
wait;
end process;
end generate;
-- Generate a cache RAM for each way
rams: for i in 0 to NUM_WAYS-1 generate
signal do_read : std_ulogic;
signal do_write : std_ulogic;
signal rd_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal wr_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal dout : cache_row_t;
signal wr_sel : std_ulogic_vector(ROW_SIZE-1 downto 0);
signal wr_dat : std_ulogic_vector(wishbone_in.dat'left downto 0);
begin
way: entity work.cache_ram
generic map (
ROW_BITS => ROW_BITS,
WIDTH => ROW_SIZE_BITS
)
port map (
clk => clk,
rd_en => do_read,
rd_addr => rd_addr,
rd_data => dout,
wr_sel => wr_sel,
wr_addr => wr_addr,
wr_data => wr_dat
);
process(all)
variable j: integer;
begin
-- byte-swap read data if big endian
if r.store_tag(TAG_BITS - 1) = '0' then
wr_dat <= wishbone_in.dat;
else
for ii in 0 to (wishbone_in.dat'length / 8) - 1 loop
j := ((ii / 4) * 4) + (3 - (ii mod 4));
wr_dat(ii * 8 + 7 downto ii * 8) <= wishbone_in.dat(j * 8 + 7 downto j * 8);
end loop;
end if;
do_read <= not stall_in;
do_write <= '0';
if wishbone_in.ack = '1' and replace_way = i then
do_write <= '1';
end if;
cache_out(i) <= dout;
rd_addr <= std_ulogic_vector(to_unsigned(req_row, ROW_BITS));
wr_addr <= std_ulogic_vector(to_unsigned(r.store_row, ROW_BITS));
for ii in 0 to ROW_SIZE-1 loop
wr_sel(ii) <= do_write;
end loop;
end process;
end generate;
-- Generate PLRUs
maybe_plrus: if NUM_WAYS > 1 generate
begin
plrus: for i in 0 to NUM_LINES-1 generate
-- PLRU interface
signal plru_acc : std_ulogic_vector(WAY_BITS-1 downto 0);
signal plru_acc_en : std_ulogic;
signal plru_out : std_ulogic_vector(WAY_BITS-1 downto 0);
begin
plru : entity work.plru
generic map (
BITS => WAY_BITS
)
port map (
clk => clk,
rst => rst,
acc => plru_acc,
acc_en => plru_acc_en,
lru => plru_out
);
process(all)
begin
-- PLRU interface
if get_index(r.hit_nia) = i then
plru_acc_en <= r.hit_valid;
else
plru_acc_en <= '0';
end if;
plru_acc <= std_ulogic_vector(to_unsigned(r.hit_way, WAY_BITS));
plru_victim(i) <= plru_out;
end process;
end generate;
end generate;
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
-- TLB hit detection and real address generation
itlb_lookup : process(all)
variable pte : tlb_pte_t;
variable ttag : tlb_tag_t;
begin
tlb_req_index <= hash_ea(i_in.nia);
pte := itlb_ptes(tlb_req_index);
ttag := itlb_tags(tlb_req_index);
if i_in.virt_mode = '1' then
real_addr <= pte(REAL_ADDR_BITS - 1 downto TLB_LG_PGSZ) &
i_in.nia(TLB_LG_PGSZ - 1 downto 0);
if ttag = i_in.nia(63 downto TLB_LG_PGSZ + TLB_BITS) then
ra_valid <= itlb_valids(tlb_req_index);
else
ra_valid <= '0';
end if;
eaa_priv <= pte(3);
else
real_addr <= addr_to_real(i_in.nia);
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
ra_valid <= '1';
eaa_priv <= '1';
end if;
-- no IAMR, so no KUEP support for now
priv_fault <= eaa_priv and not i_in.priv_mode;
access_ok <= ra_valid and not priv_fault;
end process;
-- iTLB update
itlb_update: process(clk)
variable wr_index : tlb_index_t;
begin
if rising_edge(clk) then
wr_index := hash_ea(m_in.addr);
if rst = '1' or (m_in.tlbie = '1' and m_in.doall = '1') then
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
-- clear all valid bits
for i in tlb_index_t loop
itlb_valids(i) <= '0';
end loop;
elsif m_in.tlbie = '1' then
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
-- clear entry regardless of hit or miss
itlb_valids(wr_index) <= '0';
elsif m_in.tlbld = '1' then
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
itlb_tags(wr_index) <= m_in.addr(63 downto TLB_LG_PGSZ + TLB_BITS);
itlb_ptes(wr_index) <= m_in.pte;
itlb_valids(wr_index) <= '1';
end if;
ev.itlb_miss_resolved <= m_in.tlbld and not rst;
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
end if;
end process;
-- Cache hit detection, output to fetch2 and other misc logic
icache_comb : process(all)
variable is_hit : std_ulogic;
variable hit_way : way_t;
begin
-- Extract line, row and tag from request
req_index <= get_index(i_in.nia);
req_row <= get_row(i_in.nia);
req_tag <= get_tag(real_addr, i_in.big_endian);
-- Calculate address of beginning of cache row, will be
-- used for cache miss processing if needed
--
req_raddr <= real_addr(REAL_ADDR_BITS - 1 downto ROW_OFF_BITS) &
(ROW_OFF_BITS-1 downto 0 => '0');
-- Test if pending request is a hit on any way
hit_way := 0;
is_hit := '0';
for i in way_t loop
if i_in.req = '1' and
(cache_valids(req_index)(i) = '1' or
(r.state = WAIT_ACK and
req_index = r.store_index and
i = r.store_way and
r.rows_valid(req_row mod ROW_PER_LINE) = '1')) then
if read_tag(i, cache_tags(req_index)) = req_tag then
hit_way := i;
is_hit := '1';
end if;
end if;
end loop;
-- Generate the "hit" and "miss" signals for the synchronous blocks
if i_in.req = '1' and access_ok = '1' and flush_in = '0' and rst = '0' then
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
req_is_hit <= is_hit;
req_is_miss <= not is_hit;
else
req_is_hit <= '0';
req_is_miss <= '0';
end if;
req_hit_way <= hit_way;
-- The way to replace on a miss
if r.state = CLR_TAG then
replace_way <= to_integer(unsigned(plru_victim(r.store_index)));
else
replace_way <= r.store_way;
end if;
-- Output instruction from current cache row
--
-- Note: This is a mild violation of our design principle of having pipeline
-- stages output from a clean latch. In this case we output the result
-- of a mux. The alternative would be output an entire row which
-- I prefer not to do just yet as it would force fetch2 to know about
-- some of the cache geometry information.
--
if r.hit_valid = '1' then
i_out.insn <= read_insn_word(r.hit_nia, cache_out(r.hit_way));
else
i_out.insn <= (others => '0');
end if;
i_out.valid <= r.hit_valid;
i_out.nia <= r.hit_nia;
i_out.stop_mark <= r.hit_smark;
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
i_out.fetch_failed <= r.fetch_failed;
core: Implement quadword loads and stores This implements the lq, stq, lqarx and stqcx. instructions. These instructions all access two consecutive GPRs; for example the "lq %r6,0(%r3)" instruction will load the doubleword at the address in R3 into R7 and the doubleword at address R3 + 8 into R6. To cope with having two GPR sources or destinations, the instruction gets repeated at the decode2 stage, that is, for each lq/stq/lqarx/stqcx. coming in from decode1, two instructions get sent out to execute1. For these instructions, the RS or RT register gets modified on one of the iterations by setting the LSB of the register number. In LE mode, the first iteration uses RS|1 or RT|1 and the second iteration uses RS or RT. In BE mode, this is done the other way around. In order for decode2 to know what endianness is currently in use, we pass the big_endian flag down from icache through decode1 to decode2. This is always in sync with what execute1 is using because only rfid or an interrupt can change MSR[LE], and those operations all cause a flush and redirect. There is now an extra column in the decode tables in decode1 to indicate whether the instruction needs to be repeated. Decode1 also enforces the rule that lq with RT = RT and lqarx with RA = RT or RB = RT are illegal. Decode2 now passes a 'repeat' flag and a 'second' flag to execute1, and execute1 passes them on to loadstore1. The 'repeat' flag is set for both iterations of a repeated instruction, and 'second' is set on the second iteration. Execute1 does not take asynchronous or trace interrupts on the second iteration of a repeated instruction. Loadstore1 uses 'next_addr' for the second iteration of a repeated load/store so that we access the second doubleword of the memory operand. Thus loadstore1 accesses the doublewords in increasing memory order. For 16-byte loads this means that the first iteration writes GPR RT|1. It is possible that RA = RT|1 (this is a legal but non-preferred form), meaning that if the memory operand was misaligned, the first iteration would overwrite RA but then the second iteration might take a page fault, leading to corrupted state. To avoid that possibility, 16-byte loads in LE mode take an alignment interrupt if the operand is not 16-byte aligned. (This is the case anyway for lqarx, and we enforce it for lq as well.) Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
i_out.big_endian <= r.big_endian;
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
i_out.next_predicted <= i_in.predicted;
i_out.next_pred_ntaken <= i_in.pred_ntaken;
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
-- Stall fetch1 if we have a miss on cache or TLB or a protection fault
stall_out <= not (is_hit and access_ok);
-- Wishbone requests output (from the cache miss reload machine)
wishbone_out <= r.wb;
end process;
-- Cache hit synchronous machine
icache_hit : process(clk)
begin
if rising_edge(clk) then
-- keep outputs to fetch2 unchanged on a stall
-- except that flush or reset sets valid to 0
if stall_in = '1' then
if rst = '1' or flush_in = '1' then
r.hit_valid <= '0';
end if;
else
-- On a hit, latch the request for the next cycle, when the BRAM data
-- will be available on the cache_out output of the corresponding way
--
r.hit_valid <= req_is_hit;
if req_is_hit = '1' then
r.hit_way <= req_hit_way;
report "cache hit nia:" & to_hstring(i_in.nia) &
" IR:" & std_ulogic'image(i_in.virt_mode) &
" SM:" & std_ulogic'image(i_in.stop_mark) &
" idx:" & integer'image(req_index) &
" tag:" & to_hstring(req_tag) &
" way:" & integer'image(req_hit_way) &
" RA:" & to_hstring(real_addr);
end if;
end if;
if stall_in = '0' then
-- Send stop marks and NIA down regardless of validity
r.hit_smark <= i_in.stop_mark;
r.hit_nia <= i_in.nia;
core: Implement quadword loads and stores This implements the lq, stq, lqarx and stqcx. instructions. These instructions all access two consecutive GPRs; for example the "lq %r6,0(%r3)" instruction will load the doubleword at the address in R3 into R7 and the doubleword at address R3 + 8 into R6. To cope with having two GPR sources or destinations, the instruction gets repeated at the decode2 stage, that is, for each lq/stq/lqarx/stqcx. coming in from decode1, two instructions get sent out to execute1. For these instructions, the RS or RT register gets modified on one of the iterations by setting the LSB of the register number. In LE mode, the first iteration uses RS|1 or RT|1 and the second iteration uses RS or RT. In BE mode, this is done the other way around. In order for decode2 to know what endianness is currently in use, we pass the big_endian flag down from icache through decode1 to decode2. This is always in sync with what execute1 is using because only rfid or an interrupt can change MSR[LE], and those operations all cause a flush and redirect. There is now an extra column in the decode tables in decode1 to indicate whether the instruction needs to be repeated. Decode1 also enforces the rule that lq with RT = RT and lqarx with RA = RT or RB = RT are illegal. Decode2 now passes a 'repeat' flag and a 'second' flag to execute1, and execute1 passes them on to loadstore1. The 'repeat' flag is set for both iterations of a repeated instruction, and 'second' is set on the second iteration. Execute1 does not take asynchronous or trace interrupts on the second iteration of a repeated instruction. Loadstore1 uses 'next_addr' for the second iteration of a repeated load/store so that we access the second doubleword of the memory operand. Thus loadstore1 accesses the doublewords in increasing memory order. For 16-byte loads this means that the first iteration writes GPR RT|1. It is possible that RA = RT|1 (this is a legal but non-preferred form), meaning that if the memory operand was misaligned, the first iteration would overwrite RA but then the second iteration might take a page fault, leading to corrupted state. To avoid that possibility, 16-byte loads in LE mode take an alignment interrupt if the operand is not 16-byte aligned. (This is the case anyway for lqarx, and we enforce it for lq as well.) Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
r.big_endian <= i_in.big_endian;
end if;
end if;
end process;
-- Cache miss/reload synchronous machine
icache_miss : process(clk)
variable tagset : cache_tags_set_t;
variable tag : cache_tag_t;
variable snoop_addr : real_addr_t;
variable snoop_tag : cache_tag_t;
variable snoop_cache_tags : cache_tags_set_t;
begin
if rising_edge(clk) then
ev.icache_miss <= '0';
-- On reset, clear all valid bits to force misses
if rst = '1' then
for i in index_t loop
cache_valids(i) <= (others => '0');
end loop;
r.state <= IDLE;
r.wb.cyc <= '0';
r.wb.stb <= '0';
-- We only ever do reads on wishbone
r.wb.dat <= (others => '0');
r.wb.sel <= "11111111";
r.wb.we <= '0';
-- Not useful normally but helps avoiding tons of sim warnings
r.wb.adr <= (others => '0');
snoop_valid <= '0';
snoop_index <= 0;
snoop_hits <= (others => '0');
else
-- Detect snooped writes and decode address into index and tag
-- Since we never write, any write should be snooped
snoop_valid <= wb_snoop_in.cyc and wb_snoop_in.stb and wb_snoop_in.we;
snoop_addr := addr_to_real(wb_to_addr(wb_snoop_in.adr));
snoop_index <= get_index(snoop_addr);
snoop_cache_tags := cache_tags(get_index(snoop_addr));
snoop_tag := get_tag(snoop_addr, '0');
snoop_hits <= (others => '0');
for i in way_t loop
tag := read_tag(i, snoop_cache_tags);
-- Ignore endian bit in comparison
tag(TAG_BITS - 1) := '0';
if tag = snoop_tag then
snoop_hits(i) <= '1';
end if;
end loop;
-- Process cache invalidations
if inval_in = '1' then
for i in index_t loop
cache_valids(i) <= (others => '0');
end loop;
r.store_valid <= '0';
else
-- Do invalidations from snooped stores to memory, one
-- cycle after the address appears on wb_snoop_in.
for i in way_t loop
if snoop_valid = '1' and snoop_hits(i) = '1' then
cache_valids(snoop_index)(i) <= '0';
end if;
end loop;
end if;
-- Main state machine
case r.state is
when IDLE =>
-- Reset per-row valid flags, only used in WAIT_ACK
for i in 0 to ROW_PER_LINE - 1 loop
r.rows_valid(i) <= '0';
end loop;
-- We need to read a cache line
if req_is_miss = '1' then
report "cache miss nia:" & to_hstring(i_in.nia) &
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
" IR:" & std_ulogic'image(i_in.virt_mode) &
" SM:" & std_ulogic'image(i_in.stop_mark) &
" idx:" & integer'image(req_index) &
" way:" & integer'image(replace_way) &
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
" tag:" & to_hstring(req_tag) &
" RA:" & to_hstring(real_addr);
ev.icache_miss <= '1';
-- Keep track of our index and way for subsequent stores
r.store_index <= req_index;
r.store_row <= get_row(req_raddr);
r.store_tag <= req_tag;
r.store_valid <= '1';
r.end_row_ix <= get_row_of_line(get_row(req_raddr)) - 1;
-- Prep for first wishbone read. We calculate the address of
-- the start of the cache line and start the WB cycle.
--
r.wb.adr <= addr_to_wb(req_raddr);
r.wb.cyc <= '1';
r.wb.stb <= '1';
-- Track that we had one request sent
r.state <= CLR_TAG;
end if;
when CLR_TAG | WAIT_ACK =>
if r.state = CLR_TAG then
-- Get victim way from plru
r.store_way <= replace_way;
-- Force misses on that way while reloading that line
cache_valids(req_index)(replace_way) <= '0';
-- Store new tag in selected way
for i in 0 to NUM_WAYS-1 loop
if i = replace_way then
tagset := cache_tags(r.store_index);
write_tag(i, tagset, r.store_tag);
cache_tags(r.store_index) <= tagset;
end if;
end loop;
r.state <= WAIT_ACK;
end if;
-- If we are still sending requests, was one accepted ?
if wishbone_in.stall = '0' and r.wb.stb = '1' then
-- That was the last word ? We are done sending. Clear stb.
--
if is_last_row_wb_addr(r.wb.adr, r.end_row_ix) then
r.wb.stb <= '0';
end if;
-- Calculate the next row address
r.wb.adr <= next_row_wb_addr(r.wb.adr);
end if;
icache: Fix icache invalidation This fixes two bugs in the flash invalidation of the icache. The first is that an instruction could get executed twice. The i-cache RAM is 2 instructions (64 bits) wide, so one read can supply results for 2 cycles. The fetch1 stage tells icache when the address is equal to the address of the previous cycle plus 4, and in cases where that is true, bit 2 of the address is 1, and the previous cycle was a cache hit, we just use the second word of the doubleword read from the cache RAM. However, the cache hit/miss logic also continues to operate, so in the case where the first word hits but the second word misses (because of an icache invalidation or a snoop occurring in the first cycle), we supply the instruction from the data previously read from the icache RAM but also stall fetch1 and start a cache reload sequence, and subsequently supply the second instruction again. This fixes the issue by inhibiting req_is_miss and stall_out when use_previous is true. The second bug is that if an icache invalidation occurs while reloading a line, we continue to reload the line, and make it valid when the reload finishes, even though some of the data may have been read before the invalidation occurred. This adds a new state STOP_RELOAD which we go to if an invalidation happens while we are in CLR_TAG or WAIT_ACK state. In STOP_RELOAD state we don't request any more reads from memory and wait for the reads we have previously requested to be acked, and then go to IDLE state. Data returned is still written to the icache RAM, but that doesn't matter because the line is invalid and is never made valid. Note that we don't have to worry about invalidations due to snooped writes while reloading a line, because the wishbone arbiter won't switch to another master once it has started sending our reload requests to memory. Thus a store to memory will either happen before any of our reads have got to memory, or after we have finished the reload (in which case we will no longer be in WAIT_ACK state). Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
-- Abort reload if we get an invalidation
if inval_in = '1' then
r.wb.stb <= '0';
r.state <= STOP_RELOAD;
end if;
-- Incoming acks processing
if wishbone_in.ack = '1' then
icache: Fix icache invalidation This fixes two bugs in the flash invalidation of the icache. The first is that an instruction could get executed twice. The i-cache RAM is 2 instructions (64 bits) wide, so one read can supply results for 2 cycles. The fetch1 stage tells icache when the address is equal to the address of the previous cycle plus 4, and in cases where that is true, bit 2 of the address is 1, and the previous cycle was a cache hit, we just use the second word of the doubleword read from the cache RAM. However, the cache hit/miss logic also continues to operate, so in the case where the first word hits but the second word misses (because of an icache invalidation or a snoop occurring in the first cycle), we supply the instruction from the data previously read from the icache RAM but also stall fetch1 and start a cache reload sequence, and subsequently supply the second instruction again. This fixes the issue by inhibiting req_is_miss and stall_out when use_previous is true. The second bug is that if an icache invalidation occurs while reloading a line, we continue to reload the line, and make it valid when the reload finishes, even though some of the data may have been read before the invalidation occurred. This adds a new state STOP_RELOAD which we go to if an invalidation happens while we are in CLR_TAG or WAIT_ACK state. In STOP_RELOAD state we don't request any more reads from memory and wait for the reads we have previously requested to be acked, and then go to IDLE state. Data returned is still written to the icache RAM, but that doesn't matter because the line is invalid and is never made valid. Note that we don't have to worry about invalidations due to snooped writes while reloading a line, because the wishbone arbiter won't switch to another master once it has started sending our reload requests to memory. Thus a store to memory will either happen before any of our reads have got to memory, or after we have finished the reload (in which case we will no longer be in WAIT_ACK state). Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
r.rows_valid(r.store_row mod ROW_PER_LINE) <= not inval_in;
-- Check for completion
if is_last_row(r.store_row, r.end_row_ix) then
-- Complete wishbone cycle
r.wb.cyc <= '0';
-- Cache line is now valid
cache_valids(r.store_index)(replace_way) <= r.store_valid and not inval_in;
-- We are done
r.state <= IDLE;
end if;
-- Increment store row counter
r.store_row <= next_row(r.store_row);
end if;
icache: Fix icache invalidation This fixes two bugs in the flash invalidation of the icache. The first is that an instruction could get executed twice. The i-cache RAM is 2 instructions (64 bits) wide, so one read can supply results for 2 cycles. The fetch1 stage tells icache when the address is equal to the address of the previous cycle plus 4, and in cases where that is true, bit 2 of the address is 1, and the previous cycle was a cache hit, we just use the second word of the doubleword read from the cache RAM. However, the cache hit/miss logic also continues to operate, so in the case where the first word hits but the second word misses (because of an icache invalidation or a snoop occurring in the first cycle), we supply the instruction from the data previously read from the icache RAM but also stall fetch1 and start a cache reload sequence, and subsequently supply the second instruction again. This fixes the issue by inhibiting req_is_miss and stall_out when use_previous is true. The second bug is that if an icache invalidation occurs while reloading a line, we continue to reload the line, and make it valid when the reload finishes, even though some of the data may have been read before the invalidation occurred. This adds a new state STOP_RELOAD which we go to if an invalidation happens while we are in CLR_TAG or WAIT_ACK state. In STOP_RELOAD state we don't request any more reads from memory and wait for the reads we have previously requested to be acked, and then go to IDLE state. Data returned is still written to the icache RAM, but that doesn't matter because the line is invalid and is never made valid. Note that we don't have to worry about invalidations due to snooped writes while reloading a line, because the wishbone arbiter won't switch to another master once it has started sending our reload requests to memory. Thus a store to memory will either happen before any of our reads have got to memory, or after we have finished the reload (in which case we will no longer be in WAIT_ACK state). Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
when STOP_RELOAD =>
-- Wait for all outstanding requests to be satisfied, then
-- go to IDLE state.
if get_row_of_line(r.store_row) = get_row_of_line(get_row(wb_to_addr(r.wb.adr))) then
icache: Fix icache invalidation This fixes two bugs in the flash invalidation of the icache. The first is that an instruction could get executed twice. The i-cache RAM is 2 instructions (64 bits) wide, so one read can supply results for 2 cycles. The fetch1 stage tells icache when the address is equal to the address of the previous cycle plus 4, and in cases where that is true, bit 2 of the address is 1, and the previous cycle was a cache hit, we just use the second word of the doubleword read from the cache RAM. However, the cache hit/miss logic also continues to operate, so in the case where the first word hits but the second word misses (because of an icache invalidation or a snoop occurring in the first cycle), we supply the instruction from the data previously read from the icache RAM but also stall fetch1 and start a cache reload sequence, and subsequently supply the second instruction again. This fixes the issue by inhibiting req_is_miss and stall_out when use_previous is true. The second bug is that if an icache invalidation occurs while reloading a line, we continue to reload the line, and make it valid when the reload finishes, even though some of the data may have been read before the invalidation occurred. This adds a new state STOP_RELOAD which we go to if an invalidation happens while we are in CLR_TAG or WAIT_ACK state. In STOP_RELOAD state we don't request any more reads from memory and wait for the reads we have previously requested to be acked, and then go to IDLE state. Data returned is still written to the icache RAM, but that doesn't matter because the line is invalid and is never made valid. Note that we don't have to worry about invalidations due to snooped writes while reloading a line, because the wishbone arbiter won't switch to another master once it has started sending our reload requests to memory. Thus a store to memory will either happen before any of our reads have got to memory, or after we have finished the reload (in which case we will no longer be in WAIT_ACK state). Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
3 years ago
r.wb.cyc <= '0';
r.state <= IDLE;
end if;
if wishbone_in.ack = '1' then
-- Increment store row counter
r.store_row <= next_row(r.store_row);
end if;
end case;
end if;
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
-- TLB miss and protection fault processing
if rst = '1' or flush_in = '1' or m_in.tlbld = '1' then
r.fetch_failed <= '0';
elsif i_in.req = '1' and access_ok = '0' and stall_in = '0' then
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
r.fetch_failed <= '1';
end if;
end if;
end process;
icache_log: if LOG_LENGTH > 0 generate
-- Output data to logger
signal log_data : std_ulogic_vector(53 downto 0);
begin
data_log: process(clk)
variable lway: way_t;
variable wstate: std_ulogic;
begin
if rising_edge(clk) then
lway := req_hit_way;
wstate := '0';
if r.state /= IDLE then
wstate := '1';
end if;
log_data <= i_out.valid &
i_out.insn &
wishbone_in.ack &
r.wb.adr(2 downto 0) &
r.wb.stb & r.wb.cyc &
wishbone_in.stall &
stall_out &
r.fetch_failed &
r.hit_nia(5 downto 2) &
wstate &
std_ulogic_vector(to_unsigned(lway, 3)) &
req_is_hit & req_is_miss &
access_ok &
ra_valid;
end if;
end process;
log_out <= log_data;
end generate;
events <= ev;
end;