You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
318 lines
11 KiB
Verilog
318 lines
11 KiB
Verilog
2 years ago
|
// © IBM Corp. 2020
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License"), as modified by
|
||
|
// the terms below; you may not use the files in this repository except in
|
||
|
// compliance with the License as modified.
|
||
|
// You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Modified Terms:
|
||
|
//
|
||
|
// 1) For the purpose of the patent license granted to you in Section 3 of the
|
||
|
// License, the "Work" hereby includes implementations of the work of authorship
|
||
|
// in physical form.
|
||
|
//
|
||
|
// 2) Notwithstanding any terms to the contrary in the License, any licenses
|
||
|
// necessary for implementation of the Work that are available from OpenPOWER
|
||
|
// via the Power ISA End User License Agreement (EULA) are explicitly excluded
|
||
|
// hereunder, and may be obtained from OpenPOWER under the terms and conditions
|
||
|
// of the EULA.
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, the reference design
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License
|
||
|
// for the specific language governing permissions and limitations under the License.
|
||
|
//
|
||
|
// Additional rights, including the ability to physically implement a softcore that
|
||
|
// is compliant with the required sections of the Power ISA Specification, are
|
||
|
// available at no cost under the terms of the OpenPOWER Power ISA EULA, which can be
|
||
|
// obtained (along with the Power ISA) here: https://openpowerfoundation.org.
|
||
|
|
||
|
`timescale 1 ps / 1 ps
|
||
|
|
||
|
//*****************************************************************************
|
||
|
// Description: Tri-Lam Array Wrapper
|
||
|
//
|
||
|
//*****************************************************************************
|
||
|
|
||
|
`include "tri_a2o.vh"
|
||
|
|
||
|
module tri_64x72_1r1w(
|
||
|
vdd,
|
||
|
vcs,
|
||
|
gnd,
|
||
|
nclk,
|
||
|
sg_0,
|
||
|
abst_sl_thold_0,
|
||
|
ary_nsl_thold_0,
|
||
|
time_sl_thold_0,
|
||
|
repr_sl_thold_0,
|
||
|
rd0_act,
|
||
|
rd0_adr,
|
||
|
do0,
|
||
|
wr_act,
|
||
|
wr_adr,
|
||
|
di,
|
||
|
abst_scan_in,
|
||
|
abst_scan_out,
|
||
|
time_scan_in,
|
||
|
time_scan_out,
|
||
|
repr_scan_in,
|
||
|
repr_scan_out,
|
||
|
scan_dis_dc_b,
|
||
|
scan_diag_dc,
|
||
|
ccflush_dc,
|
||
|
clkoff_dc_b,
|
||
|
d_mode_dc,
|
||
|
mpw1_dc_b,
|
||
|
mpw2_dc_b,
|
||
|
delay_lclkr_dc,
|
||
|
lcb_bolt_sl_thold_0,
|
||
|
pc_bo_enable_2,
|
||
|
pc_bo_reset,
|
||
|
pc_bo_unload,
|
||
|
pc_bo_repair,
|
||
|
pc_bo_shdata,
|
||
|
pc_bo_select,
|
||
|
bo_pc_failout,
|
||
|
bo_pc_diagloop,
|
||
|
tri_lcb_mpw1_dc_b,
|
||
|
tri_lcb_mpw2_dc_b,
|
||
|
tri_lcb_delay_lclkr_dc,
|
||
|
tri_lcb_clkoff_dc_b,
|
||
|
tri_lcb_act_dis_dc,
|
||
|
abist_di,
|
||
|
abist_bw_odd,
|
||
|
abist_bw_even,
|
||
|
abist_wr_adr,
|
||
|
wr_abst_act,
|
||
|
abist_rd0_adr,
|
||
|
rd0_abst_act,
|
||
|
tc_lbist_ary_wrt_thru_dc,
|
||
|
abist_ena_1,
|
||
|
abist_g8t_rd0_comp_ena,
|
||
|
abist_raw_dc_b,
|
||
|
obs0_abist_cmp
|
||
|
);
|
||
|
|
||
|
// Power
|
||
|
(* analysis_not_referenced="true" *)
|
||
|
inout vdd;
|
||
|
(* analysis_not_referenced="true" *)
|
||
|
inout vcs;
|
||
|
(* analysis_not_referenced="true" *)
|
||
|
inout gnd;
|
||
|
|
||
|
// Clock Pervasive
|
||
|
input [0:`NCLK_WIDTH-1] nclk;
|
||
|
input sg_0;
|
||
|
input abst_sl_thold_0;
|
||
|
input ary_nsl_thold_0;
|
||
|
input time_sl_thold_0;
|
||
|
input repr_sl_thold_0;
|
||
|
|
||
|
// Reads
|
||
|
input rd0_act;
|
||
|
input [0:5] rd0_adr;
|
||
|
output [64-`GPR_WIDTH:72-(64/`GPR_WIDTH)] do0;
|
||
|
|
||
|
// Writes
|
||
|
input wr_act;
|
||
|
input [0:5] wr_adr;
|
||
|
input [64-`GPR_WIDTH:72-(64/`GPR_WIDTH)] di;
|
||
|
|
||
|
// Scan
|
||
|
input abst_scan_in;
|
||
|
output abst_scan_out;
|
||
|
input time_scan_in;
|
||
|
output time_scan_out;
|
||
|
input repr_scan_in;
|
||
|
output repr_scan_out;
|
||
|
|
||
|
// Misc Pervasive
|
||
|
input scan_dis_dc_b;
|
||
|
input scan_diag_dc;
|
||
|
input ccflush_dc;
|
||
|
input clkoff_dc_b;
|
||
|
input d_mode_dc;
|
||
|
input [0:4] mpw1_dc_b;
|
||
|
input mpw2_dc_b;
|
||
|
input [0:4] delay_lclkr_dc;
|
||
|
|
||
|
// BOLT-ON
|
||
|
input lcb_bolt_sl_thold_0;
|
||
|
input pc_bo_enable_2; // general bolt-on enable
|
||
|
input pc_bo_reset; // reset
|
||
|
input pc_bo_unload; // unload sticky bits
|
||
|
input pc_bo_repair; // execute sticky bit decode
|
||
|
input pc_bo_shdata; // shift data for timing write and diag loop
|
||
|
input pc_bo_select; // select for mask and hier writes
|
||
|
output bo_pc_failout; // fail/no-fix reg
|
||
|
output bo_pc_diagloop;
|
||
|
input tri_lcb_mpw1_dc_b;
|
||
|
input tri_lcb_mpw2_dc_b;
|
||
|
input tri_lcb_delay_lclkr_dc;
|
||
|
input tri_lcb_clkoff_dc_b;
|
||
|
input tri_lcb_act_dis_dc;
|
||
|
|
||
|
// ABIST
|
||
|
input [0:3] abist_di;
|
||
|
input abist_bw_odd;
|
||
|
input abist_bw_even;
|
||
|
input [0:5] abist_wr_adr;
|
||
|
input wr_abst_act;
|
||
|
input [0:5] abist_rd0_adr;
|
||
|
input rd0_abst_act;
|
||
|
input tc_lbist_ary_wrt_thru_dc;
|
||
|
input abist_ena_1;
|
||
|
input abist_g8t_rd0_comp_ena;
|
||
|
input abist_raw_dc_b;
|
||
|
input [0:3] obs0_abist_cmp;
|
||
|
|
||
|
// Configuration Statement for NCsim
|
||
|
//for all:RAMB16_S36_S36 use entity unisim.RAMB16_S36_S36;
|
||
|
|
||
|
wire clk;
|
||
|
wire clk2x;
|
||
|
reg [0:8] addra;
|
||
|
reg [0:8] addrb;
|
||
|
reg wea;
|
||
|
reg web;
|
||
|
wire [0:71] bdo;
|
||
|
wire [0:71] bdi;
|
||
|
wire sreset;
|
||
|
wire [0:71] tidn;
|
||
|
// Latches
|
||
|
reg reset_q;
|
||
|
reg gate_fq;
|
||
|
wire gate_d;
|
||
|
wire [64-`GPR_WIDTH:72-(64/`GPR_WIDTH)] bdo_d;
|
||
|
reg [64-`GPR_WIDTH:72-(64/`GPR_WIDTH)] bdo_fq;
|
||
|
|
||
|
wire toggle_d;
|
||
|
reg toggle_q;
|
||
|
wire toggle2x_d;
|
||
|
reg toggle2x_q;
|
||
|
|
||
|
(* analysis_not_referenced="true" *)
|
||
|
wire unused;
|
||
|
|
||
|
generate
|
||
|
begin
|
||
|
assign tidn = 72'b0;
|
||
|
assign clk = nclk[0];
|
||
|
assign clk2x = nclk[2];
|
||
|
assign sreset = nclk[1];
|
||
|
|
||
|
always @(posedge clk)
|
||
|
begin: rlatch
|
||
|
// reset_q <= #10 sreset;
|
||
|
reset_q <= sreset; //wtf try for icarus
|
||
|
end
|
||
|
|
||
|
//
|
||
|
// NEW clk2x gate logic start
|
||
|
//
|
||
|
|
||
|
always @(posedge clk)
|
||
|
begin: tlatch
|
||
|
if (reset_q == 1'b1)
|
||
|
toggle_q <= 1'b1;
|
||
|
else
|
||
|
toggle_q <= toggle_d;
|
||
|
end
|
||
|
|
||
|
always @(posedge clk2x)
|
||
|
begin: flatch
|
||
|
toggle2x_q <= toggle2x_d;
|
||
|
gate_fq <= gate_d;
|
||
|
bdo_fq <= bdo_d;
|
||
|
end
|
||
|
|
||
|
assign toggle_d = (~toggle_q);
|
||
|
assign toggle2x_d = toggle_q;
|
||
|
|
||
|
// should force gate_fq to be on during odd 2x clock (second half of 1x clock).
|
||
|
//gate_d <= toggle_q xor toggle2x_q;
|
||
|
// if you want the first half do the following
|
||
|
assign gate_d = (~(toggle_q ^ toggle2x_q));
|
||
|
|
||
|
//
|
||
|
// NEW clk2x gate logic end
|
||
|
//
|
||
|
|
||
|
if (`GPR_WIDTH == 32)
|
||
|
begin
|
||
|
assign bdi = {tidn[0:31], di[32:63], di[64:70], tidn[71]};
|
||
|
end
|
||
|
if (`GPR_WIDTH == 64)
|
||
|
begin
|
||
|
assign bdi = di[0:71];
|
||
|
end
|
||
|
|
||
|
assign bdo_d = bdo[64 - `GPR_WIDTH:72 - (64/`GPR_WIDTH)];
|
||
|
assign do0 = bdo_fq;
|
||
|
|
||
|
|
||
|
always @ (*)
|
||
|
begin
|
||
|
/*
|
||
|
wea = #10 (wr_act & gate_fq);
|
||
|
web = #10 (wr_act & gate_fq);
|
||
|
|
||
|
addra = #10 ((gate_fq == 1'b1) ? {2'b00, wr_adr, 1'b0} :
|
||
|
{2'b00, rd0_adr, 1'b0});
|
||
|
|
||
|
addrb = #10 ((gate_fq == 1'b1) ? {2'b00, wr_adr, 1'b1} :
|
||
|
{2'b00, rd0_adr, 1'b1});
|
||
|
wea = #10 (wr_act & gate_fq);
|
||
|
*/
|
||
|
wea = wr_act & gate_fq;
|
||
|
web = wr_act & gate_fq;
|
||
|
|
||
|
addra = ((gate_fq == 1'b1) ? {2'b00, wr_adr, 1'b0} :
|
||
|
{2'b00, rd0_adr, 1'b0});
|
||
|
|
||
|
addrb = ((gate_fq == 1'b1) ? {2'b00, wr_adr, 1'b1} :
|
||
|
{2'b00, rd0_adr, 1'b1});
|
||
|
end
|
||
|
/* make wires?
|
||
|
assign wea = wr_act & gate_fq;
|
||
|
assign web = wr_act & gate_fq;
|
||
|
assign addra = ((gate_fq == 1'b1) ? {2'b00, wr_adr, 1'b0} : {2'b00, rd0_adr, 1'b0});
|
||
|
assign addrb = ((gate_fq == 1'b1) ? {2'b00, wr_adr, 1'b1} : {2'b00, rd0_adr, 1'b1});
|
||
|
*/
|
||
|
|
||
|
RAMB16_S36_S36
|
||
|
#(.SIM_COLLISION_CHECK("NONE")) // all, none, warning_only, generate_x_only
|
||
|
bram0a(
|
||
|
.CLKA(clk2x),
|
||
|
.CLKB(clk2x),
|
||
|
.SSRA(sreset),
|
||
|
.SSRB(sreset),
|
||
|
.ADDRA(addra),
|
||
|
.ADDRB(addrb),
|
||
|
.DIA(bdi[00:31]),
|
||
|
.DIB(bdi[32:63]),
|
||
|
.DIPA(bdi[64:67]),
|
||
|
.DIPB(bdi[68:71]),
|
||
|
.DOA(bdo[00:31]),
|
||
|
.DOB(bdo[32:63]),
|
||
|
.DOPA(bdo[64:67]),
|
||
|
.DOPB(bdo[68:71]),
|
||
|
.ENA(1'b1),
|
||
|
.ENB(1'b1),
|
||
|
.WEA(wea),
|
||
|
.WEB(web)
|
||
|
);
|
||
|
|
||
|
assign abst_scan_out = abst_scan_in;
|
||
|
assign time_scan_out = time_scan_in;
|
||
|
assign repr_scan_out = repr_scan_in;
|
||
|
|
||
|
assign bo_pc_failout = 1'b0;
|
||
|
assign bo_pc_diagloop = 1'b0;
|
||
|
|
||
|
assign unused = | ({nclk[3:`NCLK_WIDTH-1], sg_0, abst_sl_thold_0, ary_nsl_thold_0, time_sl_thold_0, repr_sl_thold_0, scan_dis_dc_b, scan_diag_dc, ccflush_dc, clkoff_dc_b, d_mode_dc, mpw1_dc_b, mpw2_dc_b, delay_lclkr_dc, abist_di, abist_bw_odd, abist_bw_even, abist_wr_adr, abist_rd0_adr, wr_abst_act, rd0_abst_act, tc_lbist_ary_wrt_thru_dc, abist_ena_1, abist_g8t_rd0_comp_ena, abist_raw_dc_b, obs0_abist_cmp, rd0_act, tidn, lcb_bolt_sl_thold_0, pc_bo_enable_2, pc_bo_reset, pc_bo_unload, pc_bo_repair, pc_bo_shdata, pc_bo_select, tri_lcb_mpw1_dc_b, tri_lcb_mpw2_dc_b, tri_lcb_delay_lclkr_dc, tri_lcb_clkoff_dc_b, tri_lcb_act_dis_dc});
|
||
|
end
|
||
|
endgenerate
|
||
|
endmodule
|