microwatt/execute1.vhdl

1266 lines
45 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.decode_types.all;
use work.common.all;
use work.helpers.all;
use work.crhelpers.all;
use work.insn_helpers.all;
use work.ppc_fx_insns.all;
entity execute1 is
generic (
EX1_BYPASS : boolean := true;
HAS_FPU : boolean := true;
-- Non-zero to enable log data collection
LOG_LENGTH : natural := 0
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
-- asynchronous
flush_in : in std_ulogic;
busy_out : out std_ulogic;
e_in : in Decode2ToExecute1Type;
l_in : in Loadstore1ToExecute1Type;
fp_in : in FPUToExecute1Type;
ext_irq_in : std_ulogic;
interrupt_in : std_ulogic;
-- asynchronous
l_out : out Execute1ToLoadstore1Type;
fp_out : out Execute1ToFPUType;
e_out : out Execute1ToWritebackType;
bypass_data : out bypass_data_t;
bypass_cr_data : out cr_bypass_data_t;
dbg_msr_out : out std_ulogic_vector(63 downto 0);
icache_inval : out std_ulogic;
terminate_out : out std_ulogic;
log_out : out std_ulogic_vector(14 downto 0);
log_rd_addr : out std_ulogic_vector(31 downto 0);
log_rd_data : in std_ulogic_vector(63 downto 0);
log_wr_addr : in std_ulogic_vector(31 downto 0)
);
end entity execute1;
architecture behaviour of execute1 is
type reg_type is record
e : Execute1ToWritebackType;
cur_instr : Decode2ToExecute1Type;
busy: std_ulogic;
terminate: std_ulogic;
fp_exception_next : std_ulogic;
trace_next : std_ulogic;
prev_op : insn_type_t;
br_taken : std_ulogic;
mul_in_progress : std_ulogic;
mul_finish : std_ulogic;
div_in_progress : std_ulogic;
cntz_in_progress : std_ulogic;
log_addr_spr : std_ulogic_vector(31 downto 0);
end record;
constant reg_type_init : reg_type :=
(e => Execute1ToWritebackInit,
cur_instr => Decode2ToExecute1Init,
busy => '0', terminate => '0',
fp_exception_next => '0', trace_next => '0', prev_op => OP_ILLEGAL, br_taken => '0',
mul_in_progress => '0', mul_finish => '0', div_in_progress => '0', cntz_in_progress => '0',
others => (others => '0'));
signal r, rin : reg_type;
signal a_in, b_in, c_in : std_ulogic_vector(63 downto 0);
signal cr_in : std_ulogic_vector(31 downto 0);
signal xerc_in : xer_common_t;
signal valid_in : std_ulogic;
signal ctrl: ctrl_t := (others => (others => '0'));
signal ctrl_tmp: ctrl_t := (others => (others => '0'));
signal right_shift, rot_clear_left, rot_clear_right: std_ulogic;
signal rot_sign_ext: std_ulogic;
signal rotator_result: std_ulogic_vector(63 downto 0);
signal rotator_carry: std_ulogic;
signal logical_result: std_ulogic_vector(63 downto 0);
signal countzero_result: std_ulogic_vector(63 downto 0);
signal alu_result: std_ulogic_vector(63 downto 0);
signal adder_result: std_ulogic_vector(63 downto 0);
signal misc_result: std_ulogic_vector(63 downto 0);
signal muldiv_result: std_ulogic_vector(63 downto 0);
signal spr_result: std_ulogic_vector(63 downto 0);
signal result_mux_sel: std_ulogic_vector(2 downto 0);
signal sub_mux_sel: std_ulogic_vector(2 downto 0);
signal next_nia : std_ulogic_vector(63 downto 0);
signal current: Decode2ToExecute1Type;
signal carry_32 : std_ulogic;
signal carry_64 : std_ulogic;
signal overflow_32 : std_ulogic;
signal overflow_64 : std_ulogic;
signal trapval : std_ulogic_vector(4 downto 0);
signal write_cr_mask : std_ulogic_vector(7 downto 0);
signal write_cr_data : std_ulogic_vector(31 downto 0);
-- multiply signals
signal x_to_multiply: MultiplyInputType;
signal multiply_to_x: MultiplyOutputType;
-- divider signals
signal x_to_divider: Execute1ToDividerType;
signal divider_to_x: DividerToExecute1Type;
-- random number generator signals
signal random_raw : std_ulogic_vector(63 downto 0);
signal random_cond : std_ulogic_vector(63 downto 0);
signal random_err : std_ulogic;
-- signals for logging
signal exception_log : std_ulogic;
signal irq_valid_log : std_ulogic;
type privilege_level is (USER, SUPER);
type op_privilege_array is array(insn_type_t) of privilege_level;
constant op_privilege: op_privilege_array := (
OP_ATTN => SUPER,
OP_MFMSR => SUPER,
OP_MTMSRD => SUPER,
OP_RFID => SUPER,
OP_TLBIE => SUPER,
others => USER
);
function instr_is_privileged(op: insn_type_t; insn: std_ulogic_vector(31 downto 0))
return boolean is
begin
if op_privilege(op) = SUPER then
return true;
elsif op = OP_MFSPR or op = OP_MTSPR then
return insn(20) = '1';
else
return false;
end if;
end;
procedure set_carry(e: inout Execute1ToWritebackType;
carry32 : in std_ulogic;
carry : in std_ulogic) is
begin
e.xerc.ca32 := carry32;
e.xerc.ca := carry;
end;
procedure set_ov(e: inout Execute1ToWritebackType;
ov : in std_ulogic;
ov32 : in std_ulogic) is
begin
e.xerc.ov32 := ov32;
e.xerc.ov := ov;
if ov = '1' then
e.xerc.so := '1';
end if;
end;
function calc_ov(msb_a : std_ulogic; msb_b: std_ulogic;
ca: std_ulogic; msb_r: std_ulogic) return std_ulogic is
begin
return (ca xor msb_r) and not (msb_a xor msb_b);
end;
function decode_input_carry(ic : carry_in_t;
xerc : xer_common_t) return std_ulogic is
begin
case ic is
when ZERO =>
return '0';
when CA =>
return xerc.ca;
when OV =>
return xerc.ov;
when ONE =>
return '1';
end case;
end;
function msr_copy(msr: std_ulogic_vector(63 downto 0))
return std_ulogic_vector is
variable msr_out: std_ulogic_vector(63 downto 0);
begin
-- ISA says this:
-- Defined MSR bits are classified as either full func-
-- tion or partial function. Full function MSR bits are
-- saved in SRR1 or HSRR1 when an interrupt other
-- than a System Call Vectored interrupt occurs and
-- restored by rfscv, rfid, or hrfid, while partial func-
-- tion MSR bits are not saved or restored.
-- Full function MSR bits lie in the range 0:32, 37:41, and
-- 48:63, and partial function MSR bits lie in the range
-- 33:36 and 42:47. (Note this is IBM bit numbering).
msr_out := (others => '0');
msr_out(63 downto 31) := msr(63 downto 31);
msr_out(26 downto 22) := msr(26 downto 22);
msr_out(15 downto 0) := msr(15 downto 0);
return msr_out;
end;
-- Tell vivado to keep the hierarchy for the random module so that the
-- net names in the xdc file match.
attribute keep_hierarchy : string;
attribute keep_hierarchy of random_0 : label is "yes";
begin
rotator_0: entity work.rotator
port map (
rs => c_in,
ra => a_in,
shift => b_in(6 downto 0),
insn => e_in.insn,
is_32bit => e_in.is_32bit,
right_shift => right_shift,
arith => e_in.is_signed,
clear_left => rot_clear_left,
clear_right => rot_clear_right,
sign_ext_rs => rot_sign_ext,
result => rotator_result,
carry_out => rotator_carry
);
logical_0: entity work.logical
port map (
rs => c_in,
rb => b_in,
op => e_in.insn_type,
invert_in => e_in.invert_a,
invert_out => e_in.invert_out,
result => logical_result,
datalen => e_in.data_len
);
countzero_0: entity work.zero_counter
port map (
clk => clk,
rs => c_in,
count_right => e_in.insn(10),
is_32bit => e_in.is_32bit,
result => countzero_result
);
multiply_0: entity work.multiply
port map (
clk => clk,
m_in => x_to_multiply,
m_out => multiply_to_x
);
divider_0: entity work.divider
port map (
clk => clk,
rst => rst,
d_in => x_to_divider,
d_out => divider_to_x
);
random_0: entity work.random
port map (
clk => clk,
data => random_cond,
raw => random_raw,
err => random_err
);
dbg_msr_out <= ctrl.msr;
log_rd_addr <= r.log_addr_spr;
a_in <= e_in.read_data1;
b_in <= e_in.read_data2;
c_in <= e_in.read_data3;
cr_in <= e_in.cr;
-- XER forwarding. To avoid having to track XER hazards, we use
-- the previously latched value. Since the XER common bits
-- (SO, OV[32] and CA[32]) are only modified by instructions that are
-- handled here, we can just forward the result being sent to
-- writeback.
xerc_in <= r.e.xerc when r.e.write_xerc_enable = '1' or r.busy = '1' else e_in.xerc;
with e_in.unit select busy_out <=
l_in.busy or r.busy or fp_in.busy when LDST,
l_in.busy or l_in.in_progress or r.busy or fp_in.busy when others;
valid_in <= e_in.valid and not busy_out and not flush_in;
terminate_out <= r.terminate;
current <= e_in when r.busy = '0' else r.cur_instr;
-- Result mux
with current.result_sel select alu_result <=
adder_result when "000",
logical_result when "001",
rotator_result when "010",
muldiv_result when "011",
countzero_result when "100",
spr_result when "101",
next_nia when "110",
misc_result when others;
execute1_0: process(clk)
begin
if rising_edge(clk) then
if rst = '1' then
r <= reg_type_init;
ctrl.tb <= (others => '0');
ctrl.dec <= (others => '0');
ctrl.msr <= (MSR_SF => '1', MSR_LE => '1', others => '0');
else
r <= rin;
ctrl <= ctrl_tmp;
if valid_in = '1' then
report "execute " & to_hstring(e_in.nia) & " op=" & insn_type_t'image(e_in.insn_type) &
" wr=" & to_hstring(rin.e.write_reg) & " we=" & std_ulogic'image(rin.e.write_enable) &
" tag=" & integer'image(rin.e.instr_tag.tag) & std_ulogic'image(rin.e.instr_tag.valid);
end if;
end if;
end if;
end process;
-- Data path for integer instructions
execute1_dp: process(all)
variable a_inv : std_ulogic_vector(63 downto 0);
variable b_or_m1 : std_ulogic_vector(63 downto 0);
variable sum_with_carry : std_ulogic_vector(64 downto 0);
variable sign1, sign2 : std_ulogic;
variable abs1, abs2 : signed(63 downto 0);
variable addend : std_ulogic_vector(127 downto 0);
variable addg6s : std_ulogic_vector(63 downto 0);
variable crbit : integer range 0 to 31;
variable isel_result : std_ulogic_vector(63 downto 0);
variable darn : std_ulogic_vector(63 downto 0);
variable setb_result : std_ulogic_vector(63 downto 0);
variable mfcr_result : std_ulogic_vector(63 downto 0);
variable lo, hi : integer;
variable l : std_ulogic;
variable zerohi, zerolo : std_ulogic;
variable msb_a, msb_b : std_ulogic;
variable a_lt : std_ulogic;
variable a_lt_lo : std_ulogic;
variable a_lt_hi : std_ulogic;
variable newcrf : std_ulogic_vector(3 downto 0);
variable bf, bfa : std_ulogic_vector(2 downto 0);
variable crnum : crnum_t;
variable scrnum : crnum_t;
variable cr_operands : std_ulogic_vector(1 downto 0);
variable crresult : std_ulogic;
variable bt, ba, bb : std_ulogic_vector(4 downto 0);
variable btnum : integer range 0 to 3;
variable banum, bbnum : integer range 0 to 31;
variable j : integer;
begin
-- Main adder
if e_in.invert_a = '0' then
a_inv := a_in;
else
a_inv := not a_in;
end if;
if e_in.addm1 = '0' then
b_or_m1 := b_in;
else
b_or_m1 := (others => '1');
end if;
sum_with_carry := ppc_adde(a_inv, b_or_m1,
decode_input_carry(e_in.input_carry, xerc_in));
adder_result <= sum_with_carry(63 downto 0);
carry_32 <= sum_with_carry(32) xor a_inv(32) xor b_in(32);
carry_64 <= sum_with_carry(64);
overflow_32 <= calc_ov(a_inv(31), b_in(31), carry_32, sum_with_carry(31));
overflow_64 <= calc_ov(a_inv(63), b_in(63), carry_64, sum_with_carry(63));
-- signals to multiply and divide units
sign1 := '0';
sign2 := '0';
if e_in.is_signed = '1' then
if e_in.is_32bit = '1' then
sign1 := a_in(31);
sign2 := b_in(31);
else
sign1 := a_in(63);
sign2 := b_in(63);
end if;
end if;
-- take absolute values
if sign1 = '0' then
abs1 := signed(a_in);
else
abs1 := - signed(a_in);
end if;
if sign2 = '0' then
abs2 := signed(b_in);
else
abs2 := - signed(b_in);
end if;
-- Interface to multiply and divide units
x_to_divider.is_signed <= e_in.is_signed;
x_to_divider.is_32bit <= e_in.is_32bit;
x_to_divider.is_extended <= '0';
x_to_divider.is_modulus <= '0';
if e_in.insn_type = OP_MOD then
x_to_divider.is_modulus <= '1';
end if;
addend := (others => '0');
if e_in.insn(26) = '0' then
-- integer multiply-add, major op 4 (if it is a multiply)
addend(63 downto 0) := c_in;
if e_in.is_signed = '1' then
addend(127 downto 64) := (others => c_in(63));
end if;
end if;
if (sign1 xor sign2) = '1' then
addend := not addend;
end if;
x_to_multiply.is_32bit <= e_in.is_32bit;
x_to_multiply.not_result <= sign1 xor sign2;
x_to_multiply.addend <= addend;
x_to_divider.neg_result <= sign1 xor (sign2 and not x_to_divider.is_modulus);
if e_in.is_32bit = '0' then
-- 64-bit forms
x_to_multiply.data1 <= std_ulogic_vector(abs1);
x_to_multiply.data2 <= std_ulogic_vector(abs2);
if e_in.insn_type = OP_DIVE then
x_to_divider.is_extended <= '1';
end if;
x_to_divider.dividend <= std_ulogic_vector(abs1);
x_to_divider.divisor <= std_ulogic_vector(abs2);
else
-- 32-bit forms
x_to_multiply.data1 <= x"00000000" & std_ulogic_vector(abs1(31 downto 0));
x_to_multiply.data2 <= x"00000000" & std_ulogic_vector(abs2(31 downto 0));
x_to_divider.is_extended <= '0';
if e_in.insn_type = OP_DIVE then -- extended forms
x_to_divider.dividend <= std_ulogic_vector(abs1(31 downto 0)) & x"00000000";
else
x_to_divider.dividend <= x"00000000" & std_ulogic_vector(abs1(31 downto 0));
end if;
x_to_divider.divisor <= x"00000000" & std_ulogic_vector(abs2(31 downto 0));
end if;
case current.sub_select(1 downto 0) is
when "00" =>
muldiv_result <= multiply_to_x.result(63 downto 0);
when "01" =>
muldiv_result <= multiply_to_x.result(127 downto 64);
when "10" =>
muldiv_result <= multiply_to_x.result(63 downto 32) &
multiply_to_x.result(63 downto 32);
when others =>
muldiv_result <= divider_to_x.write_reg_data;
end case;
-- Compute misc_result
case current.sub_select is
when "000" =>
misc_result <= (others => '0');
when "001" =>
-- addg6s
addg6s := (others => '0');
for i in 0 to 14 loop
lo := i * 4;
hi := (i + 1) * 4;
if (a_in(hi) xor b_in(hi) xor sum_with_carry(hi)) = '0' then
addg6s(lo + 3 downto lo) := "0110";
end if;
end loop;
if sum_with_carry(64) = '0' then
addg6s(63 downto 60) := "0110";
end if;
misc_result <= addg6s;
when "010" =>
-- isel
crbit := to_integer(unsigned(insn_bc(e_in.insn)));
if cr_in(31-crbit) = '1' then
isel_result := a_in;
else
isel_result := b_in;
end if;
misc_result <= isel_result;
when "011" =>
-- darn
darn := (others => '1');
if random_err = '0' then
case e_in.insn(17 downto 16) is
when "00" =>
darn := x"00000000" & random_cond(31 downto 0);
when "10" =>
darn := random_raw;
when others =>
darn := random_cond;
end case;
end if;
misc_result <= darn;
when "100" =>
-- mfmsr
misc_result <= ctrl.msr;
when "101" =>
if e_in.insn(20) = '0' then
-- mfcr
mfcr_result := x"00000000" & cr_in;
else
-- mfocrf
crnum := fxm_to_num(insn_fxm(e_in.insn));
mfcr_result := (others => '0');
for i in 0 to 7 loop
lo := (7-i)*4;
hi := lo + 3;
if crnum = i then
mfcr_result(hi downto lo) := cr_in(hi downto lo);
end if;
end loop;
end if;
misc_result <= mfcr_result;
when "110" =>
-- setb
bfa := insn_bfa(e_in.insn);
crbit := to_integer(unsigned(bfa)) * 4;
setb_result := (others => '0');
if cr_in(31 - crbit) = '1' then
setb_result := (others => '1');
elsif cr_in(30 - crbit) = '1' then
setb_result(0) := '1';
end if;
misc_result <= setb_result;
when others =>
misc_result <= (others => '0');
end case;
-- compute comparison results
-- Note, we have done RB - RA, not RA - RB
if e_in.insn_type = OP_CMP then
l := insn_l(e_in.insn);
else
l := not e_in.is_32bit;
end if;
zerolo := not (or (a_in(31 downto 0) xor b_in(31 downto 0)));
zerohi := not (or (a_in(63 downto 32) xor b_in(63 downto 32)));
if zerolo = '1' and (l = '0' or zerohi = '1') then
-- values are equal
trapval <= "00100";
else
a_lt_lo := '0';
a_lt_hi := '0';
if unsigned(a_in(30 downto 0)) < unsigned(b_in(30 downto 0)) then
a_lt_lo := '1';
end if;
if unsigned(a_in(62 downto 31)) < unsigned(b_in(62 downto 31)) then
a_lt_hi := '1';
end if;
if l = '1' then
-- 64-bit comparison
msb_a := a_in(63);
msb_b := b_in(63);
a_lt := a_lt_hi or (zerohi and (a_in(31) xnor b_in(31)) and a_lt_lo);
else
-- 32-bit comparison
msb_a := a_in(31);
msb_b := b_in(31);
a_lt := a_lt_lo;
end if;
if msb_a /= msb_b then
-- Comparison is clear from MSB difference.
-- for signed, 0 is greater; for unsigned, 1 is greater
trapval <= msb_a & msb_b & '0' & msb_b & msb_a;
else
-- MSBs are equal, so signed and unsigned comparisons give the
-- same answer.
trapval <= a_lt & not a_lt & '0' & a_lt & not a_lt;
end if;
end if;
-- CR result mux
bf := insn_bf(e_in.insn);
crnum := to_integer(unsigned(bf));
newcrf := (others => '0');
case current.sub_select is
when "000" =>
-- CMP and CMPL instructions
if e_in.is_signed = '1' then
newcrf := trapval(4 downto 2) & xerc_in.so;
else
newcrf := trapval(1 downto 0) & trapval(2) & xerc_in.so;
end if;
when "001" =>
newcrf := ppc_cmprb(a_in, b_in, insn_l(e_in.insn));
when "010" =>
newcrf := ppc_cmpeqb(a_in, b_in);
when "011" =>
if current.insn(1) = '1' then
-- CR logical instructions
j := (7 - crnum) * 4;
newcrf := cr_in(j + 3 downto j);
bt := insn_bt(e_in.insn);
ba := insn_ba(e_in.insn);
bb := insn_bb(e_in.insn);
btnum := 3 - to_integer(unsigned(bt(1 downto 0)));
banum := 31 - to_integer(unsigned(ba));
bbnum := 31 - to_integer(unsigned(bb));
-- Bits 6-9 of the instruction word give the truth table
-- of the requested logical operation
cr_operands := cr_in(banum) & cr_in(bbnum);
crresult := e_in.insn(6 + to_integer(unsigned(cr_operands)));
for i in 0 to 3 loop
if i = btnum then
newcrf(i) := crresult;
end if;
end loop;
else
-- MCRF
bfa := insn_bfa(e_in.insn);
scrnum := to_integer(unsigned(bfa));
j := (7 - scrnum) * 4;
newcrf := cr_in(j + 3 downto j);
end if;
when "100" =>
-- MCRXRX
newcrf := xerc_in.ov & xerc_in.ca & xerc_in.ov32 & xerc_in.ca32;
when others =>
end case;
if current.insn_type = OP_MTCRF then
if e_in.insn(20) = '0' then
-- mtcrf
write_cr_mask <= insn_fxm(e_in.insn);
else
-- mtocrf: We require one hot priority encoding here
crnum := fxm_to_num(insn_fxm(e_in.insn));
write_cr_mask <= num_to_fxm(crnum);
end if;
write_cr_data <= c_in(31 downto 0);
else
write_cr_mask <= num_to_fxm(crnum);
write_cr_data <= newcrf & newcrf & newcrf & newcrf &
newcrf & newcrf & newcrf & newcrf;
end if;
end process;
execute1_1: process(all)
variable v : reg_type;
variable lo, hi : integer;
variable sh, mb, me : std_ulogic_vector(5 downto 0);
variable bo, bi : std_ulogic_vector(4 downto 0);
variable overflow : std_ulogic;
variable lv : Execute1ToLoadstore1Type;
variable irq_valid : std_ulogic;
variable exception : std_ulogic;
variable illegal : std_ulogic;
variable is_branch : std_ulogic;
variable is_direct_branch : std_ulogic;
variable taken_branch : std_ulogic;
variable abs_branch : std_ulogic;
variable spr_val : std_ulogic_vector(63 downto 0);
variable do_trace : std_ulogic;
variable hold_wr_data : std_ulogic;
variable fv : Execute1ToFPUType;
begin
is_branch := '0';
is_direct_branch := '0';
taken_branch := '0';
abs_branch := '0';
hold_wr_data := '0';
v := r;
v.e := Execute1ToWritebackInit;
v.e.redir_mode := ctrl.msr(MSR_IR) & not ctrl.msr(MSR_PR) &
not ctrl.msr(MSR_LE) & not ctrl.msr(MSR_SF);
v.e.xerc := xerc_in;
lv := Execute1ToLoadstore1Init;
fv := Execute1ToFPUInit;
x_to_multiply.valid <= '0';
x_to_divider.valid <= '0';
v.mul_in_progress := '0';
v.div_in_progress := '0';
v.cntz_in_progress := '0';
v.mul_finish := '0';
spr_result <= (others => '0');
spr_val := (others => '0');
ctrl_tmp <= ctrl;
-- FIXME: run at 512MHz not core freq
ctrl_tmp.tb <= std_ulogic_vector(unsigned(ctrl.tb) + 1);
ctrl_tmp.dec <= std_ulogic_vector(unsigned(ctrl.dec) - 1);
irq_valid := '0';
if ctrl.msr(MSR_EE) = '1' then
if ctrl.dec(63) = '1' then
v.e.intr_vec := 16#900#;
report "IRQ valid: DEC";
irq_valid := '1';
elsif ext_irq_in = '1' then
v.e.intr_vec := 16#500#;
report "IRQ valid: External";
irq_valid := '1';
end if;
end if;
v.terminate := '0';
icache_inval <= '0';
v.busy := '0';
-- Next insn adder used in a couple of places
next_nia <= std_ulogic_vector(unsigned(e_in.nia) + 4);
-- rotator control signals
right_shift <= '1' when e_in.insn_type = OP_SHR else '0';
rot_clear_left <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCL else '0';
rot_clear_right <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCR else '0';
rot_sign_ext <= '1' when e_in.insn_type = OP_EXTSWSLI else '0';
v.e.srr1 := (others => '0');
exception := '0';
illegal := '0';
if valid_in = '1' then
v.e.last_nia := e_in.nia;
else
v.e.last_nia := r.e.last_nia;
end if;
v.e.mode_32bit := not ctrl.msr(MSR_SF);
v.e.instr_tag := current.instr_tag;
do_trace := valid_in and ctrl.msr(MSR_SE);
if valid_in = '1' then
v.prev_op := e_in.insn_type;
end if;
-- Determine if there is any exception to be taken
-- before/instead of executing this instruction
if valid_in = '1' and e_in.second = '0' and l_in.in_progress = '0' then
if HAS_FPU and r.fp_exception_next = '1' then
-- This is used for FP-type program interrupts that
-- become pending due to MSR[FE0,FE1] changing from 00 to non-zero.
exception := '1';
v.e.intr_vec := 16#700#;
v.e.srr1(47 - 43) := '1';
v.e.srr1(47 - 47) := '1';
elsif r.trace_next = '1' then
-- Generate a trace interrupt rather than executing the next instruction
-- or taking any asynchronous interrupt
exception := '1';
v.e.intr_vec := 16#d00#;
v.e.srr1(47 - 33) := '1';
if r.prev_op = OP_LOAD or r.prev_op = OP_ICBI or r.prev_op = OP_ICBT or
r.prev_op = OP_DCBT or r.prev_op = OP_DCBST or r.prev_op = OP_DCBF then
v.e.srr1(47 - 35) := '1';
elsif r.prev_op = OP_STORE or r.prev_op = OP_DCBZ or r.prev_op = OP_DCBTST then
v.e.srr1(47 - 36) := '1';
end if;
elsif irq_valid = '1' then
-- Don't deliver the interrupt until we have a valid instruction
-- coming in, so we have a valid NIA to put in SRR0.
exception := '1';
elsif ctrl.msr(MSR_PR) = '1' and instr_is_privileged(e_in.insn_type, e_in.insn) then
-- generate a program interrupt
exception := '1';
v.e.intr_vec := 16#700#;
-- set bit 45 to indicate privileged instruction type interrupt
v.e.srr1(47 - 45) := '1';
report "privileged instruction";
elsif not HAS_FPU and e_in.fac = FPU then
-- make lfd/stfd/lfs/stfs etc. illegal in no-FPU implementations
illegal := '1';
elsif HAS_FPU and ctrl.msr(MSR_FP) = '0' and e_in.fac = FPU then
-- generate a floating-point unavailable interrupt
exception := '1';
v.e.intr_vec := 16#800#;
report "FP unavailable interrupt";
end if;
end if;
if valid_in = '1' and exception = '0' and illegal = '0' and e_in.unit = ALU then
v.cur_instr := e_in;
v.e.valid := '1';
case_0: case e_in.insn_type is
when OP_ILLEGAL =>
-- we need two cycles to write srr0 and 1
-- will need more when we have to write HEIR
illegal := '1';
when OP_SC =>
-- check bit 1 of the instruction is 1 so we know this is sc;
-- 0 would mean scv, so generate an illegal instruction interrupt
-- we need two cycles to write srr0 and 1
if e_in.insn(1) = '1' then
exception := '1';
v.e.intr_vec := 16#C00#;
v.e.last_nia := next_nia;
report "sc";
else
illegal := '1';
end if;
when OP_ATTN =>
-- check bits 1-10 of the instruction to make sure it's attn
-- if not then it is illegal
if e_in.insn(10 downto 1) = "0100000000" then
v.terminate := '1';
report "ATTN";
else
illegal := '1';
end if;
when OP_NOP | OP_DCBF | OP_DCBST | OP_DCBT | OP_DCBTST | OP_ICBT =>
-- Do nothing
when OP_ADD =>
if e_in.output_carry = '1' then
if e_in.input_carry /= OV then
set_carry(v.e, carry_32, carry_64);
else
v.e.xerc.ov := carry_64;
v.e.xerc.ov32 := carry_32;
end if;
end if;
if e_in.oe = '1' then
set_ov(v.e, overflow_64, overflow_32);
end if;
when OP_CMP =>
when OP_TRAP =>
-- trap instructions (tw, twi, td, tdi)
v.e.intr_vec := 16#700#;
-- set bit 46 to say trap occurred
v.e.srr1(47 - 46) := '1';
if or (trapval and insn_to(e_in.insn)) = '1' then
-- generate trap-type program interrupt
exception := '1';
report "trap";
end if;
when OP_ADDG6S =>
when OP_CMPRB =>
when OP_CMPEQB =>
when OP_AND | OP_OR | OP_XOR | OP_POPCNT | OP_PRTY | OP_CMPB | OP_EXTS |
OP_BPERM | OP_BCD =>
when OP_B =>
is_branch := '1';
taken_branch := '1';
is_direct_branch := '1';
abs_branch := e_in.br_abs;
if ctrl.msr(MSR_BE) = '1' then
do_trace := '1';
end if;
when OP_BC | OP_BCREG =>
-- read_data1 is CTR
-- for OP_BCREG, read_data2 is target register (CTR, LR or TAR)
-- If this instruction updates both CTR and LR, then it is
-- doubled; the first instruction decrements CTR and determines
-- whether the branch is taken, and the second does the
-- redirect and the LR update.
bo := insn_bo(e_in.insn);
bi := insn_bi(e_in.insn);
if e_in.second = '0' then
taken_branch := ppc_bc_taken(bo, bi, cr_in, a_in);
else
taken_branch := r.br_taken;
end if;
v.br_taken := taken_branch;
abs_branch := e_in.br_abs;
if e_in.repeat = '0' or e_in.second = '1' then
is_branch := '1';
if e_in.insn_type = OP_BC then
is_direct_branch := '1';
end if;
if ctrl.msr(MSR_BE) = '1' then
do_trace := '1';
end if;
end if;
when OP_RFID =>
v.e.redir_mode := (a_in(MSR_IR) or a_in(MSR_PR)) & not a_in(MSR_PR) &
not a_in(MSR_LE) & not a_in(MSR_SF);
-- Can't use msr_copy here because the partial function MSR
-- bits should be left unchanged, not zeroed.
ctrl_tmp.msr(63 downto 31) <= a_in(63 downto 31);
ctrl_tmp.msr(26 downto 22) <= a_in(26 downto 22);
ctrl_tmp.msr(15 downto 0) <= a_in(15 downto 0);
if a_in(MSR_PR) = '1' then
ctrl_tmp.msr(MSR_EE) <= '1';
ctrl_tmp.msr(MSR_IR) <= '1';
ctrl_tmp.msr(MSR_DR) <= '1';
end if;
-- mark this as a branch so CFAR gets updated
is_branch := '1';
taken_branch := '1';
abs_branch := '1';
if HAS_FPU then
v.fp_exception_next := fp_in.exception and
(a_in(MSR_FE0) or a_in(MSR_FE1));
end if;
do_trace := '0';
when OP_CNTZ =>
v.e.valid := '0';
v.cntz_in_progress := '1';
v.busy := '1';
when OP_ISEL =>
when OP_CROP =>
when OP_MCRXRX =>
when OP_DARN =>
when OP_MFMSR =>
when OP_MFSPR =>
report "MFSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
"=" & to_hstring(a_in);
if is_fast_spr(e_in.read_reg1) = '1' then
spr_val := a_in;
if decode_spr_num(e_in.insn) = SPR_XER then
-- bits 0:31 and 35:43 are treated as reserved and return 0s when read using mfxer
spr_val(63 downto 32) := (others => '0');
spr_val(63-32) := xerc_in.so;
spr_val(63-33) := xerc_in.ov;
spr_val(63-34) := xerc_in.ca;
spr_val(63-35 downto 63-43) := "000000000";
spr_val(63-44) := xerc_in.ov32;
spr_val(63-45) := xerc_in.ca32;
end if;
else
spr_val := c_in;
case decode_spr_num(e_in.insn) is
when SPR_TB =>
spr_val := ctrl.tb;
when SPR_TBU =>
spr_val(63 downto 32) := (others => '0');
spr_val(31 downto 0) := ctrl.tb(63 downto 32);
when SPR_DEC =>
spr_val := ctrl.dec;
when SPR_CFAR =>
spr_val := ctrl.cfar;
when SPR_PVR =>
spr_val(63 downto 32) := (others => '0');
spr_val(31 downto 0) := PVR_MICROWATT;
when 724 => -- LOG_ADDR SPR
spr_val := log_wr_addr & r.log_addr_spr;
when 725 => -- LOG_DATA SPR
spr_val := log_rd_data;
v.log_addr_spr := std_ulogic_vector(unsigned(r.log_addr_spr) + 1);
when others =>
-- mfspr from unimplemented SPRs should be a nop in
-- supervisor mode and a program interrupt for user mode
if is_fast_spr(e_in.read_reg1) = '0' and ctrl.msr(MSR_PR) = '1' then
illegal := '1';
end if;
end case;
end if;
spr_result <= spr_val;
when OP_MFCR =>
when OP_MTCRF =>
when OP_MTMSRD =>
if e_in.insn(16) = '1' then
-- just update EE and RI
ctrl_tmp.msr(MSR_EE) <= c_in(MSR_EE);
ctrl_tmp.msr(MSR_RI) <= c_in(MSR_RI);
else
-- Architecture says to leave out bits 3 (HV), 51 (ME)
-- and 63 (LE) (IBM bit numbering)
if e_in.is_32bit = '0' then
ctrl_tmp.msr(63 downto 61) <= c_in(63 downto 61);
ctrl_tmp.msr(59 downto 32) <= c_in(59 downto 32);
end if;
ctrl_tmp.msr(31 downto 13) <= c_in(31 downto 13);
ctrl_tmp.msr(11 downto 1) <= c_in(11 downto 1);
if c_in(MSR_PR) = '1' then
ctrl_tmp.msr(MSR_EE) <= '1';
ctrl_tmp.msr(MSR_IR) <= '1';
ctrl_tmp.msr(MSR_DR) <= '1';
end if;
if HAS_FPU then
v.fp_exception_next := fp_in.exception and
(c_in(MSR_FE0) or c_in(MSR_FE1));
end if;
end if;
when OP_MTSPR =>
report "MTSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
"=" & to_hstring(c_in);
if is_fast_spr(e_in.write_reg) then
if decode_spr_num(e_in.insn) = SPR_XER then
v.e.xerc.so := c_in(63-32);
v.e.xerc.ov := c_in(63-33);
v.e.xerc.ca := c_in(63-34);
v.e.xerc.ov32 := c_in(63-44);
v.e.xerc.ca32 := c_in(63-45);
end if;
else
-- slow spr
case decode_spr_num(e_in.insn) is
when SPR_DEC =>
ctrl_tmp.dec <= c_in;
when 724 => -- LOG_ADDR SPR
v.log_addr_spr := c_in(31 downto 0);
when others =>
-- mtspr to unimplemented SPRs should be a nop in
-- supervisor mode and a program interrupt for user mode
if ctrl.msr(MSR_PR) = '1' then
illegal := '1';
end if;
end case;
end if;
when OP_RLC | OP_RLCL | OP_RLCR | OP_SHL | OP_SHR | OP_EXTSWSLI =>
if e_in.output_carry = '1' then
set_carry(v.e, rotator_carry, rotator_carry);
end if;
when OP_SETB =>
when OP_ISYNC =>
v.e.redirect := '1';
v.e.br_offset := std_ulogic_vector(to_unsigned(4, 64));
when OP_ICBI =>
icache_inval <= '1';
when OP_MUL_L64 | OP_MUL_H64 | OP_MUL_H32 =>
v.e.valid := '0';
v.mul_in_progress := '1';
v.busy := '1';
x_to_multiply.valid <= '1';
when OP_DIV | OP_DIVE | OP_MOD =>
v.e.valid := '0';
v.div_in_progress := '1';
v.busy := '1';
x_to_divider.valid <= '1';
when others =>
v.terminate := '1';
report "illegal";
end case;
-- Mispredicted branches cause a redirect
if is_branch = '1' then
if taken_branch = '1' then
ctrl_tmp.cfar <= e_in.nia;
end if;
if taken_branch = '1' then
v.e.br_offset := b_in;
v.e.abs_br := abs_branch;
else
v.e.br_offset := std_ulogic_vector(to_unsigned(4, 64));
end if;
if taken_branch /= e_in.br_pred then
v.e.redirect := '1';
end if;
v.e.br_last := is_direct_branch;
v.e.br_taken := taken_branch;
end if;
elsif valid_in = '1' and exception = '0' and illegal = '0' then
-- instruction for other units, i.e. LDST
if e_in.unit = LDST then
lv.valid := '1';
elsif e_in.unit = NONE then
illegal := '1';
elsif HAS_FPU and e_in.unit = FPU then
fv.valid := '1';
end if;
-- Handling an ITLB miss doesn't count as having executed an instruction
if e_in.insn_type = OP_FETCH_FAILED then
do_trace := '0';
end if;
end if;
-- The following cases all occur when r.busy = 1 and therefore
-- valid_in = 0. Hence they don't happen in the same cycle as any of
-- the cases above which depend on valid_in = 1.
if r.cntz_in_progress = '1' then
-- cnt[lt]z always takes two cycles
v.e.valid := '1';
elsif r.mul_in_progress = '1' or r.div_in_progress = '1' then
if (r.mul_in_progress = '1' and multiply_to_x.valid = '1') or
(r.div_in_progress = '1' and divider_to_x.valid = '1') then
if r.mul_in_progress = '1' then
overflow := '0';
else
overflow := divider_to_x.overflow;
end if;
if r.mul_in_progress = '1' and current.oe = '1' then
-- have to wait until next cycle for overflow indication
v.mul_finish := '1';
v.busy := '1';
else
-- We must test oe because the RC update code in writeback
-- will use the xerc value to set CR0:SO so we must not clobber
-- xerc if OE wasn't set.
if current.oe = '1' then
v.e.xerc.ov := overflow;
v.e.xerc.ov32 := overflow;
if overflow = '1' then
v.e.xerc.so := '1';
end if;
end if;
v.e.valid := '1';
end if;
else
v.busy := '1';
v.mul_in_progress := r.mul_in_progress;
v.div_in_progress := r.div_in_progress;
end if;
elsif r.mul_finish = '1' then
hold_wr_data := '1';
v.e.xerc.ov := multiply_to_x.overflow;
v.e.xerc.ov32 := multiply_to_x.overflow;
if multiply_to_x.overflow = '1' then
v.e.xerc.so := '1';
end if;
v.e.valid := '1';
end if;
if illegal = '1' then
exception := '1';
v.e.intr_vec := 16#700#;
-- Since we aren't doing Hypervisor emulation assist (0xe40) we
-- set bit 44 to indicate we have an illegal
v.e.srr1(47 - 44) := '1';
report "illegal";
end if;
v.e.interrupt := exception;
if do_trace = '1' then
v.trace_next := '1';
end if;
if interrupt_in = '1' then
ctrl_tmp.msr(MSR_SF) <= '1';
ctrl_tmp.msr(MSR_EE) <= '0';
ctrl_tmp.msr(MSR_PR) <= '0';
ctrl_tmp.msr(MSR_SE) <= '0';
ctrl_tmp.msr(MSR_BE) <= '0';
ctrl_tmp.msr(MSR_FP) <= '0';
ctrl_tmp.msr(MSR_FE0) <= '0';
ctrl_tmp.msr(MSR_FE1) <= '0';
ctrl_tmp.msr(MSR_IR) <= '0';
ctrl_tmp.msr(MSR_DR) <= '0';
ctrl_tmp.msr(MSR_RI) <= '0';
ctrl_tmp.msr(MSR_LE) <= '1';
v.trace_next := '0';
v.fp_exception_next := '0';
end if;
if hold_wr_data = '0' then
v.e.write_data := alu_result;
else
v.e.write_data := r.e.write_data;
end if;
v.e.write_reg := current.write_reg;
v.e.write_enable := current.write_reg_enable and v.e.valid and not exception;
v.e.rc := current.rc and v.e.valid and not exception;
v.e.write_cr_data := write_cr_data;
v.e.write_cr_mask := write_cr_mask;
v.e.write_cr_enable := current.output_cr and v.e.valid and not exception;
v.e.write_xerc_enable := current.output_xer and v.e.valid and not exception;
bypass_data.tag.valid <= current.instr_tag.valid and current.write_reg_enable and v.e.valid;
bypass_data.tag.tag <= current.instr_tag.tag;
bypass_data.data <= v.e.write_data;
bypass_cr_data.tag.valid <= current.instr_tag.valid and current.output_cr and v.e.valid;
bypass_cr_data.tag.tag <= current.instr_tag.tag;
for i in 0 to 7 loop
if v.e.write_cr_mask(i) = '1' then
bypass_cr_data.data(i*4 + 3 downto i*4) <= v.e.write_cr_data(i*4 + 3 downto i*4);
else
bypass_cr_data.data(i*4 + 3 downto i*4) <= cr_in(i*4 + 3 downto i*4);
end if;
end loop;
-- Outputs to loadstore1 (async)
lv.op := e_in.insn_type;
lv.nia := e_in.nia;
lv.instr_tag := e_in.instr_tag;
lv.addr1 := a_in;
lv.addr2 := b_in;
lv.data := c_in;
lv.write_reg := e_in.write_reg;
lv.length := e_in.data_len;
lv.byte_reverse := e_in.byte_reverse xnor ctrl.msr(MSR_LE);
lv.sign_extend := e_in.sign_extend;
lv.update := e_in.update;
lv.xerc := xerc_in;
lv.reserve := e_in.reserve;
lv.rc := e_in.rc;
lv.insn := e_in.insn;
-- decode l*cix and st*cix instructions here
if e_in.insn(31 downto 26) = "011111" and e_in.insn(10 downto 9) = "11" and
e_in.insn(5 downto 1) = "10101" then
lv.ci := '1';
end if;
lv.virt_mode := ctrl.msr(MSR_DR);
lv.priv_mode := not ctrl.msr(MSR_PR);
lv.mode_32bit := not ctrl.msr(MSR_SF);
lv.is_32bit := e_in.is_32bit;
lv.repeat := e_in.repeat;
lv.second := e_in.second;
-- Outputs to FPU
fv.op := e_in.insn_type;
fv.nia := e_in.nia;
fv.insn := e_in.insn;
fv.itag := e_in.instr_tag;
fv.single := e_in.is_32bit;
fv.fe_mode := ctrl.msr(MSR_FE0) & ctrl.msr(MSR_FE1);
fv.fra := a_in;
fv.frb := b_in;
fv.frc := c_in;
fv.frt := e_in.write_reg;
fv.rc := e_in.rc;
fv.out_cr := e_in.output_cr;
-- Update registers
rin <= v;
-- update outputs
l_out <= lv;
e_out <= r.e;
e_out.msr <= msr_copy(ctrl.msr);
fp_out <= fv;
exception_log <= exception;
irq_valid_log <= irq_valid;
end process;
e1_log: if LOG_LENGTH > 0 generate
signal log_data : std_ulogic_vector(14 downto 0);
begin
ex1_log : process(clk)
begin
if rising_edge(clk) then
log_data <= ctrl.msr(MSR_EE) & ctrl.msr(MSR_PR) &
ctrl.msr(MSR_IR) & ctrl.msr(MSR_DR) &
exception_log &
irq_valid_log &
interrupt_in &
"000" &
r.e.write_enable &
r.e.valid &
(r.e.redirect or r.e.interrupt) &
r.busy &
flush_in;
end if;
end process;
log_out <= log_data;
end generate;
end architecture behaviour;