forked from cores/microwatt
281 lines
9.7 KiB
VHDL
281 lines
9.7 KiB
VHDL
-- Xilinx internal JTAG to DMI interface
|
|
--
|
|
-- DMI bus
|
|
--
|
|
-- req : ____/------------\_____
|
|
-- addr: xxxx< >xxxxx
|
|
-- dout: xxxx< >xxxxx
|
|
-- wr : xxxx< >xxxxx
|
|
-- din : xxxxxxxxxxxx< >xxx
|
|
-- ack : ____________/------\___
|
|
--
|
|
-- * addr/dout set along with req, can be latched on same cycle by slave
|
|
-- * ack & din remain up until req is dropped by master, the slave must
|
|
-- provide a stable output on din on reads during that time.
|
|
-- * req remains low at until at least one sysclk after ack seen down.
|
|
--
|
|
-- JTAG (tck) DMI (sys_clk)
|
|
--
|
|
-- * jtag_req = 1
|
|
-- (jtag_req_0) *
|
|
-- (jtag_req_1) -> * dmi_req = 1 >
|
|
-- *.../...
|
|
-- * dmi_ack = 1 <
|
|
-- * (dmi_ack_0)
|
|
-- * <- (dmi_ack_1)
|
|
-- * jtag_req = 0 (and latch dmi_din)
|
|
-- (jtag_req_0) *
|
|
-- (jtag_req_1) -> * dmi_req = 0 >
|
|
-- * dmi_ack = 0 <
|
|
-- * (dmi_ack_0)
|
|
-- * <- (dmi_ack_1)
|
|
--
|
|
-- jtag_req can go back to 1 when jtag_rsp_1 is 0
|
|
--
|
|
-- Questions/TODO:
|
|
-- - I use 2 flip fops for sync, is that enough ?
|
|
-- - I treat the jtag_reset as an async reset, is that necessary ?
|
|
-- - Dbl check reset situation since we have two different resets
|
|
-- each only resetting part of the logic...
|
|
-- - Look at optionally removing the synchronizer on the ack path,
|
|
-- assuming JTAG is always slow enough that ack will have been
|
|
-- stable long enough by the time CAPTURE comes in.
|
|
-- - We could avoid the latched request by not shifting while a
|
|
-- request is in progress (and force TDO to 1 to return a busy
|
|
-- status).
|
|
--
|
|
-- WARNING: This isn't the real DMI JTAG protocol (at least not yet).
|
|
-- a command while busy will be ignored. A response of "11"
|
|
-- means the previous command is still going, try again.
|
|
-- As such We don't implement the DMI "error" status, and
|
|
-- we don't implement DTMCS yet... This may still all change
|
|
-- but for now it's easier that way as the real DMI protocol
|
|
-- requires for a command to work properly that enough TCK
|
|
-- are sent while IDLE and I'm having trouble getting that
|
|
-- working with UrJtag and the Xilinx BSCAN2 for now.
|
|
|
|
library ieee;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.math_real.all;
|
|
|
|
library work;
|
|
use work.wishbone_types.all;
|
|
|
|
library unisim;
|
|
use unisim.vcomponents.all;
|
|
|
|
entity dmi_dtm is
|
|
generic(ABITS : INTEGER:=8;
|
|
DBITS : INTEGER:=32);
|
|
|
|
port(sys_clk : in std_ulogic;
|
|
sys_reset : in std_ulogic;
|
|
dmi_addr : out std_ulogic_vector(ABITS - 1 downto 0);
|
|
dmi_din : in std_ulogic_vector(DBITS - 1 downto 0);
|
|
dmi_dout : out std_ulogic_vector(DBITS - 1 downto 0);
|
|
dmi_req : out std_ulogic;
|
|
dmi_wr : out std_ulogic;
|
|
dmi_ack : in std_ulogic
|
|
-- dmi_err : in std_ulogic TODO: Add error response
|
|
);
|
|
end entity dmi_dtm;
|
|
|
|
architecture behaviour of dmi_dtm is
|
|
|
|
-- Signals coming out of the BSCANE2 block
|
|
signal jtag_reset : std_ulogic;
|
|
signal capture : std_ulogic;
|
|
signal update : std_ulogic;
|
|
signal drck : std_ulogic;
|
|
signal jtag_clk : std_ulogic;
|
|
signal sel : std_ulogic;
|
|
signal shift : std_ulogic;
|
|
signal tdi : std_ulogic;
|
|
signal tdo : std_ulogic;
|
|
signal tck : std_ulogic;
|
|
|
|
-- ** JTAG clock domain **
|
|
|
|
-- Shift register
|
|
signal shiftr : std_ulogic_vector(ABITS + DBITS + 1 downto 0);
|
|
|
|
-- Latched request
|
|
signal request : std_ulogic_vector(ABITS + DBITS + 1 downto 0);
|
|
|
|
-- A request is present
|
|
signal jtag_req : std_ulogic;
|
|
|
|
-- Synchronizer for jtag_rsp (sys clk -> jtag_clk)
|
|
signal dmi_ack_0 : std_ulogic;
|
|
signal dmi_ack_1 : std_ulogic;
|
|
|
|
-- ** sys clock domain **
|
|
|
|
-- Synchronizer for jtag_req (jtag clk -> sys clk)
|
|
signal jtag_req_0 : std_ulogic;
|
|
signal jtag_req_1 : std_ulogic;
|
|
|
|
-- ** combination signals
|
|
signal jtag_bsy : std_ulogic;
|
|
signal op_valid : std_ulogic;
|
|
signal rsp_op : std_ulogic_vector(1 downto 0);
|
|
|
|
-- ** Constants **
|
|
constant DMI_REQ_NOP : std_ulogic_vector(1 downto 0) := "00";
|
|
constant DMI_REQ_RD : std_ulogic_vector(1 downto 0) := "01";
|
|
constant DMI_REQ_WR : std_ulogic_vector(1 downto 0) := "10";
|
|
constant DMI_RSP_OK : std_ulogic_vector(1 downto 0) := "00";
|
|
constant DMI_RSP_BSY : std_ulogic_vector(1 downto 0) := "11";
|
|
|
|
attribute ASYNC_REG : string;
|
|
attribute ASYNC_REG of jtag_req_0: signal is "TRUE";
|
|
attribute ASYNC_REG of jtag_req_1: signal is "TRUE";
|
|
attribute ASYNC_REG of dmi_ack_0: signal is "TRUE";
|
|
attribute ASYNC_REG of dmi_ack_1: signal is "TRUE";
|
|
begin
|
|
|
|
-- Implement the Xilinx bscan2 for series 7 devices (TODO: use PoC to
|
|
-- wrap this if compatibility is required with older devices).
|
|
bscan : BSCANE2
|
|
generic map (
|
|
JTAG_CHAIN => 2
|
|
)
|
|
port map (
|
|
CAPTURE => capture,
|
|
DRCK => drck,
|
|
RESET => jtag_reset,
|
|
RUNTEST => open,
|
|
SEL => sel,
|
|
SHIFT => shift,
|
|
TCK => tck,
|
|
TDI => tdi,
|
|
TMS => open,
|
|
UPDATE => update,
|
|
TDO => tdo
|
|
);
|
|
|
|
-- Some examples out there suggest buffering the clock so it's
|
|
-- treated as a proper clock net. This is probably needed when using
|
|
-- drck (the gated clock) but I'm using the real tck here to avoid
|
|
-- missing the update phase so maybe not...
|
|
--
|
|
clkbuf : BUFG
|
|
port map (
|
|
-- I => drck,
|
|
I => tck,
|
|
O => jtag_clk
|
|
);
|
|
|
|
-- dmi_req synchronization
|
|
dmi_req_sync : process(sys_clk)
|
|
begin
|
|
-- sys_reset is synchronous
|
|
if rising_edge(sys_clk) then
|
|
if (sys_reset = '1') then
|
|
jtag_req_0 <= '0';
|
|
jtag_req_1 <= '0';
|
|
else
|
|
jtag_req_0 <= jtag_req;
|
|
jtag_req_1 <= jtag_req_0;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
dmi_req <= jtag_req_1;
|
|
|
|
-- dmi_ack synchronization
|
|
dmi_ack_sync: process(jtag_clk, jtag_reset)
|
|
begin
|
|
-- jtag_reset is async (see comments)
|
|
if jtag_reset = '1' then
|
|
dmi_ack_0 <= '0';
|
|
dmi_ack_1 <= '0';
|
|
elsif rising_edge(jtag_clk) then
|
|
dmi_ack_0 <= dmi_ack;
|
|
dmi_ack_1 <= dmi_ack_0;
|
|
end if;
|
|
end process;
|
|
|
|
-- jtag_bsy indicates whether we can start a new request, we can when
|
|
-- we aren't already processing one (jtag_req) and the synchronized ack
|
|
-- of the previous one is 0.
|
|
--
|
|
jtag_bsy <= jtag_req or dmi_ack_1;
|
|
|
|
-- decode request type in shift register
|
|
with shiftr(1 downto 0) select op_valid <=
|
|
'1' when DMI_REQ_RD,
|
|
'1' when DMI_REQ_WR,
|
|
'0' when others;
|
|
|
|
-- encode response op
|
|
rsp_op <= DMI_RSP_BSY when jtag_bsy = '1' else DMI_RSP_OK;
|
|
|
|
-- Some DMI out signals are directly driven from the request register
|
|
dmi_addr <= request(ABITS + DBITS + 1 downto DBITS + 2);
|
|
dmi_dout <= request(DBITS + 1 downto 2);
|
|
dmi_wr <= '1' when request(1 downto 0) = DMI_REQ_WR else '0';
|
|
|
|
-- TDO is wired to shift register bit 0
|
|
tdo <= shiftr(0);
|
|
|
|
-- Main state machine. Handles shift registers, request latch and
|
|
-- jtag_req latch. Could be split into 3 processes but it's probably
|
|
-- not worthwhile.
|
|
--
|
|
shifter: process(jtag_clk, jtag_reset, sys_reset)
|
|
begin
|
|
if jtag_reset = '1' or sys_reset = '1' then
|
|
shiftr <= (others => '0');
|
|
jtag_req <= '0';
|
|
request <= (others => '0');
|
|
elsif rising_edge(jtag_clk) then
|
|
|
|
-- Handle jtag "commands" when sel is 1
|
|
if sel = '1' then
|
|
-- Shift state, rotate the register
|
|
if shift = '1' then
|
|
shiftr <= tdi & shiftr(ABITS + DBITS + 1 downto 1);
|
|
end if;
|
|
|
|
-- Update state (trigger)
|
|
--
|
|
-- Latch the request if we aren't already processing one and
|
|
-- it has a valid command opcode.
|
|
--
|
|
if update = '1' and op_valid = '1' then
|
|
if jtag_bsy = '0' then
|
|
request <= shiftr;
|
|
jtag_req <= '1';
|
|
end if;
|
|
-- Set the shift register "op" to "busy". This will prevent
|
|
-- us from re-starting the command on the next update if
|
|
-- the command completes before that.
|
|
shiftr(1 downto 0) <= DMI_RSP_BSY;
|
|
end if;
|
|
|
|
-- Request completion.
|
|
--
|
|
-- Capture the response data for reads and clear request flag.
|
|
--
|
|
-- Note: We clear req (and thus dmi_req) here which relies on tck
|
|
-- ticking and sel set. This means we are stuck with dmi_req up if
|
|
-- the jtag interface stops. Slaves must be resilient to this.
|
|
--
|
|
if jtag_req = '1' and dmi_ack_1 = '1' then
|
|
jtag_req <= '0';
|
|
if request(1 downto 0) = DMI_REQ_RD then
|
|
request(DBITS + 1 downto 2) <= dmi_din;
|
|
end if;
|
|
end if;
|
|
|
|
-- Capture state, grab latch content with updated status
|
|
if capture = '1' then
|
|
shiftr <= request(ABITS + DBITS + 1 downto 2) & rsp_op;
|
|
end if;
|
|
|
|
end if;
|
|
end if;
|
|
end process;
|
|
end architecture behaviour;
|
|
|