microwatt/cache_ram.vhdl

87 lines
2.1 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.math_real.all;
entity cache_ram is
generic(
ROW_BITS : integer := 16;
WIDTH : integer := 64;
TRACE : boolean := false;
ADD_BUF : boolean := false
);
port(
clk : in std_logic;
rd_en : in std_logic;
rd_addr : in std_logic_vector(ROW_BITS - 1 downto 0);
rd_data : out std_logic_vector(WIDTH - 1 downto 0);
wr_en : in std_logic;
wr_sel : in std_logic_vector(WIDTH/8 - 1 downto 0);
wr_addr : in std_logic_vector(ROW_BITS - 1 downto 0);
wr_data : in std_logic_vector(WIDTH - 1 downto 0)
);
end cache_ram;
architecture rtl of cache_ram is
constant SIZE : integer := 2**ROW_BITS;
type ram_type is array (0 to SIZE - 1) of std_logic_vector(WIDTH - 1 downto 0);
signal ram : ram_type;
attribute ram_style : string;
attribute ram_style of ram : signal is "block";
attribute ram_decomp : string;
attribute ram_decomp of ram : signal is "power";
signal rd_data0 : std_logic_vector(WIDTH - 1 downto 0);
begin
process(clk)
variable lbit : integer range 0 to WIDTH - 1;
variable mbit : integer range 0 to WIDTH - 1;
variable widx : integer range 0 to SIZE - 1;
begin
if rising_edge(clk) then
if wr_en = '1' then
if TRACE then
report "write a:" & to_hstring(wr_addr) &
" sel:" & to_hstring(wr_sel) &
" dat:" & to_hstring(wr_data);
end if;
for i in 0 to WIDTH/8-1 loop
lbit := i * 8;
mbit := lbit + 7;
widx := to_integer(unsigned(wr_addr));
if wr_sel(i) = '1' then
ram(widx)(mbit downto lbit) <= wr_data(mbit downto lbit);
end if;
end loop;
end if;
if rd_en = '1' then
rd_data0 <= ram(to_integer(unsigned(rd_addr)));
if TRACE then
report "read a:" & to_hstring(rd_addr) &
" dat:" & to_hstring(ram(to_integer(unsigned(rd_addr))));
end if;
end if;
end if;
end process;
buf: if ADD_BUF generate
begin
process(clk)
begin
if rising_edge(clk) then
rd_data <= rd_data0;
end if;
end process;
end generate;
nobuf: if not ADD_BUF generate
begin
rd_data <= rd_data0;
end generate;
end;