library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.math_real.all;
use std.textio.all;
use std.env.stop;

library work;
use work.common.all;
use work.wishbone_types.all;


-- Memory map. *** Keep include/microwatt_soc.h updated on changes ***
--
-- Main bus:
-- 0x00000000: Block RAM (MEMORY_SIZE) or DRAM depending on syscon
-- 0x40000000: DRAM (when present)
-- 0x80000000: Block RAM (aliased & repeated)

-- IO Bus:
-- 0xc0000000: SYSCON
-- 0xc0002000: UART0
-- 0xc0004000: XICS ICP
-- 0xc0006000: SPI Flash controller
-- 0xc0100000: LiteDRAM control (CSRs)
-- 0xf0000000: Flash "ROM" mapping
-- 0xff000000: DRAM init code (if any) or flash ROM

entity soc is
    generic (
	MEMORY_SIZE        : natural;
	RAM_INIT_FILE      : string;
	RESET_LOW          : boolean;
	CLK_FREQ           : positive;
	SIM                : boolean;
	DISABLE_FLATTEN_CORE : boolean := false;
	HAS_DRAM           : boolean  := false;
	DRAM_SIZE          : integer := 0;
        DRAM_INIT_SIZE     : integer := 0;
        HAS_SPI_FLASH      : boolean := false;
        SPI_FLASH_DLINES   : positive := 1;
        SPI_FLASH_OFFSET   : integer := 0;
        SPI_FLASH_DEF_CKDV : natural := 2;
        SPI_FLASH_DEF_QUAD : boolean := false;
        LOG_LENGTH         : natural := 512
	);
    port(
	rst          : in  std_ulogic;
	system_clk   : in  std_ulogic;

	-- DRAM controller signals
	wb_dram_in       : out wishbone_master_out;
	wb_dram_out      : in wishbone_slave_out;
	wb_dram_ctrl_in  : out wb_io_master_out;
	wb_dram_ctrl_out : in wb_io_slave_out;
	wb_dram_is_csr   : out std_ulogic;
	wb_dram_is_init  : out std_ulogic;

	-- UART0 signals:
	uart0_txd    : out std_ulogic;
	uart0_rxd    : in  std_ulogic;

        -- SPI Flash signals
        spi_flash_sck     : out std_ulogic;
        spi_flash_cs_n    : out std_ulogic;
        spi_flash_sdat_o  : out std_ulogic_vector(SPI_FLASH_DLINES-1 downto 0);
        spi_flash_sdat_oe : out std_ulogic_vector(SPI_FLASH_DLINES-1 downto 0);
        spi_flash_sdat_i  : in  std_ulogic_vector(SPI_FLASH_DLINES-1 downto 0);

	-- DRAM controller signals
	alt_reset    : in std_ulogic
	);
end entity soc;

architecture behaviour of soc is

    -- Wishbone master signals:
    signal wishbone_dcore_in  : wishbone_slave_out;
    signal wishbone_dcore_out : wishbone_master_out;
    signal wishbone_icore_in  : wishbone_slave_out;
    signal wishbone_icore_out : wishbone_master_out;
    signal wishbone_debug_in : wishbone_slave_out;
    signal wishbone_debug_out : wishbone_master_out;

    -- Arbiter array (ghdl doesnt' support assigning the array
    -- elements in the entity instantiation)
    constant NUM_WB_MASTERS : positive := 3;
    signal wb_masters_out : wishbone_master_out_vector(0 to NUM_WB_MASTERS-1);
    signal wb_masters_in  : wishbone_slave_out_vector(0 to NUM_WB_MASTERS-1);

    -- Wishbone master (output of arbiter):
    signal wb_master_in       : wishbone_slave_out;
    signal wb_master_out      : wishbone_master_out;

    -- Main "IO" bus, from main slave decoder to the latch
    signal wb_io_in     : wishbone_master_out;
    signal wb_io_out    : wishbone_slave_out;

    -- Secondary (smaller) IO bus after the IO bus latch
    signal wb_sio_out    : wb_io_master_out;
    signal wb_sio_in     : wb_io_slave_out;

    -- Syscon signals
    signal dram_at_0     : std_ulogic;
    signal do_core_reset    : std_ulogic;
    signal wb_syscon_in  : wb_io_master_out;
    signal wb_syscon_out : wb_io_slave_out;

    -- UART0 signals:
    signal wb_uart0_in   : wb_io_master_out;
    signal wb_uart0_out  : wb_io_slave_out;
    signal uart_dat8     : std_ulogic_vector(7 downto 0);

    -- SPI Flash controller signals:
    signal wb_spiflash_in     : wb_io_master_out;
    signal wb_spiflash_out    : wb_io_slave_out;
    signal wb_spiflash_is_reg : std_ulogic;
    signal wb_spiflash_is_map : std_ulogic;

    -- XICS0 signals:
    signal wb_xics0_in   : wb_io_master_out;
    signal wb_xics0_out  : wb_io_slave_out;
    signal int_level_in  : std_ulogic_vector(15 downto 0);

    signal core_ext_irq  : std_ulogic;

    -- Main memory signals:
    signal wb_bram_in     : wishbone_master_out;
    signal wb_bram_out    : wishbone_slave_out;

    -- DMI debug bus signals
    signal dmi_addr	: std_ulogic_vector(7 downto 0);
    signal dmi_din	: std_ulogic_vector(63 downto 0);
    signal dmi_dout	: std_ulogic_vector(63 downto 0);
    signal dmi_req	: std_ulogic;
    signal dmi_wr	: std_ulogic;
    signal dmi_ack	: std_ulogic;

    -- Per slave DMI signals
    signal dmi_wb_dout  : std_ulogic_vector(63 downto 0);
    signal dmi_wb_req   : std_ulogic;
    signal dmi_wb_ack   : std_ulogic;
    signal dmi_core_dout  : std_ulogic_vector(63 downto 0);
    signal dmi_core_req   : std_ulogic;
    signal dmi_core_ack   : std_ulogic;

    -- Delayed/latched resets and alt_reset
    signal rst_core    : std_ulogic := '1';
    signal rst_uart    : std_ulogic := '1';
    signal rst_xics    : std_ulogic := '1';
    signal rst_spi     : std_ulogic := '1';
    signal rst_bram    : std_ulogic := '1';
    signal rst_dtm     : std_ulogic := '1';
    signal rst_wbar    : std_ulogic := '1';
    signal rst_wbdb    : std_ulogic := '1';
    signal alt_reset_d : std_ulogic;

        -- IO branch split:
	type slave_io_type is (SLAVE_IO_SYSCON,
                               SLAVE_IO_UART,
                               SLAVE_IO_DRAM_INIT,
                               SLAVE_IO_DRAM_CSR,
                               SLAVE_IO_ICP_0,
                               SLAVE_IO_SPI_FLASH_REG,
                               SLAVE_IO_SPI_FLASH_MAP,
                               SLAVE_IO_NONE);
    signal slave_io_dbg : slave_io_type;
begin

    resets: process(system_clk)
    begin
        if rising_edge(system_clk) then
            rst_core    <= rst or do_core_reset;
            rst_uart    <= rst;
            rst_spi     <= rst;
            rst_xics    <= rst;
            rst_bram    <= rst;
            rst_dtm     <= rst;
            rst_wbar    <= rst;
            rst_wbdb    <= rst;
            alt_reset_d <= alt_reset;
        end if;
    end process;

    -- Processor core
    processor: entity work.core
	generic map(
	    SIM => SIM,
	    DISABLE_FLATTEN => DISABLE_FLATTEN_CORE,
	    ALT_RESET_ADDRESS => (23 downto 0 => '0', others => '1'),
            LOG_LENGTH => LOG_LENGTH
	    )
	port map(
	    clk => system_clk,
	    rst => rst_core,
	    alt_reset => alt_reset_d,
	    wishbone_insn_in => wishbone_icore_in,
	    wishbone_insn_out => wishbone_icore_out,
	    wishbone_data_in => wishbone_dcore_in,
	    wishbone_data_out => wishbone_dcore_out,
	    dmi_addr => dmi_addr(3 downto 0),
	    dmi_dout => dmi_core_dout,
	    dmi_din => dmi_dout,
	    dmi_wr => dmi_wr,
	    dmi_ack => dmi_core_ack,
	    dmi_req => dmi_core_req,
	    ext_irq => core_ext_irq
	    );

    -- Wishbone bus master arbiter & mux
    wb_masters_out <= (0 => wishbone_dcore_out,
		       1 => wishbone_icore_out,
		       2 => wishbone_debug_out);
    wishbone_dcore_in <= wb_masters_in(0);
    wishbone_icore_in <= wb_masters_in(1);
    wishbone_debug_in <= wb_masters_in(2);
    wishbone_arbiter_0: entity work.wishbone_arbiter
	generic map(
	    NUM_MASTERS => NUM_WB_MASTERS
	    )
	port map(
	    clk => system_clk,
            rst => rst_wbar,
	    wb_masters_in => wb_masters_out,
	    wb_masters_out => wb_masters_in,
	    wb_slave_out => wb_master_out,
	    wb_slave_in => wb_master_in
	    );

    -- Top level Wishbone slaves address decoder & mux
    --
    -- From CPU to BRAM, DRAM, IO, selected on top 3 bits and dram_at_0
    -- 0000  - BRAM
    -- 0001  - DRAM
    -- 01xx  - DRAM
    -- 10xx  - BRAM
    -- 11xx  - IO
    --
    slave_top_intercon: process(wb_master_out, wb_bram_out, wb_dram_out, wb_io_out, dram_at_0)
	type slave_top_type is (SLAVE_TOP_BRAM,
                                SLAVE_TOP_DRAM,
                                SLAVE_TOP_IO);
	variable slave_top : slave_top_type;
        variable top_decode : std_ulogic_vector(3 downto 0);
    begin
	-- Top-level address decoder
        top_decode := wb_master_out.adr(31 downto 29) & dram_at_0;
        slave_top := SLAVE_TOP_BRAM;
	if    std_match(top_decode, "0000") then
	    slave_top := SLAVE_TOP_BRAM;
	elsif std_match(top_decode, "0001") then
	    slave_top := SLAVE_TOP_DRAM;
	elsif std_match(top_decode, "01--") then
	    slave_top := SLAVE_TOP_DRAM;
	elsif std_match(top_decode, "10--") then
	    slave_top := SLAVE_TOP_BRAM;
	elsif std_match(top_decode, "11--") then
	    slave_top := SLAVE_TOP_IO;
	end if;

	-- Top level wishbone muxing.
	wb_bram_in <= wb_master_out;
	wb_bram_in.cyc  <= '0';
	wb_dram_in <= wb_master_out;
	wb_dram_in.cyc  <= '0';
	wb_io_in <= wb_master_out;
	wb_io_in.cyc  <= '0';
	case slave_top is
	when SLAVE_TOP_BRAM =>
	    wb_bram_in.cyc <= wb_master_out.cyc;
	    wb_master_in <= wb_bram_out;
	when SLAVE_TOP_DRAM =>
	    wb_dram_in.cyc <= wb_master_out.cyc;
	    wb_master_in <= wb_dram_out;
	when SLAVE_TOP_IO =>
	    wb_io_in.cyc <= wb_master_out.cyc;
	    wb_master_in <= wb_io_out;
	end case;
    end process slave_top_intercon;

    -- IO wishbone slave 64->32 bits converter
    --
    -- For timing reasons, this adds a one cycle latch on the way both
    -- in and out. This relaxes timing and routing pressure on the "main"
    -- memory bus by moving all simple IOs to a slower 32-bit bus.
    --
    -- This implementation is rather dumb at the moment, no stash buffer,
    -- so we stall whenever that latch is busy. This can be improved.
    --
    slave_io_latch: process(system_clk)
        -- State
        type state_t is (IDLE, WAIT_ACK_BOT, WAIT_ACK_TOP);
        variable state : state_t;

        -- Misc
        variable has_top : boolean;
        variable has_bot : boolean;
    begin
        if rising_edge(system_clk) then
            if (rst) then
                state := IDLE;
                wb_io_out.ack <= '0';
                wb_io_out.stall <= '0';
                wb_sio_out.cyc <= '0';
                wb_sio_out.stb <= '0';
                has_top := false;
                has_bot := false;
            else
                case state is
                when IDLE =>
                    -- Clear ACK in case it was set
                    wb_io_out.ack <= '0';

                    -- Do we have a cycle ?
                    if wb_io_in.cyc = '1' and wb_io_in.stb = '1' then
                        -- Stall master until we are done, we are't (yet) pipelining
                        -- this, it's all slow IOs.
                        wb_io_out.stall <= '1';

                        -- Start cycle downstream
                        wb_sio_out.cyc <= '1';
                        wb_sio_out.stb <= '1';

                        -- Copy write enable to IO out, copy address as well
                        wb_sio_out.we <= wb_io_in.we;
                        wb_sio_out.adr <= wb_io_in.adr(wb_sio_out.adr'left downto 3) & "000";

                        -- Do we have a top word and/or a bottom word ?
                        has_top := wb_io_in.sel(7 downto 4) /= "0000";
                        has_bot := wb_io_in.sel(3 downto 0) /= "0000";

                        -- If we have a bottom word, handle it first, otherwise
                        -- send the top word down. XXX Split the actual mux out
                        -- and only generate a control signal.
                        if has_bot then
                            if wb_io_in.we = '1' then
                                wb_sio_out.dat <= wb_io_in.dat(31 downto 0);
                            end if;
                            wb_sio_out.sel <= wb_io_in.sel(3 downto 0);

                            -- Wait for ack
                            state := WAIT_ACK_BOT;
                        else
                            if wb_io_in.we = '1' then
                                wb_sio_out.dat <= wb_io_in.dat(63 downto 32);
                            end if;
                            wb_sio_out.sel <= wb_io_in.sel(7 downto 4);

                            -- Bump address
                            wb_sio_out.adr(2) <= '1';

                            -- Wait for ack
                            state := WAIT_ACK_TOP;
                        end if;
                    end if;
                when WAIT_ACK_BOT =>
                    -- If we aren't stalled by the device, clear stb
                    if wb_sio_in.stall = '0' then
                        wb_sio_out.stb <= '0';
                    end if;

                    -- Handle ack
                    if wb_sio_in.ack = '1' then
                        -- If it's a read, latch the data
                        if wb_sio_out.we = '0' then
                            wb_io_out.dat(31 downto 0) <= wb_sio_in.dat;
                        end if;

                        -- Do we have a "top" part as well ?
                        if has_top then
                            -- Latch data & sel
                            if wb_io_in.we = '1' then
                                wb_sio_out.dat <= wb_io_in.dat(63 downto 32);
                            end if;
                            wb_sio_out.sel <= wb_io_in.sel(7 downto 4);

                            -- Bump address and set STB
                            wb_sio_out.adr(2) <= '1';
                            wb_sio_out.stb <= '1';

                            -- Wait for new ack
                            state := WAIT_ACK_TOP;
                        else
                            -- We are done, ack up, clear cyc downstram
                            wb_sio_out.cyc <= '0';

                            -- And ack & unstall upstream
                            wb_io_out.ack <= '1';
                            wb_io_out.stall <= '0';

                            -- Wait for next one
                            state := IDLE;
                        end if;
                    end if;
                when WAIT_ACK_TOP =>
                    -- If we aren't stalled by the device, clear stb
                    if wb_sio_in.stall = '0' then
                        wb_sio_out.stb <= '0';
                    end if;

                    -- Handle ack
                    if wb_sio_in.ack = '1' then
                        -- If it's a read, latch the data
                        if wb_sio_out.we = '0' then
                            wb_io_out.dat(63 downto 32) <= wb_sio_in.dat;
                        end if;

                        -- We are done, ack up, clear cyc downstram
                        wb_sio_out.cyc <= '0';

                        -- And ack & unstall upstream
                        wb_io_out.ack <= '1';
                        wb_io_out.stall <= '0';

                        -- Wait for next one
                        state := IDLE;
                    end if;
                end case;
            end if;
        end if;
    end process;
            
    -- IO wishbone slave intercon.
    --
    slave_io_intercon: process(wb_sio_out, wb_syscon_out, wb_uart0_out,
                               wb_dram_ctrl_out, wb_xics0_out, wb_spiflash_out)
	variable slave_io : slave_io_type;

        variable match : std_ulogic_vector(31 downto 12);
    begin

	-- Simple address decoder.
	slave_io := SLAVE_IO_NONE;
        match := "11" & wb_sio_out.adr(29 downto 12);
        if    std_match(match, x"FF---") and HAS_DRAM then
	    slave_io := SLAVE_IO_DRAM_INIT;
        elsif std_match(match, x"F----") then
	    slave_io := SLAVE_IO_SPI_FLASH_MAP;
	elsif std_match(match, x"C0000") then
	    slave_io := SLAVE_IO_SYSCON;
	elsif std_match(match, x"C0002") then
	    slave_io := SLAVE_IO_UART;
	elsif std_match(match, x"C01--") then
	    slave_io := SLAVE_IO_DRAM_CSR;
	elsif std_match(match, x"C0004") then
	    slave_io := SLAVE_IO_ICP_0;
	elsif std_match(match, x"C0006") then
	    slave_io := SLAVE_IO_SPI_FLASH_REG;
	end if;
        slave_io_dbg <= slave_io;
	wb_uart0_in <= wb_sio_out;
	wb_uart0_in.cyc <= '0';
	wb_spiflash_in <= wb_sio_out;
	wb_spiflash_in.cyc <= '0';
        wb_spiflash_is_reg <= '0';
        wb_spiflash_is_map <= '0';

	 -- Only give xics 8 bits of wb addr
	wb_xics0_in <= wb_sio_out;
	wb_xics0_in.adr <= (others => '0');
	wb_xics0_in.adr(7 downto 0) <= wb_sio_out.adr(7 downto 0);
	wb_xics0_in.cyc  <= '0';

	wb_dram_ctrl_in <= wb_sio_out;
	wb_dram_ctrl_in.cyc <= '0';
	wb_dram_is_csr <= '0';
	wb_dram_is_init <= '0';

	wb_syscon_in <= wb_sio_out;
	wb_syscon_in.cyc <= '0';

	case slave_io is
	when SLAVE_IO_DRAM_INIT =>
	    wb_dram_ctrl_in.cyc <= wb_sio_out.cyc;
	    wb_sio_in <= wb_dram_ctrl_out;
	    wb_dram_is_init <= '1';
	when SLAVE_IO_DRAM_CSR =>
	    wb_dram_ctrl_in.cyc <= wb_sio_out.cyc;
	    wb_sio_in <= wb_dram_ctrl_out;
	    wb_dram_is_csr <= '1';
	when SLAVE_IO_SYSCON =>
	    wb_syscon_in.cyc <= wb_sio_out.cyc;
	    wb_sio_in <= wb_syscon_out;
	when SLAVE_IO_UART =>
	    wb_uart0_in.cyc <= wb_sio_out.cyc;
	    wb_sio_in <= wb_uart0_out;
	when SLAVE_IO_ICP_0 =>
	    wb_xics0_in.cyc <= wb_sio_out.cyc;
	    wb_sio_in <= wb_xics0_out;
	when SLAVE_IO_SPI_FLASH_MAP =>
            -- Clear top bits so they don't make their way to the
            -- fash chip.
            wb_spiflash_in.adr(29 downto 28) <= "00";
	    wb_spiflash_in.cyc <= wb_sio_out.cyc;
	    wb_sio_in <= wb_spiflash_out;
            wb_spiflash_is_map <= '1';
	when SLAVE_IO_SPI_FLASH_REG =>
	    wb_spiflash_in.cyc <= wb_sio_out.cyc;
	    wb_sio_in <= wb_spiflash_out;
            wb_spiflash_is_reg <= '1';
	when others =>
	    wb_sio_in.dat <= (others => '1');
	    wb_sio_in.ack <= wb_sio_out.stb and wb_sio_out.cyc;
	    wb_sio_in.stall <= '0';
	end case;

    end process;

    -- Syscon slave
    syscon0: entity work.syscon
	generic map(
	    HAS_UART => true,
	    HAS_DRAM => HAS_DRAM,
	    BRAM_SIZE => MEMORY_SIZE,
	    DRAM_SIZE => DRAM_SIZE,
	    DRAM_INIT_SIZE => DRAM_INIT_SIZE,
	    CLK_FREQ => CLK_FREQ,
	    HAS_SPI_FLASH => HAS_SPI_FLASH,
	    SPI_FLASH_OFFSET => SPI_FLASH_OFFSET
	)
	port map(
	    clk => system_clk,
	    rst => rst,
	    wishbone_in => wb_syscon_in,
	    wishbone_out => wb_syscon_out,
	    dram_at_0 => dram_at_0,
	    core_reset => do_core_reset,
	    soc_reset => open -- XXX TODO
	    );

    -- Simulated memory and UART

    -- UART0 wishbone slave
    uart0: entity work.pp_soc_uart
	generic map(
	    FIFO_DEPTH => 32
	    )
	port map(
	    clk => system_clk,
	    reset => rst_uart,
	    txd => uart0_txd,
	    rxd => uart0_rxd,
	    irq => int_level_in(0),
	    wb_adr_in => wb_uart0_in.adr(11 downto 0),
	    wb_dat_in => wb_uart0_in.dat(7 downto 0),
	    wb_dat_out => uart_dat8,
	    wb_cyc_in => wb_uart0_in.cyc,
	    wb_stb_in => wb_uart0_in.stb,
	    wb_we_in => wb_uart0_in.we,
	    wb_ack_out => wb_uart0_out.ack
	    );
    wb_uart0_out.dat <= x"000000" & uart_dat8;
    wb_uart0_out.stall <= not wb_uart0_out.ack;

    spiflash_gen: if HAS_SPI_FLASH generate        
        spiflash: entity work.spi_flash_ctrl
            generic map (
                DATA_LINES    => SPI_FLASH_DLINES,
                DEF_CLK_DIV   => SPI_FLASH_DEF_CKDV,
                DEF_QUAD_READ => SPI_FLASH_DEF_QUAD
                )
            port map(
                rst => rst_spi,
                clk => system_clk,
                wb_in => wb_spiflash_in,
                wb_out => wb_spiflash_out,
                wb_sel_reg => wb_spiflash_is_reg,
                wb_sel_map => wb_spiflash_is_map,
                sck => spi_flash_sck,
                cs_n => spi_flash_cs_n,
                sdat_o => spi_flash_sdat_o,
                sdat_oe => spi_flash_sdat_oe,
                sdat_i => spi_flash_sdat_i
                );
    end generate;

    no_spi0_gen: if not HAS_SPI_FLASH generate        
        wb_spiflash_out.dat   <= (others => '1');
        wb_spiflash_out.ack   <= wb_spiflash_in.cyc and wb_spiflash_in.stb;
        wb_spiflash_out.stall <= wb_spiflash_in.cyc and not wb_spiflash_out.ack;
    end generate;

    xics0: entity work.xics
	generic map(
	    LEVEL_NUM => 16
	    )
	port map(
	    clk => system_clk,
	    rst => rst_xics,
	    wb_in => wb_xics0_in,
	    wb_out => wb_xics0_out,
	    int_level_in => int_level_in,
	    core_irq_out => core_ext_irq
	    );

    -- BRAM Memory slave
    bram: if MEMORY_SIZE /= 0 generate
        bram0: entity work.wishbone_bram_wrapper
            generic map(
                MEMORY_SIZE   => MEMORY_SIZE,
                RAM_INIT_FILE => RAM_INIT_FILE
                )
            port map(
                clk => system_clk,
                rst => rst_bram,
                wishbone_in => wb_bram_in,
                wishbone_out => wb_bram_out
                );
    end generate;

    no_bram: if MEMORY_SIZE = 0 generate
        wb_bram_out.ack <= wb_bram_in.cyc and wb_bram_in.stb;
        wb_bram_out.dat <= x"FFFFFFFFFFFFFFFF";
        wb_bram_out.stall <= not wb_bram_out.ack;
    end generate;

    -- DMI(debug bus) <-> JTAG bridge
    dtm: entity work.dmi_dtm
	generic map(
	    ABITS => 8,
	    DBITS => 64
	    )
	port map(
	    sys_clk	=> system_clk,
	    sys_reset	=> rst_dtm,
	    dmi_addr	=> dmi_addr,
	    dmi_din	=> dmi_din,
	    dmi_dout	=> dmi_dout,
	    dmi_req	=> dmi_req,
	    dmi_wr	=> dmi_wr,
	    dmi_ack	=> dmi_ack
	    );

    -- DMI interconnect
    dmi_intercon: process(dmi_addr, dmi_req,
			  dmi_wb_ack, dmi_wb_dout,
			  dmi_core_ack, dmi_core_dout)

	-- DMI address map (each address is a full 64-bit register)
	--
	-- Offset:   Size:    Slave:
	--  0         4       Wishbone
	-- 10        16       Core

	type slave_type is (SLAVE_WB,
			    SLAVE_CORE,
			    SLAVE_NONE);
	variable slave : slave_type;
    begin
	-- Simple address decoder
	slave := SLAVE_NONE;
	if std_match(dmi_addr, "000000--") then
	    slave := SLAVE_WB;
	elsif std_match(dmi_addr, "0001----") then
	    slave := SLAVE_CORE;
	end if;

	-- DMI muxing
	dmi_wb_req <= '0';
	dmi_core_req <= '0';
	case slave is
	when SLAVE_WB =>
	    dmi_wb_req <= dmi_req;
	    dmi_ack <= dmi_wb_ack;
	    dmi_din <= dmi_wb_dout;
	when SLAVE_CORE =>
	    dmi_core_req <= dmi_req;
	    dmi_ack <= dmi_core_ack;
	    dmi_din <= dmi_core_dout;
	when others =>
	    dmi_ack <= dmi_req;
	    dmi_din <= (others => '1');
	end case;

	-- SIM magic exit
	if SIM and dmi_req = '1' and dmi_addr = "11111111" and dmi_wr = '1' then
	    stop;
	end if;
    end process;

    -- Wishbone debug master (TODO: Add a DMI address decoder)
    wishbone_debug: entity work.wishbone_debug_master
	port map(clk => system_clk,
                 rst => rst_wbdb,
		 dmi_addr => dmi_addr(1 downto 0),
		 dmi_dout => dmi_wb_dout,
		 dmi_din => dmi_dout,
		 dmi_wr => dmi_wr,
		 dmi_ack => dmi_wb_ack,
		 dmi_req => dmi_wb_req,
		 wb_in => wishbone_debug_in,
		 wb_out => wishbone_debug_out);


end architecture behaviour;