You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

233 lines
12 KiB
Verilog

3 years ago
// © IBM Corp. 2020
// Licensed under the Apache License, Version 2.0 (the "License"), as modified by
// the terms below; you may not use the files in this repository except in
// compliance with the License as modified.
// You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
//
// Modified Terms:
//
// 1) For the purpose of the patent license granted to you in Section 3 of the
// License, the "Work" hereby includes implementations of the work of authorship
// in physical form.
//
// 2) Notwithstanding any terms to the contrary in the License, any licenses
// necessary for implementation of the Work that are available from OpenPOWER
// via the Power ISA End User License Agreement (EULA) are explicitly excluded
// hereunder, and may be obtained from OpenPOWER under the terms and conditions
// of the EULA.
//
// Unless required by applicable law or agreed to in writing, the reference design
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License
// for the specific language governing permissions and limitations under the License.
//
// Additional rights, including the ability to physically implement a softcore that
// is compliant with the required sections of the Power ISA Specification, are
// available at no cost under the terms of the OpenPOWER Power ISA EULA, which can be
// obtained (along with the Power ISA) here: https://openpowerfoundation.org.
`timescale 1 ns / 1 ns
// VHDL 1076 Macro Expander C version 07/11/00
// job was run on Fri Mar 25 11:38:23 2011
//********************************************************************
//*
//* TITLE: IU Branch Decode
//*
//* NAME: iuq_bd.vhdl
//*
//*********************************************************************
module iuq_bd(
instruction,
instruction_next,
branch_decode,
bp_bc_en,
bp_bclr_en,
bp_bcctr_en,
bp_sw_en
);
//parameter `GPR_WIDTH = 64;
`include "tri_a2o.vh"
(* analysis_not_referenced="<12:20>true" *)
input [0:31] instruction;
(* analysis_not_referenced="<6:7>,<9:10>,<14:20>,<31>true" *)
input [0:31] instruction_next;
output [0:3] branch_decode;
input bp_bc_en;
input bp_bclr_en;
input bp_bcctr_en;
input bp_sw_en;
wire [1:12] MICROCODE_PT;
wire core64;
wire to_uc;
//architecture iuq_bd of iuq_bd is
wire b;
wire bc;
wire bclr;
wire bcctr;
wire bctar;
wire br_val;
wire [0:4] bo;
wire hint;
wire hint_val;
wire cmpi;
wire cmpli;
wire cmp;
wire cmpl;
wire [0:2] bf;
wire next_bc;
wire next_bclr;
wire next_bcctr;
wire next_bctar;
wire [0:2] next_bi;
wire next_ctr;
wire fuse_val;
//@@ START OF EXECUTABLE CODE FOR IUQ_BD
//begin
assign b = instruction[0:5] == 6'b010010;
assign bc = bp_bc_en & instruction[0:5] == 6'b010000;
assign bclr = bp_bclr_en & instruction[0:5] == 6'b010011 & instruction[21:30] == 10'b0000010000;
assign bcctr = bp_bcctr_en & instruction[0:5] == 6'b010011 & instruction[21:30] == 10'b1000010000;
assign bctar = bp_bcctr_en & instruction[0:5] == 6'b010011 & instruction[21:30] == 10'b1000110000;
assign br_val = b | bc | bclr | bcctr | bctar;
assign bo[0:4] = instruction[6:10];
assign hint_val = (bo[0] & bo[2]) | (bp_sw_en & ((bo[0] == 1'b0 & bo[2] == 1'b1 & bo[3] == 1'b1) | (bo[0] == 1'b1 & bo[2] == 1'b0 & bo[1] == 1'b1)));
assign hint = (bo[0] & bo[2]) | bo[4];
assign branch_decode[0:3] = {br_val, (b | to_uc), ((br_val & hint_val) | fuse_val), hint};
//------------------
// fusion predecode
//------------------
assign cmpi = instruction[0:5] == 6'b001011;
assign cmpli = instruction[0:5] == 6'b001010;
assign cmp = instruction[0:5] == 6'b011111 & instruction[21:30] == 10'b0000000000;
assign cmpl = instruction[0:5] == 6'b011111 & instruction[21:30] == 10'b0000100000;
assign bf[0:2] = instruction[6:8];
assign next_bc = instruction_next[0:5] == 6'b010000;
assign next_bclr = instruction_next[0:5] == 6'b010011 & instruction_next[21:30] == 10'b0000010000;
assign next_bcctr = instruction_next[0:5] == 6'b010011 & instruction_next[21:30] == 10'b1000010000;
assign next_bctar = instruction_next[0:5] == 6'b010011 & instruction_next[21:30] == 10'b1000110000;
assign next_bi[0:2] = instruction_next[11:13];
assign next_ctr = instruction_next[8] == 1'b0;
//remove update LR cases for now
assign fuse_val = (bf[0:2] == next_bi[0:2]) & (((cmpi | cmpli) & (next_bc | next_bcctr | ((next_bclr | next_bctar) & (~next_ctr)))) | ((cmp | cmpl) & (((next_bc) & (~next_ctr)))));
//------------------
// ucode predecode
//------------------
//64-bit core
generate
if (`GPR_WIDTH == 64)
begin : c64
assign core64 = 1'b1;
end
endgenerate
//32-bit core
generate
if (`GPR_WIDTH == 32)
begin : c32
assign core64 = 1'b0;
end
endgenerate
/*
//table_start
?TABLE microcode LISTING(final) OPTIMIZE PARMS(ON-SET,DC-SET);
*INPUTS*=====================*OUTPUTS*==*
| | |
| core64 | |
| | | |
| | instruction | to_uc |
| | | instruction | | |
| | | | instruction | | |
| | | | | | | |
| | | 1 22222222233 | | |
| | 012345 1 12345678901 | | |
*TYPE*=======================+==========+
| S PPPPPP P PPPPPPPPPPP | S |
*TERMS*======================+==========+
| . 100011 . ........... | 1 | lbzu
| . 011111 . 0001110111. | 1 | lbzux
| 1 111010 . .........01 | 1 | ldu
| 1 011111 . 0000110101. | 1 | ldux
| . 101011 . ........... | 1 | lhau
| . 011111 . 0101110111. | 1 | lhaux
| . 101001 . ........... | 1 | lhzu
| . 011111 . 0100110111. | 1 | lhzux
| . 101110 . ........... | 1 | lmw
| . 011111 . 1001010101. | 1 | lswi
| . 011111 . 1000010101. | 1 | lswx
| 1 011111 . 0101110101. | 1 | lwaux
| . 100001 . ........... | 1 | lwzu
| . 011111 . 0000110111. | 1 | lwzux
| . 110001 . ........... | 1 | lfsu
| . 011111 . 1000110111. | 1 | lfsux
| . 110011 . ........... | 1 | lfdu
| . 011111 . 1001110111. | 1 | lfdux
| . 011111 . 1000000000. | 1 | mcrxr
| . 011111 0 0000010011. | 1 | mfcr
| . 011111 0 0010010000. | 1 | mtcrf
| . 101111 . ........... | 1 | stmw
| . 011111 . 1011010101. | 1 | stswi
| . 011111 . 1010010101. | 1 | stswx
*END*========================+==========+
?TABLE END microcode ;
//table_end
*/
//assign_start
//
// Final Table Listing
// *INPUTS*=====================*OUTPUTS*==*
// | | |
// | core64 | |
// | | | |
// | | instruction | to_uc |
// | | | instruction | | |
// | | | | instruction | | |
// | | | | | | | |
// | | | 1 22222222233 | | |
// | | 012345 1 12345678901 | | |
// *TYPE*=======================+==========+
// | S PPPPPP P PPPPPPPPPPP | S |
// *POLARITY*------------------>| + |
// *PHASE*--------------------->| T |
// *TERMS*======================+==========+
// 1 | - 011111 0 0010010000- | 1 |
// 2 | - 011111 - 1000000000- | 1 |
// 3 | 1 011111 - 01011101-1- | 1 |
// 4 | - 011111 0 0000010011- | 1 |
// 5 | 1 011111 - 00001101-1- | 1 |
// 6 | - 011111 - 10--010101- | 1 |
// 7 | - 011111 - 0-0-110111- | 1 |
// 8 | - 011111 - -00-110111- | 1 |
// 9 | 1 111010 - ---------01 | 1 |
// 10 | - 1-00-1 - ----------- | 1 |
// 11 | - 10-0-1 - ----------- | 1 |
// 12 | - 10111- - ----------- | 1 |
// *=======================================*
//
// Table MICROCODE Signal Assignments for Product Terms
assign MICROCODE_PT[1] = (({instruction[0], instruction[1], instruction[2], instruction[3], instruction[4], instruction[5], instruction[11], instruction[21], instruction[22], instruction[23], instruction[24], instruction[25], instruction[26], instruction[27], instruction[28], instruction[29], instruction[30]}) === 17'b01111100010010000);
assign MICROCODE_PT[2] = (({instruction[0], instruction[1], instruction[2], instruction[3], instruction[4], instruction[5], instruction[21], instruction[22], instruction[23], instruction[24], instruction[25], instruction[26], instruction[27], instruction[28], instruction[29], instruction[30]}) === 16'b0111111000000000);
assign MICROCODE_PT[3] = (({core64, instruction[0], instruction[1], instruction[2], instruction[3], instruction[4], instruction[5], instruction[21], instruction[22], instruction[23], instruction[24], instruction[25], instruction[26], instruction[27], instruction[28], instruction[30]}) === 16'b1011111010111011);
assign MICROCODE_PT[4] = (({instruction[0], instruction[1], instruction[2], instruction[3], instruction[4], instruction[5], instruction[11], instruction[21], instruction[22], instruction[23], instruction[24], instruction[25], instruction[26], instruction[27], instruction[28], instruction[29], instruction[30]}) === 17'b01111100000010011);
assign MICROCODE_PT[5] = (({core64, instruction[0], instruction[1], instruction[2], instruction[3], instruction[4], instruction[5], instruction[21], instruction[22], instruction[23], instruction[24], instruction[25], instruction[26], instruction[27], instruction[28], instruction[30]}) === 16'b1011111000011011);
assign MICROCODE_PT[6] = (({instruction[0], instruction[1], instruction[2], instruction[3], instruction[4], instruction[5], instruction[21], instruction[22], instruction[25], instruction[26], instruction[27], instruction[28], instruction[29], instruction[30]}) === 14'b01111110010101);
assign MICROCODE_PT[7] = (({instruction[0], instruction[1], instruction[2], instruction[3], instruction[4], instruction[5], instruction[21], instruction[23], instruction[25], instruction[26], instruction[27], instruction[28], instruction[29], instruction[30]}) === 14'b01111100110111);
assign MICROCODE_PT[8] = (({instruction[0], instruction[1], instruction[2], instruction[3], instruction[4], instruction[5], instruction[22], instruction[23], instruction[25], instruction[26], instruction[27], instruction[28], instruction[29], instruction[30]}) === 14'b01111100110111);
assign MICROCODE_PT[9] = (({core64, instruction[0], instruction[1], instruction[2], instruction[3], instruction[4], instruction[5], instruction[30], instruction[31]}) === 9'b111101001);
assign MICROCODE_PT[10] = (({instruction[0], instruction[2], instruction[3], instruction[5]}) === 4'b1001);
assign MICROCODE_PT[11] = (({instruction[0], instruction[1], instruction[3], instruction[5]}) === 4'b1001);
assign MICROCODE_PT[12] = (({instruction[0], instruction[1], instruction[2], instruction[3], instruction[4]}) === 5'b10111);
// Table MICROCODE Signal Assignments for Outputs
assign to_uc = (MICROCODE_PT[1] | MICROCODE_PT[2] | MICROCODE_PT[3] | MICROCODE_PT[4] | MICROCODE_PT[5] | MICROCODE_PT[6] | MICROCODE_PT[7] | MICROCODE_PT[8] | MICROCODE_PT[9] | MICROCODE_PT[10] | MICROCODE_PT[11] | MICROCODE_PT[12]);
//assign_end
endmodule