You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/icache.vhdl

679 lines
24 KiB
VHDL

--
-- Set associative icache
--
-- TODO (in no specific order):
--
-- * Add debug interface to inspect cache content
-- * Add snoop/invalidate path
-- * Add multi-hit error detection
-- * Pipelined bus interface (wb or axi)
-- * Maybe add parity ? There's a few bits free in each BRAM row on Xilinx
-- * Add optimization: service hits on partially loaded lines
-- * Add optimization: (maybe) interrupt reload on fluch/redirect
-- * Check if playing with the geometry of the cache tags allow for more
-- efficient use of distributed RAM and less logic/muxes. Currently we
-- write TAG_BITS width which may not match full ram blocks and might
-- cause muxes to be inferred for "partial writes".
-- * Check if making the read size of PLRU a ROM helps utilization
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.utils.all;
use work.common.all;
use work.wishbone_types.all;
-- 64 bit direct mapped icache. All instructions are 4B aligned.
entity icache is
generic (
SIM : boolean := false;
-- Line size in bytes
LINE_SIZE : positive := 64;
-- BRAM organisation: We never access more than wishbone_data_bits at
-- a time so to save resources we make the array only that wide, and
-- use consecutive indices for to make a cache "line"
--
-- ROW_SIZE is the width in bytes of the BRAM (based on WB, so 64-bits)
ROW_SIZE : positive := wishbone_data_bits / 8;
-- Number of lines in a set
NUM_LINES : positive := 32;
-- Number of ways
NUM_WAYS : positive := 4;
-- L1 ITLB number of entries (direct mapped)
TLB_SIZE : positive := 64;
-- L1 ITLB log_2(page_size)
TLB_LG_PGSZ : positive := 12;
-- Number of real address bits that we store
REAL_ADDR_BITS : positive := 56
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
i_in : in Fetch1ToIcacheType;
i_out : out IcacheToFetch2Type;
m_in : in MmuToIcacheType;
stall_out : out std_ulogic;
flush_in : in std_ulogic;
inval_in : in std_ulogic;
wishbone_out : out wishbone_master_out;
wishbone_in : in wishbone_slave_out
);
end entity icache;
architecture rtl of icache is
constant ROW_SIZE_BITS : natural := ROW_SIZE*8;
-- ROW_PER_LINE is the number of row (wishbone transactions) in a line
constant ROW_PER_LINE : natural := LINE_SIZE / ROW_SIZE;
-- BRAM_ROWS is the number of rows in BRAM needed to represent the full
-- icache
constant BRAM_ROWS : natural := NUM_LINES * ROW_PER_LINE;
-- INSN_PER_ROW is the number of 32bit instructions per BRAM row
constant INSN_PER_ROW : natural := ROW_SIZE_BITS / 32;
-- Bit fields counts in the address
-- INSN_BITS is the number of bits to select an instruction in a row
constant INSN_BITS : natural := log2(INSN_PER_ROW);
-- ROW_BITS is the number of bits to select a row
constant ROW_BITS : natural := log2(BRAM_ROWS);
-- ROW_LINEBITS is the number of bits to select a row within a line
constant ROW_LINEBITS : natural := log2(ROW_PER_LINE);
-- LINE_OFF_BITS is the number of bits for the offset in a cache line
constant LINE_OFF_BITS : natural := log2(LINE_SIZE);
-- ROW_OFF_BITS is the number of bits for the offset in a row
constant ROW_OFF_BITS : natural := log2(ROW_SIZE);
-- INDEX_BITS is the number of bits to select a cache line
constant INDEX_BITS : natural := log2(NUM_LINES);
-- SET_SIZE_BITS is the log base 2 of the set size
constant SET_SIZE_BITS : natural := LINE_OFF_BITS + INDEX_BITS;
-- TAG_BITS is the number of bits of the tag part of the address
constant TAG_BITS : natural := REAL_ADDR_BITS - SET_SIZE_BITS;
-- WAY_BITS is the number of bits to select a way
constant WAY_BITS : natural := log2(NUM_WAYS);
-- Example of layout for 32 lines of 64 bytes:
--
-- .. tag |index| line |
-- .. | row | |
-- .. | | | |00| zero (2)
-- .. | | |-| | INSN_BITS (1)
-- .. | |---| | ROW_LINEBITS (3)
-- .. | |--- - --| LINE_OFF_BITS (6)
-- .. | |- --| ROW_OFF_BITS (3)
-- .. |----- ---| | ROW_BITS (8)
-- .. |-----| | INDEX_BITS (5)
-- .. --------| | TAG_BITS (53)
subtype row_t is integer range 0 to BRAM_ROWS-1;
subtype index_t is integer range 0 to NUM_LINES-1;
subtype way_t is integer range 0 to NUM_WAYS-1;
-- The cache data BRAM organized as described above for each way
subtype cache_row_t is std_ulogic_vector(ROW_SIZE_BITS-1 downto 0);
-- The cache tags LUTRAM has a row per set. Vivado is a pain and will
-- not handle a clean (commented) definition of the cache tags as a 3d
-- memory. For now, work around it by putting all the tags
subtype cache_tag_t is std_logic_vector(TAG_BITS-1 downto 0);
-- type cache_tags_set_t is array(way_t) of cache_tag_t;
-- type cache_tags_array_t is array(index_t) of cache_tags_set_t;
constant TAG_RAM_WIDTH : natural := TAG_BITS * NUM_WAYS;
subtype cache_tags_set_t is std_logic_vector(TAG_RAM_WIDTH-1 downto 0);
type cache_tags_array_t is array(index_t) of cache_tags_set_t;
-- The cache valid bits
subtype cache_way_valids_t is std_ulogic_vector(NUM_WAYS-1 downto 0);
type cache_valids_t is array(index_t) of cache_way_valids_t;
-- Storage. Hopefully "cache_rows" is a BRAM, the rest is LUTs
signal cache_tags : cache_tags_array_t;
signal cache_valids : cache_valids_t;
attribute ram_style : string;
attribute ram_style of cache_tags : signal is "distributed";
-- L1 ITLB.
constant TLB_BITS : natural := log2(TLB_SIZE);
constant TLB_EA_TAG_BITS : natural := 64 - (TLB_LG_PGSZ + TLB_BITS);
constant TLB_PTE_BITS : natural := 64;
subtype tlb_index_t is integer range 0 to TLB_SIZE - 1;
type tlb_valids_t is array(tlb_index_t) of std_ulogic;
subtype tlb_tag_t is std_ulogic_vector(TLB_EA_TAG_BITS - 1 downto 0);
type tlb_tags_t is array(tlb_index_t) of tlb_tag_t;
subtype tlb_pte_t is std_ulogic_vector(TLB_PTE_BITS - 1 downto 0);
type tlb_ptes_t is array(tlb_index_t) of tlb_pte_t;
signal itlb_valids : tlb_valids_t;
signal itlb_tags : tlb_tags_t;
signal itlb_ptes : tlb_ptes_t;
attribute ram_style of itlb_tags : signal is "distributed";
attribute ram_style of itlb_ptes : signal is "distributed";
-- Privilege bit from PTE EAA field
signal eaa_priv : std_ulogic;
-- Cache reload state machine
type state_t is (IDLE, CLR_TAG, WAIT_ACK);
type reg_internal_t is record
-- Cache hit state (Latches for 1 cycle BRAM access)
hit_way : way_t;
hit_nia : std_ulogic_vector(63 downto 0);
hit_smark : std_ulogic;
hit_valid : std_ulogic;
-- Cache miss state (reload state machine)
state : state_t;
wb : wishbone_master_out;
store_way : way_t;
store_index : index_t;
store_row : row_t;
store_tag : cache_tag_t;
store_valid : std_ulogic;
-- TLB miss state
fetch_failed : std_ulogic;
end record;
signal r : reg_internal_t;
-- Async signals on incoming request
signal req_index : index_t;
signal req_row : row_t;
signal req_hit_way : way_t;
signal req_tag : cache_tag_t;
signal req_is_hit : std_ulogic;
signal req_is_miss : std_ulogic;
signal req_laddr : std_ulogic_vector(63 downto 0);
signal tlb_req_index : tlb_index_t;
signal real_addr : std_ulogic_vector(REAL_ADDR_BITS - 1 downto 0);
signal ra_valid : std_ulogic;
signal priv_fault : std_ulogic;
signal access_ok : std_ulogic;
-- Cache RAM interface
type cache_ram_out_t is array(way_t) of cache_row_t;
signal cache_out : cache_ram_out_t;
-- PLRU output interface
type plru_out_t is array(index_t) of std_ulogic_vector(WAY_BITS-1 downto 0);
signal plru_victim : plru_out_t;
signal replace_way : way_t;
-- Return the cache line index (tag index) for an address
function get_index(addr: std_ulogic_vector(63 downto 0)) return index_t is
begin
return to_integer(unsigned(addr(SET_SIZE_BITS - 1 downto LINE_OFF_BITS)));
end;
-- Return the cache row index (data memory) for an address
function get_row(addr: std_ulogic_vector(63 downto 0)) return row_t is
begin
return to_integer(unsigned(addr(SET_SIZE_BITS - 1 downto ROW_OFF_BITS)));
end;
-- Returns whether this is the last row of a line
function is_last_row_addr(addr: wishbone_addr_type) return boolean is
constant ones : std_ulogic_vector(ROW_LINEBITS-1 downto 0) := (others => '1');
begin
return addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS) = ones;
end;
-- Returns whether this is the last row of a line
function is_last_row(row: row_t) return boolean is
variable row_v : std_ulogic_vector(ROW_BITS-1 downto 0);
constant ones : std_ulogic_vector(ROW_LINEBITS-1 downto 0) := (others => '1');
begin
row_v := std_ulogic_vector(to_unsigned(row, ROW_BITS));
return row_v(ROW_LINEBITS-1 downto 0) = ones;
end;
-- Return the address of the next row in the current cache line
function next_row_addr(addr: wishbone_addr_type)
return std_ulogic_vector is
variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
variable result : wishbone_addr_type;
begin
-- Is there no simpler way in VHDL to generate that 3 bits adder ?
row_idx := addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS);
row_idx := std_ulogic_vector(unsigned(row_idx) + 1);
result := addr;
result(LINE_OFF_BITS-1 downto ROW_OFF_BITS) := row_idx;
return result;
end;
-- Return the next row in the current cache line. We use a dedicated
-- function in order to limit the size of the generated adder to be
-- only the bits within a cache line (3 bits with default settings)
--
function next_row(row: row_t) return row_t is
variable row_v : std_ulogic_vector(ROW_BITS-1 downto 0);
variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
variable result : std_ulogic_vector(ROW_BITS-1 downto 0);
begin
row_v := std_ulogic_vector(to_unsigned(row, ROW_BITS));
row_idx := row_v(ROW_LINEBITS-1 downto 0);
row_v(ROW_LINEBITS-1 downto 0) := std_ulogic_vector(unsigned(row_idx) + 1);
return to_integer(unsigned(row_v));
end;
-- Read the instruction word for the given address in the current cache row
function read_insn_word(addr: std_ulogic_vector(63 downto 0);
data: cache_row_t) return std_ulogic_vector is
variable word: integer range 0 to INSN_PER_ROW-1;
begin
word := to_integer(unsigned(addr(INSN_BITS+2-1 downto 2)));
return data(31+word*32 downto word*32);
end;
-- Get the tag value from the address
function get_tag(addr: std_ulogic_vector(REAL_ADDR_BITS - 1 downto 0)) return cache_tag_t is
begin
return addr(REAL_ADDR_BITS - 1 downto SET_SIZE_BITS);
end;
-- Read a tag from a tag memory row
function read_tag(way: way_t; tagset: cache_tags_set_t) return cache_tag_t is
begin
return tagset((way+1) * TAG_BITS - 1 downto way * TAG_BITS);
end;
-- Write a tag to tag memory row
procedure write_tag(way: in way_t; tagset: inout cache_tags_set_t;
tag: cache_tag_t) is
begin
tagset((way+1) * TAG_BITS - 1 downto way * TAG_BITS) := tag;
end;
-- Simple hash for direct-mapped TLB index
function hash_ea(addr: std_ulogic_vector(63 downto 0)) return tlb_index_t is
variable hash : std_ulogic_vector(TLB_BITS - 1 downto 0);
begin
hash := addr(TLB_LG_PGSZ + TLB_BITS - 1 downto TLB_LG_PGSZ)
xor addr(TLB_LG_PGSZ + 2 * TLB_BITS - 1 downto TLB_LG_PGSZ + TLB_BITS)
xor addr(TLB_LG_PGSZ + 3 * TLB_BITS - 1 downto TLB_LG_PGSZ + 2 * TLB_BITS);
return to_integer(unsigned(hash));
end;
begin
assert LINE_SIZE mod ROW_SIZE = 0;
assert ispow2(LINE_SIZE) report "LINE_SIZE not power of 2" severity FAILURE;
assert ispow2(NUM_LINES) report "NUM_LINES not power of 2" severity FAILURE;
assert ispow2(ROW_PER_LINE) report "ROW_PER_LINE not power of 2" severity FAILURE;
assert ispow2(INSN_PER_ROW) report "INSN_PER_ROW not power of 2" severity FAILURE;
assert (ROW_BITS = INDEX_BITS + ROW_LINEBITS)
report "geometry bits don't add up" severity FAILURE;
assert (LINE_OFF_BITS = ROW_OFF_BITS + ROW_LINEBITS)
report "geometry bits don't add up" severity FAILURE;
assert (REAL_ADDR_BITS = TAG_BITS + INDEX_BITS + LINE_OFF_BITS)
report "geometry bits don't add up" severity FAILURE;
assert (REAL_ADDR_BITS = TAG_BITS + ROW_BITS + ROW_OFF_BITS)
report "geometry bits don't add up" severity FAILURE;
sim_debug: if SIM generate
debug: process
begin
report "ROW_SIZE = " & natural'image(ROW_SIZE);
report "ROW_PER_LINE = " & natural'image(ROW_PER_LINE);
report "BRAM_ROWS = " & natural'image(BRAM_ROWS);
report "INSN_PER_ROW = " & natural'image(INSN_PER_ROW);
report "INSN_BITS = " & natural'image(INSN_BITS);
report "ROW_BITS = " & natural'image(ROW_BITS);
report "ROW_LINEBITS = " & natural'image(ROW_LINEBITS);
report "LINE_OFF_BITS = " & natural'image(LINE_OFF_BITS);
report "ROW_OFF_BITS = " & natural'image(ROW_OFF_BITS);
report "INDEX_BITS = " & natural'image(INDEX_BITS);
report "TAG_BITS = " & natural'image(TAG_BITS);
report "WAY_BITS = " & natural'image(WAY_BITS);
wait;
end process;
end generate;
-- Generate a cache RAM for each way
rams: for i in 0 to NUM_WAYS-1 generate
signal do_read : std_ulogic;
signal do_write : std_ulogic;
signal rd_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal wr_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal dout : cache_row_t;
signal wr_sel : std_ulogic_vector(ROW_SIZE-1 downto 0);
begin
way: entity work.cache_ram
generic map (
ROW_BITS => ROW_BITS,
WIDTH => ROW_SIZE_BITS
)
port map (
clk => clk,
rd_en => do_read,
rd_addr => rd_addr,
rd_data => dout,
wr_sel => wr_sel,
wr_addr => wr_addr,
wr_data => wishbone_in.dat
);
process(all)
begin
do_read <= '1';
do_write <= '0';
if wishbone_in.ack = '1' and r.store_way = i then
do_write <= '1';
end if;
cache_out(i) <= dout;
rd_addr <= std_ulogic_vector(to_unsigned(req_row, ROW_BITS));
wr_addr <= std_ulogic_vector(to_unsigned(r.store_row, ROW_BITS));
for i in 0 to ROW_SIZE-1 loop
wr_sel(i) <= do_write;
end loop;
end process;
end generate;
-- Generate PLRUs
maybe_plrus: if NUM_WAYS > 1 generate
begin
plrus: for i in 0 to NUM_LINES-1 generate
-- PLRU interface
signal plru_acc : std_ulogic_vector(WAY_BITS-1 downto 0);
signal plru_acc_en : std_ulogic;
signal plru_out : std_ulogic_vector(WAY_BITS-1 downto 0);
begin
plru : entity work.plru
generic map (
BITS => WAY_BITS
)
port map (
clk => clk,
rst => rst,
acc => plru_acc,
acc_en => plru_acc_en,
lru => plru_out
);
process(req_index, req_is_hit, req_hit_way, req_is_hit, plru_out)
begin
-- PLRU interface
if req_is_hit = '1' and req_index = i then
plru_acc_en <= req_is_hit;
else
plru_acc_en <= '0';
end if;
plru_acc <= std_ulogic_vector(to_unsigned(req_hit_way, WAY_BITS));
plru_victim(i) <= plru_out;
end process;
end generate;
end generate;
-- TLB hit detection and real address generation
itlb_lookup : process(all)
variable pte : tlb_pte_t;
variable ttag : tlb_tag_t;
begin
tlb_req_index <= hash_ea(i_in.nia);
pte := itlb_ptes(tlb_req_index);
ttag := itlb_tags(tlb_req_index);
if i_in.virt_mode = '1' then
real_addr <= pte(REAL_ADDR_BITS - 1 downto TLB_LG_PGSZ) &
i_in.nia(TLB_LG_PGSZ - 1 downto 0);
if ttag = i_in.nia(63 downto TLB_LG_PGSZ + TLB_BITS) then
ra_valid <= itlb_valids(tlb_req_index);
else
ra_valid <= '0';
end if;
eaa_priv <= pte(3);
else
real_addr <= i_in.nia(REAL_ADDR_BITS - 1 downto 0);
ra_valid <= '1';
eaa_priv <= '1';
end if;
-- no IAMR, so no KUEP support for now
priv_fault <= eaa_priv and not i_in.priv_mode;
access_ok <= ra_valid and not priv_fault;
end process;
-- iTLB update
itlb_update: process(clk)
variable wr_index : tlb_index_t;
begin
if rising_edge(clk) then
wr_index := hash_ea(m_in.addr);
if rst = '1' or (m_in.tlbie = '1' and m_in.doall = '1') then
-- clear all valid bits
for i in tlb_index_t loop
itlb_valids(i) <= '0';
end loop;
elsif m_in.tlbie = '1' then
-- clear entry regardless of hit or miss
itlb_valids(wr_index) <= '0';
elsif m_in.tlbld = '1' then
itlb_tags(wr_index) <= m_in.addr(63 downto TLB_LG_PGSZ + TLB_BITS);
itlb_ptes(wr_index) <= m_in.pte;
itlb_valids(wr_index) <= '1';
end if;
end if;
end process;
-- Cache hit detection, output to fetch2 and other misc logic
icache_comb : process(all)
variable is_hit : std_ulogic;
variable hit_way : way_t;
begin
-- Extract line, row and tag from request
req_index <= get_index(i_in.nia);
req_row <= get_row(i_in.nia);
req_tag <= get_tag(real_addr);
-- Calculate address of beginning of cache line, will be
-- used for cache miss processing if needed
--
req_laddr <= (63 downto REAL_ADDR_BITS => '0') &
real_addr(REAL_ADDR_BITS - 1 downto LINE_OFF_BITS) &
(LINE_OFF_BITS-1 downto 0 => '0');
-- Test if pending request is a hit on any way
hit_way := 0;
is_hit := '0';
for i in way_t loop
if i_in.req = '1' and cache_valids(req_index)(i) = '1' then
if read_tag(i, cache_tags(req_index)) = req_tag then
hit_way := i;
is_hit := '1';
end if;
end if;
end loop;
-- Generate the "hit" and "miss" signals for the synchronous blocks
if i_in.req = '1' and access_ok = '1' and flush_in = '0' and rst = '0' then
req_is_hit <= is_hit;
req_is_miss <= not is_hit;
else
req_is_hit <= '0';
req_is_miss <= '0';
end if;
req_hit_way <= hit_way;
-- The way to replace on a miss
replace_way <= to_integer(unsigned(plru_victim(req_index)));
-- Output instruction from current cache row
--
-- Note: This is a mild violation of our design principle of having pipeline
-- stages output from a clean latch. In this case we output the result
-- of a mux. The alternative would be output an entire row which
-- I prefer not to do just yet as it would force fetch2 to know about
-- some of the cache geometry information.
--
i_out.insn <= read_insn_word(r.hit_nia, cache_out(r.hit_way));
i_out.valid <= r.hit_valid;
i_out.nia <= r.hit_nia;
i_out.stop_mark <= r.hit_smark;
i_out.fetch_failed <= r.fetch_failed;
-- Stall fetch1 if we have a miss on cache or TLB or a protection fault
stall_out <= not (is_hit and access_ok);
-- Wishbone requests output (from the cache miss reload machine)
wishbone_out <= r.wb;
end process;
-- Cache hit synchronous machine
icache_hit : process(clk)
begin
if rising_edge(clk) then
-- On a hit, latch the request for the next cycle, when the BRAM data
-- will be available on the cache_out output of the corresponding way
--
r.hit_valid <= req_is_hit;
-- Send stop marks and NIA down regardless of validity
r.hit_smark <= i_in.stop_mark;
r.hit_nia <= i_in.nia;
if req_is_hit = '1' then
r.hit_way <= req_hit_way;
r.hit_smark <= i_in.stop_mark;
report "cache hit nia:" & to_hstring(i_in.nia) &
" IR:" & std_ulogic'image(i_in.virt_mode) &
" SM:" & std_ulogic'image(i_in.stop_mark) &
" idx:" & integer'image(req_index) &
" tag:" & to_hstring(req_tag) &
" way:" & integer'image(req_hit_way) &
" RA:" & to_hstring(real_addr);
end if;
end if;
end process;
-- Cache miss/reload synchronous machine
icache_miss : process(clk)
variable tagset : cache_tags_set_t;
variable stbs_done : boolean;
begin
if rising_edge(clk) then
-- On reset, clear all valid bits to force misses
if rst = '1' then
for i in index_t loop
cache_valids(i) <= (others => '0');
end loop;
r.state <= IDLE;
r.wb.cyc <= '0';
r.wb.stb <= '0';
-- We only ever do reads on wishbone
r.wb.dat <= (others => '0');
r.wb.sel <= "11111111";
r.wb.we <= '0';
-- Not useful normally but helps avoiding tons of sim warnings
r.wb.adr <= (others => '0');
else
-- Process cache invalidations
if inval_in = '1' then
for i in index_t loop
cache_valids(i) <= (others => '0');
end loop;
r.store_valid <= '0';
end if;
-- Main state machine
case r.state is
when IDLE =>
-- We need to read a cache line
if req_is_miss = '1' then
report "cache miss nia:" & to_hstring(i_in.nia) &
" IR:" & std_ulogic'image(i_in.virt_mode) &
" SM:" & std_ulogic'image(i_in.stop_mark) &
" idx:" & integer'image(req_index) &
" way:" & integer'image(replace_way) &
" tag:" & to_hstring(req_tag) &
" RA:" & to_hstring(real_addr);
-- Keep track of our index and way for subsequent stores
r.store_index <= req_index;
r.store_way <= replace_way;
r.store_row <= get_row(req_laddr);
r.store_tag <= req_tag;
r.store_valid <= '1';
-- Prep for first wishbone read. We calculate the address of
-- the start of the cache line and start the WB cycle.
--
r.wb.adr <= req_laddr(r.wb.adr'left downto 0);
r.wb.cyc <= '1';
r.wb.stb <= '1';
-- Track that we had one request sent
r.state <= CLR_TAG;
end if;
when CLR_TAG | WAIT_ACK =>
if r.state = CLR_TAG then
-- Force misses on that way while reloading that line
cache_valids(req_index)(r.store_way) <= '0';
-- Store new tag in selected way
for i in 0 to NUM_WAYS-1 loop
if i = r.store_way then
tagset := cache_tags(r.store_index);
write_tag(i, tagset, r.store_tag);
cache_tags(r.store_index) <= tagset;
end if;
end loop;
r.state <= WAIT_ACK;
end if;
-- Requests are all sent if stb is 0
stbs_done := r.wb.stb = '0';
-- If we are still sending requests, was one accepted ?
if wishbone_in.stall = '0' and not stbs_done then
-- That was the last word ? We are done sending. Clear
-- stb and set stbs_done so we can handle an eventual last
-- ack on the same cycle.
--
if is_last_row_addr(r.wb.adr) then
r.wb.stb <= '0';
stbs_done := true;
end if;
-- Calculate the next row address
r.wb.adr <= next_row_addr(r.wb.adr);
end if;
-- Incoming acks processing
if wishbone_in.ack = '1' then
-- Check for completion
if stbs_done and is_last_row(r.store_row) then
-- Complete wishbone cycle
r.wb.cyc <= '0';
-- Cache line is now valid
cache_valids(r.store_index)(r.store_way) <= r.store_valid and not inval_in;
-- We are done
r.state <= IDLE;
end if;
-- Increment store row counter
r.store_row <= next_row(r.store_row);
end if;
end case;
end if;
-- TLB miss and protection fault processing
if rst = '1' or flush_in = '1' or m_in.tlbld = '1' then
r.fetch_failed <= '0';
elsif i_in.req = '1' and access_ok = '0' then
r.fetch_failed <= '1';
end if;
end if;
end process;
end;