You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			869 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			VHDL
		
	
			
		
		
	
	
			869 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			VHDL
		
	
| library ieee;
 | |
| use ieee.std_logic_1164.all;
 | |
| use ieee.numeric_std.all;
 | |
| 
 | |
| library work;
 | |
| use work.decode_types.all;
 | |
| use work.common.all;
 | |
| use work.helpers.all;
 | |
| use work.crhelpers.all;
 | |
| use work.insn_helpers.all;
 | |
| use work.ppc_fx_insns.all;
 | |
| 
 | |
| entity execute1 is
 | |
|     generic (
 | |
|         EX1_BYPASS : boolean := true
 | |
|         );
 | |
|     port (
 | |
| 	clk   : in std_ulogic;
 | |
|         rst   : in std_ulogic;
 | |
| 
 | |
| 	-- asynchronous
 | |
| 	flush_out : out std_ulogic;
 | |
| 	stall_out : out std_ulogic;
 | |
| 
 | |
| 	e_in  : in Decode2ToExecute1Type;
 | |
| 
 | |
| 	-- asynchronous
 | |
|         l_out : out Execute1ToLoadstore1Type;
 | |
| 	f_out : out Execute1ToFetch1Type;
 | |
| 
 | |
| 	e_out : out Execute1ToWritebackType;
 | |
| 
 | |
| 	icache_inval : out std_ulogic;
 | |
| 	terminate_out : out std_ulogic
 | |
| 	);
 | |
| end entity execute1;
 | |
| 
 | |
| architecture behaviour of execute1 is
 | |
|     type reg_type is record
 | |
| 	e : Execute1ToWritebackType;
 | |
| 	lr_update : std_ulogic;
 | |
| 	next_lr : std_ulogic_vector(63 downto 0);
 | |
| 	mul_in_progress : std_ulogic;
 | |
|         div_in_progress : std_ulogic;
 | |
|         cntz_in_progress : std_ulogic;
 | |
| 	slow_op_dest : gpr_index_t;
 | |
| 	slow_op_rc : std_ulogic;
 | |
| 	slow_op_oe : std_ulogic;
 | |
| 	slow_op_xerc : xer_common_t;
 | |
|     end record;
 | |
| 
 | |
|     signal r, rin : reg_type;
 | |
| 
 | |
|     signal a_in, b_in, c_in : std_ulogic_vector(63 downto 0);
 | |
| 
 | |
|     signal ctrl: ctrl_t := (irq_state => WRITE_SRR0, others => (others => '0'));
 | |
|     signal ctrl_tmp: ctrl_t := (irq_state => WRITE_SRR0, others => (others => '0'));
 | |
|     signal right_shift, rot_clear_left, rot_clear_right: std_ulogic;
 | |
|     signal rotator_result: std_ulogic_vector(63 downto 0);
 | |
|     signal rotator_carry: std_ulogic;
 | |
|     signal logical_result: std_ulogic_vector(63 downto 0);
 | |
|     signal countzero_result: std_ulogic_vector(63 downto 0);
 | |
|     signal popcnt_result: std_ulogic_vector(63 downto 0);
 | |
|     signal parity_result: std_ulogic_vector(63 downto 0);
 | |
| 
 | |
|     -- multiply signals
 | |
|     signal x_to_multiply: Execute1ToMultiplyType;
 | |
|     signal multiply_to_x: MultiplyToExecute1Type;
 | |
| 
 | |
|     -- divider signals
 | |
|     signal x_to_divider: Execute1ToDividerType;
 | |
|     signal divider_to_x: DividerToExecute1Type;
 | |
| 
 | |
|     procedure set_carry(e: inout Execute1ToWritebackType;
 | |
| 			carry32 : in std_ulogic;
 | |
| 			carry : in std_ulogic) is
 | |
|     begin
 | |
| 	e.xerc.ca32 := carry32;
 | |
| 	e.xerc.ca := carry;
 | |
| 	e.write_xerc_enable := '1';
 | |
|     end;
 | |
| 
 | |
|     procedure set_ov(e: inout Execute1ToWritebackType;
 | |
| 		     ov   : in std_ulogic;
 | |
| 		     ov32 : in std_ulogic) is
 | |
|     begin
 | |
| 	e.xerc.ov32 := ov32;
 | |
| 	e.xerc.ov := ov;
 | |
| 	if ov = '1' then
 | |
| 	    e.xerc.so := '1';
 | |
| 	end if;
 | |
| 	e.write_xerc_enable := '1';
 | |
|     end;
 | |
| 
 | |
|     function calc_ov(msb_a : std_ulogic; msb_b: std_ulogic;
 | |
| 		     ca: std_ulogic; msb_r: std_ulogic) return std_ulogic is
 | |
|     begin
 | |
| 	return (ca xor msb_r) and not (msb_a xor msb_b);
 | |
|     end;
 | |
| 
 | |
|     function decode_input_carry(ic : carry_in_t;
 | |
| 				xerc : xer_common_t) return std_ulogic is
 | |
|     begin
 | |
| 	case ic is
 | |
| 	when ZERO =>
 | |
| 	    return '0';
 | |
| 	when CA =>
 | |
| 	    return xerc.ca;
 | |
| 	when ONE =>
 | |
| 	    return '1';
 | |
| 	end case;
 | |
|     end;
 | |
| 
 | |
|     function msr_copy(msr: std_ulogic_vector(63 downto 0))
 | |
| 	return std_ulogic_vector is
 | |
| 	variable msr_out: std_ulogic_vector(63 downto 0);
 | |
|     begin
 | |
| 	-- ISA says this:
 | |
| 	--  Defined MSR bits are classified as either full func-
 | |
| 	--  tion or partial function. Full function MSR bits are
 | |
| 	--  saved in SRR1 or HSRR1 when an interrupt other
 | |
| 	--  than a System Call Vectored interrupt occurs and
 | |
| 	--  restored by rfscv, rfid, or hrfid, while partial func-
 | |
| 	--  tion MSR bits are not saved or restored.
 | |
| 	--  Full function MSR bits lie in the range 0:32, 37:41, and
 | |
| 	--  48:63, and partial function MSR bits lie in the range
 | |
| 	--  33:36 and 42:47.
 | |
| 	msr_out := (others => '0');
 | |
| 	msr_out(32 downto 0) := msr(32 downto 0);
 | |
| 	msr_out(41 downto 37) := msr(41 downto 37);
 | |
| 	msr_out(63 downto 48) := msr(63 downto 48);
 | |
| 	return msr_out;
 | |
|     end;
 | |
| 
 | |
| begin
 | |
| 
 | |
|     rotator_0: entity work.rotator
 | |
| 	port map (
 | |
| 	    rs => c_in,
 | |
| 	    ra => a_in,
 | |
| 	    shift => b_in(6 downto 0),
 | |
| 	    insn => e_in.insn,
 | |
| 	    is_32bit => e_in.is_32bit,
 | |
| 	    right_shift => right_shift,
 | |
| 	    arith => e_in.is_signed,
 | |
| 	    clear_left => rot_clear_left,
 | |
| 	    clear_right => rot_clear_right,
 | |
| 	    result => rotator_result,
 | |
| 	    carry_out => rotator_carry
 | |
| 	    );
 | |
| 
 | |
|     logical_0: entity work.logical
 | |
| 	port map (
 | |
| 	    rs => c_in,
 | |
| 	    rb => b_in,
 | |
| 	    op => e_in.insn_type,
 | |
| 	    invert_in => e_in.invert_a,
 | |
| 	    invert_out => e_in.invert_out,
 | |
| 	    result => logical_result,
 | |
|             datalen => e_in.data_len,
 | |
|             popcnt => popcnt_result,
 | |
|             parity => parity_result
 | |
| 	    );
 | |
| 
 | |
|     countzero_0: entity work.zero_counter
 | |
| 	port map (
 | |
|             clk => clk,
 | |
| 	    rs => c_in,
 | |
| 	    count_right => e_in.insn(10),
 | |
| 	    is_32bit => e_in.is_32bit,
 | |
| 	    result => countzero_result
 | |
| 	    );
 | |
| 
 | |
|     multiply_0: entity work.multiply
 | |
|         port map (
 | |
|             clk => clk,
 | |
|             m_in => x_to_multiply,
 | |
|             m_out => multiply_to_x
 | |
|             );
 | |
| 
 | |
|     divider_0: entity work.divider
 | |
|         port map (
 | |
|             clk => clk,
 | |
|             rst => rst,
 | |
|             d_in => x_to_divider,
 | |
|             d_out => divider_to_x
 | |
|             );
 | |
| 
 | |
|     a_in <= r.e.write_data when EX1_BYPASS and e_in.bypass_data1 = '1' else e_in.read_data1;
 | |
|     b_in <= r.e.write_data when EX1_BYPASS and e_in.bypass_data2 = '1' else e_in.read_data2;
 | |
|     c_in <= r.e.write_data when EX1_BYPASS and e_in.bypass_data3 = '1' else e_in.read_data3;
 | |
| 
 | |
|     execute1_0: process(clk)
 | |
|     begin
 | |
| 	if rising_edge(clk) then
 | |
| 	    r <= rin;
 | |
| 	    ctrl <= ctrl_tmp;
 | |
| 	    assert not (r.lr_update = '1' and e_in.valid = '1')
 | |
| 		report "LR update collision with valid in EX1"
 | |
| 		severity failure;
 | |
| 	    if r.lr_update = '1' then
 | |
| 		report "LR update to " & to_hstring(r.next_lr);
 | |
| 	    end if;
 | |
| 	end if;
 | |
|     end process;
 | |
| 
 | |
|     execute1_1: process(all)
 | |
| 	variable v : reg_type;
 | |
| 	variable a_inv : std_ulogic_vector(63 downto 0);
 | |
| 	variable result : std_ulogic_vector(63 downto 0);
 | |
| 	variable newcrf : std_ulogic_vector(3 downto 0);
 | |
| 	variable result_with_carry : std_ulogic_vector(64 downto 0);
 | |
| 	variable result_en : std_ulogic;
 | |
| 	variable crnum : crnum_t;
 | |
| 	variable crbit : integer range 0 to 31;
 | |
| 	variable scrnum : crnum_t;
 | |
| 	variable lo, hi : integer;
 | |
| 	variable sh, mb, me : std_ulogic_vector(5 downto 0);
 | |
| 	variable sh32, mb32, me32 : std_ulogic_vector(4 downto 0);
 | |
| 	variable bo, bi : std_ulogic_vector(4 downto 0);
 | |
| 	variable bf, bfa : std_ulogic_vector(2 downto 0);
 | |
| 	variable cr_op : std_ulogic_vector(9 downto 0);
 | |
|         variable cr_operands : std_ulogic_vector(1 downto 0);
 | |
| 	variable bt, ba, bb : std_ulogic_vector(4 downto 0);
 | |
| 	variable btnum, banum, bbnum : integer range 0 to 31;
 | |
| 	variable crresult : std_ulogic;
 | |
| 	variable l : std_ulogic;
 | |
| 	variable next_nia : std_ulogic_vector(63 downto 0);
 | |
|         variable carry_32, carry_64 : std_ulogic;
 | |
|         variable sign1, sign2 : std_ulogic;
 | |
|         variable abs1, abs2 : signed(63 downto 0);
 | |
| 	variable overflow : std_ulogic;
 | |
| 	variable negative : std_ulogic;
 | |
|         variable zerohi, zerolo : std_ulogic;
 | |
|         variable msb_a, msb_b : std_ulogic;
 | |
|         variable a_lt : std_ulogic;
 | |
|         variable lv : Execute1ToLoadstore1Type;
 | |
| 	variable irq_valid : std_ulogic;
 | |
| 	variable exception : std_ulogic;
 | |
|     begin
 | |
| 	result := (others => '0');
 | |
| 	result_with_carry := (others => '0');
 | |
| 	result_en := '0';
 | |
| 	newcrf := (others => '0');
 | |
| 
 | |
| 	v := r;
 | |
| 	v.e := Execute1ToWritebackInit;
 | |
| 
 | |
| 	-- XER forwarding. To avoid having to track XER hazards, we
 | |
| 	-- use the previously latched value.
 | |
| 	--
 | |
| 	-- If the XER was modified by a multiply or a divide, those are
 | |
| 	-- single issue, we'll get the up to date value from decode2 from
 | |
| 	-- the register file.
 | |
| 	--
 | |
| 	-- If it was modified by an instruction older than the previous
 | |
| 	-- one in EX1, it will have also hit writeback and will be up
 | |
| 	-- to date in decode2.
 | |
| 	--
 | |
| 	-- That leaves us with the case where it was updated by the previous
 | |
| 	-- instruction in EX1. In that case, we can forward it back here.
 | |
| 	--
 | |
| 	-- This will break if we allow pipelining of multiply and divide,
 | |
| 	-- but ideally, those should go via EX1 anyway and run as a state
 | |
| 	-- machine from here.
 | |
| 	--
 | |
| 	-- One additional hazard to beware of is an XER:SO modifying instruction
 | |
| 	-- in EX1 followed immediately by a store conditional. Due to our
 | |
| 	-- writeback latency, the store will go down the LSU with the previous
 | |
| 	-- XER value, thus the stcx. will set CR0:SO using an obsolete SO value.
 | |
| 	--
 | |
| 	-- We will need to handle that if we ever make stcx. not single issue
 | |
| 	--
 | |
| 	-- We always pass a valid XER value downto writeback even when
 | |
| 	-- we aren't updating it, in order for XER:SO -> CR0:SO transfer
 | |
| 	-- to work for RC instructions.
 | |
| 	--
 | |
| 	if r.e.write_xerc_enable = '1' then
 | |
| 	    v.e.xerc := r.e.xerc;
 | |
| 	else
 | |
| 	    v.e.xerc := e_in.xerc;
 | |
| 	end if;
 | |
| 
 | |
| 	v.lr_update := '0';
 | |
| 	v.mul_in_progress := '0';
 | |
|         v.div_in_progress := '0';
 | |
|         v.cntz_in_progress := '0';
 | |
| 
 | |
| 	-- signals to multiply unit
 | |
| 	x_to_multiply <= Execute1ToMultiplyInit;
 | |
| 	x_to_multiply.insn_type <= e_in.insn_type;
 | |
| 	x_to_multiply.is_32bit <= e_in.is_32bit;
 | |
| 
 | |
| 	if e_in.is_32bit = '1' then
 | |
| 	    if e_in.is_signed = '1' then
 | |
| 		x_to_multiply.data1 <= (others => a_in(31));
 | |
| 		x_to_multiply.data1(31 downto 0) <= a_in(31 downto 0);
 | |
| 		x_to_multiply.data2 <= (others => b_in(31));
 | |
| 		x_to_multiply.data2(31 downto 0) <= b_in(31 downto 0);
 | |
| 	    else
 | |
| 		x_to_multiply.data1 <= '0' & x"00000000" & a_in(31 downto 0);
 | |
| 		x_to_multiply.data2 <= '0' & x"00000000" & b_in(31 downto 0);
 | |
| 	    end if;
 | |
| 	else
 | |
| 	    if e_in.is_signed = '1' then
 | |
| 		x_to_multiply.data1 <= a_in(63) & a_in;
 | |
| 		x_to_multiply.data2 <= b_in(63) & b_in;
 | |
| 	    else
 | |
| 		x_to_multiply.data1 <= '0' & a_in;
 | |
| 		x_to_multiply.data2 <= '0' & b_in;
 | |
| 	    end if;
 | |
| 	end if;
 | |
| 
 | |
|         -- signals to divide unit
 | |
|         sign1 := '0';
 | |
|         sign2 := '0';
 | |
|         if e_in.is_signed = '1' then
 | |
|             if e_in.is_32bit = '1' then
 | |
|                 sign1 := a_in(31);
 | |
|                 sign2 := b_in(31);
 | |
|             else
 | |
|                 sign1 := a_in(63);
 | |
|                 sign2 := b_in(63);
 | |
|             end if;
 | |
|         end if;
 | |
|         -- take absolute values
 | |
|         if sign1 = '0' then
 | |
|             abs1 := signed(a_in);
 | |
|         else
 | |
|             abs1 := - signed(a_in);
 | |
|         end if;
 | |
|         if sign2 = '0' then
 | |
|             abs2 := signed(b_in);
 | |
|         else
 | |
|             abs2 := - signed(b_in);
 | |
|         end if;
 | |
| 
 | |
|         x_to_divider <= Execute1ToDividerInit;
 | |
|         x_to_divider.is_signed <= e_in.is_signed;
 | |
| 	x_to_divider.is_32bit <= e_in.is_32bit;
 | |
|         if e_in.insn_type = OP_MOD then
 | |
|             x_to_divider.is_modulus <= '1';
 | |
|         end if;
 | |
|         x_to_divider.neg_result <= sign1 xor (sign2 and not x_to_divider.is_modulus);
 | |
|         if e_in.is_32bit = '0' then
 | |
|             -- 64-bit forms
 | |
|             if e_in.insn_type = OP_DIVE then
 | |
|                 x_to_divider.is_extended <= '1';
 | |
|             end if;
 | |
|             x_to_divider.dividend <= std_ulogic_vector(abs1);
 | |
|             x_to_divider.divisor <= std_ulogic_vector(abs2);
 | |
|         else
 | |
|             -- 32-bit forms
 | |
|             x_to_divider.is_extended <= '0';
 | |
|             if e_in.insn_type = OP_DIVE then   -- extended forms
 | |
|                 x_to_divider.dividend <= std_ulogic_vector(abs1(31 downto 0)) & x"00000000";
 | |
|             else
 | |
|                 x_to_divider.dividend <= x"00000000" & std_ulogic_vector(abs1(31 downto 0));
 | |
|             end if;
 | |
|             x_to_divider.divisor <= x"00000000" & std_ulogic_vector(abs2(31 downto 0));
 | |
|         end if;
 | |
| 
 | |
| 	ctrl_tmp <= ctrl;
 | |
| 	-- FIXME: run at 512MHz not core freq
 | |
| 	ctrl_tmp.tb <= std_ulogic_vector(unsigned(ctrl.tb) + 1);
 | |
| 	ctrl_tmp.dec <= std_ulogic_vector(unsigned(ctrl.dec) - 1);
 | |
| 
 | |
| 	irq_valid := '0';
 | |
| 	if ctrl.msr(63 - 48) = '1' and ctrl.dec(63) = '1' then
 | |
| 	    report "IRQ valid";
 | |
| 	    irq_valid := '1';
 | |
| 	end if;
 | |
| 
 | |
| 	terminate_out <= '0';
 | |
| 	icache_inval <= '0';
 | |
| 	stall_out <= '0';
 | |
| 	f_out <= Execute1ToFetch1TypeInit;
 | |
| 
 | |
| 	-- Next insn adder used in a couple of places
 | |
| 	next_nia := std_ulogic_vector(unsigned(e_in.nia) + 4);
 | |
| 
 | |
| 	-- rotator control signals
 | |
| 	right_shift <= '1' when e_in.insn_type = OP_SHR else '0';
 | |
| 	rot_clear_left <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCL else '0';
 | |
| 	rot_clear_right <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCR else '0';
 | |
| 
 | |
| 	ctrl_tmp.irq_state <= WRITE_SRR0;
 | |
| 	exception := '0';
 | |
| 
 | |
| 	if ctrl.irq_state = WRITE_SRR1 then
 | |
| 	    v.e.write_reg := fast_spr_num(SPR_SRR1);
 | |
| 	    result := ctrl.srr1;
 | |
| 	    result_en := '1';
 | |
| 	    ctrl_tmp.msr(63 - 48) <= '0'; -- clear EE
 | |
| 	    f_out.redirect <= '1';
 | |
| 	    f_out.redirect_nia <= ctrl.irq_nia;
 | |
| 	    v.e.valid := '1';
 | |
| 	    report "Writing SRR1: " & to_hstring(ctrl.srr1);
 | |
| 
 | |
| 	elsif irq_valid = '1' then
 | |
| 	    -- we need two cycles to write srr0 and 1
 | |
| 	    -- will need more when we have to write DSISR, DAR and HIER
 | |
| 	    exception := '1';
 | |
| 	    ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#900#, 64));
 | |
| 	    ctrl_tmp.srr1 <= msr_copy(ctrl.msr);
 | |
| 	    result := e_in.nia;
 | |
| 
 | |
| 	elsif e_in.valid = '1' then
 | |
| 
 | |
| 	    v.e.valid := '1';
 | |
| 	    v.e.write_reg := e_in.write_reg;
 | |
| 	    v.slow_op_dest := gspr_to_gpr(e_in.write_reg);
 | |
| 	    v.slow_op_rc := e_in.rc;
 | |
| 	    v.slow_op_oe := e_in.oe;
 | |
| 	    v.slow_op_xerc := v.e.xerc;
 | |
| 
 | |
| 	    case_0: case e_in.insn_type is
 | |
| 
 | |
| 	    when OP_ILLEGAL =>
 | |
| 		-- we need two cycles to write srr0 and 1
 | |
| 		-- will need more when we have to write DSISR, DAR and HIER
 | |
| 		exception := '1';
 | |
| 		ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#700#, 64));
 | |
| 		ctrl_tmp.srr1 <= msr_copy(ctrl.msr);
 | |
| 		-- Since we aren't doing Hypervisor emulation assist (0xe40) we
 | |
| 		-- set bit 44 to indicate we have an illegal
 | |
| 		ctrl_tmp.srr1(63 - 44) <= '1';
 | |
| 		result := e_in.nia;
 | |
| 		report "illegal";
 | |
| 	    when OP_SC =>
 | |
| 		-- FIXME Assume everything is SC (not SCV) for now
 | |
| 		-- we need two cycles to write srr0 and 1
 | |
| 		-- will need more when we have to write DSISR, DAR and HIER
 | |
| 		exception := '1';
 | |
| 		ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#C00#, 64));
 | |
| 		ctrl_tmp.srr1 <= msr_copy(ctrl.msr);
 | |
| 		result := std_logic_vector(unsigned(e_in.nia) + 4);
 | |
| 		report "sc";
 | |
| 	    when OP_ATTN =>
 | |
| 		terminate_out <= '1';
 | |
| 		report "ATTN";
 | |
| 	    when OP_NOP =>
 | |
| 		-- Do nothing
 | |
| 	    when OP_ADD | OP_CMP =>
 | |
| 		if e_in.invert_a = '0' then
 | |
| 		    a_inv := a_in;
 | |
| 		else
 | |
| 		    a_inv := not a_in;
 | |
| 		end if;
 | |
| 		result_with_carry := ppc_adde(a_inv, b_in,
 | |
| 					      decode_input_carry(e_in.input_carry, v.e.xerc));
 | |
| 		result := result_with_carry(63 downto 0);
 | |
|                 carry_32 := result(32) xor a_inv(32) xor b_in(32);
 | |
|                 carry_64 := result_with_carry(64);
 | |
|                 if e_in.insn_type = OP_ADD then
 | |
|                     if e_in.output_carry = '1' then
 | |
|                         set_carry(v.e, carry_32, carry_64);
 | |
|                     end if;
 | |
|                     if e_in.oe = '1' then
 | |
|                         set_ov(v.e,
 | |
|                                calc_ov(a_inv(63), b_in(63), carry_64, result_with_carry(63)),
 | |
|                                calc_ov(a_inv(31), b_in(31), carry_32, result_with_carry(31)));
 | |
|                     end if;
 | |
|                     result_en := '1';
 | |
|                 else
 | |
|                     -- CMP and CMPL instructions
 | |
|                     -- Note, we have done RB - RA, not RA - RB
 | |
|                     bf := insn_bf(e_in.insn);
 | |
|                     l := insn_l(e_in.insn);
 | |
|                     v.e.write_cr_enable := '1';
 | |
|                     crnum := to_integer(unsigned(bf));
 | |
|                     v.e.write_cr_mask := num_to_fxm(crnum);
 | |
|                     zerolo := not (or (a_in(31 downto 0) xor b_in(31 downto 0)));
 | |
|                     zerohi := not (or (a_in(63 downto 32) xor b_in(63 downto 32)));
 | |
|                     if zerolo = '1' and (l = '0' or zerohi = '1') then
 | |
|                         -- values are equal
 | |
|                         newcrf := "001" & v.e.xerc.so;
 | |
|                     else
 | |
|                         if l = '1' then
 | |
|                             -- 64-bit comparison
 | |
|                             msb_a := a_in(63);
 | |
|                             msb_b := b_in(63);
 | |
|                         else
 | |
|                             -- 32-bit comparison
 | |
|                             msb_a := a_in(31);
 | |
|                             msb_b := b_in(31);
 | |
|                         end if;
 | |
|                         if msb_a /= msb_b then
 | |
|                             -- Subtraction might overflow, but
 | |
|                             -- comparison is clear from MSB difference.
 | |
|                             -- for signed, 0 is greater; for unsigned, 1 is greater
 | |
|                             a_lt := msb_a xnor e_in.is_signed;
 | |
|                         else
 | |
|                             -- Subtraction cannot overflow since MSBs are equal.
 | |
|                             -- carry = 1 indicates RA is smaller (signed or unsigned)
 | |
|                             a_lt := (not l and carry_32) or (l and carry_64);
 | |
|                         end if;
 | |
|                         newcrf := a_lt & not a_lt & '0' & v.e.xerc.so;
 | |
|                     end if;
 | |
|                     for i in 0 to 7 loop
 | |
|                         lo := i*4;
 | |
|                         hi := lo + 3;
 | |
|                         v.e.write_cr_data(hi downto lo) := newcrf;
 | |
|                     end loop;
 | |
|                 end if;
 | |
| 	    when OP_AND | OP_OR | OP_XOR =>
 | |
| 		result := logical_result;
 | |
| 		result_en := '1';
 | |
| 	    when OP_B =>
 | |
| 		f_out.redirect <= '1';
 | |
| 		if (insn_aa(e_in.insn)) then
 | |
| 		    f_out.redirect_nia <= std_ulogic_vector(signed(b_in));
 | |
| 		else
 | |
| 		    f_out.redirect_nia <= std_ulogic_vector(signed(e_in.nia) + signed(b_in));
 | |
| 		end if;
 | |
| 	    when OP_BC =>
 | |
| 		-- read_data1 is CTR
 | |
| 		bo := insn_bo(e_in.insn);
 | |
| 		bi := insn_bi(e_in.insn);
 | |
| 		if bo(4-2) = '0' then
 | |
| 		    result := std_ulogic_vector(unsigned(a_in) - 1);
 | |
| 		    result_en := '1';
 | |
| 		    v.e.write_reg := fast_spr_num(SPR_CTR);
 | |
| 		end if;
 | |
| 		if ppc_bc_taken(bo, bi, e_in.cr, a_in) = 1 then
 | |
| 		    f_out.redirect <= '1';
 | |
| 		    if (insn_aa(e_in.insn)) then
 | |
| 			f_out.redirect_nia <= std_ulogic_vector(signed(b_in));
 | |
| 		    else
 | |
| 			f_out.redirect_nia <= std_ulogic_vector(signed(e_in.nia) + signed(b_in));
 | |
| 		    end if;
 | |
| 		end if;
 | |
| 	    when OP_BCREG =>
 | |
| 		-- read_data1 is CTR
 | |
| 		-- read_data2 is target register (CTR, LR or TAR)
 | |
| 		bo := insn_bo(e_in.insn);
 | |
| 		bi := insn_bi(e_in.insn);
 | |
| 		if bo(4-2) = '0' and e_in.insn(10) = '0' then
 | |
| 		    result := std_ulogic_vector(unsigned(a_in) - 1);
 | |
| 		    result_en := '1';
 | |
| 		    v.e.write_reg := fast_spr_num(SPR_CTR);
 | |
| 		end if;
 | |
| 		if ppc_bc_taken(bo, bi, e_in.cr, a_in) = 1 then
 | |
| 		    f_out.redirect <= '1';
 | |
| 		    f_out.redirect_nia <= b_in(63 downto 2) & "00";
 | |
| 		end if;
 | |
| 
 | |
| 	    when OP_RFID =>
 | |
| 		f_out.redirect <= '1';
 | |
| 		f_out.redirect_nia <= a_in(63 downto 2) & "00"; -- srr0
 | |
| 		ctrl_tmp.msr <= msr_copy(std_ulogic_vector(signed(b_in))); -- srr1
 | |
| 	    when OP_CMPB =>
 | |
| 		result := ppc_cmpb(c_in, b_in);
 | |
| 		result_en := '1';
 | |
|             when OP_CNTZ =>
 | |
|                 v.e.valid := '0';
 | |
|                 v.cntz_in_progress := '1';
 | |
|                 stall_out <= '1';
 | |
|             when OP_EXTS =>
 | |
|                 -- note data_len is a 1-hot encoding
 | |
| 		negative := (e_in.data_len(0) and c_in(7)) or
 | |
| 			    (e_in.data_len(1) and c_in(15)) or
 | |
| 			    (e_in.data_len(2) and c_in(31));
 | |
| 		result := (others => negative);
 | |
| 		if e_in.data_len(2) = '1' then
 | |
| 		    result(31 downto 16) := c_in(31 downto 16);
 | |
| 		end if;
 | |
| 		if e_in.data_len(2) = '1' or e_in.data_len(1) = '1' then
 | |
| 		    result(15 downto 8) := c_in(15 downto 8);
 | |
| 		end if;
 | |
| 		result(7 downto 0) := c_in(7 downto 0);
 | |
| 		result_en := '1';
 | |
| 	    when OP_ISEL =>
 | |
| 		crbit := to_integer(unsigned(insn_bc(e_in.insn)));
 | |
| 		if e_in.cr(31-crbit) = '1' then
 | |
| 		    result := a_in;
 | |
| 		else
 | |
| 		    result := b_in;
 | |
| 		end if;
 | |
| 		result_en := '1';
 | |
| 	    when OP_MCRF =>
 | |
| 		cr_op := insn_cr(e_in.insn);
 | |
| 		report "CR OP " & to_hstring(cr_op);
 | |
| 		if cr_op(0) = '0' then -- MCRF
 | |
| 		    bf := insn_bf(e_in.insn);
 | |
| 		    bfa := insn_bfa(e_in.insn);
 | |
| 		    v.e.write_cr_enable := '1';
 | |
| 		    crnum := to_integer(unsigned(bf));
 | |
| 		    scrnum := to_integer(unsigned(bfa));
 | |
| 		    v.e.write_cr_mask := num_to_fxm(crnum);
 | |
| 		    for i in 0 to 7 loop
 | |
| 		        lo := (7-i)*4;
 | |
| 		        hi := lo + 3;
 | |
| 		        if i = scrnum then
 | |
| 			    newcrf := e_in.cr(hi downto lo);
 | |
| 		        end if;
 | |
| 		    end loop;
 | |
| 		    for i in 0 to 7 loop
 | |
| 		        lo := i*4;
 | |
| 		        hi := lo + 3;
 | |
| 		        v.e.write_cr_data(hi downto lo) := newcrf;
 | |
| 		    end loop;
 | |
| 		else
 | |
| 		    v.e.write_cr_enable := '1';
 | |
| 		    bt := insn_bt(e_in.insn);
 | |
| 		    ba := insn_ba(e_in.insn);
 | |
| 		    bb := insn_bb(e_in.insn);
 | |
| 		    btnum := 31 - to_integer(unsigned(bt));
 | |
| 		    banum := 31 - to_integer(unsigned(ba));
 | |
| 		    bbnum := 31 - to_integer(unsigned(bb));
 | |
|                     -- Bits 5-8 of cr_op give the truth table of the requested
 | |
|                     -- logical operation
 | |
|                     cr_operands := e_in.cr(banum) & e_in.cr(bbnum);
 | |
|                     crresult := cr_op(5 + to_integer(unsigned(cr_operands)));
 | |
| 		    v.e.write_cr_mask := num_to_fxm((31-btnum) / 4);
 | |
| 		    for i in 0 to 31 loop
 | |
| 			if i = btnum then
 | |
| 		            v.e.write_cr_data(i) := crresult;
 | |
| 			else
 | |
| 		            v.e.write_cr_data(i) := e_in.cr(i);
 | |
| 			end if;
 | |
| 		    end loop;
 | |
| 		end if;
 | |
| 	    when OP_MFMSR =>
 | |
| 		result := msr_copy(ctrl.msr);
 | |
| 		result_en := '1';
 | |
| 	    when OP_MFSPR =>
 | |
| 		report "MFSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
 | |
| 		    "=" & to_hstring(a_in);
 | |
| 		if is_fast_spr(e_in.read_reg1) then
 | |
| 		    result := a_in;
 | |
| 		    if decode_spr_num(e_in.insn) = SPR_XER then
 | |
| 			-- bits 0:31 and 35:43 are treated as reserved and return 0s when read using mfxer
 | |
| 			result(63 downto 32) := (others => '0');
 | |
| 			result(63-32) := v.e.xerc.so;
 | |
| 			result(63-33) := v.e.xerc.ov;
 | |
| 			result(63-34) := v.e.xerc.ca;
 | |
| 			result(63-35 downto 63-43) := "000000000";
 | |
| 			result(63-44) := v.e.xerc.ov32;
 | |
| 			result(63-45) := v.e.xerc.ca32;
 | |
| 		    end if;
 | |
| 		else
 | |
| 		    case decode_spr_num(e_in.insn) is
 | |
| 		    when SPR_TB =>
 | |
| 			result := ctrl.tb;
 | |
| 		    when SPR_DEC =>
 | |
| 			result := ctrl.dec;
 | |
| 		    when others =>
 | |
| 			result := (others => '0');
 | |
| 		    end case;
 | |
| 		end if;
 | |
| 		result_en := '1';
 | |
| 	    when OP_MFCR =>
 | |
| 		if e_in.insn(20) = '0' then
 | |
| 		    -- mfcr
 | |
| 		    result := x"00000000" & e_in.cr;
 | |
| 		else
 | |
| 		    -- mfocrf
 | |
| 		    crnum := fxm_to_num(insn_fxm(e_in.insn));
 | |
| 		    result := (others => '0');
 | |
| 		    for i in 0 to 7 loop
 | |
| 			lo := (7-i)*4;
 | |
| 			hi := lo + 3;
 | |
| 			if crnum = i then
 | |
| 			    result(hi downto lo) := e_in.cr(hi downto lo);
 | |
| 			end if;
 | |
| 		    end loop;
 | |
| 		end if;
 | |
| 		result_en := '1';
 | |
| 	    when OP_MTCRF =>
 | |
| 		v.e.write_cr_enable := '1';
 | |
| 		if e_in.insn(20) = '0' then
 | |
| 		    -- mtcrf
 | |
| 		    v.e.write_cr_mask := insn_fxm(e_in.insn);
 | |
| 		else
 | |
| 		    -- mtocrf: We require one hot priority encoding here
 | |
| 		    crnum := fxm_to_num(insn_fxm(e_in.insn));
 | |
| 		    v.e.write_cr_mask := num_to_fxm(crnum);
 | |
| 		end if;
 | |
| 		v.e.write_cr_data := c_in(31 downto 0);
 | |
| 	    when OP_MTMSRD =>
 | |
| 		-- FIXME handle just the bits we need to.
 | |
| 		ctrl_tmp.msr <= msr_copy(c_in);
 | |
| 	    when OP_MTSPR =>
 | |
| 		report "MTSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
 | |
| 		    "=" & to_hstring(c_in);
 | |
| 		if is_fast_spr(e_in.write_reg) then
 | |
| 		    result := c_in;
 | |
| 		    result_en := '1';
 | |
| 		    if decode_spr_num(e_in.insn) = SPR_XER then
 | |
| 			v.e.xerc.so := c_in(63-32);
 | |
| 			v.e.xerc.ov := c_in(63-33);
 | |
| 			v.e.xerc.ca := c_in(63-34);
 | |
| 			v.e.xerc.ov32 := c_in(63-44);
 | |
| 			v.e.xerc.ca32 := c_in(63-45);
 | |
| 			v.e.write_xerc_enable := '1';
 | |
| 		    end if;
 | |
| 		else
 | |
| 		    -- slow spr
 | |
| 		    case decode_spr_num(e_in.insn) is
 | |
| 		    when SPR_DEC =>
 | |
| 			ctrl_tmp.dec <= c_in;
 | |
| 		    when others =>
 | |
| 		    end case;
 | |
| 		end if;
 | |
| 	    when OP_POPCNT =>
 | |
| 		result := popcnt_result;
 | |
| 		result_en := '1';
 | |
| 	    when OP_PRTY =>
 | |
| 		result := parity_result;
 | |
| 		result_en := '1';
 | |
| 	    when OP_RLC | OP_RLCL | OP_RLCR | OP_SHL | OP_SHR =>
 | |
| 		result := rotator_result;
 | |
| 		if e_in.output_carry = '1' then
 | |
| 		    set_carry(v.e, rotator_carry, rotator_carry);
 | |
| 		end if;
 | |
| 		result_en := '1';
 | |
| 	    when OP_SIM_CONFIG =>
 | |
| 		-- bit 0 was used to select the microwatt console, which
 | |
| 		-- we no longer support.
 | |
| 		result := x"0000000000000000";
 | |
| 		result_en := '1';
 | |
| 
 | |
| 	    when OP_TDI =>
 | |
| 		-- Keep our test cases happy for now, ignore trap instructions
 | |
| 		report "OP_TDI FIXME";
 | |
| 
 | |
| 	    when OP_ISYNC =>
 | |
| 		f_out.redirect <= '1';
 | |
| 		f_out.redirect_nia <= next_nia;
 | |
| 
 | |
| 	    when OP_ICBI =>
 | |
| 		icache_inval <= '1';
 | |
| 
 | |
| 	    when OP_MUL_L64 | OP_MUL_H64 | OP_MUL_H32 =>
 | |
| 		v.e.valid := '0';
 | |
| 		v.mul_in_progress := '1';
 | |
| 		stall_out <= '1';
 | |
| 		x_to_multiply.valid <= '1';
 | |
| 
 | |
| 	    when OP_DIV | OP_DIVE | OP_MOD =>
 | |
| 		v.e.valid := '0';
 | |
| 		v.div_in_progress := '1';
 | |
| 		stall_out <= '1';
 | |
| 		x_to_divider.valid <= '1';
 | |
| 
 | |
|             when OP_LOAD | OP_STORE =>
 | |
|                 -- loadstore/dcache has its own port to writeback
 | |
|                 v.e.valid := '0';
 | |
| 
 | |
|             when others =>
 | |
| 		terminate_out <= '1';
 | |
| 		report "illegal";
 | |
| 	    end case;
 | |
| 
 | |
| 	    v.e.rc := e_in.rc and e_in.valid;
 | |
| 
 | |
| 	    -- Update LR on the next cycle after a branch link
 | |
| 	    --
 | |
| 	    -- WARNING: The LR update isn't tracked by our hazard tracker. This
 | |
| 	    --          will work (well I hope) because it only happens on branches
 | |
| 	    --          which will flush all decoded instructions. By the time
 | |
| 	    --          fetch catches up, we'll have the new LR. This will
 | |
| 	    --          *not* work properly however if we have a branch predictor,
 | |
| 	    --          in which case the solution would probably be to keep a
 | |
| 	    --          local cache of the updated LR in execute1 (flushed on
 | |
| 	    --          exceptions) that is used instead of the value from
 | |
| 	    --          decode when its content is valid.
 | |
| 	    if e_in.lr = '1' then
 | |
| 		v.lr_update := '1';
 | |
| 		v.next_lr := next_nia;
 | |
| 		v.e.valid := '0';
 | |
| 		report "Delayed LR update to " & to_hstring(next_nia);
 | |
| 		stall_out <= '1';
 | |
| 	    end if;
 | |
| 	elsif r.lr_update = '1' then
 | |
| 	    result_en := '1';
 | |
| 	    result := r.next_lr;
 | |
| 	    v.e.write_reg := fast_spr_num(SPR_LR);
 | |
| 	    v.e.valid := '1';
 | |
|         elsif r.cntz_in_progress = '1' then
 | |
|             -- cnt[lt]z always takes two cycles
 | |
|             result := countzero_result;
 | |
|             result_en := '1';
 | |
|             v.e.write_reg := gpr_to_gspr(v.slow_op_dest);
 | |
|             v.e.rc := v.slow_op_rc;
 | |
|             v.e.xerc := v.slow_op_xerc;
 | |
|             v.e.valid := '1';
 | |
| 	elsif r.mul_in_progress = '1' or r.div_in_progress = '1' then
 | |
| 	    if (r.mul_in_progress = '1' and multiply_to_x.valid = '1') or
 | |
| 	       (r.div_in_progress = '1' and divider_to_x.valid = '1') then
 | |
| 		if r.mul_in_progress = '1' then
 | |
| 		    result := multiply_to_x.write_reg_data;
 | |
| 		    overflow := multiply_to_x.overflow;
 | |
| 		else
 | |
| 		    result := divider_to_x.write_reg_data;
 | |
| 		    overflow := divider_to_x.overflow;
 | |
| 		end if;
 | |
| 		result_en := '1';
 | |
| 		v.e.write_reg := gpr_to_gspr(v.slow_op_dest);
 | |
| 		v.e.rc := v.slow_op_rc;
 | |
| 		v.e.xerc := v.slow_op_xerc;
 | |
| 		v.e.write_xerc_enable := v.slow_op_oe;
 | |
| 		-- We must test oe because the RC update code in writeback
 | |
| 		-- will use the xerc value to set CR0:SO so we must not clobber
 | |
| 		-- xerc if OE wasn't set.
 | |
| 		if v.slow_op_oe = '1' then
 | |
| 		    v.e.xerc.ov := overflow;
 | |
| 		    v.e.xerc.ov32 := overflow;
 | |
| 		    v.e.xerc.so := v.slow_op_xerc.so or overflow;
 | |
| 		end if;
 | |
| 		v.e.valid := '1';
 | |
| 	    else
 | |
| 		stall_out <= '1';
 | |
| 		v.mul_in_progress := r.mul_in_progress;
 | |
| 		v.div_in_progress := r.div_in_progress;
 | |
| 	    end if;
 | |
| 	end if;
 | |
| 
 | |
| 	if exception = '1' then
 | |
| 	    v.e.write_reg := fast_spr_num(SPR_SRR0);
 | |
| 	    if e_in.valid = '1' then
 | |
| 		result_en := '1';
 | |
| 		ctrl_tmp.irq_state <= WRITE_SRR1;
 | |
| 		stall_out <= '1';
 | |
| 		v.e.valid := '0';
 | |
| 	    end if;
 | |
| 	end if;
 | |
| 
 | |
| 	v.e.write_data := result;
 | |
| 	v.e.write_enable := result_en;
 | |
| 
 | |
|         -- Outputs to loadstore1 (async)
 | |
|         lv := Execute1ToLoadstore1Init;
 | |
|         if e_in.valid = '1' and (e_in.insn_type = OP_LOAD or e_in.insn_type = OP_STORE) then
 | |
|             lv.valid := '1';
 | |
|         end if;
 | |
|         if e_in.insn_type = OP_LOAD then
 | |
|             lv.load := '1';
 | |
|         end if;
 | |
|         lv.addr1 := a_in;
 | |
|         lv.addr2 := b_in;
 | |
|         lv.data := c_in;
 | |
|         lv.write_reg := gspr_to_gpr(e_in.write_reg);
 | |
|         lv.length := e_in.data_len;
 | |
|         lv.byte_reverse := e_in.byte_reverse;
 | |
|         lv.sign_extend := e_in.sign_extend;
 | |
|         lv.update := e_in.update;
 | |
|         lv.update_reg := gspr_to_gpr(e_in.read_reg1);
 | |
|         lv.xerc := v.e.xerc;
 | |
|         lv.reserve := e_in.reserve;
 | |
|         lv.rc := e_in.rc;
 | |
|         -- decode l*cix and st*cix instructions here
 | |
|         if e_in.insn(31 downto 26) = "011111" and e_in.insn(10 downto 9) = "11" and
 | |
|             e_in.insn(5 downto 1) = "10101" then
 | |
|             lv.ci := '1';
 | |
|         end if;
 | |
| 
 | |
| 	-- Update registers
 | |
| 	rin <= v;
 | |
| 
 | |
| 	-- update outputs
 | |
| 	--f_out <= r.f;
 | |
|         l_out <= lv;
 | |
| 	e_out <= r.e;
 | |
| 	flush_out <= f_out.redirect;
 | |
|     end process;
 | |
| end architecture behaviour;
 |