You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/control.vhdl

322 lines
11 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.common.all;
entity control is
generic (
EX1_BYPASS : boolean := true;
PIPELINE_DEPTH : natural := 2
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
complete_in : in instr_tag_t;
valid_in : in std_ulogic;
repeated : in std_ulogic;
flush_in : in std_ulogic;
busy_in : in std_ulogic;
deferred : in std_ulogic;
sgl_pipe_in : in std_ulogic;
stop_mark_in : in std_ulogic;
gpr_write_valid_in : in std_ulogic;
gpr_write_in : in gspr_index_t;
gpr_a_read_valid_in : in std_ulogic;
gpr_a_read_in : in gspr_index_t;
gpr_b_read_valid_in : in std_ulogic;
gpr_b_read_in : in gspr_index_t;
gpr_c_read_valid_in : in std_ulogic;
gpr_c_read_in : in gspr_index_t;
execute_next_tag : in instr_tag_t;
cr_read_in : in std_ulogic;
cr_write_in : in std_ulogic;
cr_bypassable : in std_ulogic;
valid_out : out std_ulogic;
stall_out : out std_ulogic;
stopped_out : out std_ulogic;
gpr_bypass_a : out std_ulogic;
gpr_bypass_b : out std_ulogic;
gpr_bypass_c : out std_ulogic;
cr_bypass : out std_ulogic;
instr_tag_out : out instr_tag_t
);
end entity control;
architecture rtl of control is
type state_type is (IDLE, WAIT_FOR_PREV_TO_COMPLETE, WAIT_FOR_CURR_TO_COMPLETE);
type reg_internal_type is record
state : state_type;
outstanding : integer range -1 to PIPELINE_DEPTH+2;
end record;
constant reg_internal_init : reg_internal_type := (state => IDLE, outstanding => 0);
signal r_int, rin_int : reg_internal_type := reg_internal_init;
signal stall_a_out : std_ulogic;
signal stall_b_out : std_ulogic;
signal stall_c_out : std_ulogic;
signal cr_stall_out : std_ulogic;
signal gpr_write_valid : std_ulogic := '0';
signal cr_write_valid : std_ulogic := '0';
type tag_register is record
wr_gpr : std_ulogic;
reg : gspr_index_t;
recent : std_ulogic;
end record;
type tag_regs_array is array(tag_number_t) of tag_register;
signal tag_regs : tag_regs_array;
signal instr_tag : instr_tag_t;
signal gpr_tag_stall : std_ulogic;
signal curr_tag : tag_number_t;
signal next_tag : tag_number_t;
begin
cr_hazard0: entity work.cr_hazard
generic map (
PIPELINE_DEPTH => PIPELINE_DEPTH
)
port map (
clk => clk,
busy_in => busy_in,
deferred => deferred,
complete_in => complete_in.valid,
flush_in => flush_in,
issuing => valid_out,
cr_read_in => cr_read_in,
cr_write_in => cr_write_valid,
bypassable => cr_bypassable,
stall_out => cr_stall_out,
use_bypass => cr_bypass
);
control0: process(clk)
begin
if rising_edge(clk) then
assert rin_int.outstanding >= 0 and rin_int.outstanding <= (PIPELINE_DEPTH+1)
report "Outstanding bad " & integer'image(rin_int.outstanding) severity failure;
r_int <= rin_int;
for i in tag_number_t loop
if rst = '1' or flush_in = '1' then
tag_regs(i).wr_gpr <= '0';
else
if complete_in.valid = '1' and i = complete_in.tag then
tag_regs(i).wr_gpr <= '0';
report "tag " & integer'image(i) & " not valid";
end if;
if gpr_write_valid = '1' and tag_regs(i).reg = gpr_write_in then
tag_regs(i).recent <= '0';
if tag_regs(i).recent = '1' and tag_regs(i).wr_gpr = '1' then
report "tag " & integer'image(i) & " not recent";
end if;
end if;
if instr_tag.valid = '1' and i = instr_tag.tag then
tag_regs(i).wr_gpr <= gpr_write_valid;
tag_regs(i).reg <= gpr_write_in;
tag_regs(i).recent <= gpr_write_valid;
if gpr_write_valid = '1' then
report "tag " & integer'image(i) & " valid for gpr " & to_hstring(gpr_write_in);
end if;
end if;
end if;
end loop;
if rst = '1' then
curr_tag <= 0;
else
curr_tag <= next_tag;
end if;
end if;
end process;
control_hazards : process(all)
variable gpr_stall : std_ulogic;
variable tag_a : instr_tag_t;
variable tag_b : instr_tag_t;
variable tag_c : instr_tag_t;
variable tag_s : instr_tag_t;
variable tag_t : instr_tag_t;
variable incr_tag : tag_number_t;
variable byp_a : std_ulogic;
variable byp_b : std_ulogic;
variable byp_c : std_ulogic;
begin
tag_a := instr_tag_init;
for i in tag_number_t loop
if tag_regs(i).wr_gpr = '1' and tag_regs(i).recent = '1' and tag_regs(i).reg = gpr_a_read_in then
tag_a.valid := gpr_a_read_valid_in;
tag_a.tag := i;
end if;
end loop;
if tag_match(tag_a, complete_in) then
tag_a.valid := '0';
end if;
tag_b := instr_tag_init;
for i in tag_number_t loop
if tag_regs(i).wr_gpr = '1' and tag_regs(i).recent = '1' and tag_regs(i).reg = gpr_b_read_in then
tag_b.valid := gpr_b_read_valid_in;
tag_b.tag := i;
end if;
end loop;
if tag_match(tag_b, complete_in) then
tag_b.valid := '0';
end if;
tag_c := instr_tag_init;
for i in tag_number_t loop
if tag_regs(i).wr_gpr = '1' and tag_regs(i).recent = '1' and tag_regs(i).reg = gpr_c_read_in then
tag_c.valid := gpr_c_read_valid_in;
tag_c.tag := i;
end if;
end loop;
if tag_match(tag_c, complete_in) then
tag_c.valid := '0';
end if;
byp_a := '0';
if EX1_BYPASS and tag_match(execute_next_tag, tag_a) then
byp_a := '1';
end if;
byp_b := '0';
if EX1_BYPASS and tag_match(execute_next_tag, tag_b) then
byp_b := '1';
end if;
byp_c := '0';
if EX1_BYPASS and tag_match(execute_next_tag, tag_c) then
byp_c := '1';
end if;
gpr_bypass_a <= byp_a;
gpr_bypass_b <= byp_b;
gpr_bypass_c <= byp_c;
gpr_tag_stall <= (tag_a.valid and not byp_a) or
(tag_b.valid and not byp_b) or
(tag_c.valid and not byp_c);
incr_tag := curr_tag;
instr_tag.tag <= curr_tag;
instr_tag.valid <= valid_out and not deferred;
if instr_tag.valid = '1' then
incr_tag := (curr_tag + 1) mod TAG_COUNT;
end if;
next_tag <= incr_tag;
instr_tag_out <= instr_tag;
end process;
control1 : process(all)
variable v_int : reg_internal_type;
variable valid_tmp : std_ulogic;
variable stall_tmp : std_ulogic;
begin
v_int := r_int;
-- asynchronous
valid_tmp := valid_in and not flush_in;
stall_tmp := '0';
if flush_in = '1' then
-- expect to see complete_in next cycle
v_int.outstanding := 1;
elsif complete_in.valid = '1' then
v_int.outstanding := r_int.outstanding - 1;
end if;
if rst = '1' then
v_int := reg_internal_init;
valid_tmp := '0';
end if;
-- Handle debugger stop
stopped_out <= '0';
if stop_mark_in = '1' and v_int.outstanding = 0 then
stopped_out <= '1';
end if;
-- state machine to handle instructions that must be single
-- through the pipeline.
case r_int.state is
when IDLE =>
if valid_tmp = '1' then
if (sgl_pipe_in = '1') then
if v_int.outstanding /= 0 then
v_int.state := WAIT_FOR_PREV_TO_COMPLETE;
stall_tmp := '1';
else
-- send insn out and wait on it to complete
v_int.state := WAIT_FOR_CURR_TO_COMPLETE;
end if;
else
-- let it go out if there are no GPR or CR hazards
stall_tmp := gpr_tag_stall or cr_stall_out;
end if;
end if;
when WAIT_FOR_PREV_TO_COMPLETE =>
if v_int.outstanding = 0 then
-- send insn out and wait on it to complete
v_int.state := WAIT_FOR_CURR_TO_COMPLETE;
else
stall_tmp := '1';
end if;
when WAIT_FOR_CURR_TO_COMPLETE =>
if v_int.outstanding = 0 then
v_int.state := IDLE;
-- XXX Don't replicate this
if valid_tmp = '1' then
if (sgl_pipe_in = '1') then
if v_int.outstanding /= 0 then
v_int.state := WAIT_FOR_PREV_TO_COMPLETE;
stall_tmp := '1';
else
-- send insn out and wait on it to complete
v_int.state := WAIT_FOR_CURR_TO_COMPLETE;
end if;
else
-- let it go out if there are no GPR or CR hazards
stall_tmp := gpr_tag_stall or cr_stall_out;
end if;
end if;
else
stall_tmp := '1';
end if;
end case;
if stall_tmp = '1' then
valid_tmp := '0';
end if;
gpr_write_valid <= gpr_write_valid_in and valid_tmp;
cr_write_valid <= cr_write_in and valid_tmp;
if valid_tmp = '1' and deferred = '0' then
v_int.outstanding := v_int.outstanding + 1;
end if;
-- update outputs
valid_out <= valid_tmp;
stall_out <= stall_tmp or deferred;
-- update registers
rin_int <= v_int;
end process;
end;