You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/dcache.vhdl

880 lines
29 KiB
VHDL

--
-- Set associative dcache write-through
--
-- TODO (in no specific order):
--
-- * See list in icache.vhdl
-- * Complete load misses on the cycle when WB data comes instead of
-- at the end of line (this requires dealing with requests coming in
-- while not idle...)
-- * Load with update could use one less non-pipelined cycle by moving
-- the register update to the pipeline bubble that exists when going
-- back to the IDLE state.
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.utils.all;
use work.common.all;
use work.helpers.all;
use work.wishbone_types.all;
entity dcache is
generic (
-- Line size in bytes
LINE_SIZE : positive := 64;
-- Number of lines in a set
NUM_LINES : positive := 32;
-- Number of ways
NUM_WAYS : positive := 4
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
d_in : in Loadstore1ToDcacheType;
d_out : out DcacheToWritebackType;
stall_out : out std_ulogic;
wishbone_out : out wishbone_master_out;
wishbone_in : in wishbone_slave_out
);
end entity dcache;
architecture rtl of dcache is
-- BRAM organisation: We never access more than wishbone_data_bits at
-- a time so to save resources we make the array only that wide, and
-- use consecutive indices for to make a cache "line"
--
-- ROW_SIZE is the width in bytes of the BRAM (based on WB, so 64-bits)
constant ROW_SIZE : natural := wishbone_data_bits / 8;
-- ROW_PER_LINE is the number of row (wishbone transactions) in a line
constant ROW_PER_LINE : natural := LINE_SIZE / ROW_SIZE;
-- BRAM_ROWS is the number of rows in BRAM needed to represent the full
-- dcache
constant BRAM_ROWS : natural := NUM_LINES * ROW_PER_LINE;
-- Bit fields counts in the address
-- ROW_BITS is the number of bits to select a row
constant ROW_BITS : natural := log2(BRAM_ROWS);
-- ROW_LINEBITS is the number of bits to select a row within a line
constant ROW_LINEBITS : natural := log2(ROW_PER_LINE);
-- LINE_OFF_BITS is the number of bits for the offset in a cache line
constant LINE_OFF_BITS : natural := log2(LINE_SIZE);
-- ROW_OFF_BITS is the number of bits for the offset in a row
constant ROW_OFF_BITS : natural := log2(ROW_SIZE);
-- INDEX_BITS is the number if bits to select a cache line
constant INDEX_BITS : natural := log2(NUM_LINES);
-- TAG_BITS is the number of bits of the tag part of the address
constant TAG_BITS : natural := 64 - LINE_OFF_BITS - INDEX_BITS;
-- WAY_BITS is the number of bits to select a way
constant WAY_BITS : natural := log2(NUM_WAYS);
-- Example of layout for 32 lines of 64 bytes:
--
-- .. tag |index| line |
-- .. | row | |
-- .. | |---| | ROW_LINEBITS (3)
-- .. | |--- - --| LINE_OFF_BITS (6)
-- .. | |- --| ROW_OFF_BITS (3)
-- .. |----- ---| | ROW_BITS (8)
-- .. |-----| | INDEX_BITS (5)
-- .. --------| | TAG_BITS (53)
subtype row_t is integer range 0 to BRAM_ROWS-1;
subtype index_t is integer range 0 to NUM_LINES-1;
subtype way_t is integer range 0 to NUM_WAYS-1;
-- The cache data BRAM organized as described above for each way
subtype cache_row_t is std_ulogic_vector(wishbone_data_bits-1 downto 0);
-- The cache tags LUTRAM has a row per set. Vivado is a pain and will
-- not handle a clean (commented) definition of the cache tags as a 3d
-- memory. For now, work around it by putting all the tags
subtype cache_tag_t is std_logic_vector(TAG_BITS-1 downto 0);
-- type cache_tags_set_t is array(way_t) of cache_tag_t;
-- type cache_tags_array_t is array(index_t) of cache_tags_set_t;
constant TAG_RAM_WIDTH : natural := TAG_BITS * NUM_WAYS;
subtype cache_tags_set_t is std_logic_vector(TAG_RAM_WIDTH-1 downto 0);
type cache_tags_array_t is array(index_t) of cache_tags_set_t;
-- The cache valid bits
subtype cache_way_valids_t is std_ulogic_vector(NUM_WAYS-1 downto 0);
type cache_valids_t is array(index_t) of cache_way_valids_t;
-- Storage. Hopefully "cache_rows" is a BRAM, the rest is LUTs
signal cache_tags : cache_tags_array_t;
signal cache_valids : cache_valids_t;
attribute ram_style : string;
attribute ram_style of cache_tags : signal is "distributed";
-- Type of operation on a "valid" input
type op_t is (OP_NONE,
OP_LOAD_HIT, -- Cache hit on load
OP_LOAD_MISS, -- Load missing cache
OP_LOAD_NC, -- Non-cachable load
OP_BAD, -- BAD: Cache hit on NC load/store
OP_STORE_HIT, -- Store hitting cache
OP_STORE_MISS); -- Store missing cache
-- Cache state machine
type state_t is (IDLE, -- Normal load hit processing
LOAD_UPDATE, -- Load with update extra cycle
LOAD_UPDATE2, -- Load with update extra cycle
RELOAD_WAIT_ACK, -- Cache reload wait ack
STORE_WAIT_ACK, -- Store wait ack
NC_LOAD_WAIT_ACK);-- Non-cachable load wait ack
--
-- Dcache operations:
--
-- In order to make timing, we use the BRAMs with an output buffer,
-- which means that the BRAM output is delayed by an extra cycle.
--
-- Thus, the dcache has a 2-stage internal pipeline for cache hits
-- with no stalls.
--
-- All other operations are handled via stalling in the first stage.
--
-- The second stage can thus complete a hit at the same time as the
-- first stage emits a stall for a complex op.
--
-- First stage register, contains state for stage 1 of load hits
-- and for the state machine used by all other operations
--
type reg_stage_1_t is record
-- Latch the complete request from ls1
req : Loadstore1ToDcacheType;
-- Cache hit state
hit_way : way_t;
hit_load_valid : std_ulogic;
-- Register update (load/store with update)
update_valid : std_ulogic;
-- Data buffer for "slow" read ops (load miss and NC loads).
slow_data : std_ulogic_vector(63 downto 0);
slow_valid : std_ulogic;
-- Cache miss state (reload state machine)
state : state_t;
wb : wishbone_master_out;
store_way : way_t;
store_row : row_t;
store_index : index_t;
end record;
signal r1 : reg_stage_1_t;
-- Second stage register, only used for load hits
--
type reg_stage_2_t is record
hit_way : way_t;
hit_load_valid : std_ulogic;
load_is_update : std_ulogic;
load_reg : std_ulogic_vector(4 downto 0);
data_shift : std_ulogic_vector(2 downto 0);
length : std_ulogic_vector(3 downto 0);
sign_extend : std_ulogic;
byte_reverse : std_ulogic;
xerc : xer_common_t;
end record;
signal r2 : reg_stage_2_t;
-- Async signals on incoming request
signal req_index : index_t;
signal req_row : row_t;
signal req_hit_way : way_t;
signal req_tag : cache_tag_t;
signal req_op : op_t;
signal req_laddr : std_ulogic_vector(63 downto 0);
-- Cache RAM interface
type cache_ram_out_t is array(way_t) of cache_row_t;
signal cache_out : cache_ram_out_t;
-- PLRU output interface
type plru_out_t is array(index_t) of std_ulogic_vector(WAY_BITS-1 downto 0);
signal plru_victim : plru_out_t;
signal replace_way : way_t;
-- Wishbone read/write/cache write formatting signals
signal bus_sel : wishbone_sel_type;
signal store_data : wishbone_data_type;
--
-- Helper functions to decode incoming requests
--
-- Return the cache line index (tag index) for an address
function get_index(addr: std_ulogic_vector(63 downto 0)) return index_t is
begin
return to_integer(unsigned(addr(63-TAG_BITS downto LINE_OFF_BITS)));
end;
-- Return the cache row index (data memory) for an address
function get_row(addr: std_ulogic_vector(63 downto 0)) return row_t is
begin
return to_integer(unsigned(addr(63-TAG_BITS downto ROW_OFF_BITS)));
end;
-- Returns whether this is the last row of a line
function is_last_row_addr(addr: wishbone_addr_type) return boolean is
constant ones : std_ulogic_vector(ROW_LINEBITS-1 downto 0) := (others => '1');
begin
return addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS) = ones;
end;
-- Returns whether this is the last row of a line
function is_last_row(row: row_t) return boolean is
variable row_v : std_ulogic_vector(ROW_BITS-1 downto 0);
constant ones : std_ulogic_vector(ROW_LINEBITS-1 downto 0) := (others => '1');
begin
row_v := std_ulogic_vector(to_unsigned(row, ROW_BITS));
return row_v(ROW_LINEBITS-1 downto 0) = ones;
end;
-- Return the address of the next row in the current cache line
function next_row_addr(addr: wishbone_addr_type) return std_ulogic_vector is
variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
variable result : wishbone_addr_type;
begin
-- Is there no simpler way in VHDL to generate that 3 bits adder ?
row_idx := addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS);
row_idx := std_ulogic_vector(unsigned(row_idx) + 1);
result := addr;
result(LINE_OFF_BITS-1 downto ROW_OFF_BITS) := row_idx;
return result;
end;
-- Return the next row in the current cache line. We use a dedicated
-- function in order to limit the size of the generated adder to be
-- only the bits within a cache line (3 bits with default settings)
--
function next_row(row: row_t) return row_t is
variable row_v : std_ulogic_vector(ROW_BITS-1 downto 0);
variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
variable result : std_ulogic_vector(ROW_BITS-1 downto 0);
begin
row_v := std_ulogic_vector(to_unsigned(row, ROW_BITS));
row_idx := row_v(ROW_LINEBITS-1 downto 0);
row_v(ROW_LINEBITS-1 downto 0) := std_ulogic_vector(unsigned(row_idx) + 1);
return to_integer(unsigned(row_v));
end;
-- Get the tag value from the address
function get_tag(addr: std_ulogic_vector(63 downto 0)) return cache_tag_t is
begin
return addr(63 downto 64-TAG_BITS);
end;
-- Read a tag from a tag memory row
function read_tag(way: way_t; tagset: cache_tags_set_t) return cache_tag_t is
begin
return tagset((way+1) * TAG_BITS - 1 downto way * TAG_BITS);
end;
-- Write a tag to tag memory row
procedure write_tag(way: in way_t; tagset: inout cache_tags_set_t;
tag: cache_tag_t) is
begin
tagset((way+1) * TAG_BITS - 1 downto way * TAG_BITS) := tag;
end;
-- Generate byte enables from sizes
function length_to_sel(length : in std_logic_vector(3 downto 0)) return std_ulogic_vector is
begin
case length is
when "0001" =>
return "00000001";
when "0010" =>
return "00000011";
when "0100" =>
return "00001111";
when "1000" =>
return "11111111";
when others =>
return "00000000";
end case;
end function length_to_sel;
-- Calculate shift and byte enables for wishbone
function wishbone_data_shift(address : in std_ulogic_vector(63 downto 0)) return natural is
begin
return to_integer(unsigned(address(2 downto 0))) * 8;
end function wishbone_data_shift;
function wishbone_data_sel(size : in std_logic_vector(3 downto 0);
address : in std_logic_vector(63 downto 0))
return std_ulogic_vector is
begin
return std_ulogic_vector(shift_left(unsigned(length_to_sel(size)),
to_integer(unsigned(address(2 downto 0)))));
end function wishbone_data_sel;
begin
assert LINE_SIZE mod ROW_SIZE = 0 report "LINE_SIZE not multiple of ROW_SIZE" severity FAILURE;
assert ispow2(LINE_SIZE) report "LINE_SIZE not power of 2" severity FAILURE;
assert ispow2(NUM_LINES) report "NUM_LINES not power of 2" severity FAILURE;
assert ispow2(ROW_PER_LINE) report "ROW_PER_LINE not power of 2" severity FAILURE;
assert (ROW_BITS = INDEX_BITS + ROW_LINEBITS)
report "geometry bits don't add up" severity FAILURE;
assert (LINE_OFF_BITS = ROW_OFF_BITS + ROW_LINEBITS)
report "geometry bits don't add up" severity FAILURE;
assert (64 = TAG_BITS + INDEX_BITS + LINE_OFF_BITS)
report "geometry bits don't add up" severity FAILURE;
assert (64 = TAG_BITS + ROW_BITS + ROW_OFF_BITS)
report "geometry bits don't add up" severity FAILURE;
assert (64 = wishbone_data_bits)
report "Can't yet handle a wishbone width that isn't 64-bits" severity FAILURE;
-- Generate PLRUs
maybe_plrus: if NUM_WAYS > 1 generate
begin
plrus: for i in 0 to NUM_LINES-1 generate
-- PLRU interface
signal plru_acc : std_ulogic_vector(WAY_BITS-1 downto 0);
signal plru_acc_en : std_ulogic;
signal plru_out : std_ulogic_vector(WAY_BITS-1 downto 0);
begin
plru : entity work.plru
generic map (
BITS => WAY_BITS
)
port map (
clk => clk,
rst => rst,
acc => plru_acc,
acc_en => plru_acc_en,
lru => plru_out
);
process(req_index, req_op, req_hit_way, plru_out)
begin
-- PLRU interface
if (req_op = OP_LOAD_HIT or
req_op = OP_STORE_HIT) and req_index = i then
plru_acc_en <= '1';
else
plru_acc_en <= '0';
end if;
plru_acc <= std_ulogic_vector(to_unsigned(req_hit_way, WAY_BITS));
plru_victim(i) <= plru_out;
end process;
end generate;
end generate;
-- Cache request parsing and hit detection
dcache_request : process(all)
variable is_hit : std_ulogic;
variable hit_way : way_t;
variable op : op_t;
variable tmp : std_ulogic_vector(63 downto 0);
variable data : std_ulogic_vector(63 downto 0);
variable opsel : std_ulogic_vector(3 downto 0);
begin
-- Extract line, row and tag from request
req_index <= get_index(d_in.addr);
req_row <= get_row(d_in.addr);
req_tag <= get_tag(d_in.addr);
-- Calculate address of beginning of cache line, will be
-- used for cache miss processing if needed
--
req_laddr <= d_in.addr(63 downto LINE_OFF_BITS) &
(LINE_OFF_BITS-1 downto 0 => '0');
-- Test if pending request is a hit on any way
hit_way := 0;
is_hit := '0';
for i in way_t loop
if d_in.valid = '1' and cache_valids(req_index)(i) = '1' then
if read_tag(i, cache_tags(req_index)) = req_tag then
hit_way := i;
is_hit := '1';
end if;
end if;
end loop;
-- The way that matched on a hit
req_hit_way <= hit_way;
-- The way to replace on a miss
replace_way <= to_integer(unsigned(plru_victim(req_index)));
-- Combine the request and cache his status to decide what
-- operation needs to be done
--
opsel := d_in.valid & d_in.load & d_in.nc & is_hit;
case opsel is
when "1101" => op := OP_LOAD_HIT;
when "1100" => op := OP_LOAD_MISS;
when "1110" => op := OP_LOAD_NC;
when "1001" => op := OP_STORE_HIT;
when "1000" => op := OP_STORE_MISS;
when "1010" => op := OP_STORE_MISS;
when "1011" => op := OP_BAD;
when "1111" => op := OP_BAD;
when others => op := OP_NONE;
end case;
req_op <= op;
end process;
--
-- Misc signal assignments
--
-- Wire up wishbone request latch out of stage 1
wishbone_out <= r1.wb;
-- Wishbone & BRAM write data formatting for stores (most of it already
-- happens in loadstore1, this is the remaining data shifting)
--
store_data <= std_logic_vector(shift_left(unsigned(d_in.data),
wishbone_data_shift(d_in.addr)));
-- Wishbone read and write and BRAM write sel bits generation
bus_sel <= wishbone_data_sel(d_in.length, d_in.addr);
-- TODO: Generate errors
-- err_nc_collision <= '1' when req_op = OP_BAD else '0';
-- Generate stalls from stage 1 state machine
stall_out <= '1' when r1.state /= IDLE else '0';
-- Writeback (loads and reg updates) & completion control logic
--
writeback_control: process(all)
begin
-- The mux on d_out.write reg defaults to the normal load hit case.
d_out.write_enable <= '0';
d_out.valid <= '0';
d_out.write_reg <= r2.load_reg;
d_out.write_data <= cache_out(r2.hit_way);
d_out.write_len <= r2.length;
d_out.write_shift <= r2.data_shift;
d_out.sign_extend <= r2.sign_extend;
d_out.byte_reverse <= r2.byte_reverse;
d_out.second_word <= '0';
d_out.xerc <= r2.xerc;
-- We have a valid load or store hit or we just completed a slow
-- op such as a load miss, a NC load or a store
--
-- Note: the load hit is delayed by one cycle. However it can still
-- not collide with r.slow_valid (well unless I miscalculated) because
-- slow_valid can only be set on a subsequent request and not on its
-- first cycle (the state machine must have advanced), which makes
-- slow_valid at least 2 cycles from the previous hit_load_valid.
--
-- Sanity: Only one of these must be set in any given cycle
assert (r1.update_valid and r2.hit_load_valid) /= '1' report
"unexpected hit_load_delayed collision with update_valid"
severity FAILURE;
assert (r1.slow_valid and r2.hit_load_valid) /= '1' report
"unexpected hit_load_delayed collision with slow_valid"
severity FAILURE;
assert (r1.slow_valid and r1.update_valid) /= '1' report
"unexpected update_valid collision with slow_valid"
severity FAILURE;
-- Delayed load hit case is the standard path
if r2.hit_load_valid = '1' then
d_out.write_enable <= '1';
-- If it's not a load with update, complete it now
if r2.load_is_update = '0' then
d_out.valid <= '1';
end if;
end if;
-- Slow ops (load miss, NC, stores)
if r1.slow_valid = '1' then
-- If it's a load, enable register writeback and switch
-- mux accordingly
--
if r1.req.load then
d_out.write_reg <= r1.req.write_reg;
d_out.write_enable <= '1';
-- Read data comes from the slow data latch, formatter
-- from the latched request.
--
d_out.write_data <= r1.slow_data;
d_out.write_shift <= r1.req.addr(2 downto 0);
d_out.sign_extend <= r1.req.sign_extend;
d_out.byte_reverse <= r1.req.byte_reverse;
d_out.write_len <= r1.req.length;
d_out.xerc <= r1.req.xerc;
end if;
-- If it's a store or a non-update load form, complete now
if r1.req.load = '0' or r1.req.update = '0' then
d_out.valid <= '1';
end if;
end if;
-- We have a register update to do.
if r1.update_valid = '1' then
d_out.write_enable <= '1';
d_out.write_reg <= r1.req.update_reg;
-- Change the read data mux to the address that's going into
-- the register and the formatter does nothing.
--
d_out.write_data <= r1.req.addr;
d_out.write_shift <= "000";
d_out.write_len <= "1000";
d_out.sign_extend <= '0';
d_out.byte_reverse <= '0';
d_out.xerc <= r1.req.xerc;
-- If it was a load, this completes the operation (load with
-- update case).
--
if r1.req.load = '1' then
d_out.valid <= '1';
end if;
end if;
end process;
--
-- Generate a cache RAM for each way. This handles the normal
-- reads, writes from reloads and the special store-hit update
-- path as well.
--
-- Note: the BRAMs have an extra read buffer, meaning the output
-- is pipelined an extra cycle. This differs from the
-- icache. The writeback logic needs to take that into
-- account by using 1-cycle delayed signals for load hits.
--
rams: for i in 0 to NUM_WAYS-1 generate
signal do_read : std_ulogic;
signal rd_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal do_write : std_ulogic;
signal wr_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal wr_data : std_ulogic_vector(wishbone_data_bits-1 downto 0);
signal wr_sel : std_ulogic_vector(ROW_SIZE-1 downto 0);
signal dout : cache_row_t;
begin
way: entity work.cache_ram
generic map (
ROW_BITS => ROW_BITS,
WIDTH => wishbone_data_bits,
ADD_BUF => true
)
port map (
clk => clk,
rd_en => do_read,
rd_addr => rd_addr,
rd_data => dout,
wr_en => do_write,
wr_sel => wr_sel,
wr_addr => wr_addr,
wr_data => wr_data
);
process(all)
variable tmp_adr : std_ulogic_vector(63 downto 0);
variable reloading : boolean;
begin
-- Cache hit reads
do_read <= '1';
rd_addr <= std_ulogic_vector(to_unsigned(req_row, ROW_BITS));
cache_out(i) <= dout;
-- Write mux:
--
-- Defaults to wishbone read responses (cache refill),
--
-- For timing, the mux on wr_data/sel/addr is not dependent on anything
-- other than the current state. Only the do_write signal is.
--
if r1.state = IDLE then
-- When IDLE, the only write path is the store-hit update case
wr_addr <= std_ulogic_vector(to_unsigned(req_row, ROW_BITS));
wr_data <= store_data;
wr_sel <= bus_sel;
else
-- Otherwise, we might be doing a reload
wr_data <= wishbone_in.dat;
wr_sel <= (others => '1');
wr_addr <= std_ulogic_vector(to_unsigned(r1.store_row, ROW_BITS));
end if;
-- The two actual write cases here
do_write <= '0';
reloading := r1.state = RELOAD_WAIT_ACK;
if reloading and wishbone_in.ack = '1' and r1.store_way = i then
do_write <= '1';
end if;
if req_op = OP_STORE_HIT and req_hit_way = i then
assert not reloading report "Store hit while in state:" &
state_t'image(r1.state)
severity FAILURE;
do_write <= '1';
end if;
end process;
end generate;
--
-- Cache hit synchronous machine for the easy case. This handles
-- non-update form load hits and stage 1 to stage 2 transfers
--
dcache_fast_hit : process(clk)
begin
if rising_edge(clk) then
-- stage 1 -> stage 2
r2.hit_load_valid <= r1.hit_load_valid;
r2.hit_way <= r1.hit_way;
r2.load_is_update <= r1.req.update;
r2.load_reg <= r1.req.write_reg;
r2.data_shift <= r1.req.addr(2 downto 0);
r2.length <= r1.req.length;
r2.sign_extend <= r1.req.sign_extend;
r2.byte_reverse <= r1.req.byte_reverse;
-- If we have a request incoming, we have to latch it as d_in.valid
-- is only set for a single cycle. It's up to the control logic to
-- ensure we don't override an uncompleted request (for now we are
-- single issue on load/stores so we are fine, later, we can generate
-- a stall output if necessary).
if req_op /= OP_NONE then
r1.req <= d_in;
report "op:" & op_t'image(req_op) &
" addr:" & to_hstring(d_in.addr) &
" upd:" & std_ulogic'image(d_in.update) &
" nc:" & std_ulogic'image(d_in.nc) &
" reg:" & to_hstring(d_in.write_reg) &
" idx:" & integer'image(req_index) &
" tag:" & to_hstring(req_tag) &
" way: " & integer'image(req_hit_way);
end if;
-- Fast path for load/store hits. Set signals for the writeback controls.
if req_op = OP_LOAD_HIT then
r1.hit_way <= req_hit_way;
r1.hit_load_valid <= '1';
else
r1.hit_load_valid <= '0';
end if;
end if;
end process;
--
-- Every other case is handled by this stage machine:
--
-- * Cache load miss/reload (in conjunction with "rams")
-- * Load hits for update forms
-- * Load hits for non-cachable forms
-- * Stores (the collision case is handled in "rams")
--
-- All wishbone requests generation is done here. This machine
-- operates at stage 1.
--
dcache_slow : process(clk)
variable tagset : cache_tags_set_t;
variable stbs_done : boolean;
begin
if rising_edge(clk) then
-- On reset, clear all valid bits to force misses
if rst = '1' then
for i in index_t loop
cache_valids(i) <= (others => '0');
end loop;
r1.state <= IDLE;
r1.slow_valid <= '0';
r1.update_valid <= '0';
r1.wb.cyc <= '0';
r1.wb.stb <= '0';
-- Not useful normally but helps avoiding tons of sim warnings
r1.wb.adr <= (others => '0');
else
-- One cycle pulses reset
r1.slow_valid <= '0';
r1.update_valid <= '0';
-- We cannot currently process a new request when not idle
assert req_op = OP_NONE or r1.state = IDLE report "request " &
op_t'image(req_op) & " while in state " & state_t'image(r1.state)
severity FAILURE;
-- Main state machine
case r1.state is
when IDLE =>
case req_op is
when OP_LOAD_HIT =>
-- We have a load with update hit, we need the delayed update cycle
if d_in.update = '1' then
r1.state <= LOAD_UPDATE;
end if;
when OP_LOAD_MISS =>
-- Normal load cache miss, start the reload machine
--
report "cache miss addr:" & to_hstring(d_in.addr) &
" idx:" & integer'image(req_index) &
" way:" & integer'image(replace_way) &
" tag:" & to_hstring(req_tag);
-- Force misses on that way while reloading that line
cache_valids(req_index)(replace_way) <= '0';
-- Store new tag in selected way
for i in 0 to NUM_WAYS-1 loop
if i = replace_way then
tagset := cache_tags(req_index);
write_tag(i, tagset, req_tag);
cache_tags(req_index) <= tagset;
end if;
end loop;
-- Keep track of our index and way for subsequent stores.
r1.store_index <= req_index;
r1.store_way <= replace_way;
r1.store_row <= get_row(req_laddr);
-- Prep for first wishbone read. We calculate the address of
-- the start of the cache line and start the WB cycle
--
r1.wb.adr <= req_laddr(r1.wb.adr'left downto 0);
r1.wb.sel <= (others => '1');
r1.wb.we <= '0';
r1.wb.cyc <= '1';
r1.wb.stb <= '1';
-- Track that we had one request sent
r1.state <= RELOAD_WAIT_ACK;
when OP_LOAD_NC =>
r1.wb.sel <= bus_sel;
r1.wb.adr <= d_in.addr(r1.wb.adr'left downto 3) & "000";
r1.wb.cyc <= '1';
r1.wb.stb <= '1';
r1.wb.we <= '0';
r1.state <= NC_LOAD_WAIT_ACK;
when OP_STORE_HIT | OP_STORE_MISS =>
-- For store-with-update do the register update
if d_in.update = '1' then
r1.update_valid <= '1';
end if;
r1.wb.sel <= bus_sel;
r1.wb.adr <= d_in.addr(r1.wb.adr'left downto 3) & "000";
r1.wb.dat <= store_data;
r1.wb.cyc <= '1';
r1.wb.stb <= '1';
r1.wb.we <= '1';
r1.state <= STORE_WAIT_ACK;
-- OP_NONE and OP_BAD do nothing
when OP_NONE =>
when OP_BAD =>
end case;
when RELOAD_WAIT_ACK =>
-- Requests are all sent if stb is 0
stbs_done := r1.wb.stb = '0';
-- If we are still sending requests, was one accepted ?
if wishbone_in.stall = '0' and not stbs_done then
-- That was the last word ? We are done sending. Clear
-- stb and set stbs_done so we can handle an eventual last
-- ack on the same cycle.
--
if is_last_row_addr(r1.wb.adr) then
r1.wb.stb <= '0';
stbs_done := true;
end if;
-- Calculate the next row address
r1.wb.adr <= next_row_addr(r1.wb.adr);
end if;
-- Incoming acks processing
if wishbone_in.ack = '1' then
-- Is this the data we were looking for ? Latch it so
-- we can respond later. We don't currently complete the
-- pending miss request immediately, we wait for the
-- whole line to be loaded. The reason is that if we
-- did, we would potentially get new requests in while
-- not idle, which we don't currently know how to deal
-- with.
--
if r1.store_row = get_row(r1.req.addr) then
r1.slow_data <= wishbone_in.dat;
end if;
-- Check for completion
if stbs_done and is_last_row(r1.store_row) then
-- Complete wishbone cycle
r1.wb.cyc <= '0';
-- Cache line is now valid
cache_valids(r1.store_index)(r1.store_way) <= '1';
-- Complete the load that missed. For load with update
-- we also need to do the deferred update cycle.
--
r1.slow_valid <= '1';
if r1.req.load = '1' and r1.req.update = '1' then
r1.state <= LOAD_UPDATE;
report "completing miss with load-update !";
else
r1.state <= IDLE;
report "completing miss !";
end if;
end if;
-- Increment store row counter
r1.store_row <= next_row(r1.store_row);
end if;
when LOAD_UPDATE =>
-- We need the extra cycle to complete a load with update
r1.state <= LOAD_UPDATE2;
when LOAD_UPDATE2 =>
-- We need the extra cycle to complete a load with update
r1.update_valid <= '1';
r1.state <= IDLE;
when STORE_WAIT_ACK | NC_LOAD_WAIT_ACK =>
-- Clear stb when slave accepted request
if wishbone_in.stall = '0' then
r1.wb.stb <= '0';
end if;
-- Got ack ? complete.
if wishbone_in.ack = '1' then
if r1.state = NC_LOAD_WAIT_ACK then
r1.slow_data <= wishbone_in.dat;
end if;
r1.slow_valid <= '1';
r1.wb.cyc <= '0';
r1.wb.stb <= '0';
r1.state <= IDLE;
end if;
end case;
end if;
end if;
end process;
end;