You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1627 lines
61 KiB
VHDL
1627 lines
61 KiB
VHDL
--
|
|
-- Set associative dcache write-through
|
|
--
|
|
--
|
|
library ieee;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.numeric_std.all;
|
|
|
|
library work;
|
|
use work.utils.all;
|
|
use work.common.all;
|
|
use work.helpers.all;
|
|
use work.wishbone_types.all;
|
|
|
|
entity dcache is
|
|
generic (
|
|
-- Line size in bytes
|
|
LINE_SIZE : positive := 64;
|
|
-- Number of lines in a set
|
|
NUM_LINES : positive := 32;
|
|
-- Number of ways
|
|
NUM_WAYS : positive := 4;
|
|
-- L1 DTLB entries per set
|
|
TLB_SET_SIZE : positive := 64;
|
|
-- L1 DTLB number of sets
|
|
TLB_NUM_WAYS : positive := 2;
|
|
-- L1 DTLB log_2(page_size)
|
|
TLB_LG_PGSZ : positive := 12;
|
|
-- Non-zero to enable log data collection
|
|
LOG_LENGTH : natural := 0
|
|
);
|
|
port (
|
|
clk : in std_ulogic;
|
|
rst : in std_ulogic;
|
|
|
|
d_in : in Loadstore1ToDcacheType;
|
|
d_out : out DcacheToLoadstore1Type;
|
|
|
|
m_in : in MmuToDcacheType;
|
|
m_out : out DcacheToMmuType;
|
|
|
|
snoop_in : in wishbone_master_out := wishbone_master_out_init;
|
|
|
|
stall_out : out std_ulogic;
|
|
|
|
wishbone_out : out wishbone_master_out;
|
|
wishbone_in : in wishbone_slave_out;
|
|
|
|
events : out DcacheEventType;
|
|
|
|
log_out : out std_ulogic_vector(19 downto 0)
|
|
);
|
|
end entity dcache;
|
|
|
|
architecture rtl of dcache is
|
|
-- BRAM organisation: We never access more than wishbone_data_bits at
|
|
-- a time so to save resources we make the array only that wide, and
|
|
-- use consecutive indices to make a cache "line"
|
|
--
|
|
-- ROW_SIZE is the width in bytes of the BRAM (based on WB, so 64-bits)
|
|
constant ROW_SIZE : natural := wishbone_data_bits / 8;
|
|
-- ROW_PER_LINE is the number of row (wishbone transactions) in a line
|
|
constant ROW_PER_LINE : natural := LINE_SIZE / ROW_SIZE;
|
|
-- BRAM_ROWS is the number of rows in BRAM needed to represent the full
|
|
-- dcache
|
|
constant BRAM_ROWS : natural := NUM_LINES * ROW_PER_LINE;
|
|
|
|
-- Bit fields counts in the address
|
|
|
|
-- REAL_ADDR_BITS is the number of real address bits that we store
|
|
constant REAL_ADDR_BITS : positive := 56;
|
|
-- ROW_BITS is the number of bits to select a row
|
|
constant ROW_BITS : natural := log2(BRAM_ROWS);
|
|
-- ROW_LINEBITS is the number of bits to select a row within a line
|
|
constant ROW_LINEBITS : natural := log2(ROW_PER_LINE);
|
|
-- LINE_OFF_BITS is the number of bits for the offset in a cache line
|
|
constant LINE_OFF_BITS : natural := log2(LINE_SIZE);
|
|
-- ROW_OFF_BITS is the number of bits for the offset in a row
|
|
constant ROW_OFF_BITS : natural := log2(ROW_SIZE);
|
|
-- INDEX_BITS is the number if bits to select a cache line
|
|
constant INDEX_BITS : natural := log2(NUM_LINES);
|
|
-- SET_SIZE_BITS is the log base 2 of the set size
|
|
constant SET_SIZE_BITS : natural := LINE_OFF_BITS + INDEX_BITS;
|
|
-- TAG_BITS is the number of bits of the tag part of the address
|
|
constant TAG_BITS : natural := REAL_ADDR_BITS - SET_SIZE_BITS;
|
|
-- TAG_WIDTH is the width in bits of each way of the tag RAM
|
|
constant TAG_WIDTH : natural := TAG_BITS + 7 - ((TAG_BITS + 7) mod 8);
|
|
-- WAY_BITS is the number of bits to select a way
|
|
constant WAY_BITS : natural := log2(NUM_WAYS);
|
|
|
|
-- Example of layout for 32 lines of 64 bytes:
|
|
--
|
|
-- .. tag |index| line |
|
|
-- .. | row | |
|
|
-- .. | |---| | ROW_LINEBITS (3)
|
|
-- .. | |--- - --| LINE_OFF_BITS (6)
|
|
-- .. | |- --| ROW_OFF_BITS (3)
|
|
-- .. |----- ---| | ROW_BITS (8)
|
|
-- .. |-----| | INDEX_BITS (5)
|
|
-- .. --------| | TAG_BITS (45)
|
|
|
|
subtype row_t is integer range 0 to BRAM_ROWS-1;
|
|
subtype index_t is integer range 0 to NUM_LINES-1;
|
|
subtype way_t is integer range 0 to NUM_WAYS-1;
|
|
subtype row_in_line_t is unsigned(ROW_LINEBITS-1 downto 0);
|
|
|
|
-- The cache data BRAM organized as described above for each way
|
|
subtype cache_row_t is std_ulogic_vector(wishbone_data_bits-1 downto 0);
|
|
|
|
-- The cache tags LUTRAM has a row per set. Vivado is a pain and will
|
|
-- not handle a clean (commented) definition of the cache tags as a 3d
|
|
-- memory. For now, work around it by putting all the tags
|
|
subtype cache_tag_t is std_logic_vector(TAG_BITS-1 downto 0);
|
|
-- type cache_tags_set_t is array(way_t) of cache_tag_t;
|
|
-- type cache_tags_array_t is array(index_t) of cache_tags_set_t;
|
|
constant TAG_RAM_WIDTH : natural := TAG_WIDTH * NUM_WAYS;
|
|
subtype cache_tags_set_t is std_logic_vector(TAG_RAM_WIDTH-1 downto 0);
|
|
type cache_tags_array_t is array(index_t) of cache_tags_set_t;
|
|
|
|
-- The cache valid bits
|
|
subtype cache_way_valids_t is std_ulogic_vector(NUM_WAYS-1 downto 0);
|
|
type cache_valids_t is array(index_t) of cache_way_valids_t;
|
|
type row_per_line_valid_t is array(0 to ROW_PER_LINE - 1) of std_ulogic;
|
|
|
|
-- Storage. Hopefully "cache_rows" is a BRAM, the rest is LUTs
|
|
signal cache_tags : cache_tags_array_t;
|
|
signal cache_tag_set : cache_tags_set_t;
|
|
signal cache_valids : cache_valids_t;
|
|
|
|
attribute ram_style : string;
|
|
attribute ram_style of cache_tags : signal is "distributed";
|
|
|
|
-- L1 TLB.
|
|
constant TLB_SET_BITS : natural := log2(TLB_SET_SIZE);
|
|
constant TLB_WAY_BITS : natural := log2(TLB_NUM_WAYS);
|
|
constant TLB_EA_TAG_BITS : natural := 64 - (TLB_LG_PGSZ + TLB_SET_BITS);
|
|
constant TLB_TAG_WAY_BITS : natural := TLB_NUM_WAYS * TLB_EA_TAG_BITS;
|
|
constant TLB_PTE_BITS : natural := 64;
|
|
constant TLB_PTE_WAY_BITS : natural := TLB_NUM_WAYS * TLB_PTE_BITS;
|
|
|
|
subtype tlb_way_t is integer range 0 to TLB_NUM_WAYS - 1;
|
|
subtype tlb_index_t is integer range 0 to TLB_SET_SIZE - 1;
|
|
subtype tlb_way_valids_t is std_ulogic_vector(TLB_NUM_WAYS-1 downto 0);
|
|
type tlb_valids_t is array(tlb_index_t) of tlb_way_valids_t;
|
|
subtype tlb_tag_t is std_ulogic_vector(TLB_EA_TAG_BITS - 1 downto 0);
|
|
subtype tlb_way_tags_t is std_ulogic_vector(TLB_TAG_WAY_BITS-1 downto 0);
|
|
type tlb_tags_t is array(tlb_index_t) of tlb_way_tags_t;
|
|
subtype tlb_pte_t is std_ulogic_vector(TLB_PTE_BITS - 1 downto 0);
|
|
subtype tlb_way_ptes_t is std_ulogic_vector(TLB_PTE_WAY_BITS-1 downto 0);
|
|
type tlb_ptes_t is array(tlb_index_t) of tlb_way_ptes_t;
|
|
type hit_way_set_t is array(tlb_way_t) of way_t;
|
|
|
|
signal dtlb_valids : tlb_valids_t;
|
|
signal dtlb_tags : tlb_tags_t;
|
|
signal dtlb_ptes : tlb_ptes_t;
|
|
attribute ram_style of dtlb_tags : signal is "distributed";
|
|
attribute ram_style of dtlb_ptes : signal is "distributed";
|
|
|
|
-- Record for storing permission, attribute, etc. bits from a PTE
|
|
type perm_attr_t is record
|
|
reference : std_ulogic;
|
|
changed : std_ulogic;
|
|
nocache : std_ulogic;
|
|
priv : std_ulogic;
|
|
rd_perm : std_ulogic;
|
|
wr_perm : std_ulogic;
|
|
end record;
|
|
|
|
function extract_perm_attr(pte : std_ulogic_vector(TLB_PTE_BITS - 1 downto 0)) return perm_attr_t is
|
|
variable pa : perm_attr_t;
|
|
begin
|
|
pa.reference := pte(8);
|
|
pa.changed := pte(7);
|
|
pa.nocache := pte(5);
|
|
pa.priv := pte(3);
|
|
pa.rd_perm := pte(2);
|
|
pa.wr_perm := pte(1);
|
|
return pa;
|
|
end;
|
|
|
|
constant real_mode_perm_attr : perm_attr_t := (nocache => '0', others => '1');
|
|
|
|
-- Type of operation on a "valid" input
|
|
type op_t is (OP_NONE,
|
|
OP_BAD, -- NC cache hit, TLB miss, prot/RC failure
|
|
OP_STCX_FAIL, -- conditional store w/o reservation
|
|
OP_LOAD_HIT, -- Cache hit on load
|
|
OP_LOAD_MISS, -- Load missing cache
|
|
OP_LOAD_NC, -- Non-cachable load
|
|
OP_STORE_HIT, -- Store hitting cache
|
|
OP_STORE_MISS); -- Store missing cache
|
|
|
|
-- Cache state machine
|
|
type state_t is (IDLE, -- Normal load hit processing
|
|
RELOAD_WAIT_ACK, -- Cache reload wait ack
|
|
STORE_WAIT_ACK, -- Store wait ack
|
|
NC_LOAD_WAIT_ACK);-- Non-cachable load wait ack
|
|
|
|
|
|
--
|
|
-- Dcache operations:
|
|
--
|
|
-- In order to make timing, we use the BRAMs with an output buffer,
|
|
-- which means that the BRAM output is delayed by an extra cycle.
|
|
--
|
|
-- Thus, the dcache has a 2-stage internal pipeline for cache hits
|
|
-- with no stalls. Stores also complete in 2 cycles in most
|
|
-- circumstances.
|
|
--
|
|
-- A request proceeds through the pipeline as follows.
|
|
--
|
|
-- Cycle 0: Request is received from loadstore or mmu if either
|
|
-- d_in.valid or m_in.valid is 1 (not both). In this cycle portions
|
|
-- of the address are presented to the TLB tag RAM and data RAM
|
|
-- and the cache tag RAM and data RAM.
|
|
--
|
|
-- Clock edge between cycle 0 and cycle 1:
|
|
-- Request is stored in r0 (assuming r0_full was 0). TLB tag and
|
|
-- data RAMs are read, and the cache tag RAM is read. (Cache data
|
|
-- comes out a cycle later due to its output register, giving the
|
|
-- whole of cycle 1 to read the cache data RAM.)
|
|
--
|
|
-- Cycle 1: TLB and cache tag matching is done, the real address
|
|
-- (RA) for the access is calculated, and the type of operation is
|
|
-- determined (the OP_* values above). This gives the TLB way for
|
|
-- a TLB hit, and the cache way for a hit or the way to replace
|
|
-- for a load miss.
|
|
--
|
|
-- Clock edge between cycle 1 and cycle 2:
|
|
-- Request is stored in r1 (assuming r1.full was 0)
|
|
-- The state machine transitions out of IDLE state for a load miss,
|
|
-- a store, a dcbz, or a non-cacheable load. r1.full is set to 1
|
|
-- for a load miss, dcbz or non-cacheable load but not a store.
|
|
--
|
|
-- Cycle 2: Completion signals are asserted for a load hit,
|
|
-- a store (excluding dcbz), a TLB operation, a conditional
|
|
-- store which failed due to no matching reservation, or an error
|
|
-- (cache hit on non-cacheable operation, TLB miss, or protection
|
|
-- fault).
|
|
--
|
|
-- For a load miss, store, or dcbz, the state machine initiates
|
|
-- a wishbone cycle, which takes at least 2 cycles. For a store,
|
|
-- if another store comes in with the same cache tag (therefore
|
|
-- in the same 4k page), it can be added on to the existing cycle,
|
|
-- subject to some constraints.
|
|
-- While r1.full = 1, no new requests can go from r0 to r1, but
|
|
-- requests can come in to r0 and be satisfied if they are
|
|
-- cacheable load hits or stores with the same cache tag.
|
|
--
|
|
-- Writing to the cache data RAM is done at the clock edge
|
|
-- at the end of cycle 2 for a store hit (excluding dcbz).
|
|
-- Stores that miss are not written to the cache data RAM
|
|
-- but just stored through to memory.
|
|
-- Dcbz is done like a cache miss, but the wishbone cycle
|
|
-- is a write rather than a read, and zeroes are written to
|
|
-- the cache data RAM. Thus dcbz will allocate the line in
|
|
-- the cache as well as zeroing memory.
|
|
--
|
|
-- Since stores are written to the cache data RAM at the end of
|
|
-- cycle 2, and loads can come in and hit on the data just stored,
|
|
-- there is a two-stage bypass from store data to load data to
|
|
-- make sure that loads always see previously-stored data even
|
|
-- if it has not yet made it to the cache data RAM.
|
|
--
|
|
-- Load misses read the requested dword of the cache line first in
|
|
-- the memory read request and then cycle around through the other
|
|
-- dwords. The load is completed on the cycle after the requested
|
|
-- dword comes back from memory (using a forwarding path, rather
|
|
-- than going via the cache data RAM). We maintain an array of
|
|
-- valid bits per dword for the line being refilled so that
|
|
-- subsequent load requests to the same line can be completed as
|
|
-- soon as the necessary data comes in from memory, without
|
|
-- waiting for the whole line to be read.
|
|
|
|
-- Stage 0 register, basically contains just the latched request
|
|
type reg_stage_0_t is record
|
|
req : Loadstore1ToDcacheType;
|
|
tlbie : std_ulogic; -- indicates a tlbie request (from MMU)
|
|
doall : std_ulogic; -- with tlbie, indicates flush whole TLB
|
|
tlbld : std_ulogic; -- indicates a TLB load request (from MMU)
|
|
mmu_req : std_ulogic; -- indicates source of request
|
|
d_valid : std_ulogic; -- indicates req.data is valid now
|
|
end record;
|
|
|
|
signal r0 : reg_stage_0_t;
|
|
signal r0_full : std_ulogic;
|
|
|
|
type mem_access_request_t is record
|
|
op : op_t;
|
|
valid : std_ulogic;
|
|
dcbz : std_ulogic;
|
|
real_addr : std_ulogic_vector(REAL_ADDR_BITS - 1 downto 0);
|
|
data : std_ulogic_vector(63 downto 0);
|
|
byte_sel : std_ulogic_vector(7 downto 0);
|
|
hit_way : way_t;
|
|
same_tag : std_ulogic;
|
|
mmu_req : std_ulogic;
|
|
end record;
|
|
|
|
-- First stage register, contains state for stage 1 of load hits
|
|
-- and for the state machine used by all other operations
|
|
--
|
|
type reg_stage_1_t is record
|
|
-- Info about the request
|
|
full : std_ulogic; -- have uncompleted request
|
|
mmu_req : std_ulogic; -- request is from MMU
|
|
req : mem_access_request_t;
|
|
|
|
-- Cache hit state
|
|
hit_way : way_t;
|
|
hit_load_valid : std_ulogic;
|
|
hit_index : index_t;
|
|
cache_hit : std_ulogic;
|
|
|
|
-- TLB hit state
|
|
tlb_hit : std_ulogic;
|
|
tlb_hit_way : tlb_way_t;
|
|
tlb_hit_index : tlb_index_t;
|
|
|
|
-- 2-stage data buffer for data forwarded from writes to reads
|
|
forward_data1 : std_ulogic_vector(63 downto 0);
|
|
forward_data2 : std_ulogic_vector(63 downto 0);
|
|
forward_sel1 : std_ulogic_vector(7 downto 0);
|
|
forward_valid1 : std_ulogic;
|
|
forward_way1 : way_t;
|
|
forward_row1 : row_t;
|
|
use_forward1 : std_ulogic;
|
|
forward_sel : std_ulogic_vector(7 downto 0);
|
|
|
|
-- Cache miss state (reload state machine)
|
|
state : state_t;
|
|
dcbz : std_ulogic;
|
|
write_bram : std_ulogic;
|
|
write_tag : std_ulogic;
|
|
slow_valid : std_ulogic;
|
|
wb : wishbone_master_out;
|
|
reload_tag : cache_tag_t;
|
|
store_way : way_t;
|
|
store_row : row_t;
|
|
store_index : index_t;
|
|
end_row_ix : row_in_line_t;
|
|
rows_valid : row_per_line_valid_t;
|
|
acks_pending : unsigned(2 downto 0);
|
|
inc_acks : std_ulogic;
|
|
dec_acks : std_ulogic;
|
|
|
|
-- Signals to complete (possibly with error)
|
|
ls_valid : std_ulogic;
|
|
ls_error : std_ulogic;
|
|
mmu_done : std_ulogic;
|
|
mmu_error : std_ulogic;
|
|
cache_paradox : std_ulogic;
|
|
|
|
-- Signal to complete a failed stcx.
|
|
stcx_fail : std_ulogic;
|
|
end record;
|
|
|
|
signal r1 : reg_stage_1_t;
|
|
|
|
signal ev : DcacheEventType;
|
|
|
|
-- Reservation information
|
|
--
|
|
type reservation_t is record
|
|
valid : std_ulogic;
|
|
addr : std_ulogic_vector(63 downto LINE_OFF_BITS);
|
|
end record;
|
|
|
|
signal reservation : reservation_t;
|
|
|
|
-- Async signals on incoming request
|
|
signal req_index : index_t;
|
|
signal req_row : row_t;
|
|
signal req_hit_way : way_t;
|
|
signal req_tag : cache_tag_t;
|
|
signal req_op : op_t;
|
|
signal req_data : std_ulogic_vector(63 downto 0);
|
|
signal req_same_tag : std_ulogic;
|
|
signal req_go : std_ulogic;
|
|
|
|
signal early_req_row : row_t;
|
|
|
|
signal cancel_store : std_ulogic;
|
|
signal set_rsrv : std_ulogic;
|
|
signal clear_rsrv : std_ulogic;
|
|
|
|
signal r0_valid : std_ulogic;
|
|
signal r0_stall : std_ulogic;
|
|
|
|
signal use_forward1_next : std_ulogic;
|
|
signal use_forward2_next : std_ulogic;
|
|
|
|
-- Cache RAM interface
|
|
type cache_ram_out_t is array(way_t) of cache_row_t;
|
|
signal cache_out : cache_ram_out_t;
|
|
|
|
-- PLRU output interface
|
|
type plru_out_t is array(index_t) of std_ulogic_vector(WAY_BITS-1 downto 0);
|
|
signal plru_victim : plru_out_t;
|
|
signal replace_way : way_t;
|
|
|
|
-- Wishbone read/write/cache write formatting signals
|
|
signal bus_sel : std_ulogic_vector(7 downto 0);
|
|
|
|
-- TLB signals
|
|
signal tlb_tag_way : tlb_way_tags_t;
|
|
signal tlb_pte_way : tlb_way_ptes_t;
|
|
signal tlb_valid_way : tlb_way_valids_t;
|
|
signal tlb_req_index : tlb_index_t;
|
|
signal tlb_hit : std_ulogic;
|
|
signal tlb_hit_way : tlb_way_t;
|
|
signal pte : tlb_pte_t;
|
|
signal ra : std_ulogic_vector(REAL_ADDR_BITS - 1 downto 0);
|
|
signal valid_ra : std_ulogic;
|
|
signal perm_attr : perm_attr_t;
|
|
signal rc_ok : std_ulogic;
|
|
signal perm_ok : std_ulogic;
|
|
signal access_ok : std_ulogic;
|
|
signal tlb_miss : std_ulogic;
|
|
|
|
-- TLB PLRU output interface
|
|
type tlb_plru_out_t is array(tlb_index_t) of std_ulogic_vector(TLB_WAY_BITS-1 downto 0);
|
|
signal tlb_plru_victim : tlb_plru_out_t;
|
|
|
|
signal snoop_tag_set : cache_tags_set_t;
|
|
signal snoop_valid : std_ulogic;
|
|
signal snoop_wrtag : cache_tag_t;
|
|
signal snoop_index : index_t;
|
|
|
|
--
|
|
-- Helper functions to decode incoming requests
|
|
--
|
|
|
|
-- Return the cache line index (tag index) for an address
|
|
function get_index(addr: std_ulogic_vector) return index_t is
|
|
begin
|
|
return to_integer(unsigned(addr(SET_SIZE_BITS - 1 downto LINE_OFF_BITS)));
|
|
end;
|
|
|
|
-- Return the cache row index (data memory) for an address
|
|
function get_row(addr: std_ulogic_vector) return row_t is
|
|
begin
|
|
return to_integer(unsigned(addr(SET_SIZE_BITS - 1 downto ROW_OFF_BITS)));
|
|
end;
|
|
|
|
-- Return the index of a row within a line
|
|
function get_row_of_line(row: row_t) return row_in_line_t is
|
|
variable row_v : unsigned(ROW_BITS-1 downto 0);
|
|
begin
|
|
row_v := to_unsigned(row, ROW_BITS);
|
|
return row_v(ROW_LINEBITS-1 downto 0);
|
|
end;
|
|
|
|
-- Returns whether this is the last row of a line
|
|
function is_last_row_addr(addr: wishbone_addr_type; last: row_in_line_t) return boolean is
|
|
begin
|
|
return unsigned(addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS)) = last;
|
|
end;
|
|
|
|
-- Returns whether this is the last row of a line
|
|
function is_last_row(row: row_t; last: row_in_line_t) return boolean is
|
|
begin
|
|
return get_row_of_line(row) = last;
|
|
end;
|
|
|
|
-- Return the address of the next row in the current cache line
|
|
function next_row_addr(addr: wishbone_addr_type) return std_ulogic_vector is
|
|
variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
|
|
variable result : wishbone_addr_type;
|
|
begin
|
|
-- Is there no simpler way in VHDL to generate that 3 bits adder ?
|
|
row_idx := addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS);
|
|
row_idx := std_ulogic_vector(unsigned(row_idx) + 1);
|
|
result := addr;
|
|
result(LINE_OFF_BITS-1 downto ROW_OFF_BITS) := row_idx;
|
|
return result;
|
|
end;
|
|
|
|
-- Return the next row in the current cache line. We use a dedicated
|
|
-- function in order to limit the size of the generated adder to be
|
|
-- only the bits within a cache line (3 bits with default settings)
|
|
--
|
|
function next_row(row: row_t) return row_t is
|
|
variable row_v : std_ulogic_vector(ROW_BITS-1 downto 0);
|
|
variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
|
|
variable result : std_ulogic_vector(ROW_BITS-1 downto 0);
|
|
begin
|
|
row_v := std_ulogic_vector(to_unsigned(row, ROW_BITS));
|
|
row_idx := row_v(ROW_LINEBITS-1 downto 0);
|
|
row_v(ROW_LINEBITS-1 downto 0) := std_ulogic_vector(unsigned(row_idx) + 1);
|
|
return to_integer(unsigned(row_v));
|
|
end;
|
|
|
|
-- Get the tag value from the address
|
|
function get_tag(addr: std_ulogic_vector) return cache_tag_t is
|
|
begin
|
|
return addr(REAL_ADDR_BITS - 1 downto SET_SIZE_BITS);
|
|
end;
|
|
|
|
-- Read a tag from a tag memory row
|
|
function read_tag(way: way_t; tagset: cache_tags_set_t) return cache_tag_t is
|
|
begin
|
|
return tagset(way * TAG_WIDTH + TAG_BITS - 1 downto way * TAG_WIDTH);
|
|
end;
|
|
|
|
-- Read a TLB tag from a TLB tag memory row
|
|
function read_tlb_tag(way: tlb_way_t; tags: tlb_way_tags_t) return tlb_tag_t is
|
|
variable j : integer;
|
|
begin
|
|
j := way * TLB_EA_TAG_BITS;
|
|
return tags(j + TLB_EA_TAG_BITS - 1 downto j);
|
|
end;
|
|
|
|
-- Write a TLB tag to a TLB tag memory row
|
|
procedure write_tlb_tag(way: tlb_way_t; tags: inout tlb_way_tags_t;
|
|
tag: tlb_tag_t) is
|
|
variable j : integer;
|
|
begin
|
|
j := way * TLB_EA_TAG_BITS;
|
|
tags(j + TLB_EA_TAG_BITS - 1 downto j) := tag;
|
|
end;
|
|
|
|
-- Read a PTE from a TLB PTE memory row
|
|
function read_tlb_pte(way: tlb_way_t; ptes: tlb_way_ptes_t) return tlb_pte_t is
|
|
variable j : integer;
|
|
begin
|
|
j := way * TLB_PTE_BITS;
|
|
return ptes(j + TLB_PTE_BITS - 1 downto j);
|
|
end;
|
|
|
|
procedure write_tlb_pte(way: tlb_way_t; ptes: inout tlb_way_ptes_t; newpte: tlb_pte_t) is
|
|
variable j : integer;
|
|
begin
|
|
j := way * TLB_PTE_BITS;
|
|
ptes(j + TLB_PTE_BITS - 1 downto j) := newpte;
|
|
end;
|
|
|
|
begin
|
|
|
|
assert LINE_SIZE mod ROW_SIZE = 0 report "LINE_SIZE not multiple of ROW_SIZE" severity FAILURE;
|
|
assert ispow2(LINE_SIZE) report "LINE_SIZE not power of 2" severity FAILURE;
|
|
assert ispow2(NUM_LINES) report "NUM_LINES not power of 2" severity FAILURE;
|
|
assert ispow2(ROW_PER_LINE) and ROW_PER_LINE > 1
|
|
report "ROW_PER_LINE not power of 2 greater than 1" severity FAILURE;
|
|
assert (ROW_BITS = INDEX_BITS + ROW_LINEBITS)
|
|
report "geometry bits don't add up" severity FAILURE;
|
|
assert (LINE_OFF_BITS = ROW_OFF_BITS + ROW_LINEBITS)
|
|
report "geometry bits don't add up" severity FAILURE;
|
|
assert (REAL_ADDR_BITS = TAG_BITS + INDEX_BITS + LINE_OFF_BITS)
|
|
report "geometry bits don't add up" severity FAILURE;
|
|
assert (REAL_ADDR_BITS = TAG_BITS + ROW_BITS + ROW_OFF_BITS)
|
|
report "geometry bits don't add up" severity FAILURE;
|
|
assert (64 = wishbone_data_bits)
|
|
report "Can't yet handle a wishbone width that isn't 64-bits" severity FAILURE;
|
|
assert SET_SIZE_BITS <= TLB_LG_PGSZ report "Set indexed by virtual address" severity FAILURE;
|
|
|
|
-- Latch the request in r0.req as long as we're not stalling
|
|
stage_0 : process(clk)
|
|
variable r : reg_stage_0_t;
|
|
begin
|
|
if rising_edge(clk) then
|
|
assert (d_in.valid and m_in.valid) = '0' report
|
|
"request collision loadstore vs MMU";
|
|
if m_in.valid = '1' then
|
|
r.req.valid := '1';
|
|
r.req.load := not (m_in.tlbie or m_in.tlbld);
|
|
r.req.dcbz := '0';
|
|
r.req.nc := '0';
|
|
r.req.reserve := '0';
|
|
r.req.virt_mode := '0';
|
|
r.req.priv_mode := '1';
|
|
r.req.addr := m_in.addr;
|
|
r.req.data := m_in.pte;
|
|
r.req.byte_sel := (others => '1');
|
|
r.tlbie := m_in.tlbie;
|
|
r.doall := m_in.doall;
|
|
r.tlbld := m_in.tlbld;
|
|
r.mmu_req := '1';
|
|
else
|
|
r.req := d_in;
|
|
r.req.data := (others => '0');
|
|
r.tlbie := '0';
|
|
r.doall := '0';
|
|
r.tlbld := '0';
|
|
r.mmu_req := '0';
|
|
end if;
|
|
r.d_valid := '0';
|
|
if rst = '1' then
|
|
r0_full <= '0';
|
|
elsif (r1.full = '0' and d_in.hold = '0') or r0_full = '0' then
|
|
r0 <= r;
|
|
r0_full <= r.req.valid;
|
|
end if;
|
|
-- Sample data the cycle after a request comes in from loadstore1.
|
|
-- If another request has come in already then the data will get
|
|
-- put directly into req.data below.
|
|
if r0.req.valid = '1' and r.req.valid = '0' and r0.d_valid = '0' and
|
|
r0.mmu_req = '0' then
|
|
r0.req.data <= d_in.data;
|
|
r0.d_valid <= '1';
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
-- we don't yet handle collisions between loadstore1 requests and MMU requests
|
|
m_out.stall <= '0';
|
|
|
|
-- Hold off the request in r0 when r1 has an uncompleted request
|
|
r0_stall <= r0_full and (r1.full or d_in.hold);
|
|
r0_valid <= r0_full and not r1.full and not d_in.hold;
|
|
stall_out <= r0_stall;
|
|
|
|
events <= ev;
|
|
|
|
-- TLB
|
|
-- Operates in the second cycle on the request latched in r0.req.
|
|
-- TLB updates write the entry at the end of the second cycle.
|
|
tlb_read : process(clk)
|
|
variable index : tlb_index_t;
|
|
variable addrbits : std_ulogic_vector(TLB_SET_BITS - 1 downto 0);
|
|
begin
|
|
if rising_edge(clk) then
|
|
if m_in.valid = '1' then
|
|
addrbits := m_in.addr(TLB_LG_PGSZ + TLB_SET_BITS - 1 downto TLB_LG_PGSZ);
|
|
else
|
|
addrbits := d_in.addr(TLB_LG_PGSZ + TLB_SET_BITS - 1 downto TLB_LG_PGSZ);
|
|
end if;
|
|
index := to_integer(unsigned(addrbits));
|
|
-- If we have any op and the previous op isn't finished,
|
|
-- then keep the same output for next cycle.
|
|
if r0_stall = '0' then
|
|
tlb_valid_way <= dtlb_valids(index);
|
|
tlb_tag_way <= dtlb_tags(index);
|
|
tlb_pte_way <= dtlb_ptes(index);
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
-- Generate TLB PLRUs
|
|
maybe_tlb_plrus: if TLB_NUM_WAYS > 1 generate
|
|
begin
|
|
tlb_plrus: for i in 0 to TLB_SET_SIZE - 1 generate
|
|
-- TLB PLRU interface
|
|
signal tlb_plru_acc : std_ulogic_vector(TLB_WAY_BITS-1 downto 0);
|
|
signal tlb_plru_acc_en : std_ulogic;
|
|
signal tlb_plru_out : std_ulogic_vector(TLB_WAY_BITS-1 downto 0);
|
|
begin
|
|
tlb_plru : entity work.plru
|
|
generic map (
|
|
BITS => TLB_WAY_BITS
|
|
)
|
|
port map (
|
|
clk => clk,
|
|
rst => rst,
|
|
acc => tlb_plru_acc,
|
|
acc_en => tlb_plru_acc_en,
|
|
lru => tlb_plru_out
|
|
);
|
|
|
|
process(all)
|
|
begin
|
|
-- PLRU interface
|
|
if r1.tlb_hit_index = i then
|
|
tlb_plru_acc_en <= r1.tlb_hit;
|
|
else
|
|
tlb_plru_acc_en <= '0';
|
|
end if;
|
|
tlb_plru_acc <= std_ulogic_vector(to_unsigned(r1.tlb_hit_way, TLB_WAY_BITS));
|
|
tlb_plru_victim(i) <= tlb_plru_out;
|
|
end process;
|
|
end generate;
|
|
end generate;
|
|
|
|
tlb_search : process(all)
|
|
variable hitway : tlb_way_t;
|
|
variable hit : std_ulogic;
|
|
variable eatag : tlb_tag_t;
|
|
begin
|
|
tlb_req_index <= to_integer(unsigned(r0.req.addr(TLB_LG_PGSZ + TLB_SET_BITS - 1
|
|
downto TLB_LG_PGSZ)));
|
|
hitway := 0;
|
|
hit := '0';
|
|
eatag := r0.req.addr(63 downto TLB_LG_PGSZ + TLB_SET_BITS);
|
|
for i in tlb_way_t loop
|
|
if tlb_valid_way(i) = '1' and
|
|
read_tlb_tag(i, tlb_tag_way) = eatag then
|
|
hitway := i;
|
|
hit := '1';
|
|
end if;
|
|
end loop;
|
|
tlb_hit <= hit and r0_valid;
|
|
tlb_hit_way <= hitway;
|
|
if tlb_hit = '1' then
|
|
pte <= read_tlb_pte(hitway, tlb_pte_way);
|
|
else
|
|
pte <= (others => '0');
|
|
end if;
|
|
valid_ra <= tlb_hit or not r0.req.virt_mode;
|
|
tlb_miss <= r0_valid and r0.req.virt_mode and not tlb_hit;
|
|
if r0.req.virt_mode = '1' then
|
|
ra <= pte(REAL_ADDR_BITS - 1 downto TLB_LG_PGSZ) &
|
|
r0.req.addr(TLB_LG_PGSZ - 1 downto ROW_OFF_BITS) &
|
|
(ROW_OFF_BITS-1 downto 0 => '0');
|
|
perm_attr <= extract_perm_attr(pte);
|
|
else
|
|
ra <= r0.req.addr(REAL_ADDR_BITS - 1 downto ROW_OFF_BITS) &
|
|
(ROW_OFF_BITS-1 downto 0 => '0');
|
|
perm_attr <= real_mode_perm_attr;
|
|
end if;
|
|
end process;
|
|
|
|
tlb_update : process(clk)
|
|
variable tlbie : std_ulogic;
|
|
variable tlbwe : std_ulogic;
|
|
variable repl_way : tlb_way_t;
|
|
variable eatag : tlb_tag_t;
|
|
variable tagset : tlb_way_tags_t;
|
|
variable pteset : tlb_way_ptes_t;
|
|
begin
|
|
if rising_edge(clk) then
|
|
tlbie := r0_valid and r0.tlbie;
|
|
tlbwe := r0_valid and r0.tlbld;
|
|
ev.dtlb_miss_resolved <= tlbwe;
|
|
if rst = '1' or (tlbie = '1' and r0.doall = '1') then
|
|
-- clear all valid bits at once
|
|
for i in tlb_index_t loop
|
|
dtlb_valids(i) <= (others => '0');
|
|
end loop;
|
|
elsif tlbie = '1' then
|
|
if tlb_hit = '1' then
|
|
dtlb_valids(tlb_req_index)(tlb_hit_way) <= '0';
|
|
end if;
|
|
elsif tlbwe = '1' then
|
|
if tlb_hit = '1' then
|
|
repl_way := tlb_hit_way;
|
|
else
|
|
repl_way := to_integer(unsigned(tlb_plru_victim(tlb_req_index)));
|
|
end if;
|
|
eatag := r0.req.addr(63 downto TLB_LG_PGSZ + TLB_SET_BITS);
|
|
tagset := tlb_tag_way;
|
|
write_tlb_tag(repl_way, tagset, eatag);
|
|
dtlb_tags(tlb_req_index) <= tagset;
|
|
pteset := tlb_pte_way;
|
|
write_tlb_pte(repl_way, pteset, r0.req.data);
|
|
dtlb_ptes(tlb_req_index) <= pteset;
|
|
dtlb_valids(tlb_req_index)(repl_way) <= '1';
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
-- Generate PLRUs
|
|
maybe_plrus: if NUM_WAYS > 1 generate
|
|
begin
|
|
plrus: for i in 0 to NUM_LINES-1 generate
|
|
-- PLRU interface
|
|
signal plru_acc : std_ulogic_vector(WAY_BITS-1 downto 0);
|
|
signal plru_acc_en : std_ulogic;
|
|
signal plru_out : std_ulogic_vector(WAY_BITS-1 downto 0);
|
|
|
|
begin
|
|
plru : entity work.plru
|
|
generic map (
|
|
BITS => WAY_BITS
|
|
)
|
|
port map (
|
|
clk => clk,
|
|
rst => rst,
|
|
acc => plru_acc,
|
|
acc_en => plru_acc_en,
|
|
lru => plru_out
|
|
);
|
|
|
|
process(all)
|
|
begin
|
|
-- PLRU interface
|
|
if r1.hit_index = i then
|
|
plru_acc_en <= r1.cache_hit;
|
|
else
|
|
plru_acc_en <= '0';
|
|
end if;
|
|
plru_acc <= std_ulogic_vector(to_unsigned(r1.hit_way, WAY_BITS));
|
|
plru_victim(i) <= plru_out;
|
|
end process;
|
|
end generate;
|
|
end generate;
|
|
|
|
-- Cache tag RAM read port
|
|
cache_tag_read : process(clk)
|
|
variable index : index_t;
|
|
begin
|
|
if rising_edge(clk) then
|
|
if r0_stall = '1' then
|
|
index := req_index;
|
|
elsif m_in.valid = '1' then
|
|
index := get_index(m_in.addr);
|
|
else
|
|
index := get_index(d_in.addr);
|
|
end if;
|
|
cache_tag_set <= cache_tags(index);
|
|
end if;
|
|
end process;
|
|
|
|
-- Cache tag RAM second read port, for snooping
|
|
cache_tag_read_2 : process(clk)
|
|
variable addr : std_ulogic_vector(REAL_ADDR_BITS - 1 downto 0);
|
|
begin
|
|
if rising_edge(clk) then
|
|
addr := (others => '0');
|
|
addr(snoop_in.adr'left downto 0) := snoop_in.adr;
|
|
snoop_tag_set <= cache_tags(get_index(addr));
|
|
snoop_wrtag <= get_tag(addr);
|
|
snoop_index <= get_index(addr);
|
|
-- Don't snoop our own cycles
|
|
snoop_valid <= '0';
|
|
if not (r1.wb.cyc = '1' and wishbone_in.stall = '0') then
|
|
snoop_valid <= snoop_in.cyc and snoop_in.stb and snoop_in.we;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
-- Cache request parsing and hit detection
|
|
dcache_request : process(all)
|
|
variable is_hit : std_ulogic;
|
|
variable hit_way : way_t;
|
|
variable op : op_t;
|
|
variable opsel : std_ulogic_vector(2 downto 0);
|
|
variable go : std_ulogic;
|
|
variable nc : std_ulogic;
|
|
variable s_hit : std_ulogic;
|
|
variable s_tag : cache_tag_t;
|
|
variable s_pte : tlb_pte_t;
|
|
variable s_ra : std_ulogic_vector(REAL_ADDR_BITS - 1 downto 0);
|
|
variable hit_set : std_ulogic_vector(TLB_NUM_WAYS - 1 downto 0);
|
|
variable hit_way_set : hit_way_set_t;
|
|
variable rel_matches : std_ulogic_vector(TLB_NUM_WAYS - 1 downto 0);
|
|
variable rel_match : std_ulogic;
|
|
begin
|
|
-- Extract line, row and tag from request
|
|
req_index <= get_index(r0.req.addr);
|
|
req_row <= get_row(r0.req.addr);
|
|
req_tag <= get_tag(ra);
|
|
|
|
go := r0_valid and not (r0.tlbie or r0.tlbld) and not r1.ls_error;
|
|
|
|
-- Test if pending request is a hit on any way
|
|
-- In order to make timing in virtual mode, when we are using the TLB,
|
|
-- we compare each way with each of the real addresses from each way of
|
|
-- the TLB, and then decide later which match to use.
|
|
hit_way := 0;
|
|
is_hit := '0';
|
|
rel_match := '0';
|
|
if r0.req.virt_mode = '1' then
|
|
rel_matches := (others => '0');
|
|
for j in tlb_way_t loop
|
|
hit_way_set(j) := 0;
|
|
s_hit := '0';
|
|
s_pte := read_tlb_pte(j, tlb_pte_way);
|
|
s_ra := s_pte(REAL_ADDR_BITS - 1 downto TLB_LG_PGSZ) &
|
|
r0.req.addr(TLB_LG_PGSZ - 1 downto 0);
|
|
s_tag := get_tag(s_ra);
|
|
for i in way_t loop
|
|
if go = '1' and cache_valids(req_index)(i) = '1' and
|
|
read_tag(i, cache_tag_set) = s_tag and
|
|
tlb_valid_way(j) = '1' then
|
|
hit_way_set(j) := i;
|
|
s_hit := '1';
|
|
end if;
|
|
end loop;
|
|
hit_set(j) := s_hit;
|
|
if s_tag = r1.reload_tag then
|
|
rel_matches(j) := '1';
|
|
end if;
|
|
end loop;
|
|
if tlb_hit = '1' then
|
|
is_hit := hit_set(tlb_hit_way);
|
|
hit_way := hit_way_set(tlb_hit_way);
|
|
rel_match := rel_matches(tlb_hit_way);
|
|
end if;
|
|
else
|
|
s_tag := get_tag(r0.req.addr);
|
|
for i in way_t loop
|
|
if go = '1' and cache_valids(req_index)(i) = '1' and
|
|
read_tag(i, cache_tag_set) = s_tag then
|
|
hit_way := i;
|
|
is_hit := '1';
|
|
end if;
|
|
end loop;
|
|
if s_tag = r1.reload_tag then
|
|
rel_match := '1';
|
|
end if;
|
|
end if;
|
|
req_same_tag <= rel_match;
|
|
|
|
-- See if the request matches the line currently being reloaded
|
|
if r1.state = RELOAD_WAIT_ACK and req_index = r1.store_index and
|
|
rel_match = '1' then
|
|
-- For a store, consider this a hit even if the row isn't valid
|
|
-- since it will be by the time we perform the store.
|
|
-- For a load, check the appropriate row valid bit.
|
|
is_hit := not r0.req.load or r1.rows_valid(req_row mod ROW_PER_LINE);
|
|
hit_way := replace_way;
|
|
end if;
|
|
|
|
-- Whether to use forwarded data for a load or not
|
|
use_forward1_next <= '0';
|
|
if get_row(r1.req.real_addr) = req_row and r1.req.hit_way = hit_way then
|
|
-- Only need to consider r1.write_bram here, since if we are
|
|
-- writing refill data here, then we don't have a cache hit this
|
|
-- cycle on the line being refilled. (There is the possibility
|
|
-- that the load following the load miss that started the refill
|
|
-- could be to the old contents of the victim line, since it is a
|
|
-- couple of cycles after the refill starts before we see the
|
|
-- updated cache tag. In that case we don't use the bypass.)
|
|
use_forward1_next <= r1.write_bram;
|
|
end if;
|
|
use_forward2_next <= '0';
|
|
if r1.forward_row1 = req_row and r1.forward_way1 = hit_way then
|
|
use_forward2_next <= r1.forward_valid1;
|
|
end if;
|
|
|
|
-- The way that matched on a hit
|
|
req_hit_way <= hit_way;
|
|
|
|
-- The way to replace on a miss
|
|
if r1.write_tag = '1' then
|
|
replace_way <= to_integer(unsigned(plru_victim(r1.store_index)));
|
|
else
|
|
replace_way <= r1.store_way;
|
|
end if;
|
|
|
|
-- work out whether we have permission for this access
|
|
-- NB we don't yet implement AMR, thus no KUAP
|
|
rc_ok <= perm_attr.reference and (r0.req.load or perm_attr.changed);
|
|
perm_ok <= (r0.req.priv_mode or not perm_attr.priv) and
|
|
(perm_attr.wr_perm or (r0.req.load and perm_attr.rd_perm));
|
|
access_ok <= valid_ra and perm_ok and rc_ok;
|
|
|
|
-- Combine the request and cache hit status to decide what
|
|
-- operation needs to be done
|
|
--
|
|
nc := r0.req.nc or perm_attr.nocache;
|
|
op := OP_NONE;
|
|
if go = '1' then
|
|
if access_ok = '0' then
|
|
op := OP_BAD;
|
|
elsif cancel_store = '1' then
|
|
op := OP_STCX_FAIL;
|
|
else
|
|
opsel := r0.req.load & nc & is_hit;
|
|
case opsel is
|
|
when "101" => op := OP_LOAD_HIT;
|
|
when "100" => op := OP_LOAD_MISS;
|
|
when "110" => op := OP_LOAD_NC;
|
|
when "001" => op := OP_STORE_HIT;
|
|
when "000" => op := OP_STORE_MISS;
|
|
when "010" => op := OP_STORE_MISS;
|
|
when "011" => op := OP_BAD;
|
|
when "111" => op := OP_BAD;
|
|
when others => op := OP_NONE;
|
|
end case;
|
|
end if;
|
|
end if;
|
|
req_op <= op;
|
|
req_go <= go;
|
|
|
|
-- Version of the row number that is valid one cycle earlier
|
|
-- in the cases where we need to read the cache data BRAM.
|
|
-- If we're stalling then we need to keep reading the last
|
|
-- row requested.
|
|
if r0_stall = '0' then
|
|
if m_in.valid = '1' then
|
|
early_req_row <= get_row(m_in.addr);
|
|
else
|
|
early_req_row <= get_row(d_in.addr);
|
|
end if;
|
|
else
|
|
early_req_row <= req_row;
|
|
end if;
|
|
end process;
|
|
|
|
-- Wire up wishbone request latch out of stage 1
|
|
wishbone_out <= r1.wb;
|
|
|
|
-- Handle load-with-reservation and store-conditional instructions
|
|
reservation_comb: process(all)
|
|
begin
|
|
cancel_store <= '0';
|
|
set_rsrv <= '0';
|
|
clear_rsrv <= '0';
|
|
if r0_valid = '1' and r0.req.reserve = '1' then
|
|
-- XXX generate alignment interrupt if address is not aligned
|
|
-- XXX or if r0.req.nc = '1'
|
|
if r0.req.load = '1' then
|
|
-- load with reservation
|
|
set_rsrv <= r0.req.atomic_last;
|
|
else
|
|
-- store conditional
|
|
clear_rsrv <= r0.req.atomic_last;
|
|
if reservation.valid = '0' or
|
|
r0.req.addr(63 downto LINE_OFF_BITS) /= reservation.addr then
|
|
cancel_store <= '1';
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
reservation_reg: process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
if rst = '1' then
|
|
reservation.valid <= '0';
|
|
elsif r0_valid = '1' and access_ok = '1' then
|
|
if clear_rsrv = '1' then
|
|
reservation.valid <= '0';
|
|
elsif set_rsrv = '1' then
|
|
reservation.valid <= '1';
|
|
reservation.addr <= r0.req.addr(63 downto LINE_OFF_BITS);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
-- Return data for loads & completion control logic
|
|
--
|
|
writeback_control: process(all)
|
|
variable data_out : std_ulogic_vector(63 downto 0);
|
|
variable data_fwd : std_ulogic_vector(63 downto 0);
|
|
variable j : integer;
|
|
begin
|
|
-- Use the bypass if are reading the row that was written 1 or 2 cycles
|
|
-- ago, including for the slow_valid = 1 case (i.e. completing a load
|
|
-- miss or a non-cacheable load).
|
|
if r1.use_forward1 = '1' then
|
|
data_fwd := r1.forward_data1;
|
|
else
|
|
data_fwd := r1.forward_data2;
|
|
end if;
|
|
data_out := cache_out(r1.hit_way);
|
|
for i in 0 to 7 loop
|
|
j := i * 8;
|
|
if r1.forward_sel(i) = '1' then
|
|
data_out(j + 7 downto j) := data_fwd(j + 7 downto j);
|
|
end if;
|
|
end loop;
|
|
|
|
d_out.valid <= r1.ls_valid;
|
|
d_out.data <= data_out;
|
|
d_out.store_done <= not r1.stcx_fail;
|
|
d_out.error <= r1.ls_error;
|
|
d_out.cache_paradox <= r1.cache_paradox;
|
|
|
|
-- Outputs to MMU
|
|
m_out.done <= r1.mmu_done;
|
|
m_out.err <= r1.mmu_error;
|
|
m_out.data <= data_out;
|
|
|
|
-- We have a valid load or store hit or we just completed a slow
|
|
-- op such as a load miss, a NC load or a store
|
|
--
|
|
-- Note: the load hit is delayed by one cycle. However it can still
|
|
-- not collide with r.slow_valid (well unless I miscalculated) because
|
|
-- slow_valid can only be set on a subsequent request and not on its
|
|
-- first cycle (the state machine must have advanced), which makes
|
|
-- slow_valid at least 2 cycles from the previous hit_load_valid.
|
|
--
|
|
|
|
-- Sanity: Only one of these must be set in any given cycle
|
|
assert (r1.slow_valid and r1.stcx_fail) /= '1' report
|
|
"unexpected slow_valid collision with stcx_fail"
|
|
severity FAILURE;
|
|
assert ((r1.slow_valid or r1.stcx_fail) and r1.hit_load_valid) /= '1' report
|
|
"unexpected hit_load_delayed collision with slow_valid"
|
|
severity FAILURE;
|
|
|
|
if r1.mmu_req = '0' then
|
|
-- Request came from loadstore1...
|
|
-- Load hit case is the standard path
|
|
if r1.hit_load_valid = '1' then
|
|
report "completing load hit data=" & to_hstring(data_out);
|
|
end if;
|
|
|
|
-- error cases complete without stalling
|
|
if r1.ls_error = '1' then
|
|
report "completing ld/st with error";
|
|
end if;
|
|
|
|
-- Slow ops (load miss, NC, stores)
|
|
if r1.slow_valid = '1' then
|
|
report "completing store or load miss data=" & to_hstring(data_out);
|
|
end if;
|
|
|
|
else
|
|
-- Request came from MMU
|
|
if r1.hit_load_valid = '1' then
|
|
report "completing load hit to MMU, data=" & to_hstring(m_out.data);
|
|
end if;
|
|
|
|
-- error cases complete without stalling
|
|
if r1.mmu_error = '1' then
|
|
report "completing MMU ld with error";
|
|
end if;
|
|
|
|
-- Slow ops (i.e. load miss)
|
|
if r1.slow_valid = '1' then
|
|
report "completing MMU load miss, data=" & to_hstring(m_out.data);
|
|
end if;
|
|
end if;
|
|
|
|
end process;
|
|
|
|
--
|
|
-- Generate a cache RAM for each way. This handles the normal
|
|
-- reads, writes from reloads and the special store-hit update
|
|
-- path as well.
|
|
--
|
|
-- Note: the BRAMs have an extra read buffer, meaning the output
|
|
-- is pipelined an extra cycle. This differs from the
|
|
-- icache. The writeback logic needs to take that into
|
|
-- account by using 1-cycle delayed signals for load hits.
|
|
--
|
|
rams: for i in 0 to NUM_WAYS-1 generate
|
|
signal do_read : std_ulogic;
|
|
signal rd_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
|
|
signal do_write : std_ulogic;
|
|
signal wr_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
|
|
signal wr_data : std_ulogic_vector(wishbone_data_bits-1 downto 0);
|
|
signal wr_sel : std_ulogic_vector(ROW_SIZE-1 downto 0);
|
|
signal wr_sel_m : std_ulogic_vector(ROW_SIZE-1 downto 0);
|
|
signal dout : cache_row_t;
|
|
begin
|
|
way: entity work.cache_ram
|
|
generic map (
|
|
ROW_BITS => ROW_BITS,
|
|
WIDTH => wishbone_data_bits,
|
|
ADD_BUF => true
|
|
)
|
|
port map (
|
|
clk => clk,
|
|
rd_en => do_read,
|
|
rd_addr => rd_addr,
|
|
rd_data => dout,
|
|
wr_sel => wr_sel_m,
|
|
wr_addr => wr_addr,
|
|
wr_data => wr_data
|
|
);
|
|
process(all)
|
|
begin
|
|
-- Cache hit reads
|
|
do_read <= '1';
|
|
rd_addr <= std_ulogic_vector(to_unsigned(early_req_row, ROW_BITS));
|
|
cache_out(i) <= dout;
|
|
|
|
-- Write mux:
|
|
--
|
|
-- Defaults to wishbone read responses (cache refill),
|
|
--
|
|
-- For timing, the mux on wr_data/sel/addr is not dependent on anything
|
|
-- other than the current state.
|
|
--
|
|
wr_sel_m <= (others => '0');
|
|
|
|
do_write <= '0';
|
|
if r1.write_bram = '1' then
|
|
-- Write store data to BRAM. This happens one cycle after the
|
|
-- store is in r0.
|
|
wr_data <= r1.req.data;
|
|
wr_sel <= r1.req.byte_sel;
|
|
wr_addr <= std_ulogic_vector(to_unsigned(get_row(r1.req.real_addr), ROW_BITS));
|
|
if i = r1.req.hit_way then
|
|
do_write <= '1';
|
|
end if;
|
|
else
|
|
-- Otherwise, we might be doing a reload or a DCBZ
|
|
if r1.dcbz = '1' then
|
|
wr_data <= (others => '0');
|
|
else
|
|
wr_data <= wishbone_in.dat;
|
|
end if;
|
|
wr_addr <= std_ulogic_vector(to_unsigned(r1.store_row, ROW_BITS));
|
|
wr_sel <= (others => '1');
|
|
|
|
if r1.state = RELOAD_WAIT_ACK and wishbone_in.ack = '1' and replace_way = i then
|
|
do_write <= '1';
|
|
end if;
|
|
end if;
|
|
|
|
-- Mask write selects with do_write since BRAM doesn't
|
|
-- have a global write-enable
|
|
if do_write = '1' then
|
|
wr_sel_m <= wr_sel;
|
|
end if;
|
|
|
|
end process;
|
|
end generate;
|
|
|
|
--
|
|
-- Cache hit synchronous machine for the easy case. This handles load hits.
|
|
-- It also handles error cases (TLB miss, cache paradox)
|
|
--
|
|
dcache_fast_hit : process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
if req_op /= OP_NONE then
|
|
report "op:" & op_t'image(req_op) &
|
|
" addr:" & to_hstring(r0.req.addr) &
|
|
" nc:" & std_ulogic'image(r0.req.nc) &
|
|
" idx:" & integer'image(req_index) &
|
|
" tag:" & to_hstring(req_tag) &
|
|
" way: " & integer'image(req_hit_way);
|
|
end if;
|
|
if r0_valid = '1' then
|
|
r1.mmu_req <= r0.mmu_req;
|
|
end if;
|
|
|
|
-- Fast path for load/store hits. Set signals for the writeback controls.
|
|
r1.hit_way <= req_hit_way;
|
|
r1.hit_index <= req_index;
|
|
if req_op = OP_LOAD_HIT then
|
|
r1.hit_load_valid <= '1';
|
|
else
|
|
r1.hit_load_valid <= '0';
|
|
end if;
|
|
if req_op = OP_LOAD_HIT or req_op = OP_STORE_HIT then
|
|
r1.cache_hit <= '1';
|
|
else
|
|
r1.cache_hit <= '0';
|
|
end if;
|
|
|
|
if req_op = OP_BAD then
|
|
report "Signalling ld/st error valid_ra=" & std_ulogic'image(valid_ra) &
|
|
" rc_ok=" & std_ulogic'image(rc_ok) & " perm_ok=" & std_ulogic'image(perm_ok);
|
|
r1.ls_error <= not r0.mmu_req;
|
|
r1.mmu_error <= r0.mmu_req;
|
|
r1.cache_paradox <= access_ok;
|
|
else
|
|
r1.ls_error <= '0';
|
|
r1.mmu_error <= '0';
|
|
r1.cache_paradox <= '0';
|
|
end if;
|
|
|
|
if req_op = OP_STCX_FAIL then
|
|
r1.stcx_fail <= '1';
|
|
else
|
|
r1.stcx_fail <= '0';
|
|
end if;
|
|
|
|
-- Record TLB hit information for updating TLB PLRU
|
|
r1.tlb_hit <= tlb_hit;
|
|
r1.tlb_hit_way <= tlb_hit_way;
|
|
r1.tlb_hit_index <= tlb_req_index;
|
|
|
|
end if;
|
|
end process;
|
|
|
|
--
|
|
-- Memory accesses are handled by this state machine:
|
|
--
|
|
-- * Cache load miss/reload (in conjunction with "rams")
|
|
-- * Load hits for non-cachable forms
|
|
-- * Stores (the collision case is handled in "rams")
|
|
--
|
|
-- All wishbone requests generation is done here. This machine
|
|
-- operates at stage 1.
|
|
--
|
|
dcache_slow : process(clk)
|
|
variable stbs_done : boolean;
|
|
variable req : mem_access_request_t;
|
|
variable acks : unsigned(2 downto 0);
|
|
begin
|
|
if rising_edge(clk) then
|
|
r1.use_forward1 <= use_forward1_next;
|
|
r1.forward_sel <= (others => '0');
|
|
if use_forward1_next = '1' then
|
|
r1.forward_sel <= r1.req.byte_sel;
|
|
elsif use_forward2_next = '1' then
|
|
r1.forward_sel <= r1.forward_sel1;
|
|
end if;
|
|
|
|
r1.forward_data2 <= r1.forward_data1;
|
|
if r1.write_bram = '1' then
|
|
r1.forward_data1 <= r1.req.data;
|
|
r1.forward_sel1 <= r1.req.byte_sel;
|
|
r1.forward_way1 <= r1.req.hit_way;
|
|
r1.forward_row1 <= get_row(r1.req.real_addr);
|
|
r1.forward_valid1 <= '1';
|
|
else
|
|
if r1.dcbz = '1' then
|
|
r1.forward_data1 <= (others => '0');
|
|
else
|
|
r1.forward_data1 <= wishbone_in.dat;
|
|
end if;
|
|
r1.forward_sel1 <= (others => '1');
|
|
r1.forward_way1 <= replace_way;
|
|
r1.forward_row1 <= r1.store_row;
|
|
r1.forward_valid1 <= '0';
|
|
end if;
|
|
|
|
ev.dcache_refill <= '0';
|
|
ev.load_miss <= '0';
|
|
ev.store_miss <= '0';
|
|
ev.dtlb_miss <= tlb_miss;
|
|
|
|
-- On reset, clear all valid bits to force misses
|
|
if rst = '1' then
|
|
for i in index_t loop
|
|
cache_valids(i) <= (others => '0');
|
|
end loop;
|
|
r1.state <= IDLE;
|
|
r1.full <= '0';
|
|
r1.slow_valid <= '0';
|
|
r1.wb.cyc <= '0';
|
|
r1.wb.stb <= '0';
|
|
r1.ls_valid <= '0';
|
|
r1.mmu_done <= '0';
|
|
|
|
-- Not useful normally but helps avoiding tons of sim warnings
|
|
r1.wb.adr <= (others => '0');
|
|
else
|
|
-- One cycle pulses reset
|
|
r1.slow_valid <= '0';
|
|
r1.write_bram <= '0';
|
|
r1.inc_acks <= '0';
|
|
r1.dec_acks <= '0';
|
|
|
|
r1.ls_valid <= '0';
|
|
-- complete tlbies and TLB loads in the third cycle
|
|
r1.mmu_done <= r0_valid and (r0.tlbie or r0.tlbld);
|
|
if req_op = OP_LOAD_HIT or req_op = OP_STCX_FAIL then
|
|
if r0.mmu_req = '0' then
|
|
r1.ls_valid <= '1';
|
|
else
|
|
r1.mmu_done <= '1';
|
|
end if;
|
|
end if;
|
|
|
|
-- Do invalidations from snooped stores to memory
|
|
for i in way_t loop
|
|
if snoop_valid = '1' and read_tag(i, snoop_tag_set) = snoop_wrtag then
|
|
cache_valids(snoop_index)(i) <= '0';
|
|
end if;
|
|
end loop;
|
|
|
|
if r1.write_tag = '1' then
|
|
-- Store new tag in selected way
|
|
for i in 0 to NUM_WAYS-1 loop
|
|
if i = replace_way then
|
|
cache_tags(r1.store_index)((i + 1) * TAG_WIDTH - 1 downto i * TAG_WIDTH) <=
|
|
(TAG_WIDTH - 1 downto TAG_BITS => '0') & r1.reload_tag;
|
|
end if;
|
|
end loop;
|
|
r1.store_way <= replace_way;
|
|
r1.write_tag <= '0';
|
|
end if;
|
|
|
|
-- Take request from r1.req if there is one there,
|
|
-- else from req_op, ra, etc.
|
|
if r1.full = '1' then
|
|
req := r1.req;
|
|
else
|
|
req.op := req_op;
|
|
req.valid := req_go;
|
|
req.mmu_req := r0.mmu_req;
|
|
req.dcbz := r0.req.dcbz;
|
|
req.real_addr := ra;
|
|
-- Force data to 0 for dcbz
|
|
if r0.req.dcbz = '1' then
|
|
req.data := (others => '0');
|
|
elsif r0.d_valid = '1' then
|
|
req.data := r0.req.data;
|
|
else
|
|
req.data := d_in.data;
|
|
end if;
|
|
-- Select all bytes for dcbz and for cacheable loads
|
|
if r0.req.dcbz = '1' or (r0.req.load = '1' and r0.req.nc = '0') then
|
|
req.byte_sel := (others => '1');
|
|
else
|
|
req.byte_sel := r0.req.byte_sel;
|
|
end if;
|
|
req.hit_way := req_hit_way;
|
|
req.same_tag := req_same_tag;
|
|
|
|
-- Store the incoming request from r0, if it is a slow request
|
|
-- Note that r1.full = 1 implies req_op = OP_NONE
|
|
if req_op = OP_LOAD_MISS or req_op = OP_LOAD_NC or
|
|
req_op = OP_STORE_MISS or req_op = OP_STORE_HIT then
|
|
r1.req <= req;
|
|
r1.full <= '1';
|
|
end if;
|
|
end if;
|
|
|
|
-- Main state machine
|
|
case r1.state is
|
|
when IDLE =>
|
|
r1.wb.adr <= req.real_addr(r1.wb.adr'left downto 0);
|
|
r1.wb.sel <= req.byte_sel;
|
|
r1.wb.dat <= req.data;
|
|
r1.dcbz <= req.dcbz;
|
|
|
|
-- Keep track of our index and way for subsequent stores.
|
|
r1.store_index <= get_index(req.real_addr);
|
|
r1.store_row <= get_row(req.real_addr);
|
|
r1.end_row_ix <= get_row_of_line(get_row(req.real_addr)) - 1;
|
|
r1.reload_tag <= get_tag(req.real_addr);
|
|
r1.req.same_tag <= '1';
|
|
|
|
if req.op = OP_STORE_HIT then
|
|
r1.store_way <= req.hit_way;
|
|
end if;
|
|
|
|
-- Reset per-row valid bits, ready for handling OP_LOAD_MISS
|
|
for i in 0 to ROW_PER_LINE - 1 loop
|
|
r1.rows_valid(i) <= '0';
|
|
end loop;
|
|
|
|
case req.op is
|
|
when OP_LOAD_HIT =>
|
|
-- stay in IDLE state
|
|
|
|
when OP_LOAD_MISS =>
|
|
-- Normal load cache miss, start the reload machine
|
|
--
|
|
report "cache miss real addr:" & to_hstring(req.real_addr) &
|
|
" idx:" & integer'image(get_index(req.real_addr)) &
|
|
" tag:" & to_hstring(get_tag(req.real_addr));
|
|
|
|
-- Start the wishbone cycle
|
|
r1.wb.we <= '0';
|
|
r1.wb.cyc <= '1';
|
|
r1.wb.stb <= '1';
|
|
|
|
-- Track that we had one request sent
|
|
r1.state <= RELOAD_WAIT_ACK;
|
|
r1.write_tag <= '1';
|
|
ev.load_miss <= '1';
|
|
|
|
when OP_LOAD_NC =>
|
|
r1.wb.cyc <= '1';
|
|
r1.wb.stb <= '1';
|
|
r1.wb.we <= '0';
|
|
r1.state <= NC_LOAD_WAIT_ACK;
|
|
|
|
when OP_STORE_HIT | OP_STORE_MISS =>
|
|
if req.dcbz = '0' then
|
|
r1.state <= STORE_WAIT_ACK;
|
|
r1.acks_pending <= to_unsigned(1, 3);
|
|
r1.full <= '0';
|
|
r1.slow_valid <= '1';
|
|
if req.mmu_req = '0' then
|
|
r1.ls_valid <= '1';
|
|
else
|
|
r1.mmu_done <= '1';
|
|
end if;
|
|
if req.op = OP_STORE_HIT then
|
|
r1.write_bram <= '1';
|
|
end if;
|
|
else
|
|
-- dcbz is handled much like a load miss except
|
|
-- that we are writing to memory instead of reading
|
|
r1.state <= RELOAD_WAIT_ACK;
|
|
if req.op = OP_STORE_MISS then
|
|
r1.write_tag <= '1';
|
|
end if;
|
|
end if;
|
|
r1.wb.we <= '1';
|
|
r1.wb.cyc <= '1';
|
|
r1.wb.stb <= '1';
|
|
if req.op = OP_STORE_MISS then
|
|
ev.store_miss <= '1';
|
|
end if;
|
|
|
|
-- OP_NONE and OP_BAD do nothing
|
|
-- OP_BAD & OP_STCX_FAIL were handled above already
|
|
when OP_NONE =>
|
|
when OP_BAD =>
|
|
when OP_STCX_FAIL =>
|
|
end case;
|
|
|
|
when RELOAD_WAIT_ACK =>
|
|
-- If we are still sending requests, was one accepted ?
|
|
if wishbone_in.stall = '0' and r1.wb.stb = '1' then
|
|
-- That was the last word ? We are done sending. Clear stb.
|
|
if is_last_row_addr(r1.wb.adr, r1.end_row_ix) then
|
|
r1.wb.stb <= '0';
|
|
end if;
|
|
|
|
-- Calculate the next row address
|
|
r1.wb.adr <= next_row_addr(r1.wb.adr);
|
|
end if;
|
|
|
|
-- Incoming acks processing
|
|
r1.forward_valid1 <= wishbone_in.ack;
|
|
if wishbone_in.ack = '1' then
|
|
r1.rows_valid(r1.store_row mod ROW_PER_LINE) <= '1';
|
|
-- If this is the data we were looking for, we can
|
|
-- complete the request next cycle.
|
|
-- Compare the whole address in case the request in
|
|
-- r1.req is not the one that started this refill.
|
|
if req.valid = '1' and req.same_tag = '1' and
|
|
((r1.dcbz = '1' and req.dcbz = '1') or
|
|
(r1.dcbz = '0' and req.op = OP_LOAD_MISS)) and
|
|
r1.store_row = get_row(req.real_addr) then
|
|
r1.full <= '0';
|
|
r1.slow_valid <= '1';
|
|
if r1.mmu_req = '0' then
|
|
r1.ls_valid <= '1';
|
|
else
|
|
r1.mmu_done <= '1';
|
|
end if;
|
|
r1.forward_sel <= (others => '1');
|
|
r1.use_forward1 <= '1';
|
|
end if;
|
|
|
|
-- Check for completion
|
|
if is_last_row(r1.store_row, r1.end_row_ix) then
|
|
-- Complete wishbone cycle
|
|
r1.wb.cyc <= '0';
|
|
|
|
-- Cache line is now valid
|
|
cache_valids(r1.store_index)(r1.store_way) <= '1';
|
|
|
|
ev.dcache_refill <= not r1.dcbz;
|
|
r1.state <= IDLE;
|
|
end if;
|
|
|
|
-- Increment store row counter
|
|
r1.store_row <= next_row(r1.store_row);
|
|
end if;
|
|
|
|
when STORE_WAIT_ACK =>
|
|
stbs_done := r1.wb.stb = '0';
|
|
acks := r1.acks_pending;
|
|
if r1.inc_acks /= r1.dec_acks then
|
|
if r1.inc_acks = '1' then
|
|
acks := acks + 1;
|
|
else
|
|
acks := acks - 1;
|
|
end if;
|
|
end if;
|
|
r1.acks_pending <= acks;
|
|
-- Clear stb when slave accepted request
|
|
if wishbone_in.stall = '0' then
|
|
-- See if there is another store waiting to be done
|
|
-- which is in the same real page.
|
|
if req.valid = '1' then
|
|
r1.wb.adr(SET_SIZE_BITS - 1 downto 0) <=
|
|
req.real_addr(SET_SIZE_BITS - 1 downto 0);
|
|
r1.wb.dat <= req.data;
|
|
r1.wb.sel <= req.byte_sel;
|
|
end if;
|
|
if acks < 7 and req.same_tag = '1' and
|
|
(req.op = OP_STORE_MISS or req.op = OP_STORE_HIT) then
|
|
r1.wb.stb <= '1';
|
|
stbs_done := false;
|
|
if req.op = OP_STORE_HIT then
|
|
r1.write_bram <= '1';
|
|
end if;
|
|
r1.full <= '0';
|
|
r1.slow_valid <= '1';
|
|
-- Store requests never come from the MMU
|
|
r1.ls_valid <= '1';
|
|
stbs_done := false;
|
|
r1.inc_acks <= '1';
|
|
else
|
|
r1.wb.stb <= '0';
|
|
stbs_done := true;
|
|
end if;
|
|
end if;
|
|
|
|
-- Got ack ? See if complete.
|
|
if wishbone_in.ack = '1' then
|
|
if stbs_done and acks = 1 then
|
|
r1.state <= IDLE;
|
|
r1.wb.cyc <= '0';
|
|
r1.wb.stb <= '0';
|
|
end if;
|
|
r1.dec_acks <= '1';
|
|
end if;
|
|
|
|
when NC_LOAD_WAIT_ACK =>
|
|
-- Clear stb when slave accepted request
|
|
if wishbone_in.stall = '0' then
|
|
r1.wb.stb <= '0';
|
|
end if;
|
|
|
|
-- Got ack ? complete.
|
|
if wishbone_in.ack = '1' then
|
|
r1.state <= IDLE;
|
|
r1.full <= '0';
|
|
r1.slow_valid <= '1';
|
|
if r1.mmu_req = '0' then
|
|
r1.ls_valid <= '1';
|
|
else
|
|
r1.mmu_done <= '1';
|
|
end if;
|
|
r1.forward_sel <= (others => '1');
|
|
r1.use_forward1 <= '1';
|
|
r1.wb.cyc <= '0';
|
|
r1.wb.stb <= '0';
|
|
end if;
|
|
end case;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
dc_log: if LOG_LENGTH > 0 generate
|
|
signal log_data : std_ulogic_vector(19 downto 0);
|
|
begin
|
|
dcache_log: process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
log_data <= r1.wb.adr(5 downto 3) &
|
|
wishbone_in.stall &
|
|
wishbone_in.ack &
|
|
r1.wb.stb & r1.wb.cyc &
|
|
d_out.error &
|
|
d_out.valid &
|
|
std_ulogic_vector(to_unsigned(op_t'pos(req_op), 3)) &
|
|
stall_out &
|
|
std_ulogic_vector(to_unsigned(tlb_hit_way, 3)) &
|
|
valid_ra &
|
|
std_ulogic_vector(to_unsigned(state_t'pos(r1.state), 3));
|
|
end if;
|
|
end process;
|
|
log_out <= log_data;
|
|
end generate;
|
|
end;
|