You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/fpu.vhdl

3281 lines
139 KiB
VHDL

-- Floating-point unit for Microwatt
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.insn_helpers.all;
use work.decode_types.all;
use work.crhelpers.all;
use work.helpers.all;
use work.common.all;
entity fpu is
port (
clk : in std_ulogic;
rst : in std_ulogic;
flush_in : in std_ulogic;
e_in : in Execute1ToFPUType;
e_out : out FPUToExecute1Type;
w_out : out FPUToWritebackType
);
end entity fpu;
architecture behaviour of fpu is
type fp_number_class is (ZERO, FINITE, INFINITY, NAN);
constant EXP_BITS : natural := 13;
constant UNIT_BIT : natural := 56;
constant QNAN_BIT : natural := UNIT_BIT - 1;
constant SP_LSB : natural := UNIT_BIT - 23;
constant SP_GBIT : natural := SP_LSB - 1;
constant SP_RBIT : natural := SP_LSB - 2;
constant DP_LSB : natural := UNIT_BIT - 52;
constant DP_GBIT : natural := DP_LSB - 1;
constant DP_RBIT : natural := DP_LSB - 2;
type fpu_reg_type is record
class : fp_number_class;
negative : std_ulogic;
exponent : signed(EXP_BITS-1 downto 0); -- unbiased
mantissa : std_ulogic_vector(63 downto 0); -- 8.56 format
end record;
type state_t is (IDLE, DO_ILLEGAL,
DO_MCRFS, DO_MTFSB, DO_MTFSFI, DO_MFFS, DO_MTFSF,
DO_FMR, DO_FMRG, DO_FCMP, DO_FTDIV, DO_FTSQRT,
DO_FCFID, DO_FCTI,
DO_FRSP, DO_FRI,
DO_FADD, DO_FMUL, DO_FDIV, DO_FSQRT, DO_FMADD,
DO_FRE, DO_FRSQRTE,
DO_FSEL,
FRI_1,
ADD_1, ADD_SHIFT, ADD_2, ADD_3,
CMP_1, CMP_2,
MULT_1,
FMADD_1, FMADD_2, FMADD_3,
FMADD_4, FMADD_5, FMADD_6,
LOOKUP,
DIV_2, DIV_3, DIV_4, DIV_5, DIV_6,
FRE_1,
RSQRT_1,
FTDIV_1,
SQRT_1, SQRT_2, SQRT_3, SQRT_4,
SQRT_5, SQRT_6, SQRT_7, SQRT_8,
SQRT_9, SQRT_10, SQRT_11, SQRT_12,
INT_SHIFT, INT_ROUND, INT_ISHIFT,
INT_FINAL, INT_CHECK, INT_OFLOW,
FINISH, NORMALIZE,
ROUND_UFLOW, ROUND_OFLOW,
ROUNDING, ROUNDING_2, ROUNDING_3,
DENORM,
RENORM_A, RENORM_A2,
RENORM_B, RENORM_B2,
RENORM_C, RENORM_C2,
NAN_RESULT, EXC_RESULT,
DO_IDIVMOD,
IDIV_NORMB, IDIV_NORMB2, IDIV_NORMB3,
IDIV_CLZA, IDIV_CLZA2, IDIV_CLZA3,
IDIV_NR0, IDIV_NR1, IDIV_NR2, IDIV_USE0_5,
IDIV_DODIV, IDIV_SH32,
IDIV_DIV, IDIV_DIV2, IDIV_DIV3, IDIV_DIV4, IDIV_DIV5,
IDIV_DIV6, IDIV_DIV7, IDIV_DIV8, IDIV_DIV9,
IDIV_EXT_TBH, IDIV_EXT_TBH2, IDIV_EXT_TBH3,
IDIV_EXT_TBH4, IDIV_EXT_TBH5,
IDIV_EXTDIV, IDIV_EXTDIV1, IDIV_EXTDIV2, IDIV_EXTDIV3,
IDIV_EXTDIV4, IDIV_EXTDIV5, IDIV_EXTDIV6,
IDIV_MODADJ, IDIV_MODSUB, IDIV_DIVADJ, IDIV_OVFCHK, IDIV_DONE, IDIV_ZERO);
type reg_type is record
state : state_t;
busy : std_ulogic;
f2stall : std_ulogic;
instr_done : std_ulogic;
complete : std_ulogic;
do_intr : std_ulogic;
illegal : std_ulogic;
op : insn_type_t;
insn : std_ulogic_vector(31 downto 0);
instr_tag : instr_tag_t;
dest_fpr : gspr_index_t;
fe_mode : std_ulogic;
rc : std_ulogic;
is_cmp : std_ulogic;
single_prec : std_ulogic;
sp_result : std_ulogic;
fpscr : std_ulogic_vector(31 downto 0);
comm_fpscr : std_ulogic_vector(31 downto 0); -- committed FPSCR value
a : fpu_reg_type;
b : fpu_reg_type;
c : fpu_reg_type;
r : std_ulogic_vector(63 downto 0); -- 8.56 format
s : std_ulogic_vector(55 downto 0); -- extended fraction
x : std_ulogic;
p : std_ulogic_vector(63 downto 0); -- 8.56 format
y : std_ulogic_vector(63 downto 0); -- 8.56 format
result_sign : std_ulogic;
result_class : fp_number_class;
result_exp : signed(EXP_BITS-1 downto 0);
shift : signed(EXP_BITS-1 downto 0);
writing_fpr : std_ulogic;
write_reg : gspr_index_t;
complete_tag : instr_tag_t;
writing_cr : std_ulogic;
writing_xer : std_ulogic;
int_result : std_ulogic;
cr_result : std_ulogic_vector(3 downto 0);
cr_mask : std_ulogic_vector(7 downto 0);
old_exc : std_ulogic_vector(4 downto 0);
update_fprf : std_ulogic;
quieten_nan : std_ulogic;
nsnan_result : std_ulogic;
tiny : std_ulogic;
denorm : std_ulogic;
round_mode : std_ulogic_vector(2 downto 0);
is_subtract : std_ulogic;
exp_cmp : std_ulogic;
madd_cmp : std_ulogic;
add_bsmall : std_ulogic;
is_multiply : std_ulogic;
is_sqrt : std_ulogic;
first : std_ulogic;
count : unsigned(1 downto 0);
doing_ftdiv : std_ulogic_vector(1 downto 0);
opsel_a : std_ulogic_vector(1 downto 0);
use_a : std_ulogic;
use_b : std_ulogic;
use_c : std_ulogic;
invalid : std_ulogic;
negate : std_ulogic;
longmask : std_ulogic;
integer_op : std_ulogic;
divext : std_ulogic;
divmod : std_ulogic;
is_signed : std_ulogic;
int_ovf : std_ulogic;
div_close : std_ulogic;
inc_quot : std_ulogic;
a_hi : std_ulogic_vector(7 downto 0);
a_lo : std_ulogic_vector(55 downto 0);
m32b : std_ulogic;
oe : std_ulogic;
xerc : xer_common_t;
xerc_result : xer_common_t;
end record;
type lookup_table is array(0 to 1023) of std_ulogic_vector(17 downto 0);
signal r, rin : reg_type;
signal fp_result : std_ulogic_vector(63 downto 0);
signal opsel_b : std_ulogic_vector(1 downto 0);
signal opsel_r : std_ulogic_vector(1 downto 0);
signal opsel_s : std_ulogic_vector(1 downto 0);
signal opsel_ainv : std_ulogic;
signal opsel_mask : std_ulogic;
signal opsel_binv : std_ulogic;
signal in_a : std_ulogic_vector(63 downto 0);
signal in_b : std_ulogic_vector(63 downto 0);
signal result : std_ulogic_vector(63 downto 0);
signal carry_in : std_ulogic;
signal lost_bits : std_ulogic;
signal r_hi_nz : std_ulogic;
signal r_lo_nz : std_ulogic;
signal r_gt_1 : std_ulogic;
signal s_nz : std_ulogic;
signal misc_sel : std_ulogic_vector(3 downto 0);
signal f_to_multiply : MultiplyInputType;
signal multiply_to_f : MultiplyOutputType;
signal msel_1 : std_ulogic_vector(1 downto 0);
signal msel_2 : std_ulogic_vector(1 downto 0);
signal msel_add : std_ulogic_vector(1 downto 0);
signal msel_inv : std_ulogic;
signal inverse_est : std_ulogic_vector(18 downto 0);
-- opsel values
constant AIN_R : std_ulogic_vector(1 downto 0) := "00";
constant AIN_A : std_ulogic_vector(1 downto 0) := "01";
constant AIN_B : std_ulogic_vector(1 downto 0) := "10";
constant AIN_C : std_ulogic_vector(1 downto 0) := "11";
constant BIN_ZERO : std_ulogic_vector(1 downto 0) := "00";
constant BIN_R : std_ulogic_vector(1 downto 0) := "01";
constant BIN_RND : std_ulogic_vector(1 downto 0) := "10";
constant BIN_PS8 : std_ulogic_vector(1 downto 0) := "11";
constant RES_SUM : std_ulogic_vector(1 downto 0) := "00";
constant RES_SHIFT : std_ulogic_vector(1 downto 0) := "01";
constant RES_MULT : std_ulogic_vector(1 downto 0) := "10";
constant RES_MISC : std_ulogic_vector(1 downto 0) := "11";
constant S_ZERO : std_ulogic_vector(1 downto 0) := "00";
constant S_NEG : std_ulogic_vector(1 downto 0) := "01";
constant S_SHIFT : std_ulogic_vector(1 downto 0) := "10";
constant S_MULT : std_ulogic_vector(1 downto 0) := "11";
-- msel values
constant MUL1_A : std_ulogic_vector(1 downto 0) := "00";
constant MUL1_B : std_ulogic_vector(1 downto 0) := "01";
constant MUL1_Y : std_ulogic_vector(1 downto 0) := "10";
constant MUL1_R : std_ulogic_vector(1 downto 0) := "11";
constant MUL2_C : std_ulogic_vector(1 downto 0) := "00";
constant MUL2_LUT : std_ulogic_vector(1 downto 0) := "01";
constant MUL2_P : std_ulogic_vector(1 downto 0) := "10";
constant MUL2_R : std_ulogic_vector(1 downto 0) := "11";
constant MULADD_ZERO : std_ulogic_vector(1 downto 0) := "00";
constant MULADD_CONST : std_ulogic_vector(1 downto 0) := "01";
constant MULADD_A : std_ulogic_vector(1 downto 0) := "10";
constant MULADD_RS : std_ulogic_vector(1 downto 0) := "11";
-- Inverse lookup table, indexed by the top 8 fraction bits
-- The first 256 entries are the reciprocal (1/x) lookup table,
-- and the remaining 768 entries are the reciprocal square root table.
-- Output range is [0.5, 1) in 0.19 format, though the top
-- bit isn't stored since it is always 1.
-- Each output value is the inverse of the center of the input
-- range for the value, i.e. entry 0 is 1 / (1 + 1/512),
-- entry 1 is 1 / (1 + 3/512), etc.
constant inverse_table : lookup_table := (
-- 1/x lookup table
-- Unit bit is assumed to be 1, so input range is [1, 2)
18x"3fc01", 18x"3f411", 18x"3ec31", 18x"3e460", 18x"3dc9f", 18x"3d4ec", 18x"3cd49", 18x"3c5b5",
18x"3be2f", 18x"3b6b8", 18x"3af4f", 18x"3a7f4", 18x"3a0a7", 18x"39968", 18x"39237", 18x"38b14",
18x"383fe", 18x"37cf5", 18x"375f9", 18x"36f0a", 18x"36828", 18x"36153", 18x"35a8a", 18x"353ce",
18x"34d1e", 18x"3467a", 18x"33fe3", 18x"33957", 18x"332d7", 18x"32c62", 18x"325f9", 18x"31f9c",
18x"3194a", 18x"31303", 18x"30cc7", 18x"30696", 18x"30070", 18x"2fa54", 18x"2f443", 18x"2ee3d",
18x"2e841", 18x"2e250", 18x"2dc68", 18x"2d68b", 18x"2d0b8", 18x"2caee", 18x"2c52e", 18x"2bf79",
18x"2b9cc", 18x"2b429", 18x"2ae90", 18x"2a900", 18x"2a379", 18x"29dfb", 18x"29887", 18x"2931b",
18x"28db8", 18x"2885e", 18x"2830d", 18x"27dc4", 18x"27884", 18x"2734d", 18x"26e1d", 18x"268f6",
18x"263d8", 18x"25ec1", 18x"259b3", 18x"254ac", 18x"24fad", 18x"24ab7", 18x"245c8", 18x"240e1",
18x"23c01", 18x"23729", 18x"23259", 18x"22d90", 18x"228ce", 18x"22413", 18x"21f60", 18x"21ab4",
18x"2160f", 18x"21172", 18x"20cdb", 18x"2084b", 18x"203c2", 18x"1ff40", 18x"1fac4", 18x"1f64f",
18x"1f1e1", 18x"1ed79", 18x"1e918", 18x"1e4be", 18x"1e069", 18x"1dc1b", 18x"1d7d4", 18x"1d392",
18x"1cf57", 18x"1cb22", 18x"1c6f3", 18x"1c2ca", 18x"1bea7", 18x"1ba8a", 18x"1b672", 18x"1b261",
18x"1ae55", 18x"1aa50", 18x"1a64f", 18x"1a255", 18x"19e60", 18x"19a70", 18x"19686", 18x"192a2",
18x"18ec3", 18x"18ae9", 18x"18715", 18x"18345", 18x"17f7c", 18x"17bb7", 18x"177f7", 18x"1743d",
18x"17087", 18x"16cd7", 18x"1692c", 18x"16585", 18x"161e4", 18x"15e47", 18x"15ab0", 18x"1571d",
18x"1538e", 18x"15005", 18x"14c80", 18x"14900", 18x"14584", 18x"1420d", 18x"13e9b", 18x"13b2d",
18x"137c3", 18x"1345e", 18x"130fe", 18x"12da2", 18x"12a4a", 18x"126f6", 18x"123a7", 18x"1205c",
18x"11d15", 18x"119d2", 18x"11694", 18x"11359", 18x"11023", 18x"10cf1", 18x"109c2", 18x"10698",
18x"10372", 18x"10050", 18x"0fd31", 18x"0fa17", 18x"0f700", 18x"0f3ed", 18x"0f0de", 18x"0edd3",
18x"0eacb", 18x"0e7c7", 18x"0e4c7", 18x"0e1ca", 18x"0ded2", 18x"0dbdc", 18x"0d8eb", 18x"0d5fc",
18x"0d312", 18x"0d02b", 18x"0cd47", 18x"0ca67", 18x"0c78a", 18x"0c4b1", 18x"0c1db", 18x"0bf09",
18x"0bc3a", 18x"0b96e", 18x"0b6a5", 18x"0b3e0", 18x"0b11e", 18x"0ae5f", 18x"0aba3", 18x"0a8eb",
18x"0a636", 18x"0a383", 18x"0a0d4", 18x"09e28", 18x"09b80", 18x"098da", 18x"09637", 18x"09397",
18x"090fb", 18x"08e61", 18x"08bca", 18x"08936", 18x"086a5", 18x"08417", 18x"0818c", 18x"07f04",
18x"07c7e", 18x"079fc", 18x"0777c", 18x"074ff", 18x"07284", 18x"0700d", 18x"06d98", 18x"06b26",
18x"068b6", 18x"0664a", 18x"063e0", 18x"06178", 18x"05f13", 18x"05cb1", 18x"05a52", 18x"057f5",
18x"0559a", 18x"05342", 18x"050ed", 18x"04e9a", 18x"04c4a", 18x"049fc", 18x"047b0", 18x"04567",
18x"04321", 18x"040dd", 18x"03e9b", 18x"03c5c", 18x"03a1f", 18x"037e4", 18x"035ac", 18x"03376",
18x"03142", 18x"02f11", 18x"02ce2", 18x"02ab5", 18x"0288b", 18x"02663", 18x"0243d", 18x"02219",
18x"01ff7", 18x"01dd8", 18x"01bbb", 18x"019a0", 18x"01787", 18x"01570", 18x"0135b", 18x"01149",
18x"00f39", 18x"00d2a", 18x"00b1e", 18x"00914", 18x"0070c", 18x"00506", 18x"00302", 18x"00100",
-- 1/sqrt(x) lookup table
-- Input is in the range [1, 4), i.e. two bits to the left of the
-- binary point. Those 2 bits index the following 3 blocks of 256 values.
-- 1.0 ... 1.9999
18x"3fe00", 18x"3fa06", 18x"3f612", 18x"3f224", 18x"3ee3a", 18x"3ea58", 18x"3e67c", 18x"3e2a4",
18x"3ded2", 18x"3db06", 18x"3d73e", 18x"3d37e", 18x"3cfc2", 18x"3cc0a", 18x"3c85a", 18x"3c4ae",
18x"3c106", 18x"3bd64", 18x"3b9c8", 18x"3b630", 18x"3b29e", 18x"3af10", 18x"3ab86", 18x"3a802",
18x"3a484", 18x"3a108", 18x"39d94", 18x"39a22", 18x"396b6", 18x"3934e", 18x"38fea", 18x"38c8c",
18x"38932", 18x"385dc", 18x"3828a", 18x"37f3e", 18x"37bf6", 18x"378b2", 18x"37572", 18x"37236",
18x"36efe", 18x"36bca", 18x"3689a", 18x"36570", 18x"36248", 18x"35f26", 18x"35c06", 18x"358ea",
18x"355d4", 18x"352c0", 18x"34fb0", 18x"34ca4", 18x"3499c", 18x"34698", 18x"34398", 18x"3409c",
18x"33da2", 18x"33aac", 18x"337bc", 18x"334cc", 18x"331e2", 18x"32efc", 18x"32c18", 18x"32938",
18x"3265a", 18x"32382", 18x"320ac", 18x"31dd8", 18x"31b0a", 18x"3183e", 18x"31576", 18x"312b0",
18x"30fee", 18x"30d2e", 18x"30a74", 18x"307ba", 18x"30506", 18x"30254", 18x"2ffa4", 18x"2fcf8",
18x"2fa4e", 18x"2f7a8", 18x"2f506", 18x"2f266", 18x"2efca", 18x"2ed2e", 18x"2ea98", 18x"2e804",
18x"2e572", 18x"2e2e4", 18x"2e058", 18x"2ddce", 18x"2db48", 18x"2d8c6", 18x"2d646", 18x"2d3c8",
18x"2d14c", 18x"2ced4", 18x"2cc5e", 18x"2c9ea", 18x"2c77a", 18x"2c50c", 18x"2c2a2", 18x"2c038",
18x"2bdd2", 18x"2bb70", 18x"2b90e", 18x"2b6b0", 18x"2b454", 18x"2b1fa", 18x"2afa4", 18x"2ad4e",
18x"2aafc", 18x"2a8ac", 18x"2a660", 18x"2a414", 18x"2a1cc", 18x"29f86", 18x"29d42", 18x"29b00",
18x"298c2", 18x"29684", 18x"2944a", 18x"29210", 18x"28fda", 18x"28da6", 18x"28b74", 18x"28946",
18x"28718", 18x"284ec", 18x"282c4", 18x"2809c", 18x"27e78", 18x"27c56", 18x"27a34", 18x"27816",
18x"275fa", 18x"273e0", 18x"271c8", 18x"26fb0", 18x"26d9c", 18x"26b8a", 18x"2697a", 18x"2676c",
18x"26560", 18x"26356", 18x"2614c", 18x"25f46", 18x"25d42", 18x"25b40", 18x"2593e", 18x"25740",
18x"25542", 18x"25348", 18x"2514e", 18x"24f58", 18x"24d62", 18x"24b6e", 18x"2497c", 18x"2478c",
18x"2459e", 18x"243b0", 18x"241c6", 18x"23fde", 18x"23df6", 18x"23c10", 18x"23a2c", 18x"2384a",
18x"2366a", 18x"2348c", 18x"232ae", 18x"230d2", 18x"22efa", 18x"22d20", 18x"22b4a", 18x"22976",
18x"227a2", 18x"225d2", 18x"22402", 18x"22234", 18x"22066", 18x"21e9c", 18x"21cd2", 18x"21b0a",
18x"21944", 18x"2177e", 18x"215ba", 18x"213fa", 18x"21238", 18x"2107a", 18x"20ebc", 18x"20d00",
18x"20b46", 18x"2098e", 18x"207d6", 18x"20620", 18x"2046c", 18x"202b8", 18x"20108", 18x"1ff58",
18x"1fda8", 18x"1fbfc", 18x"1fa50", 18x"1f8a4", 18x"1f6fc", 18x"1f554", 18x"1f3ae", 18x"1f208",
18x"1f064", 18x"1eec2", 18x"1ed22", 18x"1eb82", 18x"1e9e4", 18x"1e846", 18x"1e6aa", 18x"1e510",
18x"1e378", 18x"1e1e0", 18x"1e04a", 18x"1deb4", 18x"1dd20", 18x"1db8e", 18x"1d9fc", 18x"1d86c",
18x"1d6de", 18x"1d550", 18x"1d3c4", 18x"1d238", 18x"1d0ae", 18x"1cf26", 18x"1cd9e", 18x"1cc18",
18x"1ca94", 18x"1c910", 18x"1c78c", 18x"1c60a", 18x"1c48a", 18x"1c30c", 18x"1c18e", 18x"1c010",
18x"1be94", 18x"1bd1a", 18x"1bba0", 18x"1ba28", 18x"1b8b2", 18x"1b73c", 18x"1b5c6", 18x"1b452",
18x"1b2e0", 18x"1b16e", 18x"1affe", 18x"1ae8e", 18x"1ad20", 18x"1abb4", 18x"1aa46", 18x"1a8dc",
-- 2.0 ... 2.9999
18x"1a772", 18x"1a608", 18x"1a4a0", 18x"1a33a", 18x"1a1d4", 18x"1a070", 18x"19f0c", 18x"19da8",
18x"19c48", 18x"19ae6", 18x"19986", 18x"19828", 18x"196ca", 18x"1956e", 18x"19412", 18x"192b8",
18x"1915e", 18x"19004", 18x"18eae", 18x"18d56", 18x"18c00", 18x"18aac", 18x"18958", 18x"18804",
18x"186b2", 18x"18562", 18x"18412", 18x"182c2", 18x"18174", 18x"18026", 18x"17eda", 18x"17d8e",
18x"17c44", 18x"17afa", 18x"179b2", 18x"1786a", 18x"17724", 18x"175de", 18x"17498", 18x"17354",
18x"17210", 18x"170ce", 18x"16f8c", 18x"16e4c", 18x"16d0c", 18x"16bcc", 18x"16a8e", 18x"16950",
18x"16814", 18x"166d8", 18x"1659e", 18x"16464", 18x"1632a", 18x"161f2", 18x"160ba", 18x"15f84",
18x"15e4e", 18x"15d1a", 18x"15be6", 18x"15ab2", 18x"15980", 18x"1584e", 18x"1571c", 18x"155ec",
18x"154bc", 18x"1538e", 18x"15260", 18x"15134", 18x"15006", 18x"14edc", 18x"14db0", 18x"14c86",
18x"14b5e", 18x"14a36", 18x"1490e", 18x"147e6", 18x"146c0", 18x"1459a", 18x"14476", 18x"14352",
18x"14230", 18x"1410c", 18x"13fea", 18x"13eca", 18x"13daa", 18x"13c8a", 18x"13b6c", 18x"13a4e",
18x"13930", 18x"13814", 18x"136f8", 18x"135dc", 18x"134c2", 18x"133a8", 18x"1328e", 18x"13176",
18x"1305e", 18x"12f48", 18x"12e30", 18x"12d1a", 18x"12c06", 18x"12af2", 18x"129de", 18x"128ca",
18x"127b8", 18x"126a6", 18x"12596", 18x"12486", 18x"12376", 18x"12266", 18x"12158", 18x"1204a",
18x"11f3e", 18x"11e32", 18x"11d26", 18x"11c1a", 18x"11b10", 18x"11a06", 18x"118fc", 18x"117f4",
18x"116ec", 18x"115e4", 18x"114de", 18x"113d8", 18x"112d2", 18x"111ce", 18x"110ca", 18x"10fc6",
18x"10ec2", 18x"10dc0", 18x"10cbe", 18x"10bbc", 18x"10abc", 18x"109bc", 18x"108bc", 18x"107be",
18x"106c0", 18x"105c2", 18x"104c4", 18x"103c8", 18x"102cc", 18x"101d0", 18x"100d6", 18x"0ffdc",
18x"0fee2", 18x"0fdea", 18x"0fcf0", 18x"0fbf8", 18x"0fb02", 18x"0fa0a", 18x"0f914", 18x"0f81e",
18x"0f72a", 18x"0f636", 18x"0f542", 18x"0f44e", 18x"0f35a", 18x"0f268", 18x"0f176", 18x"0f086",
18x"0ef94", 18x"0eea4", 18x"0edb4", 18x"0ecc6", 18x"0ebd6", 18x"0eae8", 18x"0e9fa", 18x"0e90e",
18x"0e822", 18x"0e736", 18x"0e64a", 18x"0e55e", 18x"0e474", 18x"0e38a", 18x"0e2a0", 18x"0e1b8",
18x"0e0d0", 18x"0dfe8", 18x"0df00", 18x"0de1a", 18x"0dd32", 18x"0dc4c", 18x"0db68", 18x"0da82",
18x"0d99e", 18x"0d8ba", 18x"0d7d6", 18x"0d6f4", 18x"0d612", 18x"0d530", 18x"0d44e", 18x"0d36c",
18x"0d28c", 18x"0d1ac", 18x"0d0cc", 18x"0cfee", 18x"0cf0e", 18x"0ce30", 18x"0cd54", 18x"0cc76",
18x"0cb9a", 18x"0cabc", 18x"0c9e0", 18x"0c906", 18x"0c82a", 18x"0c750", 18x"0c676", 18x"0c59c",
18x"0c4c4", 18x"0c3ea", 18x"0c312", 18x"0c23a", 18x"0c164", 18x"0c08c", 18x"0bfb6", 18x"0bee0",
18x"0be0a", 18x"0bd36", 18x"0bc62", 18x"0bb8c", 18x"0baba", 18x"0b9e6", 18x"0b912", 18x"0b840",
18x"0b76e", 18x"0b69c", 18x"0b5cc", 18x"0b4fa", 18x"0b42a", 18x"0b35a", 18x"0b28a", 18x"0b1bc",
18x"0b0ee", 18x"0b01e", 18x"0af50", 18x"0ae84", 18x"0adb6", 18x"0acea", 18x"0ac1e", 18x"0ab52",
18x"0aa86", 18x"0a9bc", 18x"0a8f0", 18x"0a826", 18x"0a75c", 18x"0a694", 18x"0a5ca", 18x"0a502",
18x"0a43a", 18x"0a372", 18x"0a2aa", 18x"0a1e4", 18x"0a11c", 18x"0a056", 18x"09f90", 18x"09ecc",
-- 3.0 ... 3.9999
18x"09e06", 18x"09d42", 18x"09c7e", 18x"09bba", 18x"09af6", 18x"09a32", 18x"09970", 18x"098ae",
18x"097ec", 18x"0972a", 18x"09668", 18x"095a8", 18x"094e8", 18x"09426", 18x"09368", 18x"092a8",
18x"091e8", 18x"0912a", 18x"0906c", 18x"08fae", 18x"08ef0", 18x"08e32", 18x"08d76", 18x"08cba",
18x"08bfe", 18x"08b42", 18x"08a86", 18x"089ca", 18x"08910", 18x"08856", 18x"0879c", 18x"086e2",
18x"08628", 18x"08570", 18x"084b6", 18x"083fe", 18x"08346", 18x"0828e", 18x"081d8", 18x"08120",
18x"0806a", 18x"07fb4", 18x"07efe", 18x"07e48", 18x"07d92", 18x"07cde", 18x"07c2a", 18x"07b76",
18x"07ac2", 18x"07a0e", 18x"0795a", 18x"078a8", 18x"077f4", 18x"07742", 18x"07690", 18x"075de",
18x"0752e", 18x"0747c", 18x"073cc", 18x"0731c", 18x"0726c", 18x"071bc", 18x"0710c", 18x"0705e",
18x"06fae", 18x"06f00", 18x"06e52", 18x"06da4", 18x"06cf6", 18x"06c4a", 18x"06b9c", 18x"06af0",
18x"06a44", 18x"06998", 18x"068ec", 18x"06840", 18x"06796", 18x"066ea", 18x"06640", 18x"06596",
18x"064ec", 18x"06442", 18x"0639a", 18x"062f0", 18x"06248", 18x"061a0", 18x"060f8", 18x"06050",
18x"05fa8", 18x"05f00", 18x"05e5a", 18x"05db4", 18x"05d0e", 18x"05c68", 18x"05bc2", 18x"05b1c",
18x"05a76", 18x"059d2", 18x"0592e", 18x"05888", 18x"057e4", 18x"05742", 18x"0569e", 18x"055fa",
18x"05558", 18x"054b6", 18x"05412", 18x"05370", 18x"052ce", 18x"0522e", 18x"0518c", 18x"050ec",
18x"0504a", 18x"04faa", 18x"04f0a", 18x"04e6a", 18x"04dca", 18x"04d2c", 18x"04c8c", 18x"04bee",
18x"04b50", 18x"04ab0", 18x"04a12", 18x"04976", 18x"048d8", 18x"0483a", 18x"0479e", 18x"04700",
18x"04664", 18x"045c8", 18x"0452c", 18x"04490", 18x"043f6", 18x"0435a", 18x"042c0", 18x"04226",
18x"0418a", 18x"040f0", 18x"04056", 18x"03fbe", 18x"03f24", 18x"03e8c", 18x"03df2", 18x"03d5a",
18x"03cc2", 18x"03c2a", 18x"03b92", 18x"03afa", 18x"03a62", 18x"039cc", 18x"03934", 18x"0389e",
18x"03808", 18x"03772", 18x"036dc", 18x"03646", 18x"035b2", 18x"0351c", 18x"03488", 18x"033f2",
18x"0335e", 18x"032ca", 18x"03236", 18x"031a2", 18x"03110", 18x"0307c", 18x"02fea", 18x"02f56",
18x"02ec4", 18x"02e32", 18x"02da0", 18x"02d0e", 18x"02c7c", 18x"02bec", 18x"02b5a", 18x"02aca",
18x"02a38", 18x"029a8", 18x"02918", 18x"02888", 18x"027f8", 18x"0276a", 18x"026da", 18x"0264a",
18x"025bc", 18x"0252e", 18x"024a0", 18x"02410", 18x"02384", 18x"022f6", 18x"02268", 18x"021da",
18x"0214e", 18x"020c0", 18x"02034", 18x"01fa8", 18x"01f1c", 18x"01e90", 18x"01e04", 18x"01d78",
18x"01cee", 18x"01c62", 18x"01bd8", 18x"01b4c", 18x"01ac2", 18x"01a38", 18x"019ae", 18x"01924",
18x"0189c", 18x"01812", 18x"01788", 18x"01700", 18x"01676", 18x"015ee", 18x"01566", 18x"014de",
18x"01456", 18x"013ce", 18x"01346", 18x"012c0", 18x"01238", 18x"011b2", 18x"0112c", 18x"010a4",
18x"0101e", 18x"00f98", 18x"00f12", 18x"00e8c", 18x"00e08", 18x"00d82", 18x"00cfe", 18x"00c78",
18x"00bf4", 18x"00b70", 18x"00aec", 18x"00a68", 18x"009e4", 18x"00960", 18x"008dc", 18x"00858",
18x"007d6", 18x"00752", 18x"006d0", 18x"0064e", 18x"005cc", 18x"0054a", 18x"004c8", 18x"00446",
18x"003c4", 18x"00342", 18x"002c2", 18x"00240", 18x"001c0", 18x"00140", 18x"000c0", 18x"00040"
);
-- Left and right shifter with 120 bit input and 64 bit output.
-- Shifts inp left by shift bits and returns the upper 64 bits of
-- the result. The shift parameter is interpreted as a signed
-- number in the range -64..63, with negative values indicating
-- right shifts.
function shifter_64(inp: std_ulogic_vector(119 downto 0);
shift: std_ulogic_vector(6 downto 0))
return std_ulogic_vector is
variable s1 : std_ulogic_vector(94 downto 0);
variable s2 : std_ulogic_vector(70 downto 0);
variable result : std_ulogic_vector(63 downto 0);
begin
case shift(6 downto 5) is
when "00" =>
s1 := inp(119 downto 25);
when "01" =>
s1 := inp(87 downto 0) & "0000000";
when "10" =>
s1 := x"0000000000000000" & inp(119 downto 89);
when others =>
s1 := x"00000000" & inp(119 downto 57);
end case;
case shift(4 downto 3) is
when "00" =>
s2 := s1(94 downto 24);
when "01" =>
s2 := s1(86 downto 16);
when "10" =>
s2 := s1(78 downto 8);
when others =>
s2 := s1(70 downto 0);
end case;
case shift(2 downto 0) is
when "000" =>
result := s2(70 downto 7);
when "001" =>
result := s2(69 downto 6);
when "010" =>
result := s2(68 downto 5);
when "011" =>
result := s2(67 downto 4);
when "100" =>
result := s2(66 downto 3);
when "101" =>
result := s2(65 downto 2);
when "110" =>
result := s2(64 downto 1);
when others =>
result := s2(63 downto 0);
end case;
return result;
end;
-- Generate a mask with 0-bits on the left and 1-bits on the right which
-- selects the bits will be lost in doing a right shift. The shift
-- parameter is the bottom 6 bits of a negative shift count,
-- indicating a right shift.
function right_mask(shift: unsigned(5 downto 0)) return std_ulogic_vector is
variable result: std_ulogic_vector(63 downto 0);
begin
result := (others => '0');
if is_X(shift) then
result := (others => 'X');
return result;
end if;
for i in 0 to 63 loop
if i >= shift then
result(63 - i) := '1';
end if;
end loop;
return result;
end;
-- Split a DP floating-point number into components and work out its class.
-- If is_int = 1, the input is considered an integer
function decode_dp(fpr: std_ulogic_vector(63 downto 0); is_int: std_ulogic;
is_32bint: std_ulogic; is_signed: std_ulogic) return fpu_reg_type is
variable r : fpu_reg_type;
variable exp_nz : std_ulogic;
variable exp_ao : std_ulogic;
variable frac_nz : std_ulogic;
variable low_nz : std_ulogic;
variable cls : std_ulogic_vector(2 downto 0);
begin
r.negative := fpr(63);
exp_nz := or (fpr(62 downto 52));
exp_ao := and (fpr(62 downto 52));
frac_nz := or (fpr(51 downto 0));
low_nz := or (fpr(31 downto 0));
if is_int = '0' then
r.exponent := signed(resize(unsigned(fpr(62 downto 52)), EXP_BITS)) - to_signed(1023, EXP_BITS);
if exp_nz = '0' then
r.exponent := to_signed(-1022, EXP_BITS);
end if;
r.mantissa := std_ulogic_vector(shift_left(resize(unsigned(exp_nz & fpr(51 downto 0)), 64),
UNIT_BIT - 52));
cls := exp_ao & exp_nz & frac_nz;
case cls is
when "000" => r.class := ZERO;
when "001" => r.class := FINITE; -- denormalized
when "010" => r.class := FINITE;
when "011" => r.class := FINITE;
when "110" => r.class := INFINITY;
when others => r.class := NAN;
end case;
elsif is_32bint = '1' then
r.negative := fpr(31);
r.mantissa(31 downto 0) := fpr(31 downto 0);
r.mantissa(63 downto 32) := (others => (is_signed and fpr(31)));
r.exponent := (others => '0');
if low_nz = '1' then
r.class := FINITE;
else
r.class := ZERO;
end if;
else
r.mantissa := fpr;
r.exponent := (others => '0');
if (fpr(63) or exp_nz or frac_nz) = '1' then
r.class := FINITE;
else
r.class := ZERO;
end if;
end if;
return r;
end;
-- Construct a DP floating-point result from components
function pack_dp(sign: std_ulogic; class: fp_number_class; exp: signed(EXP_BITS-1 downto 0);
mantissa: std_ulogic_vector; single_prec: std_ulogic; quieten_nan: std_ulogic)
return std_ulogic_vector is
variable result : std_ulogic_vector(63 downto 0);
begin
result := (others => '0');
result(63) := sign;
case class is
when ZERO =>
when FINITE =>
if mantissa(UNIT_BIT) = '1' then
-- normalized number
result(62 downto 52) := std_ulogic_vector(resize(exp, 11) + 1023);
end if;
result(51 downto 29) := mantissa(UNIT_BIT - 1 downto SP_LSB);
if single_prec = '0' then
result(28 downto 0) := mantissa(SP_LSB - 1 downto DP_LSB);
end if;
when INFINITY =>
result(62 downto 52) := "11111111111";
when NAN =>
result(62 downto 52) := "11111111111";
result(51) := quieten_nan or mantissa(QNAN_BIT);
result(50 downto 29) := mantissa(QNAN_BIT - 1 downto SP_LSB);
if single_prec = '0' then
result(28 downto 0) := mantissa(SP_LSB - 1 downto DP_LSB);
end if;
end case;
return result;
end;
-- Determine whether to increment when rounding
-- Returns rounding_inc & inexact
-- If single_prec = 1, assumes x includes the bottom 31 (== SP_LSB - 2)
-- bits of the mantissa already (usually arranged by setting set_x = 1 earlier).
function fp_rounding(mantissa: std_ulogic_vector(63 downto 0); x: std_ulogic;
single_prec: std_ulogic; rn: std_ulogic_vector(2 downto 0);
sign: std_ulogic)
return std_ulogic_vector is
variable grx : std_ulogic_vector(2 downto 0);
variable ret : std_ulogic_vector(1 downto 0);
variable lsb : std_ulogic;
begin
if single_prec = '0' then
grx := mantissa(DP_GBIT downto DP_RBIT) & (x or (or mantissa(DP_RBIT - 1 downto 0)));
lsb := mantissa(DP_LSB);
else
grx := mantissa(SP_GBIT downto SP_RBIT) & x;
lsb := mantissa(SP_LSB);
end if;
ret(1) := '0';
ret(0) := or (grx);
case rn(1 downto 0) is
when "00" => -- round to nearest
if grx = "100" and rn(2) = '0' then
ret(1) := lsb; -- tie, round to even
else
ret(1) := grx(2);
end if;
when "01" => -- round towards zero
when others => -- round towards +/- inf
if rn(0) = sign then
-- round towards greater magnitude
ret(1) := ret(0);
end if;
end case;
return ret;
end;
-- Determine result flags to write into the FPSCR
function result_flags(sign: std_ulogic; class: fp_number_class; unitbit: std_ulogic)
return std_ulogic_vector is
begin
case class is
when ZERO =>
return sign & "0010";
when FINITE =>
return (not unitbit) & sign & (not sign) & "00";
when INFINITY =>
return '0' & sign & (not sign) & "01";
when NAN =>
return "10001";
end case;
end;
begin
fpu_multiply_0: entity work.multiply
port map (
clk => clk,
m_in => f_to_multiply,
m_out => multiply_to_f
);
fpu_0: process(clk)
begin
if rising_edge(clk) then
if rst = '1' or flush_in = '1' then
r.state <= IDLE;
r.busy <= '0';
r.f2stall <= '0';
r.instr_done <= '0';
r.complete <= '0';
r.illegal <= '0';
r.do_intr <= '0';
r.writing_fpr <= '0';
r.writing_cr <= '0';
r.writing_xer <= '0';
r.fpscr <= (others => '0');
r.write_reg <= (others =>'0');
r.complete_tag.valid <= '0';
r.cr_mask <= (others =>'0');
r.cr_result <= (others =>'0');
r.instr_tag.valid <= '0';
if rst = '1' then
r.fpscr <= (others => '0');
r.comm_fpscr <= (others => '0');
elsif r.do_intr = '0' then
-- flush_in = 1 and not due to us generating an interrupt,
-- roll back to committed fpscr
r.fpscr <= r.comm_fpscr;
end if;
else
assert not (r.state /= IDLE and e_in.valid = '1') severity failure;
r <= rin;
end if;
end if;
end process;
-- synchronous reads from lookup table
lut_access: process(clk)
variable addrhi : std_ulogic_vector(1 downto 0);
variable addr : std_ulogic_vector(9 downto 0);
begin
if rising_edge(clk) then
if r.is_sqrt = '1' then
addrhi := r.b.mantissa(UNIT_BIT + 1 downto UNIT_BIT);
else
addrhi := "00";
end if;
addr := addrhi & r.b.mantissa(UNIT_BIT - 1 downto UNIT_BIT - 8);
if is_X(addr) then
inverse_est <= (others => 'X');
else
inverse_est <= '1' & inverse_table(to_integer(unsigned(addr)));
end if;
end if;
end process;
e_out.busy <= r.busy;
e_out.f2stall <= r.f2stall;
e_out.exception <= r.fpscr(FPSCR_FEX);
-- Note that the cycle where r.complete = 1 for an instruction can be as
-- late as the second cycle of the following instruction (i.e. in the state
-- following IDLE state). Hence it is important that none of the fields of
-- r that are used below are modified in IDLE state.
w_out.valid <= r.complete;
w_out.instr_tag <= r.complete_tag;
w_out.write_enable <= r.writing_fpr and r.complete;
w_out.write_reg <= r.write_reg;
w_out.write_data <= fp_result;
w_out.write_cr_enable <= r.writing_cr and r.complete;
w_out.write_cr_mask <= r.cr_mask;
w_out.write_cr_data <= r.cr_result & r.cr_result & r.cr_result & r.cr_result &
r.cr_result & r.cr_result & r.cr_result & r.cr_result;
w_out.write_xerc <= r.writing_xer and r.complete;
w_out.xerc <= r.xerc_result;
w_out.interrupt <= r.do_intr;
w_out.intr_vec <= 16#700#;
w_out.srr1 <= (47-44 => r.illegal, 47-43 => not r.illegal, others => '0');
fpu_1: process(all)
variable v : reg_type;
variable adec : fpu_reg_type;
variable bdec : fpu_reg_type;
variable cdec : fpu_reg_type;
variable fpscr_mask : std_ulogic_vector(31 downto 0);
variable j, k : integer;
variable flm : std_ulogic_vector(7 downto 0);
variable int_input : std_ulogic;
variable is_32bint : std_ulogic;
variable mask : std_ulogic_vector(63 downto 0);
variable in_a0 : std_ulogic_vector(63 downto 0);
variable in_b0 : std_ulogic_vector(63 downto 0);
variable misc : std_ulogic_vector(63 downto 0);
variable shift_res : std_ulogic_vector(63 downto 0);
variable round : std_ulogic_vector(1 downto 0);
variable update_fx : std_ulogic;
variable arith_done : std_ulogic;
variable invalid : std_ulogic;
variable zero_divide : std_ulogic;
variable mant_nz : std_ulogic;
variable min_exp : signed(EXP_BITS-1 downto 0);
variable max_exp : signed(EXP_BITS-1 downto 0);
variable bias_exp : signed(EXP_BITS-1 downto 0);
variable new_exp : signed(EXP_BITS-1 downto 0);
variable exp_tiny : std_ulogic;
variable exp_huge : std_ulogic;
variable renormalize : std_ulogic;
variable clz : std_ulogic_vector(5 downto 0);
variable set_x : std_ulogic;
variable mshift : signed(EXP_BITS-1 downto 0);
variable need_check : std_ulogic;
variable msb : std_ulogic;
variable is_add : std_ulogic;
variable set_a : std_ulogic;
variable set_a_exp : std_ulogic;
variable set_a_mant : std_ulogic;
variable set_a_hi : std_ulogic;
variable set_a_lo : std_ulogic;
variable set_b : std_ulogic;
variable set_b_mant : std_ulogic;
variable set_c : std_ulogic;
variable set_y : std_ulogic;
variable set_s : std_ulogic;
variable qnan_result : std_ulogic;
variable px_nz : std_ulogic;
variable pcmpb_eq : std_ulogic;
variable pcmpb_lt : std_ulogic;
variable pcmpc_eq : std_ulogic;
variable pcmpc_lt : std_ulogic;
variable pshift : std_ulogic;
variable renorm_sqrt : std_ulogic;
variable sqrt_exp : signed(EXP_BITS-1 downto 0);
variable shiftin : std_ulogic;
variable shiftin0 : std_ulogic;
variable mulexp : signed(EXP_BITS-1 downto 0);
variable maddend : std_ulogic_vector(127 downto 0);
variable sum : std_ulogic_vector(63 downto 0);
variable round_inc : std_ulogic_vector(63 downto 0);
variable rbit_inc : std_ulogic;
variable mult_mask : std_ulogic;
variable sign_bit : std_ulogic;
variable rnd_b32 : std_ulogic;
variable int_result : std_ulogic;
variable illegal : std_ulogic;
begin
v := r;
v.complete := '0';
v.do_intr := '0';
int_input := '0';
is_32bint := '0';
if r.complete = '1' or r.do_intr = '1' then
v.instr_done := '0';
v.writing_fpr := '0';
v.writing_cr := '0';
v.writing_xer := '0';
v.comm_fpscr := r.fpscr;
v.illegal := '0';
end if;
-- capture incoming instruction
if e_in.valid = '1' then
v.insn := e_in.insn;
v.op := e_in.op;
v.instr_tag := e_in.itag;
v.fe_mode := or (e_in.fe_mode);
v.dest_fpr := e_in.frt;
v.single_prec := e_in.single;
v.is_signed := e_in.is_signed;
v.rc := e_in.rc;
v.is_cmp := e_in.out_cr;
v.oe := e_in.oe;
v.m32b := e_in.m32b;
v.xerc := e_in.xerc;
v.longmask := '0';
v.integer_op := '0';
v.divext := '0';
v.divmod := '0';
if e_in.op = OP_FPOP or e_in.op = OP_FPOP_I then
v.longmask := e_in.single;
if e_in.op = OP_FPOP_I then
int_input := '1';
end if;
else -- OP_DIV, OP_DIVE, OP_MOD
v.integer_op := '1';
int_input := '1';
is_32bint := e_in.single;
if e_in.op = OP_DIVE then
v.divext := '1';
elsif e_in.op = OP_MOD then
v.divmod := '1';
end if;
end if;
v.quieten_nan := '1';
v.tiny := '0';
v.denorm := '0';
v.round_mode := '0' & r.fpscr(FPSCR_RN+1 downto FPSCR_RN);
v.is_subtract := '0';
v.is_multiply := '0';
v.is_sqrt := '0';
v.add_bsmall := '0';
v.doing_ftdiv := "00";
v.int_ovf := '0';
v.div_close := '0';
adec := decode_dp(e_in.fra, int_input, is_32bint, e_in.is_signed);
bdec := decode_dp(e_in.frb, int_input, is_32bint, e_in.is_signed);
cdec := decode_dp(e_in.frc, int_input, '0', '0');
v.a := adec;
v.b := bdec;
v.c := cdec;
v.exp_cmp := '0';
if adec.exponent > bdec.exponent then
v.exp_cmp := '1';
end if;
v.madd_cmp := '0';
if (adec.exponent + cdec.exponent + 1) >= bdec.exponent then
v.madd_cmp := '1';
end if;
v.a_hi := 8x"0";
v.a_lo := 56x"0";
end if;
r_hi_nz <= or (r.r(UNIT_BIT + 1 downto SP_LSB));
r_lo_nz <= or (r.r(SP_LSB - 1 downto DP_LSB));
r_gt_1 <= or (r.r(63 downto 1));
s_nz <= or (r.s);
if r.single_prec = '0' then
if r.doing_ftdiv(1) = '0' then
max_exp := to_signed(1023, EXP_BITS);
else
max_exp := to_signed(1020, EXP_BITS);
end if;
if r.doing_ftdiv(0) = '0' then
min_exp := to_signed(-1022, EXP_BITS);
else
min_exp := to_signed(-1021, EXP_BITS);
end if;
bias_exp := to_signed(1536, EXP_BITS);
else
max_exp := to_signed(127, EXP_BITS);
min_exp := to_signed(-126, EXP_BITS);
bias_exp := to_signed(192, EXP_BITS);
end if;
new_exp := r.result_exp - r.shift;
exp_tiny := '0';
exp_huge := '0';
if is_X(new_exp) or is_X(min_exp) then
exp_tiny := 'X';
elsif new_exp < min_exp then
exp_tiny := '1';
end if;
if is_X(new_exp) or is_X(min_exp) then
exp_huge := 'X';
elsif new_exp > max_exp then
exp_huge := '1';
end if;
-- Compare P with zero and with B
px_nz := or (r.p(UNIT_BIT + 1 downto 4));
pcmpb_eq := '0';
if r.p(59 downto 4) = r.b.mantissa(UNIT_BIT + 1 downto DP_RBIT) then
pcmpb_eq := '1';
end if;
pcmpb_lt := '0';
if is_X(r.p(59 downto 4)) or is_X(r.b.mantissa(55 downto 0)) then
pcmpb_lt := 'X';
elsif unsigned(r.p(59 downto 4)) < unsigned(r.b.mantissa(UNIT_BIT + 1 downto DP_RBIT)) then
pcmpb_lt := '1';
end if;
pcmpc_eq := '0';
if r.p = r.c.mantissa then
pcmpc_eq := '1';
end if;
pcmpc_lt := '0';
if is_X(r.p) or is_X(r.c.mantissa) then
pcmpc_lt := 'X';
elsif unsigned(r.p) < unsigned(r.c.mantissa) then
pcmpc_lt := '1';
end if;
v.update_fprf := '0';
v.shift := to_signed(0, EXP_BITS);
v.first := '0';
v.opsel_a := AIN_R;
opsel_ainv <= '0';
opsel_mask <= '0';
opsel_b <= BIN_ZERO;
opsel_binv <= '0';
opsel_r <= RES_SUM;
opsel_s <= S_ZERO;
carry_in <= '0';
misc_sel <= "0000";
fpscr_mask := (others => '1');
update_fx := '0';
arith_done := '0';
invalid := '0';
zero_divide := '0';
renormalize := '0';
set_x := '0';
qnan_result := '0';
set_a := '0';
set_a_exp := '0';
set_a_mant := '0';
set_a_hi := '0';
set_a_lo := '0';
set_b := '0';
set_b_mant := '0';
set_c := '0';
set_s := '0';
f_to_multiply.is_32bit <= '0';
f_to_multiply.valid <= '0';
msel_1 <= MUL1_A;
msel_2 <= MUL2_C;
msel_add <= MULADD_ZERO;
msel_inv <= '0';
set_y := '0';
pshift := '0';
renorm_sqrt := '0';
shiftin := '0';
shiftin0 := '0';
rbit_inc := '0';
mult_mask := '0';
rnd_b32 := '0';
int_result := '0';
illegal := '0';
case r.state is
when IDLE =>
v.use_a := '0';
v.use_b := '0';
v.use_c := '0';
v.invalid := '0';
v.negate := '0';
if e_in.valid = '1' then
v.busy := '1';
case e_in.insn(5 downto 1) is
when "00000" =>
if e_in.insn(8) = '1' then
if e_in.insn(6) = '0' then
v.state := DO_FTDIV;
else
v.state := DO_FTSQRT;
end if;
elsif e_in.insn(7) = '1' then
v.state := DO_MCRFS;
else
v.opsel_a := AIN_B;
v.state := DO_FCMP;
end if;
when "00110" =>
if e_in.insn(10) = '0' then
if e_in.insn(8) = '0' then
v.state := DO_MTFSB;
else
v.state := DO_MTFSFI;
end if;
else
v.state := DO_FMRG;
end if;
when "00111" =>
if e_in.insn(8) = '0' then
v.state := DO_MFFS;
else
v.state := DO_MTFSF;
end if;
when "01000" =>
v.opsel_a := AIN_B;
if e_in.insn(9 downto 8) /= "11" then
v.state := DO_FMR;
else
v.state := DO_FRI;
end if;
when "01001" | "01011" =>
-- integer divides and mods, major opcode 31
v.opsel_a := AIN_B;
v.state := DO_IDIVMOD;
when "01100" =>
v.opsel_a := AIN_B;
v.state := DO_FRSP;
when "01110" =>
v.opsel_a := AIN_B;
if int_input = '1' then
-- fcfid[u][s]
v.state := DO_FCFID;
else
v.state := DO_FCTI;
end if;
when "01111" =>
v.round_mode := "001";
v.opsel_a := AIN_B;
v.state := DO_FCTI;
when "10010" =>
v.opsel_a := AIN_A;
if v.b.mantissa(UNIT_BIT) = '0' and v.a.mantissa(UNIT_BIT) = '1' then
v.opsel_a := AIN_B;
end if;
v.state := DO_FDIV;
when "10100" | "10101" =>
v.opsel_a := AIN_A;
v.state := DO_FADD;
when "10110" =>
v.is_sqrt := '1';
v.opsel_a := AIN_B;
v.state := DO_FSQRT;
when "10111" =>
v.state := DO_FSEL;
when "11000" =>
v.opsel_a := AIN_B;
v.state := DO_FRE;
when "11001" =>
v.is_multiply := '1';
v.opsel_a := AIN_A;
if v.c.mantissa(UNIT_BIT) = '0' and v.a.mantissa(UNIT_BIT) = '1' then
v.opsel_a := AIN_C;
end if;
v.state := DO_FMUL;
when "11010" =>
v.is_sqrt := '1';
v.opsel_a := AIN_B;
v.state := DO_FRSQRTE;
when "11100" | "11101" | "11110" | "11111" =>
if v.a.mantissa(UNIT_BIT) = '0' then
v.opsel_a := AIN_A;
elsif v.c.mantissa(UNIT_BIT) = '0' then
v.opsel_a := AIN_C;
else
v.opsel_a := AIN_B;
end if;
v.state := DO_FMADD;
when others =>
v.state := DO_ILLEGAL;
end case;
end if;
v.x := '0';
v.old_exc := r.fpscr(FPSCR_VX downto FPSCR_XX);
set_s := '1';
when DO_ILLEGAL =>
illegal := '1';
v.instr_done := '1';
when DO_MCRFS =>
j := to_integer(unsigned(insn_bfa(r.insn)));
for i in 0 to 7 loop
if i = j then
k := (7 - i) * 4;
v.cr_result := r.fpscr(k + 3 downto k);
fpscr_mask(k + 3 downto k) := "0000";
end if;
end loop;
v.fpscr := r.fpscr and (fpscr_mask or x"6007F8FF");
v.instr_done := '1';
when DO_FTDIV =>
v.instr_done := '1';
v.cr_result := "0000";
if r.a.class = INFINITY or r.b.class = ZERO or r.b.class = INFINITY or
(r.b.class = FINITE and r.b.mantissa(UNIT_BIT) = '0') then
v.cr_result(2) := '1';
end if;
if r.a.class = NAN or r.a.class = INFINITY or
r.b.class = NAN or r.b.class = ZERO or r.b.class = INFINITY or
(r.a.class = FINITE and r.a.exponent <= to_signed(-970, EXP_BITS)) then
v.cr_result(1) := '1';
else
v.doing_ftdiv := "11";
v.first := '1';
v.state := FTDIV_1;
v.instr_done := '0';
end if;
when DO_FTSQRT =>
v.instr_done := '1';
v.cr_result := "0000";
if r.b.class = ZERO or r.b.class = INFINITY or
(r.b.class = FINITE and r.b.mantissa(UNIT_BIT) = '0') then
v.cr_result(2) := '1';
end if;
if r.b.class = NAN or r.b.class = INFINITY or r.b.class = ZERO
or r.b.negative = '1' or r.b.exponent <= to_signed(-970, EXP_BITS) then
v.cr_result(1) := '0';
end if;
when DO_FCMP =>
-- fcmp[uo]
-- r.opsel_a = AIN_B
v.instr_done := '1';
update_fx := '1';
v.result_exp := r.b.exponent;
if (r.a.class = NAN and r.a.mantissa(QNAN_BIT) = '0') or
(r.b.class = NAN and r.b.mantissa(QNAN_BIT) = '0') then
-- Signalling NAN
v.fpscr(FPSCR_VXSNAN) := '1';
if r.insn(6) = '1' and r.fpscr(FPSCR_VE) = '0' then
v.fpscr(FPSCR_VXVC) := '1';
end if;
invalid := '1';
v.cr_result := "0001"; -- unordered
elsif r.a.class = NAN or r.b.class = NAN then
if r.insn(6) = '1' then
-- fcmpo
v.fpscr(FPSCR_VXVC) := '1';
invalid := '1';
end if;
v.cr_result := "0001"; -- unordered
elsif r.a.class = ZERO and r.b.class = ZERO then
v.cr_result := "0010"; -- equal
elsif r.a.negative /= r.b.negative then
v.cr_result := r.a.negative & r.b.negative & "00";
elsif r.a.class = ZERO then
-- A and B are the same sign from here down
v.cr_result := not r.b.negative & r.b.negative & "00";
elsif r.a.class = INFINITY then
if r.b.class = INFINITY then
v.cr_result := "0010";
else
v.cr_result := r.a.negative & not r.a.negative & "00";
end if;
elsif r.b.class = ZERO then
-- A is finite from here down
v.cr_result := r.a.negative & not r.a.negative & "00";
elsif r.b.class = INFINITY then
v.cr_result := not r.b.negative & r.b.negative & "00";
elsif r.exp_cmp = '1' then
-- A and B are both finite from here down
v.cr_result := r.a.negative & not r.a.negative & "00";
elsif r.a.exponent /= r.b.exponent then
-- A exponent is smaller than B
v.cr_result := not r.a.negative & r.a.negative & "00";
else
-- Prepare to subtract mantissas, put B in R
v.cr_result := "0000";
v.instr_done := '0';
v.opsel_a := AIN_A;
v.state := CMP_1;
end if;
v.fpscr(FPSCR_FL downto FPSCR_FU) := v.cr_result;
when DO_MTFSB =>
-- mtfsb{0,1}
j := to_integer(unsigned(insn_bt(r.insn)));
for i in 0 to 31 loop
if i = j then
v.fpscr(31 - i) := r.insn(6);
end if;
end loop;
v.instr_done := '1';
when DO_MTFSFI =>
-- mtfsfi
j := to_integer(unsigned(insn_bf(r.insn)));
if r.insn(16) = '0' then
for i in 0 to 7 loop
if i = j then
k := (7 - i) * 4;
v.fpscr(k + 3 downto k) := insn_u(r.insn);
end if;
end loop;
end if;
v.instr_done := '1';
when DO_FMRG =>
-- fmrgew, fmrgow
opsel_r <= RES_MISC;
misc_sel <= "01" & r.insn(8) & '0';
int_result := '1';
v.writing_fpr := '1';
v.instr_done := '1';
when DO_MFFS =>
v.writing_fpr := '1';
opsel_r <= RES_MISC;
case r.insn(20 downto 16) is
when "00000" =>
-- mffs
when "00001" =>
-- mffsce
v.fpscr(FPSCR_VE downto FPSCR_XE) := "00000";
when "10100" | "10101" =>
-- mffscdrn[i] (but we don't implement DRN)
fpscr_mask := x"000000FF";
when "10110" =>
-- mffscrn
fpscr_mask := x"000000FF";
v.fpscr(FPSCR_RN+1 downto FPSCR_RN) :=
r.b.mantissa(FPSCR_RN+1 downto FPSCR_RN);
when "10111" =>
-- mffscrni
fpscr_mask := x"000000FF";
v.fpscr(FPSCR_RN+1 downto FPSCR_RN) := r.insn(12 downto 11);
when "11000" =>
-- mffsl
fpscr_mask := x"0007F0FF";
when others =>
v.illegal := '1';
v.writing_fpr := '0';
end case;
int_result := '1';
v.instr_done := '1';
when DO_MTFSF =>
if r.insn(25) = '1' then
flm := x"FF";
elsif r.insn(16) = '1' then
flm := x"00";
else
flm := r.insn(24 downto 17);
end if;
for i in 0 to 7 loop
k := i * 4;
if flm(i) = '1' then
v.fpscr(k + 3 downto k) := r.b.mantissa(k + 3 downto k);
end if;
end loop;
v.instr_done := '1';
when DO_FMR =>
-- r.opsel_a = AIN_B
v.result_class := r.b.class;
v.result_exp := r.b.exponent;
v.quieten_nan := '0';
if r.insn(9) = '1' then
v.result_sign := '0'; -- fabs
elsif r.insn(8) = '1' then
v.result_sign := '1'; -- fnabs
elsif r.insn(7) = '1' then
v.result_sign := r.b.negative; -- fmr
elsif r.insn(6) = '1' then
v.result_sign := not r.b.negative; -- fneg
else
v.result_sign := r.a.negative; -- fcpsgn
end if;
v.writing_fpr := '1';
v.instr_done := '1';
when DO_FRI => -- fri[nzpm]
-- r.opsel_a = AIN_B
v.result_class := r.b.class;
v.result_sign := r.b.negative;
v.result_exp := r.b.exponent;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
if r.b.class = NAN and r.b.mantissa(QNAN_BIT) = '0' then
-- Signalling NAN
v.fpscr(FPSCR_VXSNAN) := '1';
invalid := '1';
end if;
if r.b.class = FINITE then
if r.b.exponent >= to_signed(52, EXP_BITS) then
-- integer already, no rounding required
arith_done := '1';
else
v.shift := r.b.exponent - to_signed(52, EXP_BITS);
v.state := FRI_1;
v.round_mode := '1' & r.insn(7 downto 6);
end if;
else
arith_done := '1';
end if;
when DO_FRSP =>
-- r.opsel_a = AIN_B, r.shift = 0
v.result_class := r.b.class;
v.result_sign := r.b.negative;
v.result_exp := r.b.exponent;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
if r.b.class = NAN and r.b.mantissa(53) = '0' then
-- Signalling NAN
v.fpscr(FPSCR_VXSNAN) := '1';
invalid := '1';
end if;
set_x := '1';
if r.b.class = FINITE then
if r.b.exponent < to_signed(-126, EXP_BITS) then
v.shift := r.b.exponent - to_signed(-126, EXP_BITS);
v.state := ROUND_UFLOW;
elsif r.b.exponent > to_signed(127, EXP_BITS) then
v.state := ROUND_OFLOW;
else
v.state := ROUNDING;
end if;
else
arith_done := '1';
end if;
when DO_FCTI =>
-- instr bit 9: 1=dword 0=word
-- instr bit 8: 1=unsigned 0=signed
-- instr bit 1: 1=round to zero 0=use fpscr[RN]
-- r.opsel_a = AIN_B
v.result_class := r.b.class;
v.result_sign := r.b.negative;
v.result_exp := r.b.exponent;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
if r.b.class = NAN and r.b.mantissa(53) = '0' then
-- Signalling NAN
v.fpscr(FPSCR_VXSNAN) := '1';
invalid := '1';
end if;
int_result := '1';
case r.b.class is
when ZERO =>
arith_done := '1';
when FINITE =>
if r.b.exponent >= to_signed(64, EXP_BITS) or
(r.insn(9) = '0' and r.b.exponent >= to_signed(32, EXP_BITS)) then
v.state := INT_OFLOW;
elsif r.b.exponent >= to_signed(52, EXP_BITS) then
-- integer already, no rounding required,
-- shift into final position
v.shift := r.b.exponent - to_signed(UNIT_BIT, EXP_BITS);
if r.insn(8) = '1' and r.b.negative = '1' then
v.state := INT_OFLOW;
else
v.state := INT_ISHIFT;
end if;
else
v.shift := r.b.exponent - to_signed(52, EXP_BITS);
v.state := INT_SHIFT;
end if;
when INFINITY | NAN =>
v.state := INT_OFLOW;
end case;
when DO_FCFID =>
-- r.opsel_a = AIN_B
v.result_sign := '0';
if r.insn(8) = '0' and r.b.negative = '1' then
-- fcfid[s] with negative operand, set R = -B
opsel_ainv <= '1';
carry_in <= '1';
v.result_sign := '1';
end if;
v.result_class := r.b.class;
v.result_exp := to_signed(UNIT_BIT, EXP_BITS);
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
if r.b.class = ZERO then
arith_done := '1';
else
v.state := FINISH;
end if;
when DO_FADD =>
-- fadd[s] and fsub[s]
-- r.opsel_a = AIN_A
v.result_sign := r.a.negative;
v.result_class := r.a.class;
v.result_exp := r.a.exponent;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_a := '1';
v.use_b := '1';
is_add := r.a.negative xor r.b.negative xor r.insn(1);
if r.a.class = FINITE and r.b.class = FINITE then
v.is_subtract := not is_add;
v.add_bsmall := r.exp_cmp;
v.opsel_a := AIN_B;
if r.exp_cmp = '0' then
v.shift := r.a.exponent - r.b.exponent;
v.result_sign := r.b.negative xnor r.insn(1);
if r.a.exponent = r.b.exponent then
v.state := ADD_2;
else
v.longmask := '0';
v.state := ADD_SHIFT;
end if;
else
v.state := ADD_1;
end if;
else
if r.a.class = NAN or r.b.class = NAN then
v.state := NAN_RESULT;
elsif r.a.class = INFINITY and r.b.class = INFINITY and is_add = '0' then
-- invalid operation, construct QNaN
v.fpscr(FPSCR_VXISI) := '1';
qnan_result := '1';
arith_done := '1';
elsif r.a.class = ZERO and r.b.class = ZERO and is_add = '0' then
-- return -0 for rounding to -infinity
v.result_sign := r.round_mode(1) and r.round_mode(0);
arith_done := '1';
elsif r.a.class = INFINITY or r.b.class = ZERO then
-- result is A
v.opsel_a := AIN_A;
v.state := EXC_RESULT;
else
-- result is +/- B
v.opsel_a := AIN_B;
v.negate := not r.insn(1);
v.state := EXC_RESULT;
end if;
end if;
when DO_FMUL =>
-- fmul[s]
-- r.opsel_a = AIN_A unless C is denorm and A isn't
v.result_sign := r.a.negative xor r.c.negative;
v.result_class := r.a.class;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_a := '1';
v.use_c := '1';
if r.a.class = FINITE and r.c.class = FINITE then
v.result_exp := r.a.exponent + r.c.exponent;
-- Renormalize denorm operands
if r.a.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_A;
elsif r.c.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_C;
else
f_to_multiply.valid <= '1';
v.state := MULT_1;
end if;
else
if r.a.class = NAN or r.c.class = NAN then
v.state := NAN_RESULT;
elsif (r.a.class = INFINITY and r.c.class = ZERO) or
(r.a.class = ZERO and r.c.class = INFINITY) then
-- invalid operation, construct QNaN
v.fpscr(FPSCR_VXIMZ) := '1';
qnan_result := '1';
elsif r.a.class = ZERO or r.a.class = INFINITY then
-- result is +/- A
arith_done := '1';
else
-- r.c.class is ZERO or INFINITY
v.opsel_a := AIN_C;
v.negate := r.a.negative;
v.state := EXC_RESULT;
end if;
end if;
when DO_FDIV =>
-- r.opsel_a = AIN_A unless B is denorm and A isn't
v.result_class := r.a.class;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_a := '1';
v.use_b := '1';
v.result_sign := r.a.negative xor r.b.negative;
v.result_exp := r.a.exponent - r.b.exponent;
v.count := "00";
if r.a.class = FINITE and r.b.class = FINITE then
-- Renormalize denorm operands
if r.a.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_A;
elsif r.b.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_B;
else
v.first := '1';
v.state := DIV_2;
end if;
else
if r.a.class = NAN or r.b.class = NAN then
v.state := NAN_RESULT;
elsif r.b.class = INFINITY then
if r.a.class = INFINITY then
v.fpscr(FPSCR_VXIDI) := '1';
qnan_result := '1';
else
v.result_class := ZERO;
end if;
arith_done := '1';
elsif r.b.class = ZERO then
if r.a.class = ZERO then
v.fpscr(FPSCR_VXZDZ) := '1';
qnan_result := '1';
else
if r.a.class = FINITE then
zero_divide := '1';
end if;
v.result_class := INFINITY;
end if;
arith_done := '1';
else -- r.b.class = FINITE, result_class = r.a.class
arith_done := '1';
end if;
end if;
when DO_FSEL =>
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
if r.a.class = ZERO or (r.a.negative = '0' and r.a.class /= NAN) then
v.opsel_a := AIN_C;
else
v.opsel_a := AIN_B;
end if;
v.quieten_nan := '0';
v.state := EXC_RESULT;
when DO_FSQRT =>
-- r.opsel_a = AIN_B
v.result_class := r.b.class;
v.result_sign := r.b.negative;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_b := '1';
case r.b.class is
when FINITE =>
v.result_exp := r.b.exponent;
if r.b.negative = '1' then
v.fpscr(FPSCR_VXSQRT) := '1';
qnan_result := '1';
elsif r.b.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_B;
elsif r.b.exponent(0) = '0' then
v.state := SQRT_1;
else
v.shift := to_signed(1, EXP_BITS);
v.state := RENORM_B2;
end if;
when NAN =>
v.state := NAN_RESULT;
when ZERO =>
-- result is B
arith_done := '1';
when INFINITY =>
if r.b.negative = '1' then
v.fpscr(FPSCR_VXSQRT) := '1';
qnan_result := '1';
-- else result is B
end if;
arith_done := '1';
end case;
when DO_FRE =>
-- r.opsel_a = AIN_B
v.result_class := r.b.class;
v.result_sign := r.b.negative;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_b := '1';
case r.b.class is
when FINITE =>
v.result_exp := - r.b.exponent;
if r.b.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_B;
else
v.state := FRE_1;
end if;
when NAN =>
v.state := NAN_RESULT;
when INFINITY =>
v.result_class := ZERO;
arith_done := '1';
when ZERO =>
v.result_class := INFINITY;
zero_divide := '1';
arith_done := '1';
end case;
when DO_FRSQRTE =>
-- r.opsel_a = AIN_B
v.result_class := r.b.class;
v.result_sign := r.b.negative;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_b := '1';
v.shift := to_signed(1, EXP_BITS);
case r.b.class is
when FINITE =>
v.result_exp := r.b.exponent;
if r.b.negative = '1' then
v.fpscr(FPSCR_VXSQRT) := '1';
qnan_result := '1';
elsif r.b.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_B;
elsif r.b.exponent(0) = '0' then
v.state := RSQRT_1;
else
v.state := RENORM_B2;
end if;
when NAN =>
v.state := NAN_RESULT;
when INFINITY =>
if r.b.negative = '1' then
v.fpscr(FPSCR_VXSQRT) := '1';
qnan_result := '1';
else
v.result_class := ZERO;
end if;
arith_done := '1';
when ZERO =>
v.result_class := INFINITY;
zero_divide := '1';
arith_done := '1';
end case;
when DO_FMADD =>
-- fmadd, fmsub, fnmadd, fnmsub
-- r.opsel_a = AIN_A if A is denorm, else AIN_C if C is denorm,
-- else AIN_B
v.result_sign := r.a.negative;
v.result_class := r.a.class;
v.result_exp := r.a.exponent;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_a := '1';
v.use_b := '1';
v.use_c := '1';
is_add := r.a.negative xor r.c.negative xor r.b.negative xor r.insn(1);
if r.a.class = FINITE and r.c.class = FINITE and
(r.b.class = FINITE or r.b.class = ZERO) then
v.is_subtract := not is_add;
mulexp := r.a.exponent + r.c.exponent;
v.result_exp := mulexp;
-- Make sure A and C are normalized
if r.a.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_A;
elsif r.c.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_C;
elsif r.b.class = ZERO then
-- no addend, degenerates to multiply
v.result_sign := r.a.negative xor r.c.negative xor r.insn(2);
f_to_multiply.valid <= '1';
v.is_multiply := '1';
v.state := MULT_1;
elsif r.madd_cmp = '0' then
-- addend is bigger, do multiply first
v.result_sign := not (r.b.negative xor r.insn(1) xor r.insn(2));
f_to_multiply.valid <= '1';
v.state := FMADD_1;
else
-- product is bigger, shift B right and use it as the
-- addend to the multiplier
v.shift := r.b.exponent - mulexp + to_signed(64, EXP_BITS);
-- for subtract, multiplier does B - A * C
v.result_sign := not (r.a.negative xor r.c.negative xor r.insn(2) xor is_add);
v.result_exp := r.b.exponent;
v.state := FMADD_2;
end if;
else
if r.a.class = NAN or r.b.class = NAN or r.c.class = NAN then
v.state := NAN_RESULT;
elsif (r.a.class = ZERO and r.c.class = INFINITY) or
(r.a.class = INFINITY and r.c.class = ZERO) then
-- invalid operation, construct QNaN
v.fpscr(FPSCR_VXIMZ) := '1';
qnan_result := '1';
elsif r.a.class = INFINITY or r.c.class = INFINITY then
if r.b.class = INFINITY and is_add = '0' then
-- invalid operation, construct QNaN
v.fpscr(FPSCR_VXISI) := '1';
qnan_result := '1';
else
-- result is infinity
v.result_class := INFINITY;
v.result_sign := r.a.negative xor r.c.negative xor r.insn(2);
arith_done := '1';
end if;
else
-- Here A is zero, C is zero, or B is infinity
-- Result is +/-B in all of those cases
v.opsel_a := AIN_B;
if r.b.class /= ZERO or is_add = '1' then
v.negate := not (r.insn(1) xor r.insn(2));
else
-- have to be careful about rule for 0 - 0 result sign
v.negate := r.b.negative xor (r.round_mode(1) and r.round_mode(0)) xor r.insn(2);
end if;
v.state := EXC_RESULT;
end if;
end if;
when RENORM_A =>
renormalize := '1';
v.state := RENORM_A2;
if r.insn(4) = '1' then
v.opsel_a := AIN_C;
else
v.opsel_a := AIN_B;
end if;
when RENORM_A2 =>
-- r.opsel_a = AIN_C for fmul/fmadd, AIN_B for fdiv
set_a := '1';
v.result_exp := new_exp;
if r.insn(4) = '1' then
if r.c.mantissa(UNIT_BIT) = '1' then
if r.insn(3) = '0' or r.b.class = ZERO then
v.first := '1';
v.state := MULT_1;
else
v.madd_cmp := '0';
if new_exp + 1 >= r.b.exponent then
v.madd_cmp := '1';
end if;
v.opsel_a := AIN_B;
v.state := DO_FMADD;
end if;
else
v.state := RENORM_C;
end if;
else
if r.b.mantissa(UNIT_BIT) = '1' then
v.first := '1';
v.state := DIV_2;
else
v.state := RENORM_B;
end if;
end if;
when RENORM_B =>
renormalize := '1';
renorm_sqrt := r.is_sqrt;
v.state := RENORM_B2;
when RENORM_B2 =>
set_b := '1';
if r.is_sqrt = '0' then
v.result_exp := r.result_exp + r.shift;
else
v.result_exp := new_exp;
end if;
v.opsel_a := AIN_B;
v.state := LOOKUP;
when RENORM_C =>
renormalize := '1';
v.state := RENORM_C2;
when RENORM_C2 =>
set_c := '1';
v.result_exp := new_exp;
if r.insn(3) = '0' or r.b.class = ZERO then
v.first := '1';
v.state := MULT_1;
else
v.madd_cmp := '0';
if new_exp + 1 >= r.b.exponent then
v.madd_cmp := '1';
end if;
v.opsel_a := AIN_B;
v.state := DO_FMADD;
end if;
when ADD_1 =>
-- transferring B to R
v.shift := r.b.exponent - r.a.exponent;
v.result_exp := r.b.exponent;
v.longmask := '0';
v.state := ADD_SHIFT;
when ADD_SHIFT =>
-- r.shift = - exponent difference, r.longmask = 0
opsel_r <= RES_SHIFT;
v.x := s_nz;
set_x := '1';
v.longmask := r.single_prec;
if r.add_bsmall = '1' then
v.opsel_a := AIN_A;
else
v.opsel_a := AIN_B;
end if;
v.state := ADD_2;
when ADD_2 =>
-- r.opsel_a = AIN_A if r.add_bsmall = 1 else AIN_B
opsel_b <= BIN_R;
opsel_binv <= r.is_subtract;
carry_in <= r.is_subtract and not r.x;
v.shift := to_signed(-1, EXP_BITS);
v.state := ADD_3;
when ADD_3 =>
-- check for overflow or negative result (can't get both)
-- r.shift = -1
if r.r(63) = '1' then
-- result is opposite sign to expected
v.result_sign := not r.result_sign;
opsel_ainv <= '1';
carry_in <= '1';
v.state := FINISH;
elsif r.r(UNIT_BIT + 1) = '1' then
-- sum overflowed, shift right
opsel_r <= RES_SHIFT;
set_x := '1';
if exp_huge = '1' then
v.state := ROUND_OFLOW;
else
v.state := ROUNDING;
end if;
elsif r.r(UNIT_BIT) = '1' then
set_x := '1';
v.state := ROUNDING;
elsif (r_hi_nz or r_lo_nz or (or (r.r(DP_LSB - 1 downto 0)))) = '0' then
-- r.x must be zero at this point
v.result_class := ZERO;
if r.is_subtract = '1' then
-- set result sign depending on rounding mode
v.result_sign := r.round_mode(1) and r.round_mode(0);
end if;
arith_done := '1';
else
renormalize := '1';
v.state := NORMALIZE;
end if;
when CMP_1 =>
-- r.opsel_a = AIN_A
opsel_b <= BIN_R;
opsel_binv <= '1';
carry_in <= '1';
v.state := CMP_2;
when CMP_2 =>
if r.r(63) = '1' then
-- A is smaller in magnitude
v.cr_result := not r.a.negative & r.a.negative & "00";
elsif (r_hi_nz or r_lo_nz) = '0' then
v.cr_result := "0010";
else
v.cr_result := r.a.negative & not r.a.negative & "00";
end if;
v.fpscr(FPSCR_FL downto FPSCR_FU) := v.cr_result;
v.instr_done := '1';
when MULT_1 =>
f_to_multiply.valid <= r.first;
opsel_r <= RES_MULT;
if multiply_to_f.valid = '1' then
v.state := FINISH;
end if;
when FMADD_1 =>
-- Addend is bigger here
v.result_sign := not (r.b.negative xor r.insn(1) xor r.insn(2));
-- note v.shift is at most -2 here
v.shift := r.result_exp - r.b.exponent;
opsel_r <= RES_MULT;
opsel_s <= S_MULT;
set_s := '1';
f_to_multiply.valid <= r.first;
if multiply_to_f.valid = '1' then
v.longmask := '0';
v.state := ADD_SHIFT;
end if;
when FMADD_2 =>
-- Product is potentially bigger here
-- r.shift = addend exp - product exp + 64, r.r = r.b.mantissa
set_s := '1';
opsel_s <= S_SHIFT;
v.shift := r.shift - to_signed(64, EXP_BITS);
v.state := FMADD_3;
when FMADD_3 =>
-- r.shift = addend exp - product exp
opsel_r <= RES_SHIFT;
v.first := '1';
v.state := FMADD_4;
when FMADD_4 =>
msel_add <= MULADD_RS;
f_to_multiply.valid <= r.first;
msel_inv <= r.is_subtract;
opsel_r <= RES_MULT;
opsel_s <= S_MULT;
set_s := '1';
if multiply_to_f.valid = '1' then
v.state := FMADD_5;
end if;
when FMADD_5 =>
-- negate R:S:X if negative
if r.r(63) = '1' then
v.result_sign := not r.result_sign;
opsel_ainv <= '1';
carry_in <= not (s_nz or r.x);
opsel_s <= S_NEG;
set_s := '1';
end if;
v.shift := to_signed(UNIT_BIT, EXP_BITS);
v.state := FMADD_6;
when FMADD_6 =>
-- r.shift = UNIT_BIT (or 0, but only if r is now nonzero)
if (r.r(UNIT_BIT + 2) or r_hi_nz or r_lo_nz or (or (r.r(DP_LSB - 1 downto 0)))) = '0' then
if s_nz = '0' then
-- must be a subtraction, and r.x must be zero
v.result_class := ZERO;
v.result_sign := r.round_mode(1) and r.round_mode(0);
arith_done := '1';
else
-- R is all zeroes but there are non-zero bits in S
-- so shift them into R and set S to 0
opsel_r <= RES_SHIFT;
set_s := '1';
-- stay in state FMADD_6
end if;
elsif r.r(UNIT_BIT + 2 downto UNIT_BIT) = "001" then
v.state := FINISH;
else
renormalize := '1';
v.state := NORMALIZE;
end if;
when LOOKUP =>
-- r.opsel_a = AIN_B
-- wait one cycle for inverse_table[B] lookup
v.first := '1';
if r.insn(4) = '0' then
if r.insn(3) = '0' then
v.state := DIV_2;
else
v.state := SQRT_1;
end if;
elsif r.insn(2) = '0' then
v.state := FRE_1;
else
v.state := RSQRT_1;
end if;
when DIV_2 =>
-- compute Y = inverse_table[B] (when count=0); P = 2 - B * Y
msel_1 <= MUL1_B;
msel_add <= MULADD_CONST;
msel_inv <= '1';
if r.count = 0 then
msel_2 <= MUL2_LUT;
else
msel_2 <= MUL2_P;
end if;
set_y := r.first;
pshift := '1';
f_to_multiply.valid <= r.first;
if multiply_to_f.valid = '1' then
v.first := '1';
v.count := r.count + 1;
v.state := DIV_3;
end if;
when DIV_3 =>
-- compute Y = P = P * Y
msel_1 <= MUL1_Y;
msel_2 <= MUL2_P;
f_to_multiply.valid <= r.first;
pshift := '1';
if multiply_to_f.valid = '1' then
v.first := '1';
if r.count = 3 then
v.state := DIV_4;
else
v.state := DIV_2;
end if;
end if;
when DIV_4 =>
-- compute R = P = A * Y (quotient)
msel_1 <= MUL1_A;
msel_2 <= MUL2_P;
set_y := r.first;
f_to_multiply.valid <= r.first;
pshift := '1';
mult_mask := '1';
if multiply_to_f.valid = '1' then
opsel_r <= RES_MULT;
v.first := '1';
v.state := DIV_5;
end if;
when DIV_5 =>
-- compute P = A - B * R (remainder)
msel_1 <= MUL1_B;
msel_2 <= MUL2_R;
msel_add <= MULADD_A;
msel_inv <= '1';
f_to_multiply.valid <= r.first;
if multiply_to_f.valid = '1' then
v.state := DIV_6;
end if;
when DIV_6 =>
-- r.opsel_a = AIN_R
-- test if remainder is 0 or >= B
if pcmpb_lt = '1' then
-- quotient is correct, set X if remainder non-zero
v.x := r.p(UNIT_BIT + 2) or px_nz;
else
-- quotient needs to be incremented by 1 in R-bit position
rbit_inc := '1';
opsel_b <= BIN_RND;
v.x := not pcmpb_eq;
end if;
v.state := FINISH;
when FRE_1 =>
opsel_r <= RES_MISC;
misc_sel <= "0111";
v.shift := to_signed(1, EXP_BITS);
v.state := NORMALIZE;
when FTDIV_1 =>
v.cr_result(1) := exp_tiny or exp_huge;
if exp_tiny = '1' or exp_huge = '1' or r.a.class = ZERO or r.first = '0' then
v.instr_done := '1';
else
v.shift := r.a.exponent;
v.doing_ftdiv := "10";
end if;
when RSQRT_1 =>
opsel_r <= RES_MISC;
misc_sel <= "0111";
sqrt_exp := r.b.exponent(EXP_BITS-1) & r.b.exponent(EXP_BITS-1 downto 1);
v.result_exp := - sqrt_exp;
v.shift := to_signed(1, EXP_BITS);
v.state := NORMALIZE;
when SQRT_1 =>
-- put invsqr[B] in R and compute P = invsqr[B] * B
-- also transfer B (in R) to A
set_a := '1';
opsel_r <= RES_MISC;
misc_sel <= "0111";
msel_1 <= MUL1_B;
msel_2 <= MUL2_LUT;
f_to_multiply.valid <= '1';
v.shift := to_signed(-1, EXP_BITS);
v.count := "00";
v.state := SQRT_2;
when SQRT_2 =>
-- shift R right one place
-- not expecting multiplier result yet
-- r.shift = -1
opsel_r <= RES_SHIFT;
v.first := '1';
v.state := SQRT_3;
when SQRT_3 =>
-- put R into Y, wait for product from multiplier
msel_2 <= MUL2_R;
set_y := r.first;
pshift := '1';
mult_mask := '1';
if multiply_to_f.valid = '1' then
-- put result into R
opsel_r <= RES_MULT;
v.first := '1';
v.state := SQRT_4;
end if;
when SQRT_4 =>
-- compute 1.5 - Y * P
msel_1 <= MUL1_Y;
msel_2 <= MUL2_P;
msel_add <= MULADD_CONST;
msel_inv <= '1';
f_to_multiply.valid <= r.first;
pshift := '1';
if multiply_to_f.valid = '1' then
v.state := SQRT_5;
end if;
when SQRT_5 =>
-- compute Y = Y * P
msel_1 <= MUL1_Y;
msel_2 <= MUL2_P;
f_to_multiply.valid <= '1';
v.first := '1';
v.state := SQRT_6;
when SQRT_6 =>
-- pipeline in R = R * P
msel_1 <= MUL1_R;
msel_2 <= MUL2_P;
f_to_multiply.valid <= r.first;
pshift := '1';
if multiply_to_f.valid = '1' then
v.first := '1';
v.state := SQRT_7;
end if;
when SQRT_7 =>
-- first multiply is done, put result in Y
msel_2 <= MUL2_P;
set_y := r.first;
-- wait for second multiply (should be here already)
pshift := '1';
mult_mask := '1';
if multiply_to_f.valid = '1' then
-- put result into R
opsel_r <= RES_MULT;
v.first := '1';
v.count := r.count + 1;
if r.count < 2 then
v.state := SQRT_4;
else
v.first := '1';
v.state := SQRT_8;
end if;
end if;
when SQRT_8 =>
-- compute P = A - R * R, which can be +ve or -ve
-- we arranged for B to be put into A earlier
msel_1 <= MUL1_R;
msel_2 <= MUL2_R;
msel_add <= MULADD_A;
msel_inv <= '1';
pshift := '1';
f_to_multiply.valid <= r.first;
if multiply_to_f.valid = '1' then
v.first := '1';
v.state := SQRT_9;
end if;
when SQRT_9 =>
-- compute P = P * Y
-- since Y is an estimate of 1/sqrt(B), this makes P an
-- estimate of the adjustment needed to R. Since the error
-- could be negative and we have an unsigned multiplier, the
-- upper bits can be wrong, but it turns out the lowest 8 bits
-- are correct and are all we need (given 3 iterations through
-- SQRT_4 to SQRT_7).
msel_1 <= MUL1_Y;
msel_2 <= MUL2_P;
pshift := '1';
f_to_multiply.valid <= r.first;
if multiply_to_f.valid = '1' then
v.state := SQRT_10;
end if;
when SQRT_10 =>
-- Add the bottom 8 bits of P, sign-extended, onto R.
opsel_b <= BIN_PS8;
sqrt_exp := r.b.exponent(EXP_BITS-1) & r.b.exponent(EXP_BITS-1 downto 1);
v.result_exp := sqrt_exp;
v.shift := to_signed(1, EXP_BITS);
v.first := '1';
v.state := SQRT_11;
when SQRT_11 =>
-- compute P = A - R * R (remainder)
-- also put 2 * R + 1 into B for comparison with P
msel_1 <= MUL1_R;
msel_2 <= MUL2_R;
msel_add <= MULADD_A;
msel_inv <= '1';
f_to_multiply.valid <= r.first;
shiftin := '1';
set_b := r.first;
if multiply_to_f.valid = '1' then
v.state := SQRT_12;
end if;
when SQRT_12 =>
-- test if remainder is 0 or >= B = 2*R + 1
if pcmpb_lt = '1' then
-- square root is correct, set X if remainder non-zero
v.x := r.p(UNIT_BIT + 2) or px_nz;
else
-- square root needs to be incremented by 1
carry_in <= '1';
v.x := not pcmpb_eq;
end if;
v.state := FINISH;
when INT_SHIFT =>
-- r.shift = b.exponent - 52
opsel_r <= RES_SHIFT;
set_x := '1';
v.state := INT_ROUND;
v.shift := to_signed(52 - UNIT_BIT, EXP_BITS);
when INT_ROUND =>
-- r.shift = -4 (== 52 - UNIT_BIT)
opsel_r <= RES_SHIFT;
round := fp_rounding(r.r, r.x, '0', r.round_mode, r.result_sign);
v.fpscr(FPSCR_FR downto FPSCR_FI) := round;
-- Check for negative values that don't round to 0 for fcti*u*
if r.insn(8) = '1' and r.result_sign = '1' and
(r_hi_nz or r_lo_nz or v.fpscr(FPSCR_FR)) = '1' then
v.state := INT_OFLOW;
else
v.state := INT_FINAL;
end if;
when INT_ISHIFT =>
-- r.shift = b.exponent - UNIT_BIT;
opsel_r <= RES_SHIFT;
v.state := INT_FINAL;
when INT_FINAL =>
-- Negate if necessary, and increment for rounding if needed
opsel_ainv <= r.result_sign;
carry_in <= r.fpscr(FPSCR_FR) xor r.result_sign;
-- Check for possible overflows
case r.insn(9 downto 8) is
when "00" => -- fctiw[z]
need_check := r.r(31) or (r.r(30) and not r.result_sign);
when "01" => -- fctiwu[z]
need_check := r.r(31);
when "10" => -- fctid[z]
need_check := r.r(63) or (r.r(62) and not r.result_sign);
when others => -- fctidu[z]
need_check := r.r(63);
end case;
int_result := '1';
if need_check = '1' then
v.state := INT_CHECK;
else
if r.fpscr(FPSCR_FI) = '1' then
v.fpscr(FPSCR_XX) := '1';
end if;
arith_done := '1';
end if;
when INT_CHECK =>
if r.insn(9) = '0' then
msb := r.r(31);
else
msb := r.r(63);
end if;
misc_sel <= '1' & r.insn(9 downto 8) & r.result_sign;
if (r.insn(8) = '0' and msb /= r.result_sign) or
(r.insn(8) = '1' and msb /= '1') then
opsel_r <= RES_MISC;
v.fpscr(FPSCR_VXCVI) := '1';
invalid := '1';
else
if r.fpscr(FPSCR_FI) = '1' then
v.fpscr(FPSCR_XX) := '1';
end if;
end if;
int_result := '1';
arith_done := '1';
when INT_OFLOW =>
opsel_r <= RES_MISC;
misc_sel <= '1' & r.insn(9 downto 8) & r.result_sign;
if r.b.class = NAN then
misc_sel(0) <= '1';
end if;
v.fpscr(FPSCR_VXCVI) := '1';
invalid := '1';
int_result := '1';
arith_done := '1';
when FRI_1 =>
-- r.shift = b.exponent - 52
opsel_r <= RES_SHIFT;
set_x := '1';
v.state := ROUNDING;
when FINISH =>
if r.is_multiply = '1' and px_nz = '1' then
v.x := '1';
end if;
if r.r(63 downto UNIT_BIT) /= std_ulogic_vector(to_unsigned(1, 64 - UNIT_BIT)) then
renormalize := '1';
v.state := NORMALIZE;
else
set_x := '1';
if exp_tiny = '1' then
v.shift := new_exp - min_exp;
v.state := ROUND_UFLOW;
elsif exp_huge = '1' then
v.state := ROUND_OFLOW;
else
v.state := ROUNDING;
end if;
end if;
when NORMALIZE =>
-- Shift so we have 9 leading zeroes (we know R is non-zero)
-- r.shift = clz(r.r) - 9
opsel_r <= RES_SHIFT;
set_x := '1';
if exp_tiny = '1'