microwatt/multiply_tb.vhdl

278 lines
7.9 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.decode_types.all;
use work.common.all;
use work.glibc_random.all;
use work.ppc_fx_insns.all;
entity multiply_tb is
end multiply_tb;
architecture behave of multiply_tb is
signal clk : std_ulogic;
constant clk_period : time := 10 ns;
constant pipeline_depth : integer := 4;
signal m1 : MultiplyInputType := MultiplyInputInit;
signal m2 : MultiplyOutputType;
function absval(x: std_ulogic_vector) return std_ulogic_vector is
begin
if x(x'left) = '1' then
return std_ulogic_vector(- signed(x));
else
return x;
end if;
end;
begin
multiply_0: entity work.multiply
generic map (PIPELINE_DEPTH => pipeline_depth)
port map (clk => clk, m_in => m1, m_out => m2);
clk_process: process
begin
clk <= '0';
wait for clk_period/2;
clk <= '1';
wait for clk_period/2;
end process;
stim_process: process
variable ra, rb, rt, behave_rt: std_ulogic_vector(63 downto 0);
variable si: std_ulogic_vector(15 downto 0);
variable sign: std_ulogic;
begin
wait for clk_period;
m1.valid <= '1';
m1.data1 <= x"0000000000001000";
m1.data2 <= x"0000000000001111";
wait for clk_period;
assert m2.valid = '0';
m1.valid <= '0';
wait for clk_period;
assert m2.valid = '0';
wait for clk_period;
assert m2.valid = '0';
wait for clk_period;
assert m2.valid = '1';
assert m2.result = x"00000000000000000000000001111000";
wait for clk_period;
assert m2.valid = '0';
m1.valid <= '1';
wait for clk_period;
assert m2.valid = '0';
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert m2.result = x"00000000000000000000000001111000";
-- test mulld
mulld_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
rb := pseudorand(rb'length);
behave_rt := ppc_mulld(ra, rb);
m1.data1 <= absval(ra);
m1.data2 <= absval(rb);
sign := ra(63) xor rb(63);
m1.not_result <= sign;
m1.addend <= (others => sign);
m1.valid <= '1';
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.result(63 downto 0))
report "bad mulld expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.result(63 downto 0));
end loop;
-- test mulhdu
mulhdu_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
rb := pseudorand(rb'length);
behave_rt := ppc_mulhdu(ra, rb);
m1.data1 <= ra;
m1.data2 <= rb;
m1.not_result <= '0';
m1.addend <= (others => '0');
m1.valid <= '1';
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.result(127 downto 64))
report "bad mulhdu expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.result(127 downto 64));
end loop;
-- test mulhd
mulhd_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
rb := pseudorand(rb'length);
behave_rt := ppc_mulhd(ra, rb);
m1.data1 <= absval(ra);
m1.data2 <= absval(rb);
sign := ra(63) xor rb(63);
m1.not_result <= sign;
m1.addend <= (others => sign);
m1.valid <= '1';
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.result(127 downto 64))
report "bad mulhd expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.result(127 downto 64));
end loop;
-- test mullw
mullw_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
rb := pseudorand(rb'length);
behave_rt := ppc_mullw(ra, rb);
m1.data1 <= (others => '0');
m1.data1(31 downto 0) <= absval(ra(31 downto 0));
m1.data2 <= (others => '0');
m1.data2(31 downto 0) <= absval(rb(31 downto 0));
sign := ra(31) xor rb(31);
m1.not_result <= sign;
m1.addend <= (others => sign);
m1.valid <= '1';
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.result(63 downto 0))
report "bad mullw expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.result(63 downto 0));
end loop;
-- test mulhw
mulhw_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
rb := pseudorand(rb'length);
behave_rt := ppc_mulhw(ra, rb);
m1.data1 <= (others => '0');
m1.data1(31 downto 0) <= absval(ra(31 downto 0));
m1.data2 <= (others => '0');
m1.data2(31 downto 0) <= absval(rb(31 downto 0));
sign := ra(31) xor rb(31);
m1.not_result <= sign;
m1.addend <= (others => sign);
m1.valid <= '1';
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.result(63 downto 32) & m2.result(63 downto 32))
report "bad mulhw expected " & to_hstring(behave_rt) & " got " &
to_hstring(m2.result(63 downto 32) & m2.result(63 downto 32));
end loop;
-- test mulhwu
mulhwu_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
rb := pseudorand(rb'length);
behave_rt := ppc_mulhwu(ra, rb);
m1.data1 <= (others => '0');
m1.data1(31 downto 0) <= ra(31 downto 0);
m1.data2 <= (others => '0');
m1.data2(31 downto 0) <= rb(31 downto 0);
m1.not_result <= '0';
m1.addend <= (others => '0');
m1.valid <= '1';
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.result(63 downto 32) & m2.result(63 downto 32))
report "bad mulhwu expected " & to_hstring(behave_rt) & " got " &
to_hstring(m2.result(63 downto 32) & m2.result(63 downto 32));
end loop;
-- test mulli
mulli_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
si := pseudorand(si'length);
behave_rt := ppc_mulli(ra, si);
m1.data1 <= absval(ra);
m1.data2 <= (others => '0');
m1.data2(15 downto 0) <= absval(si);
sign := ra(63) xor si(15);
m1.not_result <= sign;
m1.addend <= (others => sign);
m1.valid <= '1';
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.result(63 downto 0))
report "bad mulli expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.result(63 downto 0));
end loop;
std.env.finish;
wait;
end process;
end behave;