You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/dcache.vhdl

1901 lines
77 KiB
VHDL

--
-- Set associative dcache write-through
--
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.utils.all;
use work.common.all;
use work.helpers.all;
use work.wishbone_types.all;
entity dcache is
generic (
-- Line size in bytes
LINE_SIZE : positive := 64;
-- Number of lines in a set
NUM_LINES : positive := 32;
-- Number of ways
NUM_WAYS : positive := 4;
-- L1 DTLB entries per set
TLB_SET_SIZE : positive := 64;
-- L1 DTLB number of sets
TLB_NUM_WAYS : positive := 2;
-- L1 DTLB log_2(page_size)
TLB_LG_PGSZ : positive := 12;
-- Non-zero to enable log data collection
LOG_LENGTH : natural := 0
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
d_in : in Loadstore1ToDcacheType;
d_out : out DcacheToLoadstore1Type;
m_in : in MmuToDcacheType;
m_out : out DcacheToMmuType;
snoop_in : in wishbone_master_out := wishbone_master_out_init;
stall_out : out std_ulogic;
wishbone_out : out wishbone_master_out;
wishbone_in : in wishbone_slave_out;
events : out DcacheEventType;
log_out : out std_ulogic_vector(19 downto 0)
);
end entity dcache;
architecture rtl of dcache is
-- BRAM organisation: We never access more than wishbone_data_bits at
-- a time so to save resources we make the array only that wide, and
-- use consecutive indices to make a cache "line"
--
-- ROW_SIZE is the width in bytes of the BRAM (based on WB, so 64-bits)
constant ROW_SIZE : natural := wishbone_data_bits / 8;
-- ROW_PER_LINE is the number of row (wishbone transactions) in a line
constant ROW_PER_LINE : natural := LINE_SIZE / ROW_SIZE;
-- BRAM_ROWS is the number of rows in BRAM needed to represent the full
-- dcache
constant BRAM_ROWS : natural := NUM_LINES * ROW_PER_LINE;
-- Bit fields counts in the address
-- ROW_BITS is the number of bits to select a row
constant ROW_BITS : natural := log2(BRAM_ROWS);
-- ROW_LINEBITS is the number of bits to select a row within a line
constant ROW_LINEBITS : natural := log2(ROW_PER_LINE);
-- LINE_OFF_BITS is the number of bits for the offset in a cache line
constant LINE_OFF_BITS : natural := log2(LINE_SIZE);
-- ROW_OFF_BITS is the number of bits for the offset in a row
constant ROW_OFF_BITS : natural := log2(ROW_SIZE);
-- INDEX_BITS is the number if bits to select a cache line
constant INDEX_BITS : natural := log2(NUM_LINES);
-- SET_SIZE_BITS is the log base 2 of the set size
constant SET_SIZE_BITS : natural := LINE_OFF_BITS + INDEX_BITS;
-- TAG_BITS is the number of bits of the tag part of the address
constant TAG_BITS : natural := REAL_ADDR_BITS - SET_SIZE_BITS;
-- TAG_WIDTH is the width in bits of each way of the tag RAM
constant TAG_WIDTH : natural := TAG_BITS + 7 - ((TAG_BITS + 7) mod 8);
-- WAY_BITS is the number of bits to select a way
-- Make sure this is at least 1, to avoid 0-element vectors
constant WAY_BITS : natural := maximum(log2(NUM_WAYS), 1);
-- Example of layout for 32 lines of 64 bytes:
--
-- .. tag |index| line |
-- .. | row | |
-- .. | |---| | ROW_LINEBITS (3)
-- .. | |--- - --| LINE_OFF_BITS (6)
-- .. | |- --| ROW_OFF_BITS (3)
-- .. |----- ---| | ROW_BITS (8)
-- .. |-----| | INDEX_BITS (5)
-- .. --------| | TAG_BITS (45)
subtype row_t is unsigned(ROW_BITS-1 downto 0);
subtype index_t is unsigned(INDEX_BITS-1 downto 0);
subtype way_t is unsigned(WAY_BITS-1 downto 0);
subtype row_in_line_t is unsigned(ROW_LINEBITS-1 downto 0);
-- The cache data BRAM organized as described above for each way
subtype cache_row_t is std_ulogic_vector(wishbone_data_bits-1 downto 0);
-- The cache tags LUTRAM has a row per set. Vivado is a pain and will
-- not handle a clean (commented) definition of the cache tags as a 3d
-- memory. For now, work around it by putting all the tags
subtype cache_tag_t is std_logic_vector(TAG_BITS-1 downto 0);
-- type cache_tags_set_t is array(way_t) of cache_tag_t;
-- type cache_tags_array_t is array(0 to NUM_LINES-1) of cache_tags_set_t;
constant TAG_RAM_WIDTH : natural := TAG_WIDTH * NUM_WAYS;
subtype cache_tags_set_t is std_logic_vector(TAG_RAM_WIDTH-1 downto 0);
type cache_tags_array_t is array(0 to NUM_LINES-1) of cache_tags_set_t;
-- The cache valid bits
subtype cache_way_valids_t is std_ulogic_vector(NUM_WAYS-1 downto 0);
type cache_valids_t is array(0 to NUM_LINES-1) of cache_way_valids_t;
type row_per_line_valid_t is array(0 to ROW_PER_LINE - 1) of std_ulogic;
-- Storage. Hopefully implemented in LUTs
signal cache_tags : cache_tags_array_t;
signal cache_tag_set : cache_tags_set_t;
signal cache_valids : cache_valids_t;
attribute ram_style : string;
attribute ram_style of cache_tags : signal is "distributed";
-- L1 TLB.
constant TLB_SET_BITS : natural := log2(TLB_SET_SIZE);
constant TLB_WAY_BITS : natural := maximum(log2(TLB_NUM_WAYS), 1);
constant TLB_EA_TAG_BITS : natural := 64 - (TLB_LG_PGSZ + TLB_SET_BITS);
constant TLB_TAG_WAY_BITS : natural := TLB_NUM_WAYS * TLB_EA_TAG_BITS;
constant TLB_PTE_BITS : natural := 64;
constant TLB_PTE_WAY_BITS : natural := TLB_NUM_WAYS * TLB_PTE_BITS;
subtype tlb_way_t is integer range 0 to TLB_NUM_WAYS - 1;
subtype tlb_way_sig_t is unsigned(TLB_WAY_BITS-1 downto 0);
subtype tlb_index_t is integer range 0 to TLB_SET_SIZE - 1;
subtype tlb_index_sig_t is unsigned(TLB_SET_BITS-1 downto 0);
subtype tlb_way_valids_t is std_ulogic_vector(TLB_NUM_WAYS-1 downto 0);
type tlb_valids_t is array(tlb_index_t) of tlb_way_valids_t;
subtype tlb_tag_t is std_ulogic_vector(TLB_EA_TAG_BITS - 1 downto 0);
subtype tlb_way_tags_t is std_ulogic_vector(TLB_TAG_WAY_BITS-1 downto 0);
type tlb_tags_t is array(tlb_index_t) of tlb_way_tags_t;
subtype tlb_pte_t is std_ulogic_vector(TLB_PTE_BITS - 1 downto 0);
subtype tlb_way_ptes_t is std_ulogic_vector(TLB_PTE_WAY_BITS-1 downto 0);
type tlb_ptes_t is array(tlb_index_t) of tlb_way_ptes_t;
type hit_way_set_t is array(tlb_way_t) of way_t;
signal dtlb_valids : tlb_valids_t;
signal dtlb_tags : tlb_tags_t;
signal dtlb_ptes : tlb_ptes_t;
attribute ram_style of dtlb_tags : signal is "distributed";
attribute ram_style of dtlb_ptes : signal is "distributed";
-- Record for storing permission, attribute, etc. bits from a PTE
type perm_attr_t is record
reference : std_ulogic;
changed : std_ulogic;
nocache : std_ulogic;
priv : std_ulogic;
rd_perm : std_ulogic;
wr_perm : std_ulogic;
end record;
function extract_perm_attr(pte : std_ulogic_vector(TLB_PTE_BITS - 1 downto 0)) return perm_attr_t is
variable pa : perm_attr_t;
begin
pa.reference := pte(8);
pa.changed := pte(7);
pa.nocache := pte(5);
pa.priv := pte(3);
pa.rd_perm := pte(2);
pa.wr_perm := pte(1);
return pa;
end;
constant real_mode_perm_attr : perm_attr_t := (nocache => '0', others => '1');
-- Cache state machine
type state_t is (IDLE, -- Normal load hit processing
RELOAD_WAIT_ACK, -- Cache reload wait ack
STORE_WAIT_ACK, -- Store wait ack
NC_LOAD_WAIT_ACK, -- Non-cachable load wait ack
DO_STCX, -- Check for stcx. validity
FLUSH_CYCLE); -- Cycle for invalidating cache line
--
-- Dcache operations:
--
-- In order to make timing, we use the BRAMs with an output buffer,
-- which means that the BRAM output is delayed by an extra cycle.
--
-- Thus, the dcache has a 2-stage internal pipeline for cache hits
-- with no stalls. Stores also complete in 2 cycles in most
-- circumstances.
--
-- A request proceeds through the pipeline as follows.
--
-- Cycle 0: Request is received from loadstore or mmu if either
-- d_in.valid or m_in.valid is 1 (not both). In this cycle portions
-- of the address are presented to the TLB tag RAM and data RAM
-- and the cache tag RAM and data RAM.
--
-- Clock edge between cycle 0 and cycle 1:
-- Request is stored in r0 (assuming r0_full was 0). TLB tag and
-- data RAMs are read, and the cache tag RAM is read. (Cache data
-- comes out a cycle later due to its output register, giving the
-- whole of cycle 1 to read the cache data RAM.)
--
-- Cycle 1: TLB and cache tag matching is done, the real address
-- (RA) for the access is calculated, and the type of operation is
-- determined (the OP_* values above). This gives the TLB way for
-- a TLB hit, and the cache way for a hit or the way to replace
-- for a load miss.
--
-- Clock edge between cycle 1 and cycle 2:
-- Request is stored in r1 (assuming r1.full was 0)
-- The state machine transitions out of IDLE state for a load miss,
-- a store, a dcbz, a flush (dcbf) or a non-cacheable load.
-- r1.full is set to 1 for a load miss, dcbz, flush or
-- non-cacheable load but not a store.
--
-- Cycle 2: Completion signals are asserted for a load hit,
-- a store (excluding dcbz), a TLB operation, a conditional
-- store which failed due to no matching reservation, or an error
-- (cache hit on non-cacheable operation, TLB miss, or protection
-- fault).
--
-- For a load miss, store, or dcbz, the state machine initiates
-- a wishbone cycle, which takes at least 2 cycles. For a store,
-- if another store comes in with the same cache tag (therefore
-- in the same 4k page), it can be added on to the existing cycle,
-- subject to some constraints.
-- While r1.full = 1, no new requests can go from r0 to r1, but
-- requests can come in to r0 and be satisfied if they are
-- cacheable load hits or stores with the same cache tag.
--
-- Writing to the cache data RAM is done at the clock edge
-- at the end of cycle 2 for a store hit (excluding dcbz).
-- Stores that miss are not written to the cache data RAM
-- but just stored through to memory.
-- Dcbz is done like a cache miss, but the wishbone cycle
-- is a write rather than a read, and zeroes are written to
-- the cache data RAM. Thus dcbz will allocate the line in
-- the cache as well as zeroing memory.
--
-- Since stores are written to the cache data RAM at the end of
-- cycle 2, and loads can come in and hit on the data just stored,
-- there is a two-stage bypass from store data to load data to
-- make sure that loads always see previously-stored data even
-- if it has not yet made it to the cache data RAM.
--
-- Load misses read the requested dword of the cache line first in
-- the memory read request and then cycle around through the other
-- dwords. The load is completed on the cycle after the requested
-- dword comes back from memory (using a forwarding path, rather
-- than going via the cache data RAM). We maintain an array of
-- valid bits per dword for the line being refilled so that
-- subsequent load requests to the same line can be completed as
-- soon as the necessary data comes in from memory, without
-- waiting for the whole line to be read.
--
-- Aligned loads and stores of a doubleword or less are atomic
-- because they are done in a single wishbone operation.
-- For quadword atomic loads and stores we rely on the wishbone
-- arbiter not interrupting access to a target once it has first
-- given access; i.e. once we have the main wishbone, no other
-- master gets access until we drop cyc.
--
-- Note on loads potentially hitting the victim line that is
-- currently being replaced: the new tag is available starting
-- with the 3rd cycle of RELOAD_WAIT_ACK state. As long as the
-- first read on the wishbone takes at least one cycle (i.e. the
-- ack doesn't arrive in the same cycle as stb was asserted),
-- r1.full will be true at least until that 3rd cycle and so a load
-- following a load miss can't hit on the old tag of the victim
-- line. As long as ack is not generated combinationally from
-- stb, this will be fine.
-- Stage 0 register, basically contains just the latched request
type reg_stage_0_t is record
req : Loadstore1ToDcacheType;
tlbie : std_ulogic; -- indicates a tlbie request (from MMU)
doall : std_ulogic; -- with tlbie, indicates flush whole TLB
tlbld : std_ulogic; -- indicates a TLB load request (from MMU)
mmu_req : std_ulogic; -- indicates source of request
d_valid : std_ulogic; -- indicates req.data is valid now
end record;
signal r0 : reg_stage_0_t;
signal r0_full : std_ulogic;
type mem_access_request_t is record
op_lmiss : std_ulogic;
op_store : std_ulogic;
op_flush : std_ulogic;
op_sync : std_ulogic;
nc : std_ulogic;
valid : std_ulogic;
dcbz : std_ulogic;
flush : std_ulogic;
touch : std_ulogic;
sync : std_ulogic;
reserve : std_ulogic;
first_dw : std_ulogic;
last_dw : std_ulogic;
real_addr : real_addr_t;
data : std_ulogic_vector(63 downto 0);
byte_sel : std_ulogic_vector(7 downto 0);
is_hit : std_ulogic;
hit_way : way_t;
same_tag : std_ulogic;
mmu_req : std_ulogic;
end record;
-- First stage register, contains state for stage 1 of load hits
-- and for the state machine used by all other operations
--
type reg_stage_1_t is record
-- Info about the request
full : std_ulogic; -- have uncompleted request
mmu_req : std_ulogic; -- request is from MMU
req : mem_access_request_t;
atomic_more : std_ulogic; -- atomic request isn't finished
-- Cache hit state
hit_way : way_t;
hit_load_valid : std_ulogic;
hit_index : index_t;
cache_hit : std_ulogic;
prev_hit : std_ulogic;
prev_way : way_t;
prev_hit_reload : std_ulogic;
-- TLB hit state
tlb_hit : std_ulogic;
tlb_hit_way : tlb_way_sig_t;
tlb_hit_index : tlb_index_sig_t;
tlb_victim : tlb_way_sig_t;
-- data buffer for data forwarded from writes to reads
forward_data : std_ulogic_vector(63 downto 0);
forward_tag : cache_tag_t;
forward_sel : std_ulogic_vector(7 downto 0);
forward_valid : std_ulogic;
forward_row : row_t;
data_out : std_ulogic_vector(63 downto 0);
-- Cache miss state (reload state machine)
state : state_t;
dcbz : std_ulogic;
write_bram : std_ulogic;
write_tag : std_ulogic;
slow_valid : std_ulogic;
wb : wishbone_master_out;
reload_tag : cache_tag_t;
store_way : way_t;
store_row : row_t;
store_index : index_t;
end_row_ix : row_in_line_t;
rows_valid : row_per_line_valid_t;
acks_pending : unsigned(2 downto 0);
stalled : std_ulogic;
dec_acks : std_ulogic;
choose_victim : std_ulogic;
victim_way : way_t;
-- Signals to complete (possibly with error)
ls_valid : std_ulogic;
ls_error : std_ulogic;
mmu_done : std_ulogic;
mmu_error : std_ulogic;
cache_paradox : std_ulogic;
reserve_nc : std_ulogic;
-- Signal to complete a failed stcx.
stcx_fail : std_ulogic;
end record;
signal r1 : reg_stage_1_t;
signal ev : DcacheEventType;
-- Reservation information
--
type reservation_t is record
valid : std_ulogic;
addr : std_ulogic_vector(REAL_ADDR_BITS - 1 downto LINE_OFF_BITS);
end record;
signal reservation : reservation_t;
signal kill_rsrv : std_ulogic;
signal kill_rsrv2 : std_ulogic;
-- Async signals on incoming request
signal req_index : index_t;
signal req_hit_way : way_t;
signal req_is_hit : std_ulogic;
signal req_tag : cache_tag_t;
signal req_op_load_hit : std_ulogic;
signal req_op_load_miss : std_ulogic;
signal req_op_store : std_ulogic;
signal req_op_flush : std_ulogic;
signal req_op_sync : std_ulogic;
signal req_op_bad : std_ulogic;
signal req_op_nop : std_ulogic;
signal req_data : std_ulogic_vector(63 downto 0);
signal req_same_tag : std_ulogic;
signal req_go : std_ulogic;
signal req_nc : std_ulogic;
signal req_hit_reload : std_ulogic;
signal early_req_row : row_t;
signal early_rd_valid : std_ulogic;
signal r0_valid : std_ulogic;
signal r0_stall : std_ulogic;
signal fwd_same_tag : std_ulogic;
signal use_forward_st : std_ulogic;
signal use_forward_rl : std_ulogic;
signal use_forward2 : std_ulogic;
-- Cache RAM interface
type cache_ram_out_t is array(0 to NUM_WAYS-1) of cache_row_t;
signal cache_out : cache_ram_out_t;
signal ram_wr_data : cache_row_t;
signal ram_wr_select : std_ulogic_vector(ROW_SIZE - 1 downto 0);
-- PLRU output interface
signal plru_victim : way_t;
signal replace_way : way_t;
-- Wishbone read/write/cache write formatting signals
signal bus_sel : std_ulogic_vector(7 downto 0);
-- TLB signals
signal tlb_tag_way : tlb_way_tags_t;
signal tlb_pte_way : tlb_way_ptes_t;
signal tlb_valid_way : tlb_way_valids_t;
signal tlb_req_index : tlb_index_sig_t;
signal tlb_read_valid : std_ulogic;
signal tlb_hit : std_ulogic;
signal tlb_hit_way : tlb_way_sig_t;
signal pte : tlb_pte_t;
signal ra : real_addr_t;
signal valid_ra : std_ulogic;
signal perm_attr : perm_attr_t;
signal rc_ok : std_ulogic;
signal perm_ok : std_ulogic;
signal access_ok : std_ulogic;
signal tlb_miss : std_ulogic;
-- TLB PLRU output interface
signal tlb_plru_victim : std_ulogic_vector(TLB_WAY_BITS-1 downto 0);
signal snoop_active : std_ulogic;
signal snoop_tag_set : cache_tags_set_t;
signal snoop_valid : std_ulogic;
signal snoop_paddr : real_addr_t;
signal snoop_addr : real_addr_t;
signal snoop_hits : cache_way_valids_t;
signal req_snoop_hit : std_ulogic;
--
-- Helper functions to decode incoming requests
--
-- Return the cache line index (tag index) for an address
function get_index(addr: std_ulogic_vector) return index_t is
begin
return unsigned(addr(SET_SIZE_BITS - 1 downto LINE_OFF_BITS));
end;
-- Return the cache row index (data memory) for an address
function get_row(addr: std_ulogic_vector) return row_t is
begin
return unsigned(addr(SET_SIZE_BITS - 1 downto ROW_OFF_BITS));
end;
-- Return the index of a row within a line
function get_row_of_line(row: row_t) return row_in_line_t is
begin
return row(ROW_LINEBITS-1 downto 0);
end;
-- Returns whether this is the last row of a line
function is_last_row_wb_addr(addr: wishbone_addr_type; last: row_in_line_t) return boolean is
begin
return unsigned(addr(LINE_OFF_BITS - ROW_OFF_BITS - 1 downto 0)) = last;
end;
-- Returns whether this is the last row of a line
function is_last_row(row: row_t; last: row_in_line_t) return boolean is
begin
return get_row_of_line(row) = last;
end;
-- Return the address of the next row in the current cache line
function next_row_wb_addr(addr: wishbone_addr_type) return std_ulogic_vector is
variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
variable result : wishbone_addr_type;
begin
-- Is there no simpler way in VHDL to generate that 3 bits adder ?
row_idx := addr(ROW_LINEBITS - 1 downto 0);
row_idx := std_ulogic_vector(unsigned(row_idx) + 1);
result := addr;
result(ROW_LINEBITS - 1 downto 0) := row_idx;
return result;
end;
-- Return the next row in the current cache line. We use a dedicated
-- function in order to limit the size of the generated adder to be
-- only the bits within a cache line (3 bits with default settings)
--
function next_row(row: row_t) return row_t is
variable row_v : std_ulogic_vector(ROW_BITS-1 downto 0);
variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
variable result : std_ulogic_vector(ROW_BITS-1 downto 0);
begin
row_v := std_ulogic_vector(row);
row_idx := row_v(ROW_LINEBITS-1 downto 0);
row_v(ROW_LINEBITS-1 downto 0) := std_ulogic_vector(unsigned(row_idx) + 1);
return unsigned(row_v);
end;
-- Get the tag value from the address
function get_tag(addr: std_ulogic_vector) return cache_tag_t is
begin
return addr(REAL_ADDR_BITS - 1 downto SET_SIZE_BITS);
end;
-- Read a tag from a tag memory row
function read_tag(way: integer; tagset: cache_tags_set_t) return cache_tag_t is
begin
return tagset(way * TAG_WIDTH + TAG_BITS - 1 downto way * TAG_WIDTH);
end;
-- Read a TLB tag from a TLB tag memory row
function read_tlb_tag(way: tlb_way_t; tags: tlb_way_tags_t) return tlb_tag_t is
variable j : integer;
begin
j := way * TLB_EA_TAG_BITS;
return tags(j + TLB_EA_TAG_BITS - 1 downto j);
end;
-- Write a TLB tag to a TLB tag memory row
procedure write_tlb_tag(way: tlb_way_t; tags: inout tlb_way_tags_t;
tag: tlb_tag_t) is
variable j : integer;
begin
j := way * TLB_EA_TAG_BITS;
tags(j + TLB_EA_TAG_BITS - 1 downto j) := tag;
end;
-- Read a PTE from a TLB PTE memory row
function read_tlb_pte(way: tlb_way_t; ptes: tlb_way_ptes_t) return tlb_pte_t is
variable j : integer;
begin
j := way * TLB_PTE_BITS;
return ptes(j + TLB_PTE_BITS - 1 downto j);
end;
procedure write_tlb_pte(way: tlb_way_t; ptes: inout tlb_way_ptes_t; newpte: tlb_pte_t) is
variable j : integer;
begin
j := way * TLB_PTE_BITS;
ptes(j + TLB_PTE_BITS - 1 downto j) := newpte;
end;
begin
assert LINE_SIZE mod ROW_SIZE = 0 report "LINE_SIZE not multiple of ROW_SIZE" severity FAILURE;
assert ispow2(LINE_SIZE) report "LINE_SIZE not power of 2" severity FAILURE;
assert ispow2(NUM_LINES) report "NUM_LINES not power of 2" severity FAILURE;
assert ispow2(ROW_PER_LINE) and ROW_PER_LINE > 1
report "ROW_PER_LINE not power of 2 greater than 1" severity FAILURE;
assert (ROW_BITS = INDEX_BITS + ROW_LINEBITS)
report "geometry bits don't add up" severity FAILURE;
assert (LINE_OFF_BITS = ROW_OFF_BITS + ROW_LINEBITS)
report "geometry bits don't add up" severity FAILURE;
assert (REAL_ADDR_BITS = TAG_BITS + INDEX_BITS + LINE_OFF_BITS)
report "geometry bits don't add up" severity FAILURE;
assert (REAL_ADDR_BITS = TAG_BITS + ROW_BITS + ROW_OFF_BITS)
report "geometry bits don't add up" severity FAILURE;
assert (64 = wishbone_data_bits)
report "Can't yet handle a wishbone width that isn't 64-bits" severity FAILURE;
assert SET_SIZE_BITS <= TLB_LG_PGSZ report "Set indexed by virtual address" severity FAILURE;
-- Latch the request in r0.req as long as we're not stalling
stage_0 : process(clk)
variable r : reg_stage_0_t;
begin
if rising_edge(clk) then
assert (d_in.valid and m_in.valid) = '0' report
"request collision loadstore vs MMU";
if m_in.valid = '1' then
r.req := Loadstore1ToDcacheInit;
r.req.valid := '1';
r.req.load := not (m_in.tlbie or m_in.tlbld);
r.req.priv_mode := '1';
r.req.addr := m_in.addr;
r.req.data := m_in.pte;
r.req.byte_sel := (others => '1');
r.tlbie := m_in.tlbie;
r.doall := m_in.doall;
r.tlbld := m_in.tlbld;
r.mmu_req := '1';
r.d_valid := '1';
else
r.req := d_in;
r.req.data := (others => '0');
r.tlbie := '0';
r.doall := '0';
r.tlbld := '0';
r.mmu_req := '0';
r.d_valid := '0';
end if;
if r.req.valid = '1' and r.doall = '0' then
assert not is_X(r.req.addr) severity failure;
end if;
if rst = '1' then
r0_full <= '0';
elsif r1.full = '0' and d_in.hold = '0' then
r0 <= r;
r0_full <= r.req.valid;
elsif r0.d_valid = '0' then
-- Sample data the cycle after a request comes in from loadstore1.
-- If this request is already moving into r1 then the data will get
-- put directly into req.data in the dcache_slow process below.
r0.req.data <= d_in.data;
r0.d_valid <= r0.req.valid;
end if;
end if;
end process;
-- we don't yet handle collisions between loadstore1 requests and MMU requests
m_out.stall <= '0';
-- Hold off the request in r0 when r1 has an uncompleted request
r0_stall <= r1.full or d_in.hold;
r0_valid <= r0_full and not r1.full and not d_in.hold;
stall_out <= r1.full;
events <= ev;
-- TLB
-- Operates in the second cycle on the request latched in r0.req.
-- TLB updates write the entry at the end of the second cycle.
tlb_read : process(clk)
variable index : tlb_index_t;
variable addrbits : std_ulogic_vector(TLB_SET_BITS - 1 downto 0);
variable valid : std_ulogic;
begin
if rising_edge(clk) then
if m_in.valid = '1' then
addrbits := m_in.addr(TLB_LG_PGSZ + TLB_SET_BITS - 1 downto TLB_LG_PGSZ);
valid := not (m_in.tlbie and m_in.doall);
else
addrbits := d_in.addr(TLB_LG_PGSZ + TLB_SET_BITS - 1 downto TLB_LG_PGSZ);
valid := d_in.valid;
end if;
-- If the previous op isn't finished,
-- then keep the same output for next cycle.
if r0_stall = '0' then
assert not (valid = '1' and is_X(addrbits));
if is_X(addrbits) then
tlb_valid_way <= (others => 'X');
tlb_tag_way <= (others => 'X');
tlb_pte_way <= (others => 'X');
else
index := to_integer(unsigned(addrbits));
tlb_valid_way <= dtlb_valids(index);
tlb_tag_way <= dtlb_tags(index);
tlb_pte_way <= dtlb_ptes(index);
end if;
end if;
if rst = '1' then
tlb_read_valid <= '0';
elsif r0_stall = '0' then
tlb_read_valid <= valid;
end if;
end if;
end process;
-- Generate TLB PLRUs
maybe_tlb_plrus : if TLB_NUM_WAYS > 1 generate
type tlb_plru_array is array(tlb_index_t) of std_ulogic_vector(TLB_NUM_WAYS - 2 downto 0);
signal tlb_plru_ram : tlb_plru_array;
signal tlb_plru_cur : std_ulogic_vector(TLB_NUM_WAYS - 2 downto 0);
signal tlb_plru_upd : std_ulogic_vector(TLB_NUM_WAYS - 2 downto 0);
signal tlb_plru_acc : std_ulogic_vector(TLB_WAY_BITS-1 downto 0);
signal tlb_plru_out : std_ulogic_vector(TLB_WAY_BITS-1 downto 0);
begin
tlb_plru : entity work.plrufn
generic map (
BITS => TLB_WAY_BITS
)
port map (
acc => tlb_plru_acc,
tree_in => tlb_plru_cur,
tree_out => tlb_plru_upd,
lru => tlb_plru_out
);
process(all)
begin
-- Read PLRU bits from array
if is_X(r1.tlb_hit_index) then
tlb_plru_cur <= (others => 'X');
else
tlb_plru_cur <= tlb_plru_ram(to_integer(r1.tlb_hit_index));
end if;
-- PLRU interface
tlb_plru_acc <= std_ulogic_vector(r1.tlb_hit_way);
tlb_plru_victim <= tlb_plru_out;
end process;
-- synchronous writes to TLB PLRU array
process(clk)
begin
if rising_edge(clk) then
if r1.tlb_hit = '1' then
assert not is_X(r1.tlb_hit_index) severity failure;
tlb_plru_ram(to_integer(r1.tlb_hit_index)) <= tlb_plru_upd;
end if;
end if;
end process;
end generate;
tlb_search : process(all)
variable hitway : tlb_way_sig_t;
variable hit : std_ulogic;
variable eatag : tlb_tag_t;
begin
tlb_req_index <= unsigned(r0.req.addr(TLB_LG_PGSZ + TLB_SET_BITS - 1
downto TLB_LG_PGSZ));
hitway := to_unsigned(0, TLB_WAY_BITS);
hit := '0';
eatag := r0.req.addr(63 downto TLB_LG_PGSZ + TLB_SET_BITS);
for i in tlb_way_t loop
if tlb_read_valid = '1' and tlb_valid_way(i) = '1' and
read_tlb_tag(i, tlb_tag_way) = eatag then
hitway := to_unsigned(i, TLB_WAY_BITS);
hit := '1';
end if;
end loop;
tlb_hit <= hit and r0_valid;
tlb_hit_way <= hitway;
if tlb_hit = '1' then
pte <= read_tlb_pte(to_integer(hitway), tlb_pte_way);
else
pte <= (others => '0');
end if;
valid_ra <= tlb_hit or not r0.req.virt_mode;
tlb_miss <= r0_valid and r0.req.virt_mode and not tlb_hit;
if r0.req.virt_mode = '1' then
ra <= pte(REAL_ADDR_BITS - 1 downto TLB_LG_PGSZ) &
r0.req.addr(TLB_LG_PGSZ - 1 downto ROW_OFF_BITS) &
(ROW_OFF_BITS-1 downto 0 => '0');
perm_attr <= extract_perm_attr(pte);
else
ra <= r0.req.addr(REAL_ADDR_BITS - 1 downto ROW_OFF_BITS) &
(ROW_OFF_BITS-1 downto 0 => '0');
perm_attr <= real_mode_perm_attr;
end if;
end process;
tlb_update : process(clk)
variable tlbie : std_ulogic;
variable tlbwe : std_ulogic;
variable repl_way : tlb_way_sig_t;
variable eatag : tlb_tag_t;
variable tagset : tlb_way_tags_t;
variable pteset : tlb_way_ptes_t;
begin
if rising_edge(clk) then
tlbie := r0_valid and r0.tlbie;
tlbwe := r0_valid and r0.tlbld;
ev.dtlb_miss_resolved <= tlbwe;
if rst = '1' or (tlbie = '1' and r0.doall = '1') then
-- clear all valid bits at once
for i in tlb_index_t loop
dtlb_valids(i) <= (others => '0');
end loop;
elsif tlbie = '1' then
if tlb_hit = '1' then
assert not is_X(tlb_req_index);
assert not is_X(tlb_hit_way);
dtlb_valids(to_integer(tlb_req_index))(to_integer(tlb_hit_way)) <= '0';
end if;
elsif tlbwe = '1' then
assert not is_X(tlb_req_index);
repl_way := to_unsigned(0, TLB_WAY_BITS);
if TLB_NUM_WAYS > 1 then
if tlb_hit = '1' then
repl_way := tlb_hit_way;
else
repl_way := unsigned(r1.tlb_victim);
end if;
assert not is_X(repl_way);
end if;
eatag := r0.req.addr(63 downto TLB_LG_PGSZ + TLB_SET_BITS);
tagset := tlb_tag_way;
write_tlb_tag(to_integer(repl_way), tagset, eatag);
dtlb_tags(to_integer(tlb_req_index)) <= tagset;
pteset := tlb_pte_way;
write_tlb_pte(to_integer(repl_way), pteset, r0.req.data);
dtlb_ptes(to_integer(tlb_req_index)) <= pteset;
dtlb_valids(to_integer(tlb_req_index))(to_integer(repl_way)) <= '1';
end if;
end if;
end process;
-- Generate PLRUs
maybe_plrus : if NUM_WAYS > 1 generate
type plru_array is array(0 to NUM_LINES-1) of std_ulogic_vector(NUM_WAYS - 2 downto 0);
signal plru_ram : plru_array;
signal plru_cur : std_ulogic_vector(NUM_WAYS - 2 downto 0);
signal plru_upd : std_ulogic_vector(NUM_WAYS - 2 downto 0);
signal plru_acc : std_ulogic_vector(WAY_BITS-1 downto 0);
signal plru_out : std_ulogic_vector(WAY_BITS-1 downto 0);
begin
plru : entity work.plrufn
generic map (
BITS => WAY_BITS
)
port map (
acc => plru_acc,
tree_in => plru_cur,
tree_out => plru_upd,
lru => plru_out
);
process(all)
begin
-- Read PLRU bits from array
if is_X(r1.hit_index) then
plru_cur <= (others => 'X');
else
plru_cur <= plru_ram(to_integer(r1.hit_index));
end if;
-- PLRU interface
plru_acc <= std_ulogic_vector(r1.hit_way);
plru_victim <= unsigned(plru_out);
end process;
-- synchronous writes to PLRU array
process(clk)
begin
if rising_edge(clk) then
-- We update the PLRU when hitting the cache or when replacing
-- an entry. The PLRU update will be "visible" on the next cycle
-- so the victim selection will correctly see the *old* value.
if r1.cache_hit = '1' or r1.choose_victim = '1' then
report "PLRU update, index=" & to_hstring(r1.hit_index) &
" way=" & to_hstring(r1.hit_way);
assert not is_X(r1.hit_index) severity failure;
plru_ram(to_integer(r1.hit_index)) <= plru_upd;
end if;
end if;
end process;
end generate;
-- Cache tag RAM read port
cache_tag_read : process(clk)
variable index : index_t;
variable valid : std_ulogic;
begin
if rising_edge(clk) then
if r0_stall = '1' then
index := req_index;
valid := r0.req.valid and not (r0.tlbie or r0.tlbld);
elsif m_in.valid = '1' then
index := get_index(m_in.addr);
valid := not (m_in.tlbie or m_in.tlbld);
else
index := get_index(d_in.addr);
valid := d_in.valid;
end if;
if valid = '1' then
cache_tag_set <= cache_tags(to_integer(index));
else
cache_tag_set <= (others => '0');
end if;
end if;
end process;
-- Snoop logic
-- Don't snoop our own cycles
snoop_addr <= addr_to_real(wb_to_addr(snoop_in.adr));
snoop_active <= snoop_in.cyc and snoop_in.stb and snoop_in.we and
not (r1.wb.cyc and not wishbone_in.stall);
kill_rsrv <= '1' when (snoop_active = '1' and reservation.valid = '1' and
snoop_addr(REAL_ADDR_BITS - 1 downto LINE_OFF_BITS) = reservation.addr)
else '0';
-- Cache tag RAM second read port, for snooping
cache_tag_read_2 : process(clk)
begin
if rising_edge(clk) then
if is_X(snoop_addr) then
snoop_tag_set <= (others => 'X');
else
snoop_tag_set <= cache_tags(to_integer(get_index(snoop_addr)));
end if;
snoop_paddr <= snoop_addr;
snoop_valid <= snoop_active;
end if;
end process;
-- Compare the previous cycle's snooped store address to the reservation,
-- to catch the case where a write happens on cycle 1 of a cached larx
kill_rsrv2 <= '1' when (snoop_valid = '1' and reservation.valid = '1' and
snoop_paddr(REAL_ADDR_BITS - 1 downto LINE_OFF_BITS) = reservation.addr)
else '0';
snoop_tag_match : process(all)
begin
snoop_hits <= (others => '0');
for i in 0 to NUM_WAYS-1 loop
if snoop_valid = '1' and read_tag(i, snoop_tag_set) = get_tag(snoop_paddr) then
snoop_hits(i) <= '1';
end if;
end loop;
end process;
-- Cache request parsing and hit detection
dcache_request : process(all)
variable req_row : row_t;
variable rindex : index_t;
variable is_hit : std_ulogic;
variable hit_way : way_t;
variable go : std_ulogic;
variable nc : std_ulogic;
variable s_hit : std_ulogic;
variable s_tag : cache_tag_t;
variable s_pte : tlb_pte_t;
variable s_ra : real_addr_t;
variable hit_set : std_ulogic_vector(TLB_NUM_WAYS - 1 downto 0);
variable hit_way_set : hit_way_set_t;
variable rel_matches : std_ulogic_vector(TLB_NUM_WAYS - 1 downto 0);
variable rel_match : std_ulogic;
variable fwd_matches : std_ulogic_vector(TLB_NUM_WAYS - 1 downto 0);
variable fwd_match : std_ulogic;
variable snp_matches : std_ulogic_vector(TLB_NUM_WAYS - 1 downto 0);
variable snoop_match : std_ulogic;
variable hit_reload : std_ulogic;
begin
-- Extract line, row and tag from request
rindex := get_index(r0.req.addr);
req_index <= rindex;
req_row := get_row(r0.req.addr);
req_tag <= get_tag(ra);
go := r0_valid and not (r0.tlbie or r0.tlbld) and not r1.ls_error;
if is_X(r0.req.addr) then
go := '0';
end if;
if go = '1' then
assert not is_X(r1.forward_tag);
end if;
-- Test if pending request is a hit on any way
-- In order to make timing in virtual mode, when we are using the TLB,
-- we compare each way with each of the real addresses from each way of
-- the TLB, and then decide later which match to use.
hit_way := to_unsigned(0, WAY_BITS);
is_hit := '0';
rel_match := '0';
fwd_match := '0';
snoop_match := '0';
if r0.req.virt_mode = '1' then
rel_matches := (others => '0');
fwd_matches := (others => '0');
snp_matches := (others => '0');
for j in tlb_way_t loop
hit_way_set(j) := to_unsigned(0, WAY_BITS);
s_hit := '0';
s_pte := read_tlb_pte(j, tlb_pte_way);
s_ra := s_pte(REAL_ADDR_BITS - 1 downto TLB_LG_PGSZ) &
r0.req.addr(TLB_LG_PGSZ - 1 downto 0);
s_tag := get_tag(s_ra);
if go = '1' then
assert not is_X(s_tag);
end if;
for i in 0 to NUM_WAYS-1 loop
if go = '1' and cache_valids(to_integer(rindex))(i) = '1' and
read_tag(i, cache_tag_set) = s_tag and
tlb_valid_way(j) = '1' then
hit_way_set(j) := to_unsigned(i, WAY_BITS);
s_hit := '1';
if snoop_hits(i) = '1' then
snp_matches(j) := '1';
end if;
end if;
end loop;
hit_set(j) := s_hit;
if go = '1' and not is_X(r1.reload_tag) and s_tag = r1.reload_tag then
rel_matches(j) := '1';
end if;
if go = '1' and s_tag = r1.forward_tag then
fwd_matches(j) := '1';
end if;
end loop;
if tlb_hit = '1' and go = '1' then
assert not is_X(tlb_hit_way);
is_hit := hit_set(to_integer(tlb_hit_way));
hit_way := hit_way_set(to_integer(tlb_hit_way));
rel_match := rel_matches(to_integer(tlb_hit_way));
fwd_match := fwd_matches(to_integer(tlb_hit_way));
snoop_match := snp_matches(to_integer(tlb_hit_way));
end if;
else
s_tag := get_tag(r0.req.addr);
if go = '1' then
assert not is_X(s_tag);
end if;
for i in 0 to NUM_WAYS-1 loop
if go = '1' and cache_valids(to_integer(rindex))(i) = '1' and
read_tag(i, cache_tag_set) = s_tag then
hit_way := to_unsigned(i, WAY_BITS);
is_hit := '1';
if snoop_hits(i) = '1' then
snoop_match := '1';
end if;
end if;
end loop;
if go = '1' and not is_X(r1.reload_tag) and s_tag = r1.reload_tag then
rel_match := '1';
end if;
if go = '1' and s_tag = r1.forward_tag then
fwd_match := '1';
end if;
end if;
req_same_tag <= rel_match;
fwd_same_tag <= fwd_match;
-- This is 1 if the snooped write from the previous cycle hits the same
-- cache line that is being accessed in this cycle.
req_snoop_hit <= '0';
if go = '1' and snoop_match = '1' and get_index(snoop_paddr) = rindex then
req_snoop_hit <= '1';
end if;
-- Whether to use forwarded data for a load or not
use_forward_st <= '0';
use_forward_rl <= '0';
if rel_match = '1' then
assert not is_X(r1.store_row);
assert not is_X(req_row);
end if;
if rel_match = '1' and r1.store_row = req_row then
-- Use the forwarding path if this cycle is a write to this row
use_forward_st <= r1.write_bram;
if r1.state = RELOAD_WAIT_ACK and wishbone_in.ack = '1' then
use_forward_rl <= '1';
end if;
end if;
use_forward2 <= '0';
if fwd_match = '1' then
assert not is_X(r1.forward_row);
if is_X(req_row) then
report "req_row=" & to_hstring(req_row) & " addr=" & to_hstring(r0.req.addr) & " go=" & std_ulogic'image(go);
end if;
assert not is_X(req_row);
end if;
if fwd_match = '1' and r1.forward_row = req_row then
use_forward2 <= r1.forward_valid;
end if;
-- The way to replace on a miss
replace_way <= to_unsigned(0, WAY_BITS);
if NUM_WAYS > 1 then
if r1.write_tag = '1' then
if r1.choose_victim = '1' then
replace_way <= plru_victim;
else
-- Cache victim way was chosen earlier,
-- in the cycle after the miss was detected.
replace_way <= r1.victim_way;
end if;
else
replace_way <= r1.store_way;
end if;
end if;
-- See if the request matches the line currently being reloaded
if r1.state = RELOAD_WAIT_ACK and rel_match = '1' then
assert not is_X(rindex);
assert not is_X(r1.store_index);
end if;
hit_reload := '0';
if r1.state = RELOAD_WAIT_ACK and rel_match = '1' and
rindex = r1.store_index then
-- Ignore is_hit from above, because a load miss writes the new tag
-- but doesn't clear the valid bit on the line before refilling it.
-- For a store, consider this a hit even if the row isn't valid
-- since it will be by the time we perform the store.
-- For a load, check the appropriate row valid bit; but also,
-- if use_forward_rl is 1 then we can consider this a hit.
-- For a touch, since the line we want is being reloaded already,
-- consider this a hit.
is_hit := not r0.req.load or r0.req.touch or
r1.rows_valid(to_integer(req_row(ROW_LINEBITS-1 downto 0))) or
use_forward_rl;
hit_way := replace_way;
hit_reload := is_hit;
elsif r0.req.load = '1' and r0.req.atomic_qw = '1' and r0.req.atomic_first = '0' and
r0.req.nc = '0' and perm_attr.nocache = '0' and r1.prev_hit = '1' then
-- For the second half of an atomic quadword load, just use the
-- same way as the first half, without considering whether the line
-- is valid; it is as if we had read the second dword at the same
-- time as the first dword, and the line was valid back then.
-- (Cases where the line is currently being reloaded are handled above.)
-- NB lq to noncacheable isn't required to be atomic per the ISA.
is_hit := '1';
hit_way := r1.prev_way;
end if;
-- The way that matched on a hit
req_hit_way <= hit_way;
req_is_hit <= is_hit;
req_hit_reload <= hit_reload;
-- work out whether we have permission for this access
-- NB we don't yet implement AMR, thus no KUAP
rc_ok <= perm_attr.reference and (r0.req.load or perm_attr.changed);
perm_ok <= (r0.req.priv_mode or not perm_attr.priv) and
(perm_attr.wr_perm or (r0.req.load and perm_attr.rd_perm));
access_ok <= valid_ra and perm_ok and rc_ok;
-- Combine the request and cache hit status to decide what
-- operation needs to be done
--
nc := r0.req.nc or perm_attr.nocache;
req_op_bad <= '0';
req_op_load_hit <= '0';
req_op_load_miss <= '0';
req_op_store <= '0';
req_op_nop <= '0';
req_op_flush <= '0';
req_op_sync <= '0';
if go = '1' then
if r0.req.sync = '1' then
req_op_sync <= '1';
elsif r0.req.touch = '1' then
if access_ok = '1' and is_hit = '0' and nc = '0' then
req_op_load_miss <= '1';
elsif access_ok = '1' and is_hit = '1' and nc = '0' then
-- Make this OP_LOAD_HIT so the PLRU gets updated
req_op_load_hit <= '1';
else
req_op_nop <= '1';
end if;
elsif access_ok = '0' then
req_op_bad <= '1';
elsif r0.req.flush = '1' then
if is_hit = '0' then
req_op_nop <= '1';
else
req_op_flush <= '1';
end if;
elsif nc = '1' and (is_hit = '1' or r0.req.reserve = '1') then
req_op_bad <= '1';
elsif r0.req.load = '0' then
req_op_store <= '1'; -- includes dcbz
else
req_op_load_hit <= is_hit;
req_op_load_miss <= not is_hit; -- includes non-cacheable loads
end if;
end if;
req_go <= go;
req_nc <= nc;
-- Version of the row number that is valid one cycle earlier
-- in the cases where we need to read the cache data BRAM.
-- If we're stalling then we need to keep reading the last
-- row requested.
if r0_stall = '0' then
if m_in.valid = '1' then
early_req_row <= get_row(m_in.addr);
early_rd_valid <= not (m_in.tlbie or m_in.tlbld);
else
early_req_row <= get_row(d_in.addr);
early_rd_valid <= d_in.valid and d_in.load;
end if;
else
early_req_row <= req_row;
early_rd_valid <= r0.req.valid and r0.req.load;
end if;
end process;
-- Wire up wishbone request latch out of stage 1
wishbone_out <= r1.wb;
-- Return data for loads & completion control logic
--
writeback_control: process(all)
begin
d_out.valid <= r1.ls_valid;
d_out.data <= r1.data_out;
d_out.store_done <= not r1.stcx_fail;
d_out.error <= r1.ls_error;
d_out.cache_paradox <= r1.cache_paradox;
d_out.reserve_nc <= r1.reserve_nc;
-- Outputs to MMU
m_out.done <= r1.mmu_done;
m_out.err <= r1.mmu_error;
m_out.data <= r1.data_out;
-- We have a valid load or store hit or we just completed a slow
-- op such as a load miss, a NC load or a store
--
-- Note: the load hit is delayed by one cycle. However it can still
-- not collide with r.slow_valid (well unless I miscalculated) because
-- slow_valid can only be set on a subsequent request and not on its
-- first cycle (the state machine must have advanced), which makes
-- slow_valid at least 2 cycles from the previous hit_load_valid.
--
-- Sanity: Only one of these must be set in any given cycle
assert (r1.slow_valid and r1.stcx_fail) /= '1' report
"unexpected slow_valid collision with stcx_fail"
severity FAILURE;
assert ((r1.slow_valid or r1.stcx_fail) and r1.hit_load_valid) /= '1' report
"unexpected hit_load_delayed collision with slow_valid"
severity FAILURE;
if r1.mmu_req = '0' then
-- Request came from loadstore1...
-- Load hit case is the standard path
if r1.hit_load_valid = '1' then
report "completing load hit data=" & to_hstring(r1.data_out);
end if;
-- error cases complete without stalling
if r1.ls_error = '1' then
report "completing ld/st with error";
end if;
-- Slow ops (load miss, NC, stores, sync)
if r1.slow_valid = '1' then
report "completing store or load miss data=" & to_hstring(r1.data_out);
end if;
else
-- Request came from MMU
if r1.hit_load_valid = '1' then
report "completing load hit to MMU, data=" & to_hstring(m_out.data);
end if;
-- error cases complete without stalling
if r1.mmu_error = '1' then
report "completing MMU ld with error";
end if;
-- Slow ops (i.e. load miss)
if r1.slow_valid = '1' then
report "completing MMU load miss, data=" & to_hstring(m_out.data);
end if;
end if;
end process;
-- RAM write data and select multiplexers
ram_wr_data <= r1.req.data when r1.write_bram = '1' else
wishbone_in.dat when r1.dcbz = '0' else
(others => '0');
ram_wr_select <= r1.req.byte_sel when r1.write_bram = '1' else
(others => '1');
--
-- Generate a cache RAM for each way. This handles the normal
-- reads, writes from reloads and the special store-hit update
-- path as well.
--
-- Note: the BRAMs have an extra read buffer, meaning the output
-- is pipelined an extra cycle. This differs from the
-- icache. The writeback logic needs to take that into
-- account by using 1-cycle delayed signals for load hits.
--
rams: for i in 0 to NUM_WAYS-1 generate
signal do_read : std_ulogic;
signal rd_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal wr_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal wr_data : std_ulogic_vector(wishbone_data_bits-1 downto 0);
signal wr_sel : std_ulogic_vector(ROW_SIZE-1 downto 0);
signal wr_sel_m : std_ulogic_vector(ROW_SIZE-1 downto 0);
signal dout : cache_row_t;
begin
way: entity work.cache_ram
generic map (
ROW_BITS => ROW_BITS,
WIDTH => wishbone_data_bits,
ADD_BUF => false
)
port map (
clk => clk,
rd_en => do_read,
rd_addr => rd_addr,
rd_data => dout,
wr_sel => wr_sel_m,
wr_addr => wr_addr,
wr_data => ram_wr_data
);
process(all)
begin
-- Cache hit reads
do_read <= early_rd_valid;
rd_addr <= std_ulogic_vector(early_req_row);
cache_out(i) <= dout;
-- Write mux:
--
-- Defaults to wishbone read responses (cache refill),
--
-- For timing, the mux on wr_data/sel/addr is not dependent on anything
-- other than the current state.
--
wr_addr <= std_ulogic_vector(r1.store_row);
wr_sel_m <= (others => '0');
if r1.write_bram = '1' or
(r1.state = RELOAD_WAIT_ACK and wishbone_in.ack = '1') then
assert not is_X(replace_way);
if to_unsigned(i, WAY_BITS) = replace_way then
wr_sel_m <= ram_wr_select;
end if;
end if;
end process;
end generate;
--
-- Cache hit synchronous machine for the easy case. This handles load hits.
-- It also handles error cases (TLB miss, cache paradox)
--
dcache_fast_hit : process(clk)
variable j : integer;
variable sel : std_ulogic_vector(1 downto 0);
variable data_out : std_ulogic_vector(63 downto 0);
begin
if rising_edge(clk) then
if r0_valid = '1' then
r1.mmu_req <= r0.mmu_req;
end if;
-- Bypass/forwarding multiplexer for load data.
-- Use the bypass if are reading the row of BRAM that was written 0 or 1
-- cycles ago, including for the slow_valid = 1 cases (i.e. completing a
-- load miss or a non-cacheable load), which are handled via the r1.full case.
for i in 0 to 7 loop
if r1.full = '1' or use_forward_rl = '1' then
sel := '0' & r1.dcbz;
elsif use_forward_st = '1' and r1.req.byte_sel(i) = '1' then
sel := "01";
elsif use_forward2 = '1' and r1.forward_sel(i) = '1' then
sel := "10";
else
sel := "11";
end if;
j := i * 8;
case sel is
when "00" =>
data_out(j + 7 downto j) := wishbone_in.dat(j + 7 downto j);
when "01" =>
data_out(j + 7 downto j) := r1.req.data(j + 7 downto j);
when "10" =>
data_out(j + 7 downto j) := r1.forward_data(j + 7 downto j);
when others =>
if is_X(req_hit_way) then
data_out(j + 7 downto j) := (others => 'X');
else
data_out(j + 7 downto j) := cache_out(to_integer(req_hit_way))(j + 7 downto j);
end if;
end case;
end loop;
r1.data_out <= data_out;
r1.forward_data <= ram_wr_data;
r1.forward_tag <= r1.reload_tag;
r1.forward_row <= r1.store_row;
r1.forward_sel <= ram_wr_select;
r1.forward_valid <= r1.write_bram;
if r1.state = RELOAD_WAIT_ACK and wishbone_in.ack = '1' then
r1.forward_valid <= '1';
end if;
r1.hit_load_valid <= req_op_load_hit;
r1.cache_hit <= req_op_load_hit or (req_op_store and req_is_hit); -- causes PLRU update
r1.cache_paradox <= access_ok and req_nc and req_is_hit;
r1.reserve_nc <= access_ok and r0.req.reserve and req_nc;
if req_op_bad = '1' then
report "Signalling ld/st error valid_ra=" & std_ulogic'image(valid_ra) &
" rc_ok=" & std_ulogic'image(rc_ok) & " perm_ok=" & std_ulogic'image(perm_ok);
r1.ls_error <= not r0.mmu_req;
r1.mmu_error <= r0.mmu_req;
else
r1.ls_error <= '0';
r1.mmu_error <= '0';
end if;
-- Record TLB hit information for updating TLB PLRU
r1.tlb_hit <= tlb_hit;
r1.tlb_hit_way <= tlb_hit_way;
r1.tlb_hit_index <= tlb_req_index;
-- determine victim way in the TLB in the cycle after
-- we detect the TLB miss
if r1.ls_error = '1' then
r1.tlb_victim <= unsigned(tlb_plru_victim);
end if;
end if;
end process;
--
-- Memory accesses are handled by this state machine:
--
-- * Cache load miss/reload (in conjunction with "rams")
-- * Load hits for non-cachable forms
-- * Stores (the collision case is handled in "rams")
--
-- All wishbone requests generation is done here. This machine
-- operates at stage 1.
--
dcache_slow : process(clk)
variable stbs_done : boolean;
variable req : mem_access_request_t;
variable acks : unsigned(2 downto 0);
begin
if rising_edge(clk) then
ev.dcache_refill <= '0';
ev.load_miss <= '0';
ev.store_miss <= '0';
ev.dtlb_miss <= tlb_miss;
r1.choose_victim <= '0';
-- On reset, clear all valid bits to force misses
if rst = '1' then
for i in 0 to NUM_LINES-1 loop
cache_valids(i) <= (others => '0');
end loop;
r1.state <= IDLE;
r1.full <= '0';
r1.slow_valid <= '0';
r1.wb.cyc <= '0';
r1.wb.stb <= '0';
r1.ls_valid <= '0';
r1.mmu_done <= '0';
r1.acks_pending <= to_unsigned(0, 3);
r1.stalled <= '0';
r1.dec_acks <= '0';
r1.prev_hit <= '0';
r1.prev_hit_reload <= '0';
reservation.valid <= '0';
reservation.addr <= (others => '0');
-- Not useful normally but helps avoiding tons of sim warnings
r1.wb.adr <= (others => '0');
else
-- One cycle pulses reset
r1.slow_valid <= '0';
r1.write_bram <= '0';
r1.stcx_fail <= '0';
r1.ls_valid <= (req_op_load_hit or req_op_nop) and not r0.mmu_req;
-- complete tlbies and TLB loads in the third cycle
r1.mmu_done <= (r0_valid and (r0.tlbie or r0.tlbld)) or
(req_op_load_hit and r0.mmu_req);
-- The kill_rsrv2 term covers the case where the reservation
-- address was set at the beginning of this cycle, and a store
-- to that address happened in the previous cycle.
if kill_rsrv = '1' or kill_rsrv2 = '1' then
reservation.valid <= '0';
end if;
if req_go = '1' and access_ok = '1' and r0.req.load = '1' and
r0.req.reserve = '1' and r0.req.atomic_first = '1' then
reservation.addr <= ra(REAL_ADDR_BITS - 1 downto LINE_OFF_BITS);
reservation.valid <= req_is_hit and not req_snoop_hit;
end if;
-- Do invalidations from snooped stores to memory
if snoop_valid = '1' then
assert not is_X(snoop_paddr);
assert not is_X(snoop_hits);
end if;
for i in 0 to NUM_WAYS-1 loop
if snoop_hits(i) = '1' then
cache_valids(to_integer(get_index(snoop_paddr)))(i) <= '0';
end if;
end loop;
if r1.write_tag = '1' then
-- Store new tag in selected way
assert not is_X(r1.store_index);
assert not is_X(replace_way);
for i in 0 to NUM_WAYS-1 loop
if to_unsigned(i, WAY_BITS) = replace_way then
cache_tags(to_integer(r1.store_index))((i + 1) * TAG_WIDTH - 1 downto i * TAG_WIDTH) <=
(TAG_WIDTH - 1 downto TAG_BITS => '0') & r1.reload_tag;
end if;
end loop;
r1.store_way <= replace_way;
r1.write_tag <= '0';
end if;
-- Take request from r1.req if there is one there,
-- else from req_op_*, ra, etc.
if r1.full = '1' then
req := r1.req;
else
req.op_lmiss := req_op_load_miss;
req.op_store := req_op_store;
req.op_flush := req_op_flush;
req.op_sync := req_op_sync;
req.nc := req_nc;
req.valid := req_go;
req.mmu_req := r0.mmu_req;
req.dcbz := r0.req.dcbz;
req.flush := r0.req.flush;
req.touch := r0.req.touch;
req.sync := r0.req.sync;
req.reserve := r0.req.reserve;
req.first_dw := not r0.req.atomic_qw or r0.req.atomic_first;
req.last_dw := not r0.req.atomic_qw or r0.req.atomic_last;
req.real_addr := ra;
-- Force data to 0 for dcbz
if r0.req.dcbz = '1' then
req.data := (others => '0');
elsif r0.d_valid = '1' then
req.data := r0.req.data;
else
req.data := d_in.data;
end if;
-- Select all bytes for dcbz and for cacheable loads
if r0.req.dcbz = '1' or (r0.req.load = '1' and r0.req.nc = '0' and perm_attr.nocache = '0') then
req.byte_sel := (others => '1');
else
req.byte_sel := r0.req.byte_sel;
end if;
req.hit_way := req_hit_way;
req.is_hit := req_is_hit;
req.same_tag := req_same_tag;
-- Store the incoming request from r0, if it is a slow request
-- Note that r1.full = 1 implies none of the req_op_* are 1
if req_op_load_miss = '1' or req_op_store = '1' or req_op_flush = '1' or
req_op_sync = '1' then
r1.req <= req;
r1.full <= '1';
end if;
end if;
-- Signals for PLRU update and victim selection
r1.hit_way <= req_hit_way;
r1.hit_index <= req_index;
-- Record victim way in the cycle after we see a load or dcbz miss
if r1.choose_victim = '1' then
r1.victim_way <= plru_victim;
report "victim way:" & to_hstring(plru_victim);
end if;
if req_op_load_miss = '1' or (r0.req.dcbz = '1' and req_is_hit = '0') then
r1.choose_victim <= '1';
end if;
if req_go = '1' then
r1.prev_hit <= req_is_hit;
r1.prev_way <= req_hit_way;
r1.prev_hit_reload <= req_hit_reload;
end if;
-- Update count of pending acks
acks := r1.acks_pending;
if r1.wb.cyc = '0' then
acks := to_unsigned(0, 3);
elsif r1.wb.stb = '1' and r1.stalled = '0' and r1.dec_acks = '0' then
acks := acks + 1;
elsif (r1.wb.stb = '0' or r1.stalled = '1') and r1.dec_acks = '1' then
acks := acks - 1;
end if;
r1.acks_pending <= acks;
r1.stalled <= wishbone_in.stall and r1.wb.cyc;
r1.dec_acks <= wishbone_in.ack and r1.wb.cyc;
-- Main state machine
case r1.state is
when IDLE =>
r1.wb.adr <= addr_to_wb(req.real_addr);
r1.wb.sel <= req.byte_sel;
r1.wb.dat <= req.data;
r1.dcbz <= req.dcbz;
r1.atomic_more <= not req.last_dw;
-- Keep track of our index and way for subsequent stores.
r1.store_index <= get_index(req.real_addr);
r1.store_row <= get_row(req.real_addr);
r1.end_row_ix <= get_row_of_line(get_row(req.real_addr)) - 1;
r1.reload_tag <= get_tag(req.real_addr);
r1.req.same_tag <= '1';
if req.is_hit = '1' then
r1.store_way <= req.hit_way;
end if;
-- Reset per-row valid bits, ready for handling the next load miss
for i in 0 to ROW_PER_LINE - 1 loop
r1.rows_valid(i) <= '0';
end loop;
if req.op_lmiss = '1' then
-- Normal load cache miss, start the reload machine
-- Or non-cacheable load
if req.nc = '0' then
report "cache miss real addr:" & to_hstring(req.real_addr) &
" idx:" & to_hstring(get_index(req.real_addr)) &
" tag:" & to_hstring(get_tag(req.real_addr));
end if;
-- Start the wishbone cycle
r1.wb.we <= '0';
r1.wb.cyc <= '1';
r1.wb.stb <= '1';
if req.nc = '0' then
-- Track that we had one request sent
r1.state <= RELOAD_WAIT_ACK;
r1.write_tag <= '1';
ev.load_miss <= '1';
-- If this is a touch, complete the instruction
if req.touch = '1' then
r1.full <= '0';
r1.slow_valid <= '1';
r1.ls_valid <= '1';
end if;
else
r1.state <= NC_LOAD_WAIT_ACK;
end if;
end if;
if req.op_store = '1' then
if req.reserve = '1' then
-- stcx needs to wait until next cycle
-- for the reservation address check
r1.state <= DO_STCX;
elsif req.dcbz = '0' then
r1.state <= STORE_WAIT_ACK;
r1.full <= '0';
r1.slow_valid <= '1';
if req.mmu_req = '0' then
r1.ls_valid <= '1';
else
r1.mmu_done <= '1';
end if;
r1.write_bram <= req.is_hit;
r1.wb.we <= '1';
r1.wb.cyc <= '1';
r1.wb.stb <= '1';
else
-- dcbz is handled much like a load miss except
-- that we are writing to memory instead of reading
r1.state <= RELOAD_WAIT_ACK;
r1.write_tag <= not req.is_hit;
r1.wb.we <= '1';
r1.wb.cyc <= '1';
r1.wb.stb <= '1';
end if;
ev.store_miss <= not req.is_hit;
end if;
if req.op_flush = '1' then
r1.state <= FLUSH_CYCLE;
end if;
if req.op_sync = '1' then
-- sync/lwsync can complete now that the state machine
-- is idle.
r1.full <= '0';
r1.slow_valid <= '1';
r1.ls_valid <= '1';
end if;
when RELOAD_WAIT_ACK =>
-- If we are still sending requests, was one accepted ?
if wishbone_in.stall = '0' and r1.wb.stb = '1' then
-- That was the last word ? We are done sending. Clear stb.
assert not is_X(r1.wb.adr);
assert not is_X(r1.end_row_ix);
if is_last_row_wb_addr(r1.wb.adr, r1.end_row_ix) then
r1.wb.stb <= '0';
end if;
-- Calculate the next row address
r1.wb.adr <= next_row_wb_addr(r1.wb.adr);
end if;
-- Incoming acks processing
if wishbone_in.ack = '1' then
r1.rows_valid(to_integer(r1.store_row(ROW_LINEBITS-1 downto 0))) <= '1';
-- If this is the data we were looking for, we can
-- complete the request next cycle.
-- Compare the whole address in case the request in
-- r1.req is not the one that started this refill.
-- (Cases where req comes from r0 are handled as a load
-- hit.)
if r1.full = '1' then
assert not is_X(r1.store_row);
assert not is_X(r1.req.real_addr);
end if;
if r1.full = '1' and r1.req.same_tag = '1' and
((r1.dcbz = '1' and r1.req.dcbz = '1') or r1.req.op_lmiss = '1') and
r1.store_row = get_row(r1.req.real_addr) then
r1.full <= '0';
r1.slow_valid <= '1';
if r1.mmu_req = '0' then
r1.ls_valid <= '1';
else
r1.mmu_done <= '1';
end if;
-- NB: for lqarx, set the reservation on the first dword
if r1.req.reserve = '1' and r1.req.first_dw = '1' then
reservation.valid <= '1';
end if;
end if;
-- Check for completion
assert not is_X(r1.store_row);
assert not is_X(r1.end_row_ix);
if is_last_row(r1.store_row, r1.end_row_ix) then
-- Complete wishbone cycle
r1.wb.cyc <= '0';
-- Cache line is now valid
assert not is_X(r1.store_index);
assert not is_X(r1.store_way);
cache_valids(to_integer(r1.store_index))(to_integer(r1.store_way)) <= '1';
ev.dcache_refill <= not r1.dcbz;
-- Second half of a lq/lqarx can assume a hit on this line now
-- if the first half hit this line.
r1.prev_hit <= r1.prev_hit_reload;
r1.prev_way <= r1.store_way;
r1.state <= IDLE;
end if;
-- Increment store row counter
r1.store_row <= next_row(r1.store_row);
end if;
when STORE_WAIT_ACK =>
stbs_done := r1.wb.stb = '0';
-- Clear stb when slave accepted request
if wishbone_in.stall = '0' then
-- See if there is another store waiting to be done
-- which is in the same real page.
-- This could be either in r1.req or in r0.
-- Ignore store-conditionals, they have to go through
-- DO_STCX state, unless they are the second half of a
-- successful stqcx, which is handled here.
if req.valid = '1' then
r1.wb.adr(SET_SIZE_BITS - ROW_OFF_BITS - 1 downto 0) <=
req.real_addr(SET_SIZE_BITS - 1 downto ROW_OFF_BITS);
r1.wb.dat <= req.data;
r1.wb.sel <= req.byte_sel;
end if;
assert not is_X(acks);
r1.wb.stb <= '0';
if req.op_store = '1' and req.same_tag = '1' and req.dcbz = '0' and
(req.reserve = '0' or r1.atomic_more = '1') then
if acks < 7 then
r1.wb.stb <= '1';
stbs_done := false;
r1.store_way <= req.hit_way;
r1.store_row <= get_row(req.real_addr);
r1.write_bram <= req.is_hit;
r1.atomic_more <= not req.last_dw;
r1.full <= '0';
r1.slow_valid <= '1';
-- Store requests never come from the MMU
r1.ls_valid <= '1';
end if;
else
stbs_done := true;
if req.valid = '1' then
r1.atomic_more <= '0';
end if;
end if;
end if;
-- Got ack ? See if complete.
if stbs_done and r1.atomic_more = '0' then
assert not is_X(acks);
if acks = 0 or (wishbone_in.ack = '1' and acks = 1) then
r1.state <= IDLE;
r1.wb.cyc <= '0';
r1.wb.stb <= '0';
end if;
end if;
when NC_LOAD_WAIT_ACK =>
-- Clear stb when slave accepted request
if wishbone_in.stall = '0' then
r1.wb.stb <= '0';
end if;
-- Got ack ? complete.
if wishbone_in.ack = '1' then
r1.state <= IDLE;
r1.full <= '0';
r1.slow_valid <= '1';
if r1.mmu_req = '0' then
r1.ls_valid <= '1';
else
r1.mmu_done <= '1';
end if;
r1.wb.cyc <= '0';
r1.wb.stb <= '0';
end if;
when DO_STCX =>
if reservation.valid = '0' or kill_rsrv = '1' or
r1.req.real_addr(REAL_ADDR_BITS - 1 downto LINE_OFF_BITS) /= reservation.addr then
-- Wrong address, didn't have reservation, or lost reservation
-- Abandon the wishbone cycle if started and fail the stcx.
r1.stcx_fail <= '1';
r1.full <= '0';
r1.ls_valid <= '1';
r1.state <= IDLE;
r1.wb.cyc <= '0';
r1.wb.stb <= '0';
reservation.valid <= '0';
-- If this is the first half of a stqcx., the second half
-- will fail also because the reservation is not valid.
r1.state <= IDLE;
elsif r1.wb.cyc = '0' then
-- Right address and have reservation, so start the
-- wishbone cycle
r1.wb.we <= '1';
r1.wb.cyc <= '1';
r1.wb.stb <= '1';
elsif r1.wb.stb = '1' and wishbone_in.stall = '0' then
-- Store has been accepted, so now we can write the
-- cache data RAM and complete the request
r1.write_bram <= r1.req.is_hit;
r1.wb.stb <= '0';
r1.full <= '0';
r1.slow_valid <= '1';
r1.ls_valid <= '1';
reservation.valid <= '0';
-- For a stqcx, STORE_WAIT_ACK will issue the second half
-- without checking the reservation, which is what we want
-- given that the first half has gone out.
-- With r1.atomic_more set, STORE_WAIT_ACK won't exit to
-- IDLE state until it sees the second half.
r1.state <= STORE_WAIT_ACK;
end if;
when FLUSH_CYCLE =>
cache_valids(to_integer(r1.store_index))(to_integer(r1.store_way)) <= '0';
r1.full <= '0';
r1.slow_valid <= '1';
r1.ls_valid <= '1';
r1.state <= IDLE;
end case;
end if;
end if;
end process;
dc_log: if LOG_LENGTH > 0 generate
signal log_data : std_ulogic_vector(19 downto 0);
begin
dcache_log: process(clk)
begin
if rising_edge(clk) then
log_data <= r1.wb.adr(2 downto 0) &
wishbone_in.stall &
wishbone_in.ack &
r1.wb.stb & r1.wb.cyc &
d_out.error &
d_out.valid &
req_op_load_miss & req_op_store & req_op_bad &
stall_out &
std_ulogic_vector(resize(tlb_hit_way, 3)) &
valid_ra &
std_ulogic_vector(to_unsigned(state_t'pos(r1.state), 3));
end if;
end process;
log_out <= log_data;
end generate;
end;