microwatt/sync_fifo.vhdl

164 lines
4.4 KiB
VHDL

-- Synchronous FIFO with a protocol similar to AXI
--
-- The outputs are generated combinationally from the inputs
-- in order to allow for back-to-back transfers with the type
-- of flow control used by busses lite AXI, pipelined WB or
-- LiteDRAM native port when the FIFO is full.
--
-- That means that care needs to be taken by the user not to
-- generate the inputs combinationally from the outputs otherwise
-- it would create a logic loop.
--
-- If breaking that loop is required, a stash buffer could be
-- added to break the flow control "loop" between the read and
-- the write port.
--
library ieee;
use ieee.std_logic_1164.all;
library work;
use work.utils.all;
entity sync_fifo is
generic(
-- Fifo depth in entries
DEPTH : natural := 64;
-- Fifo width in bits
WIDTH : natural := 32;
-- When INIT_ZERO is set, the memory is pre-initialized to 0's
INIT_ZERO : boolean := false
);
port(
-- Control lines:
clk : in std_ulogic;
reset : in std_ulogic;
-- Write port
wr_ready : out std_ulogic;
wr_valid : in std_ulogic;
wr_data : in std_ulogic_vector(WIDTH - 1 downto 0);
-- Read port
rd_ready : in std_ulogic;
rd_valid : out std_ulogic;
rd_data : out std_ulogic_vector(WIDTH - 1 downto 0)
);
end entity sync_fifo;
architecture behaviour of sync_fifo is
subtype data_t is std_ulogic_vector(WIDTH - 1 downto 0);
type memory_t is array(0 to DEPTH - 1) of data_t;
function init_mem return memory_t is
variable m : memory_t;
begin
if INIT_ZERO then
for i in 0 to DEPTH - 1 loop
m(i) := (others => '0');
end loop;
end if;
return m;
end function;
signal memory : memory_t := init_mem;
subtype index_t is integer range 0 to DEPTH - 1;
signal rd_idx : index_t;
signal rd_next : index_t;
signal wr_idx : index_t;
signal wr_next : index_t;
function next_index(idx : index_t) return index_t is
variable r : index_t;
begin
if ispow2(DEPTH) then
r := (idx + 1) mod DEPTH;
else
r := idx + 1;
if r = DEPTH then
r := 0;
end if;
end if;
return r;
end function;
type op_t is (OP_POP, OP_PUSH);
signal op_prev : op_t := OP_POP;
signal op_next : op_t;
signal full, empty : std_ulogic;
signal push, pop : std_ulogic;
begin
-- Current state at last clock edge
empty <= '1' when rd_idx = wr_idx and op_prev = OP_POP else '0';
full <= '1' when rd_idx = wr_idx and op_prev = OP_PUSH else '0';
-- We can accept new data if we aren't full or we are but
-- the read port is going to accept data this cycle
wr_ready <= rd_ready or not full;
-- We can provide data if we aren't empty or we are but
-- the write port is going to provide data this cycle
rd_valid <= wr_valid or not empty;
-- Internal control signals
push <= wr_ready and wr_valid;
pop <= rd_ready and rd_valid;
-- Next state
rd_next <= next_index(rd_idx) when pop = '1' else rd_idx;
wr_next <= next_index(wr_idx) when push = '1' else wr_idx;
with push & pop select op_next <=
OP_PUSH when "10",
OP_POP when "01",
op_prev when others;
-- Read port output
rd_data <= memory(rd_idx) when empty = '0' else wr_data;
-- Read counter
reader: process(clk)
begin
if rising_edge(clk) then
if reset = '1' then
rd_idx <= 0;
else
rd_idx <= rd_next;
end if;
end if;
end process;
-- Write counter and memory write
producer: process(clk)
begin
if rising_edge(clk) then
if reset = '1' then
wr_idx <= 0;
else
wr_idx <= wr_next;
if push = '1' then
memory(wr_idx) <= wr_data;
end if;
end if;
end if;
end process;
-- Previous op latch used for generating empty/full
op: process(clk)
begin
if rising_edge(clk) then
if reset = '1' then
op_prev <= OP_POP;
else
op_prev <= op_next;
end if;
end if;
end process;
end architecture behaviour;