commit
bf6cc2a05a
@ -0,0 +1,119 @@
|
||||
library ieee;
|
||||
use ieee.std_logic_1164.all;
|
||||
use ieee.numeric_std.all;
|
||||
|
||||
library work;
|
||||
use work.common.all;
|
||||
use work.wishbone_types.all;
|
||||
|
||||
entity core_flash_tb is
|
||||
end core_flash_tb;
|
||||
|
||||
architecture behave of core_flash_tb is
|
||||
signal clk, rst: std_logic;
|
||||
|
||||
-- testbench signals
|
||||
constant clk_period : time := 10 ns;
|
||||
|
||||
-- Dummy DRAM
|
||||
signal wb_dram_in : wishbone_master_out;
|
||||
signal wb_dram_out : wishbone_slave_out;
|
||||
signal wb_dram_ctrl_in : wb_io_master_out;
|
||||
signal wb_dram_ctrl_out : wb_io_slave_out;
|
||||
|
||||
-- SPI
|
||||
signal spi_sck : std_ulogic;
|
||||
signal spi_cs_n : std_ulogic := '1';
|
||||
signal spi_sdat_o : std_ulogic_vector(3 downto 0);
|
||||
signal spi_sdat_oe : std_ulogic_vector(3 downto 0);
|
||||
signal spi_sdat_i : std_ulogic_vector(3 downto 0);
|
||||
signal fl_hold_n : std_logic;
|
||||
signal fl_wp_n : std_logic;
|
||||
signal fl_mosi : std_logic;
|
||||
signal fl_miso : std_logic;
|
||||
begin
|
||||
|
||||
soc0: entity work.soc
|
||||
generic map(
|
||||
SIM => true,
|
||||
MEMORY_SIZE => (384*1024),
|
||||
RAM_INIT_FILE => "main_ram.bin",
|
||||
RESET_LOW => false,
|
||||
CLK_FREQ => 100000000,
|
||||
HAS_SPI_FLASH => true,
|
||||
SPI_FLASH_DLINES => 4,
|
||||
SPI_FLASH_OFFSET => 0
|
||||
)
|
||||
port map(
|
||||
rst => rst,
|
||||
system_clk => clk,
|
||||
uart0_rxd => '0',
|
||||
uart0_txd => open,
|
||||
wb_dram_in => wb_dram_in,
|
||||
wb_dram_out => wb_dram_out,
|
||||
wb_dram_ctrl_in => wb_dram_ctrl_in,
|
||||
wb_dram_ctrl_out => wb_dram_ctrl_out,
|
||||
spi_flash_sck => spi_sck,
|
||||
spi_flash_cs_n => spi_cs_n,
|
||||
spi_flash_sdat_o => spi_sdat_o,
|
||||
spi_flash_sdat_oe => spi_sdat_oe,
|
||||
spi_flash_sdat_i => spi_sdat_i,
|
||||
alt_reset => '0'
|
||||
);
|
||||
|
||||
flash: entity work.s25fl128s
|
||||
generic map (
|
||||
TimingModel => "S25FL128SAGNFI000_R_30pF",
|
||||
LongTimming => false,
|
||||
tdevice_PU => 10 ns,
|
||||
tdevice_PP256 => 100 ns,
|
||||
tdevice_PP512 => 100 ns,
|
||||
tdevice_WRR => 100 ns
|
||||
)
|
||||
port map(
|
||||
SCK => spi_sck,
|
||||
SI => fl_mosi,
|
||||
CSNeg => spi_cs_n,
|
||||
HOLDNeg => fl_hold_n,
|
||||
WPNeg => fl_wp_n,
|
||||
RSTNeg => '1',
|
||||
SO => fl_miso
|
||||
);
|
||||
|
||||
fl_mosi <= spi_sdat_o(0) when spi_sdat_oe(0) = '1' else 'Z';
|
||||
fl_miso <= spi_sdat_o(1) when spi_sdat_oe(1) = '1' else 'Z';
|
||||
fl_wp_n <= spi_sdat_o(2) when spi_sdat_oe(2) = '1' else 'Z';
|
||||
fl_hold_n <= spi_sdat_o(3) when spi_sdat_oe(3) = '1' else '1' when spi_sdat_oe(0) = '1' else 'Z';
|
||||
|
||||
spi_sdat_i(0) <= fl_mosi;
|
||||
spi_sdat_i(1) <= fl_miso;
|
||||
spi_sdat_i(2) <= fl_wp_n;
|
||||
spi_sdat_i(3) <= fl_hold_n;
|
||||
|
||||
clk_process: process
|
||||
begin
|
||||
clk <= '0';
|
||||
wait for clk_period/2;
|
||||
clk <= '1';
|
||||
wait for clk_period/2;
|
||||
end process;
|
||||
|
||||
rst_process: process
|
||||
begin
|
||||
rst <= '1';
|
||||
wait for 10*clk_period;
|
||||
rst <= '0';
|
||||
wait;
|
||||
end process;
|
||||
|
||||
jtag: entity work.sim_jtag;
|
||||
|
||||
-- Dummy DRAM
|
||||
wb_dram_out.ack <= wb_dram_in.cyc and wb_dram_in.stb;
|
||||
wb_dram_out.dat <= x"FFFFFFFFFFFFFFFF";
|
||||
wb_dram_out.stall <= '0';
|
||||
wb_dram_ctrl_out.ack <= wb_dram_ctrl_in.cyc and wb_dram_ctrl_in.stb;
|
||||
wb_dram_ctrl_out.dat <= x"FFFFFFFF";
|
||||
wb_dram_ctrl_out.stall <= '0';
|
||||
|
||||
end;
|
@ -0,0 +1,248 @@
|
||||
/*-
|
||||
* Copyright (c) 1996-1998 John D. Polstra.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#ifndef _SYS_ELF64_H_
|
||||
#define _SYS_ELF64_H_ 1
|
||||
|
||||
#include <elf_common.h>
|
||||
|
||||
/*
|
||||
* ELF definitions common to all 64-bit architectures.
|
||||
*/
|
||||
|
||||
typedef uint64_t Elf64_Addr;
|
||||
typedef uint16_t Elf64_Half;
|
||||
typedef uint64_t Elf64_Off;
|
||||
typedef int32_t Elf64_Sword;
|
||||
typedef int64_t Elf64_Sxword;
|
||||
typedef uint32_t Elf64_Word;
|
||||
typedef uint64_t Elf64_Lword;
|
||||
typedef uint64_t Elf64_Xword;
|
||||
|
||||
/*
|
||||
* Types of dynamic symbol hash table bucket and chain elements.
|
||||
*
|
||||
* This is inconsistent among 64 bit architectures, so a machine dependent
|
||||
* typedef is required.
|
||||
*/
|
||||
|
||||
typedef Elf64_Word Elf64_Hashelt;
|
||||
|
||||
/* Non-standard class-dependent datatype used for abstraction. */
|
||||
typedef Elf64_Xword Elf64_Size;
|
||||
typedef Elf64_Sxword Elf64_Ssize;
|
||||
|
||||
/*
|
||||
* ELF header.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
unsigned char e_ident[EI_NIDENT]; /* File identification. */
|
||||
Elf64_Half e_type; /* File type. */
|
||||
Elf64_Half e_machine; /* Machine architecture. */
|
||||
Elf64_Word e_version; /* ELF format version. */
|
||||
Elf64_Addr e_entry; /* Entry point. */
|
||||
Elf64_Off e_phoff; /* Program header file offset. */
|
||||
Elf64_Off e_shoff; /* Section header file offset. */
|
||||
Elf64_Word e_flags; /* Architecture-specific flags. */
|
||||
Elf64_Half e_ehsize; /* Size of ELF header in bytes. */
|
||||
Elf64_Half e_phentsize; /* Size of program header entry. */
|
||||
Elf64_Half e_phnum; /* Number of program header entries. */
|
||||
Elf64_Half e_shentsize; /* Size of section header entry. */
|
||||
Elf64_Half e_shnum; /* Number of section header entries. */
|
||||
Elf64_Half e_shstrndx; /* Section name strings section. */
|
||||
} Elf64_Ehdr;
|
||||
|
||||
/*
|
||||
* Section header.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
Elf64_Word sh_name; /* Section name (index into the
|
||||
section header string table). */
|
||||
Elf64_Word sh_type; /* Section type. */
|
||||
Elf64_Xword sh_flags; /* Section flags. */
|
||||
Elf64_Addr sh_addr; /* Address in memory image. */
|
||||
Elf64_Off sh_offset; /* Offset in file. */
|
||||
Elf64_Xword sh_size; /* Size in bytes. */
|
||||
Elf64_Word sh_link; /* Index of a related section. */
|
||||
Elf64_Word sh_info; /* Depends on section type. */
|
||||
Elf64_Xword sh_addralign; /* Alignment in bytes. */
|
||||
Elf64_Xword sh_entsize; /* Size of each entry in section. */
|
||||
} Elf64_Shdr;
|
||||
|
||||
/*
|
||||
* Program header.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
Elf64_Word p_type; /* Entry type. */
|
||||
Elf64_Word p_flags; /* Access permission flags. */
|
||||
Elf64_Off p_offset; /* File offset of contents. */
|
||||
Elf64_Addr p_vaddr; /* Virtual address in memory image. */
|
||||
Elf64_Addr p_paddr; /* Physical address (not used). */
|
||||
Elf64_Xword p_filesz; /* Size of contents in file. */
|
||||
Elf64_Xword p_memsz; /* Size of contents in memory. */
|
||||
Elf64_Xword p_align; /* Alignment in memory and file. */
|
||||
} Elf64_Phdr;
|
||||
|
||||
/*
|
||||
* Dynamic structure. The ".dynamic" section contains an array of them.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
Elf64_Sxword d_tag; /* Entry type. */
|
||||
union {
|
||||
Elf64_Xword d_val; /* Integer value. */
|
||||
Elf64_Addr d_ptr; /* Address value. */
|
||||
} d_un;
|
||||
} Elf64_Dyn;
|
||||
|
||||
/*
|
||||
* Relocation entries.
|
||||
*/
|
||||
|
||||
/* Relocations that don't need an addend field. */
|
||||
typedef struct {
|
||||
Elf64_Addr r_offset; /* Location to be relocated. */
|
||||
Elf64_Xword r_info; /* Relocation type and symbol index. */
|
||||
} Elf64_Rel;
|
||||
|
||||
/* Relocations that need an addend field. */
|
||||
typedef struct {
|
||||
Elf64_Addr r_offset; /* Location to be relocated. */
|
||||
Elf64_Xword r_info; /* Relocation type and symbol index. */
|
||||
Elf64_Sxword r_addend; /* Addend. */
|
||||
} Elf64_Rela;
|
||||
|
||||
/* Macros for accessing the fields of r_info. */
|
||||
#define ELF64_R_SYM(info) ((info) >> 32)
|
||||
#define ELF64_R_TYPE(info) ((info) & 0xffffffffL)
|
||||
|
||||
/* Macro for constructing r_info from field values. */
|
||||
#define ELF64_R_INFO(sym, type) (((sym) << 32) + ((type) & 0xffffffffL))
|
||||
|
||||
#define ELF64_R_TYPE_DATA(info) (((Elf64_Xword)(info)<<32)>>40)
|
||||
#define ELF64_R_TYPE_ID(info) (((Elf64_Xword)(info)<<56)>>56)
|
||||
#define ELF64_R_TYPE_INFO(data, type) \
|
||||
(((Elf64_Xword)(data)<<8)+(Elf64_Xword)(type))
|
||||
|
||||
/*
|
||||
* Note entry header
|
||||
*/
|
||||
typedef Elf_Note Elf64_Nhdr;
|
||||
|
||||
/*
|
||||
* Move entry
|
||||
*/
|
||||
typedef struct {
|
||||
Elf64_Lword m_value; /* symbol value */
|
||||
Elf64_Xword m_info; /* size + index */
|
||||
Elf64_Xword m_poffset; /* symbol offset */
|
||||
Elf64_Half m_repeat; /* repeat count */
|
||||
Elf64_Half m_stride; /* stride info */
|
||||
} Elf64_Move;
|
||||
|
||||
#define ELF64_M_SYM(info) ((info)>>8)
|
||||
#define ELF64_M_SIZE(info) ((unsigned char)(info))
|
||||
#define ELF64_M_INFO(sym, size) (((sym)<<8)+(unsigned char)(size))
|
||||
|
||||
/*
|
||||
* Hardware/Software capabilities entry
|
||||
*/
|
||||
typedef struct {
|
||||
Elf64_Xword c_tag; /* how to interpret value */
|
||||
union {
|
||||
Elf64_Xword c_val;
|
||||
Elf64_Addr c_ptr;
|
||||
} c_un;
|
||||
} Elf64_Cap;
|
||||
|
||||
/*
|
||||
* Symbol table entries.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
Elf64_Word st_name; /* String table index of name. */
|
||||
unsigned char st_info; /* Type and binding information. */
|
||||
unsigned char st_other; /* Reserved (not used). */
|
||||
Elf64_Half st_shndx; /* Section index of symbol. */
|
||||
Elf64_Addr st_value; /* Symbol value. */
|
||||
Elf64_Xword st_size; /* Size of associated object. */
|
||||
} Elf64_Sym;
|
||||
|
||||
/* Macros for accessing the fields of st_info. */
|
||||
#define ELF64_ST_BIND(info) ((info) >> 4)
|
||||
#define ELF64_ST_TYPE(info) ((info) & 0xf)
|
||||
|
||||
/* Macro for constructing st_info from field values. */
|
||||
#define ELF64_ST_INFO(bind, type) (((bind) << 4) + ((type) & 0xf))
|
||||
|
||||
/* Macro for accessing the fields of st_other. */
|
||||
#define ELF64_ST_VISIBILITY(oth) ((oth) & 0x3)
|
||||
|
||||
/* Structures used by Sun & GNU-style symbol versioning. */
|
||||
typedef struct {
|
||||
Elf64_Half vd_version;
|
||||
Elf64_Half vd_flags;
|
||||
Elf64_Half vd_ndx;
|
||||
Elf64_Half vd_cnt;
|
||||
Elf64_Word vd_hash;
|
||||
Elf64_Word vd_aux;
|
||||
Elf64_Word vd_next;
|
||||
} Elf64_Verdef;
|
||||
|
||||
typedef struct {
|
||||
Elf64_Word vda_name;
|
||||
Elf64_Word vda_next;
|
||||
} Elf64_Verdaux;
|
||||
|
||||
typedef struct {
|
||||
Elf64_Half vn_version;
|
||||
Elf64_Half vn_cnt;
|
||||
Elf64_Word vn_file;
|
||||
Elf64_Word vn_aux;
|
||||
Elf64_Word vn_next;
|
||||
} Elf64_Verneed;
|
||||
|
||||
typedef struct {
|
||||
Elf64_Word vna_hash;
|
||||
Elf64_Half vna_flags;
|
||||
Elf64_Half vna_other;
|
||||
Elf64_Word vna_name;
|
||||
Elf64_Word vna_next;
|
||||
} Elf64_Vernaux;
|
||||
|
||||
typedef Elf64_Half Elf64_Versym;
|
||||
|
||||
typedef struct {
|
||||
Elf64_Half si_boundto; /* direct bindings - symbol bound to */
|
||||
Elf64_Half si_flags; /* per symbol flags */
|
||||
} Elf64_Syminfo;
|
||||
|
||||
#endif /* !_SYS_ELF64_H_ */
|
@ -0,0 +1,994 @@
|
||||
/*-
|
||||
* Copyright (c) 2000, 2001, 2008, 2011, David E. O'Brien
|
||||
* Copyright (c) 1998 John D. Polstra.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#ifndef _SYS_ELF_COMMON_H_
|
||||
#define _SYS_ELF_COMMON_H_ 1
|
||||
|
||||
/*
|
||||
* ELF definitions that are independent of architecture or word size.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Note header. The ".note" section contains an array of notes. Each
|
||||
* begins with this header, aligned to a word boundary. Immediately
|
||||
* following the note header is n_namesz bytes of name, padded to the
|
||||
* next word boundary. Then comes n_descsz bytes of descriptor, again
|
||||
* padded to a word boundary. The values of n_namesz and n_descsz do
|
||||
* not include the padding.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
uint32_t n_namesz; /* Length of name. */
|
||||
uint32_t n_descsz; /* Length of descriptor. */
|
||||
uint32_t n_type; /* Type of this note. */
|
||||
} Elf_Note;
|
||||
|
||||
/*
|
||||
* The header for GNU-style hash sections.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
uint32_t gh_nbuckets; /* Number of hash buckets. */
|
||||
uint32_t gh_symndx; /* First visible symbol in .dynsym. */
|
||||
uint32_t gh_maskwords; /* #maskwords used in bloom filter. */
|
||||
uint32_t gh_shift2; /* Bloom filter shift count. */
|
||||
} Elf_GNU_Hash_Header;
|
||||
|
||||
/* Indexes into the e_ident array. Keep synced with
|
||||
http://www.sco.com/developers/gabi/latest/ch4.eheader.html */
|
||||
#define EI_MAG0 0 /* Magic number, byte 0. */
|
||||
#define EI_MAG1 1 /* Magic number, byte 1. */
|
||||
#define EI_MAG2 2 /* Magic number, byte 2. */
|
||||
#define EI_MAG3 3 /* Magic number, byte 3. */
|
||||
#define EI_CLASS 4 /* Class of machine. */
|
||||
#define EI_DATA 5 /* Data format. */
|
||||
#define EI_VERSION 6 /* ELF format version. */
|
||||
#define EI_OSABI 7 /* Operating system / ABI identification */
|
||||
#define EI_ABIVERSION 8 /* ABI version */
|
||||
#define OLD_EI_BRAND 8 /* Start of architecture identification. */
|
||||
#define EI_PAD 9 /* Start of padding (per SVR4 ABI). */
|
||||
#define EI_NIDENT 16 /* Size of e_ident array. */
|
||||
|
||||
/* Values for the magic number bytes. */
|
||||
#define ELFMAG0 0x7f
|
||||
#define ELFMAG1 'E'
|
||||
#define ELFMAG2 'L'
|
||||
#define ELFMAG3 'F'
|
||||
#define ELFMAG "\177ELF" /* magic string */
|
||||
#define SELFMAG 4 /* magic string size */
|
||||
|
||||
/* Values for e_ident[EI_VERSION] and e_version. */
|
||||
#define EV_NONE 0
|
||||
#define EV_CURRENT 1
|
||||
|
||||
/* Values for e_ident[EI_CLASS]. */
|
||||
#define ELFCLASSNONE 0 /* Unknown class. */
|
||||
#define ELFCLASS32 1 /* 32-bit architecture. */
|
||||
#define ELFCLASS64 2 /* 64-bit architecture. */
|
||||
|
||||
/* Values for e_ident[EI_DATA]. */
|
||||
#define ELFDATANONE 0 /* Unknown data format. */
|
||||
#define ELFDATA2LSB 1 /* 2's complement little-endian. */
|
||||
#define ELFDATA2MSB 2 /* 2's complement big-endian. */
|
||||
|
||||
/* Values for e_ident[EI_OSABI]. */
|
||||
#define ELFOSABI_NONE 0 /* UNIX System V ABI */
|
||||
#define ELFOSABI_HPUX 1 /* HP-UX operating system */
|
||||
#define ELFOSABI_NETBSD 2 /* NetBSD */
|
||||
#define ELFOSABI_LINUX 3 /* GNU/Linux */
|
||||
#define ELFOSABI_HURD 4 /* GNU/Hurd */
|
||||
#define ELFOSABI_86OPEN 5 /* 86Open common IA32 ABI */
|
||||
#define ELFOSABI_SOLARIS 6 /* Solaris */
|
||||
#define ELFOSABI_AIX 7 /* AIX */
|
||||
#define ELFOSABI_IRIX 8 /* IRIX */
|
||||
#define ELFOSABI_FREEBSD 9 /* FreeBSD */
|
||||
#define ELFOSABI_TRU64 10 /* TRU64 UNIX */
|
||||
#define ELFOSABI_MODESTO 11 /* Novell Modesto */
|
||||
#define ELFOSABI_OPENBSD 12 /* OpenBSD */
|
||||
#define ELFOSABI_OPENVMS 13 /* Open VMS */
|
||||
#define ELFOSABI_NSK 14 /* HP Non-Stop Kernel */
|
||||
#define ELFOSABI_AROS 15 /* Amiga Research OS */
|
||||
#define ELFOSABI_ARM 97 /* ARM */
|
||||
#define ELFOSABI_STANDALONE 255 /* Standalone (embedded) application */
|
||||
|
||||
#define ELFOSABI_SYSV ELFOSABI_NONE /* symbol used in old spec */
|
||||
#define ELFOSABI_MONTEREY ELFOSABI_AIX /* Monterey */
|
||||
|
||||
/* e_ident */
|
||||
#define IS_ELF(ehdr) ((ehdr).e_ident[EI_MAG0] == ELFMAG0 && \
|
||||
(ehdr).e_ident[EI_MAG1] == ELFMAG1 && \
|
||||
(ehdr).e_ident[EI_MAG2] == ELFMAG2 && \
|
||||
(ehdr).e_ident[EI_MAG3] == ELFMAG3)
|
||||
|
||||
/* Values for e_type. */
|
||||
#define ET_NONE 0 /* Unknown type. */
|
||||
#define ET_REL 1 /* Relocatable. */
|
||||
#define ET_EXEC 2 /* Executable. */
|
||||
#define ET_DYN 3 /* Shared object. */
|
||||
#define ET_CORE 4 /* Core file. */
|
||||
#define ET_LOOS 0xfe00 /* First operating system specific. */
|
||||
#define ET_HIOS 0xfeff /* Last operating system-specific. */
|
||||
#define ET_LOPROC 0xff00 /* First processor-specific. */
|
||||
#define ET_HIPROC 0xffff /* Last processor-specific. */
|
||||
|
||||
/* Values for e_machine. */
|
||||
#define EM_NONE 0 /* Unknown machine. */
|
||||
#define EM_M32 1 /* AT&T WE32100. */
|
||||
#define EM_SPARC 2 /* Sun SPARC. */
|
||||
#define EM_386 3 /* Intel i386. */
|
||||
#define EM_68K 4 /* Motorola 68000. */
|
||||
#define EM_88K 5 /* Motorola 88000. */
|
||||
#define EM_860 7 /* Intel i860. */
|
||||
#define EM_MIPS 8 /* MIPS R3000 Big-Endian only. */
|
||||
#define EM_S370 9 /* IBM System/370. */
|
||||
#define EM_MIPS_RS3_LE 10 /* MIPS R3000 Little-Endian. */
|
||||
#define EM_PARISC 15 /* HP PA-RISC. */
|
||||
#define EM_VPP500 17 /* Fujitsu VPP500. */
|
||||
#define EM_SPARC32PLUS 18 /* SPARC v8plus. */
|
||||
#define EM_960 19 /* Intel 80960. */
|
||||
#define EM_PPC 20 /* PowerPC 32-bit. */
|
||||
#define EM_PPC64 21 /* PowerPC 64-bit. */
|
||||
#define EM_S390 22 /* IBM System/390. */
|
||||
#define EM_V800 36 /* NEC V800. */
|
||||
#define EM_FR20 37 /* Fujitsu FR20. */
|
||||
#define EM_RH32 38 /* TRW RH-32. */
|
||||
#define EM_RCE 39 /* Motorola RCE. */
|
||||
#define EM_ARM 40 /* ARM. */
|
||||
#define EM_SH 42 /* Hitachi SH. */
|
||||
#define EM_SPARCV9 43 /* SPARC v9 64-bit. */
|
||||
#define EM_TRICORE 44 /* Siemens TriCore embedded processor. */
|
||||
#define EM_ARC 45 /* Argonaut RISC Core. */
|
||||
#define EM_H8_300 46 /* Hitachi H8/300. */
|
||||
#define EM_H8_300H 47 /* Hitachi H8/300H. */
|
||||
#define EM_H8S 48 /* Hitachi H8S. */
|
||||
#define EM_H8_500 49 /* Hitachi H8/500. */
|
||||
#define EM_IA_64 50 /* Intel IA-64 Processor. */
|
||||
#define EM_MIPS_X 51 /* Stanford MIPS-X. */
|
||||
#define EM_COLDFIRE 52 /* Motorola ColdFire. */
|
||||
#define EM_68HC12 53 /* Motorola M68HC12. */
|
||||
#define EM_MMA 54 /* Fujitsu MMA. */
|
||||
#define EM_PCP 55 /* Siemens PCP. */
|
||||
#define EM_NCPU 56 /* Sony nCPU. */
|
||||
#define EM_NDR1 57 /* Denso NDR1 microprocessor. */
|
||||
#define EM_STARCORE 58 /* Motorola Star*Core processor. */
|
||||
#define EM_ME16 59 /* Toyota ME16 processor. */
|
||||
#define EM_ST100 60 /* STMicroelectronics ST100 processor. */
|
||||
#define EM_TINYJ 61 /* Advanced Logic Corp. TinyJ processor. */
|
||||
#define EM_X86_64 62 /* Advanced Micro Devices x86-64 */
|
||||
#define EM_AMD64 EM_X86_64 /* Advanced Micro Devices x86-64 (compat) */
|
||||
#define EM_PDSP 63 /* Sony DSP Processor. */
|
||||
#define EM_FX66 66 /* Siemens FX66 microcontroller. */
|
||||
#define EM_ST9PLUS 67 /* STMicroelectronics ST9+ 8/16
|
||||
microcontroller. */
|
||||
#define EM_ST7 68 /* STmicroelectronics ST7 8-bit
|
||||
microcontroller. */
|
||||
#define EM_68HC16 69 /* Motorola MC68HC16 microcontroller. */
|
||||
#define EM_68HC11 70 /* Motorola MC68HC11 microcontroller. */
|
||||
#define EM_68HC08 71 /* Motorola MC68HC08 microcontroller. */
|
||||
#define EM_68HC05 72 /* Motorola MC68HC05 microcontroller. */
|
||||
#define EM_SVX 73 /* Silicon Graphics SVx. */
|
||||
#define EM_ST19 74 /* STMicroelectronics ST19 8-bit mc. */
|
||||
#define EM_VAX 75 /* Digital VAX. */
|
||||
#define EM_CRIS 76 /* Axis Communications 32-bit embedded
|
||||
processor. */
|
||||
#define EM_JAVELIN 77 /* Infineon Technologies 32-bit embedded
|
||||
processor. */
|
||||
#define EM_FIREPATH 78 /* Element 14 64-bit DSP Processor. */
|
||||
#define EM_ZSP 79 /* LSI Logic 16-bit DSP Processor. */
|
||||
#define EM_MMIX 80 /* Donald Knuth's educational 64-bit proc. */
|
||||
#define EM_HUANY 81 /* Harvard University machine-independent
|
||||
object files. */
|
||||
#define EM_PRISM 82 /* SiTera Prism. */
|
||||
#define EM_AVR 83 /* Atmel AVR 8-bit microcontroller. */
|
||||
#define EM_FR30 84 /* Fujitsu FR30. */
|
||||
#define EM_D10V 85 /* Mitsubishi D10V. */
|
||||
#define EM_D30V 86 /* Mitsubishi D30V. */
|
||||
#define EM_V850 87 /* NEC v850. */
|
||||
#define EM_M32R 88 /* Mitsubishi M32R. */
|
||||
#define EM_MN10300 89 /* Matsushita MN10300. */
|
||||
#define EM_MN10200 90 /* Matsushita MN10200. */
|
||||
#define EM_PJ 91 /* picoJava. */
|
||||
#define EM_OPENRISC 92 /* OpenRISC 32-bit embedded processor. */
|
||||
#define EM_ARC_A5 93 /* ARC Cores Tangent-A5. */
|
||||
#define EM_XTENSA 94 /* Tensilica Xtensa Architecture. */
|
||||
#define EM_VIDEOCORE 95 /* Alphamosaic VideoCore processor. */
|
||||
#define EM_TMM_GPP 96 /* Thompson Multimedia General Purpose
|
||||
Processor. */
|
||||
#define EM_NS32K 97 /* National Semiconductor 32000 series. */
|
||||
#define EM_TPC 98 /* Tenor Network TPC processor. */
|
||||
#define EM_SNP1K 99 /* Trebia SNP 1000 processor. */
|
||||
#define EM_ST200 100 /* STMicroelectronics ST200 microcontroller. */
|
||||
#define EM_IP2K 101 /* Ubicom IP2xxx microcontroller family. */
|
||||
#define EM_MAX 102 /* MAX Processor. */
|
||||
#define EM_CR 103 /* National Semiconductor CompactRISC
|
||||
microprocessor. */
|
||||
#define EM_F2MC16 104 /* Fujitsu F2MC16. */
|
||||
#define EM_MSP430 105 /* Texas Instruments embedded microcontroller
|
||||
msp430. */
|
||||
#define EM_BLACKFIN 106 /* Analog Devices Blackfin (DSP) processor. */
|
||||
#define EM_SE_C33 107 /* S1C33 Family of Seiko Epson processors. */
|
||||
#define EM_SEP 108 /* Sharp embedded microprocessor. */
|
||||
#define EM_ARCA 109 /* Arca RISC Microprocessor. */
|
||||
#define EM_UNICORE 110 /* Microprocessor series from PKU-Unity Ltd.
|
||||
and MPRC of Peking University */
|
||||
|
||||
/* Non-standard or deprecated. */
|
||||
#define EM_486 6 /* Intel i486. */
|
||||
#define EM_MIPS_RS4_BE 10 /* MIPS R4000 Big-Endian */
|
||||
#define EM_ALPHA_STD 41 /* Digital Alpha (standard value). */
|
||||
#define EM_ALPHA 0x9026 /* Alpha (written in the absence of an ABI) */
|
||||
|
||||
/* Special section indexes. */
|
||||
#define SHN_UNDEF 0 /* Undefined, missing, irrelevant. */
|
||||
#define SHN_LORESERVE 0xff00 /* First of reserved range. */
|
||||
#define SHN_LOPROC 0xff00 /* First processor-specific. */
|
||||
#define SHN_HIPROC 0xff1f /* Last processor-specific. */
|
||||
#define SHN_LOOS 0xff20 /* First operating system-specific. */
|
||||
#define SHN_HIOS 0xff3f /* Last operating system-specific. */
|
||||
#define SHN_ABS 0xfff1 /* Absolute values. */
|
||||
#define SHN_COMMON 0xfff2 /* Common data. */
|
||||
#define SHN_XINDEX 0xffff /* Escape -- index stored elsewhere. */
|
||||
#define SHN_HIRESERVE 0xffff /* Last of reserved range. */
|
||||
|
||||
/* sh_type */
|
||||
#define SHT_NULL 0 /* inactive */
|
||||
#define SHT_PROGBITS 1 /* program defined information */
|
||||
#define SHT_SYMTAB 2 /* symbol table section */
|
||||
#define SHT_STRTAB 3 /* string table section */
|
||||
#define SHT_RELA 4 /* relocation section with addends */
|
||||
#define SHT_HASH 5 /* symbol hash table section */
|
||||
#define SHT_DYNAMIC 6 /* dynamic section */
|
||||
#define SHT_NOTE 7 /* note section */
|
||||
#define SHT_NOBITS 8 /* no space section */
|
||||
#define SHT_REL 9 /* relocation section - no addends */
|
||||
#define SHT_SHLIB 10 /* reserved - purpose unknown */
|
||||
#define SHT_DYNSYM 11 /* dynamic symbol table section */
|
||||
#define SHT_INIT_ARRAY 14 /* Initialization function pointers. */
|
||||
#define SHT_FINI_ARRAY 15 /* Termination function pointers. */
|
||||
#define SHT_PREINIT_ARRAY 16 /* Pre-initialization function ptrs. */
|
||||
#define SHT_GROUP 17 /* Section group. */
|
||||
#define SHT_SYMTAB_SHNDX 18 /* Section indexes (see SHN_XINDEX). */
|
||||
#define SHT_LOOS 0x60000000 /* First of OS specific semantics */
|
||||
#define SHT_LOSUNW 0x6ffffff4
|
||||
#define SHT_SUNW_dof 0x6ffffff4
|
||||
#define SHT_SUNW_cap 0x6ffffff5
|
||||
#define SHT_SUNW_SIGNATURE 0x6ffffff6
|
||||
#define SHT_GNU_HASH 0x6ffffff6
|
||||
#define SHT_SUNW_ANNOTATE 0x6ffffff7
|
||||
#define SHT_SUNW_DEBUGSTR 0x6ffffff8
|
||||
#define SHT_SUNW_DEBUG 0x6ffffff9
|
||||
#define SHT_SUNW_move 0x6ffffffa
|
||||
#define SHT_SUNW_COMDAT 0x6ffffffb
|
||||
#define SHT_SUNW_syminfo 0x6ffffffc
|
||||
#define SHT_SUNW_verdef 0x6ffffffd
|
||||
#define SHT_GNU_verdef 0x6ffffffd /* Symbol versions provided */
|
||||
#define SHT_SUNW_verneed 0x6ffffffe
|
||||
#define SHT_GNU_verneed 0x6ffffffe /* Symbol versions required */
|
||||
#define SHT_SUNW_versym 0x6fffffff
|
||||
#define SHT_GNU_versym 0x6fffffff /* Symbol version table */
|
||||
#define SHT_HISUNW 0x6fffffff
|
||||
#define SHT_HIOS 0x6fffffff /* Last of OS specific semantics */
|
||||
#define SHT_LOPROC 0x70000000 /* reserved range for processor */
|
||||
#define SHT_AMD64_UNWIND 0x70000001 /* unwind information */
|
||||
#define SHT_ARM_EXIDX 0x70000001 /* Exception index table. */
|
||||
#define SHT_ARM_PREEMPTMAP 0x70000002 /* BPABI DLL dynamic linking
|
||||
pre-emption map. */
|
||||
#define SHT_ARM_ATTRIBUTES 0x70000003 /* Object file compatibility
|
||||
attributes. */
|
||||
#define SHT_ARM_DEBUGOVERLAY 0x70000004 /* See DBGOVL for details. */
|
||||
#define SHT_ARM_OVERLAYSECTION 0x70000005 /* See DBGOVL for details. */
|
||||
#define SHT_MIPS_REGINFO 0x70000006
|
||||
#define SHT_MIPS_OPTIONS 0x7000000d
|
||||
#define SHT_MIPS_DWARF 0x7000001e /* MIPS gcc uses MIPS_DWARF */
|
||||
#define SHT_HIPROC 0x7fffffff /* specific section header types */
|
||||
#define SHT_LOUSER 0x80000000 /* reserved range for application */
|
||||
#define SHT_HIUSER 0xffffffff /* specific indexes */
|
||||
|
||||
/* Flags for sh_flags. */
|
||||
#define SHF_WRITE 0x1 /* Section contains writable data. */
|
||||
#define SHF_ALLOC 0x2 /* Section occupies memory. */
|
||||
#define SHF_EXECINSTR 0x4 /* Section contains instructions. */
|
||||
#define SHF_MERGE 0x10 /* Section may be merged. */
|
||||
#define SHF_STRINGS 0x20 /* Section contains strings. */
|
||||
#define SHF_INFO_LINK 0x40 /* sh_info holds section index. */
|
||||
#define SHF_LINK_ORDER 0x80 /* Special ordering requirements. */
|
||||
#define SHF_OS_NONCONFORMING 0x100 /* OS-specific processing required. */
|
||||
#define SHF_GROUP 0x200 /* Member of section group. */
|
||||
#define SHF_TLS 0x400 /* Section contains TLS data. */
|
||||
#define SHF_MASKOS 0x0ff00000 /* OS-specific semantics. */
|
||||
#define SHF_MASKPROC 0xf0000000 /* Processor-specific semantics. */
|
||||
|
||||
/* Values for p_type. */
|
||||
#define PT_NULL 0 /* Unused entry. */
|
||||
#define PT_LOAD 1 /* Loadable segment. */
|
||||
#define PT_DYNAMIC 2 /* Dynamic linking information segment. */
|
||||
#define PT_INTERP 3 /* Pathname of interpreter. */
|
||||
#define PT_NOTE 4 /* Auxiliary information. */
|
||||
#define PT_SHLIB 5 /* Reserved (not used). */
|
||||
#define PT_PHDR 6 /* Location of program header itself. */
|
||||
#define PT_TLS 7 /* Thread local storage segment */
|
||||
#define PT_LOOS 0x60000000 /* First OS-specific. */
|
||||
#define PT_SUNW_UNWIND 0x6464e550 /* amd64 UNWIND program header */
|
||||
#define PT_GNU_EH_FRAME 0x6474e550
|
||||
#define PT_GNU_STACK 0x6474e551
|
||||
#define PT_GNU_RELRO 0x6474e552
|
||||
#define PT_LOSUNW 0x6ffffffa
|
||||
#define PT_SUNWBSS 0x6ffffffa /* Sun Specific segment */
|
||||
#define PT_SUNWSTACK 0x6ffffffb /* describes the stack segment */
|
||||
#define PT_SUNWDTRACE 0x6ffffffc /* private */
|
||||
#define PT_SUNWCAP 0x6ffffffd /* hard/soft capabilities segment */
|
||||
#define PT_HISUNW 0x6fffffff
|
||||
#define PT_HIOS 0x6fffffff /* Last OS-specific. */
|
||||
#define PT_LOPROC 0x70000000 /* First processor-specific type. */
|
||||
#define PT_HIPROC 0x7fffffff /* Last processor-specific type. */
|
||||
|
||||
/* Values for p_flags. */
|
||||
#define PF_X 0x1 /* Executable. */
|
||||
#define PF_W 0x2 /* Writable. */
|
||||
#define PF_R 0x4 /* Readable. */
|
||||
#define PF_MASKOS 0x0ff00000 /* Operating system-specific. */
|
||||
#define PF_MASKPROC 0xf0000000 /* Processor-specific. */
|
||||
|
||||
/* Extended program header index. */
|
||||
#define PN_XNUM 0xffff
|
||||
|
||||
/* Values for d_tag. */
|
||||
#define DT_NULL 0 /* Terminating entry. */
|
||||
#define DT_NEEDED 1 /* String table offset of a needed shared
|
||||
library. */
|
||||
#define DT_PLTRELSZ 2 /* Total size in bytes of PLT relocations. */
|
||||
#define DT_PLTGOT 3 /* Processor-dependent address. */
|
||||
#define DT_HASH 4 /* Address of symbol hash table. */
|
||||
#define DT_STRTAB 5 /* Address of string table. */
|
||||
#define DT_SYMTAB 6 /* Address of symbol table. */
|
||||
#define DT_RELA 7 /* Address of ElfNN_Rela relocations. */
|
||||
#define DT_RELASZ 8 /* Total size of ElfNN_Rela relocations. */
|
||||
#define DT_RELAENT 9 /* Size of each ElfNN_Rela relocation entry. */
|
||||
#define DT_STRSZ 10 /* Size of string table. */
|
||||
#define DT_SYMENT 11 /* Size of each symbol table entry. */
|
||||
#define DT_INIT 12 /* Address of initialization function. */
|
||||
#define DT_FINI 13 /* Address of finalization function. */
|
||||
#define DT_SONAME 14 /* String table offset of shared object
|
||||
name. */
|
||||
#define DT_RPATH 15 /* String table offset of library path. [sup] */
|
||||
#define DT_SYMBOLIC 16 /* Indicates "symbolic" linking. [sup] */
|
||||
#define DT_REL 17 /* Address of ElfNN_Rel relocations. */
|
||||
#define DT_RELSZ 18 /* Total size of ElfNN_Rel relocations. */
|
||||
#define DT_RELENT 19 /* Size of each ElfNN_Rel relocation. */
|
||||
#define DT_PLTREL 20 /* Type of relocation used for PLT. */
|
||||
#define DT_DEBUG 21 /* Reserved (not used). */
|
||||
#define DT_TEXTREL 22 /* Indicates there may be relocations in
|
||||
non-writable segments. [sup] */
|
||||
#define DT_JMPREL 23 /* Address of PLT relocations. */
|
||||
#define DT_BIND_NOW 24 /* [sup] */
|
||||
#define DT_INIT_ARRAY 25 /* Address of the array of pointers to
|
||||
initialization functions */
|
||||
#define DT_FINI_ARRAY 26 /* Address of the array of pointers to
|
||||
termination functions */
|
||||
#define DT_INIT_ARRAYSZ 27 /* Size in bytes of the array of
|
||||
initialization functions. */
|
||||
#define DT_FINI_ARRAYSZ 28 /* Size in bytes of the array of
|
||||
termination functions. */
|
||||
#define DT_RUNPATH 29 /* String table offset of a null-terminated
|
||||
library search path string. */
|
||||
#define DT_FLAGS 30 /* Object specific flag values. */
|
||||
#define DT_ENCODING 32 /* Values greater than or equal to DT_ENCODING
|
||||
and less than DT_LOOS follow the rules for
|
||||
the interpretation of the d_un union
|
||||
as follows: even == 'd_ptr', odd == 'd_val'
|
||||
or none */
|
||||
#define DT_PREINIT_ARRAY 32 /* Address of the array of pointers to
|
||||
pre-initialization functions. */
|
||||
#define DT_PREINIT_ARRAYSZ 33 /* Size in bytes of the array of
|
||||
pre-initialization functions. */
|
||||
#define DT_MAXPOSTAGS 34 /* number of positive tags */
|
||||
#define DT_LOOS 0x6000000d /* First OS-specific */
|
||||
#define DT_SUNW_AUXILIARY 0x6000000d /* symbol auxiliary name */
|
||||
#define DT_SUNW_RTLDINF 0x6000000e /* ld.so.1 info (private) */
|
||||
#define DT_SUNW_FILTER 0x6000000f /* symbol filter name */
|
||||
#define DT_SUNW_CAP 0x60000010 /* hardware/software */
|
||||
#define DT_HIOS 0x6ffff000 /* Last OS-specific */
|
||||
|
||||
/*
|
||||
* DT_* entries which fall between DT_VALRNGHI & DT_VALRNGLO use the
|
||||
* Dyn.d_un.d_val field of the Elf*_Dyn structure.
|
||||
*/
|
||||
#define DT_VALRNGLO 0x6ffffd00
|
||||
#define DT_CHECKSUM 0x6ffffdf8 /* elf checksum */
|
||||
#define DT_PLTPADSZ 0x6ffffdf9 /* pltpadding size */
|
||||
#define DT_MOVEENT 0x6ffffdfa /* move table entry size */
|
||||
#define DT_MOVESZ 0x6ffffdfb /* move table size */
|
||||
#define DT_FEATURE_1 0x6ffffdfc /* feature holder */
|
||||
#define DT_POSFLAG_1 0x6ffffdfd /* flags for DT_* entries, effecting */
|
||||
/* the following DT_* entry. */
|
||||
/* See DF_P1_* definitions */
|
||||
#define DT_SYMINSZ 0x6ffffdfe /* syminfo table size (in bytes) */
|
||||
#define DT_SYMINENT 0x6ffffdff /* syminfo entry size (in bytes) */
|
||||
#define DT_VALRNGHI 0x6ffffdff
|
||||
|
||||
/*
|
||||
* DT_* entries which fall between DT_ADDRRNGHI & DT_ADDRRNGLO use the
|
||||
* Dyn.d_un.d_ptr field of the Elf*_Dyn structure.
|
||||
*
|
||||
* If any adjustment is made to the ELF object after it has been
|
||||
* built, these entries will need to be adjusted.
|
||||
*/
|
||||
#define DT_ADDRRNGLO 0x6ffffe00
|
||||
#define DT_GNU_HASH 0x6ffffef5 /* GNU-style hash table */
|
||||
#define DT_CONFIG 0x6ffffefa /* configuration information */
|
||||
#define DT_DEPAUDIT 0x6ffffefb /* dependency auditing */
|
||||
#define DT_AUDIT 0x6ffffefc /* object auditing */
|
||||
#define DT_PLTPAD 0x6ffffefd /* pltpadding (sparcv9) */
|
||||
#define DT_MOVETAB 0x6ffffefe /* move table */
|
||||
#define DT_SYMINFO 0x6ffffeff /* syminfo table */
|
||||
#define DT_ADDRRNGHI 0x6ffffeff
|
||||
|
||||
#define DT_VERSYM 0x6ffffff0 /* Address of versym section. */
|
||||
#define DT_RELACOUNT 0x6ffffff9 /* number of RELATIVE relocations */
|
||||
#define DT_RELCOUNT 0x6ffffffa /* number of RELATIVE relocations */
|
||||
#define DT_FLAGS_1 0x6ffffffb /* state flags - see DF_1_* defs */
|
||||
#define DT_VERDEF 0x6ffffffc /* Address of verdef section. */
|
||||
#define DT_VERDEFNUM 0x6ffffffd /* Number of elems in verdef section */
|
||||
#define DT_VERNEED 0x6ffffffe /* Address of verneed section. */
|
||||
#define DT_VERNEEDNUM 0x6fffffff /* Number of elems in verneed section */
|
||||
|
||||
#define DT_LOPROC 0x70000000 /* First processor-specific type. */
|
||||
#define DT_DEPRECATED_SPARC_REGISTER 0x7000001
|
||||
#define DT_AUXILIARY 0x7ffffffd /* shared library auxiliary name */
|
||||
#define DT_USED 0x7ffffffe /* ignored - same as needed */
|
||||
#define DT_FILTER 0x7fffffff /* shared library filter name */
|
||||
#define DT_HIPROC 0x7fffffff /* Last processor-specific type. */
|
||||
|
||||
/* Values for DT_FLAGS */
|
||||
#define DF_ORIGIN 0x0001 /* Indicates that the object being loaded may
|
||||
make reference to the $ORIGIN substitution
|
||||
string */
|
||||
#define DF_SYMBOLIC 0x0002 /* Indicates "symbolic" linking. */
|
||||
#define DF_TEXTREL 0x0004 /* Indicates there may be relocations in
|
||||
non-writable segments. */
|
||||
#define DF_BIND_NOW 0x0008 /* Indicates that the dynamic linker should
|
||||
process all relocations for the object
|
||||
containing this entry before transferring
|
||||
control to the program. */
|
||||
#define DF_STATIC_TLS 0x0010 /* Indicates that the shared object or
|
||||
executable contains code using a static
|
||||
thread-local storage scheme. */
|
||||
|
||||
/* Values for DT_FLAGS_1 */
|
||||
#define DF_1_BIND_NOW 0x00000001 /* Same as DF_BIND_NOW */
|
||||
#define DF_1_GLOBAL 0x00000002 /* Set the RTLD_GLOBAL for object */
|
||||
#define DF_1_NODELETE 0x00000008 /* Set the RTLD_NODELETE for object */
|
||||
#define DF_1_LOADFLTR 0x00000010 /* Immediate loading of filtees */
|
||||
#define DF_1_NOOPEN 0x00000040 /* Do not allow loading on dlopen() */
|
||||
#define DF_1_ORIGIN 0x00000080 /* Process $ORIGIN */
|
||||
#define DF_1_INTERPOSE 0x00000400 /* Interpose all objects but main */
|
||||
#define DF_1_NODEFLIB 0x00000800 /* Do not search default paths */
|
||||
|
||||
/* Values for n_type. Used in core files. */
|
||||
#define NT_PRSTATUS 1 /* Process status. */
|
||||
#define NT_FPREGSET 2 /* Floating point registers. */
|
||||
#define NT_PRPSINFO 3 /* Process state info. */
|
||||
#define NT_THRMISC 7 /* Thread miscellaneous info. */
|
||||
#define NT_PROCSTAT_PROC 8 /* Procstat proc data. */
|
||||
#define NT_PROCSTAT_FILES 9 /* Procstat files data. */
|
||||
#define NT_PROCSTAT_VMMAP 10 /* Procstat vmmap data. */
|
||||
#define NT_PROCSTAT_GROUPS 11 /* Procstat groups data. */
|
||||
#define NT_PROCSTAT_UMASK 12 /* Procstat umask data. */
|
||||
#define NT_PROCSTAT_RLIMIT 13 /* Procstat rlimit data. */
|
||||
#define NT_PROCSTAT_OSREL 14 /* Procstat osreldate data. */
|
||||
#define NT_PROCSTAT_PSSTRINGS 15 /* Procstat ps_strings data. */
|
||||
#define NT_PROCSTAT_AUXV 16 /* Procstat auxv data. */
|
||||
|
||||
/* Symbol Binding - ELFNN_ST_BIND - st_info */
|
||||
#define STB_LOCAL 0 /* Local symbol */
|
||||
#define STB_GLOBAL 1 /* Global symbol */
|
||||
#define STB_WEAK 2 /* like global - lower precedence */
|
||||
#define STB_LOOS 10 /* Reserved range for operating system */
|
||||
#define STB_HIOS 12 /* specific semantics. */
|
||||
#define STB_LOPROC 13 /* reserved range for processor */
|
||||
#define STB_HIPROC 15 /* specific semantics. */
|
||||
|
||||
/* Symbol type - ELFNN_ST_TYPE - st_info */
|
||||
#define STT_NOTYPE 0 /* Unspecified type. */
|
||||
#define STT_OBJECT 1 /* Data object. */
|
||||
#define STT_FUNC 2 /* Function. */
|
||||
#define STT_SECTION 3 /* Section. */
|
||||
#define STT_FILE 4 /* Source file. */
|
||||
#define STT_COMMON 5 /* Uninitialized common block. */
|
||||
#define STT_TLS 6 /* TLS object. */
|
||||
#define STT_NUM 7
|
||||
#define STT_LOOS 10 /* Reserved range for operating system */
|
||||
#define STT_GNU_IFUNC 10
|
||||
#define STT_HIOS 12 /* specific semantics. */
|
||||
#define STT_LOPROC 13 /* reserved range for processor */
|
||||
#define STT_HIPROC 15 /* specific semantics. */
|
||||
|
||||
/* Symbol visibility - ELFNN_ST_VISIBILITY - st_other */
|
||||
#define STV_DEFAULT 0x0 /* Default visibility (see binding). */
|
||||
#define STV_INTERNAL 0x1 /* Special meaning in relocatable objects. */
|
||||
#define STV_HIDDEN 0x2 /* Not visible. */
|
||||
#define STV_PROTECTED 0x3 /* Visible but not preemptible. */
|
||||
#define STV_EXPORTED 0x4
|
||||
#define STV_SINGLETON 0x5
|
||||
#define STV_ELIMINATE 0x6
|
||||
|
||||
/* Special symbol table indexes. */
|
||||
#define STN_UNDEF 0 /* Undefined symbol index. */
|
||||
|
||||
/* Symbol versioning flags. */
|
||||
#define VER_DEF_CURRENT 1
|
||||
#define VER_DEF_IDX(x) VER_NDX(x)
|
||||
|
||||
#define VER_FLG_BASE 0x01
|
||||
#define VER_FLG_WEAK 0x02
|
||||
|
||||
#define VER_NEED_CURRENT 1
|
||||
#define VER_NEED_WEAK (1u << 15)
|
||||
#define VER_NEED_HIDDEN VER_NDX_HIDDEN
|
||||
#define VER_NEED_IDX(x) VER_NDX(x)
|
||||
|
||||
#define VER_NDX_LOCAL 0
|
||||
#define VER_NDX_GLOBAL 1
|
||||
#define VER_NDX_GIVEN 2
|
||||
|
||||
#define VER_NDX_HIDDEN (1u << 15)
|
||||
#define VER_NDX(x) ((x) & ~(1u << 15))
|
||||
|
||||
#define CA_SUNW_NULL 0
|
||||
#define CA_SUNW_HW_1 1 /* first hardware capabilities entry */
|
||||
#define CA_SUNW_SF_1 2 /* first software capabilities entry */
|
||||
|
||||
/*
|
||||
* Syminfo flag values
|
||||
*/
|
||||
#define SYMINFO_FLG_DIRECT 0x0001 /* symbol ref has direct association */
|
||||
/* to object containing defn. */
|
||||
#define SYMINFO_FLG_PASSTHRU 0x0002 /* ignored - see SYMINFO_FLG_FILTER */
|
||||
#define SYMINFO_FLG_COPY 0x0004 /* symbol is a copy-reloc */
|
||||
#define SYMINFO_FLG_LAZYLOAD 0x0008 /* object containing defn should be */
|
||||
/* lazily-loaded */
|
||||
#define SYMINFO_FLG_DIRECTBIND 0x0010 /* ref should be bound directly to */
|
||||
/* object containing defn. */
|
||||
#define SYMINFO_FLG_NOEXTDIRECT 0x0020 /* don't let an external reference */
|
||||
/* directly bind to this symbol */
|
||||
#define SYMINFO_FLG_FILTER 0x0002 /* symbol ref is associated to a */
|
||||
#define SYMINFO_FLG_AUXILIARY 0x0040 /* standard or auxiliary filter */
|
||||
|
||||
/*
|
||||
* Syminfo.si_boundto values.
|
||||
*/
|
||||
#define SYMINFO_BT_SELF 0xffff /* symbol bound to self */
|
||||
#define SYMINFO_BT_PARENT 0xfffe /* symbol bound to parent */
|
||||
#define SYMINFO_BT_NONE 0xfffd /* no special symbol binding */
|
||||
#define SYMINFO_BT_EXTERN 0xfffc /* symbol defined as external */
|
||||
#define SYMINFO_BT_LOWRESERVE 0xff00 /* beginning of reserved entries */
|
||||
|
||||
/*
|
||||
* Syminfo version values.
|
||||
*/
|
||||
#define SYMINFO_NONE 0 /* Syminfo version */
|
||||
#define SYMINFO_CURRENT 1
|
||||
#define SYMINFO_NUM 2
|
||||
|
||||
/*
|
||||
* Relocation types.
|
||||
*
|
||||
* All machine architectures are defined here to allow tools on one to
|
||||
* handle others.
|
||||
*/
|
||||
|
||||
#define R_386_NONE 0 /* No relocation. */
|
||||
#define R_386_32 1 /* Add symbol value. */
|
||||
#define R_386_PC32 2 /* Add PC-relative symbol value. */
|
||||
#define R_386_GOT32 3 /* Add PC-relative GOT offset. */
|
||||
#define R_386_PLT32 4 /* Add PC-relative PLT offset. */
|
||||
#define R_386_COPY 5 /* Copy data from shared object. */
|
||||
#define R_386_GLOB_DAT 6 /* Set GOT entry to data address. */
|
||||
#define R_386_JMP_SLOT 7 /* Set GOT entry to code address. */
|
||||
#define R_386_RELATIVE 8 /* Add load address of shared object. */
|
||||
#define R_386_GOTOFF 9 /* Add GOT-relative symbol address. */
|
||||
#define R_386_GOTPC 10 /* Add PC-relative GOT table address. */
|
||||
#define R_386_TLS_TPOFF 14 /* Negative offset in static TLS block */
|
||||
#define R_386_TLS_IE 15 /* Absolute address of GOT for -ve static TLS */
|
||||
#define R_386_TLS_GOTIE 16 /* GOT entry for negative static TLS block */
|
||||
#define R_386_TLS_LE 17 /* Negative offset relative to static TLS */
|
||||
#define R_386_TLS_GD 18 /* 32 bit offset to GOT (index,off) pair */
|
||||
#define R_386_TLS_LDM 19 /* 32 bit offset to GOT (index,zero) pair */
|
||||
#define R_386_TLS_GD_32 24 /* 32 bit offset to GOT (index,off) pair */
|
||||
#define R_386_TLS_GD_PUSH 25 /* pushl instruction for Sun ABI GD sequence */
|
||||
#define R_386_TLS_GD_CALL 26 /* call instruction for Sun ABI GD sequence */
|
||||
#define R_386_TLS_GD_POP 27 /* popl instruction for Sun ABI GD sequence */
|
||||
#define R_386_TLS_LDM_32 28 /* 32 bit offset to GOT (index,zero) pair */
|
||||
#define R_386_TLS_LDM_PUSH 29 /* pushl instruction for Sun ABI LD sequence */
|
||||
#define R_386_TLS_LDM_CALL 30 /* call instruction for Sun ABI LD sequence */
|
||||
#define R_386_TLS_LDM_POP 31 /* popl instruction for Sun ABI LD sequence */
|
||||
#define R_386_TLS_LDO_32 32 /* 32 bit offset from start of TLS block */
|
||||
#define R_386_TLS_IE_32 33 /* 32 bit offset to GOT static TLS offset entry */
|
||||
#define R_386_TLS_LE_32 34 /* 32 bit offset within static TLS block */
|
||||
#define R_386_TLS_DTPMOD32 35 /* GOT entry containing TLS index */
|
||||
#define R_386_TLS_DTPOFF32 36 /* GOT entry containing TLS offset */
|
||||
#define R_386_TLS_TPOFF32 37 /* GOT entry of -ve static TLS offset */
|
||||
#define R_386_IRELATIVE 42 /* PLT entry resolved indirectly at runtime */
|
||||
|
||||
#define R_ARM_NONE 0 /* No relocation. */
|
||||
#define R_ARM_PC24 1
|
||||
#define R_ARM_ABS32 2
|
||||
#define R_ARM_REL32 3
|
||||
#define R_ARM_PC13 4
|
||||
#define R_ARM_ABS16 5
|
||||
#define R_ARM_ABS12 6
|
||||
#define R_ARM_THM_ABS5 7
|
||||
#define R_ARM_ABS8 8
|
||||
#define R_ARM_SBREL32 9
|
||||
#define R_ARM_THM_PC22 10
|
||||
#define R_ARM_THM_PC8 11
|
||||
#define R_ARM_AMP_VCALL9 12
|
||||
#define R_ARM_SWI24 13
|
||||
#define R_ARM_THM_SWI8 14
|
||||
#define R_ARM_XPC25 15
|
||||
#define R_ARM_THM_XPC22 16
|
||||
/* TLS relocations */
|
||||
#define R_ARM_TLS_DTPMOD32 17 /* ID of module containing symbol */
|
||||
#define R_ARM_TLS_DTPOFF32 18 /* Offset in TLS block */
|
||||
#define R_ARM_TLS_TPOFF32 19 /* Offset in static TLS block */
|
||||
#define R_ARM_COPY 20 /* Copy data from shared object. */
|
||||
#define R_ARM_GLOB_DAT 21 /* Set GOT entry to data address. */
|
||||
#define R_ARM_JUMP_SLOT 22 /* Set GOT entry to code address. */
|
||||
#define R_ARM_RELATIVE 23 /* Add load address of shared object. */
|
||||
#define R_ARM_GOTOFF 24 /* Add GOT-relative symbol address. */
|
||||
#define R_ARM_GOTPC 25 /* Add PC-relative GOT table address. */
|
||||
#define R_ARM_GOT32 26 /* Add PC-relative GOT offset. */
|
||||
#define R_ARM_PLT32 27 /* Add PC-relative PLT offset. */
|
||||
#define R_ARM_GNU_VTENTRY 100
|
||||
#define R_ARM_GNU_VTINHERIT 101
|
||||
#define R_ARM_RSBREL32 250
|
||||
#define R_ARM_THM_RPC22 251
|
||||
#define R_ARM_RREL32 252
|
||||
#define R_ARM_RABS32 253
|
||||
#define R_ARM_RPC24 254
|
||||
#define R_ARM_RBASE 255
|
||||
|
||||
/* Name Value Field Calculation */
|
||||
#define R_IA_64_NONE 0 /* None */
|
||||
#define R_IA_64_IMM14 0x21 /* immediate14 S + A */
|
||||
#define R_IA_64_IMM22 0x22 /* immediate22 S + A */
|
||||
#define R_IA_64_IMM64 0x23 /* immediate64 S + A */
|
||||
#define R_IA_64_DIR32MSB 0x24 /* word32 MSB S + A */
|
||||
#define R_IA_64_DIR32LSB 0x25 /* word32 LSB S + A */
|
||||
#define R_IA_64_DIR64MSB 0x26 /* word64 MSB S + A */
|
||||
#define R_IA_64_DIR64LSB 0x27 /* word64 LSB S + A */
|
||||
#define R_IA_64_GPREL22 0x2a /* immediate22 @gprel(S + A) */
|
||||
#define R_IA_64_GPREL64I 0x2b /* immediate64 @gprel(S + A) */
|
||||
#define R_IA_64_GPREL32MSB 0x2c /* word32 MSB @gprel(S + A) */
|
||||
#define R_IA_64_GPREL32LSB 0x2d /* word32 LSB @gprel(S + A) */
|
||||
#define R_IA_64_GPREL64MSB 0x2e /* word64 MSB @gprel(S + A) */
|
||||
#define R_IA_64_GPREL64LSB 0x2f /* word64 LSB @gprel(S + A) */
|
||||
#define R_IA_64_LTOFF22 0x32 /* immediate22 @ltoff(S + A) */
|
||||
#define R_IA_64_LTOFF64I 0x33 /* immediate64 @ltoff(S + A) */
|
||||
#define R_IA_64_PLTOFF22 0x3a /* immediate22 @pltoff(S + A) */
|
||||
#define R_IA_64_PLTOFF64I 0x3b /* immediate64 @pltoff(S + A) */
|
||||
#define R_IA_64_PLTOFF64MSB 0x3e /* word64 MSB @pltoff(S + A) */
|
||||
#define R_IA_64_PLTOFF64LSB 0x3f /* word64 LSB @pltoff(S + A) */
|
||||
#define R_IA_64_FPTR64I 0x43 /* immediate64 @fptr(S + A) */
|
||||
#define R_IA_64_FPTR32MSB 0x44 /* word32 MSB @fptr(S + A) */
|
||||
#define R_IA_64_FPTR32LSB 0x45 /* word32 LSB @fptr(S + A) */
|
||||
#define R_IA_64_FPTR64MSB 0x46 /* word64 MSB @fptr(S + A) */
|
||||
#define R_IA_64_FPTR64LSB 0x47 /* word64 LSB @fptr(S + A) */
|
||||
#define R_IA_64_PCREL60B 0x48 /* immediate60 form1 S + A - P */
|
||||
#define R_IA_64_PCREL21B 0x49 /* immediate21 form1 S + A - P */
|
||||
#define R_IA_64_PCREL21M 0x4a /* immediate21 form2 S + A - P */
|
||||
#define R_IA_64_PCREL21F 0x4b /* immediate21 form3 S + A - P */
|
||||
#define R_IA_64_PCREL32MSB 0x4c /* word32 MSB S + A - P */
|
||||
#define R_IA_64_PCREL32LSB 0x4d /* word32 LSB S + A - P */
|
||||
#define R_IA_64_PCREL64MSB 0x4e /* word64 MSB S + A - P */
|
||||
#define R_IA_64_PCREL64LSB 0x4f /* word64 LSB S + A - P */
|
||||
#define R_IA_64_LTOFF_FPTR22 0x52 /* immediate22 @ltoff(@fptr(S + A)) */
|
||||
#define R_IA_64_LTOFF_FPTR64I 0x53 /* immediate64 @ltoff(@fptr(S + A)) */
|
||||
#define R_IA_64_LTOFF_FPTR32MSB 0x54 /* word32 MSB @ltoff(@fptr(S + A)) */
|
||||
#define R_IA_64_LTOFF_FPTR32LSB 0x55 /* word32 LSB @ltoff(@fptr(S + A)) */
|
||||
#define R_IA_64_LTOFF_FPTR64MSB 0x56 /* word64 MSB @ltoff(@fptr(S + A)) */
|
||||
#define R_IA_64_LTOFF_FPTR64LSB 0x57 /* word64 LSB @ltoff(@fptr(S + A)) */
|
||||
#define R_IA_64_SEGREL32MSB 0x5c /* word32 MSB @segrel(S + A) */
|
||||
#define R_IA_64_SEGREL32LSB 0x5d /* word32 LSB @segrel(S + A) */
|
||||
#define R_IA_64_SEGREL64MSB 0x5e /* word64 MSB @segrel(S + A) */
|
||||
#define R_IA_64_SEGREL64LSB 0x5f /* word64 LSB @segrel(S + A) */
|
||||
#define R_IA_64_SECREL32MSB 0x64 /* word32 MSB @secrel(S + A) */
|
||||
#define R_IA_64_SECREL32LSB 0x65 /* word32 LSB @secrel(S + A) */
|
||||
#define R_IA_64_SECREL64MSB 0x66 /* word64 MSB @secrel(S + A) */
|
||||
#define R_IA_64_SECREL64LSB 0x67 /* word64 LSB @secrel(S + A) */
|
||||
#define R_IA_64_REL32MSB 0x6c /* word32 MSB BD + A */
|
||||
#define R_IA_64_REL32LSB 0x6d /* word32 LSB BD + A */
|
||||
#define R_IA_64_REL64MSB 0x6e /* word64 MSB BD + A */
|
||||
#define R_IA_64_REL64LSB 0x6f /* word64 LSB BD + A */
|
||||
#define R_IA_64_LTV32MSB 0x74 /* word32 MSB S + A */
|
||||
#define R_IA_64_LTV32LSB 0x75 /* word32 LSB S + A */
|
||||
#define R_IA_64_LTV64MSB 0x76 /* word64 MSB S + A */
|
||||
#define R_IA_64_LTV64LSB 0x77 /* word64 LSB S + A */
|
||||
#define R_IA_64_PCREL21BI 0x79 /* immediate21 form1 S + A - P */
|
||||
#define R_IA_64_PCREL22 0x7a /* immediate22 S + A - P */
|
||||
#define R_IA_64_PCREL64I 0x7b /* immediate64 S + A - P */
|
||||
#define R_IA_64_IPLTMSB 0x80 /* function descriptor MSB special */
|
||||
#define R_IA_64_IPLTLSB 0x81 /* function descriptor LSB speciaal */
|
||||
#define R_IA_64_SUB 0x85 /* immediate64 A - S */
|
||||
#define R_IA_64_LTOFF22X 0x86 /* immediate22 special */
|
||||
#define R_IA_64_LDXMOV 0x87 /* immediate22 special */
|
||||
#define R_IA_64_TPREL14 0x91 /* imm14 @tprel(S + A) */
|
||||
#define R_IA_64_TPREL22 0x92 /* imm22 @tprel(S + A) */
|
||||
#define R_IA_64_TPREL64I 0x93 /* imm64 @tprel(S + A) */
|
||||
#define R_IA_64_TPREL64MSB 0x96 /* word64 MSB @tprel(S + A) */
|
||||
#define R_IA_64_TPREL64LSB 0x97 /* word64 LSB @tprel(S + A) */
|
||||
#define R_IA_64_LTOFF_TPREL22 0x9a /* imm22 @ltoff(@tprel(S+A)) */
|
||||
#define R_IA_64_DTPMOD64MSB 0xa6 /* word64 MSB @dtpmod(S + A) */
|
||||
#define R_IA_64_DTPMOD64LSB 0xa7 /* word64 LSB @dtpmod(S + A) */
|
||||
#define R_IA_64_LTOFF_DTPMOD22 0xaa /* imm22 @ltoff(@dtpmod(S+A)) */
|
||||
#define R_IA_64_DTPREL14 0xb1 /* imm14 @dtprel(S + A) */
|
||||
#define R_IA_64_DTPREL22 0xb2 /* imm22 @dtprel(S + A) */
|
||||
#define R_IA_64_DTPREL64I 0xb3 /* imm64 @dtprel(S + A) */
|
||||
#define R_IA_64_DTPREL32MSB 0xb4 /* word32 MSB @dtprel(S + A) */
|
||||
#define R_IA_64_DTPREL32LSB 0xb5 /* word32 LSB @dtprel(S + A) */
|
||||
#define R_IA_64_DTPREL64MSB 0xb6 /* word64 MSB @dtprel(S + A) */
|
||||
#define R_IA_64_DTPREL64LSB 0xb7 /* word64 LSB @dtprel(S + A) */
|
||||
#define R_IA_64_LTOFF_DTPREL22 0xba /* imm22 @ltoff(@dtprel(S+A)) */
|
||||
|
||||
#define R_MIPS_NONE 0 /* No reloc */
|
||||
#define R_MIPS_16 1 /* Direct 16 bit */
|
||||
#define R_MIPS_32 2 /* Direct 32 bit */
|
||||
#define R_MIPS_REL32 3 /* PC relative 32 bit */
|
||||
#define R_MIPS_26 4 /* Direct 26 bit shifted */
|
||||
#define R_MIPS_HI16 5 /* High 16 bit */
|
||||
#define R_MIPS_LO16 6 /* Low 16 bit */
|
||||
#define R_MIPS_GPREL16 7 /* GP relative 16 bit */
|
||||
#define R_MIPS_LITERAL 8 /* 16 bit literal entry */
|
||||
#define R_MIPS_GOT16 9 /* 16 bit GOT entry */
|
||||
#define R_MIPS_PC16 10 /* PC relative 16 bit */
|
||||
#define R_MIPS_CALL16 11 /* 16 bit GOT entry for function */
|
||||
#define R_MIPS_GPREL32 12 /* GP relative 32 bit */
|
||||
#define R_MIPS_GOTHI16 21 /* GOT HI 16 bit */
|
||||
#define R_MIPS_GOTLO16 22 /* GOT LO 16 bit */
|
||||
#define R_MIPS_CALLHI16 30 /* upper 16 bit GOT entry for function */
|
||||
#define R_MIPS_CALLLO16 31 /* lower 16 bit GOT entry for function */
|
||||
|
||||
#define R_PPC_NONE 0 /* No relocation. */
|
||||
#define R_PPC_ADDR32 1
|
||||
#define R_PPC_ADDR24 2
|
||||
#define R_PPC_ADDR16 3
|
||||
#define R_PPC_ADDR16_LO 4
|
||||
#define R_PPC_ADDR16_HI 5
|
||||
#define R_PPC_ADDR16_HA 6
|
||||
#define R_PPC_ADDR14 7
|
||||
#define R_PPC_ADDR14_BRTAKEN 8
|
||||
#define R_PPC_ADDR14_BRNTAKEN 9
|
||||
#define R_PPC_REL24 10
|
||||
#define R_PPC_REL14 11
|
||||
#define R_PPC_REL14_BRTAKEN 12
|
||||
#define R_PPC_REL14_BRNTAKEN 13
|
||||
#define R_PPC_GOT16 14
|
||||
#define R_PPC_GOT16_LO 15
|
||||
#define R_PPC_GOT16_HI 16
|
||||
#define R_PPC_GOT16_HA 17
|
||||
#define R_PPC_PLTREL24 18
|
||||
#define R_PPC_COPY 19
|
||||
#define R_PPC_GLOB_DAT 20
|
||||
#define R_PPC_JMP_SLOT 21
|
||||
#define R_PPC_RELATIVE 22
|
||||
#define R_PPC_LOCAL24PC 23
|
||||
#define R_PPC_UADDR32 24
|
||||
#define R_PPC_UADDR16 25
|
||||
#define R_PPC_REL32 26
|
||||
#define R_PPC_PLT32 27
|
||||
#define R_PPC_PLTREL32 28
|
||||
#define R_PPC_PLT16_LO 29
|
||||
#define R_PPC_PLT16_HI 30
|
||||
#define R_PPC_PLT16_HA 31
|
||||
#define R_PPC_SDAREL16 32
|
||||
#define R_PPC_SECTOFF 33
|
||||
#define R_PPC_SECTOFF_LO 34
|
||||
#define R_PPC_SECTOFF_HI 35
|
||||
#define R_PPC_SECTOFF_HA 36
|
||||
|
||||
/*
|
||||
* 64-bit relocations
|
||||
*/
|
||||
#define R_PPC64_ADDR64 38
|
||||
#define R_PPC64_ADDR16_HIGHER 39
|
||||
#define R_PPC64_ADDR16_HIGHERA 40
|
||||
#define R_PPC64_ADDR16_HIGHEST 41
|
||||
#define R_PPC64_ADDR16_HIGHESTA 42
|
||||
#define R_PPC64_UADDR64 43
|
||||
#define R_PPC64_REL64 44
|
||||
#define R_PPC64_PLT64 45
|
||||
#define R_PPC64_PLTREL64 46
|
||||
#define R_PPC64_TOC16 47
|
||||
#define R_PPC64_TOC16_LO 48
|
||||
#define R_PPC64_TOC16_HI 49
|
||||
#define R_PPC64_TOC16_HA 50
|
||||
#define R_PPC64_TOC 51
|
||||
#define R_PPC64_DTPMOD64 68
|
||||
#define R_PPC64_TPREL64 73
|
||||
#define R_PPC64_DTPREL64 78
|
||||
|
||||
/*
|
||||
* TLS relocations
|
||||
*/
|
||||
#define R_PPC_TLS 67
|
||||
#define R_PPC_DTPMOD32 68
|
||||
#define R_PPC_TPREL16 69
|
||||
#define R_PPC_TPREL16_LO 70
|
||||
#define R_PPC_TPREL16_HI 71
|
||||
#define R_PPC_TPREL16_HA 72
|
||||
#define R_PPC_TPREL32 73
|
||||
#define R_PPC_DTPREL16 74
|
||||
#define R_PPC_DTPREL16_LO 75
|
||||
#define R_PPC_DTPREL16_HI 76
|
||||
#define R_PPC_DTPREL16_HA 77
|
||||
#define R_PPC_DTPREL32 78
|
||||
#define R_PPC_GOT_TLSGD16 79
|
||||
#define R_PPC_GOT_TLSGD16_LO 80
|
||||
#define R_PPC_GOT_TLSGD16_HI 81
|
||||
#define R_PPC_GOT_TLSGD16_HA 82
|
||||
#define R_PPC_GOT_TLSLD16 83
|
||||
#define R_PPC_GOT_TLSLD16_LO 84
|
||||
#define R_PPC_GOT_TLSLD16_HI 85
|
||||
#define R_PPC_GOT_TLSLD16_HA 86
|
||||
#define R_PPC_GOT_TPREL16 87
|
||||
#define R_PPC_GOT_TPREL16_LO 88
|
||||
#define R_PPC_GOT_TPREL16_HI 89
|
||||
#define R_PPC_GOT_TPREL16_HA 90
|
||||
|
||||
/*
|
||||
* The remaining relocs are from the Embedded ELF ABI, and are not in the
|
||||
* SVR4 ELF ABI.
|
||||
*/
|
||||
|
||||
#define R_PPC_EMB_NADDR32 101
|
||||
#define R_PPC_EMB_NADDR16 102
|
||||
#define R_PPC_EMB_NADDR16_LO 103
|
||||
#define R_PPC_EMB_NADDR16_HI 104
|
||||
#define R_PPC_EMB_NADDR16_HA 105
|
||||
#define R_PPC_EMB_SDAI16 106
|
||||
#define R_PPC_EMB_SDA2I16 107
|
||||
#define R_PPC_EMB_SDA2REL 108
|
||||
#define R_PPC_EMB_SDA21 109
|
||||
#define R_PPC_EMB_MRKREF 110
|
||||
#define R_PPC_EMB_RELSEC16 111
|
||||
#define R_PPC_EMB_RELST_LO 112
|
||||
#define R_PPC_EMB_RELST_HI 113
|
||||
#define R_PPC_EMB_RELST_HA 114
|
||||
#define R_PPC_EMB_BIT_FLD 115
|
||||
#define R_PPC_EMB_RELSDA 116
|
||||
|
||||
#define R_SPARC_NONE 0
|
||||
#define R_SPARC_8 1
|
||||
#define R_SPARC_16 2
|
||||
#define R_SPARC_32 3
|
||||
#define R_SPARC_DISP8 4
|
||||
#define R_SPARC_DISP16 5
|
||||
#define R_SPARC_DISP32 6
|
||||
#define R_SPARC_WDISP30 7
|
||||
#define R_SPARC_WDISP22 8
|
||||
#define R_SPARC_HI22 9
|
||||
#define R_SPARC_22 10
|
||||
#define R_SPARC_13 11
|
||||
#define R_SPARC_LO10 12
|
||||
#define R_SPARC_GOT10 13
|
||||
#define R_SPARC_GOT13 14
|
||||
#define R_SPARC_GOT22 15
|
||||
#define R_SPARC_PC10 16
|
||||
#define R_SPARC_PC22 17
|
||||
#define R_SPARC_WPLT30 18
|
||||
#define R_SPARC_COPY 19
|
||||
#define R_SPARC_GLOB_DAT 20
|
||||
#define R_SPARC_JMP_SLOT 21
|
||||
#define R_SPARC_RELATIVE 22
|
||||
#define R_SPARC_UA32 23
|
||||
#define R_SPARC_PLT32 24
|
||||
#define R_SPARC_HIPLT22 25
|
||||
#define R_SPARC_LOPLT10 26
|
||||
#define R_SPARC_PCPLT32 27
|
||||
#define R_SPARC_PCPLT22 28
|
||||
#define R_SPARC_PCPLT10 29
|
||||
#define R_SPARC_10 30
|
||||
#define R_SPARC_11 31
|
||||
#define R_SPARC_64 32
|
||||
#define R_SPARC_OLO10 33
|
||||
#define R_SPARC_HH22 34
|
||||
#define R_SPARC_HM10 35
|
||||
#define R_SPARC_LM22 36
|
||||
#define R_SPARC_PC_HH22 37
|
||||
#define R_SPARC_PC_HM10 38
|
||||
#define R_SPARC_PC_LM22 39
|
||||
#define R_SPARC_WDISP16 40
|
||||
#define R_SPARC_WDISP19 41
|
||||
#define R_SPARC_GLOB_JMP 42
|
||||
#define R_SPARC_7 43
|
||||
#define R_SPARC_5 44
|
||||
#define R_SPARC_6 45
|
||||
#define R_SPARC_DISP64 46
|
||||
#define R_SPARC_PLT64 47
|
||||
#define R_SPARC_HIX22 48
|
||||
#define R_SPARC_LOX10 49
|
||||
#define R_SPARC_H44 50
|
||||
#define R_SPARC_M44 51
|
||||
#define R_SPARC_L44 52
|
||||
#define R_SPARC_REGISTER 53
|
||||
#define R_SPARC_UA64 54
|
||||
#define R_SPARC_UA16 55
|
||||
#define R_SPARC_TLS_GD_HI22 56
|
||||
#define R_SPARC_TLS_GD_LO10 57
|
||||
#define R_SPARC_TLS_GD_ADD 58
|
||||
#define R_SPARC_TLS_GD_CALL 59
|
||||
#define R_SPARC_TLS_LDM_HI22 60
|
||||
#define R_SPARC_TLS_LDM_LO10 61
|
||||
#define R_SPARC_TLS_LDM_ADD 62
|
||||
#define R_SPARC_TLS_LDM_CALL 63
|
||||
#define R_SPARC_TLS_LDO_HIX22 64
|
||||
#define R_SPARC_TLS_LDO_LOX10 65
|
||||
#define R_SPARC_TLS_LDO_ADD 66
|
||||
#define R_SPARC_TLS_IE_HI22 67
|
||||
#define R_SPARC_TLS_IE_LO10 68
|
||||
#define R_SPARC_TLS_IE_LD 69
|
||||
#define R_SPARC_TLS_IE_LDX 70
|
||||
#define R_SPARC_TLS_IE_ADD 71
|
||||
#define R_SPARC_TLS_LE_HIX22 72
|
||||
#define R_SPARC_TLS_LE_LOX10 73
|
||||
#define R_SPARC_TLS_DTPMOD32 74
|
||||
#define R_SPARC_TLS_DTPMOD64 75
|
||||
#define R_SPARC_TLS_DTPOFF32 76
|
||||
#define R_SPARC_TLS_DTPOFF64 77
|
||||
#define R_SPARC_TLS_TPOFF32 78
|
||||
#define R_SPARC_TLS_TPOFF64 79
|
||||
|
||||
#define R_X86_64_NONE 0 /* No relocation. */
|
||||
#define R_X86_64_64 1 /* Add 64 bit symbol value. */
|
||||
#define R_X86_64_PC32 2 /* PC-relative 32 bit signed sym value. */
|
||||
#define R_X86_64_GOT32 3 /* PC-relative 32 bit GOT offset. */
|
||||
#define R_X86_64_PLT32 4 /* PC-relative 32 bit PLT offset. */
|
||||
#define R_X86_64_COPY 5 /* Copy data from shared object. */
|
||||
#define R_X86_64_GLOB_DAT 6 /* Set GOT entry to data address. */
|
||||
#define R_X86_64_JMP_SLOT 7 /* Set GOT entry to code address. */
|
||||
#define R_X86_64_RELATIVE 8 /* Add load address of shared object. */
|
||||
#define R_X86_64_GOTPCREL 9 /* Add 32 bit signed pcrel offset to GOT. */
|
||||
#define R_X86_64_32 10 /* Add 32 bit zero extended symbol value */
|
||||
#define R_X86_64_32S 11 /* Add 32 bit sign extended symbol value */
|
||||
#define R_X86_64_16 12 /* Add 16 bit zero extended symbol value */
|
||||
#define R_X86_64_PC16 13 /* Add 16 bit signed extended pc relative symbol value */
|
||||
#define R_X86_64_8 14 /* Add 8 bit zero extended symbol value */
|
||||
#define R_X86_64_PC8 15 /* Add 8 bit signed extended pc relative symbol value */
|
||||
#define R_X86_64_DTPMOD64 16 /* ID of module containing symbol */
|
||||
#define R_X86_64_DTPOFF64 17 /* Offset in TLS block */
|
||||
#define R_X86_64_TPOFF64 18 /* Offset in static TLS block */
|
||||
#define R_X86_64_TLSGD 19 /* PC relative offset to GD GOT entry */
|
||||
#define R_X86_64_TLSLD 20 /* PC relative offset to LD GOT entry */
|
||||
#define R_X86_64_DTPOFF32 21 /* Offset in TLS block */
|
||||
#define R_X86_64_GOTTPOFF 22 /* PC relative offset to IE GOT entry */
|
||||
#define R_X86_64_TPOFF32 23 /* Offset in static TLS block */
|
||||
#define R_X86_64_IRELATIVE 37
|
||||
|
||||
|
||||
#endif /* !_SYS_ELF_COMMON_H_ */
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,28 @@
|
||||
library ieee;
|
||||
use ieee.std_logic_1164.all;
|
||||
|
||||
entity s25fl128s is
|
||||
generic (
|
||||
LongTimming : boolean := true;
|
||||
TimingModel : string := "";
|
||||
tdevice_PU : time := 10 ns;
|
||||
tdevice_PP256 : time := 10 ns;
|
||||
tdevice_PP512 : time := 10 ns;
|
||||
tdevice_WRR : time := 10 ns;
|
||||
UserPreload : boolean := false
|
||||
);
|
||||
PORT (
|
||||
SI : inout std_ulogic := 'Z';
|
||||
SO : inout std_ulogic := 'Z';
|
||||
SCK : in std_ulogic := 'Z';
|
||||
CSNeg : in std_ulogic := 'Z';
|
||||
RSTNeg : in std_ulogic := 'Z';
|
||||
WPNeg : inout std_ulogic := 'Z';
|
||||
HOLDNeg : inout std_ulogic := 'Z'
|
||||
);
|
||||
end entity;
|
||||
|
||||
architecture behaviour of s25fl128s is
|
||||
begin
|
||||
SO <= '1';
|
||||
end architecture;
|
@ -0,0 +1,601 @@
|
||||
library ieee;
|
||||
use ieee.std_logic_1164.all;
|
||||
use ieee.numeric_std.all;
|
||||
|
||||
library work;
|
||||
use work.wishbone_types.all;
|
||||
|
||||
entity spi_flash_ctrl is
|
||||
generic (
|
||||
-- Default config for auto-mode
|
||||
DEF_CLK_DIV : natural := 2; -- Clock divider SCK = CLK/((CLK_DIV+1)*2)
|
||||
DEF_QUAD_READ : boolean := false; -- Use quad read with 8 clk dummy
|
||||
|
||||
-- Number of data lines (1=MISO/MOSI, otherwise 2 or 4)
|
||||
DATA_LINES : positive := 1
|
||||
);
|
||||
port (
|
||||
clk : in std_ulogic;
|
||||
rst : in std_ulogic;
|
||||
|
||||
-- Wishbone ports:
|
||||
wb_in : in wb_io_master_out;
|
||||
wb_out : out wb_io_slave_out;
|
||||
|
||||
-- Wishbone extra selects
|
||||
wb_sel_reg : in std_ulogic;
|
||||
wb_sel_map : in std_ulogic;
|
||||
|
||||
-- SPI port
|
||||
sck : out std_ulogic;
|
||||
cs_n : out std_ulogic;
|
||||
sdat_o : out std_ulogic_vector(DATA_LINES-1 downto 0);
|
||||
sdat_oe : out std_ulogic_vector(DATA_LINES-1 downto 0);
|
||||
sdat_i : in std_ulogic_vector(DATA_LINES-1 downto 0)
|
||||
);
|
||||
end entity spi_flash_ctrl;
|
||||
|
||||
architecture rtl of spi_flash_ctrl is
|
||||
|
||||
-- Register indices
|
||||
constant SPI_REG_BITS : positive := 3;
|
||||
|
||||
-- Register addresses (matches wishbone addr downto 2, ie, 4 bytes per reg)
|
||||
constant SPI_REG_DATA : std_ulogic_vector(SPI_REG_BITS-1 downto 0) := "000";
|
||||
constant SPI_REG_CTRL : std_ulogic_vector(SPI_REG_BITS-1 downto 0) := "001";
|
||||
constant SPI_REG_AUTO_CFG : std_ulogic_vector(SPI_REG_BITS-1 downto 0) := "010";
|
||||
constant SPI_REG_INVALID : std_ulogic_vector(SPI_REG_BITS-1 downto 0) := "111";
|
||||
|
||||
-- Control register
|
||||
signal ctrl_reg : std_ulogic_vector(15 downto 0) := (others => '0');
|
||||
alias ctrl_reset : std_ulogic is ctrl_reg(0);
|
||||
alias ctrl_cs : std_ulogic is ctrl_reg(1);
|
||||
alias ctrl_rsrv1 : std_ulogic is ctrl_reg(2);
|
||||
alias ctrl_rsrv2 : std_ulogic is ctrl_reg(3);
|
||||
alias ctrl_div : std_ulogic_vector(7 downto 0) is ctrl_reg(15 downto 8);
|
||||
|
||||
-- Auto mode config register
|
||||
signal auto_cfg_reg : std_ulogic_vector(29 downto 0) := (others => '0');
|
||||
alias auto_cfg_cmd : std_ulogic_vector(7 downto 0) is auto_cfg_reg(7 downto 0);
|
||||
alias auto_cfg_dummies : std_ulogic_vector(2 downto 0) is auto_cfg_reg(10 downto 8);
|
||||
alias auto_cfg_mode : std_ulogic_vector(1 downto 0) is auto_cfg_reg(12 downto 11);
|
||||
alias auto_cfg_addr4 : std_ulogic is auto_cfg_reg(13);
|
||||
alias auto_cfg_rsrv1 : std_ulogic is auto_cfg_reg(14);
|
||||
alias auto_cfg_rsrv2 : std_ulogic is auto_cfg_reg(15);
|
||||
alias auto_cfg_div : std_ulogic_vector(7 downto 0) is auto_cfg_reg(23 downto 16);
|
||||
alias auto_cfg_cstout : std_ulogic_vector(5 downto 0) is auto_cfg_reg(29 downto 24);
|
||||
|
||||
-- Constants below match top 2 bits of rxtx "mode"
|
||||
constant SPI_AUTO_CFG_MODE_SINGLE : std_ulogic_vector(1 downto 0) := "00";
|
||||
constant SPI_AUTO_CFG_MODE_DUAL : std_ulogic_vector(1 downto 0) := "10";
|
||||
constant SPI_AUTO_CFG_MODE_QUAD : std_ulogic_vector(1 downto 0) := "11";
|
||||
|
||||
-- Signals to rxtx
|
||||
signal cmd_valid : std_ulogic;
|
||||
signal cmd_clk_div : natural range 0 to 255;
|
||||
signal cmd_mode : std_ulogic_vector(2 downto 0);
|
||||
signal cmd_ready : std_ulogic;
|
||||
signal d_clks : std_ulogic_vector(2 downto 0);
|
||||
signal d_rx : std_ulogic_vector(7 downto 0);
|
||||
signal d_tx : std_ulogic_vector(7 downto 0);
|
||||
signal d_ack : std_ulogic;
|
||||
signal bus_idle : std_ulogic;
|
||||
|
||||
-- Latch to track that we have a pending read
|
||||
signal pending_read : std_ulogic;
|
||||
|
||||
-- Wishbone latches
|
||||
signal wb_req : wb_io_master_out;
|
||||
signal wb_stash : wb_io_master_out;
|
||||
signal wb_rsp : wb_io_slave_out;
|
||||
|
||||
-- Wishbone decode
|
||||
signal wb_valid : std_ulogic;
|
||||
signal wb_reg_valid : std_ulogic;
|
||||
signal wb_reg_dat_v : std_ulogic;
|
||||
signal wb_map_valid : std_ulogic;
|
||||
signal wb_reg : std_ulogic_vector(SPI_REG_BITS-1 downto 0);
|
||||
|
||||
-- Auto mode clock counts XXX FIXME: Look at reasonable values based
|
||||
-- on system clock maybe ? Or make them programmable.
|
||||
constant CS_DELAY_ASSERT : integer := 1; -- CS low to cmd
|
||||
constant CS_DELAY_RECOVERY : integer := 10; -- CS high to CS low
|
||||
constant DEFAULT_CS_TIMEOUT : integer := 32;
|
||||
|
||||
-- Automatic mode state
|
||||
type auto_state_t is (AUTO_IDLE, AUTO_CS_ON, AUTO_CMD,
|
||||
AUTO_ADR0, AUTO_ADR1, AUTO_ADR2, AUTO_ADR3,
|
||||
AUTO_DUMMY,
|
||||
AUTO_DAT0, AUTO_DAT1, AUTO_DAT2, AUTO_DAT3,
|
||||
AUTO_DAT0_DATA, AUTO_DAT1_DATA, AUTO_DAT2_DATA, AUTO_DAT3_DATA,
|
||||
AUTO_SEND_ACK, AUTO_WAIT_REQ, AUTO_RECOVERY);
|
||||
-- Automatic mode signals
|
||||
signal auto_cs : std_ulogic;
|
||||
signal auto_cmd_valid : std_ulogic;
|
||||
signal auto_cmd_mode : std_ulogic_vector(2 downto 0);
|
||||
signal auto_d_txd : std_ulogic_vector(7 downto 0);
|
||||
signal auto_d_clks : std_ulogic_vector(2 downto 0);
|
||||
signal auto_data_next : std_ulogic_vector(wb_out.dat'left downto 0);
|
||||
signal auto_cnt_next : integer range 0 to 63;
|
||||
signal auto_ack : std_ulogic;
|
||||
signal auto_next : auto_state_t;
|
||||
signal auto_lad_next : std_ulogic_vector(31 downto 0);
|
||||
signal auto_latch_adr : std_ulogic;
|
||||
|
||||
-- Automatic mode latches
|
||||
signal auto_data : std_ulogic_vector(wb_out.dat'left downto 0) := (others => '0');
|
||||
signal auto_cnt : integer range 0 to 63 := 0;
|
||||
signal auto_state : auto_state_t := AUTO_IDLE;
|
||||
signal auto_last_addr : std_ulogic_vector(31 downto 0);
|
||||
|
||||
begin
|
||||
|
||||
-- Instanciate low level shifter
|
||||
spi_rxtx: entity work.spi_rxtx
|
||||
generic map (
|
||||
DATA_LINES => DATA_LINES
|
||||
)
|
||||
port map(
|
||||
rst => rst,
|
||||
clk => clk,
|
||||
clk_div_i => cmd_clk_div,
|
||||
cmd_valid_i => cmd_valid,
|
||||
cmd_ready_o => cmd_ready,
|
||||
cmd_mode_i => cmd_mode,
|
||||
cmd_clks_i => d_clks,
|
||||
cmd_txd_i => d_tx,
|
||||
d_rxd_o => d_rx,
|
||||
d_ack_o => d_ack,
|
||||
bus_idle_o => bus_idle,
|
||||
sck => sck,
|
||||
sdat_o => sdat_o,
|
||||
sdat_oe => sdat_oe,
|
||||
sdat_i => sdat_i
|
||||
);
|
||||
|
||||
-- Valid wb command
|
||||
wb_valid <= wb_req.stb and wb_req.cyc;
|
||||
wb_reg_valid <= wb_valid and wb_sel_reg;
|
||||
wb_map_valid <= wb_valid and wb_sel_map;
|
||||
|
||||
-- Register decode. For map accesses, make it look like "invalid"
|
||||
wb_reg <= wb_req.adr(SPI_REG_BITS+1 downto 2) when wb_reg_valid else SPI_REG_INVALID;
|
||||
|
||||
-- Shortcut because we test that a lot: data register access
|
||||
wb_reg_dat_v <= '1' when wb_reg = SPI_REG_DATA else '0';
|
||||
|
||||
-- Wishbone request -> SPI request
|
||||
wb_request_sync: process(clk)
|
||||
begin
|
||||
if rising_edge(clk) then
|
||||
-- We need to latch whether a read is in progress to block
|
||||
-- a subsequent store, otherwise the acks will collide.
|
||||
--
|
||||
-- We are heavy handed and force a wait for an idle bus if
|
||||
-- a store is behind a load. Shouldn't happen with flashes
|
||||
-- in practice.
|
||||
--
|
||||
if cmd_valid = '1' and cmd_ready = '1' then
|
||||
pending_read <= '1';
|
||||
elsif bus_idle = '1' then
|
||||
pending_read <= '0';
|
||||
end if;
|
||||
end if;
|
||||
end process;
|
||||
|
||||
wb_request_comb: process(all)
|
||||
begin
|
||||
if ctrl_cs = '1' then
|
||||
-- Data register access (see wb_request_sync)
|
||||
cmd_valid <= wb_reg_dat_v and not (pending_read and wb_req.we);
|
||||
|
||||
-- Clock divider from control reg
|
||||
cmd_clk_div <= to_integer(unsigned(ctrl_div));
|
||||
|
||||
-- Mode based on sel
|
||||
if wb_req.sel = "0010" then
|
||||
-- dual mode
|
||||
cmd_mode <= "10" & wb_req.we;
|
||||
d_clks <= "011";
|
||||
elsif wb_req.sel = "0100" then
|
||||
-- quad mode
|
||||
cmd_mode <= "11" & wb_req.we;
|
||||
d_clks <= "001";
|
||||
else
|
||||
-- single bit
|
||||
cmd_mode <= "01" & wb_req.we;
|
||||
d_clks <= "111";
|
||||
end if;
|
||||
d_tx <= wb_req.dat(7 downto 0);
|
||||
cs_n <= not ctrl_cs;
|
||||
else
|
||||
cmd_valid <= auto_cmd_valid;
|
||||
cmd_mode <= auto_cmd_mode;
|
||||
cmd_clk_div <= to_integer(unsigned(auto_cfg_div));
|
||||
d_tx <= auto_d_txd;
|
||||
d_clks <= auto_d_clks;
|
||||
cs_n <= not auto_cs;
|
||||
end if;
|
||||
end process;
|
||||
|
||||
-- Generate wishbone responses
|
||||
--
|
||||
-- Note: wb_out and wb_in should only appear in this synchronous process
|
||||
--
|
||||
-- Everything else should work on wb_req and wb_rsp
|
||||
wb_response_sync: process(clk)
|
||||
begin
|
||||
if rising_edge(clk) then
|
||||
if rst = '1' then
|
||||
wb_out.ack <= '0';
|
||||
wb_out.stall <= '0';
|
||||
else
|
||||
-- Latch wb responses as well for 1 cycle. Stall is updated
|
||||
-- below
|
||||
wb_out <= wb_rsp;
|
||||
|
||||
-- Implement a stash buffer. If we are stalled and stash is
|
||||
-- free, fill it up. This will generate a WB stall on the
|
||||
-- next cycle.
|
||||
if wb_rsp.stall = '1' and wb_out.stall = '0' and
|
||||
wb_in.cyc = '1' and wb_in.stb = '1' then
|
||||
wb_stash <= wb_in;
|
||||
wb_out.stall <= '1';
|
||||
end if;
|
||||
|
||||
-- We aren't stalled, see what we can do
|
||||
if wb_rsp.stall = '0' then
|
||||
if wb_out.stall = '1' then
|
||||
-- Something in stash ! use it and clear stash
|
||||
wb_req <= wb_stash;
|
||||
wb_out.stall <= '0';
|
||||
else
|
||||
-- Nothing in stash, grab request from WB
|
||||
if wb_in.cyc = '1' then
|
||||
wb_req <= wb_in;
|
||||
else
|
||||
wb_req.cyc <= wb_in.cyc;
|
||||
wb_req.stb <= wb_in.stb;
|
||||
end if;
|
||||
end if;
|
||||
end if;
|
||||
end if;
|
||||
end if;
|
||||
end process;
|
||||
|
||||
wb_response_comb: process(all)
|
||||
begin
|
||||
-- Defaults
|
||||
wb_rsp.ack <= '0';
|
||||
wb_rsp.dat <= x"00" & d_rx & d_rx & d_rx;
|
||||
wb_rsp.stall <= '0';
|
||||
|
||||
-- Depending on the access type...
|
||||
if wb_map_valid = '1' then
|
||||
|
||||
-- Memory map access
|
||||
wb_rsp.stall <= not auto_ack; -- XXX FIXME: Allow pipelining
|
||||
wb_rsp.ack <= auto_ack;
|
||||
wb_rsp.dat <= auto_data;
|
||||
|
||||
elsif ctrl_cs = '1' and wb_reg = SPI_REG_DATA then
|
||||
|
||||
-- Data register in manual mode
|
||||
--
|
||||
-- Stall stores if there's a pending read to avoid
|
||||
-- acks colliding. Otherwise accept all accesses
|
||||
-- immediately if rxtx is ready.
|
||||
--
|
||||
-- Note: This must match the logic setting cmd_valid
|
||||
-- in wb_request_comb.
|
||||
--
|
||||
-- We also ack stores immediately when accepted. Loads
|
||||
-- are handled separately further down.
|
||||
--
|
||||
if wb_req.we = '1' and pending_read = '1' then
|
||||
wb_rsp.stall <= '1';
|
||||
else
|
||||
wb_rsp.ack <= wb_req.we and cmd_ready;
|
||||
wb_rsp.stall <= not cmd_ready;
|
||||
end if;
|
||||
|
||||
-- Note: loads acks are handled elsewhere
|
||||
elsif wb_reg_valid = '1' then
|
||||
|
||||
-- Normal register access
|
||||
--
|
||||
-- Normally single cycle but ensure any auto-mode or manual
|
||||
-- operation is complete first
|
||||
--
|
||||
if auto_state = AUTO_IDLE and bus_idle = '1' then
|
||||
wb_rsp.ack <= '1';
|
||||
wb_rsp.stall <= '0';
|
||||
|
||||
case wb_reg is
|
||||
when SPI_REG_CTRL =>
|
||||
wb_rsp.dat <= (ctrl_reg'range => ctrl_reg, others => '0');
|
||||
when SPI_REG_AUTO_CFG =>
|
||||
wb_rsp.dat <= (auto_cfg_reg'range => auto_cfg_reg, others => '0');
|
||||
when others => null;
|
||||
end case;
|
||||
else
|
||||
wb_rsp.stall <= '1';
|
||||
end if;
|
||||
end if;
|
||||
|
||||
-- For loads in manual mode, we've accepted the command early
|
||||
-- so none of the above connditions might be true. We thus need
|
||||
-- to send the ack whenever we are getting it from rxtx.
|
||||
--
|
||||
-- This shouldn't collide with any of the above acks because we hold
|
||||
-- normal register accesses and stores when there is a pending
|
||||
-- load or the bus is busy.
|
||||
--
|
||||
if ctrl_cs = '1' and d_ack = '1' then
|
||||
assert pending_read = '1' report "d_ack without pending read !" severity failure;
|
||||
wb_rsp.ack <= '1';
|
||||
end if;
|
||||
end process;
|
||||
|
||||
-- Automatic mode state machine
|
||||
auto_sync: process(clk)
|
||||
begin
|
||||
if rising_edge(clk) then
|
||||
auto_state <= auto_next;
|
||||
auto_cnt <= auto_cnt_next;
|
||||
auto_data <= auto_data_next;
|
||||
if auto_latch_adr = '1' then
|
||||
auto_last_addr <= auto_lad_next;
|
||||
end if;
|
||||
end if;
|
||||
end process;
|
||||
|
||||
auto_comb: process(all)
|
||||
variable addr : std_ulogic_vector(31 downto 0);
|
||||
variable req_is_next : boolean;
|
||||
|
||||
function mode_to_clks(mode: std_ulogic_vector(1 downto 0)) return std_ulogic_vector is
|
||||
begin
|
||||
if mode = SPI_AUTO_CFG_MODE_QUAD then
|
||||
return "001";
|
||||
elsif mode = SPI_AUTO_CFG_MODE_DUAL then
|
||||
return "011";
|
||||
else
|
||||
return "111";
|
||||
end if;
|
||||
end function;
|
||||
begin
|
||||
-- Default outputs
|
||||
auto_ack <= '0';
|
||||
auto_cs <= '0';
|
||||
auto_cmd_valid <= '0';
|
||||
auto_d_txd <= x"00";
|
||||
auto_cmd_mode <= "001";
|
||||
auto_d_clks <= "111";
|
||||
auto_latch_adr <= '0';
|
||||
|
||||
-- Default next state
|
||||
auto_next <= auto_state;
|
||||
auto_cnt_next <= auto_cnt;
|
||||
auto_data_next <= auto_data;
|
||||
|
||||
-- Convert wishbone address into a flash address. We mask
|
||||
-- off the 4 top address bits to get rid of the "f" there.
|
||||
addr := "00" & wb_req.adr(29 downto 2) & "00";
|
||||
|
||||
-- Calculate the next address for store & compare later
|
||||
auto_lad_next <= std_ulogic_vector(unsigned(addr) + 4);
|
||||
|
||||
-- Match incoming request address with next address
|
||||
req_is_next := addr = auto_last_addr;
|
||||
|
||||
-- XXX TODO:
|
||||
-- - Support < 32-bit accesses
|
||||
|
||||
-- Reset
|
||||
if rst = '1' or ctrl_reset = '1' then
|
||||
auto_cs <= '0';
|
||||
auto_cnt_next <= 0;
|
||||
auto_next <= AUTO_IDLE;
|
||||
else
|
||||
-- Run counter
|
||||
if auto_cnt /= 0 then
|
||||
auto_cnt_next <= auto_cnt - 1;
|
||||
end if;
|
||||
|
||||
-- Automatic CS is set whenever state isn't IDLE or RECOVERY
|
||||
if auto_state /= AUTO_IDLE and
|
||||
auto_state /= AUTO_RECOVERY then
|
||||
auto_cs <= '1';
|
||||
end if;
|
||||
|
||||
-- State machine
|
||||
case auto_state is
|
||||
when AUTO_IDLE =>
|
||||
-- Access to the memory map only when manual CS isn't set
|
||||
if wb_map_valid = '1' and ctrl_cs = '0' then
|
||||
-- Ignore writes, we don't support them yet
|
||||
if wb_req.we = '1' then
|
||||
auto_ack <= '1';
|
||||
else
|
||||
-- Start machine with CS assertion delay
|
||||
auto_next <= AUTO_CS_ON;
|
||||
auto_cnt_next <= CS_DELAY_ASSERT;
|
||||
end if;
|
||||
end if;
|
||||
when AUTO_CS_ON =>
|
||||
if auto_cnt = 0 then
|
||||
-- CS asserted long enough, send command
|
||||
auto_next <= AUTO_CMD;
|
||||
end if;
|
||||
when AUTO_CMD =>
|
||||
auto_d_txd <= auto_cfg_cmd;
|
||||
auto_cmd_valid <= '1';
|
||||
if cmd_ready = '1' then
|
||||
if auto_cfg_addr4 = '1' then
|
||||
auto_next <= AUTO_ADR3;
|
||||
else
|
||||
auto_next <= AUTO_ADR2;
|
||||
end if;
|
||||
end if;
|
||||
when AUTO_ADR3 =>
|
||||
auto_d_txd <= addr(31 downto 24);
|
||||
auto_cmd_valid <= '1';
|
||||
if cmd_ready = '1' then
|
||||
auto_next <= AUTO_ADR2;
|
||||
end if;
|
||||
when AUTO_ADR2 =>
|
||||
auto_d_txd <= addr(23 downto 16);
|
||||
auto_cmd_valid <= '1';
|
||||
if cmd_ready = '1' then
|
||||
auto_next <= AUTO_ADR1;
|
||||
end if;
|
||||
when AUTO_ADR1 =>
|
||||
auto_d_txd <= addr(15 downto 8);
|
||||
auto_cmd_valid <= '1';
|
||||
if cmd_ready = '1' then
|
||||
auto_next <= AUTO_ADR0;
|
||||
end if;
|
||||
when AUTO_ADR0 =>
|
||||
auto_d_txd <= addr(7 downto 0);
|
||||
auto_cmd_valid <= '1';
|
||||
if cmd_ready = '1' then
|
||||
if auto_cfg_dummies = "000" then
|
||||
auto_next <= AUTO_DAT0;
|
||||
else
|
||||
auto_next <= AUTO_DUMMY;
|
||||
end if;
|
||||
end if;
|
||||
when AUTO_DUMMY =>
|
||||
auto_cmd_valid <= '1';
|
||||
auto_d_clks <= auto_cfg_dummies;
|
||||
if cmd_ready = '1' then
|
||||
auto_next <= AUTO_DAT0;
|
||||
end if;
|
||||
when AUTO_DAT0 =>
|
||||
auto_cmd_valid <= '1';
|
||||
auto_cmd_mode <= auto_cfg_mode & "0";
|
||||
auto_d_clks <= mode_to_clks(auto_cfg_mode);
|
||||
if cmd_ready = '1' then
|
||||
auto_next <= AUTO_DAT0_DATA;
|
||||
end if;
|
||||
when AUTO_DAT0_DATA =>
|
||||
if d_ack = '1' then
|
||||
auto_data_next(7 downto 0) <= d_rx;
|
||||
auto_next <= AUTO_DAT1;
|
||||
end if;
|
||||
when AUTO_DAT1 =>
|
||||
auto_cmd_valid <= '1';
|
||||
auto_cmd_mode <= auto_cfg_mode & "0";
|
||||
auto_d_clks <= mode_to_clks(auto_cfg_mode);
|
||||
if cmd_ready = '1' then
|
||||
auto_next <= AUTO_DAT1_DATA;
|
||||
end if;
|
||||
when AUTO_DAT1_DATA =>
|
||||
if d_ack = '1' then
|
||||
auto_data_next(15 downto 8) <= d_rx;
|
||||
auto_next <= AUTO_DAT2;
|
||||
end if;
|
||||
when AUTO_DAT2 =>
|
||||
auto_cmd_valid <= '1';
|
||||
auto_cmd_mode <= auto_cfg_mode & "0";
|
||||
auto_d_clks <= mode_to_clks(auto_cfg_mode);
|
||||
if cmd_ready = '1' then
|
||||
auto_next <= AUTO_DAT2_DATA;
|
||||
end if;
|
||||
when AUTO_DAT2_DATA =>
|
||||
if d_ack = '1' then
|
||||
auto_data_next(23 downto 16) <= d_rx;
|
||||
auto_next <= AUTO_DAT3;
|
||||
end if;
|
||||
when AUTO_DAT3 =>
|
||||
auto_cmd_valid <= '1';
|
||||
auto_cmd_mode <= auto_cfg_mode & "0";
|
||||
auto_d_clks <= mode_to_clks(auto_cfg_mode);
|
||||
if cmd_ready = '1' then
|
||||
auto_next <= AUTO_DAT3_DATA;
|
||||
end if;
|
||||
when AUTO_DAT3_DATA =>
|
||||
if d_ack = '1' then
|
||||
auto_data_next(31 downto 24) <= d_rx;
|
||||
auto_next <= AUTO_SEND_ACK;
|
||||
auto_latch_adr <= '1';
|
||||
end if;
|
||||
when AUTO_SEND_ACK =>
|
||||
auto_ack <= '1';
|
||||
auto_cnt_next <= to_integer(unsigned(auto_cfg_cstout));
|
||||
auto_next <= AUTO_WAIT_REQ;
|
||||
when AUTO_WAIT_REQ =>
|
||||
-- Incoming bus request we can take ? Otherwise do we need
|
||||
-- to cancel the wait ?
|
||||
if wb_map_valid = '1' and req_is_next and wb_req.we = '0' then
|
||||
auto_next <= AUTO_DAT0;
|
||||
elsif wb_map_valid = '1' or wb_reg_valid = '1' or auto_cnt = 0 then
|
||||
-- This means we can drop the CS right on the next clock.
|
||||
-- We make the assumption here that the two cycles min
|
||||
-- spent in AUTO_SEND_ACK and AUTO_WAIT_REQ are long enough
|
||||
-- to deassert CS. If that doesn't hold true in the future,
|
||||
-- add another state.
|
||||
auto_cnt_next <= CS_DELAY_RECOVERY;
|
||||
auto_next <= AUTO_RECOVERY;
|
||||
end if;
|
||||
when AUTO_RECOVERY =>
|
||||
if auto_cnt = 0 then
|
||||
auto_next <= AUTO_IDLE;
|
||||
end if;
|
||||
end case;
|
||||
end if;
|
||||
end process;
|
||||
|
||||
-- Register write sync machine
|
||||
reg_write: process(clk)
|
||||
function reg_wr(r : in std_ulogic_vector;
|
||||
w : in wb_io_master_out) return std_ulogic_vector is
|
||||
variable b : natural range 0 to 31;
|
||||
variable t : std_ulogic_vector(r'range);
|
||||
begin
|
||||
t := r;
|
||||
for i in r'range loop
|
||||
if w.sel(i/8) = '1' then
|
||||
t(i) := w.dat(i);
|
||||
end if;
|
||||
end loop;
|
||||
return t;
|
||||
end function;
|
||||
begin
|
||||
if rising_edge(clk) then
|
||||
-- Reset auto-clear
|
||||
if rst = '1' or ctrl_reset = '1' then
|
||||
ctrl_reset <= '0';
|
||||
ctrl_cs <= '0';
|
||||
ctrl_rsrv1 <= '0';
|
||||
ctrl_rsrv2 <= '0';
|
||||
ctrl_div <= std_ulogic_vector(to_unsigned(DEF_CLK_DIV, 8));
|
||||
if DEF_QUAD_READ then
|
||||
auto_cfg_cmd <= x"6b";
|
||||
auto_cfg_dummies <= "111";
|
||||
auto_cfg_mode <= SPI_AUTO_CFG_MODE_QUAD;
|
||||
else
|
||||
auto_cfg_cmd <= x"03";
|
||||
auto_cfg_dummies <= "000";
|
||||
auto_cfg_mode <= SPI_AUTO_CFG_MODE_SINGLE;
|
||||
end if;
|
||||
auto_cfg_addr4 <= '0';
|
||||
auto_cfg_rsrv1 <= '0';
|
||||
auto_cfg_rsrv2 <= '0';
|
||||
auto_cfg_div <= std_ulogic_vector(to_unsigned(DEF_CLK_DIV, 8));
|
||||
auto_cfg_cstout <= std_ulogic_vector(to_unsigned(DEFAULT_CS_TIMEOUT, 6));
|
||||
end if;
|
||||
|
||||
if wb_reg_valid = '1' and wb_req.we = '1' and auto_state = AUTO_IDLE and bus_idle = '1' then
|
||||
if wb_reg = SPI_REG_CTRL then
|
||||
ctrl_reg <= reg_wr(ctrl_reg, wb_req);
|
||||
end if;
|
||||
if wb_reg = SPI_REG_AUTO_CFG then
|
||||
auto_cfg_reg <= reg_wr(auto_cfg_reg, wb_req);
|
||||
end if;
|
||||
end if;
|
||||
end if;
|
||||
end process;
|
||||
|
||||
end architecture;
|
@ -0,0 +1,386 @@
|
||||
library ieee;
|
||||
use ieee.std_logic_1164.all;
|
||||
use ieee.numeric_std.all;
|
||||
|
||||
library work;
|
||||
use work.wishbone_types.all;
|
||||
|
||||
entity spi_rxtx is
|
||||
generic (
|
||||
DATA_LINES : positive := 1; -- Number of data lines
|
||||
-- 1=MISO/MOSI, otherwise 2 or 4
|
||||
INPUT_DELAY : natural range 0 to 1 := 1 -- Delay latching of SPI input:
|
||||
-- 0=no delay, 1=clk/2
|
||||
);
|
||||
port (
|
||||
clk : in std_ulogic;
|
||||
rst : in std_ulogic;
|
||||
|
||||
--
|
||||
-- Clock divider
|
||||
-- SCK = CLK/((CLK_DIV+1)*2) : 0=CLK/2, 1=CLK/4, 2=CLK/6....
|
||||
--
|
||||
-- This need to be changed before a command.
|
||||
-- XX TODO add handshake
|
||||
clk_div_i : in natural range 0 to 255;
|
||||
|
||||
--
|
||||
-- Command port (includes write data)
|
||||
--
|
||||
|
||||
-- Valid & ready: command sampled when valid=1 and ready=1
|
||||
cmd_valid_i : in std_ulogic;
|
||||
cmd_ready_o : out std_ulogic;
|
||||
|
||||
-- Command modes:
|
||||
-- 000 : Single bit read+write
|
||||
-- 010 : Single bit read
|
||||
-- 011 : Single bit write
|
||||
-- 100 : Dual read
|
||||
-- 101 : Dual write
|
||||
-- 110 : Quad read
|
||||
-- 111 : Quad write
|
||||
cmd_mode_i : in std_ulogic_vector(2 downto 0);
|
||||
|
||||
-- # clocks-1 in a command (#bits-1)
|
||||
cmd_clks_i : in std_ulogic_vector(2 downto 0);
|
||||
|
||||
-- Write data (sampled with command)
|
||||
cmd_txd_i : in std_ulogic_vector(7 downto 0);
|
||||
|
||||
--
|
||||
-- Read data port. Data valid when d_ack=1, no ready
|
||||
-- signal, receiver must be ready
|
||||
--
|
||||
d_rxd_o : out std_ulogic_vector(7 downto 0);
|
||||
d_ack_o : out std_ulogic := '0';
|
||||
|
||||
-- Set when all commands are done. Needed for callers to know when
|
||||
-- to release CS#
|
||||
bus_idle_o : out std_ulogic;
|
||||
|
||||
--
|
||||
-- SPI port. These might need to go into special IOBUFs or STARTUPE2 on
|
||||
-- Xilinx.
|
||||
--
|
||||
-- Data lines are organized as follow:
|
||||
--
|
||||
-- DATA_LINES = 1
|
||||
--
|
||||
-- sdat_o(0) is MOSI (master output slave input)
|
||||
-- sdat_i(0) is MISO (master input slave output)
|
||||
--
|
||||
-- DATA_LINES > 1
|
||||
--
|
||||
-- sdat_o(0..n) are DQ(0..n)
|
||||
-- sdat_i(0..n) are DQ(0..n)
|
||||
--
|
||||
-- as such, beware that:
|
||||
--
|
||||
-- sdat_o(0) is MOSI (master output slave input)
|
||||
-- sdat_i(1) is MISO (master input slave output)
|
||||
--
|
||||
-- In order to leave dealing with the details of how to wire the tristate
|
||||
-- and bidirectional pins to the system specific toplevel, we separate
|
||||
-- the input and output signals, and provide a "sdat_oe" signal which
|
||||
-- is the "output enable" of each line.
|
||||
--
|
||||
sck : out std_ulogic;
|
||||
sdat_o : out std_ulogic_vector(DATA_LINES-1 downto 0);
|
||||
sdat_oe : out std_ulogic_vector(DATA_LINES-1 downto 0);
|
||||
sdat_i : in std_ulogic_vector(DATA_LINES-1 downto 0)
|
||||
);
|
||||
end entity spi_rxtx;
|
||||
|
||||
architecture rtl of spi_rxtx is
|
||||
|
||||
-- Internal clock signal. Output is gated by sck_en_int
|
||||
signal sck_0 : std_ulogic;
|
||||
signal sck_1 : std_ulogic;
|
||||
|
||||
-- Clock divider latch
|
||||
signal clk_div : natural range 0 to 255;
|
||||
|
||||
-- 1 clk pulses indicating when to send and when to latch
|
||||
--
|
||||
-- Typically for CPOL=CPHA
|
||||
-- sck_send is sck falling edge
|
||||
-- sck_recv is sck rising edge
|
||||
--
|
||||
-- Those pulses are generated "ahead" of the corresponding
|
||||
-- edge so then are "seen" at the rising sysclk edge matching
|
||||
-- the corresponding sck edgeg.
|
||||
signal sck_send : std_ulogic;
|
||||
signal sck_recv : std_ulogic;
|
||||
|
||||
-- Command mode latch
|
||||
signal cmd_mode : std_ulogic_vector(2 downto 0);
|
||||
|
||||
-- Output shift register (use fifo ?)
|
||||
signal oreg : std_ulogic_vector(7 downto 0);
|
||||
|
||||
-- Input latch
|
||||
signal dat_i_l : std_ulogic_vector(DATA_LINES-1 downto 0);
|
||||
|
||||
-- Data ack latch
|
||||
signal dat_ack_l : std_ulogic;
|
||||
|
||||
-- Delayed recv signal for the read machine
|
||||
signal sck_recv_d : std_ulogic := '0';
|
||||
|
||||
-- Input shift register (use fifo ?)
|
||||
signal ireg : std_ulogic_vector(7 downto 0) := (others => '0');
|
||||
|
||||
-- Bit counter
|
||||
signal bit_count : std_ulogic_vector(2 downto 0);
|
||||
|
||||
-- Next/start/stop command signals. Set when counter goes negative
|
||||
signal next_cmd : std_ulogic;
|
||||
signal start_cmd : std_ulogic;
|
||||
signal end_cmd : std_ulogic;
|
||||
|
||||
function data_single(mode : std_ulogic_vector(2 downto 0)) return boolean is
|
||||
begin
|
||||
return mode(2) = '0';
|
||||
end;
|
||||
function data_dual(mode : std_ulogic_vector(2 downto 0)) return boolean is
|
||||
begin
|
||||
return mode(2 downto 1) = "10";
|
||||
end;
|
||||
function data_quad(mode : std_ulogic_vector(2 downto 0)) return boolean is
|
||||
begin
|
||||
return mode(2 downto 1) = "11";
|
||||
end;
|
||||
function data_write(mode : std_ulogic_vector(2 downto 0)) return boolean is
|
||||
begin
|
||||
return mode(0) = '1';
|
||||
end;
|
||||
|
||||
type state_t is (STANDBY, DATA);
|
||||
signal state : state_t := STANDBY;
|
||||
begin
|
||||
|
||||
-- We don't support multiple data lines at this point
|
||||
assert DATA_LINES = 1 or DATA_LINES = 2 or DATA_LINES = 4
|
||||
report "Unsupported DATA_LINES configuration !" severity failure;
|
||||
|
||||
-- Clock generation
|
||||
--
|
||||
-- XX HARD WIRE CPOL=1 CPHA=1 for now
|
||||
sck_gen: process(clk)
|
||||
variable counter : integer range 0 to 255;
|
||||
begin
|
||||
if rising_edge(clk) then
|
||||
if rst = '1' then
|
||||
sck_0 <= '1';
|
||||
sck_1 <= '1';
|
||||
sck_send <= '0';
|
||||
sck_recv <= '0';
|
||||
clk_div <= 0;
|
||||
elsif counter = clk_div then
|
||||
counter := 0;
|
||||
|
||||
-- Latch new divider
|
||||
clk_div <= clk_div_i;
|
||||
|
||||
-- Internal version of the clock
|
||||
sck_0 <= not sck_0;
|
||||
|
||||
-- Generate send/receive pulses to run out state machine
|
||||
sck_recv <= not sck_0;
|
||||
sck_send <= sck_0;
|
||||
else
|
||||
counter := counter + 1;
|
||||
sck_recv <= '0';
|
||||
sck_send <= '0';
|
||||
end if;
|
||||
|
||||
-- Delayed version of the clock to line up with
|
||||
-- the up/down signals
|
||||
--
|
||||
-- XXX Figure out a better way
|
||||
if (state = DATA and end_cmd = '0') or (next_cmd = '1' and cmd_valid_i = '1') then
|
||||
sck_1 <= sck_0;
|
||||
else
|
||||
sck_1 <= '1';
|
||||
end if;
|
||||
end if;
|
||||
end process;
|
||||
|
||||
-- SPI clock
|
||||
sck <= sck_1;
|
||||
|
||||
-- Ready to start the next command. This is set on the clock down
|
||||
-- after the counter goes negative.
|
||||
-- Note: in addition to latching a new command, this will cause
|
||||
-- the counter to be reloaded.
|
||||
next_cmd <= '1' when sck_send = '1' and bit_count = "111" else '0';
|
||||
|
||||
-- We start a command when we have a valid request at that time.
|
||||
start_cmd <= next_cmd and cmd_valid_i;
|
||||
|
||||
-- We end commands if we get start_cmd and there's nothing to
|
||||
-- start. This sends up to standby holding CLK high
|
||||
end_cmd <= next_cmd and not cmd_valid_i;
|
||||
|
||||
-- Generate cmd_ready. It will go up and down with sck, we could
|
||||
-- gate it with cmd_valid to make it look cleaner but that would
|
||||
-- add yet another combinational loop on the wishbone that I'm
|
||||
-- to avoid.
|
||||
cmd_ready_o <= next_cmd;
|
||||
|
||||
-- Generate bus_idle_o
|
||||
bus_idle_o <= '1' when state = STANDBY else '0';
|
||||
|
||||
-- Main state machine. Also generates cmd and data ACKs
|
||||
machine: process(clk)
|
||||
begin
|
||||
if rising_edge(clk) then
|
||||
if rst = '1' then
|
||||
state <= STANDBY;
|
||||
cmd_mode <= "000";
|
||||
else
|
||||
-- First clk down of a new cycle. Latch a request if any
|
||||
-- or get out.
|
||||
if start_cmd = '1' then
|
||||
state <= DATA;
|
||||
cmd_mode <= cmd_mode_i;
|
||||
elsif end_cmd = '1' then
|
||||
state <= STANDBY;
|
||||
end if;
|
||||
end if;
|
||||
end if;
|
||||
end process;
|
||||
|
||||
-- Run the bit counter in DATA state. It will update on rising
|
||||
-- SCK edges. It starts at d_clks on command latch
|
||||
count_bit: process(clk)
|
||||
begin
|
||||
if rising_edge(clk) then
|
||||
if start_cmd = '1' then
|
||||
bit_count <= cmd_clks_i;
|
||||
elsif state /= DATA then
|
||||
bit_count <= (others => '1');
|
||||
elsif sck_recv = '1' then
|
||||
bit_count <= std_ulogic_vector(unsigned(bit_count) - 1);
|
||||
end if;
|
||||
end if;
|
||||
end process;
|
||||
|
||||
-- Shift output data
|
||||
shift_out: process(clk)
|
||||
begin
|
||||
if rising_edge(clk) then
|
||||
-- Starting a command
|
||||
if start_cmd = '1' then
|
||||
oreg <= cmd_txd_i(7 downto 0);
|
||||
elsif sck_send = '1' then
|
||||
-- Get shift amount
|
||||
if data_single(cmd_mode) then
|
||||
oreg <= oreg(6 downto 0) & '0';
|
||||
elsif data_dual(cmd_mode) then
|
||||
oreg <= oreg(5 downto 0) & "00";
|
||||
else
|
||||
oreg <= oreg(3 downto 0) & "0000";
|
||||
end if;
|
||||
end if;
|
||||
end if;
|
||||
end process;
|
||||
|
||||
-- Data out
|
||||
sdat_o(0) <= oreg(7);
|
||||
dl2: if DATA_LINES > 1 generate
|
||||
sdat_o(1) <= oreg(6);
|
||||
end generate;
|
||||
dl4: if DATA_LINES > 2 generate
|
||||
sdat_o(2) <= oreg(5);
|
||||
sdat_o(3) <= oreg(4);
|
||||
end generate;
|
||||
|
||||
-- Data lines direction
|
||||
dlines: process(all)
|
||||
begin
|
||||
for i in DATA_LINES-1 downto 0 loop
|
||||
sdat_oe(i) <= '0';
|
||||
if state = DATA then
|
||||
-- In single mode, we always enable MOSI, otherwise
|
||||
-- we control the output enable based on the direction
|
||||
-- of transfer.
|
||||
--
|
||||
if i = 0 and (data_single(cmd_mode) or data_write(cmd_mode)) then
|
||||
sdat_oe(i) <= '1';
|
||||
end if;
|
||||
if i = 1 and data_dual(cmd_mode) and data_write(cmd_mode) then
|
||||
sdat_oe(i) <= '1';
|
||||
end if;
|
||||
if i > 0 and data_quad(cmd_mode) and data_write(cmd_mode) then
|
||||
sdat_oe(i) <= '1';
|
||||
end if;
|
||||
end if;
|
||||
end loop;
|
||||
end process;
|
||||
|
||||
-- Latch input data no delay
|
||||
input_delay_0: if INPUT_DELAY = 0 generate
|
||||
process(clk)
|
||||
begin
|
||||
if rising_edge(clk) then
|
||||
dat_i_l <= sdat_i;
|
||||
end if;
|
||||
end process;
|
||||
end generate;
|
||||
|
||||
-- Latch input data half clock delay
|
||||
input_delay_1: if INPUT_DELAY = 1 generate
|
||||
process(clk)
|
||||
begin
|
||||
if falling_edge(clk) then
|
||||
dat_i_l <= sdat_i;
|
||||
end if;
|
||||
end process;
|
||||
end generate;
|
||||
|
||||
-- Shift input data
|
||||
shift_in: process(clk)
|
||||
begin
|
||||
if rising_edge(clk) then
|
||||
|
||||
-- Delay the receive signal to match the input latch
|
||||
if state = DATA then
|
||||
sck_recv_d <= sck_recv;
|
||||
else
|
||||
sck_recv_d <= '0';
|
||||
end if;
|
||||
|
||||
-- Generate read data acks
|
||||
if bit_count = "000" and sck_recv = '1' then
|
||||
dat_ack_l <= not cmd_mode(0);
|
||||
else
|
||||
dat_ack_l <= '0';
|
||||
end if;
|
||||
|
||||
-- And delay them as well
|
||||
d_ack_o <= dat_ack_l;
|
||||
|
||||
-- Shift register on delayed data & receive signal
|
||||
if sck_recv_d = '1' then
|
||||
if DATA_LINES = 1 then
|
||||
ireg <= ireg(6 downto 0) & dat_i_l(0);
|
||||
else
|
||||
if data_dual(cmd_mode) then
|
||||
ireg <= ireg(5 downto 0) & dat_i_l(1) & dat_i_l(0);
|
||||
elsif data_quad(cmd_mode) then
|
||||
ireg <= ireg(3 downto 0) & dat_i_l(3) & dat_i_l(2) & dat_i_l(1) & dat_i_l(0);
|
||||
else
|
||||
assert(data_single(cmd_mode));
|
||||
ireg <= ireg(6 downto 0) & dat_i_l(1);
|
||||
end if;
|
||||
end if;
|
||||
end if;
|
||||
end if;
|
||||
end process;
|
||||
|
||||
-- Data recieve register
|
||||
d_rxd_o <= ireg;
|
||||
|
||||
end architecture;
|
Loading…
Reference in New Issue