|
|
|
library ieee;
|
|
|
|
use ieee.std_logic_1164.all;
|
|
|
|
use ieee.numeric_std.all;
|
|
|
|
|
|
|
|
library work;
|
|
|
|
use work.decode_types.all;
|
|
|
|
use work.common.all;
|
|
|
|
use work.helpers.all;
|
|
|
|
use work.crhelpers.all;
|
|
|
|
use work.insn_helpers.all;
|
|
|
|
use work.ppc_fx_insns.all;
|
|
|
|
|
|
|
|
entity execute1 is
|
|
|
|
generic (
|
|
|
|
SIM : boolean := false
|
|
|
|
);
|
|
|
|
port (
|
|
|
|
clk : in std_logic;
|
|
|
|
|
|
|
|
-- asynchronous
|
|
|
|
flush_out : out std_ulogic;
|
|
|
|
|
|
|
|
e_in : in Decode2ToExecute1Type;
|
|
|
|
|
|
|
|
-- asynchronous
|
|
|
|
f_out : out Execute1ToFetch1Type;
|
|
|
|
|
|
|
|
e_out : out Execute1ToWritebackType;
|
|
|
|
|
|
|
|
terminate_out : out std_ulogic
|
|
|
|
);
|
|
|
|
end entity execute1;
|
|
|
|
|
|
|
|
architecture behaviour of execute1 is
|
|
|
|
type reg_type is record
|
|
|
|
--f : Execute1ToFetch1Type;
|
|
|
|
e : Execute1ToWritebackType;
|
|
|
|
end record;
|
|
|
|
|
|
|
|
signal r, rin : reg_type;
|
|
|
|
|
|
|
|
signal ctrl: ctrl_t := (carry => '0', others => (others => '0'));
|
|
|
|
signal ctrl_tmp: ctrl_t := (carry => '0', others => (others => '0'));
|
|
|
|
|
|
|
|
signal right_shift, rot_clear_left, rot_clear_right: std_ulogic;
|
|
|
|
signal rotator_result: std_ulogic_vector(63 downto 0);
|
|
|
|
signal rotator_carry: std_ulogic;
|
|
|
|
signal logical_result: std_ulogic_vector(63 downto 0);
|
|
|
|
signal countzero_result: std_ulogic_vector(63 downto 0);
|
Add a rotate/mask/shift unit and use it in execute1
This adds a new entity 'rotator' which contains combinatorial logic
for rotating and masking 64-bit values. It implements the operations
of the rlwinm, rlwnm, rlwimi, rldicl, rldicr, rldic, rldimi, rldcl,
rldcr, sld, slw, srd, srw, srad, sradi, sraw and srawi instructions.
It consists of a 3-stage 64-bit rotator using 4:1 multiplexors at
each stage, two mask generators, output logic and control logic.
The insn_type_t values used for these instructions have been reduced
to just 5: OP_RLC, OP_RLCL and OP_RLCR for the rotate and mask
instructions (clear both left and right, clear left, clear right
variants), OP_SHL for left shifts, and OP_SHR for right shifts.
The control signals for the rotator are derived from the opcode
and from the is_32bit and is_signed fields of the decode_rom_t.
The rotator is instantiated as an entity in execute1 so that we can
be sure we only have one of it.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
|
|
|
|
function decode_input_carry (carry_sel : carry_in_t; ca_in : std_ulogic) return std_ulogic is
|
|
|
|
begin
|
|
|
|
case carry_sel is
|
|
|
|
when ZERO =>
|
|
|
|
return '0';
|
|
|
|
when CA =>
|
|
|
|
return ca_in;
|
|
|
|
when ONE =>
|
|
|
|
return '1';
|
|
|
|
end case;
|
|
|
|
end;
|
|
|
|
begin
|
Add a rotate/mask/shift unit and use it in execute1
This adds a new entity 'rotator' which contains combinatorial logic
for rotating and masking 64-bit values. It implements the operations
of the rlwinm, rlwnm, rlwimi, rldicl, rldicr, rldic, rldimi, rldcl,
rldcr, sld, slw, srd, srw, srad, sradi, sraw and srawi instructions.
It consists of a 3-stage 64-bit rotator using 4:1 multiplexors at
each stage, two mask generators, output logic and control logic.
The insn_type_t values used for these instructions have been reduced
to just 5: OP_RLC, OP_RLCL and OP_RLCR for the rotate and mask
instructions (clear both left and right, clear left, clear right
variants), OP_SHL for left shifts, and OP_SHR for right shifts.
The control signals for the rotator are derived from the opcode
and from the is_32bit and is_signed fields of the decode_rom_t.
The rotator is instantiated as an entity in execute1 so that we can
be sure we only have one of it.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
|
|
|
|
rotator_0: entity work.rotator
|
|
|
|
port map (
|
|
|
|
rs => e_in.read_data3,
|
|
|
|
ra => e_in.read_data1,
|
|
|
|
shift => e_in.read_data2(6 downto 0),
|
|
|
|
insn => e_in.insn,
|
|
|
|
is_32bit => e_in.is_32bit,
|
|
|
|
right_shift => right_shift,
|
|
|
|
arith => e_in.is_signed,
|
|
|
|
clear_left => rot_clear_left,
|
|
|
|
clear_right => rot_clear_right,
|
|
|
|
result => rotator_result,
|
|
|
|
carry_out => rotator_carry
|
|
|
|
);
|
Add a rotate/mask/shift unit and use it in execute1
This adds a new entity 'rotator' which contains combinatorial logic
for rotating and masking 64-bit values. It implements the operations
of the rlwinm, rlwnm, rlwimi, rldicl, rldicr, rldic, rldimi, rldcl,
rldcr, sld, slw, srd, srw, srad, sradi, sraw and srawi instructions.
It consists of a 3-stage 64-bit rotator using 4:1 multiplexors at
each stage, two mask generators, output logic and control logic.
The insn_type_t values used for these instructions have been reduced
to just 5: OP_RLC, OP_RLCL and OP_RLCR for the rotate and mask
instructions (clear both left and right, clear left, clear right
variants), OP_SHL for left shifts, and OP_SHR for right shifts.
The control signals for the rotator are derived from the opcode
and from the is_32bit and is_signed fields of the decode_rom_t.
The rotator is instantiated as an entity in execute1 so that we can
be sure we only have one of it.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
|
|
|
|
logical_0: entity work.logical
|
|
|
|
port map (
|
|
|
|
rs => e_in.read_data3,
|
|
|
|
rb => e_in.read_data2,
|
|
|
|
op => e_in.insn_type,
|
|
|
|
invert_in => e_in.invert_a,
|
|
|
|
invert_out => e_in.invert_out,
|
|
|
|
result => logical_result
|
|
|
|
);
|
|
|
|
|
|
|
|
countzero_0: entity work.zero_counter
|
|
|
|
port map (
|
|
|
|
rs => e_in.read_data3,
|
|
|
|
count_right => e_in.insn(10),
|
|
|
|
is_32bit => e_in.is_32bit,
|
|
|
|
result => countzero_result
|
|
|
|
);
|
|
|
|
|
|
|
|
execute1_0: process(clk)
|
|
|
|
begin
|
|
|
|
if rising_edge(clk) then
|
|
|
|
r <= rin;
|
|
|
|
ctrl <= ctrl_tmp;
|
|
|
|
end if;
|
|
|
|
end process;
|
|
|
|
|
|
|
|
execute1_1: process(all)
|
|
|
|
variable v : reg_type;
|
|
|
|
variable a_inv : std_ulogic_vector(63 downto 0);
|
|
|
|
variable result : std_ulogic_vector(63 downto 0);
|
|
|
|
variable newcrf : std_ulogic_vector(3 downto 0);
|
|
|
|
variable result_with_carry : std_ulogic_vector(64 downto 0);
|
|
|
|
variable result_en : std_ulogic;
|
|
|
|
variable crnum : crnum_t;
|
|
|
|
variable scrnum : crnum_t;
|
|
|
|
variable lo, hi : integer;
|
|
|
|
variable sh, mb, me : std_ulogic_vector(5 downto 0);
|
|
|
|
variable sh32, mb32, me32 : std_ulogic_vector(4 downto 0);
|
|
|
|
variable bo, bi : std_ulogic_vector(4 downto 0);
|
|
|
|
variable bf, bfa : std_ulogic_vector(2 downto 0);
|
|
|
|
variable l : std_ulogic;
|
|
|
|
begin
|
|
|
|
result := (others => '0');
|
|
|
|
result_with_carry := (others => '0');
|
|
|
|
result_en := '0';
|
|
|
|
newcrf := (others => '0');
|
|
|
|
|
|
|
|
v := r;
|
|
|
|
v.e := Execute1ToWritebackInit;
|
|
|
|
--v.f := Execute1ToFetch1TypeInit;
|
|
|
|
|
|
|
|
ctrl_tmp <= ctrl;
|
|
|
|
-- FIXME: run at 512MHz not core freq
|
|
|
|
ctrl_tmp.tb <= std_ulogic_vector(unsigned(ctrl.tb) + 1);
|
|
|
|
|
|
|
|
terminate_out <= '0';
|
|
|
|
f_out <= Execute1ToFetch1TypeInit;
|
|
|
|
|
|
|
|
-- rotator control signals
|
|
|
|
right_shift <= '1' when e_in.insn_type = OP_SHR else '0';
|
|
|
|
rot_clear_left <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCL else '0';
|
|
|
|
rot_clear_right <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCR else '0';
|
Add a rotate/mask/shift unit and use it in execute1
This adds a new entity 'rotator' which contains combinatorial logic
for rotating and masking 64-bit values. It implements the operations
of the rlwinm, rlwnm, rlwimi, rldicl, rldicr, rldic, rldimi, rldcl,
rldcr, sld, slw, srd, srw, srad, sradi, sraw and srawi instructions.
It consists of a 3-stage 64-bit rotator using 4:1 multiplexors at
each stage, two mask generators, output logic and control logic.
The insn_type_t values used for these instructions have been reduced
to just 5: OP_RLC, OP_RLCL and OP_RLCR for the rotate and mask
instructions (clear both left and right, clear left, clear right
variants), OP_SHL for left shifts, and OP_SHR for right shifts.
The control signals for the rotator are derived from the opcode
and from the is_32bit and is_signed fields of the decode_rom_t.
The rotator is instantiated as an entity in execute1 so that we can
be sure we only have one of it.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
|
|
|
|
if e_in.valid = '1' then
|
|
|
|
|
|
|
|
v.e.valid := '1';
|
|
|
|
v.e.write_reg := e_in.write_reg;
|
|
|
|
v.e.write_len := x"8";
|
|
|
|
v.e.sign_extend := '0';
|
|
|
|
|
|
|
|
case_0: case e_in.insn_type is
|
|
|
|
|
|
|
|
when OP_ILLEGAL =>
|
|
|
|
terminate_out <= '1';
|
|
|
|
report "illegal";
|
|
|
|
when OP_NOP =>
|
|
|
|
-- Do nothing
|
|
|
|
when OP_ADD =>
|
|
|
|
if e_in.invert_a = '0' then
|
|
|
|
a_inv := e_in.read_data1;
|
|
|
|
else
|
|
|
|
a_inv := not e_in.read_data1;
|
|
|
|
end if;
|
|
|
|
result_with_carry := ppc_adde(a_inv, e_in.read_data2, decode_input_carry(e_in.input_carry, ctrl.carry));
|
|
|
|
result := result_with_carry(63 downto 0);
|
|
|
|
if e_in.output_carry then
|
|
|
|
ctrl_tmp.carry <= result_with_carry(64);
|
|
|
|
end if;
|
|
|
|
result_en := '1';
|
|
|
|
when OP_AND | OP_OR | OP_XOR =>
|
|
|
|
result := logical_result;
|
|
|
|
result_en := '1';
|
|
|
|
when OP_B =>
|
|
|
|
f_out.redirect <= '1';
|
|
|
|
if (insn_aa(e_in.insn)) then
|
|
|
|
f_out.redirect_nia <= std_ulogic_vector(signed(e_in.read_data2));
|
|
|
|
else
|
|
|
|
f_out.redirect_nia <= std_ulogic_vector(signed(e_in.nia) + signed(e_in.read_data2));
|
|
|
|
end if;
|
|
|
|
when OP_BC =>
|
|
|
|
bo := insn_bo(e_in.insn);
|
|
|
|
bi := insn_bi(e_in.insn);
|
|
|
|
if bo(4-2) = '0' then
|
|
|
|
ctrl_tmp.ctr <= std_ulogic_vector(unsigned(ctrl.ctr) - 1);
|
|
|
|
end if;
|
|
|
|
if ppc_bc_taken(bo, bi, e_in.cr, ctrl.ctr) = 1 then
|
|
|
|
f_out.redirect <= '1';
|
|
|
|
if (insn_aa(e_in.insn)) then
|
|
|
|
f_out.redirect_nia <= std_ulogic_vector(signed(e_in.read_data2));
|
|
|
|
else
|
|
|
|
f_out.redirect_nia <= std_ulogic_vector(signed(e_in.nia) + signed(e_in.read_data2));
|
|
|
|
end if;
|
|
|
|
end if;
|
|
|
|
when OP_BCREG =>
|
|
|
|
-- bits 10 and 6 distinguish between bclr, bcctr and bctar
|
|
|
|
bo := insn_bo(e_in.insn);
|
|
|
|
bi := insn_bi(e_in.insn);
|
|
|
|
if bo(4-2) = '0' and e_in.insn(10) = '0' then
|
|
|
|
ctrl_tmp.ctr <= std_ulogic_vector(unsigned(ctrl.ctr) - 1);
|
|
|
|
end if;
|
|
|
|
if ppc_bc_taken(bo, bi, e_in.cr, ctrl.ctr) = 1 then
|
|
|
|
f_out.redirect <= '1';
|
|
|
|
if e_in.insn(10) = '0' then
|
|
|
|
f_out.redirect_nia <= ctrl.lr(63 downto 2) & "00";
|
|
|
|
else
|
|
|
|
f_out.redirect_nia <= ctrl.ctr(63 downto 2) & "00";
|
|
|
|
end if;
|
|
|
|
end if;
|
|
|
|
when OP_CMPB =>
|
|
|
|
result := ppc_cmpb(e_in.read_data3, e_in.read_data2);
|
|
|
|
result_en := '1';
|
|
|
|
when OP_CMP =>
|
|
|
|
bf := insn_bf(e_in.insn);
|
|
|
|
l := insn_l(e_in.insn);
|
|
|
|
v.e.write_cr_enable := '1';
|
|
|
|
crnum := to_integer(unsigned(bf));
|
|
|
|
v.e.write_cr_mask := num_to_fxm(crnum);
|
|
|
|
for i in 0 to 7 loop
|
|
|
|
lo := i*4;
|
|
|
|
hi := lo + 3;
|
|
|
|
v.e.write_cr_data(hi downto lo) := ppc_cmp(l, e_in.read_data1, e_in.read_data2);
|
|
|
|
end loop;
|
|
|
|
when OP_CMPL =>
|
|
|
|
bf := insn_bf(e_in.insn);
|
|
|
|
l := insn_l(e_in.insn);
|
|
|
|
v.e.write_cr_enable := '1';
|
|
|
|
crnum := to_integer(unsigned(bf));
|
|
|
|
v.e.write_cr_mask := num_to_fxm(crnum);
|
|
|
|
for i in 0 to 7 loop
|
|
|
|
lo := i*4;
|
|
|
|
hi := lo + 3;
|
|
|
|
v.e.write_cr_data(hi downto lo) := ppc_cmpl(l, e_in.read_data1, e_in.read_data2);
|
|
|
|
end loop;
|
|
|
|
when OP_CNTZ =>
|
|
|
|
result := countzero_result;
|
|
|
|
result_en := '1';
|
|
|
|
when OP_EXTS =>
|
|
|
|
v.e.write_len := e_in.data_len;
|
|
|
|
v.e.sign_extend := '1';
|
|
|
|
result := e_in.read_data3;
|
|
|
|
result_en := '1';
|
|
|
|
when OP_ISEL =>
|
|
|
|
crnum := to_integer(unsigned(insn_bc(e_in.insn)));
|
|
|
|
if e_in.cr(31-crnum) = '1' then
|
|
|
|
result := e_in.read_data1;
|
|
|
|
else
|
|
|
|
result := e_in.read_data2;
|
|
|
|
end if;
|
|
|
|
result_en := '1';
|
|
|
|
when OP_MCRF =>
|
|
|
|
bf := insn_bf(e_in.insn);
|
|
|
|
bfa := insn_bfa(e_in.insn);
|
|
|
|
v.e.write_cr_enable := '1';
|
|
|
|
crnum := to_integer(unsigned(bf));
|
|
|
|
scrnum := to_integer(unsigned(bfa));
|
|
|
|
v.e.write_cr_mask := num_to_fxm(crnum);
|
|
|
|
for i in 0 to 7 loop
|
|
|
|
lo := (7-i)*4;
|
|
|
|
hi := lo + 3;
|
|
|
|
if i = scrnum then
|
|
|
|
newcrf := e_in.cr(hi downto lo);
|
|
|
|
end if;
|
|
|
|
end loop;
|
|
|
|
for i in 0 to 7 loop
|
|
|
|
lo := i*4;
|
|
|
|
hi := lo + 3;
|
|
|
|
v.e.write_cr_data(hi downto lo) := newcrf;
|
|
|
|
end loop;
|
|
|
|
when OP_MFSPR =>
|
|
|
|
if std_match(e_in.insn(20 downto 11), "0100100000") then
|
|
|
|
result := ctrl.ctr;
|
|
|
|
result_en := '1';
|
|
|
|
elsif std_match(e_in.insn(20 downto 11), "0100000000") then
|
|
|
|
result := ctrl.lr;
|
|
|
|
result_en := '1';
|
|
|
|
elsif std_match(e_in.insn(20 downto 11), "0110001000") then
|
|
|
|
result := ctrl.tb;
|
|
|
|
result_en := '1';
|
|
|
|
end if;
|
|
|
|
when OP_MFCR =>
|
|
|
|
if e_in.insn(20) = '0' then
|
|
|
|
-- mfcr
|
|
|
|
result := x"00000000" & e_in.cr;
|
|
|
|
else
|
|
|
|
-- mfocrf
|
|
|
|
crnum := fxm_to_num(insn_fxm(e_in.insn));
|
|
|
|
result := (others => '0');
|
|
|
|
for i in 0 to 7 loop
|
|
|
|
lo := (7-i)*4;
|
|
|
|
hi := lo + 3;
|
|
|
|
if crnum = i then
|
|
|
|
result(hi downto lo) := e_in.cr(hi downto lo);
|
|
|
|
end if;
|
|
|
|
end loop;
|
|
|
|
end if;
|
|
|
|
result_en := '1';
|
|
|
|
when OP_MTCRF =>
|
|
|
|
v.e.write_cr_enable := '1';
|
|
|
|
if e_in.insn(20) = '0' then
|
|
|
|
-- mtcrf
|
|
|
|
v.e.write_cr_mask := insn_fxm(e_in.insn);
|
|
|
|
else
|
|
|
|
-- mtocrf: We require one hot priority encoding here
|
|
|
|
crnum := fxm_to_num(insn_fxm(e_in.insn));
|
|
|
|
v.e.write_cr_mask := num_to_fxm(crnum);
|
|
|
|
end if;
|
|
|
|
v.e.write_cr_data := e_in.read_data3(31 downto 0);
|
|
|
|
when OP_MTSPR =>
|
|
|
|
if std_match(e_in.insn(20 downto 11), "0100100000") then
|
|
|
|
ctrl_tmp.ctr <= e_in.read_data3;
|
|
|
|
elsif std_match(e_in.insn(20 downto 11), "0100000000") then
|
|
|
|
ctrl_tmp.lr <= e_in.read_data3;
|
|
|
|
end if;
|
|
|
|
when OP_POPCNTB =>
|
|
|
|
result := ppc_popcntb(e_in.read_data3);
|
|
|
|
result_en := '1';
|
|
|
|
when OP_POPCNTW =>
|
|
|
|
result := ppc_popcntw(e_in.read_data3);
|
|
|
|
result_en := '1';
|
|
|
|
when OP_POPCNTD =>
|
|
|
|
result := ppc_popcntd(e_in.read_data3);
|
|
|
|
result_en := '1';
|
|
|
|
when OP_PRTYD =>
|
|
|
|
result := ppc_prtyd(e_in.read_data3);
|
|
|
|
result_en := '1';
|
|
|
|
when OP_PRTYW =>
|
|
|
|
result := ppc_prtyw(e_in.read_data3);
|
|
|
|
result_en := '1';
|
|
|
|
when OP_RLC | OP_RLCL | OP_RLCR | OP_SHL | OP_SHR =>
|
|
|
|
result := rotator_result;
|
|
|
|
if e_in.output_carry = '1' then
|
|
|
|
ctrl_tmp.carry <= rotator_carry;
|
|
|
|
end if;
|
|
|
|
result_en := '1';
|
|
|
|
when OP_SIM_CONFIG =>
|
|
|
|
-- bit 0 was used to select the microwatt console, which
|
|
|
|
-- we no longer support.
|
|
|
|
if SIM = true then
|
|
|
|
result := x"0000000000000000";
|
|
|
|
else
|
|
|
|
result := x"0000000000000000";
|
|
|
|
end if;
|
|
|
|
result_en := '1';
|
|
|
|
|
|
|
|
when OP_TDI =>
|
|
|
|
-- Keep our test cases happy for now, ignore trap instructions
|
|
|
|
report "OP_TDI FIXME";
|
|
|
|
|
|
|
|
when others =>
|
|
|
|
terminate_out <= '1';
|
|
|
|
report "illegal";
|
|
|
|
end case;
|
|
|
|
|
|
|
|
if e_in.lr = '1' then
|
|
|
|
ctrl_tmp.lr <= std_ulogic_vector(unsigned(e_in.nia) + 4);
|
|
|
|
end if;
|
|
|
|
|
|
|
|
end if;
|
|
|
|
|
|
|
|
v.e.write_data := result;
|
|
|
|
v.e.write_enable := result_en;
|
|
|
|
v.e.rc := e_in.rc;
|
|
|
|
|
|
|
|
-- Update registers
|
|
|
|
rin <= v;
|
|
|
|
|
|
|
|
-- update outputs
|
|
|
|
--f_out <= r.f;
|
|
|
|
e_out <= r.e;
|
|
|
|
flush_out <= f_out.redirect;
|
|
|
|
end process;
|
|
|
|
end architecture behaviour;
|