You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

318 lines
11 KiB
Verilog

// © IBM Corp. 2020
// Licensed under the Apache License, Version 2.0 (the "License"), as modified by
// the terms below; you may not use the files in this repository except in
// compliance with the License as modified.
// You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
//
// Modified Terms:
//
// 1) For the purpose of the patent license granted to you in Section 3 of the
// License, the "Work" hereby includes implementations of the work of authorship
// in physical form.
//
// 2) Notwithstanding any terms to the contrary in the License, any licenses
// necessary for implementation of the Work that are available from OpenPOWER
// via the Power ISA End User License Agreement (EULA) are explicitly excluded
// hereunder, and may be obtained from OpenPOWER under the terms and conditions
// of the EULA.
//
// Unless required by applicable law or agreed to in writing, the reference design
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License
// for the specific language governing permissions and limitations under the License.
//
// Additional rights, including the ability to physically implement a softcore that
// is compliant with the required sections of the Power ISA Specification, are
// available at no cost under the terms of the OpenPOWER Power ISA EULA, which can be
// obtained (along with the Power ISA) here: https://openpowerfoundation.org.
`timescale 1 ps / 1 ps
//*****************************************************************************
// Description: Tri-Lam Array Wrapper
//
//*****************************************************************************
`include "tri_a2o.vh"
module tri_64x72_1r1w(
vdd,
vcs,
gnd,
nclk,
sg_0,
abst_sl_thold_0,
ary_nsl_thold_0,
time_sl_thold_0,
repr_sl_thold_0,
rd0_act,
rd0_adr,
do0,
wr_act,
wr_adr,
di,
abst_scan_in,
abst_scan_out,
time_scan_in,
time_scan_out,
repr_scan_in,
repr_scan_out,
scan_dis_dc_b,
scan_diag_dc,
ccflush_dc,
clkoff_dc_b,
d_mode_dc,
mpw1_dc_b,
mpw2_dc_b,
delay_lclkr_dc,
lcb_bolt_sl_thold_0,
pc_bo_enable_2,
pc_bo_reset,
pc_bo_unload,
pc_bo_repair,
pc_bo_shdata,
pc_bo_select,
bo_pc_failout,
bo_pc_diagloop,
tri_lcb_mpw1_dc_b,
tri_lcb_mpw2_dc_b,
tri_lcb_delay_lclkr_dc,
tri_lcb_clkoff_dc_b,
tri_lcb_act_dis_dc,
abist_di,
abist_bw_odd,
abist_bw_even,
abist_wr_adr,
wr_abst_act,
abist_rd0_adr,
rd0_abst_act,
tc_lbist_ary_wrt_thru_dc,
abist_ena_1,
abist_g8t_rd0_comp_ena,
abist_raw_dc_b,
obs0_abist_cmp
);
// Power
(* analysis_not_referenced="true" *)
inout vdd;
(* analysis_not_referenced="true" *)
inout vcs;
(* analysis_not_referenced="true" *)
inout gnd;
// Clock Pervasive
input [0:`NCLK_WIDTH-1] nclk;
input sg_0;
input abst_sl_thold_0;
input ary_nsl_thold_0;
input time_sl_thold_0;
input repr_sl_thold_0;
// Reads
input rd0_act;
input [0:5] rd0_adr;
output [64-`GPR_WIDTH:72-(64/`GPR_WIDTH)] do0;
// Writes
input wr_act;
input [0:5] wr_adr;
input [64-`GPR_WIDTH:72-(64/`GPR_WIDTH)] di;
// Scan
input abst_scan_in;
output abst_scan_out;
input time_scan_in;
output time_scan_out;
input repr_scan_in;
output repr_scan_out;
// Misc Pervasive
input scan_dis_dc_b;
input scan_diag_dc;
input ccflush_dc;
input clkoff_dc_b;
input d_mode_dc;
input [0:4] mpw1_dc_b;
input mpw2_dc_b;
input [0:4] delay_lclkr_dc;
// BOLT-ON
input lcb_bolt_sl_thold_0;
input pc_bo_enable_2; // general bolt-on enable
input pc_bo_reset; // reset
input pc_bo_unload; // unload sticky bits
input pc_bo_repair; // execute sticky bit decode
input pc_bo_shdata; // shift data for timing write and diag loop
input pc_bo_select; // select for mask and hier writes
output bo_pc_failout; // fail/no-fix reg
output bo_pc_diagloop;
input tri_lcb_mpw1_dc_b;
input tri_lcb_mpw2_dc_b;
input tri_lcb_delay_lclkr_dc;
input tri_lcb_clkoff_dc_b;
input tri_lcb_act_dis_dc;
// ABIST
input [0:3] abist_di;
input abist_bw_odd;
input abist_bw_even;
input [0:5] abist_wr_adr;
input wr_abst_act;
input [0:5] abist_rd0_adr;
input rd0_abst_act;
input tc_lbist_ary_wrt_thru_dc;
input abist_ena_1;
input abist_g8t_rd0_comp_ena;
input abist_raw_dc_b;
input [0:3] obs0_abist_cmp;
// Configuration Statement for NCsim
//for all:RAMB16_S36_S36 use entity unisim.RAMB16_S36_S36;
wire clk;
wire clk2x;
reg [0:8] addra;
reg [0:8] addrb;
reg wea;
reg web;
wire [0:71] bdo;
wire [0:71] bdi;
wire sreset;
wire [0:71] tidn;
// Latches
reg reset_q;
reg gate_fq;
wire gate_d;
wire [64-`GPR_WIDTH:72-(64/`GPR_WIDTH)] bdo_d;
reg [64-`GPR_WIDTH:72-(64/`GPR_WIDTH)] bdo_fq;
wire toggle_d;
reg toggle_q;
wire toggle2x_d;
reg toggle2x_q;
(* analysis_not_referenced="true" *)
wire unused;
generate
begin
assign tidn = 72'b0;
assign clk = nclk[0];
assign clk2x = nclk[2];
assign sreset = nclk[1];
always @(posedge clk)
begin: rlatch
// reset_q <= #10 sreset;
reset_q <= sreset; //wtf try for icarus
end
//
// NEW clk2x gate logic start
//
always @(posedge clk)
begin: tlatch
if (reset_q == 1'b1)
toggle_q <= 1'b1;
else
toggle_q <= toggle_d;
end
always @(posedge clk2x)
begin: flatch
toggle2x_q <= toggle2x_d;
gate_fq <= gate_d;
bdo_fq <= bdo_d;
end
assign toggle_d = (~toggle_q);
assign toggle2x_d = toggle_q;
// should force gate_fq to be on during odd 2x clock (second half of 1x clock).
//gate_d <= toggle_q xor toggle2x_q;
// if you want the first half do the following
assign gate_d = (~(toggle_q ^ toggle2x_q));
//
// NEW clk2x gate logic end
//
if (`GPR_WIDTH == 32)
begin
assign bdi = {tidn[0:31], di[32:63], di[64:70], tidn[71]};
end
if (`GPR_WIDTH == 64)
begin
assign bdi = di[0:71];
end
assign bdo_d = bdo[64 - `GPR_WIDTH:72 - (64/`GPR_WIDTH)];
assign do0 = bdo_fq;
always @ (*)
begin
/*
wea = #10 (wr_act & gate_fq);
web = #10 (wr_act & gate_fq);
addra = #10 ((gate_fq == 1'b1) ? {2'b00, wr_adr, 1'b0} :
{2'b00, rd0_adr, 1'b0});
addrb = #10 ((gate_fq == 1'b1) ? {2'b00, wr_adr, 1'b1} :
{2'b00, rd0_adr, 1'b1});
wea = #10 (wr_act & gate_fq);
*/
wea = wr_act & gate_fq;
web = wr_act & gate_fq;
addra = ((gate_fq == 1'b1) ? {2'b00, wr_adr, 1'b0} :
{2'b00, rd0_adr, 1'b0});
addrb = ((gate_fq == 1'b1) ? {2'b00, wr_adr, 1'b1} :
{2'b00, rd0_adr, 1'b1});
end
/* make wires?
assign wea = wr_act & gate_fq;
assign web = wr_act & gate_fq;
assign addra = ((gate_fq == 1'b1) ? {2'b00, wr_adr, 1'b0} : {2'b00, rd0_adr, 1'b0});
assign addrb = ((gate_fq == 1'b1) ? {2'b00, wr_adr, 1'b1} : {2'b00, rd0_adr, 1'b1});
*/
RAMB16_S36_S36
#(.SIM_COLLISION_CHECK("NONE")) // all, none, warning_only, generate_x_only
bram0a(
.CLKA(clk2x),
.CLKB(clk2x),
.SSRA(sreset),
.SSRB(sreset),
.ADDRA(addra),
.ADDRB(addrb),
.DIA(bdi[00:31]),
.DIB(bdi[32:63]),
.DIPA(bdi[64:67]),
.DIPB(bdi[68:71]),
.DOA(bdo[00:31]),
.DOB(bdo[32:63]),
.DOPA(bdo[64:67]),
.DOPB(bdo[68:71]),
.ENA(1'b1),
.ENB(1'b1),
.WEA(wea),
.WEB(web)
);
assign abst_scan_out = abst_scan_in;
assign time_scan_out = time_scan_in;
assign repr_scan_out = repr_scan_in;
assign bo_pc_failout = 1'b0;
assign bo_pc_diagloop = 1'b0;
assign unused = | ({nclk[3:`NCLK_WIDTH-1], sg_0, abst_sl_thold_0, ary_nsl_thold_0, time_sl_thold_0, repr_sl_thold_0, scan_dis_dc_b, scan_diag_dc, ccflush_dc, clkoff_dc_b, d_mode_dc, mpw1_dc_b, mpw2_dc_b, delay_lclkr_dc, abist_di, abist_bw_odd, abist_bw_even, abist_wr_adr, abist_rd0_adr, wr_abst_act, rd0_abst_act, tc_lbist_ary_wrt_thru_dc, abist_ena_1, abist_g8t_rd0_comp_ena, abist_raw_dc_b, obs0_abist_cmp, rd0_act, tidn, lcb_bolt_sl_thold_0, pc_bo_enable_2, pc_bo_reset, pc_bo_unload, pc_bo_repair, pc_bo_shdata, pc_bo_select, tri_lcb_mpw1_dc_b, tri_lcb_mpw2_dc_b, tri_lcb_delay_lclkr_dc, tri_lcb_clkoff_dc_b, tri_lcb_act_dis_dc});
end
endgenerate
endmodule