a2o/dev/verilog/trilib/tri_64x144_1r1w.v

430 lines
15 KiB
Verilog

// © IBM Corp. 2022
// Licensed under the Apache License, Version 2.0 (the "License"), as modified by
// the terms below; you may not use the files in this repository except in
// compliance with the License as modified.
// You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
//
// Modified Terms:
//
// 1) For the purpose of the patent license granted to you in Section 3 of the
// License, the "Work" hereby includes implementations of the work of authorship
// in physical form.
//
// 2) Notwithstanding any terms to the contrary in the License, any licenses
// necessary for implementation of the Work that are available from OpenPOWER
// via the Power ISA End User License Agreement (EULA) are explicitly excluded
// hereunder, and may be obtained from OpenPOWER under the terms and conditions
// of the EULA.
//
// Unless required by applicable law or agreed to in writing, the reference design
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License
// for the specific language governing permissions and limitations under the License.
//
// Additional rights, including the ability to physically implement a softcore that
// is compliant with the required sections of the Power ISA Specification, are
// available at no cost under the terms of the OpenPOWER Power ISA EULA, which can be
// obtained (along with the Power ISA) here: https://openpowerfoundation.org.
`timescale 1 ns / 1 ns
// *!****************************************************************
// *! FILENAME : tri_64x144_1r1w.v
// *! DESCRIPTION : 64 Entry x 144 bit array, 9 bit writeable
// *!
// *!****************************************************************
`include "tri_a2o.vh"
module tri_64x144_1r1w (
gnd,
vdd,
vcs,
clk,
rst,
rd_act,
wr_act,
sg_0,
abst_sl_thold_0,
ary_nsl_thold_0,
time_sl_thold_0,
repr_sl_thold_0,
func_sl_force,
func_sl_thold_0_b,
g8t_clkoff_dc_b,
ccflush_dc,
scan_dis_dc_b,
scan_diag_dc,
g8t_d_mode_dc,
g8t_mpw1_dc_b,
g8t_mpw2_dc_b,
g8t_delay_lclkr_dc,
d_mode_dc,
mpw1_dc_b,
mpw2_dc_b,
delay_lclkr_dc,
wr_abst_act,
rd0_abst_act,
abist_di,
abist_bw_odd,
abist_bw_even,
abist_wr_adr,
abist_rd0_adr,
tc_lbist_ary_wrt_thru_dc,
abist_ena_1,
abist_g8t_rd0_comp_ena,
abist_raw_dc_b,
obs0_abist_cmp,
abst_scan_in,
time_scan_in,
repr_scan_in,
func_scan_in,
abst_scan_out,
time_scan_out,
repr_scan_out,
func_scan_out,
lcb_bolt_sl_thold_0,
pc_bo_enable_2,
pc_bo_reset,
pc_bo_unload,
pc_bo_repair,
pc_bo_shdata,
pc_bo_select,
bo_pc_failout,
bo_pc_diagloop,
tri_lcb_mpw1_dc_b,
tri_lcb_mpw2_dc_b,
tri_lcb_delay_lclkr_dc,
tri_lcb_clkoff_dc_b,
tri_lcb_act_dis_dc,
write_enable,
addr_wr,
data_in,
addr_rd,
data_out
);
parameter addressable_ports = 64; // number of addressable register in this array
parameter addressbus_width = 6; // width of the bus to address all ports (2^addressbus_width >= addressable_ports)
parameter port_bitwidth = 144; // bitwidth of ports (per way)
parameter bit_write_type = 9; // gives the number of bits that shares one write-enable; must divide evenly into array
parameter ways = 1; // number of ways
// POWER PINS
inout gnd;
inout vdd;
inout vcs;
// CLOCK and CLOCKCONTROL ports
input clk;
input rst;
input rd_act;
input wr_act;
input sg_0;
input abst_sl_thold_0;
input ary_nsl_thold_0;
input time_sl_thold_0;
input repr_sl_thold_0;
input func_sl_force;
input func_sl_thold_0_b;
input g8t_clkoff_dc_b;
input ccflush_dc;
input scan_dis_dc_b;
input scan_diag_dc;
input g8t_d_mode_dc;
input [0:4] g8t_mpw1_dc_b;
input g8t_mpw2_dc_b;
input [0:4] g8t_delay_lclkr_dc;
input d_mode_dc;
input mpw1_dc_b;
input mpw2_dc_b;
input delay_lclkr_dc;
// ABIST
input wr_abst_act;
input rd0_abst_act;
input [0:3] abist_di;
input abist_bw_odd;
input abist_bw_even;
input [0:addressbus_width-1] abist_wr_adr;
input [0:addressbus_width-1] abist_rd0_adr;
input tc_lbist_ary_wrt_thru_dc;
input abist_ena_1;
input abist_g8t_rd0_comp_ena;
input abist_raw_dc_b;
input [0:3] obs0_abist_cmp;
// Scan
input abst_scan_in;
input time_scan_in;
input repr_scan_in;
input func_scan_in;
output abst_scan_out;
output time_scan_out;
output repr_scan_out;
output func_scan_out;
// BOLT-ON
input lcb_bolt_sl_thold_0;
input pc_bo_enable_2; // general bolt-on enable
input pc_bo_reset; // reset
input pc_bo_unload; // unload sticky bits
input pc_bo_repair; // execute sticky bit decode
input pc_bo_shdata; // shift data for timing write and diag loop
input [0:1] pc_bo_select; // select for mask and hier writes
output [0:1] bo_pc_failout; // fail/no-fix reg
output [0:1] bo_pc_diagloop;
input tri_lcb_mpw1_dc_b;
input tri_lcb_mpw2_dc_b;
input tri_lcb_delay_lclkr_dc;
input tri_lcb_clkoff_dc_b;
input tri_lcb_act_dis_dc;
// Write Ports
input write_enable;
input [0:addressbus_width-1] addr_wr;
input [0:port_bitwidth-1] data_in;
// Read Ports
input [0:addressbus_width-1] addr_rd;
output [0:port_bitwidth-1] data_out;
// tri_64x144_1r1w
// Configuration Statement for NCsim
//for all:RAMB36 use entity unisim.RAMB36;
parameter data_width = ((((port_bitwidth - 1)/36) + 1) * 36) - 1;
parameter rd_act_offset = 0;
parameter data_out_offset = rd_act_offset + 1;
parameter scan_right = data_out_offset + port_bitwidth - 1;
wire [0:data_width-(data_width/9)-1] ramb_data_in;
wire [0:data_width/9] ramb_par_in;
wire [0:data_width-(data_width/9)-1] ramb_data_out;
wire [0:data_width/9] ramb_par_out;
wire [0:data_width-(data_width/9)-1] ramb_data_dummy;
wire [0:data_width/9] ramb_par_dummy;
wire [0:15] ramb_wr_addr;
wire [0:15] ramb_rd_addr;
wire [0:data_width] data_in_pad;
wire [0:data_width] data_out_pad;
wire [0:((port_bitwidth-1)/36)] cascadeoutlata;
wire [0:((port_bitwidth-1)/36)] cascadeoutlatb;
wire [0:((port_bitwidth-1)/36)] cascadeoutrega;
wire [0:((port_bitwidth-1)/36)] cascadeoutregb;
wire rd_act_d;
wire rd_act_q;
wire [0:port_bitwidth-1] data_out_d;
wire [0:port_bitwidth-1] data_out_q;
wire tiup;
wire tidn;
wire [0:(((((port_bitwidth-1)/36)+1)*36)/9)-1] wrt_en;
wire act;
wire [0:scan_right] siv;
wire [0:scan_right] sov;
(* analysis_not_referenced="true" *)
wire unused;
generate begin
assign tiup = 1'b1;
assign tidn = 1'b0;
assign wrt_en = {(((((port_bitwidth-1)/36)+1)*36)/9){write_enable}};
assign act = rd_act | wr_act;
assign rd_act_d = rd_act;
assign ramb_wr_addr[0] = 1'b0;
assign ramb_wr_addr[11:15] = 5'b0;
assign ramb_rd_addr[0] = 1'b0;
assign ramb_rd_addr[11:15] = 5'b0;
genvar addr;
for (addr = 0; addr < 10; addr = addr + 1) begin : padA0
if (addr < 10 - addressbus_width)
begin
assign ramb_wr_addr[addr + 1] = 1'b0;
assign ramb_rd_addr[addr + 1] = 1'b0;
end
if (addr >= 10 - addressbus_width)
begin
assign ramb_wr_addr[addr + 1] = addr_wr[addr - (10 - addressbus_width)];
assign ramb_rd_addr[addr + 1] = addr_rd[addr - (10 - addressbus_width)];
end
end
// PORTA => Used for Writing
// PORTB => Used for Reading
genvar arr;
for (arr = 0; arr <= (port_bitwidth - 1)/36; arr = arr + 1)
begin : padD0
genvar b;
for (b = 0; b < 36; b = b + 1)
begin : numBit
if ((arr * 36) + b < port_bitwidth)
begin
assign data_in_pad[(arr * 36) + b] = data_in[(arr * 36) + b];
end
if ((arr * 36) + b >= port_bitwidth)
begin
assign data_in_pad[(arr * 36) + b] = 1'b0;
end
end
end
genvar bb;
for (bb = 0; bb <= (data_width)/9; bb = bb + 1)
begin : dInFixUp
assign ramb_data_in[bb * 8:(bb * 8) + 7] = data_in_pad[(bb * 8) + bb:(bb * 8) + 7 + bb];
assign ramb_par_in[bb] = data_in_pad[(bb * 8) + bb + 8];
end
for (bb = 0; bb <= (data_width)/9; bb = bb + 1)
begin : dOutFixUp
assign data_out_pad[(bb * 8) + bb:(bb * 8) + 7 + bb] = ramb_data_out[bb * 8:(bb * 8) + 7];
assign data_out_pad[(bb * 8) + bb + 8] = ramb_par_out[bb];
end
genvar anum;
for (anum = 0; anum <= (port_bitwidth - 1)/36; anum = anum + 1)
begin : arrNum
RAMB36 #(.SIM_COLLISION_CHECK("NONE"), .READ_WIDTH_A(36), .READ_WIDTH_B(36), .WRITE_WIDTH_A(36), .WRITE_WIDTH_B(36), .WRITE_MODE_A("READ_FIRST"), .WRITE_MODE_B("READ_FIRST")) ARR(
.CASCADEOUTLATA(cascadeoutlata[anum]),
.CASCADEOUTLATB(cascadeoutlatb[anum]),
.CASCADEOUTREGA(cascadeoutrega[anum]),
.CASCADEOUTREGB(cascadeoutregb[anum]),
.DOA(ramb_data_dummy[(32 * anum):31 + (32 * anum)]),
.DOB(ramb_data_out[(32 * anum):31 + (32 * anum)]),
.DOPA(ramb_par_dummy[(4 * anum):3 + (4 * anum)]),
.DOPB(ramb_par_out[(4 * anum):3 + (4 * anum)]),
.ADDRA(ramb_wr_addr),
.ADDRB(ramb_rd_addr),
.CASCADEINLATA(1'b0),
.CASCADEINLATB(1'b0),
.CASCADEINREGA(1'b0),
.CASCADEINREGB(1'b0),
.CLKA(clk),
.CLKB(clk),
.DIA(ramb_data_in[(32 * anum):31 + (32 * anum)]),
.DIB(32'b0),
.DIPA(ramb_par_in[(4 * anum):3 + (4 * anum)]),
.DIPB(4'b0),
.ENA(act),
.ENB(act),
.REGCEA(1'b0),
.REGCEB(1'b0),
.SSRA(rst),
.SSRB(rst),
.WEA(wrt_en[anum * 4:anum * 4 + 3]),
.WEB(4'b0) //'
);
end
assign data_out_d = data_out_pad[0:port_bitwidth - 1];
assign data_out = data_out_q;
assign abst_scan_out = tidn;
assign time_scan_out = tidn;
assign repr_scan_out = tidn;
assign bo_pc_failout = 2'b00;
assign bo_pc_diagloop = 2'b00;
end
endgenerate
assign unused = | {
cascadeoutlata ,
cascadeoutlatb ,
cascadeoutrega ,
cascadeoutregb ,
ramb_data_dummy ,
ramb_par_dummy ,
gnd ,
vdd ,
vcs ,
sg_0 ,
abst_sl_thold_0 ,
ary_nsl_thold_0 ,
time_sl_thold_0 ,
repr_sl_thold_0 ,
g8t_clkoff_dc_b ,
ccflush_dc ,
scan_dis_dc_b ,
scan_diag_dc ,
g8t_d_mode_dc ,
g8t_mpw1_dc_b ,
g8t_mpw2_dc_b ,
g8t_delay_lclkr_dc ,
wr_abst_act ,
rd0_abst_act ,
abist_di ,
abist_bw_odd ,
abist_bw_even ,
abist_wr_adr ,
abist_rd0_adr ,
tc_lbist_ary_wrt_thru_dc ,
abist_ena_1 ,
abist_g8t_rd0_comp_ena ,
abist_raw_dc_b ,
obs0_abist_cmp ,
abst_scan_in ,
time_scan_in ,
repr_scan_in ,
lcb_bolt_sl_thold_0 ,
pc_bo_enable_2 ,
pc_bo_reset ,
pc_bo_unload ,
pc_bo_repair ,
pc_bo_shdata ,
pc_bo_select ,
tri_lcb_mpw1_dc_b ,
tri_lcb_mpw2_dc_b ,
tri_lcb_delay_lclkr_dc ,
tri_lcb_clkoff_dc_b ,
tri_lcb_act_dis_dc };
// ####################################################
// Registers
// ####################################################
tri_rlmlatch_p #(.INIT(0), .NEEDS_SRESET(1)) rd_act_reg(
.vd(vdd),
.gd(gnd),
.clk(clk),
.rst(rst),
.act(tiup),
.force_t(func_sl_force),
.d_mode(d_mode_dc),
.delay_lclkr(delay_lclkr_dc),
.mpw1_b(mpw1_dc_b),
.mpw2_b(mpw2_dc_b),
.thold_b(func_sl_thold_0_b),
.sg(sg_0),
.scin(siv[rd_act_offset]),
.scout(sov[rd_act_offset]),
.din(rd_act_d),
.dout(rd_act_q)
);
tri_rlmreg_p #(.WIDTH(port_bitwidth), .INIT(0), .NEEDS_SRESET(1)) data_out_reg(
.vd(vdd),
.gd(gnd),
.clk(clk),
.rst(rst),
.act(rd_act_q),
.force_t(func_sl_force),
.d_mode(d_mode_dc),
.delay_lclkr(delay_lclkr_dc),
.mpw1_b(mpw1_dc_b),
.mpw2_b(mpw2_dc_b),
.thold_b(func_sl_thold_0_b),
.sg(sg_0),
.scin(siv[data_out_offset:data_out_offset + port_bitwidth - 1]),
.scout(sov[data_out_offset:data_out_offset + port_bitwidth - 1]),
.din(data_out_d),
.dout(data_out_q)
);
assign siv[0:scan_right] = {sov[1:scan_right], func_scan_in};
assign func_scan_out = sov[0];
endmodule