You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

274 lines
9.2 KiB
Verilog

// © IBM Corp. 2020
// Licensed under the Apache License, Version 2.0 (the "License"), as modified by
// the terms below; you may not use the files in this repository except in
// compliance with the License as modified.
// You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
//
// Modified Terms:
//
// 1) For the purpose of the patent license granted to you in Section 3 of the
// License, the "Work" hereby includes implementations of the work of authorship
// in physical form.
//
// 2) Notwithstanding any terms to the contrary in the License, any licenses
// necessary for implementation of the Work that are available from OpenPOWER
// via the Power ISA End User License Agreement (EULA) are explicitly excluded
// hereunder, and may be obtained from OpenPOWER under the terms and conditions
// of the EULA.
//
// Unless required by applicable law or agreed to in writing, the reference design
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License
// for the specific language governing permissions and limitations under the License.
//
// Additional rights, including the ability to physically implement a softcore that
// is compliant with the required sections of the Power ISA Specification, are
// available at no cost under the terms of the OpenPOWER Power ISA EULA, which can be
// obtained (along with the Power ISA) here: https://openpowerfoundation.org.
`timescale 1 ns / 1 ns
//-----------------------------------------------------------------------------------------------------
// Title: rv_station12.vhdl
// Desc: Parameterizable reservation station
//-----------------------------------------------------------------------------------------------------
module rv_barf(
w0_dat,
w0_addr,
w0_en,
w1_dat,
w1_addr,
w1_en,
w_act,
r0_addr,
r0_dat,
vdd,
gnd,
clk,
rst,
sg_1,
func_sl_thold_1,
ccflush_dc,
act_dis,
clkoff_b,
d_mode,
delay_lclkr,
mpw1_b,
mpw2_b,
scan_in,
scan_out
);
`include "tri_a2o.vh"
parameter q_dat_width_g = 137;
parameter q_num_entries_g = 16;
parameter q_barf_enc_g=4;
input [0:q_dat_width_g-1] w0_dat;
input [0:q_barf_enc_g-1] w0_addr;
input w0_en;
input [0:q_dat_width_g-1] w1_dat;
input [0:q_barf_enc_g-1] w1_addr;
input w1_en;
input [0:q_num_entries_g-1] w_act;
input [0:q_barf_enc_g-1] r0_addr;
output [0:q_dat_width_g-1] r0_dat;
// pervasive
inout vdd;
inout gnd;
input clk;
input rst;
input sg_1;
input func_sl_thold_1;
input ccflush_dc;
input act_dis;
input clkoff_b;
input d_mode;
input delay_lclkr;
input mpw1_b;
input mpw2_b;
input scan_in;
output scan_out;
//-------------------------------------------------------------------------------------------------------
// Type definitions
//-------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------
// Functions
//-------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------
// Signals
//-------------------------------------------------------------------
wire [0:q_num_entries_g-1] sg_0;
wire [0:q_num_entries_g-1] func_sl_thold_0;
wire [0:q_num_entries_g-1] func_sl_thold_0_b;
wire [0:q_num_entries_g-1] force_t;
wire [0:q_num_entries_g-1] q_entry_load0;
wire [0:q_num_entries_g-1] q_entry_load1;
wire [0:q_num_entries_g-1] q_entry_hold;
wire [0:q_num_entries_g-1] q_entry_read;
wire [0:q_num_entries_g-1] q_read_dat[0:q_dat_width_g-1];
wire [0:q_num_entries_g-1] q_dat_act;
wire [0:q_dat_width_g-1] q_dat_d[0:q_num_entries_g-1];
wire [0:q_dat_width_g-1] q_dat_q[0:q_num_entries_g-1];
//-------------------------------------------------------------------
// Scanchain
//-------------------------------------------------------------------
parameter q_dat_offset = 0;
parameter scan_right = q_dat_offset + q_num_entries_g * q_dat_width_g;
wire [0:scan_right-1] siv;
wire [0:scan_right-1] sov;
//-------------------------------------------------------------------------------------------------------
// Notes
//-------------------------------------------------------------------------------------------------------
//
//-------------------------------------------------------------------------------------------------------
// misc
//-------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------
// Latch write data
//-------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------
// Write aoi
//-------------------------------------------------------------------------------------------------------
generate
begin : xhdl1
genvar n;
for (n = 0; n <= (q_num_entries_g - 1); n = n + 1)
begin : q_dat_gen
wire [0:q_barf_enc_g-1] id= n;
assign q_entry_load0[n] = (w0_addr == id) & w0_en;
assign q_entry_load1[n] = (w1_addr == id) & w1_en;
assign q_entry_hold[n] = (~q_entry_load0[n]) & (~q_entry_load1[n]);
assign q_dat_d[n] = (w0_dat & {q_dat_width_g{q_entry_load0[n]}}) |
(w1_dat & {q_dat_width_g{q_entry_load1[n]}}) |
(q_dat_q[n] & {q_dat_width_g{q_entry_hold[n]}}); //feedback
assign q_dat_act[n] = w_act[n];
end
end
endgenerate
//-------------------------------------------------------------------------------------------------------
// Read Mux
//-------------------------------------------------------------------------------------------------------
generate
begin : xhdl1r
genvar n, b;
for (n = 0; n <= (q_num_entries_g - 1); n = n + 1)
begin : rgene
wire [0:q_barf_enc_g-1] idd= n;
//onehot addr
assign q_entry_read[n] = (r0_addr == idd);
for (b = 0; b <= (q_dat_width_g - 1); b = b + 1)
begin : rgenb
//AND
assign q_read_dat[b][n] = q_dat_q[n][b] & q_entry_read[n];
end
end
end
endgenerate
generate
begin : xhdl1o
genvar b;
for (b = 0; b <= (q_dat_width_g - 1); b = b + 1)
begin : rgeneo
//OR
assign r0_dat[b] = |(q_read_dat[b]);
end
end
endgenerate
//-------------------------------------------------------------------------------------------------------
// storage elements
//-------------------------------------------------------------------------------------------------------
generate
begin : xhdl2
genvar n;
for (n = 0; n <= q_num_entries_g - 1; n = n + 1)
begin : q_x_q_gen
tri_plat #(.WIDTH(2))
perv_1to0_reg(
.vd(vdd),
.gd(gnd),
.clk(clk),
.rst(rst),
.flush(ccflush_dc),
.din({func_sl_thold_1, sg_1}),
.q({func_sl_thold_0[n], sg_0[n]})
);
tri_lcbor
perv_lcbor(
.clkoff_b(clkoff_b),
.thold(func_sl_thold_0[n]),
.sg(sg_0[n]),
.act_dis(act_dis),
.force_t(force_t[n]),
.thold_b(func_sl_thold_0_b[n])
);
tri_rlmreg_p #(.WIDTH(q_dat_width_g), .INIT(0))
q_dat_q_reg(
.vd(vdd),
.gd(gnd),
.clk(clk),
.rst(rst),
.act(q_dat_act[n]),
.thold_b(func_sl_thold_0_b[n]),
.sg(sg_0[n]),
.force_t(force_t[n]),
.delay_lclkr(delay_lclkr),
.mpw1_b(mpw1_b),
.mpw2_b(mpw2_b),
.d_mode(d_mode),
.scin(siv[q_dat_offset + q_dat_width_g * n:q_dat_offset + q_dat_width_g * (n + 1) - 1]),
.scout(sov[q_dat_offset + q_dat_width_g * n:q_dat_offset + q_dat_width_g * (n + 1) - 1]),
.din(q_dat_d[n]),
.dout(q_dat_q[n])
);
end
end
endgenerate
//---------------------------------------------------------------------
// Scan
//---------------------------------------------------------------------
assign siv[0:scan_right-1] = {sov[1:scan_right-1], scan_in};
assign scan_out = sov[0];
endmodule