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Preface

The roots of the Power ISA  (Instruction Set Architec-
ture) extend back over a quarter of a century, to IBM
Research. The POWER (Performance Optimization
With Enhanced RISC) Architecture was introduced with
the RISC System/6000 product family in early 1990. In
1991, Apple, IBM, and Motorola began the collabora-
tion to evolve to the PowerPC Architecture, expanding
the architecture’s applicability. In 1997, Motorola and
IBM began another collaboration, focused on optimiz-
ing PowerPC for embedded systems, which produced
Book E.

In 2006, Freescale and IBM collaborated on the cre-
ation of the Power ISA Version 2.03, which represented
the reunification of the architecture by combining
Book E content with the more general purpose Pow-
erPC Version 2.02. A significant benefit of the reunifica-
tion is the establishment of a single, compatible, 64-bit
programming model. The combining also extends
explicit architectural endorsement and control to Auxil-
iary Processing Units (APUs), units of function that
were originally developed as implementation- or prod-
uct family-specific extensions in the context of the Book
E allocated opcode space. With the resulting architec-
tural superset comes a framework that clearly estab-
lishes requirements and identifies options.

To a very large extent, application program compatibil-
ity has been maintained throughout the history of the
architecture, with the main exception being application
exploitation of APUs. The framework identifies the
base, pervasive, part of the architecture, and differenti-
ates it from “categories” of optional function (see
Section 1.3.5 of Book I). Because of the substantial dif-
ferences in the supervisor (privileged) architecture that
developed as Book E was optimized for embedded sys-
tems, the supervisor architectures for embedded and
general purpose implementations are represented as
mutually exclusive categories. Future versions of the
architecture will seek to converge on a common solu-
tion where possible.

This document defines the Power ISA Version 2.07 B. It
is comprised of five books and a set of appendices. 

Book I, Power ISA User Instruction Set Architecture,
covers the base instruction set and related facilities
available to the application programmer. It includes five
chapters derived from APU function, including the vec-
tor extension also known as Altivec.

Book II, Power ISA Virtual Environment Architecture,
defines the storage model and related instructions and
facilities available to the application programmer.

Book III-S, Power ISA Operating Environment Architec-
ture, defines the supervisor instructions and related
facilities used for general purpose implementations.

Book III-E, Power ISA Operating Environment Architec-
ture, defines the supervisor instructions and related
facilities used for embedded implementations. It was
derived from Book E and extended to include APU
function.

Book VLE, Power ISAVariable Length Encoded Instruc-
tions Architecture, defines alternative instruction
encodings and definitions intended to increase instruc-
tion density for very low end implementations. It was
derived from an APU description developed by Frees-
cale Semiconductor.

As used in this document, the term “Power ISA” refers
to the instructions and facilities described in Books I, II,
III-S, III-E, and VLE.

Usage of the phrase “Book III” refers to both Book III-S
and Book III-E. An exception to this rule is when, at the
beginning of a Section or Book, it is specified that
usage of the phrase “Book III” implies only either “Book
III-S” or “Book III-E”.

Change bars have been included to indicate changes
from the Power ISA Version 2.06B. 
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Summary of Changes in Power ISA Version 2.07 B
This document is Revision B of Version 2.07 of the
Power ISA. It is intended to supersede and replace ver-
sion 2.07. Any product descriptions that reference a
version of the architecture are understood to reference
the latest version. This version was created by making
miscellaneous corrections and by applying the following
requests for change (RFCs) to Power ISA Version 2.07.

Split Vector.Crypto Category: Splits Category Vec-
tor.Crypto into separate Vector.AES and Vector.SHA2
categories.

Atomicity, Little Endian, and Alignment Improvements
Improves the readability of the descriptions of atomicity,
Little Endian mode, and alignment requirements.

Instruction Fusion: Specifies instruction sequences that
are likely to improve the performance of certain func-
tions.

mfocrf Restrictions: Specifies the handling of unused
fields in the destination register for the mfocrf instruc-
tion.

Specify DSISR as Undefined for Alignment Interrupt:
Removes optional specifications for setting the DSISR
for the Alignment interrupt that have never been imple-
mented.

Clarify Event-Based Branch Processing: Makes edito-
rial clarifications to the processing of event-based
branches and event-based exceptions.

Substantive Transactional Memory Changes: Makes a
change to the granularity at which conflicts between
storage accessses is detected as well as other
changes related to theTransactional Memory Facility.

This document also incorporates the following requests
for change (RFCs) to PowerISA Version 2.06B that
were applied in Version 2.07 of the PowerISA.

Performance Monitor Facility: Adds various perfor-
mance monitoring facilities and a branch history buffer
to Server architecture.

VSX Scalar Single-Precision: Adds support for scalar
single-precision to VSX.

Transactional Memory: Adds support for a transactional
memory storage model which allows an application to
perform a sequence of accesses that appear to occur
atomically with respect to other threads.

Processor Control Enhancements: Enables privileged
and hypervisor software to send messages to other
threads.

Instruction Cache Block Touch: The icbt instruction has
been moved from the Embedded category to the Base
category.

Extended Problem State Priority: Provides a mecha-
nism that enables application programs to temporarily
boost their priority.

Virtual Page Class Key Extensions for Instructions:
Adds a new SPR similar to the AMR that controls
whether instructions can be fetched from virtual
addresses.

Reserved Bit Behavior Restriction and Processor Com-
patibility Register: Updates the PCR to accommodate
new problem state features for PowerISA Version 2.07
B. In addition, requirements for reserved bit behaviors
have been tightened in order to improve software com-
patibility across implementations.

Chip Information Register: Adds a privileged SPR
which enables software to determine information about
the chip on which the processor is implemented.

Crypto Operations: Adds instructions supporting AES,
GCM, and SHA encryption and decryption, as well as a
variety of CRCs and other finite field arithmetic opera-
tions.

VMX 64-Bit Integer Operations: Adds instructions sup-
porting 2-way SIMD 64-bit integer operations.

Vector Miscellaneous Instructions: Adds SIMD count
leading zeros instructions and a bit gather instruction.

Cache Hint Indicating Block Not Needed: Enables soft-
ware to provide a cache hint indicating that it will no
longer access a block.

Remove LPES1 from the LPCR: Eliminates the capabil-
ity to request the processor to behave as previous ver-
sions of the architecture required when LPES1 = 0.

Direct Move Instructions: Adds new VSX instructions
which remove the restriction of cross-register file
moves.

Move dnh from Enhanced Debug to Embedded Cate-
gory: The dnh instruction has been moved to the
Embedded category.

Real Mode Storage Control for Instruction Fetching and
Loosely-Related Caching Inhibited Load/Store
Changes: Defines an alternative to the existing instruc-
tion fetch RMSC approach whereby a first access to a
region of storage will be performed as guarded, but
subsequent accesses will be performed as
non-guarded based on the success of the first.

Elemental Memory Barriers: Extends the definition of
the existing sync instruction by adding several memory
ordering functions.

Event-Based Branch Facility: A problem state accessi-
ble event-based branch mechanism analogous to the
interrupt mechanism is defined.
Power ISA™ iv
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Stream Prefetch Changes: Allows DSCR access in
problem state and adds additional stream prefetch
functionality.

Add lqarx/stqcx. Instructions: Adds support for quad-
word atomic storage operations.

Allow lq/stq in Problem State: Allows problem state
software to use the lq and stq instructions.

Allow lq/stq in Little-Endian Mode: Removes the restric-
tion that the lq and stq instructions can only operate in
Big-Endian mode.

Add makeitso Instruction: Adds the miso extended
mnemonic which allows producers in producer-con-
sumer applications to provide a hint to push store data
out.

Branch Conditional to Target Address Register: Defines
a new instruction which branches conditionally to an
address contained in a new SPR.

Remove DABR[X], add DAWR[X] and IABR SPRs:
Removes and replaces existing DABR/DABRX SPRs
with enhanced watchpoint functionality. Additionally
adds instruction address breakpoint capability to the
ISA.

Facility Availability Registers and Interrupts: A privi-
leged register and a hypervisor register that enables
various facilities are defined.

Reserved SPRs: Defines a set of reserved SPRs
treated as no-ops in the current architecture so that
exploitation of new function in future designs can pro-
ceed more quickly and pervasively.

Instruction Counter and Virtual Time Base: Two regis-
ters, one that counts instructions completed by a
thread, and another that counts at the same rate as the
Time Base are added.

Architecture Changes to Support Program Portability:
Eliminates software exposure to errors caused by vari-
ations in behavior due to implementation-dependent
bits in CTRL and PPR.

Miscellaneous Changes: Various minor editorial correc-
tions are made.

Interrupts and Relocation, MMIO Emulation: NewLPCR
bits enable most interrupts to be taken with relocation
on, and virtual page class key faults to cause Hypervi-
sor Data Storage interrupts.

Guest Timer Interrupts and Facilities: Adds guest timer
facilities to enable performance measurements for
guest operating systems.

VSX Unaligned Vector Storage Accesses: Change VSX
vector storage access instructions to support to
byte-aligned addresses. Simplify Table 2, “Performance
Considerations and Instruction Restart,” on page 753 in
Book II.

VMX Miscellaneous Operations II: Adds new instruc-
tions vclzd, vpopcntb, vpopcnth, vpopcntw,
vpopcntd, veqv, vnand, and vorc..

BFP/VSX Miscellaneous Operations: Introduces new
VSX instructions to address IEEE-754-2008 compli-
ance when performing simple assignments between
single-precision scalar and vector elements.

VMX 32-bit Multiply Operations: Introduces 4-way
SIMD 32-bit integer multiply instructions.

VMX Decimal Integer Operations: Introduces new
packed decimal add and subtract instructions.

Remove Data Value Compare: Since the data value
compare function can be easily emulated within a data
address compare handler, the data value compare reg-
isters are removed from Book III-E.

VMX 128-bit Integer Operations: Introduces new quad-
word integer add and subtract instructions.

Cache Lock Query Instructions: Adds instructions to
determine whether a cache block has been success-
fully locked with a preceding cache locking instruction.

Embedded Guest Perforamnce Monitor Interrupt: Intro-
duces a new Performance Monitor Interrupt that
enables a Performance Monitor interrupt to be taken in
guest state.
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Chapter 1.  Introduction

1.1 Overview
This chapter describes computation modes, document
conventions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Instruction Mnemonics and 
Operands
The description of each instruction includes the mne-
monic and a formatted list of operands. Some exam-
ples are the following.

stw RS,D(RA)
addis RT,RA,SI

Power ISA-compliant Assemblers will support the mne-
monics and operand lists exactly as shown. They
should also provide certain extended mnemonics, such
as the ones described in Appendix E of Book I.

1.3 Document Conventions

1.3.1 Definitions
The following definitions are used throughout this docu-
ment.

program
A sequence of related instructions.

application program
A program that uses only the instructions and
resources described in Books I and II.

processor
The hardware component that implements the
instruction set, storage model, and other facilities
defined in the Power ISA architecture, and exe-
cutes the instructions specified in a program.

quadword, doubleword, word, halfword, and 
byte
128 bits, 64 bits, 32 bits, 16 bits, and 8 bits,
respectively.

positive
Means greater than zero.

negative
Means less than zero.

floating-point single format (or simply single 
format)
Refers to the representation of a single-precision
binary floating-point value in a register or storage.

floating-point double format (or simply double 
format)
Refers to the representation of a double-precision
binary floating-point value in a register or storage.

system library program
A component of the system software that can be
called by an application program using a Branch
instruction.

system service program
A component of the system software that can be
called by an application program using a System
Call instruction.

system trap handler
A component of the system software that receives
control when the conditions specified in a Trap
instruction are satisfied.

system error handler
A component of the system software that receives
control when an error occurs. The system error
handler includes a component for each of the vari-
ous kinds of error. These error-specific compo-
nents are referred to as the system alignment error
handler, the system data storage error handler,
etc.

latency
Refers to the interval from the time an instruction
begins execution until it produces a result that is
available for use by a subsequent instruction.

unavailable
Refers to a resource that cannot be used by the
program. For example, storage is unavailable if
access to it is denied. See Book III.
Chapter 1. Introduction 3
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undefined value
May vary between implementations, and between
different executions on the same implementation,
and similarly for register contents, storage con-
tents, etc., that are specified as being undefined.

boundedly undefined
The results of executing a given instruction are
said to be boundedly undefined if they could have
been achieved by executing an arbitrary finite
sequence of instructions (none of which yields
boundedly undefined results) in the state the pro-
cessor was in before executing the given instruc-
tion. Boundedly undefined results may include the
presentation of inconsistent state to the system
error handler as described in Section 1.9.1 of Book
II. Boundedly undefined results for a given instruc-
tion may vary between implementations, and
between different executions on the same imple-
mentation.

“must”
If software violates a rule that is stated using the
word “must” (e.g., “this field must be set to 0”), the
results are boundedly undefined unless otherwise
stated.

sequential execution model
The model of program execution described in
Section 2.2, “Instruction Execution Order” on
page 29.

Auxiliary Processor
An implementation-specific processing unit. Previ-
ous versions of the architecture use the term Auxil-
iary Processing Unit (APU) to describe this
extension of the architecture. Architectural support
for auxiliary processors is part of the Embedded
category.

virtualized implementation
An implementation of the Power Architecture cre-
ated by hypervisor software.  A guest operating
system sees a virtualized implementation of the
Power ISA. Architectural support for virtualized
implementations is part of the Embedded category
(see Section 1.3.5, “Categories”).

1.3.2 Notation
The following notation is used throughout the Power
ISA documents.

All numbers are decimal unless specified in some
special way.

- 0bnnnn means a number expressed in binary
format.

- 0xnnnn means a number expressed in hexa-
decimal format.

Underscores may be used between digits.

RT, RA, R1, ... refer to General Purpose Registers.

FRT, FRA, FR1, ... refer to Floating-Point Regis-
ters.

FRTp, FRAp, FRBp, ... refer to an even-odd pair of
Floating-Point Registers. Values must be even,
otherwise the instruction form is invalid.

VRT, VRA, VR1, ... refer to Vector Registers.

(x) means the contents of register x, where x is the
name of an instruction field. For example, (RA)
means the contents of register RA, and (FRA)
means the contents of register FRA, where RA
and FRA are instruction fields. Names such as LR
and CTR denote registers, not fields, so parenthe-
ses are not used with them. Parentheses are also
omitted when register x is the register into which
the result of an operation is placed.

(RA|0) means the contents of register RA if the RA
field has the value 1-31, or the value 0 if the RA
field is 0.
Bytes in instructions, fields, and bit strings are
numbered from left to right, starting with byte 0
(most significant).

Bits in registers, instructions, fields, and bit strings
are specified as follows. In the last three items
(definition of Xp etc.), if X is a field that specifies a
GPR, FPR, or VR (e.g., the RS field of an instruc-
tion), the definitions apply to the register, not to the
field.

- Bits in instructions, fields, and bit strings are
numbered from left to right, starting with bit 0

- For all registers except the Vector category,
bits in registers that are less than 64 bits start
with bit number 64-L, where L is the register
length; for the Vector category, bits in registers
that are less than 128 bits start with bit num-
ber 128-L.

- The leftmost bit of a sequence of bits is the
most significant bit of the sequence.

- Xp means bit p of register/instruction/field/
bit_string X.

- Xp:q means bits p through q of register/instruc-
tion/field/bit_string X.

- Xp q ... means bits p, q, ... of register/instruc-
tion/field/bit_string X.

¬(RA) means the one’s complement of the con-
tents of register RA. 

A period (.) as the last character of an instruction
mnemonic means that the instruction records sta-
tus information in certain fields of the Condition
Register as a side effect of execution.

The symbol || is used to describe the concatena-
tion of two values. For example, 010 || 111 is the
same as 010111.

xn means x raised to the nth power.
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nx means the replication of x, n times (i.e., x con-
catenated to itself n-1 times).  n0 and n1 are spe-
cial cases:

- n0 means a field of n bits with each bit equal to
0. Thus 50 is equivalent to 0b00000.

- n1 means a field of n bits with each bit equal to
1. Thus 51 is equivalent to 0b11111.

Each bit and field in instructions, and in status and
control registers (e.g., XER, FPSCR) and Special
Purpose Registers, is either defined or reserved.
Some defined fields contain reserved values. In
such cases when this document refers to the spe-
cific field, it refers only to the defined values,
unless otherwise specified.

 /, //, ///, ... denotes a reserved field, in a register,
instruction, field, or bit string.

?, ??, ???, ... denotes an implementation-depen-
dent field in a register, instruction, field or bit string.

1.3.3 Reserved Fields, Reserved 
Values, and Reserved SPRs
Reserved fields in instructions are ignored by the pro-
cessor. This is a requirement in the Server environment
and is being phased into the Embedded environment.

In some cases a defined field of an instruction has cer-
tain values that are reserved. This includes cases in
which the field is shown in the instruction layout as con-
taining a particular value; in such cases all other values
of the field are reserved. In general, if an instruction is
coded such that a defined field contains a reserved
value the instruction form is invalid; see Section 1.8.2
on page 22. The only exception to the preceding rule is
that it does not apply to Reserved and Illegal classes of
instructions (see Section 1.7) or to portions of defined
fields that are specified, in the instruction description,
as being treated as reserved fields. 

To maximize compatibility with future architecture
extensions, software must ensure that reserved fields
in instructions contain zero and that defined fields of
instructions do not contain reserved values.

The handling of reserved bits in System Registers (e.g.,
XER, FPSCR) depends on whether the processor is in
problem state. Unless otherwise stated, software is per-
mitted to write any value to such a bit. In problem state,
a subsequent reading of the bit returns 0 regardless of
the value written; in privileged states, a subsequent
reading of the bit returns 0 if the value last written to the
bit was 0 and returns an undefined value (0 or 1) other-
wise.

In some cases, a defined field of a System Register has
certain values that are reserved. Software must not set
a defined field of a System Register to a reserved
value. References elsewhere in this document to a
defined field (in an instruction or System Register) that
has reserved values assume the field does not contain
a reserved value, unless otherwise stated or obvious
from context.

In some cases, a given bit of a System Register is
specified to be set to a constant value by a given
instruction or event. Unless otherwise stated or obvious
from context, software should not depend on this con-
stant value because the bit may be assigned a meaning
in a future version of the architecture.

The reserved SPRs include SPRs 808, 809, 810, and
811.  mtspr and mfspr instructions specifying these
SPRs are treated as noops.  Reserved SPRs are pro-
vided in the architecture to anticipate the eventual
adoption of performance hint functionality that must be
controlled by SPRs.  Control of these capabilities using
reserved SPRs will allow software to use these new
capabilities on new implementations that support them
while remaining compatible with existing implementa-
tions that may not support the new functionality.
Chapter 1. Introduction 5
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Reserved SPRs are not assigned names.  There are no
individual descriptions of reserved SPRs in this docu-
ment.

  

  

1.3.4 Description of Instruction 
Operation
Instruction descriptions (including related material such
as the introduction to the section describing the instruc-
tions) mention that the instruction may cause a system
error handler to be invoked, under certain conditions, if
and only if the system error handler may treat the case
as a programming error. (An instruction may cause a
system error handler to be invoked under other condi-
tions as well; see Chapter 6 of Book III-S and Chapter 7
of Book III-E).

A formal description is given of the operation of each
instruction. In addition, the operation of most instruc-
tions is described by a semiformal language at the reg-
ister transfer level (RTL). This RTL uses the notation
given below, in addition to the notation described in
Section 1.3.2. Some of this notation is also used in the
formal descriptions of instructions. RTL notation not
summarized here should be self-explanatory.

The RTL descriptions cover the normal execution of the
instruction, except that “standard” setting of status reg-

isters, such as the Condition Register, is not shown.
(“Non-standard” setting of these registers, such as the
setting of the Condition Register by the Compare
instructions, is shown.) The RTL descriptions do not
cover cases in which the system error handler is
invoked, or for which the results are boundedly unde-
fined.

The RTL descriptions specify the architectural transfor-
mation performed by the execution of an instruction.
They do not imply any particular implementation.

Notation Meaning
I Assignment
Iiea Assignment of an instruction effective

address.  In 32-bit mode the high-order 32
bits of the 64-bit target address are set to
0.

¬ NOT logical operator
+ Two’s complement addition
- Two’s complement subtraction, unary

minus
× Multiplication
×si Signed-integer multiplication
×ui Unsigned-integer multiplication
/ Division
÷ Division, with result truncated to integer
√ Square root
=, ≠ Equals, Not Equals relations
<, ≤, >, ≥ Signed comparison relations
<u, >u Unsigned comparison relations
? Unordered comparison relation
&, | AND, OR logical operators
⊕, ≡ Exclusive OR, Equivalence logical opera-

tors ((a≡b) = (a⊕¬b))
ABS(x) Absolute value of x
BCD_TO_DPD(x)

The low-order 24 bits of x contain six, 4-bit
BCD fields which are converted to two
declets; each set of two declets is placed
into the low-order 20 bits of the result. See
Section B.1, “BCD-to-DPD Translation”.

CEIL(x) Least integer ≥ x
DCR(x) Device Control Register x <E.DC>
DOUBLE(x) Result of converting x from floating-point

single format to floating-point double for-
mat, using the model shown on page 131

DPD_TO_BCD(x)
The low-order 20 bits of x contain two
declets which are converted to six, 4-bit
BCD fields; each set of six, 4-bit BCD
fields is placed into the low-order 24 bits of
the result. See Section B.2, “DPD-to-BCD
Translation”.

EXTS(x) Result of extending x on the left with sign
bits

FLOOR(x) Greatest integer ≤ x
GPR(x) General Purpose Register x

Assemblers should report uses of reserved values
of defined fields of instructions as errors.

It is the responsibility of software to preserve bits
that are now reserved in System Registers,
because they may be assigned a meaning in some
future version of the architecture.

In order to accomplish this preservation in imple-
mentation-independent fashion, software should do
the following.

Initialize each such register supplying zeros for
all reserved bits.
Alter (defined) bit(s) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the reg-
ister.

The XER and FPSCR are partial exceptions to this
recommendation. Software can alter the status bits
in these registers, preserving the reserved bits, by
executing instructions that have the side effect of
altering the status bits. Similarly, software can alter
any defined bit in the FPSCR by executing a Float-
ing-Point Status and Control Register instruction.
Using such instructions is likely to yield better per-
formance than using the method described in the
second item above.

Assembler Note

Programming Note
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MASK(x, y) Mask having 1s in positions x through y
(wrapping if x > y) and 0s elsewhere

MEM(x, y) Contents of a sequence of y bytes of stor-
age. The sequence depends on the byte
ordering used for storage access, as fol-
lows.
Big-Endian byte ordering:
The sequence starts with the byte at
address x and ends with the byte at
address x+y-1.
Little-Endian byte ordering: 
The sequence starts with the byte at
address x+y-1 and ends with the byte at
address x.

MEM_DECORATED(x,y,z)
Contents of a sequence of y bytes of storage,
where the storage is accessed with decoration
z applied. The sequence depends on the byte
ordering used for storage access, as follows.
Big-Endian byte ordering:
The sequence starts with the byte at address
x and ends with the byte at address x+y-1.
Little-Endian byte ordering:
The sequence starts with the byte at address
x+y-1 and ends with the byte at address x.

MEM_NOTIFY(x,z)
The decoration z is sent to storage location x.

ROTL64(x, y)
Result of rotating the 64-bit value x left y
positions

ROTL32(x, y)
Result of rotating the 64-bit value x||x left y
positions, where x is 32 bits long

SINGLE(x) Result of converting x from floating-point
double format to floating-point single for-
mat, using the model shown on page 135

SPR(x) Special Purpose Register x
switch/case/default

switch/case/default statement, indenting
shows range. The clause after “switch”
specifies the expression to evaluate. The
clause after “case” specifies individual val-
ues for the expression, followed by a
colon, followed by the actions that are
taken if the evaluated expression has any
of the specified values.  “default” is
optional.  If present, it must follow all the
“case” clauses.  The clause after “default”
starts with a colon, and specifies the
actions that are taken if the evaluated
expression does not have any of the val-
ues specified in the preceding case state-
ments.

TRAP Invoke the system trap handler
characterization

Reference to the setting of status bits, in a
standard way that is explained in the text

undefined An undefined value.

CIA Current Instruction Address, which is the
64-bit address of the instruction being
described by a sequence of RTL. Used by
relative branches to set the Next Instruc-
tion Address (NIA), and by Branch instruc-
tions with LK=1 to set the Link Register.
Does not correspond to any architected
register.

NIA Next Instruction Address, which is the
64-bit address of the next instruction to be
executed. For a successful branch, the
next instruction address is the branch tar-
get address: in RTL, this is indicated by
assigning a value to NIA. For other instruc-
tions that cause non-sequential instruction
fetching (see Book III), the RTL is similar.
For instructions that do not branch, and do
not otherwise cause instruction fetching to
be non-sequential, the next instruction
address is CIA+4 (VLE behavior is differ-
ent; see Book VLE). Does not correspond
to any architected register.

if... then... else...   
Conditional execution, indenting shows
range; else is optional.

do Do loop, indenting shows range. “To” and/
or “by” clauses specify incrementing an
iteration variable, and a “while” clause
gives termination conditions.

leave Leave innermost do loop, or do loop
described in leave statement.

for For loop, indenting shows range. Clause
after “for” specifies the entities for which to
execute the body of the loop.
Chapter 1. Introduction 7
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The precedence rules for RTL operators are summa-
rized in Table 1. Operators higher in the table are
applied before those lower in the table. Operators at the
same level in the table associate from left to right, from
right to left, or not at all, as shown. (For example, -
associates from left to right, so a-b-c = (a-b)-c.)
Parentheses are used to override the evaluation order
implied by the table or to increase clarity; parenthe-
sized expressions are evaluated before serving as
operands. 1.3.5 Categories

Each facility (including registers and fields therein) and
instruction is in exactly one of the categories listed in
Figure 1.

A category may be defined as a dependent category.
These are categories that are supported only if the cat-
egory they are dependent on is also supported. Depen-
dent categories are identified by the “.” in their category
name, e.g., if an implementation supports the Float-
ing-Point.Record category, then the Floating-Point cate-
gory is also supported.

An implementation that supports a facility or instruction
in a given category, except for the two categories

Table 1: Operator precedence

Operators Associativity

subscript, function evaluation left to right

pre-superscript (replication), 
post-superscript (exponentiation)

right to left

unary -, ¬ right to left

×, ÷ left to right

+, -, left to right

|| left to right

=, ≠, <, ≤, >, ≥,<u, >u,? left to right

&, ⊕, ≡ left to right

| left to right 

: (range) none

I,Iiea none

Table 1: Operator precedence

Operators Associativity

Category Abvr. Notes

Base B Required for all implementations

Server S Required for Server implementations

Embedded E Required for Embedded implementations

Alternate Time Base ATB An additional Time Base; see Book II

Cache Specification CS Specify a specific cache for some instructions; see Book II

Decimal Floating-Point DFP Decimal Floating-Point facilities

Decorated Storage DS Decorated Storage facilities

Elemental Memory Barriers EMB More granular memory barrier support

Embedded.Cache Debug E.CD Provides direct access to cache data and directory content

Embedded.Cache Initialization E.CI Instructions that invalidate the entire cache

Embedded.Device Control E.DC Legacy Device Control bus support

Embedded.Enhanced Debug E.ED Embedded Enhanced Debug facility; see Book III-E

Embedded.External PID E.PD Embedded External PID facility; see Book III-E

Embedded.Hypervisor
Embedded.Hypervisor.LRAT

E.HV
E.HV.LRAT

Embedded Logical Partitioning and hypervisor facilities
Embedded Hypervisor Logical to Real Address Translation 

facility; see Book III-E

Embedded.Little-Endian E.LE Embedded Little-Endian page attribute; see Book III-E

Embedded.MMU Type FSL E.MMUF Type FSL Storage Control

Embedded.Page Table E.PT Embedded Page Table facility; see Book III-E

Embedded.TLB Write Conditional E.TWC Embedded TLB Write Conditional facility; see Book III-E

Embedded.Performance Monitor E.PM Embedded Performance Monitor example; see Book III-E

Embedded.Processor Control E.PC Embedded Processor Control facility; see Book III-E

Embedded Cache Locking ECL Embedded Cache Locking facility; see Book III-E
Figure 1. Category Listing (Sheet 1 of 2)
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An instruction in a category that is not supported by the
implementation is treated as an illegal instruction or an
unimplemented instruction on that implementation (see
Section 1.7.2).

For an instruction that is supported by the implementa-
tion with field values that are defined by the architec-
ture, the field values defined as part of a category that
is not supported by the implementation are treated as
reserved values on that implementation (see Section
1.3.3 and Section 1.8.2).

Bits in a register that are in a category that is not sup-
ported by the implementation are treated as reserved.

1.3.5.1 Phased-In/Phased-Out
There are two special categories, Phased-In and
Phased-Out, as well as two additional variations of
Phased-In as defined below. Abbreviations, if applica-
ble, are shown in parentheses.

Phased-In

These are facilities and instructions that, in the
next version of the architecture, will be required as
part of the category they are dependent on.

Servers do not implement a facility or instruction in
this category. Servers that comply with earlier ver-

Embedded Multi-Threading
    Embedded Multi-Threading.Thread 

Management

EM
EM.TM

Embedded Multi-Threading; see Book III-E
  Embedded Multi-Threading Thread Management Facility

External Control EC External Control facility; see Book II

External Proxy EXP External Proxy facility; see Book III-E

Floating-Point
   Floating-Point.Record

FP
FP.R

Floating-Point Facilities
   Floating-Point instructions with Rc=1

Legacy Integer Multiply-Accumulate1 LMA Legacy Integer Multiply-accumulate instructions

Legacy Move Assist LMV Determine Left most Zero Byte instruction

Load/Store Quadword LSQ Load/Store Quadword instructions; see Book III-S

Memory Coherence MMC Requirement for Memory Coherence; see Book II

Move Assist MA Move Assist instructions

Processor Compatibility PCR Processor Compatibility Register

Server.Relaxed Page Table Alignment S.RPTA HTAB alignment on 256 KB boundary; see Book III-S

Signal Processing Engine1, 2

 SPE.Embedded Float Scalar Double
 SPE.Embedded Float Scalar Single
 SPE.Embedded Float Vector

SP
SP.FD
SP.FS
SP.FV

Facility for signal processing 
  GPR-based Floating-Point double-precision instruction set
  GPR-based Floating-Point single-precision instruction set
  GPR-based Floating-Point Vector instruction set

Store Conditional Page Mobility SCPM Store Conditional accounting for page movement; see Book II

Stream STM Stream variant of dcbt instruction; see Book II

Strong Access Order SAO Assist for X86 and Sparc emulation; see Book II

Trace TRC Trace Facility; see Book III-S

Transactional Memory TM Full hardware Transactional Memory support

Variable Length Encoding VLE Variable Length Encoding facility; see Book VLE

Vector-Scalar Extension VSX Vector-Scalar Extension
Requires implementation of Floating-Point and Vector catego-
ries

Vector1

Vector.Little-Endian
Vector.AES
Vector.SHA2
Vector.RAID

V
V.LE
V.AES
V.SHA2
V.RAID

Vector facilities
Little-Endian support for Vector storage operations.
Advanced Encryption Standard assist instructions
Secure Hash Algorithm-2 assist instructions
Vector Permute-XOR instruction

Wait WT wait instruction; see Book II

64-Bit 64 Required for 64-bit implementations; not defined for 32-bit impl’s
1  Because of overlapping opcode usage, SPE is mutually exclusive with Vector and with Legacy Integer Multi-

ply-Accumulate, and Legacy Integer Multiply-Accumulate is mutually exclusive with Vector.
2 The SPE-dependent Floating-Point categories are collectively referred to as SPE.Embedded Float_* or SP.*.

Category Abvr. Notes

Figure 1. Category Listing (Sheet 2 of 2)
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sions of this architecture may have optionally
implemented facilities or instructions that were cat-
egory Phased-In.

Server, Embedded.Phased-In (S,E.PI)

These are facilities and instructions that are part of
the Server environment and, in the next version of
the architecture, will be required for the Embedded
environment.

It is implementation-dependent whether Embed-
ded processors implement a facility or instruction
in this category.

Embedded,  Server.Phased-In (E,S.PI)

These are facilities and instructions that are part of
the Embedded environment and, in the next ver-
sion of the architecture, will be required for the
Server environment.

Servers do not implement a facility or instruction in
this category.

Phased-Out

These are facilities and instructions that, in some
future version of the architecture, will be dropped
out of the architecture. System developers should
develop a migration plan to eliminate use of them
in new systems.

For Server platforms, Phased-Out facilities and
instructions must be implemented if the facility or
instruction is part of another category (including
the Base category) that is supported by the Server
platform.

  

  

1.3.5.2 Corequisite Category
A corequisite category is an additional category that is
associated with an instruction or facility, and must be
implemented if the instruction or facility is implemented. 

1.3.5.3 Category Notation
Instructions and facilities are considered part of the
Base category unless otherwise marked. If a section is
marked with a specific category tag, all material in that
section and its subsections are considered part of the
category, unless otherwise marked. Overview sections

may contain discussion of instructions and facilities
from various categories without being explicitly marked.

An example of a category tag is: [Category: Server].
Alternatively, a shorthand notation of a category tag
includes the category name in angled brackets “<>”,
such as <E.HV>.

An example of a dependent category is: 
[Category: Server.Phased-In]

The shorthand <E> and <S> may also be used for Cat-
egory: Embedded and Server respectively.

1.3.6 Environments
All implementations support one of the two defined
environments, Server or Embedded. Environments
refer to common subsets of instructions that are shared
across many implementations. The Server environment
describes implementations that support Category:
Base and Server. The Embedded environment
describes implementations that support Category:
Base and Embedded.

Warning: Instructions and facilities being phased
out of the architecture are likely to perform poorly
on future implementations. New programs should
not use them.

Facilities are categorized as Phased-In only in
cases where there is a difference between the
Server and Embedded environments.

Programming Note

Programming Note
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1.4 Processor Overview
The basic classes of instructions are as follows:

branch instructions (Chapter 2)
GPR-based scalar fixed-point instructions (Chap-
ter 3, Chapter 9, and Chapter 11)
GPR-based vector fixed-point instructions (Chap-
ter 8)
GPR-based scalar and vector floating-point
instructions (Chapter 10)
FPR-based scalar floating-point instructions
(Chapter 4)
FPR-based scalar decimal floating-point instruc-
tions (Chapter 5)
VR-based vector fixed-point and floating-point
instructions (Chapter 6)
VSR-based scalar and vector floating-point
instructions (Chapter 7)

Scalar fixed-point instructions operate on byte, half-
word, word, doubleword, and quadword (see Book
III-S) operands, where each operand contained in a
GPR. Vector fixed-point instructions operate on vectors
of byte, halfword, and word operands, where each vec-
tor is contained in a GPR or VR. Scalar floating-point
instructions operate on single-precision or double-pre-
cision floating-point operands, where each operand is
contained in a GPR, FPR, or VSR. Vector floating-point
instructions operate on vectors of single-precision and
double-precision floating-point operands, where each
vector is contained in a GPR, VR, or VSR.

The Power ISA uses instructions that are four bytes
long and word-aligned (VLE has different instruction
characteristics; see Book VLE). It provides for byte,
halfword, word, doubleword, and quadword operand
loads and stores between storage and a set of 32 Gen-
eral Purpose Registers (GPRs). It provides for word
and doubleword operand loads and stores between
storage and a set of 32 Floating-Point Registers
(FPRs). It also provides for byte, halfword, word, and
quadword operand loads and stores between storage
and a set of 32 Vector Registers (VRs). It provides for
doubleword and quadword operand loads and stores
between storage and a set of 64 Vector-Scalar Regis-
ters (VSRs).

Signed integers are represented in two’s complement
form.

There are no computational instructions that modify
storage; instructions that reference storage may refor-
mat the data (e.g. load halfword algebraic). To use a
storage operand in a computation and then modify the
same or another storage location, the contents of the
storage operand must be loaded into a register, modi-
fied, and then stored back to the target location.
Figure 2 is a logical representation of instruction pro-
cessing. Figure 3 shows the registers that are defined
in Book I. (A few additional registers that are available

to application programs are defined in other Books, and
are not shown in the figure.)

Figure 2. Logical processing model
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“Condition Register” on page 30

“Link Register” on page 32

“Count Register” on page 32

“General Purpose Registers” on page 45

“Fixed-Point Exception Register” on page 45

“VR Save Register” on page 221

Category: Embedded:

“Software-use SPRs” on page 46.

Category: Floating-Point:

“Floating-Point Registers” on page 114

“Floating-Point Status and Control Register” on
page 114

Category: Vector:

“Vector Registers” on page 220

“Vector Status and Control Register” on page 220

Category: Vector-Scalar Extension:

“Vector-Scalar Registers” on page 318

Category: SPE:

“Accumulator” on page 588

“Signal Processing and Embedded Floating-Point Sta-
tus and Control Register” on page 588

Figure 3. Registers that are defined in Book I
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FPR 1

. . .

. . .

FPR 30

FPR 31

0                                                                                                                     63

FPSCR
32                                                                                                        63

VR 0

VR 1

...

...

VR 30

VR 31
0                                                                                                                  127

VSCR
96                                                  127

VSR 0

VSR 1

...

...

VSR 62

VSR 63
0 127

Accumulator
0                                                                                                                     63

SPEFSCR
32                                                    63
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1.5 Computation modes

1.5.1 Modes [Category: Server]
Processors provide two execution modes, 64-bit mode
and 32-bit mode. In both of these modes, instructions
that set a 64-bit register affect all 64 bits. The computa-
tional mode controls how the effective address is inter-
preted, how Condition Register bits and XER bits are
set, how the Link Register is set by Branch instructions
in which LK=1, and how the Count Register is tested by
Branch Conditional instructions. Nearly all instructions
are available in both modes (the only exceptions are a
few instructions that are defined in Book III-S). In both
modes, effective address computations use all 64 bits
of the relevant registers (General Purpose Registers,
Link Register, Count Register, etc.) and produce a
64-bit result. However, in 32-bit mode the high-order 32
bits of the computed effective address are ignored for
the purpose of addressing storage; see Section 1.10.3
for additional details.

  

1.5.2 Modes [Category: Embed-
ded]
64-bit processors provide 64-bit mode and 32-bit mode.
The differences between the two modes are
described below. 32-bit processors provide only
32-bit mode, and do so as described at the end of this
section.

In 64-bit mode, the processor behaves as
described for 64-bit mode in the Server environ-
ment; see Section 1.5.1.

In 32-bit mode, the processor behavior depends
on whether the high-order 32 bits of GPRs are
implemented in 32-bit mode, as follows.

- If these bits are implemented in 32-bit mode,
the processor behaves as described for 32-bit
mode in the Server environment.

- If these bits are not implemented in 32-bit
mode, the processor behaves as described for
32-bit mode in the Server Environment except
for the following.

- When an effective address is placed in a
register other than the Initialize Next
Instruction register (see Section 3.7.1 of
Book III-E) by an instruction or event, the
high-order 32 bits are set to an undefined
value (see Section 1.10.3).

- Except for instructions in the SPE cate-
gory, instructions that operate on GPRs
and SPRs use only the low-order 32 bits
of the source GPR or SPR and produce a
32-bit result; the high-order 32 bits of tar-
get GPRs are set to an undefined value,
and the high-order 32 bits of target SPRs
are preserved. The 64-Bit category is not
supported.

  

Implementations may provide a means for select-
ing between the two treatments of the high-order
32 bits of GPRs in 32-bit mode (i.e., for selecting
between the behavior described in the first
sub-bullet and the behavior described in the sec-
ond sub-bullet). The means, if provided, is imple-
mentation-specific (including any software
synchronization requirements for changing the
selection), but must be hypervisor privileged, and
the hypervisor must ensure that the selection is
constant for a given partition.

32-bit processors provide only 32-bit mode, and pro-
vide it as described by the second sub-bullet of the
32-bit mode bullet above.

1.6 Instruction Formats
All instructions are four bytes long and word-aligned
(except for VLE instructions; see Book VLE). Thus,
whenever instruction addresses are presented to the
processor (as in Branch instructions) the low-order two
bits are ignored. Similarly, whenever the processor
develops an instruction address the low-order two bits
are zero.

Bits 0:5 always specify the opcode (OPCD, below).
Many instructions also have an extended opcode (XO,
below). The remaining bits of the instruction contain

one or more fields as shown below for the different instruction formats.

Although instructions that set a 64-bit register affect
all 64 bits in both 32-bit and 64-bit modes, operat-
ing systems often do not preserve the upper 32-bits
of all registers across context switches done in
32-bit mode. For this reason, application programs
operating in 32-bit mode should not assume that
the upper 32 bits of the GPRs are preserved from
instruction to instruction unless the operating sys-
tem is known to preserve these bits.

Programming Note

The high-order 32 bits of 64-bit SPRs are
not modified in 32-bit mode because for
some 64-bit SPRs, such as the Thread
Enable Register (see Section 3.3 of Book
III-E), these bits control facilities that are
active in 32-bit mode. Treating all 64-bit
SPRs the same way in this regard simpli-
fies architecture and implementation.

Programming Note
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The format diagrams given below show horizontally all
valid combinations of instruction fields. The diagrams
include instruction fields that are used only by instruc-
tions defined in Book II or in Book III. 

Split Field Notation
In some cases an instruction field occupies more than
one contiguous sequence of bits, or occupies one con-
tiguous sequence of bits that are used in permuted
order. Such a field is called a split field. In the format
diagrams given below and in the individual instruction
layouts, the name of a split field is shown in small let-
ters, once for each of the contiguous sequences. In the
RTL description of an instruction having a split field,
and in certain other places where individual bits of a
split field are identified, the name of the field in small
letters represents the concatenation of the sequences
from left to right. In all other places, the name of the
field is capitalized and represents the concatenation of
the sequences in some order, which need not be left to
right, as described for each affected instruction.

1.6.1 I-FORM

Figure 4. I instruction format

1.6.2 B-FORM

Figure 5. B instruction format

1.6.3 SC-FORM

Figure 6. SC instruction format

1.6.4 D-FORM

Figure 7. D instruction format

1.6.5 DS-FORM

Figure 8. DS instruction format

1.6.6 DQ-FORM

Figure 9. DQ instruction format

0 6 30 31

OPCD LI AA LK

0 6 11 16 30 31

OPCD BO BI BD AA LK

0 6 11 16 20 27 30 31

OPCD /// /// // LEV // 1 /
OPCD /// /// /// /// // 1 /

0 6 11 16                                                                       31

OPCD RT RA D

OPCD RT RA SI

OPCD RS RA D
OPCD RS RA UI

OPCD BF / L RA SI

OPCD BF / L RA UI

OPCD TO RA SI
OPCD FRT RA D

OPCD FRS RA D

0 6 11 16 30        31

OPCD RT RA DS XO

OPCD RS RA DS XO

OPCD RSp RA DS XO
OPCD FRTp RA DS XO

OPCD FRSp RA DS XO

0 6 11 16 28                 31

OPCD RTp RA DQ ///
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1.6.7 X-FORM

1.6.8 XL-FORM

Figure 11. XL instruction format

1.6.9 XFX-FORM

Figure 12. XFX instruction format

0 6 11 16 21 31

OPCD RT RA /// XO /
OPCD RT RA RB XO /

OPCD RT RA RB XO EH

OPCD RT RA NB XO /

OPCD RT / SR /// XO /
OPCD RT /// RB XO /

OPCD RT /// RB XO 1

OPCD RT /// /// XO /
OPCD RS RA RB XO Rc

OPCD RT RA RB XO Rc

OPCD RS RA RB XO 1
OPCD RS RA RB XO /

OPCD RS RA NB XO /

OPCD RS RA SH XO Rc
OPCD RS RA /// XO Rc

OPCD RS RA /// XO /

OPCD RS / SR /// XO /
OPCD RS /// RB XO /

OPCD RS /// /// XO /

OPCD RS /// L /// XO /
OPCD TH RA RB XO /

OPCD BF / L RA RB XO /

OPCD BF // FRA FRB XO /
OPCD BF // BFA // /// XO /

OPCD BF // /// W U / XO Rc

OPCD BF // /// /// XO /
OPCD TH RA RB XO /

OPCD / CT /// /// XO /

OPCD / CT RA RB XO /
OPCD /// L RA RB XO /

OPCD /// L /// RB XO /

OPCD /// L /// /// XO /
OPCD /// L / E /// XO /

OPCD TO RA RB XO /

OPCD FRT RA RB XO /
OPCD FRT FRA FRB XO /

OPCD FRTp RA RB XO /

OPCD FRT /// FRB XO Rc
OPCD FRT /// FRBp XO Rc

OPCD FRT /// /// XO Rc

OPCD FRTp /// FRB XO Rc
OPCD FRTp /// FRBp XO Rc

OPCD FRTp FRA FRBp XO Rc

OPCD FRTp FRAp FRBp XO Rc

OPCD BF // FRA FRBp XO /
OPCD BF // FRAp FRBp XO /

Figure 10. X Instruction Format

OPCD FRT S FRB XO Rc

OPCD FRTp S FRBp XO Rc
OPCD FRS RA RB XO /

OPCD FRSp RA RB XO /

OPCD BT /// /// XO Rc

OPCD /// RA RB XO /
OPCD /// /// RB XO /

OPCD /// /// /// XO /

OPCD /// /// E /// XO /
OPCD // IH /// /// XO /

OPCD A // /// /// XO 1

OPCD A // R /// /// XO 1
OPCD /// RA RB XO 1

OPCD /// WC /// /// XO /

OPCD /// T RA RB XO /
OPCD VRT RA RB XO /

OPCD VRS RA RB XO /

OPCD MO /// /// XO /

0 6 11 16 21 31

OPCD BT BA BB XO /
OPCD BO BI /// BH XO LK

OPCD /// S XO /

OPCD BF // BFA // /// XO /
OPCD /// XO /

OPCD OC XO /

0 6 11 21 31

OPCD RT spr XO /

OPCD RT tbr XO /
OPCD RT 0 /// XO /

OPCD RT 1 FXM / XO /

OPCD RT dcr XO /
OPCD RT pmrn XO /

OPCD RT BHRBE XO /

OPCD DUI DUIS XO /
OPCD RS 0 FXM / XO /

OPCD RS 1 FXM / XO /

OPCD RS spr XO /

OPCD RS dcr XO /
OPCD RS pmrn XO /

0 6 11 16 21 31

Figure 10. X Instruction Format
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1.6.10 XFL-FORM

Figure 13. XFL instruction format

1.6.11 XX1-FORM

1.6.12 XX2-FORM

1.6.13 XX3-FORM

1.6.14 XX4-FORM

1.6.15 XS-FORM

Figure 18. XS instruction format

1.6.16 XO-FORM

Figure 19. XO instruction format

1.6.17 A-FORM

Figure 20. A instruction format

1.6.18 M-FORM

Figure 21. M instruction format

1.6.19 MD-FORM

Figure 22. MD instruction format

1.6.20 MDS-FORM

Figure 23. MDS instruction format

1.6.21 VA-FORM

Figure 24. VA instruction format

1.6.22 VC-FORM

Figure 25. VC instruction format

0 6 7 15 16 21 31

OPCD L FLM W FRB XO Rc

0 6 11 16 21 31

OPCD T RA RB XO TX

OPCD S RA RB XO SX
0 6 11 16 21 31

Figure 14. XX1 Instruction Format

0 6 9 11 14 16 21 30 31

OPCD T /// B XO BX TX

OPCD T /// UIM B XO BX TX

OPCD BF // /// B XO BX /
0 6 9 11 14 16 21 30 31

Figure 15. XX2 Instruction Format

0 6 9 11 16 21 22 24 29 30 31

OPCD T A B XO AX BX TX

OPCD T A B Rc XO AX BX TX

OPCD BF // A B XO AX BX /

OPCD T A B XO SHW XO AX BX TX

OPCD T A B XO DM XO AX BX TX
0 6 9 11 16 21 22 24 29 30 31

Figure 16. XX3 Instruction Format

0 6 11 16 21 26 28 29 30 31

OPCD T A B C XO CX AX BX TX
0 6 11 16 21 26 28 29 30 31

Figure 17. XX4-Form Instruction Format

0 6 11 16 21 30 31

OPCD RS RA sh XO sh Rc

0 6 11 16 21 22 31

OPCD RT RA RB OE XO Rc

OPCD RT RA RB / XO Rc

OPCD RT RA RB / XO /
OPCD RT RA /// OE XO Rc

0 6 11 16 21 26 31

OPCD FRT FRA FRB FRC XO Rc
OPCD FRT FRA FRB /// XO Rc

OPCD FRT FRA /// FRC XO Rc

OPCD FRT /// FRB /// XO Rc
OPCD RT RA RB BC XO /

0 6 11 16 21 26 31

OPCD RS RA RB MB ME Rc

OPCD RS RA SH MB ME Rc

0 6 11 16 21 27 30 31

OPCD RS RA sh mb XO sh Rc

OPCD RS RA sh me XO sh Rc

0 6 11 16 21 27 31

OPCD RS RA RB mb XO Rc
OPCD RS RA RB me XO Rc

0 6 11 16 21 26 31

OPCD VRT VRA VRB VRC XO
OPCD VRT VRA VRB / SHB XO

0 6 11 16 21 22 31

OPCD VRT VRA VRB Rc XO
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1.6.23 VX-FORM

Figure 26. VX instruction format

1.6.24 EVX-FORM

Figure 27. EVX instruction format

1.6.25 EVS-FORM

Figure 28.  EVS instruction format

1.6.26 Z22-FORM

Figure 29. Z22 instruction format

1.6.27 Z23-FORM

Figure 30. Z23 instruction format

1.6.28 Instruction Fields

A (6)

Field used by the tbegin. instruction to specify an
implementation-specific function.

Field used by the tend. instruction to specify the
completion of the outer transaction and all nested
transactions. 

AA (30)
Absolute Address bit.

0 The immediate field represents an
address relative to the current instruction
address. For I-form branches the effective
address of the branch target is the sum of
the LI field sign-extended to 64 bits and
the address of the branch instruction. For
B-form branches the effective address of
the branch target is the sum of the BD
field sign-extended to 64 bits and the
address of the branch instruction.

1 The immediate field represents an abso-
lute address. For I-form branches the
effective address of the branch target is
the LI field sign-extended to 64 bits. For
B-form branches the effective address of
the branch target is the BD field
sign-extended to 64 bits.

AX (29) & A(11:15)
Fields that are concatenated to specify a VSR to
be used as a source.

BA (11:15)
Field used to specify a bit in the CR to be used as
a source.

BB (16:20)
Field used to specify a bit in the CR to be used as
a source.

BC (21:25)

0 6 11 16 21 31

OPCD VRT VRA VRB XO
OPCD VRT /// VRB XO
OPCD VRT UIM VRB XO
OPCD VRT / UIM VRB XO
OPCD VRT // UIM VRB XO
OPCD VRT /// UIM VRB XO
OPCD VRT SIM /// XO
OPCD VRT /// XO
OPCD /// VRB XO

0 6 11 16 21 31

OPCD RS RA RB XO
OPCD RS RA UI XO
OPCD RT /// RB XO
OPCD RT RA RB XO
OPCD RT RA /// XO
OPCD RT UI RB XO
OPCD BF // RA RB XO
OPCD RT RA UI XO
OPCD RT SI /// XO

0 6 11 16 21 29 31

OPCD RT RA RB XO BFA

0 6 11 15 16 22 31

OPCD BF // FRA DCM XO /

OPCD BF // FRAp DCM XO /

OPCD BF // FRA DGM XO /

OPCD BF // FRAp DGM XO /

OPCD FRT FRA SH XO Rc

OPCD FRTp FRAp SH XO Rc

0 6 11 16 21 23 31

OPCD FRT TE FRB RMC XO Rc

OPCD FRTp TE FRBp RMC XO Rc

OPCD FRT FRA FRB RMC XO Rc

OPCD FRTp FRA FRBp RMC XO Rc

OPCD FRTp FRAp FRBp RMC XO Rc

OPCD FRT /// R FRB RMC XO Rc

OPCD FRTp /// R FRBp RMC XO Rc
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Field used to specify a bit in the CR to be used as
a source.

BD (16:29)
Immediate field used to specify a 14-bit signed
two’s complement branch displacement which is
concatenated on the right with 0b00 and
sign-extended to 64 bits.

BF (6:8)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a target.

BFA (11:13 or 29:31)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a source.

BH (19:20)
Field used to specify a hint in the Branch Condi-
tional to Link Register and Branch Conditional to
Count Register instructions. The encoding is
described in Section 2.5, “Branch Instructions”.

BHRB(11:20)
Field used to identify the BHRB entry to be used
as a source by the Move From Branch History Roll-
ing Buffer  instruction.

BI (11:15)
Field used to specify a bit in the CR to be tested by
a Branch Conditional instruction.

BO (6:10)
Field used to specify options for the Branch Condi-
tional instructions. The encoding is described in
Section 2.5, “Branch Instructions”.

BT (6:10)
Field used to specify a bit in the CR or in the
FPSCR to be used as a target.

BX (30) & B(16:20)
Fields that are concatenated to specify a VSR to
be used as a source.

CT (7:10)
Field used in X-form instructions to specify a cache
target (see Section 4.3.2 of Book II).

CX (28) & C(21:25)
Fields that are concatenated to specify a VSR to
be used as a source.

D (16:31)
Immediate field used to specify a 16-bit signed
two’s complement integer which is sign-extended
to 64 bits.

DCM (16:21)
Immediate field used as the Data Class Mask.

DCR (11:20)

Field used by the Move To/From Device Control
Register instructions (see Book III-E).

DGM (16:21)
Immediate field used as the Data Group Mask.

DM (24:25)
Immediate field used by xxpermdi instruction as
doubleword permute control.

DQ (16:27)
Immediate field used to specify a 12-bit signed
two’s complement integer which is concatenated
on the right with 0b0000 and sign-extended to 64
bits.

DS (16:29)
Immediate field used to specify a 14-bit signed
two’s complement integer which is concatenated
on the right with 0b00 and sign-extended to 64
bits.

DUI (6:10)
Field used by the dnh instruction (see Book III-E).

DUIS (11:20)
Field used by the dnh instruction (see Book III-E).

E (16)
Field used by the Write MSR External Enable
instruction (see Book III-E).

E (12:15)
Field used to specify the access types ordered by
an Elemental Memory Barrier type of sync instruc-
tion.

EH (31)
Field used to specify a hint in the Load and
Reserve instructions. The meaning is described in
Section 4.4.2, “Load and Reserve and Store Con-
ditional Instructions”, in Book II.

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mtfsf instruction.

FRA (11:15)
Field used to specify an FPR to be used as a
source.

FRAp (11:15)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

FRB (16:20)
Field used to specify an FPR to be used as a
source.

FRBp (16:20)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.
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FRC (21:25)
Field used to specify an FPR to be used as a
source.

FRS (6:10)
Field used to specify an FPR to be used as a
source.

FRSp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

FRT (6:10)
Field used to specify an FPR to be used as a tar-
get.

FRTp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a target.

FXM (12:19)
Field mask used to identify the CR fields that are to
be written by the mtcrf and mtocrf instructions, or
read by the mfocrf instruction.

IH (8:10)
Field used to specify a hint in the SLB Invalidate All
instruction. The meaning is described in
Section 5.9.3.1, “SLB Management Instructions”,
in Book III-S.

L (6)
Field used to specify whether the mtfsf instruction
updates the entire FPSCR.

L (10 or 15)
Field used to specify whether a fixed-point Com-
pare instruction is to compare 64-bit numbers or
32-bit numbers.

Field used by the Data Cache Block Flush instruc-
tion (see Section 4.3.2 of Book II).

Field used by the Move To Machine State Register
and TLB Invalidate Entry instructions (see Book
III).

L (9:10)
Field used by the Data Cache Block Flush instruc-
tion (see Section 4.3.2 of Book II) and also by the
Synchronize instruction (see Section 4.4.3 of Book
II).

LEV (20:26)
Field used by the System Call instruction.

LI (6:29)
Immediate field used to specify a 24-bit signed
two’s complement integer which is concatenated
on the right with 0b00 and sign-extended to 64
bits.

LK (31)
LINK bit.

0 Do not set the Link Register.
1 Set the Link Register. The address of the

instruction following the Branch instruction
is placed into the Link Register.

MB (21:25) and ME (26:30)
Fields used in M-form instructions to specify a
64-bit mask consisting of 1-bits from bit MB+32
through bit ME+32 inclusive and 0-bits elsewhere,
as described in Section 3.3.14, “Fixed-Point Rotate
and Shift Instructions” on page 92.

MB (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.14, “Fixed-Point Rotate
and Shift Instructions” on page 92.

ME (21:26)
Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.14, “Fixed-Point Rotate
and Shift Instructions” on page 92.

MO (6:10)
Field used in X-form instructions to specify a sub-
set of storage accesses.

NB (16:20)
Field used to specify the number of bytes to move
in an immediate Move Assist instruction.

OC (6:20)
Field used by the Embedded Hypervisor Privilege
instruction.

OPCD (0:5)
Primary opcode field.

OE (21)
Field used by XO-form instructions to enable set-
ting OV and SO in the XER.

PMRN (11:20)
Field used to specify a Performance Monitor Reg-
ister for the mfpmr and mtpmr instructions.

R (10)

Field used by the tbegin. instruction to specify the
start of a ROT.

R (15)
Immediate field that specifies whether the RMC is
specifying the primary or secondary encoding

RA (11:15)
Field used to specify a GPR to be used as a
source or as a target.

RB (16:20)
Field used to specify a GPR to be used as a
source.
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Rc (21 OR 31)
RECORD bit.

0 Do not alter the Condition Register.
1 Set Condition Register Field 0, Field 1, or

Field 6 as described in Section 2.3.1,
“Condition Register” on page 30.

RMC (21:22)
Immediate field used for DFP rounding mode con-
trol.

RS (6:10)
Field used to specify a GPR to be used as a
source.

RSp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a source.

RT (6:10)
Field used to specify a GPR to be used as a target.

RTp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a target.

S (11 or 20)
Immediate field that specifies signed versus
unsigned conversion.
Immediate field that specifies whether or not the
rfebb instruction re-enables event-based
branches.

SH (16:20, or 16:20 and 30, or 16:21)
Field used to specify a shift amount.

SHB (22:25)
Field used to specify a shift amount in bytes.

SHW (24:25)
Field used to specify a shift amount in words.

SI (16:31 or 11:15)
Immediate field used to specify a 16-bit signed
integer.

SIM (11:15)
Immediate field used to specify a 5-bit signed inte-
ger.

SP (11:12)
Immediate field that specifies signed versus
unsigned conversion.

SPR (11:20)
Field used to specify a Special Purpose Register
for the mtspr and mfspr instructions.

SR (12:15)
Field used by the Segment Register Manipulation
instructions (see Book III-S).

SX (31) & S(6:10)
Fields that are concatenated to specify a VSR to
be used as a source.

T(9:10)
Field used to specify the type of invalidation done
by a TLB Invalidate Local instruction (see Book
III-E).

TBR (11:20)
Field used by the Move From Time Base instruc-
tion (see Section 6.2.1 of Book II).

TE (11:15)
Immediate field that specifies a DFP exponent.

TH (6:10) 
Field used by the data stream variant of the dcbt
and dcbtst instructions (see Section 4.3.2 of Book
II).

TO (6:10)
Field used to specify the conditions on which to
trap. The encoding is described in Section 3.3.11,
“Fixed-Point Trap Instructions” on page 81.

TX (31) & T (6:10)
Fields that are concatenated to specify a VSR to
be used as a target.

U (16:19)
Immediate field used as the data to be placed into
a field in the FPSCR.

UI (11:15, 16:20, or 16:31)
Immediate field used to specify an unsigned inte-
ger.

UIM (11:15, 12:15, 13:15, 14:15)
Immediate field used to specify an unsigned inte-
ger.

VRA (11:15)
Field used to specify a VR to be used as a source.

VRB (16:20)
Field used to specify a VR to be used as a source.

VRC (21:25)
Field used to specify a VR to be used as a source.

VRS (6:10)
Field used to specify a VR to be used as a source.

VRT (6:10)
Field used to specify a VR to be used as a target.

W (15)

Field used by the mtfsfi and mtfsf instructions to spec-
ify the target word in the FPSCR.

WC (9:10)
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Field used to specify the condition or conditions
that cause instruction execution to resume after
executing a wait [Category: Wait] instruction (see
Section 4.4.4 of Book II).

XO (21, 21:28, 21:29, 21:30, 21:31, 22:28, 22:30, 
22:31, 23:30, 24:28, 26:27, 26:30, 26:31, 27:29, 
27:30, or 30:31)

Extended opcode field.

1.7 Classes of Instructions
An instruction falls into exactly one of the following
three classes:

Defined
Illegal
Reserved

The class is determined by examining the opcode, and
the extended opcode if any. If the opcode, or combina-
tion of opcode and extended opcode, is not that of a
defined instruction or a reserved instruction, the
instruction is illegal.

1.7.1 Defined Instruction Class
This class of instructions contains all the instructions
defined in this document.

A defined instruction can have preferred and/or invalid
forms, as described in Section 1.8.1, “Preferred Instruc-
tion Forms” and Section 1.8.2, “Invalid Instruction
Forms”. Instructions that are part of a category that is
not supported are treated as illegal instructions.

1.7.2 Illegal Instruction Class
This class of instructions contains the set of instruc-
tions described in Appendix D of Book Appendices. Ille-
gal instructions are available for future extensions of
the Power ISA ; that is, some future version of the
Power ISA may define any of these instructions to per-
form new functions.

Any attempt to execute an illegal instruction will cause
the system illegal instruction error handler to be
invoked and will have no other effect.

An instruction consisting entirely of binary 0s is guaran-
teed always to be an illegal instruction. This increases
the probability that an attempt to execute data or unini-
tialized storage will result in the invocation of the sys-
tem illegal instruction error handler.

1.7.3 Reserved Instruction Class
This class of instructions contains the set of instruc-
tions described in Appendix E of Book Appendices.

Reserved instructions are allocated to specific pur-
poses that are outside the scope of the Power ISA.

Any attempt to execute a reserved instruction will:

perform the actions described by the implementa-
tion if the instruction is implemented; or
cause the system illegal instruction error handler to
be invoked if the instruction is not implemented.
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1.8 Forms of Defined Instruc-
tions

1.8.1 Preferred Instruction Forms
Some of the defined instructions have preferred forms.
For such an instruction, the preferred form will execute
in an efficient manner, but any other form may take sig-
nificantly longer to execute than the preferred form.

Instructions having preferred forms are:

the Condition Register Logical instructions
the Load Quadword instruction 

the Move Assist instructions
the Or Immediate instruction (preferred form of
no-op)
the Move To Condition Register Fields instruction

1.8.2 Invalid Instruction Forms
Some of the defined instructions can be coded in a
form that is invalid. An instruction form is invalid if one
or more fields of the instruction, excluding the opcode
field(s), are coded incorrectly in a manner that can be
deduced by examining only the instruction encoding.

In general, any attempt to execute an invalid form of an
instruction will either cause the system illegal instruc-
tion error handler to be invoked or yield boundedly
undefined results. Exceptions to this rule are stated in
the instruction descriptions. 

Some instruction forms are invalid because the instruc-
tion contains a reserved value in a defined field (see
Section 1.3.3 on page 5); these invalid forms are not
discussed further. All other invalid forms are identified
in the instruction descriptions.

References to instructions elsewhere in this document
assume the instruction form is not invalid, unless other-
wise stated or obvious from context.

  

1.8.3 Reserved-no-op Instructions 
[Category: Phased-In]
Reserved-no-op instructions include the following
extended opcodes under primary opcode 31: 530, 562,
594, 626, 658, 690, 722, and 754.

Reserved-no-op instructions are provided in the archi-
tecture to anticipate the eventual adoption of perfor-
mance hint instructions to the architecture. For these
instructions, which cause no visible change to archi-

tected state, employing a reserved-no-op opcode will
allow software to use this new capability on new imple-
mentations that support it while remaining compatible
with existing implementations that may not support the
new function.

When a reserved-no-op instruction is executed, no
operation is performed.

Reserved-no-op instructions are not assigned instruc-
tion names or mnemonics. There are no individual
descriptions of reserved-no-op instructions in this docu-
ment.

1.9 Exceptions
There are two kinds of exception, those caused directly
by the execution of an instruction and those caused by
an asynchronous event. In either case, the exception
may cause one of several components of the system
software to be invoked.

The exceptions that can be caused directly by the exe-
cution of an instruction include the following:

an attempt to execute an illegal instruction, or an
attempt by an application program to execute a
“privileged” instruction (see Book III) (system ille-
gal instruction error handler or system privileged
instruction error handler)

the execution of a defined instruction using an
invalid form (system illegal instruction error handler
or system privileged instruction error handler)

an attempt to execute an instruction that is not pro-
vided by the implementation (system illegal
instruction error handler)

an attempt to access a storage location that is
unavailable (system instruction storage error han-
dler or system data storage error handler)

an attempt to access storage with an effective
address alignment that is invalid for the instruction
(system alignment error handler)

the execution of a System Call instruction (system
service program)

the execution of a Trap instruction that traps (sys-
tem trap handler)

the execution of a floating-point instruction that
causes a floating-point enabled exception to exist
(system floating-point enabled exception error han-
dler)

the execution of an auxiliary processor instruction
that causes an auxiliary processor enabled excep-
tion to exist (system auxiliary processor enabled
exception error handler)

The exceptions that can be caused by an asynchro-
nous event are described in Book III.

Assemblers should report uses of invalid instruction
forms as errors.

Assembler Note
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The invocation of the system error handler is precise,
except that the invocation of the auxiliary processor
enabled exception error handler may be imprecise, and
if one of the imprecise modes for invoking the system
floating-point enabled exception error handler is in
effect (see page 123), then the invocation of the system
floating-point enabled exception error handler may also
be imprecise. When the system error handler is invoked
imprecisely, the excepting instruction does not appear
to complete before the next instruction starts (because
one of the effects of the excepting instruction, namely
the invocation of the system error handler, has not yet
occurred).

Additional information about exception handling can be
found in Book III.

1.10 Storage Addressing
A program references storage using the effective
address computed by the processor when it executes a
Storage Access or Branch instruction (or certain other
instructions described in Book II and Book III), or when
it fetches the next sequential instruction.

Bytes in storage are numbered consecutively starting
with 0. Each number is the address of the correspond-
ing byte. 

The byte ordering (Big-Endian or Little-Endian) for a
storage access is specified by the operating system.
This byte ordering is also referred to as the Endian
mode and it applies to both data accesses and instruc-
tion fetches. In the Embedded environment the Endian
mode is a page attribute (see Book II), which is speci-
fied independently for each virtual page. In the Server
environment the Endian mode is specified by the LE
mode bit (see Section 3.2.1 of Book III-S), which
applies to all of storage.

1.10.1 Storage Operands
A storage operand may be a byte, a halfword, a word, a
doubleword, or a quadword, or, for the Load/Store Mul-
tiple and Move Assist instructions, a sequence of bytes
(Move Assist) or words (Load/Store Multiple). The
address of a storage operand is the address of its first
byte (i.e., of its lowest-numbered byte). An instruction
for which the storage operand is a byte is said to cause
a byte access, and similarly for halfword, word, double-
word, and quadword.

The length of the storage operand is the number of
bytes (of the storage operand) that the instruction
would access in the absence of invocations of the sys-
tem error handler. The length is generally implied by
the name of the instruction (equivalently, by the
opcode, and extended opcode if any). For example, the
length of the storage operand of a Load Word and Zero,
Load Floating-Point Single, and Load Vector Element
Word instruction is four bytes (one word), and the

length of a Store Quadword, Store Floating-Point Dou-
ble Pair, and Store VSX Vector Word*4 instruction is 16
bytes (one quadword). The only exceptions are the
Load/Store Multiple and Move Assist instructions, for
which the length of the storage operand is implied by
the identity of the specified source or target register
(Load/Store Multiple), or by an immediate field in the
instruction or the contents of a field in the XER (Move
Assist), as well as by the name of the instruction. For
example, the length of the storage operand of a Load
Multiple Word instruction for which the specified target
register is GPR 20 is 48 bytes ((32-20)x4), and the
length of the storage operand of a Load String Word
Immediate instruction for which the immediate field
contains the number 20 is 20 bytes.

The storage operand of a Load or Store instruction
other than a Load/Store Multiple or Move Assist instruc-
tion is said to be aligned if the address of the storage
operand is an integral multiple of the storage operand
length; otherwise it is said to be unaligned. See the fol-
lowing table. (The storage operand of a Load/Store
Multiple or Move Assist instruction is neither said to be
aligned nor said to be unaligned. Its alignment proper-
ties are described, when necessary, using terms such
as “word-aligned”, which are defined below.)

The concept of alignment is also applied more gener-
ally, to any datum in storage. 

A datum having length that is an integral power of
2 is said to be aligned if its address is an integral
multiple of its length.
A datum of any length is said to be half-
word-aligned (or aligned at a halfword boundary) if
its address is an integral multiple of 2,
word-aligned (or aligned at a word boundary) if its
address is an integral multiple of 4, etc. (All data in
storage is byte-aligned.) 

The concept of alignment can also be applied to data in
registers, with the "address" of the datum interpreted
as the byte number of the datum in the register. E.g., a
word element (4 bytes) in a Vector Register is said to
be aligned if its byte number is an integral multiple of 4.

Operand Length Addr60:63 if aligned
 Byte  8 bits  xxxx
 Halfword  2 bytes  xxx0
 Word  4 bytes  xx00
 Doubleword  8 bytes  x000
 Quadword  16 bytes  0000
Note: An “x” in an address bit position indicates that 

the bit can be 0 or 1 independent of the contents of 
other bits in the address.
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Some instructions require their storage operands to
have certain alignments. In addition, alignment may
affect performance. In general, the best performance is
obtained when storage operands are aligned.

When a storage operand of length N bytes starting at
effective address EA is copied between storage and a
register that is R bytes long (i.e., the register contains
bytes numbered from 0, most significant, through R-1,
least significant), the bytes of the operand are placed
into the register or into storage in a manner that
depends on the byte ordering for the storage access as
shown in Figure 31, unless otherwise specified in the
instruction description.

 

Figure 31. Storage operands and byte ordering

Figure 32 shows an example of a C language
structure s containing an assortment of scalars and
one character string. The value assumed to be in each
structure element is shown in hex in the C comments;
these values are used below to show how the bytes
making up each structure element are mapped into
storage. It is assumed that structure s is compiled for
32-bit mode or for a 32-bit implementation. (This affects
the length of the pointer to c.)

C structure mapping rules permit the use of padding
(skipped bytes) in order to align the scalars on desir-
able boundaries. Figures 33 and 34 show each scalar
as aligned. This alignment introduces padding of four
bytes between a and b, one byte between d and e, and
two bytes between e and f. The same amount of pad-
ding is present for both Big-Endian and Little-Endian
mappings.

The Big-Endian mapping of structure s is shown in
Figure 33. Addresses are shown in hex at the left of
each doubleword, and in small figures below each byte.
The contents of each byte, as indicated in the C exam-
ple in Figure 32, are shown in hex (as characters for the
elements of the string).

The Little-Endian mapping of structure s is shown in
Figure 34. Doublewords are shown laid out from right to
left, which is the common way of showing storage maps
for processors that implement only Little-Endian byte
ordering.

Figure 32. C structure ‘s’, showing values of
elements

The technical literature sometimes uses the term
“naturally aligned” to mean “aligned.” 

Versions of the architecture that precede Version
2.07 also used “naturally aligned” as defined
above. The term was dropped from the architecture
in Version 2.07 because it seemed to mean differ-
ent things to different readers and is not needed.

Big-Endian Byte Ordering
 Load Store
for i=0 to N-1:
RT(R-N)+iI MEM(EA+i,1)

for i=0 to N-1:
MEM(EA+i,1) I (RS)(R-N)+i

 Little-Endian Byte Ordering
 Load Store
for i=0 to N-1:
RT(R-1)-i I MEM(EA+i,1)

for i=0 to N-1:
MEM(EA+i,1) I (RS)(R-1)-i

Notes:
1. In this table, subscripts refer to bytes in a register 

rather than to bits as defined in Section 1.3.2.
2. This table does not apply to the lvebx, lvehx, 

lvewx, stvebx, stvehx, and stvewx instructions.

Programming Note

struct {
int a; /*  0x1112_1314 word */
double b; /*  0x2122_2324_2526_2728 doubleword */
char * c; /*  0x3132_3334 word */
char d[7]; /*  ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’ array of bytes */
short e; /*  0x5152 halfword */
int f; /*  0x6162_6364 word */

} s;
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Figure 33. Big-Endian mapping of structure ‘s’

Figure 34. Little-Endian mapping of structure ‘s’

1.10.2 Instruction Fetches
Instructions are always four bytes long and
word-aligned (except for VLE instructions; see Book
VLE).

When an instruction starting at effective address EA is
fetched from storage, the relative order of the bytes
within the instruction depend on the byte ordering for
the storage access as shown in Figure 35. 

Figure 35. Instructions and byte ordering

Figure 36 shows an example of a small assembly lan-
guage program p.

loop:
cmplwi r5,0
beq done
lwzux r4,r5,r6

add r7,r7,r4
subi r5,r5,4
b loop

done:
stw r7,total

Figure 36. Assembly language program ‘p’

The Big-Endian mapping of program p is shown in
Figure 37 (assuming the program starts at address 0).

Figure 37. Big-Endian mapping of program ‘p’

The Little-Endian mapping of program p is shown in
Figure 38.

Figure 38. Little-Endian mapping of program ‘p’

Big-Endian Byte Ordering
for i=0 to 3:
insti I MEM(EA+i,1)

 Little-Endian Byte Ordering
for i=0 to 3:
inst3-i  I MEM(EA+i,1)
Note: In this table, subscripts refer to 

bytes of the instruction rather than 
to bits as defined in Section 1.3.2.
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loop: cmplwi r5,0 beq done

lwzux r4,r5,r6 add r7,r7,r4

subi r5,r5,4 b loop

done: stw r7,total
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loop: cmplwi r5,0beq done

lwzux r4,r5,r6add r7,r7,r4

subi r5,r5,4b loop

done: stw r7,total
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Programming Note

The terms Big-Endian and Little-Endian come from
Part I, Chapter 4, of Jonathan Swift’s Gulliver’s Travels.
Here is the complete passage, from the edition printed
in 1734 by George Faulkner in Dublin.

... our Histories of six Thousand Moons make no
Mention of any other Regions, than the two great
Empires of Lilliput and Blefuscu. Which two mighty
Powers have, as I was going to tell you, been
engaged in a most obstinate War for six and thirty
Moons past. It began upon the following Occasion.
It is allowed on all Hands, that the primitive Way of
breaking Eggs before we eat them, was upon the
larger End: But his present Majesty’s Grand-father,
while he was a Boy, going to eat an Egg, and
breaking it according to the ancient Practice, hap-
pened to cut one of his Fingers. Whereupon the
Emperor his Father, published an Edict, command-
ing all his Subjects, upon great Penalties, to break
the smaller End of their Eggs. The People so
highly resented this Law, that our Histories tell us,
there have been six Rebellions raised on that
Account; wherein one Emperor lost his Life, and
another his Crown. These civil Commotions were
constantly fomented by the Monarchs of Blefuscu;
and when they were quelled, the Exiles always fled
for Refuge to that Empire. It is computed that
eleven Thousand Persons have, at several Times,
suffered Death, rather than submit to break their
Eggs at the smaller End. Many hundred large Vol-
umes have been published upon this Controversy:
But the Books of the Big-Endians have been long

forbidden, and the whole Party rendered incapable
by Law of holding Employments. During the
Course of these Troubles, the Emperors of Ble-
fuscu did frequently expostulate by their Ambassa-
dors, accusing us of making a Schism in Religion,
by offending against a fundamental Doctrine of our
great Prophet Lustrog, in the fifty-fourth Chapter of
the Brundrecal, (which is their Alcoran.) This, how-
ever, is thought to be a mere Strain upon the text:
For the Words are these; That all true Believers
shall break their Eggs at the convenient End: and
which is the convenient End, seems, in my humble
Opinion, to be left to every Man’s Conscience, or at
least in the Power of the chief Magistrate to deter-
mine. Now the Big-Endian Exiles have found so
much Credit in the Emperor of Blefuscu’s Court;
and so much private Assistance and Encourage-
ment from their Party here at home, that a bloody
War has been carried on between the two Empires
for six and thirty Moons with various Success; dur-
ing which Time we have lost Forty Capital Ships,
and a much greater Number of smaller Vessels,
together with thirty thousand of our best Seamen
and Soldiers; and the Damage received by the
Enemy is reckoned to be somewhat greater than
ours. However, they have now equipped a numer-
ous Fleet, and are just preparing to make a
Descent upon us: and his Imperial Majesty, placing
great Confidence in your Valour and Strength, hath
commanded me to lay this Account of his Affairs
before you.

1.10.3 Effective Address Calcula-
tion
An effective address is computed by the processor
when executing a Storage Access or Branch instruction
(or certain other instructions described in Book II, Book
III, and Book VLE) when fetching the next sequential
instruction, or when invoking a system error handler.
The following provides an overview of this process.
More detail is provided in the individual instruction
descriptions.

Effective address calculations, for both data and
instruction accesses, use 64-bit two’s complement
addition. All 64 bits of each address component partici-
pate in the calculation regardless of mode (32-bit or
64-bit). In this computation one operand is an address
(which is by definition an unsigned number) and the
second is a signed offset. Carries out of the most signif-
icant bit are ignored.

In 64-bit mode, the entire 64-bit result comprises the
64-bit effective address. The effective address arith-
metic wraps around from the maximum address,
264 - 1, to address 0, except that if the current instruc-
tion is at effective address 264 - 4 the effective address
of the next sequential instruction is undefined.

In 32-bit mode, the low-order 32 bits of the 64-bit result,
preceded by 32 0 bits, comprise the 64-bit effective
address for the purpose of addressing storage. When
an effective address is placed into a register by an
instruction or event, the value placed into the high-order
32 bits of the register differs between the Server envi-
ronment and the Embedded environment.

Server environment, and Embedded Environment
when the high-order 32 bits of GPRs are imple-
mented:
- Load with Update and Store with Update

instructions set the high-order 32 bits of regis-
ter RA to the high-order 32 bits of the 64-bit
result. 
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- In all other cases (e.g., the Link Register when
set by Branch instructions having LK=1, Spe-
cial Purpose Registers when set to an effec-
tive address by invocation of a system error
handler) the high-order 32 bits of the register
are set to 0s except as described in the last
sentence of this paragraph.

Embedded environment when the high-order 32
bits of GPRs are not implemented for the following
cases:
The high-order 32 bits of the register are set to an
undefined value except for the Initialize Next
Instruction register [Category: Embedded.Multi-
threading] (see Section 1.5.2 and Book III), and for
the following case. For a register that is loaded
with an effective address by the invocation of a
system error handler, the high-order 32 bits of the
register are set to 0s if the computation mode is
64-bit after the system error is invoked. The 64-bit
current instruction address is not affected by a
change from 32-bit mode to 64-bit mode, but is
affected by a change from 64-bit mode to 32-bit
mode. In the latter case, the high-order 32 bits are
set to 0. The same is true for the 64-bit next
instruction address, except as described in the last
item of the list below.

As used to address storage, the effective address arith-
metic appears to wrap around from the maximum
address, 232 - 1, to address 0, except that if the current
instruction is at effective address 232 - 4 the effective
address of the next sequential instruction is undefined.

RA is a field in the instruction which specifies an
address component in the computation of an effective
address. A zero in the RA field indicates the absence of
the corresponding address component. A value of zero
is substituted for the absent component of the effective
address computation. This substitution is shown in the
instruction descriptions as (RA|0).

Effective addresses are computed as follows. In the
descriptions below, it should be understood that “the
contents of a GPR” refers to the entire 64-bit contents,
independent of mode, but that in 32-bit mode only bits
32:63 of the 64-bit result of the computation are used to
address storage.

With X-form instructions, in computing the effective
address of a data element, the contents of the
GPR designated by RB (or the value zero for lswi
and stswi) are added to the contents of the GPR
designated by RA or to zero if RA=0 or RA is not
used in forming the EA.

With D-form instructions, the 16-bit D field is
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

With DS-form instructions, the 14-bit DS field is
concatenated on the right with 0b00 and
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

With I-form Branch instructions, the 24-bit LI field is
concatenated on the right with 0b00 and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the target instruction. If AA=1,
this address component is the effective address of
the target instruction.

With B-form Branch instructions, the 14-bit BD field
is concatenated on the right with 0b00 and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the target instruction. If AA=1,
this address component is the effective address of
the target instruction.

With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concate-
nated on the right with 0b00 to form the effective
address of the target instruction.

With sequential instruction fetching, the value 4 is
added to the address of the current instruction to
form the effective address of the next instruction,
except that if the current instruction is at the maxi-
mum instruction effective address for the mode
(264 - 4 in 64-bit mode, 232 - 4 in 32-bit mode) the
effective address of the next sequential instruction
is undefined. (There is one other exception to this
rule; this exception involves changing between
32-bit mode and 64-bit mode and is described in
Section 6.3.2 of Book III-E and Section 6.3.2 of
Book III-E.)

If the size of the operand of a Storage Access instruc-
tion is more than one byte, the effective address for
each byte after the first is computed by adding 1 to the
effective address of the preceding byte.
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Chapter 2.  Branch Facility

2.1 Branch Facility Overview
This chapter describes the registers and instructions
that make up the Branch Facility.

2.2 Instruction Execution Order
In general, instructions appear to execute sequentially,
in the order in which they appear in storage. The excep-
tions to this rule are listed below.

Branch instructions for which the branch is taken
cause execution to continue at the target address
specified by the Branch instruction.

Trap instructions for which the trap conditions are
satisfied, and System Call instructions, cause the
appropriate system handler to be invoked.

Transaction failure will eventually cause the trans-
action’s failure handler, implied by the tbegin.
instruction, to be invoked.  See the programming
note following the tbegin. description in
Section 5.5 of Book II.

Exceptions can cause the system error handler to
be invoked, as described in Section 1.9, “Excep-
tions” on page 22.

Returning from a system service program, system
trap handler, or system error handler causes exe-
cution to continue at a specified address.

The model of program execution in which the processor
appears to execute one instruction at a time, complet-
ing each instruction before beginning to execute the
next instruction is called the “sequential execution
model”. In general, the processor obeys the sequential
execution model. For the instructions and facilities
defined in this Book, the only exceptions to this rule are
the following.

A floating-point exception occurs when the proces-
sor is running in one of the Imprecise floating-point
exception modes (see Section 4.4). The instruction
that causes the exception need not complete
before the next instruction begins execution, with
respect to setting exception bits and (if the excep-
tion is enabled) invoking the system error handler.

A Store instruction modifies one or more bytes in
an area of storage that contains instructions that
will subsequently be executed. Before an instruc-
tion in that area of storage is executed, software
synchronization is required to ensure that the
instructions executed are consistent with the
results produced by the Store instruction.

  

This software synchronization will generally be
provided by system library programs (see
Section 1.9 of Book II). Application programs
should call the appropriate system library pro-
gram before attempting to execute modified
instructions.

Programming Note
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2.3 Branch Facility Registers

2.3.1 Condition Register
The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides a
mechanism for testing (and branching).

Figure 39. Condition Register

The bits in the Condition Register are grouped into
eight 4-bit fields, named CR Field 0 (CR0), ..., CR Field
7 (CR7), which are set in one of the following ways.

Specified fields of the CR can be set by a move to
the CR from a GPR (mtcrf, mtocrf).

A specified field of the CR can be set by a move to
the CR from another CR field (mcrf), from
XER32:35 (mcrxr),  or from the FPSCR (mcrfs).

CR Field 0 can be set as the implicit result of a
fixed-point instruction.

CR Field 1 can be set as the implicit result of a
floating-point instruction.

CR Field 1 can be set as the implicit result of a
decimal floating-point instruction.

CR Field 6 can be set as the implicit result of a
vector instruction.

A specified CR field can be set as the result of a
Compare instruction or of a tcheck instruction (see
Book II).

Instructions are provided to perform logical operations
on individual CR bits and to test individual CR bits.

For all fixed-point instructions in which Rc=1, and for
addic., andi., and andis., the first three bits of CR Field
0 (bits 32:34 of the Condition Register) are set by
signed comparison of the result to zero, and the fourth
bit of CR Field 0 (bit 35 of the Condition Register) is
copied from the SO field of the XER. “Result” here
refers to the entire 64-bit value placed into the target
register in 64-bit mode, and to bits 32:63 of the 64-bit
value placed into the target register in 32-bit mode.

if (64-bit mode)
  then M I 0
  else M I 32
if      (target_register)M:63 < 0 then c I 0b100
else if (target_register)M:63 > 0 then c I 0b010
else                                     c I 0b001
CR0 I c || XERSO

If any portion of the result is undefined, then the value
placed into the first three bits of CR Field 0 is unde-
fined.

The bits of CR Field 0 are interpreted as follows.

Bit Description

0 Negative (LT)
The result is negative.

1 Positive (GT)
The result is positive.

2 Zero (EQ)
The result is zero.

3 Summary Overflow (SO)
This is a copy of the contents of XERSO at the
completion of the instruction.

With the exception of tcheck, the Transactional Mem-
ory instructions set CR00:2 indicating the state of the
facility prior to instruction execution, or transaction fail-
ure.  A complete description of the meaning of these
bits is given in the instruction descriptions in
Section 5.5 of Book II.  These bits are interpreted as
follows:

The tcheck instruction similarly sets bits 1 and 2 of CR
field BF to indicate the transaction state, and addition-
ally sets bit 0 to TDOOMED, as defined in Section 5.5
of Book II. 

 

The stbcx., sthcx., stwcx., stdcx., and stqcx. instruc-
tions (see Section 4.4.2, “Load and Reserve and Store

CR
32                                                    63

CR0 Description

000 || 0 Transaction state of Non-transactional prior
to instruction

010 || 0 Transaction state of Transactional prior to
instruction

001 || 0 Transaction state of Suspended prior to
instruction

101 || 0 Transaction failure

CR field BF Description

TDOOMED || 00 || 0 Transaction state of Non-trans-
actional prior to instruction

TDOOMED || 10 || 0 Transaction state of Transac-
tional prior to instruction

TDOOMED || 01 || 0 Transaction state of Sus-
pended prior to instruction

Setting of bit 3 of the specified CR field to zero by
tcheck and of field CR03 to zero by other TM
instructions is intended to preserve these bits for
future function.  Software should not depend on the
bits being zero.

Programming Note
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Conditional Instructions”, in Book II) also set CR Field
0.

For all floating-point instructions in which Rc=1, CR
Field 1 (bits 36:39 of the Condition Register) is set to
the Floating-Point exception status, copied from bits
32:35 of the Floating-Point Status and Control Register.
This occurs regardless of whether any exceptions are
enabled, and regardless of whether the writing of the
result is suppressed (see Section 4.4, “Floating-Point
Exceptions” on page 122). These bits are interpreted
as follows.

Bit Description

32 Floating-Point Exception Summary (FX)
This is a copy of the contents of FPSCRFX at
the completion of the instruction.

33 Floating-Point Enabled Exception Sum-
mary (FEX)
This is a copy of the contents of FPSCRFEX at
the completion of the instruction.

34 Floating-Point Invalid Operation Exception
Summary (VX)
This is a copy of the contents of FPSCRVX at
the completion of the instruction.

35 Floating-Point Overflow Exception (OX)
This is a copy of the contents of FPSCROX at
the completion of the instruction.

For Compare instructions, a specified CR field is set to
reflect the result of the comparison. The bits of the
specified CR field are interpreted as follows. A com-
plete description of how the bits are set is given in the
instruction descriptions in Section 3.3.10, “Fixed-Point
Compare Instructions” on page 79, Section 4.6.8,
“Floating-Point Compare Instructions” on page 158,
and Section 8.3.9, “SPE Instruction Set” on page 594.

Bit Description

0 Less Than, Floating-Point Less Than (LT,
FL)
For fixed-point Compare instructions, (RA) <
SI or (RB) (signed comparison) or (RA) <u UI
or (RB) (unsigned comparison). For float-
ing-point Compare instructions, (FRA) <
(FRB).

1 Greater Than, Floating-Point Greater Than
(GT, FG)
For fixed-point Compare instructions, (RA) >
SI or (RB) (signed comparison) or (RA) >u UI
or (RB) (unsigned comparison). For float-
ing-point Compare instructions, (FRA) >
(FRB).

2 Equal, Floating-Point Equal (EQ, FE)
For fixed-point Compare instructions, (RA) =
SI, UI, or (RB). For floating-point Compare
instructions, (FRA) = (FRB).

3 Summary Overflow, Floating-Point Unor-
dered (SO,FU)
For fixed-point Compare instructions, this is a
copy of the contents of XERSO at the comple-
tion of the instruction. For floating-point Com-
pare instructions, one or both of (FRA) and
(FRB) is a NaN.

The Vector Integer Compare instructions (see
Section 6.9.2, “Vector Integer Compare Instructions”)
compare two Vector Registers element by element,
interpreting the elements as unsigned or signed inte-
gers depending on the instruction, and set the corre-
sponding element of the target Vector Register to all 1s
if the relation being tested is true and 0s if the relation
being tested is false.

If Rc=1, CR Field 6 is set to reflect the result of the
comparison, as follows

Bit Description

0 The relation is true for all element pairs (i.e.,
VRT is set to all 1s).

1 0

2 The relation is false for all element pairs (i.e.,
VRT is set to all 0s).

3 0

The Vector Floating-Point Compare instructions com-
pare two Vector Registers word element by word ele-
ment, interpreting the elements as single-precision
floating-point numbers. With the exception of the Vector
Compare Bounds Floating-Point instruction, they set
the target Vector Register, and CR Field 6 if Rc=1, in
the same manner as do the Vector Integer Compare
instructions.

Bit Description

0 The relation is true for all element pairs (i.e.,
VRT is set to all 1s).

1 0

2 The relation is false for all element pairs (i.e.,
VRT is set to all 0s).

3 0

The Vector Compare Bounds Floating-Point instruction
on page 299 sets CR Field 6 if Rc=1, to indicate
whether the elements in VRA are within the bounds
specified by the corresponding element in VRB, as
explained in the instruction description. A single-preci-
sion floating-point value x is said to be “within the
bounds” specified by a single-precision floating-point
value y if -y ≤ x ≤ y.

Bit Description

0 0

1 0
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2 Set to indicate whether all four elements in
VRA are within the bounds specified by the
corresponding element in VRB, otherwise set
to 0.

3 0

2.3.2 Link Register
The Link Register (LR) is a 64-bit register. It can be
used to provide the branch target address for the
Branch Conditional to Link Register instruction, and it
holds the return address after Branch instructions for
which LK=1.

Figure 40. Link Register

2.3.3 Count Register
The Count Register (CTR) is a 64-bit register. It can be
used to hold a loop count that can be decremented dur-
ing execution of Branch instructions that contain an
appropriately coded BO field. If the value in the Count
Register is 0 before being decremented, it is -1 after-
ward. The Count Register can also be used to provide
the branch target address for the Branch Conditional to
Count Register instruction.

Figure 41. Count Register

2.3.4 Target Address Register
The  Target Address Register (TAR) is a 64-bit register.
It can be used to provide bits 0:61 of the branch target
address for the Branch Conditional to Branch Target
Address Register instruction. Bits 62:63 are ignored by
the hardware but can be set and reset by software.

Figure 42. Target Address Register

  

2.4 Branch History Rolling 
Buffer [Category: Server]
The Branch History Rolling Buffer (BHRB) is a buffer
containing an implementation-dependent number of
entries, referred to as BHRB Entries (BHRBEs), that

contain information related to branches that have been
taken. Entries are numbered from 0 through n, where n
is implementation-dependent but no more than 1023.
Entry 0 is the most-recently written entry. The BHRB is
read by means of the mfbhrbe instruction.

System software typically controls the availability of the
BHRB as well as the number of entries that it contains.
If the BHRB is accessed when it is unavailable, the sys-
tem facility unavailable error handler is invoked.

Various events or actions by the system software may
result in the BHRB occasionally being cleared. If BHRB
entries are read after this has occurred, 0s will be
returned. See the description of the mfbhrbe instruc-
tion for additional information. 

The BHRB is typically used in conjunction with Perfor-
mance Monitor event-based branches. (See Chapter 7
of Book II.) When used in conjunction with this facility,
BESCRPME is set to 1 to enable Performance Monitor
event-based exceptions, and Performance Monitor
alerts are enabled to enable the writing of BHRB
entries.  When a Performance Monitor alert occurs,
Performance Monitor alerts are disabled, BHRB entries
are no longer written, and an event-based branch
occurs. (See Chapter 9 of Book III-S for additional infor-
mation on the Performance Monitor.) The event-based
branch handler can then access the contents of the
BHRB for analysis.

When the BHRB is written by hardware, only those
Branch instructions that meet the filtering criterion are
written. The filtering criterion is set by system software.
(See Section 9.4.7 of Book III-S.)

The following paragraphs describe the entries written
into the BHRB for various types of Branch instructions
for which the branch was taken. In some circum-
stances, however, the hardware may be unable to make
the entry even though the following paragraphs require
it. In such cases, the hardware sets the EA field to 0,
and indicates any missed entries using the T and P
fields. (See Section 2.4.1.) 

When an I-form or B-form Branch instruction is entered
into the BHRB, bits 0:61 of the effective address of the
Branch instruction are written into the next available
entry, except that the entry may or may not be written in
the following cases.

The effective address of the branch target exceeds
the effective address of the Branch instruction by
4. 
The instruction is a B-form Branch, the effective
address of the branch target exceeds the effective
address of the Branch instruction by 8, and the
instruction immediately following the Branch
instruction is not another Branch instruction.

The determination of whether the effective address of
the branch target exceeds the effective address of the
Branch instruction by 4 or 8 is made modulo 264.

LR
0                                                                                                                   63

CTR
0                                                                                                                     63

Efffective Address
0                                                                                              62

The TAR is reserved for system software.

Programming Note
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When an XL-form Branch instruction is entered into the
BHRB, bits 0:61 of the effective address of the Branch
instruction are written into the next available entry if
allowed by the filtering mode; subsequently, bits 0:61 of
the effective address of the branch target are written
into the following entry.  

BHRB entries are written as described above without
regard to transactional state and are not removed due
to transaction failures.

2.4.1 Branch History Rolling 
Buffer Entry Format
Branch History Rolling Buffer Entries (BHRBEs)  have
the following format.

Figure 43. Branch History Rolling Buffer Entry

0:61 Effective Address (EA)
When this field is set to a non-zero value, it
contains bits 0:61 of the effective address of
the instruction indicated by the T field; other-
wise this field indicates that the entry is a
marker with the meaning specified by the T
and P fields.

When the EA field contains a non-zero value, bits 62:63
have the following meanings.

62 Target Address (T)

0 The EA field contains bits 0:61 of the
effective address of a Branch instruction
for which the branch was taken.

1 The EA field  contains bits 0:61 of the
branch effective address of the branch tar-
get of an XL-form Branch instruction for
which the branch was taken.

63 Prediction (P)
When T=0, this field has the following mean-
ing.

0 The outcome of the Branch instruction
was correctly predicted.

1 The outcome of the Branch instruction
was mispredicted.

When T=1, this field has the following mean-
ing.
0 The Branch instruction was predicted to

be taken and the target address was pre-
dicted correctly, or the target address was
not predicted because the branch was
predicted to be not taken.

1 The target address was mispredicted.

When the EA field contains a zero value, bits 62:63
specify the type of marker as described below. 

  

Value Meaning

00 This entry either is not implemented or has
been cleared. In these cases there are no
valid entries beyond the current entry.

01 A Branch instruction was executed for which
the branch was taken, but the hardware was
unable to enter its effective address and, for
XL-form Branch instructions, its target effec-
tive address.

10 Reserved

11 The previous entry contains bits 0:61 of the
effective address of an XL-form Branch
instruction for which the branch was taken,
and the filtering mode required bits 0:61 of the
current entry to contain the effective address
of the branch target, but the hardware was
unable to enter the effective address of the
branch target.

  

The cases described above, for which the BHRBE
need not be written, are cases for which some
implementations may optimize the execution of the
Branch instruction (first case) or of the Branch
instruction and the following instruction (second
case) in a manner that makes writing the BHRBE
difficult.  Such implementations may provide a
means by which system software  can disable
these optimizations, thereby ensuring that the cor-
responding BHRBEs are written normally.

                   Effective Address T P
0 62 63

Programming Note

It is expected that programs will not contain Branch
instructions with instruction or target effective
address equal to 0. If such instructions exist, pro-
grams cannot distinguish between entries that are
markers and entries that correspond to instructions
with instruction or target effective address 0.

Some implementations may use nonzero marker
values due to the occurrence of asynchronous and
infrequent intermittent events that prevent the cor-
rect BHRB entry from being written.

Programming Note

Programming Note
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2.5 Branch Instructions
The sequence of instruction execution can be changed
by the Branch instructions. Because all instructions are
on word boundaries, bits 62 and 63 of the generated
branch target address are ignored by the processor in
performing the branch.

The Branch instructions compute the effective address
(EA) of the target in one of the following five ways, as
described in Section 1.10.3, “Effective Address Calcu-
lation” on page 26.

1. Adding a displacement to the address of the
Branch instruction (Branch or Branch Conditional
with AA=0).

2. Specifying an absolute address (Branch or Branch
Conditional with AA=1).

3. Using the address contained in the Link Register
(Branch Conditional to Link Register).

4. Using the address contained in the Count Register
(Branch Conditional to Count Register).

5. Using the address contained in the Target Address
Register (Branch Conditional to Target Address
Register).

In all five cases, in 32-bit mode the final step in the
address computation is setting the high-order 32 bits of
the target address to 0.

For the first two methods, the target addresses can be
computed sufficiently ahead of the Branch instruction
that instructions can be prefetched along the target
path. For the third through fifth methods, prefetching
instructions along the target path is also possible pro-
vided the Link Register or the Count Register is loaded
sufficiently ahead of the Branch instruction.

Branching can be conditional or unconditional, and the
return address can optionally be provided. If the return
address is to be provided (LK=1), the effective address
of the instruction following the Branch instruction is
placed into the Link Register after the branch target
address has been computed; this is done regardless of
whether the branch is taken.

For Branch Conditional instructions, the BO field speci-
fies the conditions under which the branch is taken, as
shown in Figure 44. In the figure, M=0 in 64-bit mode
and M=32 in 32-bit mode.

 

Figure 44. BO field encodings

The “a” and “t” bits of the BO field can be used by soft-
ware to provide a hint about whether the branch is likely
to be taken or is likely not to be taken, as shown in
Figure 45.

Figure 45. “at” bit encodings

  

For Branch Conditional to Link Register, Branch Condi-
tional to Count Register, and Branch Conditional to Tar-
get Address Register instructions, the BH field provides

BO Description

0000z Decrement the CTR, then branch if the dec-
remented CTRM:63≠0 and CRBI=0

0001z Decrement the CTR, then branch if the dec-
remented CTRM:63=0 and CRBI=0

001at Branch if CRBI=0

0100z Decrement the CTR, then branch if the dec-
remented CTRM:63≠0 and CRBI=1

0101z Decrement the CTR, then branch if the dec-
remented CTRM:63=0 and CRBI=1

011at Branch if CRBI=1

1a00t Decrement the CTR, then branch if the dec-
remented CTRM:63≠0

1a01t Decrement the CTR, then branch if the dec-
remented CTRM:63=0

1z1zz Branch always

Notes:
1. “z” denotes a bit that is ignored.
2. The “a” and “t” bits are used as described below.

at Hint

00 No hint is given

01 Reserved

10 The branch is very likely not to be taken

11 The branch is very likely to be taken

Many implementations have dynamic mechanisms
for predicting whether a branch will be taken.
Because the dynamic prediction is likely to be very
accurate, and is likely to be overridden by any hint
provided by the “at” bits, the “at” bits should be set
to 0b00 unless the static prediction implied by
at=0b10 or at=0b11 is highly likely to be correct.

Programming Note
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a hint about the use of the instruction, as shown in
Figure 46.

Figure 46. BH field encodings

  

Extended mnemonics for branches
Many extended mnemonics are provided so that
Branch Conditional instructions can be coded with por-
tions of the BO and BI fields as part of the mnemonic
rather than as part of a numeric operand. Some of
these are shown as examples with the Branch instruc-
tions. See Appendix E for additional extended mne-
monics.

  

BH Hint

00 bclr[l]: The instruction is a subroutine
return

bcctr[l] and bctar[l]:The instruction is not a
subroutine return; the target
address is likely to be the same as
the target address used the pre-
ceding time the branch was taken

01 bclr[l]: The instruction is not a subroutine
return; the target address is likely
to be the same as the target
address used the preceding time
the branch was taken

bcctr[l] and bctar[l]:Reserved

10 Reserved

11 bclr[l], bcctr[l], and bctar[l]: The target 
address is not predictable

The hint provided by the BH field is independent of
the hint provided by the “at” bits (e.g., the BH field
provides no indication of whether the branch is
likely to be taken).

The hints provided by the “at” bits and by the BH
field do not affect the results of executing the
instruction.

The “z” bits should be set to 0, because they may
be assigned a meaning in some future version of
the architecture.

Programming Note

Programming Note
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Programming Note

Many implementations have dynamic mechanisms for
predicting the target addresses of bclr[l] and bcctr[l]
instructions. These mechanisms may cache return
addresses (i.e., Link Register values set by Branch
instructions for which LK=1 and for which the branch
was taken, other than the special form shown in the first
example below) and recently used branch target
addresses. To obtain the best performance across the
widest range of implementations, the programmer
should obey the following rules.

Use Branch instructions for which LK=1 only as
subroutine calls (including function calls, etc.), or in
the special form shown in the first example below.
Pair each subroutine call (i.e., each Branch instruc-
tion for which LK=1 and the branch is taken, other
than the special form shown in the first example
below) with a bclr instruction that returns from the
subroutine and has BH=0b00.
Do not use bclrl as a subroutine call. (Some imple-
mentations access the return address cache at
most once per instruction; such implementations
are likely to treat bclrl as a subroutine return, and
not as a subroutine call.)
For bclr[l] and bcctr[l], use the appropriate value
in the BH field.

The following are examples of programming conven-
tions that obey these rules. In the examples, BH is
assumed to contain 0b00 unless otherwise stated. In
addition, the “at” bits are assumed to be coded appro-
priately.

Let A, B, and Glue be specific programs.

Obtaining the address of the next instruction:
Use the following form of Branch and Link.

bcl 20,31,$+4

Loop counts:
Keep them in the Count Register, and use a bc
instruction (LK=0) to decrement the count and to
branch back to the beginning of the loop if the dec-
remented count is nonzero.

Computed goto’s, case statements, etc.:
Use the Count Register to hold the address to

branch to, and use a bcctr instruction (LK=0, and
BH=0b11 if appropriate) to branch to the selected
address.

Direct subroutine linkage:
Here A calls B and B returns to A. The two
branches should be as follows.
- A calls B: use a bl or bcl instruction (LK=1).
- B returns to A: use a bclr instruction (LK=0)

(the return address is in, or can be restored to,
the Link Register).

Indirect subroutine linkage:
Here A calls Glue, Glue calls B, and B returns to A
rather than to Glue. (Such a calling sequence is
common in linkage code used when the subroutine
that the programmer wants to call, here B, is in a
different module from the caller; the Binder inserts
“glue” code to mediate the branch.) The three
branches should be as follows.

- A calls Glue: use a bl or bcl instruction
(LK=1).

- Glue calls B: place the address of B into the
Count Register, and use a bcctr instruction
(LK=0).

- B returns to A: use a bclr instruction (LK=0)
(the return address is in, or can be restored to,
the Link Register).

Function call:
Here A calls a function, the identity of which may
vary from one instance of the call to another,
instead of calling a specific program B. This case
should be handled using the conventions of the
preceding two bullets, depending on whether the
call is direct or indirect, with the following differ-
ences.

- If the call is direct, place the address of the
function into the Count Register, and use a
bcctrl instruction (LK=1) instead of a bl or bcl
instruction.

- For the bcctr[l] instruction that branches to
the function, use BH=0b11 if appropriate.
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The bits corresponding to the current “a” and “t”
bits, and to the current “z” bits except in the “branch
always” BO encoding, had different meanings in
versions of the architecture that precede Version
2.00.

The bit corresponding to the “t” bit was called
the “y” bit. The “y” bit indicated whether to use
the architected default prediction (y=0) or to
use the complement of the default prediction
(y=1). The default prediction was defined as
follows.

- If the instruction is bc[l][a] with a negative
value in the displacement field, the branch
is taken. (This is the only case in which
the prediction corresponding to the “y” bit
differs from the prediction corresponding
to the “t” bit.)

- In all other cases (bc[l][a] with a nonnega-
tive value in the displacement field, bclr[l],
or bcctr[l]), the branch is not taken.

The BO encodings that test both the Count
Register and the Condition Register had a “y”
bit in place of the current “z” bit. The meaning
of the “y” bit was as described in the preceding
item.
The “a” bit was a “z” bit.

Because these bits have always been defined
either to be ignored or to be treated as hints, a
given program will produce the same result on any
implementation regardless of the values of the bits.
Also, because even the “y” bit is ignored, in prac-
tice, by most processors that comply with versions
of the architecture that precede Version 2.00, the
performance of a given program on those proces-
sors will not be affected by the values of the bits.

Compatibility Note
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Branch I-form

b target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1)

if AA then NIA Iiea EXTS(LI || 0b00)
else       NIA Iiea CIA + EXTS(LI || 0b00)
if LK then LR Iiea CIA + 4

target_addr specifies the branch target address.

If AA=0 then the branch target address is the sum of
LI || 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
LI || 0b00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

Branch Conditional B-form

bc BO,BI,target_addr (AA=0 LK=0)
bca BO,BI,target_addr (AA=1 LK=0)
bcl BO,BI,target_addr (AA=0 LK=1)
bcla BO,BI,target_addr (AA=1 LK=1)

if (64-bit mode)
  then M I 0
  else M I 32
if ¬BO2 then CTR I CTR - 1
ctr_ok I BO2 | ((CTRM:63 ≠ 0) ⊕ BO3)
cond_ok I BO0 | (CRBI+32 ≡ BO1)
if ctr_ok & cond_ok then
  if AA then NIA Iiea EXTS(BD || 0b00)
  else       NIA Iiea CIA + EXTS(BD || 0b00)
if LK then LR Iiea CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 44. target_addr specifies the branch target
address.

If AA=0 then the branch target address is the sum of
BD || 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
BD || 0b00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO2=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional:

18 LI AA LK
0 6 30 31

16 BO BI BD AA LK
0 6 11 16 30 31

Extended: Equivalent to:
blt target bc 12,0,target
bne cr2,target bc 4,10,target
bdnz target bc 16,0,target
Power ISA™ - Book I38



Version 2.07 B
Branch Conditional to Link Register
XL-form

bclr BO,BI,BH (LK=0)
bclrl BO,BI,BH (LK=1)

if (64-bit mode)
  then M I 0
  else M I 32
if ¬BO2 then CTR I CTR - 1
ctr_ok I BO2 | ((CTRM:63 ≠ 0) ⊕ BO3
cond_ok I BO0 | (CRBI+32 ≡ BO1)
if ctr_ok & cond_ok then NIA Iiea LR0:61 || 0b00
if LK then LR Iiea CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 44. The BH field is used as described in
Figure 46. The branch target address is LR0:61 || 0b00,
with the high-order 32 bits of the branch target address
set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO2=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Link Register:

  

Branch Conditional to Count Register
XL-form

bcctr BO,BI,BH (LK=0)
bcctrl BO,BI,BH (LK=1)

cond_ok I BO0 | (CRBI+32 ≡ BO1)
if cond_ok then NIA Iiea CTR0:61 || 0b00
if LK then LR Iiea CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 44. The BH field is used as described in
Figure 46. The branch target address is
CTR0:61 || 0b00, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

If the “decrement and test CTR” option is specified
(BO2=0), the instruction form is invalid.

Special Registers Altered:
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Count Register.

19 BO BI /// BH 16 LK
0 6 11 16 19 21 31

Extended: Equivalent to:
bclr 4,6 bclr 4,6,0
bltlr bclr 12,0,0
bnelr cr2 bclr 4,10,0
bdnzlr bclr 16,0,0

bclr, bclrl, bcctr, and bcctrl each serve as both a
basic and an extended mnemonic. The Assembler
will recognize a bclr, bclrl, bcctr, or bcctrl mne-
monic with three operands as the basic form, and a
bclr, bclrl, bcctr, or bcctrl mnemonic with two
operands as the extended form. In the extended
form the BH operand is omitted and assumed to be
0b00.

Programming Note

19 BO BI /// BH 528 LK
0 6 11 16 19 21 31

Extended: Equivalent to:
bcctr 4,6 bcctr 4,6,0
bltctr bcctr 12,0,0
bnectr cr2 bcctr 4,10,0
Chapter 2. Branch Facility 39



Version 2.07 B
Branch Conditional to Branch Target 
Address Register

XL-form

bctar BO,BI,BH (LK=0)
bctarl BO,BI,BH (LK=1)

if (64-bit mode)
  then M I 0
  else M I 32
if ¬BO2 then CTR I CTR - 1
ctr_ok I BO2 | ((CTRM:63 ≠ 0) ⊕ BO3
cond_ok I BO0 | (CRBI+32 ≡ BO1)
if ctr_ok & cond_ok then NIA Iiea TAR0:61 || 0b00
if LK then LR Iiea CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 44. The BH field is used as described in
Figure 46. The branch target address is
TAR0:61 || 0b00, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO2=0)
LR (if LK=1)

  

19 BO BI /// BH 560 LK
0 6 11 16 19 21 31

In some systems, the system software will restrict
usage of the bctar[l] instruction to only selected
programs. If an attempt is made to execute the
instruction when it is not available, the system error
handler will be invoked. See Book III-S for addi-
tional information.

Programming Note
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2.6 Condition Register Instructions

2.6.1 Condition Register Logical Instructions
The Condition Register Logical instructions have pre-
ferred forms; see Section 1.8.1. In the preferred forms,
the BT and BB fields satisfy the following rule.

The bit specified by BT is in the same Condition
Register field as the bit specified by BB.

Extended mnemonics for Condition 
Register logical operations
A set of extended mnemonics is provided that allow
additional Condition Register logical operations,
beyond those provided by the basic Condition Register
Logical instructions, to be coded easily. Some of these
are shown as examples with the Condition Register
Logical instructions. See Appendix E for additional
extended mnemonics.

Condition Register AND XL-form

crand BT,BA,BB

CRBT+32 I CRBA+32 & CRBB+32

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Condition Register NAND XL-form

crnand BT,BA,BB

CRBT+32 I ¬(CRBA+32 & CRBB+32)
The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Condition Register OR XL-form

cror BT,BA,BB

CRBT+32 I CRBA+32 | CRBB+32

The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the result is placed into the bit in the Con-
dition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter OR:

Condition Register XOR XL-form

crxor     BT,BA,BB

CRBT+32 I CRBA+32 ⊕ CRBB+32

The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter XOR:

19 BT BA BB 257 /
0 6 11 16 21 31

19 BT BA BB 225 /
0 6 11 16 21 31

19 BT BA BB 449 /
0 6 11 16 21 31

Extended: Equivalent to:
crmove Bx,By cror     Bx,By,By

19 BT BA BB 193 /
0 6 11 16 21 31

Extended: Equivalent to:
crclr    Bx crxor  Bx,Bx,Bx
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Condition Register NOR XL-form

crnor BT,BA,BB

CRBT+32 I ¬(CRBA+32 | CRBB+32)

The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the complemented result is placed into the
bit in the Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter NOR:

Condition Register Equivalent XL-form

creqv BT,BA,BB

CRBT+32 I CRBA+32 ≡ CRBB+32
The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter Equivalent:

Condition Register AND with Complement 
 XL-form

crandc BT,BA,BB

CRBT+32 I CRBA+32 & ¬CRBB+32
The bit in the Condition Register specified by BA+32 is
ANDed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRBT+32

Condition Register OR with Complement
XL-form

crorc BT,BA,BB

CRBT+32 I CRBA+32 | ¬CRBB+32
The bit in the Condition Register specified by BA+32 is
ORed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRBT+32

2.6.2 Condition Register Field Instruction

Move Condition Register Field XL-form

mcrf BF,BFA

CR4×BF+32:4×BF+35 I CR4×BFA+32:4×BFA+35

The contents of Condition Register field BFA are copied
to Condition Register field BF.

Special Registers Altered:
CR field BF

19 BT BA BB 33 /
0 6 11 16 21 31

Extended: Equivalent to:
crnot   Bx,By crnor   Bx,By,By

19 BT BA BB 289 /
0 6 11 16 21 31

Extended: Equivalent to:
crset   Bx creqv  Bx,Bx,Bx

19 BT BA BB 129 /
0 6 11 16 21 31

19 BT BA BB 417 /
0 6 11 16 21 31

19 BF // BFA // /// 0 /
0 6 9 11 14 16 21 31
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2.7  System Call Instruction

This instruction provides the means by which a pro-
gram can call upon the system to perform a service.

System Call SC-form

sc LEV 

This instruction calls the system to perform a service. A
complete description of this instruction can be found in
Book III.

The use of the LEV field is described in Book III. The
LEV values greater than 1 are reserved, and bits 0:5 of
the LEV field (instruction bits 20:25) are treated as a
reserved field.

When control is returned to the program that executed
the System Call instruction, the contents of the regis-
ters will depend on the register conventions used by the
program providing the system service.

This instruction is context synchronizing (see Book III).

Special Registers Altered:
Dependent on the system service

  

17 /// /// // LEV // 1 /
0 6 11 16 20 27 30 31

sc serves as both a basic and an extended mne-
monic. The Assembler will recognize an sc mne-
monic with one operand as the basic form, and an
sc mnemonic with no operand as the extended
form. In the extended form the LEV operand is
omitted and assumed to be 0.

In application programs the value of the LEV oper-
and for sc should be 0.

Programming Note
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2.8  Branch History Rolling Buffer Instructions

The Branch History Rolling Buffer instructions enable
application programs to clear and read the BHRB. The
availability of these instructions is controlled by the sys-
tem software. (See Chapter 9 of Book III-S.) When an
attempt is made to execute these instructions when

they are unavailable, the system facility unavailable
error handler is invoked. 

Clear BHRB X-form

clrbhrb

for n = 0 to (number_of_BHRBEs implemented - 1)
  BHRB(n) I 0

All BHRB entries are set to 0s.

Special Registers Altered:
None.

Move From Branch History Rolling Buffer 
Entry

XFX-form

mfbhrbe RT,BHRBE

n I BHRBE0:9
If n < number of BHRBEs implemented then
 RT I BHRBE(n)
else
 RT I 640

The BHRBE field denotes an entry in the BHRB.  If the
designated entry is within the range of BHRB entries
implemented and Performance Monitor alterts are dis-
able (see Section 9.5 of Book III-S), the contents of the
designated BHRB entry are placed into register RT;
otherwise, 640s are placed into register RT.

In order to ensure that the current BHRB contents are
read by this instruction, one of the following must have
occurred prior to this instruction and after all previous
Branch and clrbhrb instructions have completed.

an event-based branch has occurred
an rfebb (see Chapter 7 of Book II) has been exe-
cuted
a context synchronizing event (see Section 1.5 of
Book III-S) other than isynch  Section 4.4.1 of
Book II) has occurred.

Special Registers Altered:
None

  

31 /// /// /// 430 /
0 6 11 16 21 31

31 RT BHRBE 302 /
0 6 11 21 31

In order to read all the BHRB entries containing
information about taken branches, software should
read the entries starting from entry number 0 and
continuing until an entry containing all 0s is read or
until all implemented BHRB entries have been
read.

Since the number of BHRB entries may decrease
or the BHRB may be cleared at any time, if a given
entry, m, is read as not containing all 0s and is read
again subsequently, the subsequent read may
return all 0s even though the program has not exe-
cuted clrbhrb. 

Programming Note
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Chapter 3.  Fixed-Point Facility

3.1 Fixed-Point Facility Overview

This chapter describes the registers and instructions
that make up the Fixed-Point Facility. 

3.2 Fixed-Point Facility Registers

3.2.1 General Purpose Registers
All manipulation of information is done in registers inter-
nal to the Fixed-Point Facility. The principal storage
internal to the Fixed-Point Facility is a set of 32 General
Purpose Registers (GPRs). See Figure 47.

Figure 47. General Purpose Registers

Each GPR is a 64-bit register.

3.2.2 Fixed-Point Exception 
Register
The Fixed-Point Exception Register (XER) is a 64-bit
register.

Figure 48. Fixed-Point Exception Register

The bit definitions for the Fixed-Point Exception Regis-
ter are shown below. Here M=0 in 64-bit mode and
M=32 in 32-bit mode.

The bits are set based on the operation of an instruc-
tion considered as a whole, not on intermediate results
(e.g., the Subtract From Carrying instruction, the result
of which is specified as the sum of three values, sets
bits in the Fixed-Point Exception Register based on the
entire operation, not on an intermediate sum).

Bit(s Description

0:31 Reserved

32 Summary Overflow (SO)
The Summary Overflow bit is set to 1 when-
ever an instruction (except mtspr) sets the
Overflow bit. Once set, the SO bit remains set
until it is cleared by an mtspr instruction
(specifying the XER) or an mcrxr instruction.
It is not altered by Compare instructions, or by
other instructions (except mtspr to the XER,
and mcrxr) that cannot overflow. Executing an
mtspr instruction to the XER, supplying the
values 0 for SO and 1 for OV, causes SO to be
set to 0 and OV to be set to 1.

33 Overflow (OV)
The Overflow bit is set to indicate that an over-
flow has occurred during execution of an
instruction. 
XO-form Add, Subtract From, and Negate
instructions having OE=1 set it to 1 if the carry
out of bit M is not equal to the carry out of bit
M+1, and set it to 0 otherwise.
XO-form Multiply Low and Divide instructions
having OE=1 set it to 1 if the result cannot be
represented in 64 bits (mulld, divd, divde,
divdu, divdeu) or in 32 bits (mullw, divw,
divwe, divwu, divweu), and set it to 0 other-
wise. The OV bit is not altered by Compare

GPR 0

GPR 1

. . .

. . .

GPR 30

GPR 31

0                                                                                                                     63

XER
0                                                                                                                     63
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instructions, or by other instructions (except
mtspr to the XER, and mcrxr) that cannot
overflow.

[Category: 
Legacy Integer Multiply-Accumulate]
XO-form Legacy Integer Multiply-Accumulate
instructions set OV when OE=1 to reflect over-
flow of the 32-bit result. For signed-integer
accumulation, overflow occurs when the add
produces a carry out of bit 32 that is not equal
to the carry out of bit 33. For unsigned-integer
accumulation, overflow occurs when the add
produces a carry out of bit 32.

34 Carry (CA)
The Carry bit is set as follows, during execu-
tion of certain instructions. Add Carrying, Sub-
tract From Carrying, Add Extended, and
Subtract From Extended types of instructions
set it to 1 if there is a carry out of bit M, and
set it to 0 otherwise. Shift Right Algebraic
instructions set it to 1 if any 1-bits have been
shifted out of a negative operand, and set it to
0 otherwise. The CA bit is not altered by Com-
pare instructions, or by other instructions
(except Shift Right Algebraic, mtspr to the
XER, and mcrxr) that cannot carry.

35:56 Reserved

57:63 This field specifies the number of bytes to be
transferred by a Load String Indexed or Store
String Indexed instruction.

[Category: Legacy Move Assist]
This field is used as a target by dlmzb to indi-
cate the byte location of the leftmost zero byte
found.

3.2.3 VR Save Register

The VR Save Register (VRSAVE) is a 32-bit register
that can be used as a software use SPR; see Sections
3.2.4 and 6.3.3.

3.2.4 Software Use SPRs [Cate-
gory: Embedded]
Software Use SPRs are 64-bit registers that have no
defined functionality. SPRG4-7 can be read by applica-

tion programs. Additional Software Use SPRs are
defined in Book III. 

Figure 49. Software-use SPRs

 

3.2.5 Device Control Registers 
[Category: Embedded.Device Con-
trol]
Device Control Registers (DCRs) are on-chip registers
that exist architecturally outside the processor and thus
are not actually part of the processor architecture. This
specification simply defines the existence of a Device
Control Register ‘address space’ and the instructions to
access them and does not define the Device Control
Registers themselves.

Device Control Registers may control the use of
on-chip peripherals, such as memory controllers (the
definition of specific Device Control Registers is imple-
mentation-dependent).

The contents of user-mode-accessible Device Control
Registers can be read using mfdcrux and written using
mtdcrux.

VRSAVE
32                                                    63

SPRG4
SPRG5

SPRG6

SPRG7
0                                                                                                                     63

USPRG0 was made a 32-bit register and renamed
to VRSAVE; see Sections 3.2.3 and 6.3.3.

Programming Note
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3.3 Fixed-Point Facility Instructions

3.3.1 Fixed-Point Storage Access Instructions
The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.10.3 on page 26.

  

  

3.3.1.1 Storage Access Exceptions
Storage accesses will cause the system data storage
error handler to be invoked if the program is not allowed
to modify the target storage (Store only), or if the pro-
gram attempts to access storage that is unavailable.

3.3.2 Fixed-Point Load Instructions
The byte, halfword, word, or doubleword in storage
addressed by EA is loaded into register RT.

Many of the Load instructions have an “update” form, in
which register RA is updated with the effective address.
For these forms, if RA≠0 and RA≠RT, the effective
address is placed into register RA and the storage ele-
ment (byte, halfword, word, or doubleword) addressed
by EA is loaded into RT.

  

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address.

Programming Note

The DS field in DS-form Storage Access instruc-
tions is a word offset, not a byte offset like the D
field in D-form Storage Access instructions. How-
ever, for programming convenience, Assemblers
should support the specification of byte offsets for
both forms of instruction.

Programming Note

In some implementations, the Load Algebraic and
Load with Update instructions may have greater
latency than other types of Load instructions. More-
over, Load with Update instructions may take
longer to execute in some implementations than
the corresponding pair of a non-update Load
instruction and an Add instruction.

Programming Note
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Load Byte and Zero  D-form

lbz RT,D(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
RT I 560 || MEM(EA, 1)

Let the effective address (EA) be the sum (RA|0)+ D.
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero Indexed X-form

lbzx RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I 560 || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The byte in storage addressed by EA is
loaded into RT56:63. RT0:55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero with Update D-form

lbzu RT,D(RA)

EA I (RA) + EXTS(D)
RT I 560 || MEM(EA, 1)
RA I EA

Let the effective address (EA) be the sum (RA)+ D. The
byte in storage addressed by EA is loaded into RT56:63.
RT0:55 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Byte and Zero with Update Indexed
 X-form

lbzux RT,RA,RB

EA I (RA) + (RB)
RT I 560 || MEM(EA, 1)
RA I EA

Let the effective address (EA) be the sum (RA)+ (RB).
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

34 RT RA D
0 6 11 16                                                    31

31 RT RA RB 87 /
0 6 11 16 21 31

35 RT RA D
0 6 11 16                                                    31 31 RT RA RB 119 /

0 6 11 16 21 31
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Load Halfword and Zero  D-form

lhz RT,D(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
RT I 480 || MEM(EA, 2)

Let the effective address (EA) be the sum (RA|0)+ D.
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero Indexed X-form

lhzx RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I 480 || MEM(EA, 2)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The halfword in storage addressed by
EA is loaded into RT48:63. RT0:47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero with Update
 D-form

lhzu RT,D(RA)

EA I (RA) + EXTS(D)
RT I 480 || MEM(EA, 2)
RA I EA

Let the effective address (EA) be the sum (RA)+ D. The
halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Halfword and Zero with Update 
Indexed  X-form

lhzux RT,RA,RB

EA I (RA) + (RB)
RT I 480 || MEM(EA, 2)
RA I EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

40 RT RA D
0 6 11 16                                                    31

31 RT RA RB 279 /
0 6 11 16 21 31

41 RT RA D
0 6 11 16                                                    31

31 RT RA RB 311 /
0 6 11 16 21 31
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Load Halfword Algebraic  D-form

lha RT,D(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
RT I EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum (RA|0)+ D.
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the
loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic Indexed X-form

lhax RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum
(RA|0)+ (RB). The halfword in storage addressed by
EA is loaded into RT48:63. RT0:47 are filled with a copy
of bit 0 of the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update  
D-form

lhau RT,D(RA)

EA I (RA) + EXTS(D)
RT I EXTS(MEM(EA, 2))
RA I EA

Let the effective address (EA) be the sum (RA)+ D. The
halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the
loaded halfword.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Halfword Algebraic with Update 
Indexed X-form

lhaux RT,RA,RB

EA I (RA) + (RB)
RT I EXTS(MEM(EA, 2))
RA I EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the
loaded halfword.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

42 RT RA D
0 6 11 16                                                    31

31 RT RA RB 343 /
0 6 11 16 21 31

43 RT RA D
0 6 11 16                                                    31

31 RT RA RB 375 /
0 6 11 16 21 31
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Load Word and Zero D-form

lwz RT,D(RA) 

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
RT I 320 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0)+ D.
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

Special Registers Altered:
None

Load Word and Zero Indexed X-form

lwzx RT,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The word in storage addressed by EA is
loaded into RT32:63. RT0:31 are set to 0.

Special Registers Altered:
None

Load Word and Zero with Update D-form

lwzu RT,D(RA) 

EA I (RA) + EXTS(D)
RT I 320 || MEM(EA, 4)
RA I EA

Let the effective address (EA) be the sum (RA)+ D. The
word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Word and Zero with Update Indexed 
 X-form

lwzux RT,RA,RB 

EA I (RA) + (RB)
RT I 320 || MEM(EA, 4)
RA I EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

32 RT RA D
0 6 11 16                                                    31

31 RT RA RB 23 /
0 6 11 16 21 31

33 RT RA D
0 6 11 16                                                    31 31 RT RA RB 55 /

0 6 11 16 21 31
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3.3.2.1 64-bit Fixed-Point Load Instructions [Category: 64-Bit]

Load Word Algebraic DS-form

lwa RT,DS(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(DS || 0b00)
RT I EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA|0)+ (DS||0b00). The word in storage addressed by
EA is loaded into RT32:63. RT0:31 are filled with a copy
of bit 0 of the loaded word.

Special Registers Altered:
None

Load Word Algebraic Indexed   X-form

lwax RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA|0)+ (RB). The word in storage addressed by EA is
loaded into RT32:63. RT0:31 are filled with a copy of bit 0
of the loaded word.

Special Registers Altered:
None

Load Word Algebraic with Update Indexed 
 X-form

lwaux RT,RA,RB

EA I (RA) + (RB)
RT I EXTS(MEM(EA, 4))
RA I EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are filled with a copy of bit 0 of the
loaded word.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

58 RT RA DS 2
0 6 11 16 30 31

31 RT RA RB 341 /
0 6 11 16 21 31

31 RT RA RB 373 /
0 6 11 16 21 31
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Load Doubleword  DS-form

ld RT,DS(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(DS || 0b00)
RT I MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ (DS||0b00). The doubleword in storage
addressed by EA is loaded into RT.

Special Registers Altered:
None

Load Doubleword Indexed  X-form

ldx RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The doubleword in storage addressed by
EA is loaded into RT.

Special Registers Altered:
None

Load Doubleword with Update  DS-form

ldu RT,DS(RA)

EA I (RA) + EXTS(DS || 0b00)
RT I MEM(EA, 8)
RA I EA

Let the effective address (EA) be the sum
(RA)+ (DS||0b00). The doubleword in storage
addressed by EA is loaded into RT.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Doubleword with Update Indexed 
 X-form

ldux RT,RA,RB

EA I (RA) + (RB)
RT I MEM(EA, 8)
RA I EA

Let the effective address (EA) be the sum (RA)+ (RB).
The doubleword in storage addressed by EA is loaded
into RT.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

58 RT RA DS 0
0 6 11 16 30 31

31 RT RA RB 21 /
0 6 11 16 21 31

58 RT RA DS 1
0 6 11 16 30 31 31 RT RA RB 53 /

0 6 11 16 21 31
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3.3.3 Fixed-Point Store Instructions
The contents of register RS are stored into the byte,
halfword, word, or doubleword in storage addressed by
EA.

Many of the Store instructions have an “update” form, in
which register RA is updated with the effective address.
For these forms, the following rules apply.

If RA≠0, the effective address is placed into regis-
ter RA.
If RS=RA, the contents of register RS are copied
to the target storage element and then EA is
placed into RA (RS).

Store Byte  D-form

stb RS,D(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
MEM(EA, 1) I (RS)56:63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)56:63 are stored into the byte in storage addressed
by EA.

Special Registers Altered:
None

Store Byte Indexed  X-form

stbx RS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 1) I (RS)56:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)56:63 are stored into the byte in stor-
age addressed by EA.

Special Registers Altered:
None

Store Byte with Update  D-form

stbu RS,D(RA)

EA I (RA) + EXTS(D)
MEM(EA, 1) I (RS)56:63
RA I EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)56:63 are stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Byte with Update Indexed  X-form

stbux RS,RA,RB

EA I (RA) + (RB)
MEM(EA, 1) I (RS)56:63
RA I EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)56:63 are stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

38 RS RA D
0 6 11 16                                                    31

31 RS RA RB 215 /
0 6 11 16 21 31

39 RS RA D
0 6 11 16                                                    31

31 RS RA RB 247 /
0 6 11 16 21 31
Power ISA™ - Book I54



Version 2.07 B
Store Halfword  D-form

sth RS,D(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
MEM(EA, 2) I (RS)48:63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)48:63 are stored into the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Halfword Indexed  X-form

sthx RS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 2) I (RS)48:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)48:63 are stored into the halfword in
storage addressed by EA.

Special Registers Altered:
None

Store Halfword with Update   D-form

sthu RS,D(RA)

EA I (RA) + EXTS(D)
MEM(EA, 2) I (RS)48:63
RA I EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)48:63 are stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Halfword with Update Indexed 
 X-form

sthux RS,RA,RB

EA I (RA) + (RB)
MEM(EA, 2) I (RS)48:63
RA I EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)48:63 are stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

44 RS RA D
0 6 11 16                                                    31

31 RS RA RB 407 /
0 6 11 16 21 31

45 RS RA D
0 6 11 16                                                    31 31 RS RA RB 439 /

0 6 11 16 21 31
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Store Word   D-form

stw RS,D(RA) 

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
MEM(EA, 4) I (RS)32:63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)32:63 are stored into the word in storage addressed
by EA.

Special Registers Altered:
None

Store Word Indexed  X-form

stwx RS,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 4) I (RS)32:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)32:63 are stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Word with Update  D-form

stwu RS,D(RA) 

EA I (RA) + EXTS(D)
MEM(EA, 4) I (RS)32:63
RA I EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)32:63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Word with Update Indexed  X-form

stwux RS,RA,RB 

EA I (RA) + (RB)
MEM(EA, 4) I (RS)32:63
RA I EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)32:63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

36 RS RA D
0 6 11 16                                                    31

31 RS RA RB 151 /
0 6 11 16 21 31

37 RS RA D
0 6 11 16                                                    31

31 RS RA RB 183 /
0 6 11 16 21 31
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3.3.3.1 64-bit Fixed-Point Store Instructions [Category: 64-Bit]

Store Doubleword  DS-form

std RS,DS(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(DS || 0b00)
MEM(EA, 8) I (RS)

Let the effective address (EA) be the sum
(RA|0)+ (DS||0b00). (RS) is stored into the doubleword
in storage addressed by EA.

Special Registers Altered:
None

Store Doubleword Indexed  X-form

stdx RS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 8) I (RS)

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS) is stored into the doubleword in
storage addressed by EA.

Special Registers Altered:
None

Store Doubleword with Update  DS-form

stdu RS,DS(RA)

EA I (RA) + EXTS(DS || 0b00)
MEM(EA, 8) I (RS)
RA I EA

Let the effective address (EA) be the sum
(RA)+ (DS||0b00). (RS) is stored into the doubleword in
storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Doubleword with Update Indexed 
X-form

stdux RS,RA,RB

EA I (RA) + (RB)
MEM(EA, 8) I (RS)
RA I EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS) is stored into the doubleword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

62 RS RA DS 0
0 6 11 16 30 31

31 RS RA RB 149 /
0 6 11 16 21 31

62 RS RA DS 1
0 6 11 16 30 31 31 RS RA RB 181 /

0 6 11 16 21 31
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3.3.4 Fixed Point Load and Store Quadword Instructions 
[Category: Load/Store Quadword]
For lq, the quadword in storage addressed by EA is
loaded into an even-odd pair of GPRs as follows. In
Big-Endian mode, the even-numbered GPR is loaded
with the doubleword from storage addressed by EA and
the odd-numbered GPR is loaded with the doubleword
addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is loaded with the byte-reversed
doubleword from storage addressed by EA+8 and the
odd-numbered GPR is loaded with the byte-reversed
doubleword addressed by EA.

In the preferred form of the Load Qudword instruction
RA ≠ RTp+1.

For stq, the contents of an even-odd pair of GPRs is
stored into the quadword in storage addressed by EA
as follows. In Big-Endian mode, the even-numbered
GPR is stored into the doubleword in storage
addressed by EA and the odd-numbered GPR is stored
into the doubleword addressed by EA+8. In Lit-
tle-Endian mode, the even-numbered GPR is stored
byte-reversed into the doubleword in storage
addressed by EA+8 and the odd-numbered GPR is
stored byte-reversed into the doubleword addressed by
EA.

  

Load Quadword DQ-form

lq RTp,DQ(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(DQ || 0b0000)
RTp I MEM(EA, 16)

Let the effective address (EA) be the sum (RA|0)+
(DQ||0b0000). The quadword in storage addressed by
EA is loaded into register pair RTp.

 

If RTp is odd or RTp=RA, the instruction form is invalid.
If RTp=RA, an attempt to execute this instruction will
invoke the system illegal instruction error handler. (The
RTp=RA case includes the case of RTp=RA=0.)

The quadword in storage addressed by EA is loaded
into an even-odd pair of GPRs as follows. In Big-Endian
mode, the even-numbered GPR is loaded with the dou-
bleword from storage addressed by EA and the
odd-numbered GPR is loaded with the doubleword
addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is loaded with the byte-reversed
doubleword from storage addressed by EA+8 and the

odd-numbered GPR is loaded with the byte-reversed
doubleword addressed by EA.

 

Special Registers Altered:
None

The lq and stq instructions exist primarily to permit
software to access quadwords in storage "atomi-
cally"; see Section 1.4 of Book II. Because GPRs
are 64 bits long, the Fixed-Point Facility on many
designs is optimized for storage accesses of at
most eight bytes.  On such designs, the quadword
atomicity required for lq and stq makes these
instructions complex to implement, with the result
that the instructions may perform less well on these
designs than the corresponding two Load Double-
word or Store Doubleword instructions.

The complexity of providing quadword atomicity
may be especially great for storage that is Write
Through Required or Caching Inhibited (see
Section 1.6 of Book II).  This is why lq and stq are
permitted to cause the data storage error handler
to be invoked if the specified storage location is in
either of these kinds of storage (see Section
3.3.1.1).

Programming Note

56 RTp RA DQ ///
0 6 11 16 28    31

In versions of the architecture prior to V. 2.07, this
instruction was privileged.

Programming Note
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Store Quadword DS-form

stq RSp,DS(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(DS || 0b00)
MEM(EA, 16) I RSp

Let the effective address (EA) be the sum (RA|0)+
(DS||0b00). The contents of register pair RSp are
stored into the quadword in storage addressed by EA.

 

If RSp is odd, the instruction form is invalid.

The contents of an even-odd pair of GPRs is stored into
the quadword in storage addressed by EA as follows. In
Big-Endian mode, the even-numbered GPR is stored
into the doubleword in storage addressed by EA and
the odd-numbered GPR is stored into the doubleword
addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is stored byte-reversed into the
doubleword in storage addressed by EA+8 and the
odd-numbered GPR is stored byte-reversed into the
doubleword addressed by EA.

 

Special Registers Altered:
None

62 RSp RA DS 2
0 6 11 16 30 31

In versions of the architecture prior to V. 2.07, this
instruction was privileged.

Programming Note
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3.3.5 Fixed-Point Load and Store with Byte Reversal Instructions
   

Load Halfword Byte-Reverse Indexed 
X-form

lhbrx RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
load_data I MEM(EA, 2)
RT I 480 || load_data8:15 || load_data0:7

Let the effective address (EA) be the sum (RA|0)+(RB).
Bits 0:7 of the halfword in storage addressed by EA are
loaded into RT56:63. Bits 8:15 of the halfword in storage
addressed by EA are loaded into RT48:55. RT0:47 are
set to 0.

Special Registers Altered:
None

Store Halfword Byte-Reverse Indexed 
X-form

sthbrx RS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 2) I (RS)56:63 || (RS)48:55

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)56:63 are stored into bits 0:7 of the
halfword in storage addressed by EA. (RS)48:55 are
stored into bits 8:15 of the halfword in storage
addressed by EA.

Special Registers Altered:
None

Load Word Byte-Reverse Indexed  X-form

lwbrx RT,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
load_data I MEM(EA, 4)
RT I 320 || load_data24:31 || load_data16:23
         || load_data8:15 || load_data0:7

Let the effective address (EA) be the sum
(RA|0)+ (RB). Bits 0:7 of the word in storage addressed
by EA are loaded into RT56:63. Bits 8:15 of the word in
storage addressed by EA are loaded into RT48:55. Bits
16:23 of the word in storage addressed by EA are
loaded into RT40:47. Bits 24:31 of the word in storage
addressed by EA are loaded into RT32:39. RT0:31 are
set to 0.

Special Registers Altered:
None

Store Word Byte-Reverse Indexed X-form

stwbrx RS,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 4) I (RS)56:63 || (RS)48:55 || (RS)40:47
               ||(RS)32:39

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)56:63 are stored into bits 0:7 of the
word in storage addressed by EA. (RS)48:55 are stored
into bits 8:15 of the word in storage addressed by EA.
(RS)40:47 are stored into bits 16:23 of the word in stor-
age addressed by EA. (RS)32:39 are stored into bits
24:31 of the word in storage addressed by EA.

Special Registers Altered:
None

These instructions have the effect of loading and
storing data in the opposite byte ordering from that
which would be used by other Load and Store
instructions.

Programming Note
In some implementations, the Load Byte-Reverse
instructions may have greater latency than other
Load instructions.

Programming Note

31 RT RA RB 790 /
0 6 11 16 21 31

31 RS RA RB 918 /
0 6 11 16 21 31

31 RT RA RB 534 /
0 6 11 16 21 31

31 RS RA RB 662 /
0 6 11 16 21 31
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3.3.5.1 64-Bit Load and Store with Byte Reversal Instructions [Category: 64-bit]

 Load Doubleword Byte-Reverse Indexed 
X-form

ldbrx RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
load_data I MEM(EA, 8)
RT I  load_data56:63 || load_data48:55

|| load_data40:47 || load_data32:39
|| load_data24:31 || load_data16:23
|| load_data8:15  || load_data0:7

Let the effective address (EA) be the sum (RA|0)+(RB).
Bits 0:7 of the doubleword in storage addressed by EA
are loaded into RT56:63. Bits 8:15 of the doubleword in
storage addressed by EA are loaded into RT48:55. Bits
16:23 of the doubleword in storage addressed by EA
are loaded into RT40:47. Bits 24:31 of the doubleword in
storage addressed by EA are loaded into RT32:39. Bits
32:39 of the doubleword in storage addressed by EA
are loaded into RT24:31. Bits 40:47 of the doubleword in
storage addressed by EA are loaded into RT16:23. Bits
48:55 of the doubleword in storage addressed by EA
are loaded into RT8:15. Bits 56:63 of the doubleword in
storage addressed by EA are loaded into RT0:7.

Special Registers Altered:
None

Store Doubleword Byte-Reverse Indexed 
X-form

stdbrx RS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 8) I (RS)56:63 || (RS)48:55

|| (RS)40:47 || (RS)32:39
|| (RS)24:31 || (RS)16:23
|| (RS)8:15  || (RS)0:7

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)56:63 are stored into bits 0:7 of the
doubleword in storage addressed by EA. (RS)48:55 are
stored into bits 8:15 of the doubleword in storage
addressed by EA. (RS)40:47 are stored into bits 16:23 of
the doubleword in storage addressed by EA. (RS)32:39
are stored into bits 23:31 of the doubleword in storage
addressed by EA. (RS)24:31 are stored into bits 32:39 of
the doubleword in storage addressed by EA. (RS)16:23
are stored into bits 40:47 of the doubleword in storage
addressed by EA. (RS)8:15 are stored into bits 48:55 of
the doubleword in storage addressed by EA. (RS)0:7
are stored into bits 56:63 of the doubleword in storage
addressed by EA.

Special Registers Altered:
None

31 RT RA RB 532 /
0 6 11 16 21 31

31 RS RA RB 660 /
0 6 11 16 21 31
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3.3.6 Fixed-Point Load and Store Multiple Instructions

Load Multiple Word  D-form

lmw RT,D(RA) 

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
r I RT
do while r ≤ 31

GPR(r) I 320 || MEM(EA, 4)
r I r + 1
EA I EA + 4

Let n = (32-RT). Let the effective address (EA) be the
sum (RA|0)+ D.

n consecutive words starting at EA are loaded into the
low-order 32 bits of GPRs RT through 31. The
high-order 32 bits of these GPRs are set to zero.

If RA is in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

For the Server environment, this instruction is not sup-
ported in Little-Endian mode. If it is executed in Lit-
tle-Endian mode, the system alignment error handler is
invoked.

Special Registers Altered:
None

Store Multiple Word  D-form

stmw RS,D(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
r I RS
do while r ≤ 31

MEM(EA, 4) I GPR(r)32:63
r I r + 1
EA I EA + 4

Let n = (32-RS). Let the effective address (EA) be the
sum (RA|0)+ D.

n consecutive words starting at EA are stored from the
low-order 32 bits of GPRs RS through 31.

For the Server environment, this instruction is not sup-
ported in Little-Endian mode. If it is executed in Lit-
tle-Endian mode, the system alignment error handler is
invoked.

Special Registers Altered:
None

46 RT RA D
0 6 11 16                                                     31

47 RS RA D
0 6 11 16                                                     31
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3.3.7 Fixed-Point Move Assist Instructions [Category: Move Assist.Phased 
Out]
The Move Assist instructions allow movement of an
arbitrary sequence of bytes from storage to registers or
from registers to storage without concern for alignment.
These instructions can be used for a short move
between arbitrary storage locations or to initiate a long
move between unaligned storage fields.

The Move Assist instructions have preferred forms; see
Section 1.8.1, “Preferred Instruction Forms” on
page 22. In the preferred forms, register usage satisfies
the following rules.

RS = 4 or 5
RT = 4 or 5
last register loaded/stored ≤ 12

For some implementations, using GPR 4 for RS and RT
may result in slightly faster execution than using GPR
5.
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Load String Word Immediate  X-form

lswi RT,RA,NB 

if RA = 0 then EA I 0
else           EA I (RA)
if NB = 0 then n I 32
else           n I NB
r I RT - 1
i I 32
do while n > 0

if i = 32 then
  r I r + 1 (mod 32)
  GPR(r) I 0
GPR(r)i:i+7 I MEM(EA, 1)
i I i + 8
if i = 64 then i I 32
EA I EA + 1
n I n - 1

Let the effective address (EA) be (RA|0). Let n = NB if
NB≠0, n = 32 if NB=0; n is the number of bytes to load.
Let nr=CEIL(n/4); nr is the number of registers to
receive data.

n consecutive bytes starting at EA are loaded into
GPRs RT through RT+nr-1. Data are loaded into the
low-order four bytes of each GPR; the high-order four
bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If the low-order four bytes of register RT+nr-1
are only partially filled, the unfilled low-order byte(s) of
that register are set to 0.

If RA is in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

For the Server environment, this instruction is not sup-
ported in Little-Endian mode. If it is executed in Lit-
tle-Endian mode, the system alignment error handler is
invoked.

Special Registers Altered:
None

Load String Word Indexed  X-form

lswx RT,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
n I XER57:63
r I RT - 1
i I 32
RT I undefined
do while n > 0

if i = 32 then
 r I r + 1 (mod 32)
 GPR(r) I 0
GPR(r)i:i+7 I MEM(EA, 1)
i I i + 8
if i = 64 then i I 32
EA I EA + 1
n I n - 1

Let the effective address (EA) be the sum
(RA|0)+ (RB). Let n=XER57:63; n is the number of bytes
to load. Let nr=CEIL(n/4); nr is the number of registers
to receive data.

If n>0, n consecutive bytes starting at EA are loaded
into GPRs RT through RT+nr-1. Data are loaded into
the low-order four bytes of each GPR; the high-order
four bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If the low-order four bytes of register RT+nr-1
are only partially filled, the unfilled low-order byte(s) of
that register are set to 0.

If n=0, the contents of register RT are undefined.

If RA or RB is in the range of registers to be loaded,
including the case in which RA=0, the instruction is
treated as if the instruction form were invalid. If RT=RA
or RT=RB, the instruction form is invalid.

For the Server environment, this instruction is not sup-
ported in Little-Endian mode. If it is executed in Lit-
tle-Endian mode and n>0, the system alignment error
handler is invoked.

Special Registers Altered:
None

31 RT RA NB 597 /
0 6 11 16 21 31

31 RT RA RB 533 /
0 6 11 16 21 31
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Store String Word Immediate  X-form

stswi RS,RA,NB 

if RA = 0 then EA I 0
else           EA I (RA)
if NB = 0 then n I 32
else           n I NB
r I RS - 1
i I 32
do while n > 0
  if i = 32 then r I r + 1 (mod 32)
  MEM(EA, 1) I GPR(r)i:i+7
   i I i + 8
  if i = 64 then i I 32
  EA I EA + 1
  n I n - 1

Let the effective address (EA) be (RA|0). Let n = NB if
NB≠0, n = 32 if NB=0; n is the number of bytes to store.
Let nr =CEIL(n/4); nr is the number of registers to sup-
ply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr-1. Data are stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

For the Server environment, this instruction is not sup-
ported in Little-Endian mode. If it is executed in Lit-
tle-Endian mode, the system alignment error handler is
invoked.

Special Registers Altered:
None

Store String Word Indexed  X-form

stswx RS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
n I XER57:63
r I RS - 1
i I 32
do while n > 0
  if i = 32 then r I r + 1 (mod 32)
  MEM(EA, 1) I GPR(r)i:i+7
    i I i + 8
  if i = 64 then i I 32
  EA I EA + 1
  n I n - 1

Let the effective address (EA) be the sum
(RA|0)+ (RB). Let n = XER57:63; n is the number of
bytes to store. Let nr = CEIL(n/4); nr is the number of
registers to supply data.

If n>0, n consecutive bytes starting at EA are stored
from GPRs RS through RS+nr-1. Data are stored from
the low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

If n=0, no bytes are stored.

For the Server environment, this instruction is not sup-
ported in Little-Endian mode. If it is executed in Lit-
tle-Endian mode and n>0, the system alignment error
handler is invoked.

Special Registers Altered:
None

31 RS RA NB 725 /
0 6 11 16 21 31

31 RS RA RB 661 /
0 6 11 16 21 31
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3.3.8 Other Fixed-Point Instructions
The remainder of the fixed-point instructions use the
contents of the General Purpose Registers (GPRs) as
source operands, and place results into GPRs, into the
Fixed-Point Exception Register (XER), and into Condi-
tion Register fields. In addition, the Trap instructions
test the contents of a GPR or XER bit, invoking the sys-
tem trap handler if the result of the specified test is true.

These instructions treat the source operands as signed
integers unless the instruction is explicitly identified as
performing an unsigned operation.

The X-form and XO-form instructions with Rc=1, and
the D-form instructions addic., andi., and andis., set
the first three bits of CR Field 0 to characterize the
result placed into the target register. In 64-bit mode,

these bits are set by signed comparison of the result to
zero. In 32-bit mode, these bits are set by signed com-
parison of the low-order 32 bits of the result to zero.

Unless otherwise noted and when appropriate, when
CR Field 0 and the XER are set they reflect the value
placed into the target register.

  

Instructions with the OE bit set or that set CA may
execute slowly or may prevent the execution of sub-
sequent instructions until the instruction has com-
pleted.

Programming Note
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3.3.9 Fixed-Point Arithmetic Instructions
The XO-form Arithmetic instructions with Rc=1, and the
D-form Arithmetic instruction addic., set the first three
bits of CR Field 0 as described in Section 3.3.8, “Other
Fixed-Point Instructions”.

addic, addic., subfic, addc, subfc, adde, subfe,
addme, subfme, addze, and subfze always set CA, to
reflect the carry out of bit 0 in 64-bit mode and out of bit
32 in 32-bit mode. The XO-form Arithmetic instructions
set SO and OV when OE=1 to reflect overflow of the
result. Except for the Multiply Low and Divide instruc-
tions, the setting of these bits is mode-dependent, and
reflects overflow of the 64-bit result in 64-bit mode and
overflow of the low-order 32-bit result in 32-bit mode.
For XO-form Multiply Low and Divide instructions, the
setting of these bits is mode-independent, and reflects
overflow of the 64-bit result for mulld, divd, divde,
divdu and divdeu, and overflow of the low-order 32-bit
result for mullw, divw, divwe, divwu, and divweu.

  

Extended mnemonics for addition and 
subtraction
Several extended mnemonics are provided that use the
Add Immediate and Add Immediate Shifted instructions
to load an immediate value or an address into a target
register. Some of these are shown as examples with
the two instructions.

The Power ISA supplies Subtract From instructions,
which subtract the second operand from the third. A set
of extended mnemonics is provided that use the more
“normal” order, in which the third operand is subtracted
from the second, with the third operand being either an
immediate field or a register. Some of these are shown
as examples with the appropriate Add and Subtract
From instructions.

See Appendix E for additional extended mnemonics.

Add Immediate  D-form

addi RT,RA,SI 

if RA = 0 then RT I EXTS(SI)
else           RT I (RA) + EXTS(SI)

The sum (RA|0) + SI is placed into register RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate:

  

Add Immediate Shifted  D-form

addis RT,RA,SI

if RA = 0 then RT I EXTS(SI || 160)
else           RT I (RA) + EXTS(SI || 160)

The sum (RA|0) + (SI || 0x0000) is placed into register
RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate
Shifted:

Notice that CR Field 0 may not reflect the “true”
(infinitely precise) result if overflow occurs.

Programming Note

14 RT RA SI
0 6 11 16                                                    31

Extended: Equivalent to:
li Rx,value addi     Rx,0,value
la Rx,disp(Ry) addi     Rx,Ry,disp
subi Rx,Ry,value addi     Rx,Ry,-value

addi, addis, add, and subf are the preferred
instructions for addition and subtraction, because
they set few status bits.

Notice that addi and addis use the value 0, not the
contents of GPR 0, if RA=0.

Programming Note

15 RT RA SI
0 6 11 16                                                    31

Extended: Equivalent to:
lis Rx,value addis Rx,0,value
subis Rx,Ry,value addis Rx,Ry,-value
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Add  XO-form

add RT,RA,RB (OE=0 Rc=0)
add. RT,RA,RB (OE=0 Rc=1)
addo RT,RA,RB (OE=1 Rc=0)
addo. RT,RA,RB (OE=1 Rc=1) 

RT I (RA) + (RB)

The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

Subtract From  XO-form

subf RT,RA,RB  (OE=0 Rc=0)
subf. RT,RA,RB  (OE=0 Rc=1)
subfo RT,RA,RB  (OE=1 Rc=0)
subfo. RT,RA,RB  (OE=1 Rc=1)

RT I ¬(RA) + (RB) + 1

The sum ¬(RA) + (RB) +1 is placed into register RT.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From:

Add Immediate Carrying   D-form

addic RT,RA,SI 

RT I (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered:
CA

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying:

Add Immediate Carrying and Record 
 D-form

addic. RT,RA,SI 

RT I (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered:
CR0 CA

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying and Record:

31 RT RA RB OE 266 Rc
0 6 11 16 21 22 31

31 RT RA RB OE 40 Rc
0 6  11 16 21 22 31

Extended: Equivalent to:
sub Rx,Ry,Rz subf Rx,Rz,Ry

12 RT RA SI
0 6 11 16                                                     31

Extended: Equivalent to:
subic Rx,Ry,value addic Rx,Ry,-value

13 RT RA SI
0 6 11 16                                                    31

Extended: Equivalent to:
subic. Rx,Ry,value addic. Rx,Ry,-value
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Subtract From Immediate Carrying 
 D-form

subfic RT,RA,SI 

RT I ¬(RA) + EXTS(SI) + 1

The sum ¬(RA) + SI + 1 is placed into register RT.

Special Registers Altered:
CA

Add Carrying   XO-form

addc RT,RA,RB (OE=0 Rc=0)
addc. RT,RA,RB (OE=0 Rc=1)
addco RT,RA,RB (OE=1 Rc=0)
addco. RT,RA,RB (OE=1 Rc=1) 

RT I (RA) + (RB)

The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

Subtract From Carrying  XO-form

subfc RT,RA,RB (OE=0 Rc=0)
subfc. RT,RA,RB (OE=0 Rc=1)
subfco RT,RA,RB (OE=1 Rc=0)
subfco. RT,RA,RB (OE=1 Rc=1) 

RT I ¬(RA) + (RB) + 1

The sum ¬(RA) + (RB) + 1 is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From
Carrying:

8 RT RA SI
0 6 11 16                                                    31

31 RT RA RB OE 10 Rc
0 6 11 16 21 22 31

31 RT RA RB OE 8 Rc
0 6 11 16 21 22 31

Extended: Equivalent to:
subc Rx,Ry,Rz subfc     Rx,Rz,Ry
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Add Extended  XO-form

adde RT,RA,RB (OE=0 Rc=0)
adde. RT,RA,RB (OE=0 Rc=1)
addeo RT,RA,RB (OE=1 Rc=0)
addeo. RT,RA,RB (OE=1 Rc=1)

RT I (RA) + (RB) + CA

The sum (RA) + (RB) + CA is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

Subtract From Extended   XO-form

subfe RT,RA,RB (OE=0 Rc=0)
subfe. RT,RA,RB (OE=0 Rc=1)
subfeo RT,RA,RB (OE=1 Rc=0)
subfeo. RT,RA,RB  (OE=1 Rc=1) 

RT I ¬(RA) + (RB) + CA

The sum ¬(RA) + (RB) + CA is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

Add to Minus One Extended   XO-form

addme RT,RA (OE=0 Rc=0)
addme. RT,RA (OE=0 Rc=1)
addmeo RT,RA  (OE=1 Rc=0)
addmeo. RT,RA (OE=1 Rc=1) 

RT I (RA) + CA - 1

The sum (RA) + CA + 641 is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

Subtract From Minus One Extended 
 XO-form

subfme RT,RA (OE=0 Rc=0)
subfme. RT,RA  (OE=0 Rc=1)
subfmeo RT,RA (OE=1 Rc=0)
subfmeo. RT,RA (OE=1 Rc=1)

RT I ¬(RA) + CA - 1
The sum ¬(RA) + CA + 641 is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

31 RT RA RB OE 138 Rc
0 6 11 16 21 22 31

31 RT RA RB OE 136 Rc
0 6 11 16 21 22 31

31 RT RA /// OE 234 Rc
0 6 11 16 21 22 31 31 RT RA /// OE 232 Rc

0 6 11 16 21 22 31
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Add to Zero Extended   XO-form

addze RT,RA (OE=0 Rc=0)
addze. RT,RA (OE=0 Rc=1)
addzeo RT,RA (OE=1 Rc=0)
addzeo. RT,RA (OE=1 Rc=1)

RT I (RA) + CA

The sum (RA) + CA is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

Subtract From Zero Extended   XO-form

subfze RT,RA (OE=0 Rc=0)
subfze. RT,RA (OE=0 Rc=1)
subfzeo RT,RA (OE=1 Rc=0)
subfzeo. RT,RA (OE=1 Rc=1)

RT I ¬(RA) + CA

The sum ¬(RA) + CA is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

  

Negate   XO-form

neg RT,RA (OE=0 Rc=0)
neg. RT,RA (OE=0 Rc=1)
nego RT,RA (OE=1 Rc=0)
nego. RT,RA (OE=1 Rc=1)

RT I ¬(RA) + 1

The sum ¬(RA) + 1 is placed into register RT.

If the processor is in 64-bit mode and register RA con-
tains the most negative 64-bit number (0x8000_
0000_0000_0000), the result is the most negative num-
ber and, if OE=1, OV is set to 1. Similarly, if the proces-
sor is in 32-bit mode and (RA)32:63 contain the most
negative 32-bit number (0x8000_0000), the low-order
32 bits of the result contain the most negative 32-bit
number and, if OE=1, OV is set to 1.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

31 RT RA /// OE 202 Rc
0 6 11 16 21 22 31

31 RT RA /// OE 200 Rc
0 6 11 16 21 22 31

The setting of CA by the Add and Subtract From
instructions, including the Extended versions
thereof, is mode-dependent. If a sequence of these
instructions is used to perform extended-precision
addition or subtraction, the same mode should be
used throughout the sequence.

31 RT RA /// OE 104 Rc
0 6 11 16 21 22 31

Programming Note
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Multiply Low Immediate   D-form

mulli RT,RA,SI 

prod0:127 I (RA) × EXTS(SI)
RT I prod64:127

The 64-bit first operand is (RA). The 64-bit second
operand is the sign-extended value of the SI field. The
low-order 64 bits of the 128-bit product of the operands
are placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
None

Multiply Low Word   XO-form

mullw RT,RA,RB (OE=0 Rc=0)
mullw. RT,RA,RB (OE=0 Rc=1)
mullwo RT,RA,RB (OE=1 Rc=0)
mullwo. RT,RA,RB (OE=1 Rc=1)

RT I (RA)32:63 × (RB)32:63
The 32-bit operands are the low-order 32 bits of RA
and of RB. The 64-bit product of the operands is placed
into register RT.

If OE=1 then OV is set to 1 if the product cannot be rep-
resented in 32 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

  

Multiply High Word   XO-form

mulhw RT,RA,RB (Rc=0)
mulhw. RT,RA,RB (Rc=1)

prod0:63 I (RA)32:63 × (RB)32:63
RT32:63 I prod0:31
RT0:31 I undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit product
of the operands are placed into RT32:63. The contents
of RT0:31 are undefined.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)

Multiply High Word Unsigned  XO-form

mulhwu RT,RA,RB (Rc=0)
mulhwu. RT,RA,RB (Rc=1)

prod0:63 I (RA)32:63 × (RB)32:63
RT32:63 I prod0:31
RT0:31 I undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit product
of the operands are placed into RT32:63. The contents
of RT0:31 are undefined.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)

7 RT RA SI
0 6 11 16                                                    31

31 RT RA RB OE 235 Rc
0 6 11 16 21 22 31

For mulli and mullw, the low-order 32 bits of the
product are the correct 32-bit product for 32-bit
mode.

For mulli and mulld, the low-order 64 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 64-bit integers.
For mulli and mullw, the low-order 32 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 32-bit integers.

Programming Note

31 RT RA RB / 75 Rc
0 6 11 16 21 22 31

31 RT RA RB / 11 Rc
0 6 11 16 21 22 31
Power ISA™ - Book I72



Version 2.07 B
Divide Word   XO-form

divw RT,RA,RB (OE=0 Rc=0)
divw. RT,RA,RB (OE=0 Rc=1)
divwo RT,RA,RB (OE=1 Rc=0)
divwo. RT,RA,RB (OE=1 Rc=1)

dividend0:31  I (RA)32:63
divisor0:31 I (RB)32:63
RT32:63 I dividend ÷ divisor
RT0:31 I undefined

The 32-bit dividend is (RA)32:63. The 32-bit divisor is
(RB)32:63. The 32-bit quotient is placed into RT32:63.
The contents of RT0:31 are undefined. The remainder is
not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnegative,
and -|divisor| < r ≤ 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

   0x8000_0000 ÷ -1
   <anything> ÷ 0

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV (if OE=1)

  

Divide Word Unsigned   XO-form

divwu RT,RA,RB (OE=0 Rc=0)
divwu. RT,RA,RB (OE=0 Rc=1)
divwuo RT,RA,RB (OE=1 Rc=0)
divwuo. RT,RA,RB (OE=1 Rc=1)

dividend0:31  I (RA)32:63
divisor0:31 I (RB)32:63
RT32:63 I dividend ÷ divisor
RT0:31 I undefined

The 32 bit dividend is (RA)32:63. The 32-bit divisor is
(RB)32:63. The 32-bit quotient is placed into RT32:63.
The contents of RT0:31 are undefined. The remainder is
not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If an attempt is made to perform the division

    <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In this case, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV (if OE=1)

  

31 RT RA RB OE 491 Rc
0 6 11 16 21 22 31

The 32-bit signed remainder of dividing (RA)32:63
by (RB)32:63 can be computed as follows, except in
the case that (RA)32:63 = -231 and (RB)32:63 = -1.

divw RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient×divisor
subf RT,RT,RA # RT = remainder

Programming Note

31 RT RA RB OE 459 Rc
0 6 11 16 21 22 31

The 32-bit unsigned remainder of dividing (RA)32:63
by (RB)32:63 can be computed as follows.

divwu RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient×divisor
subf RT,RT,RA # RT = remainder

Programming Note
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Divide Word Extended   XO-form

divwe RT,RA,RB (OE=0 Rc=0)
divwe. RT,RA,RB (OE=0 Rc=1)
divweo RT,RA,RB (OE=1 Rc=0)
divweo. RT,RA,RB (OE=1 Rc=1)
[Category: Server]
[Category: Embedded.Phased-In]

dividend0:63 I (RA)32:63 || 
320

divisor0:31 I (RB)32:63
RT32:63 I dividend ÷ divisor
RT0:31 I undefined

The 64-bit dividend is (RA)32:63 || 
320. The 32-bit divisor

is (RB)32:63. If the quotient can be represented in 32
bits, it is placed into RT32:63. The contents of RT0:31 are
undefined. The remainder is not supplied as a result. 

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnegative,
and -|divisor| < r ≤ 0 if the dividend is negative.

If the quotient cannot be represented in 32 bits, or if an
attempt is made to perform the division

    <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV (if OE=1)

Divide Word Extended Unsigned  XO-form

divweu RT,RA,RB (OE=0 Rc=0)
divweu. RT,RA,RB (OE=0 Rc=1)
divweuo RT,RA,RB (OE=1 Rc=0)
divweuo. RT,RA,RB (OE=1 Rc=1)
[Category: Server]
[Category: Embedded.Phased-In]

dividend0:63 I (RA)32:63 || 
320

divisor0:31 I (RB)32:63
RT32:63 I dividend ÷ divisor
RT0:31 I undefined

The 64-bit dividend is (RA)32:63 || 
320. The 32-bit divisor

is (RB)32:63. If the quotient can be represented in 32
bits, it is placed into RT32:63. The contents of RT0:31 are
undefined. The remainder is not supplied as a result. 

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If (RA) ≥ (RB), or if an attempt is made to perform the
division

    <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV (if OE=1)

31 RT RA RB OE 427 Rc
0 6 11 16 21 22 31

31 RT RA RB OE 395 Rc
0 6 11 16 21 22 31
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Programming Note

Unsigned long division of a 64-bit dividend contained in
two 32-bit registers by a 32-bit divisor can be computed
as follows. The algorithm is shown first, followed by
Assembler code that implements the algorithm. The
dividend is Dh || Dl, the divisor is Dv, and the quotient
and remainder are Q and R respectively, where these
variables and all intermediate variables represent
unsigned 32-bit integers. It is assumed that Dv > Dh,
and that assigning a value to an intermediate variable
assigns the low-order 32 bits of the value and ignores
any higher-order bits of the value. (In both the algorithm
and the Assembler code, “r1” and “r2” refer to “remain-
der 1” and “remainder 2”, rather than to GPRs 1 and 2.)

Algorithm:

3. q1 I divweu Dh, Dv
4. r1 I -(q1 × Dv) # remainder of step 1

   divide operation
   (see Note 1)

5. q2 I divwu Dl, Dv
6. r2 I Dl - (q2 × Dv) # remainder of step 2

   divide operation
7. Q I q1 + q2
8. R I r1 + r2
9. if (R < r2) | (R ≥ Dv) then # (see Note 2)

   Q I Q + 1 # increment quotient
   R I R - Dv # decrement rem’der

Assembler Code:

# Dh in r4, Dl in r5
# Dv in r6
divweu r3,r4,r6 # q1
divwu r7,r5,r6 # q2
mullw r8,r3,r6 # -r1 = q1 * Dv
mullw r0,r7,r6 # q2 * Dv
subf r10,r0,r5 # r2 = Dl - (q2 * Dv)
add r3,r3,r7 # Q = q1 + q2
subf r4,r8,r10 # R = r1 + r2
cmplw r4,r10 # R < r2 ?
blt *+12 # must adjust Q and R if yes
cmplw r4,r6 # R ≥ Dv ?
blt *+12 # must adjust Q and R if yes
addi r3,r3,1 # Q = Q + 1
subf r4,r6,r4 # R = R - Dv
# Quotient in r3
# Remainder in r4

Notes:

1. The remainder is Dh || 320 - (q1 × Dv). Because the
remainder must be less than Dv and Dv < 232, the
remainder is representable in 32 bits. Because the
low-order 32 bits of Dh || 320 are 0s, the remainder
is therefore equal to the low-order 32 bits of -(q1 ×
Dv). Thus assigning -(q1 × Dv) to r1 yields the cor-
rect remainder.

2. R is less than r2 (and also less than r1) if and only
if the addition at step 6 carried out of 32 bits — i.e.,
if and only if the correct sum could not be repre-
sented in 32 bits — in which case the correct sum
is necessarily greater than Dv.

3. For additional information see the book Hacker's
Delight, by Henry S. Warren, Jr., as potentially
amended at the web site http://www.hackersde-
light.org.
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3.3.9.1 64-bit Fixed-Point Arithmetic Instructions [Category: 64-Bit]

Multiply Low Doubleword  XO-form

mulld RT,RA,RB  (OE=0 Rc=0)
mulld. RT,RA,RB  (OE=0 Rc=1)
mulldo RT,RA,RB  (OE=1 Rc=0)
mulldo. RT,RA,RB  (OE=1 Rc=1)

prod0:127 I (RA) × (RB)
RT I prod64:127

The 64-bit operands are (RA) and (RB). The low-order
64 bits of the 128-bit product of the operands are
placed into register RT.

If OE=1 then OV is set to 1 if the product cannot be rep-
resented in 64 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

  

Multiply High Doubleword  XO-form

mulhd RT,RA,RB (Rc=0)
mulhd. RT,RA,RB (Rc=1)

prod0:127 I (RA) × (RB)
RT I prod0:63

The 64-bit operands are (RA) and (RB). The high-order
64 bits of the 128-bit product of the operands are
placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 (if Rc=1)

Multiply High Doubleword Unsigned 
XO-form

mulhdu RT,RA,RB (Rc=0)
mulhdu. RT,RA,RB (Rc=1)

prod0:127 I (RA) × (RB)
RT I prod0:63

The 64-bit operands are (RA) and (RB). The high-order
64 bits of the 128-bit product of the operands are
placed into register RT.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero.

Special Registers Altered:
CR0 (if Rc=1)

31 RT RA RB OE 233 Rc
0 6 11 16 21 22 31

The XO-form Multiply instructions may execute
faster on some implementations if RB contains the
operand having the smaller absolute value.

Programming Note

31 RT RA RB / 73 Rc
0 6 11 16 21 22 31

31 RT RA RB / 9 Rc
0 6 11 16 21 22 31
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Divide Doubleword  XO-form

divd RT,RA,RB (OE=0 Rc=0)
divd. RT,RA,RB  (OE=0 Rc=1)
divdo RT,RA,RB  (OE=1 Rc=0)
divdo. RT,RA,RB (OE=1 Rc=1)

dividend0:63 I (RA)
divisor0:63 I (RB)
RT I dividend ÷ divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient is placed into register RT. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnegative,
and -|divisor| < r ≤ 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

   0x8000_0000_0000_0000 ÷ -1
   <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

  

Divide Doubleword Unsigned   XO-form

divdu RT,RA,RB (OE=0 Rc=0)
divdu. RT,RA,RB (OE=0 Rc=1)
divduo RT,RA,RB (OE=1 Rc=0)
divduo. RT,RA,RB (OE=1 Rc=1)

dividend0:63 I (RA)
divisor0:63 I (RB)
RT I dividend ÷ divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient is placed into register RT. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If an attempt is made to perform the division

    <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In this case, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

  

31 RT RA RB OE 489 Rc
0 6 11 16 21 22 31

The 64-bit signed remainder of dividing (RA) by
(RB) can be computed as follows, except in the
case that (RA) = -263 and (RB) = -1.

divd RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient×divisor
subf RT,RT,RA # RT = remainder

Programming Note

31 RT RA RB OE 457 Rc
0 6 11 16 21 22 31

The 64-bit unsigned remainder of dividing (RA) by
(RB) can be computed as follows.

divdu RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient×divisor
subf RT,RT,RA # RT = remainder

Programming Note
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Divide Doubleword Extended  XO-form

divde RT,RA,RB (OE=0 Rc=0)
divde. RT,RA,RB (OE=0 Rc=1)
divdeo RT,RA,RB  (OE=1 Rc=0)
divdeo. RT,RA,RB  (OE=1 Rc=1)
[Category: Server]
[Category: Embedded.Phased-In]

dividend0:127 I (RA) || 
640

divisor0:63 I (RB)
RT I dividend ÷ divisor

The 128-bit dividend is (RA) || 640. The 64-bit divisor is
(RB). If the quotient can be represented in 64 bits, it is
placed into register RT. The remainder is not supplied
as a result. 

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnegative,
and -|divisor| < r ≤ 0 if the dividend is negative.

If the quotient cannot be represented in 64 bits, or if an
attempt is made to perform the division

    <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

Divide Doubleword Extended Unsigned
XO-form

divdeu RT,RA,RB (OE=0 Rc=0)
divdeu. RT,RA,RB (OE=0 Rc=1)
divdeuo RT,RA,RB (OE=1 Rc=0)
divdeuo. RT,RA,RB (OE=1 Rc=1)
[Category: Server]
[Category: Embedded.Phased-In]

dividend0:127 I (RA) || 
640

divisor0:63 I (RB)
RT I dividend ÷ divisor

The 128-bit dividend is (RA) || 640. The 64-bit divisor is
(RB). If the quotient can be represented in 64 bits, it is
placed into register RT. The remainder is not supplied
as a result. 

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If (RA) ≥ (RB), or if an attempt is made to perform the
division

    <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

  

31 RT RA RB OE 425 Rc
0 6 11 16 21 22 31 31 RT RA RB OE 393 Rc

0 6 11 16 21 22 31

Unsigned long division of a 128-bit dividend con-
tained in two 64-bit registers by a 64-bit divisor can
be accomplished using the technique described in
the Programming Note with the divweu instruction
description: divd[e]u would be used instead of
divw[e]u (and cmpld instead of cmplw, etc.). 

Programming Note
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3.3.10 Fixed-Point Compare Instructions
The fixed-point Compare instructions compare the con-
tents of register RA with (1) the sign-extended value of
the SI field, (2) the zero-extended value of the UI field,
or (3) the contents of register RB. The comparison is
signed for cmpi and cmp, and unsigned for cmpli and
cmpl.

The L field controls whether the operands are treated
as 64-bit or 32-bit quantities, as follows: 

L=1 is part of Category: 64-Bit.

When the operands are treated as 32-bit signed quanti-
ties, bit 32 of the register (RA or RB) is the sign bit.

The Compare instructions set one bit in the leftmost
three bits of the designated CR field to 1, and the other

two to 0. XERSO is copied to bit 3 of the designated CR
field. 

The CR field is set as follows

.

Extended mnemonics for compares
A set of extended mnemonics is provided so that com-
pares can be coded with the operand length as part of
the mnemonic rather than as a numeric operand. Some
of these are shown as examples with the Compare
instructions. See Appendix E for additional extended
mnemonics.

Compare Immediate D-form

cmpi BF,L,RA,SI

if L = 0 then a I EXTS((RA)32:63)
         else a I (RA)
if      a < EXTS(SI) then c I 0b100
else if a > EXTS(SI) then c I 0b010
else                      c I 0b001
CR4×BF+32:4×BF+35 I c || XERSO

The contents of register RA ((RA)32:63 sign-extended to
64 bits if L=0) are compared with the sign-extended
value of the SI field, treating the operands as signed
integers. The result of the comparison is placed into CR
field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Imme-
diate:

Compare   X-form

cmp BF,L,RA,RB

if L = 0 then a I EXTS((RA)32:63)
                b I EXTS((RB)32:63)
           else a I (RA)
                b I (RB)
if      a < b then c I 0b100
else if a > b then c I 0b010
else               c I 0b001
CR4×BF+32:4×BF+35 I c || XERSO

The contents of register RA ((RA)32:63 if L=0) are com-
pared with the contents of register RB ((RB)32:63 if
L=0), treating the operands as signed integers. The
result of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare:

L Operand length
0 32-bit operands
1 64-bit operands

Bit Name Description
0 LT (RA) < SI or (RB) (signed comparison)

(RA) <u UI or (RB) (unsigned comparison)
1 GT (RA) > SI or (RB) (signed comparison)

(RA) >u UI or (RB) (unsigned comparison)
2 EQ (RA) = SI, UI, or (RB)
3 SO Summary Overflow from the XER

11 BF / L RA SI
0 6 9 10 11 16                                              31

Extended: Equivalent to:
cmpdi Rx,value cmpi 0,1,Rx,value
cmpwi cr3,Rx,value cmpi 3,0,Rx,value

31 BF / L RA RB 0 /
0 6 9 10 11 16 21 31

Extended: Equivalent to:
cmpd Rx,Ry cmp 0,1,Rx,Ry
cmpw cr3,Rx,Ry cmp       3,0,Rx,Ry
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Compare Logical Immediate   D-form

cmpli BF,L,RA,UI

if L = 0 then a I 320 || (RA)32:63
         else a I (RA)
if      a <u (480 || UI) then c I 0b100
else if a >u (480 || UI) then c I 0b010
else                         c I 0b001
CR4×BF+32:4×BF+35 I c || XERSO

The contents of register RA ((RA)32:63 zero-extended to
64 bits if L=0) are compared with 480 || UI, treating the
operands as unsigned integers. The result of the com-
parison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Logical
Immediate:

Compare Logical   X-form

cmpl BF,L,RA,RB

if L = 0 then a I 320 || (RA)32:63
              b I 320 || (RB)32:63
         else a I (RA)
              b I (RB)
if      a <u b then c I 0b100
else if a >u b then c I 0b010
else                c I 0b001
CR4×BF+32:4×BF+35 I c || XERSO

The contents of register RA ((RA)32:63 if L=0) are com-
pared with the contents of register RB ((RB)32:63 if
L=0), treating the operands as unsigned integers. The
result of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF 

Extended Mnemonics:

Examples of extended mnemonics for Compare Logi-
cal:

10 BF / L RA UI
0 6 9 10 11 16                                        31

Extended: Equivalent to:
cmpldi Rx,value cmpli 0,1,Rx,value
cmplwi cr3,Rx,value cmpli 3,0,Rx,value

31 BF / L RA RB 32 /
0 6 9 10 11 16 21 31

Extended: Equivalent to:
cmpld Rx,Ry cmpl 0,1,Rx,Ry
cmplw cr3,Rx,Ry cmpl 3,0,Rx,Ry
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3.3.11 Fixed-Point Trap Instructions
The Trap instructions are provided to test for a specified
set of conditions. If any of the conditions tested by a
Trap instruction are met, the system trap handler is
invoked. If none of the tested conditions are met,
instruction execution continues normally.

The contents of register RA are compared with either
the sign-extended value of the SI field or the contents
of register RB, depending on the Trap instruction. For
tdi and td, the entire contents of RA (and RB) partici-
pate in the comparison; for twi and tw, only the con-
tents of the low-order 32 bits of RA (and RB) participate
in the comparison.

This comparison results in five conditions which are
ANDed with TO. If the result is not 0 the system trap
handler is invoked. These conditions are as follows.

TO Bit ANDed with Condition
0 Less Than, using signed comparison
1 Greater Than, using signed comparison
2 Equal
3 Less Than, using unsigned comparison
4 Greater Than, using unsigned comparison

Extended mnemonics for traps
A set of extended mnemonics is provided so that traps
can be coded with the condition as part of the mne-
monic rather than as a numeric operand. Some of
these are shown as examples with the Trap instruc-
tions. See Appendix E for additional extended mne-
monics.

Trap Word Immediate D-form

twi TO,RA,SI

a I EXTS((RA)32:63)
if (a < EXTS(SI)) & TO0  then TRAP
if (a > EXTS(SI)) & TO1  then TRAP
if (a = EXTS(SI)) & TO2  then TRAP
if (a <u EXTS(SI)) & TO3 then TRAP
if (a >u EXTS(SI)) & TO4 then TRAP

The contents of RA32:63 are compared with the
sign-extended value of the SI field. If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap han-
dler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book III).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word
Immediate:

Trap Word  X-form

tw TO,RA,RB

a I EXTS((RA)32:63)
b I EXTS((RB)32:63)
if (a < b) & TO0 then TRAP
if (a > b) & TO1 then TRAP
if (a = b) & TO2 then TRAP
if (a <u b) & TO3 then TRAP
if (a >u b) & TO4 then TRAP

The contents of RA32:63 are compared with the con-
tents of RB32:63. If any bit in the TO field is set to 1 and
its corresponding condition is met by the result of the
comparison, the system trap handler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book III).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word:

3 TO RA SI
0 6 11 16                                                    31

Extended: Equivalent to:
twgti Rx,value twi 8,Rx,value
twllei Rx,value twi 6,Rx,value

31 TO RA RB 4 /
0 6 11 16 21 31

Extended: Equivalent to:
tweq Rx,Ry tw 4,Rx,Ry
twlge Rx,Ry tw 5,Rx,Ry
trap tw 31,0,0
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3.3.11.1 64-bit Fixed-Point Trap Instructions [Category: 64-Bit]

Trap Doubleword Immediate  D-form

tdi TO,RA,SI

a I (RA)
b I EXTS(SI)
if (a < b) & TO0 then TRAP
if (a > b) & TO1 then TRAP
if (a = b) & TO2 then TRAP
if (a <u b) & TO3 then TRAP
if (a >u b) & TO4  then TRAP

The contents of register RA are compared with the
sign-extended value of the SI field. If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap han-
dler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book III).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Doubleword
Immediate:

Trap Doubleword  X-form

td TO,RA,RB

a I (RA)
b I (RB)
if (a < b) & TO0 then TRAP
if (a > b) & TO1 then TRAP
if (a = b) & TO2 then TRAP
if (a <u b) & TO3 then TRAP
if (a >u b) & TO4  then TRAP

The contents of register RA are compared with the con-
tents of register RB. If any bit in the TO field is set to 1
and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book III).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Double-
word:

3.3.12 Fixed-Point Select

Integer Select  A-form

isel RT,RA,RB,BC

if RA=0 then a I0 else a I (RA)
if CRBC+32=1 then RT I a
else           RT I (RB)

If the contents of bit BC+32 of the Condition Register
are equal to 1, then the contents of register RA (or 0)
are placed into register RT. Otherwise, the contents of
register RB are placed into register RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Integer Select:

2 TO RA SI
0 6 11 16                                                     31

Extended: Equivalent to:
tdlti Rx,value tdi 16,Rx,value
tdnei Rx,value tdi 24,Rx,value

31 TO RA RB 68 /
0 6 11 16 21 31

Extended: Equivalent to:
tdge Rx,Ry td 12,Rx,Ry

31 RT RA RB BC 15 /
0 6 11 16 21 26 31

Extended: Equivalent to:
isellt Rx,Ry,Rz isel Rx,Ry,Rz,0
iselgt Rx,Ry,Rz isel Rx,Ry,Rz,1
iseleq Rx,Ry,Rz isel Rx,Ry,Rz,1
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3.3.13 Fixed-Point Logical Instructions
The Logical instructions perform bit-parallel operations
on 64-bit operands.

The X-form Logical instructions with Rc=1, and the
D-form Logical instructions andi. and andis., set the
first three bits of CR Field 0 as described in
Section 3.3.8, “Other Fixed-Point Instructions” on
page 66. The Logical instructions do not change the
SO, OV, and CA bits in the XER.

Extended mnemonics for logical oper-
ations
Extended mnemonics are provided that generate two
different types of “no-ops” (instructions that do nothing).
The first type is the preferred form, which is optimized
to minimize its use of the processor's execution
resources. This form is based on the OR Immediate
instruction. The second type is the executed form,
which is intended to consume the same amount of the
processor's execution resources as if it were not a

no-op. This form is based on the XOR Immediate
instruction. (There are also no-ops that have other
uses, such as affecting program priority, for which
extended mnemonics have not been defined.)

Extended mnemonics are provided that use the OR
and NOR instructions to copy the contents of one regis-
ter to another, with and without complementing. These
are shown as examples with the two instructions.

See Appendix E, “Assembler Extended Mnemonics” on
page 709 for additional extended mnemonics.

  

AND Immediate   D-form

andi. RA,RS,UI 

RA I (RS) & (480 || UI)

The contents of register RS are ANDed with 480 || UI
and the result is placed into register RA.

Special Registers Altered:
CR0

AND Immediate Shifted  D-form

andis. RA,RS,UI 

RA I (RS) & (320 || UI || 160)

The contents of register RS are ANDed with
320 || UI || 160 and the result is placed into register RA.

Special Registers Altered:
CR0

OR Immediate   D-form

ori RA,RS,UI

RA I (RS) | (480 || UI)

The contents of register RS are ORed with 480 || UI and
the result is placed into register RA.

The preferred “no-op” (an instruction that does nothing)
is:

ori 0,0,0

Special Registers Altered:
None

Extended Mnemonics:

Example of extended mnemonics for OR Immediate:

Warning: Some forms of no-op may have side
effects such as affecting program priority. Program-
mers should use the preferred no-op unless the
side effects of some other form of no-op are
intended.

Programming Note

28 RS RA UI
0 6 11 16                                        31

29 RS RA UI
0 6 11 16                                        31

24 RS RA UI
0 6 11 16                                                    31

Extended: Equivalent to:
no-op ori 0,0,0
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OR Immediate Shifted  D-form

oris      RA,RS,UI

RA I (RS) | (320 || UI || 160)

The contents of register RS are ORed with
320 || UI || 160 and the result is placed into register RA.

Special Registers Altered:
None

XOR Immediate  D-form

xori RA,RS,UI 

RA I (RS) XOR (480 || UI)

The contents of register RS are XORed with 480 || UI
and the result is placed into register RA.

The executed form of a “no-op” (an instruction that
does nothing, but consumes execution resources nev-
ertheless) is:

xori 0,0,0

Special Registers Altered:
None

Extended Mnemonics:

Example of extended mnemonics for XOR Immediate:

  

XOR Immediate Shifted  D-form

xoris RA,RS,UI

RA I (RS) XOR (320 || UI || 160)

The contents of register RS are XORed with
320 || UI || 160 and the result is placed into register RA.

Special Registers Altered:
None

25 RS RA UI
0 6 11 16                                                    31

26 RS RA UI
0 6 11 16                                                    31

Extended: Equivalent to:
xnop xori 0,0,0

The executed form of no-op should be used only
when the intent is to alter the timing of a program.

Programming Note

27 RS RA UI
0 6 11 16                                                    31
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AND  X-form

and RA,RS,RB (Rc=0)
and. RA,RS,RB (Rc=1)

RA I (RS) & (RB)

The contents of register RS are ANDed with the con-
tents of register RB and the result is placed into register
RA.

<S> Some forms of and Rx, Rx, Rx provide special
functions; see Section 9.3 of Book III-S.

Special Registers Altered:
CR0 (if Rc=1)

XOR   X-form

xor RA,RS,RB (Rc=0)
xor.  RA,RS,RB (Rc=1)

RA I (RS) ⊕ (RB)

The contents of register RS are XORed with the con-
tents of register RB and the result is placed into register
RA.

Special Registers Altered:
CR0 (if Rc=1)

NAND  X-form

nand RA,RS,RB (Rc=0)
nand. RA,RS,RB (Rc=1)

RA I ¬((RS) & (RB))

The contents of register RS are ANDed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

  

OR  X-form

or RA,RS,RB (Rc=0)
or. RA,RS,RB (Rc=1)

RA I (RS) | (RB)

The contents of register RS are ORed with the contents
of register RB and the result is placed into register RA.

Some forms of or Rx,Rx,Rx provide special functions;
see Section 3.2 and Section 4.3.3, both in Book II.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for OR:

31 RS RA RB 28 Rc
0 6 11 16 21 31

31 RS RA RB 316 Rc
0 6 11 16 21 31

31 RS RA RB 476 Rc
0 6 11 16 21 31

nand or nor with RS=RB can be used to obtain the
one’s complement.

Programming Note

31 RS RA RB 444 Rc
0 6 11 16 21 31

Extended: Equivalent to:
mr Rx,Ry or Rx,Ry,Ry
Chapter 3. Fixed-Point Facility 85



Version 2.07 B
NOR   X-form

nor RA,RS,RB (Rc=0)
nor. RA,RS,RB (Rc=1)

   RA I ¬((RS) | (RB))

The contents of register RS are ORed with the contents
of register RB and the complemented result is placed
into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for NOR:

Equivalent  X-form

eqv RA,RS,RB (Rc=0)
eqv. RA,RS,RB (Rc=1)

RA I (RS) ≡ (RB)

The contents of register RS are XORed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

AND with Complement   X-form

andc RA,RS,RB (Rc=0)
andc. RA,RS,RB (Rc=1)

RA I (RS) & ¬(RB)
The contents of register RS are ANDed with the com-
plement of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

OR with Complement  X-form

orc RA,RS,RB (Rc=0)
orc. RA,RS,RB (Rc=1)

RA I (RS) | ¬(RB)
The contents of register RS are ORed with the comple-
ment of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

31 RS RA RB 124 Rc
0 6 11 16 21 31

Extended: Equivalent to:
not Rx,Ry nor Rx,Ry,Ry

31 RS RA RB 284 Rc
0 6 11 16 21 31

31 RS RA RB 60 Rc
0 6 11 16 21 31

31 RS RA RB 412 Rc
0 6 11 16 21 31
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Extend Sign Byte  X-form

extsb RA,RS (Rc=0)
extsb. RA,RS (Rc=1)

s I (RS)56
RA56:63 I (RS)56:63
RA0:55 I 

56s

(RS)56:63 are placed into RA56:63. RA0:55 are filled with
a copy of (RS)56.

Special Registers Altered:
CR0 (if Rc=1)

Extend Sign Halfword  X-form

extsh RA,RS (Rc=0)
extsh. RA,RS (Rc=1) 

s I (RS)48
RA48:63 I (RS)48:63
RA0:47 I 

48s

(RS)48:63 are placed into RA48:63. RA0:47 are filled with
a copy of (RS)48.

Special Registers Altered:
CR0 (if Rc=1)

Count Leading Zeros Word  X-form

cntlzw RA,RS (Rc=0)
cntlzw. RA,RS (Rc=1) 

n I 32
do while n < 64
   if (RS)n = 1 then leave
   n I n + 1
RA I n - 32

A count of the number of consecutive zero bits starting
at bit 32 of register RS is placed into register RA. This
number ranges from 0 to 32, inclusive.

If Rc=1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CR0 (if Rc=1)

  

Compare Bytes X-form

cmpb RA,RS,RB 

do n = 0 to 7 
if RS8×n:8×n+7 = (RB)8×n:8×n+7 then
   RA8×n:8×n+7 I 

81
else 
   RA8×n:8×n+7 I 

80

Each byte of the contents of register RS is compared to
each corresponding byte of the contents in register RB.
If they are equal, the corresponding byte in RA is set to
0xFF. Otherwise the corresponding byte in RA is set to
0x00.

Special Registers Altered:
None

31 RS RA /// 954 Rc
0 6 11 16 21 31

31 RS RA /// 922 Rc
0 6 11 16 21 31

31 RS RA /// 26 Rc
0 6 11 16 21 31

For both Count Leading Zeros instructions, if Rc=1
then LT is set to 0 in CR Field 0.

Programming Note

31 RS RA RB 508 /
0 6 11 16 21 31
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Population Count Bytes   X-form

popcntb RA, RS

do i = 0 to 7
   n I 0
   do j = 0 to 7
      if (RS)(i×8)+j = 1 then
          n I n+1
   RA(i×8):(i×8)+7 I n

A count of the number of one bits in each byte of regis-
ter RS is placed into the corresponding byte of register
RA. This number ranges from 0 to 8, inclusive.

Special Registers Altered:
None

Population Count Words   X-form

popcntw RA, RS
[Category: Server]
[Category: Embedded.Phased-In]

do i = 0 to 1
   n I 0
   do j = 0 to 31
      if (RS)(i×32)+j = 1 then
          n I n+1
   RA(i×32):(i×32)+31 I n

A count of the number of one bits in each word of regis-
ter RS is placed into the corresponding word of register
RA. This number ranges from 0 to 32, inclusive.

Special Registers Altered:
None

31 RS RA /// 122 /
0 6 11 16 21 31

31 RS RA /// 378 /
0 6 11 16 21 31
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Parity Doubleword  X-form

prtyd RA,RS
[Category: 64-bit]

s I 0
do i = 0 to 7

s I s / (RS)i%8+7
RA I 630 || s

The least significant bit in each byte of the contents of
register RS is examined. If there is an odd number of
one bits the value 1 is placed into register RA; other-
wise the value 0 is placed into register RA.

Special Registers Altered:
None

 

Parity Word X-form

prtyw RA,RS

s I 0
t I 0
do i = 0 to 3

s I s / (RS)i%8+7
do i = 4 to 7

t I t / (RS)i%8+7
RA0:31 I 

310 || s 
RA32:63 I 

310 || t

The least significant bit in each byte of (RS)0:31 is
examined. If there is an odd number of one bits the
value 1 is placed into RA0:31; otherwise the value 0 is
placed into RA0:31. The least significant bit in each byte
of (RS)32:63 is examined. If there is an odd number of
one bits the value 1 is placed into RA32:63; otherwise
the value 0 is placed into RA32:63.

Special Registers Altered:
None

 

31 RS RA /// 186 /
0 6 11 16 21 31

31 RS RA /// 154 /
0 6 11 16 21 31

The Parity instructions are designed to be used in
conjunction with the Population Count instruction to
compute the parity of words or a doubleword. The
parity of the upper and lower words in (RS) can be
computed as follows.

popcntb  RA, RS
prtyw    RA, RA

The parity of (RS) can be computed as follows.
popcntb  RA, RS
prtyd    RA, RA
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3.3.13.1 64-bit Fixed-Point Logical 
Instructions [Category: 64-Bit]

Extend Sign Word   X-form

extsw RA,RS (Rc=0)
extsw. RA,RS (Rc=1)

s I (RS)32
RA32:63 I (RS)32:63
RA0:31 I 

32s

(RS)32:63 are placed into RA32:63. RA0:31 are filled with
a copy of (RS)32.

Special Registers Altered:
CR0 (if Rc=1)

Count Leading Zeros Doubleword  X-form

cntlzd RA,RS (Rc=0)
cntlzd. RA,RS (Rc=1)

n I 0
do while n < 64
  if (RS)n = 1 then leave
  n I n + 1
RA I n

A count of the number of consecutive zero bits starting
at bit 0 of register RS is placed into register RA. This
number ranges from 0 to 64, inclusive.

If Rc=1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CR0 (if Rc=1)

Population Count Doubleword   X-form

popcntd RA, RS
[Category: Server.64-bit]
[Category: Embedded.64-bit.Phased-In]

n I 0
do i = 0 to 63
   if (RS)i = 1 then
   n I n+1
RA I n

A count of the number of one bits in register RS is
placed into register RA. This number ranges from 0 to
64, inclusive.

Special Registers Altered:
None

31 RS RA /// 986 Rc
0 6 11 16 21 31

31 RS RA /// 58 Rc
0 6 11 16 21 31

31 RS RA /// 506 /
0 6 11 16 21 31
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Bit Permute Doubleword X-form

bpermd RA,RS,RB
[Category: Embedded.Phased-in, Server]

For i = 0 to 7 
   index I (RS)8*i:8*i+7
   If index < 64
      then permi I (RB)index
      else permi I 0
RA I 560 || perm0:7

Eight permuted bits are produced. For each permuted
bit i where i ranges from 0 to 7 and for each byte i of
RS, do the following.

If byte i of RS is less than 64, permuted bit i is set
to the bit of RB specified by byte i of RS; otherwise
permuted bit i is set to 0.

The permuted bits are placed in the least-significant
byte of RA, and the remaining bits are filled with 0s.

Special Registers Altered:
None

  

31 RS RA RB 252 /
0 6 11 16 21 31

The fact that the permuted bit is 0 if the corre-
sponding index value exceeds 63 permits the per-
muted bits to be selected from a 128-bit quantity,
using a single index register. For example, assume
that the 128-bit quantity Q, from which the per-
muted bits are to be selected, is in registers r2
(high-order 64 bits of Q) and r3 (low-order 64 bits of
Q), that the index values are in register r1, with
each byte of r1 containing a value in the range
0:127, and that each byte of register r4 contains the
value 64. The following code sequence selects
eight permuted bits from Q and places them into
the low-order byte of r6.
bpermd r6,r1,r2 # select from high-

  order half of Q
xor r0,r1,r4 # adjust index values
bpermd r5,r0,r3 # select from low-

  order half of Q
or r6,r6,r5 # merge the two

  selections
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3.3.14 Fixed-Point Rotate and Shift Instructions
The Fixed-Point Facility performs rotation operations on
data from a GPR and returns the result, or a portion of
the result, to a GPR.

The rotation operations rotate a 64-bit quantity left by a
specified number of bit positions. Bits that exit from
position 0 enter at position 63.

Two types of rotation operation are supported.

For the first type, denoted rotate64 or ROTL64, the value
rotated is the given 64-bit value. The rotate64 operation
is used to rotate a given 64-bit quantity.

For the second type, denoted rotate32 or ROTL32, the
value rotated consists of two copies of bits 32:63 of the
given 64-bit value, one copy in bits 0:31 and the other in
bits 32:63. The rotate32 operation is used to rotate a
given 32-bit quantity.

The Rotate and Shift instructions employ a mask gen-
erator. The mask is 64 bits long, and consists of 1-bits
from a start bit, mstart, through and including a stop bit,
mstop, and 0-bits elsewhere. The values of mstart and
mstop range from 0 to 63. If mstart > mstop, the 1-bits
wrap around from position 63 to position 0. Thus the
mask is formed as follows:

      if mstart ≤ mstop then
         maskmstart:mstop = ones
         maskall other bits = zeros
      else
         maskmstart:63 = ones
         mask0:mstop = ones
         maskall other bits = zeros

There is no way to specify an all-zero mask.

For instructions that use the rotate32 operation, the
mask start and stop positions are always in the
low-order 32 bits of the mask.

The use of the mask is described in following sections.

The Rotate and Shift instructions with Rc=1 set the first
three bits of CR field 0 as described in Section 3.3.8,
“Other Fixed-Point Instructions” on page 66. Rotate and
Shift instructions do not change the OV and SO bits.
Rotate and Shift instructions, except algebraic right
shifts, do not change the CA bit.

Extended mnemonics for rotates and 
shifts
The Rotate and Shift instructions, while powerful, can
be complicated to code (they have up to five operands).
A set of extended mnemonics is provided that allow
simpler coding of often-used functions such as clearing
the leftmost or rightmost bits of a register, left justifying
or right justifying an arbitrary field, and performing sim-
ple rotates and shifts. Some of these are shown as
examples with the Rotate instructions. See Appendix E,
“Assembler Extended Mnemonics” on page 709 for
additional extended mnemonics.

3.3.14.1 Fixed-Point Rotate Instructions

These instructions rotate the contents of a register. The
result of the rotation is

inserted into the target register under control of a
mask (if a mask bit is 1 the associated bit of the
rotated data is placed into the target register, and if
the mask bit is 0 the associated bit in the target
register remains unchanged); or

ANDed with a mask before being placed into the
target register.

The Rotate Left instructions allow right-rotation of the
contents of a register to be performed (in concept) by a
left-rotation of 64-n, where n is the number of bits by
which to rotate right. They allow right-rotation of the
contents of the low-order 32 bits of a register to be per-
formed (in concept) by a left-rotation of 32-n, where n
is the number of bits by which to rotate right.

Rotate Left Word Immediate then AND 
with Mask  M-form

rlwinm RA,RS,SH,MB,ME (Rc=0)
rlwinm. RA,RS,SH,MB,ME (Rc=1)

n I SH
r I ROTL32((RS)32:63, n)
m I MASK(MB+32, ME+32)
RA I r & m

The contents of register RS are rotated32 left SH bits. A
mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere. The rotated
data are ANDed with the generated mask and the
result is placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

21 RS RA SH MB ME Rc
0 6 11 16 21 26 31
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Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Word
Immediate then AND with Mask:

  

Rotate Left Word then AND with Mask  
M-form

rlwnm RA,RS,RB,MB,ME (Rc=0)
rlwnm. RA,RS,RB,MB,ME (Rc=1)

n I (RB)59:63
r I ROTL32((RS)32:63, n)
m I MASK(MB+32, ME+32)
RA I r & m

The contents of register RS are rotated32 left the num-
ber of bits specified by (RB)59:63. A mask is generated
having 1-bits from bit MB+32 through bit ME+32 and
0-bits elsewhere. The rotated data are ANDed with the
generated mask and the result is placed into register
RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
then AND with Mask:

  

Extended: Equivalent to:
extlwi Rx,Ry,n,b rlwinm Rx,Ry,b,0,n-1
srwi Rx,Ry,n rlwinm Rx,Ry,32-n,n,31
clrrwi Rx,Ry,n rlwinm Rx,Ry,0,0,31-n

Let RSL represent the low-order 32 bits of register
RS, with the bits numbered from 0 through 31.

rlwinm can be used to extract an n-bit field that
starts at bit position b in RSL, right-justified into the
low-order 32 bits of register RA (clearing the
remaining 32-n bits of the low-order 32 bits of RA),
by setting SH=b+n, MB=32-n, and ME=31. It can
be used to extract an n-bit field that starts at bit
position b in RSL, left-justified into the low-order 32
bits of register RA (clearing the remaining 32-n bits
of the low-order 32 bits of RA), by setting SH=b,
MB = 0, and ME=n-1. It can be used to rotate the
contents of the low-order 32 bits of a register left
(right) by n bits, by setting SH=n (32-n), MB=0, and
ME=31. It can be used to shift the contents of the
low-order 32 bits of a register right by n bits, by set-
ting SH=32-n, MB=n, and ME=31. It can be used
to clear the high-order b bits of the low-order 32 bits
of the contents of a register and then shift the result
left by n bits, by setting SH=n, MB=b-n, and
ME=31-n. It can be used to clear the low-order n
bits of the low-order 32 bits of a register, by setting
SH=0, MB=0, and ME=31-n.

For all the uses given above, the high-order 32 bits
of register RA are cleared.

Extended mnemonics are provided for all of these
uses; see Appendix E, “Assembler Extended Mne-
monics” on page 709.

Programming Note

23 RS RA RB MB ME Rc
0 6 11 16 21 26 31

Extended: Equivalent to:
rotlw Rx,Ry,Rz rlwnm Rx,Ry,Rz,0,31

Let RSL represent the low-order 32 bits of register
RS, with the bits numbered from 0 through 31.

rlwnm can be used to extract an n-bit field that
starts at variable bit position b in RSL, right-justified
into the low-order 32 bits of register RA (clearing
the remaining 32-n bits of the low-order 32 bits of
RA), by setting RB59:63=b+n, MB=32-n, and
ME=31. It can be used to extract an n-bit field that
starts at variable bit position b in RSL, left-justified
into the low-order 32 bits of register RA (clearing
the remaining 32-n bits of the low-order 32 bits of
RA), by setting RB59:63=b, MB = 0, and ME=n-1. It
can be used to rotate the contents of the low-order
32 bits of a register left (right) by variable n bits, by
setting RB59:63=n (32-n), MB=0, and ME=31.

For all the uses given above, the high-order 32 bits
of register RA are cleared.

Extended mnemonics are provided for some of
these uses; see Appendix E, “Assembler Extended
Mnemonics” on page 709.

Programming Note
Chapter 3. Fixed-Point Facility 93



Version 2.07 B
Rotate Left Word Immediate then Mask 
Insert  M-form

rlwimi RA,RS,SH,MB,ME (Rc=0)
rlwimi. RA,RS,SH,MB,ME (Rc=1)

n I SH
r I ROTL32((RS)32:63, n)
m I MASK(MB+32, ME+32)
RA I r&m | (RA)&¬m
The contents of register RS are rotated32 left SH bits. A
mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere. The rotated
data are inserted into register RA under control of the
generated mask.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
Immediate then Mask Insert:

  

20 RS RA SH MB ME Rc
0 6 11 16 21 26 31

Extended: Equivalent to:
inslwi Rx,Ry,n,b rlwimi Rx,Ry,32-b,b,b+n-1

Let RAL represent the low-order 32 bits of register
RA, with the bits numbered from 0 through 31.

rlwimi can be used to insert an n-bit field that is
left-justified in the low-order 32 bits of register RS,
into RAL starting at bit position b, by setting
SH=32-b, MB=b, and ME=(b+n)-1. It can be used
to insert an n-bit field that is right-justified in the
low-order 32 bits of register RS, into RAL starting at
bit position b, by setting SH=32-(b+n), MB=b, and
ME=(b+n)-1.

Extended mnemonics are provided for both of
these uses; see Appendix E, “Assembler Extended
Mnemonics” on page 709.
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3.3.14.1.1 64-bit Fixed-Point Rotate Instructions [Category: 64-Bit]

Rotate Left Doubleword Immediate then 
Clear Left  MD-form

rldicl RA,RS,SH,MB (Rc=0)
rldicl. RA,RS,SH,MB (Rc=1)

n I sh5 || sh0:4
r I ROTL64((RS), n)
b I mb5 || mb0:4
m I MASK(b, 63)
RA I r & m

The contents of register RS are rotated64 left SH bits. A
mask is generated having 1-bits from bit MB through bit
63 and 0-bits elsewhere. The rotated data are ANDed
with the generated mask and the result is placed into
register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear Left:

  

Rotate Left Doubleword Immediate then 
Clear Right  MD-form

rldicr RA,RS,SH,ME (Rc=0)
rldicr. RA,RS,SH,ME (Rc=1)

n I sh5 || sh0:4
r I ROTL64((RS), n)
e I me5 || me0:4
m I MASK(0, e)
RA I r & m

The contents of register RS are rotated64 left SH bits. A
mask is generated having 1-bits from bit 0 through bit
ME and 0-bits elsewhere. The rotated data are ANDed
with the generated mask and the result is placed into
register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear Right:

  

30 RS RA sh mb 0 sh Rc
0 6 11 16 21 27 30 31

Extended: Equivalent to:
extrdi Rx,Ry,n,b rldicl Rx,Ry,b+n,64-n
srdi Rx,Ry,n rldicl Rx,Ry,64-n,n
clrldi Rx,Ry,n rldicl Rx,Ry,0,n

rldicl can be used to extract an n-bit field that starts
at bit position b in register RS, right-justified into
register RA (clearing the remaining 64-n bits of
RA), by setting SH=b+n and MB=64-n. It can be
used to rotate the contents of a register left (right)
by n bits, by setting SH=n (64-n) and MB=0. It can
be used to shift the contents of a register right by n
bits, by setting SH=64-n and MB=n. It can be used
to clear the high-order n bits of a register, by setting
SH=0 and MB=n.

Extended mnemonics are provided for all of these
uses; see Appendix E, “Assembler Extended Mne-
monics” on page 709.

Programming Note

30 RS RA sh me 1 sh Rc
0 6 11 16 21 27 30 31

Extended: Equivalent to:
extldi Rx,Ry,n,b rldicr Rx,Ry,b,n-1
sldi Rx,Ry,n rldicr Rx,Ry,n,63-n
clrrdi Rx,Ry,n rldicr Rx,Ry,0,63-n

rldicr can be used to extract an n-bit field that
starts at bit position b in register RS, left-justified
into register RA (clearing the remaining 64-n bits
of RA), by setting SH=b and ME=n-1. It can be
used to rotate the contents of a register left (right)
by n bits, by setting SH=n (64-n) and ME=63. It
can be used to shift the contents of a register left by
n bits, by setting SH=n and ME=63-n. It can be
used to clear the low-order n bits of a register, by
setting SH=0 and ME=63-n.

Extended mnemonics are provided for all of these
uses (some devolve to rldicl); see Appendix E,
“Assembler Extended Mnemonics” on page 709.
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Rotate Left Doubleword Immediate then 
Clear  MD-form

rldic RA,RS,SH,MB (Rc=0)
rldic. RA,RS,SH,MB (Rc=1)

n I sh5 || sh0:4
r I ROTL64((RS), n)
b I mb5 || mb0:4
m I MASK(b, ¬n)
RA I r & m

The contents of register RS are rotated64 left SH bits. A
mask is generated having 1-bits from bit MB through bit
63-SH and 0-bits elsewhere. The rotated data are
ANDed with the generated mask and the result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear:

  

Rotate Left Doubleword then Clear Left 
 MDS-form

rldcl RA,RS,RB,MB (Rc=0)
rldcl. RA,RS,RB,MB (Rc=1)

n I (RB)58:63
r I ROTL64((RS), n)
b I mb5 || mb0:4
m I MASK(b, 63)
RA I r & m

The contents of register RS are rotated64 left the num-
ber of bits specified by (RB)58:63. A mask is generated
having 1-bits from bit MB through bit 63 and 0-bits else-
where. The rotated data are ANDed with the generated
mask and the result is placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword then Clear Left:

  

30 RS RA sh mb 2 sh Rc
0 6 11 16 21 27 30 31

Extended: Equivalent to:
clrlsldi Rx,Ry,b,n rldic Rx,Ry,n,b-n

rldic can be used to clear the high-order b bits of
the contents of a register and then shift the result
left by n bits, by setting SH=n and MB=b-n. It can
be used to clear the high-order n bits of a register,
by setting SH=0 and MB=n.

Extended mnemonics are provided for both of
these uses (the second devolves to rldicl); see
Appendix E, “Assembler Extended Mnemonics” on
page 709.

Programming Note

30 RS RA RB mb 8 Rc
0 6 11 16 21 27 31

Extended: Equivalent to:
rotld Rx,Ry,Rz rldcl Rx,Ry,Rz,0

rldcl can be used to extract an n-bit field that starts
at variable bit position b in register RS, right-justi-
fied into register RA (clearing the remaining 64-n
bits of RA), by setting RB58:63=b+n and MB=64-n.
It can be used to rotate the contents of a register
left (right) by variable n bits, by setting RB58:63=n
(64-n) and MB=0.

Extended mnemonics are provided for some of
these uses; see Appendix E, “Assembler Extended
Mnemonics” on page 709.

Programming Note
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Rotate Left Doubleword then Clear Right 
 MDS-form

rldcr RA,RS,RB,ME (Rc=0)
rldcr. RA,RS,RB,ME (Rc=1)

n I (RB)58:63
r I ROTL64((RS), n)
e I me5 || me0:4
m I MASK(0, e)
RA I r & m

The contents of register RS are rotated64 left the num-
ber of bits specified by (RB)58:63. A mask is generated
having 1-bits from bit 0 through bit ME and 0-bits else-
where. The rotated data are ANDed with the generated
mask and the result is placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

  

Rotate Left Doubleword Immediate then 
Mask Insert  MD-form

rldimi RA,RS,SH,MB (Rc=0)
rldimi. RA,RS,SH,MB (Rc=1)

n I sh5 || sh0:4
r I ROTL64((RS), n)
b I mb5 || mb0:4
m I MASK(b, ¬n)
RA I r&m | (RA)&¬m
The contents of register RS are rotated64 left SH bits. A
mask is generated having 1-bits from bit MB through bit
63-SH and 0-bits elsewhere. The rotated data are
inserted into register RA under control of the generated
mask.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword Immediate then Mask Insert:

  

30 RS RA RB me 9 Rc
0 6 11 16 21 27 31

rldcr can be used to extract an n-bit field that starts
at variable bit position b in register RS, left-justified
into register RA (clearing the remaining 64-n bits
of RA), by setting RB58:63=b and ME=n-1. It can
be used to rotate the contents of a register left
(right) by variable n bits, by setting RB58:63=n
(64-n) and ME=63.

Extended mnemonics are provided for some of
these uses (some devolve to rldcl); see
Appendix E, “Assembler Extended Mnemonics” on
page 709.

Programming Note

30 RS RA sh mb 3 sh Rc
0 6 11 16 21 27 30 31

Extended: Equivalent to:
insrdi Rx,Ry,n,b rldimi Rx,Ry,64-(b+n),b

rldimi can be used to insert an n-bit field that is
right-justified in register RS, into register RA start-
ing at bit position b, by setting SH=64-(b+n) and
MB=b.

An extended mnemonic is provided for this use;
see Appendix E, “Assembler Extended Mnemon-
ics” on page 709.
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3.3.14.2 Fixed-Point Shift Instructions

The instructions in this section perform left and right
shifts.

Extended mnemonics for shifts
Immediate-form logical (unsigned) shift operations are
obtained by specifying appropriate masks and shift val-
ues for certain Rotate instructions. A set of extended
mnemonics is provided to make coding of such shifts
simpler and easier to understand. Some of these are
shown as examples with the Rotate instructions. See
Appendix E, “Assembler Extended Mnemonics” on
page 709 for additional extended mnemonics.

  

  

Shift Left Word  X-form

slw RA,RS,RB (Rc=0)
slw. RA,RS,RB  (Rc=1)

n I (RB)59:63
r I ROTL32((RS)32:63, n)
if (RB)58 = 0 then
     m I MASK(32, 63-n)
else m I 640
RA I r & m

The contents of the low-order 32 bits of register RS are
shifted left the number of bits specified by (RB)58:63.
Bits shifted out of position 32 are lost. Zeros are sup-
plied to the vacated positions on the right. The 32-bit
result is placed into RA32:63. RA0:31 are set to zero.
Shift amounts from 32 to 63 give a zero result.

Special Registers Altered:
CR0 (if Rc=1)

Shift Right Word  X-form

srw RA,RS,RB (Rc=0)
srw. RA,RS,RB (Rc=1)

n I (RB)59:63
r I ROTL32((RS)32:63, 64-n)
if (RB)58 = 0 then
    m I MASK(n+32, 63)
else m I 640
RA I r & m

The contents of the low-order 32 bits of register RS are
shifted right the number of bits specified by (RB)58:63.
Bits shifted out of position 63 are lost. Zeros are sup-
plied to the vacated positions on the left. The 32-bit
result is placed into RA32:63. RA0:31 are set to zero.
Shift amounts from 32 to 63 give a zero result.

Special Registers Altered:
CR0 (if Rc=1)

Any Shift Right Algebraic instruction, followed by
addze, can be used to divide quickly by 2n. The
setting of the CA bit by the Shift Right Algebraic
instructions is independent of mode.

Multiple-precision shifts can be programmed as
shown in Section F.1, “Multiple-Precision Shifts” on
page 723.

Programming Note

Programming Note

31 RS RA RB 24 Rc
0 6 11 16 21 31

31 RS RA RB 536 Rc
0 6 11 16 21 31
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Shift Right Algebraic Word Immediate 
 X-form

srawi RA,RS,SH (Rc=0)
srawi. RA,RS,SH (Rc=1) 

n I SH
r I ROTL32((RS)32:63, 64-n)
m I MASK(n+32, 63)
s I (RS)32
RA I r&m | (64s)&¬m
CA I s & ((r&¬m)32:63≠0)

The contents of the low-order 32 bits of register RS are
shifted right SH bits. Bits shifted out of position 63 are
lost. Bit 32 of RS is replicated to fill the vacated posi-
tions on the left. The 32-bit result is placed into RA32:63.
Bit 32 of RS is replicated to fill RA0:31. CA is set to 1 if
the low-order 32 bits of (RS) contain a negative number
and any 1-bits are shifted out of position 63; otherwise
CA is set to 0. A shift amount of zero causes RA to
receive EXTS((RS)32:63), and CA to be set to 0.

Special Registers Altered:
CA
CR0 (if Rc=1)

Shift Right Algebraic Word  X-form

sraw RA,RS,RB (Rc=0)
sraw.  RA,RS,RB (Rc=1) 

n I (RB)59:63
r I ROTL32((RS)32:63, 64-n)
if (RB)58 = 0 then
    m I MASK(n+32, 63)
else m I 640
s I (RS)32
RA I r&m | (64s)&¬m
CA I s & ((r&¬m)32:63≠0)

The contents of the low-order 32 bits of register RS are
shifted right the number of bits specified by (RB)58:63.
Bits shifted out of position 63 are lost. Bit 32 of RS is
replicated to fill the vacated positions on the left. The
32-bit result is placed into RA32:63. Bit 32 of RS is repli-
cated to fill RA0:31. CA is set to 1 if the low-order 32 bits
of (RS) contain a negative number and any 1-bits are
shifted out of position 63; otherwise CA is set to 0. A
shift amount of zero causes RA to receive
EXTS((RS)32:63), and CA to be set to 0. Shift amounts
from 32 to 63 give a result of 64 sign bits, and cause
CA to receive the sign bit of (RS)32:63.

Special Registers Altered:
CA
CR0 (if Rc=1)

31 RS RA SH 824 Rc
0 6 11 16 21 31

31 RS RA RB 792 Rc
0 6 11 16  21 31
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3.3.14.2.1 64-bit Fixed-Point Shift Instructions 
[Category: 64-Bit]

Shift Left Doubleword  X-form

sld RA,RS,RB (Rc=0)
sld. RA,RS,RB (Rc=1)

n I (RB)58:63
r I ROTL64((RS), n)
if (RB)57 = 0 then
     m I MASK(0, 63-n)
else m I 640
RA I r & m

The contents of register RS are shifted left the number
of bits specified by (RB)57:63. Bits shifted out of position
0 are lost. Zeros are supplied to the vacated positions
on the right. The result is placed into register RA. Shift
amounts from 64 to 127 give a zero result.

Special Registers Altered:
CR0 (if Rc=1)

Shift Right Doubleword  X-form

srd RA,RS,RB (Rc=0)
srd. RA,RS,RB (Rc=1)

n I (RB)58:63
r I ROTL64((RS), 64-n)
if (RB)57 = 0 then
    m I MASK(n, 63)
else m I 640
RA I r & m

The contents of register RS are shifted right the num-
ber of bits specified by (RB)57:63. Bits shifted out of
position 63 are lost. Zeros are supplied to the vacated
positions on the left. The result is placed into register
RA. Shift amounts from 64 to 127 give a zero result.

Special Registers Altered:
CR0 (if Rc=1)

31 RS RA RB 27 Rc
0 6 11 16 21 31

31 RS RA RB 539 Rc
0 6 11 16 21 31
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Shift Right Algebraic Doubleword 
Immediate XS-form

sradi RA,RS,SH (Rc=0)
sradi. RA,RS,SH (Rc=1)

n I sh5 || sh0:4
r I ROTL64((RS), 64-n)
m I MASK(n, 63)
s I (RS)0
RA I r&m | (64s)&¬m
CA I s & ((r&¬m)≠0)

The contents of register RS are shifted right SH bits.
Bits shifted out of position 63 are lost. Bit 0 of RS is rep-
licated to fill the vacated positions on the left. The result
is placed into register RA. CA is set to 1 if (RS) is nega-
tive and any 1-bits are shifted out of position 63; other-
wise CA is set to 0. A shift amount of zero causes RA to
be set equal to (RS), and CA to be set to 0.

Special Registers Altered:
CA
CR0 (if Rc=1)

Shift Right Algebraic Doubleword  X-form

srad RA,RS,RB (Rc=0)
srad. RA,RS,RB (Rc=1)

n I (RB)58:63
r I ROTL64((RS), 64-n)
if (RB)57 = 0 then
    m I MASK(n, 63)
else m I 640
s I (RS)0
RA I r&m | (64s)&¬m
CA I s & ((r&¬m)≠0)

The contents of register RS are shifted right the num-
ber of bits specified by (RB)57:63. Bits shifted out of
position 63 are lost. Bit 0 of RS is replicated to fill the
vacated positions on the left. The result is placed into
register RA. CA is set to 1 if (RS) is negative and any
1-bits are shifted out of position 63; otherwise CA is set
to 0. A shift amount of zero causes RA to be set equal
to (RS), and CA to be set to 0. Shift amounts from 64 to
127 give a result of 64 sign bits in RA, and cause CA to
receive the sign bit of (RS).

Special Registers Altered:
CA
CR0 (if Rc=1)

31 RS RA sh 413 sh Rc
0 6 11 16 21 30 31

31 RS RA RB 794 Rc
0 6 11 16 21 31
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3.3.15 Binary Coded Decimal (BCD) Assist Instructions [Category: Embed-
ded.Phased-in, Server]
The Binary Coded Decimal Assist instructions operate
on Binary Coded Decimal operands (cbcdtd and

addg6s) and Decimal Floating-Point operands (cdt-
bcd) See Chapter 5. for additional information.

Convert Declets To Binary Coded Decimal  
X-form

cdtbcd RA, RS

do i = 0 to 1
  n I i x 32
  RAn+0:n+7 I 0 
  RAn+8:n+19 I DPD_TO_BCD( (RS)n+12:n+21 ) 
  RAn+20:n+31 I DPD_TO_BCD( (RS)n+22:n+31 )

The low-order 20 bits of each word of register RS con-
tain two declets which are converted to six, 4-bit BCD
fields; each set of six, 4-bit BCD fields is placed into the
low-order 24 bits of the corresponding word in RA. The
high-order 8 bits in each word of RA are set to 0.

Special Registers Altered:
None

Convert Binary Coded Decimal To Declets  
X-form

cbcdtd RA, RS

do i = 0 to 1
  n I i x 32
  RAn+0:n+11 I 0 
  RAn+12:n+21 I BCD_TO_DPD( (RS)n+8:n+19 ) 
  RAn+22:n+31 I BCD_TO_DPD( (RS)n+20:n+31 )

The low-order 24 bits of each word of register RS con-
tain six, 4-bit BCD fields which are converted to two
declets; each set of two declets is placed into the
low-order 20 bits of the corresponding word in RA. The
high-order 12 bits in each word of RA are set to 0.

If a 4-bit BCD field has a value greater than 9 the
results are undefined.

Special Registers Altered:
None

Add and Generate Sixes XO-form

addg6s RT,RA,RB

do i = 0 to 15
dci I carry_out(RA4xi:63 + RB4xi:63)

c I 4(dc0) || 
4(dc1) || ... || 

4(dc15)
RT I (¬c) & 0x6666_6666_6666_6666
The contents of register RA are added to the contents
of register RB. Sixteen carry bits are produced, one
for each carry out of decimal position n (bit posi-
tion 4xn).

A doubleword is composed from the 16 carry bits, and
placed into RT. The doubleword consists of a decimal
six (0b0110) in every decimal digit position for which
the corresponding carry bit is 0, and a zero (0b0000) in
every position for which the corresponding carry bit is
1.

Special Registers Altered:
None

31 RS RA / / / 282 /
0 6 11 16 21 31

31 RS RA / / / 314 /
0 6 11 16 21 31

31 RT RA RB / 74 /
0 6 11 16 21 22 31
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addg6s can be used to add or subtract two BCD
operands. In these examples it is assumed that r0
contains 0x666...666. (BCD data formats are
described in Section 5.3.)

Addition of the unsigned BCD operand in register
RA to the unsigned BCD operand in register RB
can be accomplished as follows.

add r1,RA,r0
add r2,r1,RB
addg6s RT,r1,RB
subf RT,RT,r2# RT = RA +BCD RB

Subtraction of the unsigned BCD operand in regis-
ter RA from the unsigned BCD operand in register
RB can be accomplished as follows. (In this exam-
ple it is assumed that RB is not register 0.)

addi r1,RB,1
nor r2,RA,RA# one's complement of RA
add r3,r1,r2
addg6s RT,r1,r2
subf RT,RT,r3# RT = RB -BCD RA 

Additional instructions are needed to handle signed
BCD operands, and BCD operands that occupy
more than one register (e.g., unsigned BCD oper-
ands that have more than 16 decimal digits).

Programming Note
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3.3.16 Move To/From Vector-Scalar Register Instructions

Move From VSR Doubleword XX1-form
[Category: Vector-Scalar]

mfvsrd RA,XS

XS ← SX || S

if SX=0 & MSR.FP=0 then FP_Unavailable()
if SX=1 & MSR.VEC=0 then Vector_Unavailable()

GPR[RA] ← VSR[XS].doubleword[0]

Let XS be the value SX concatenated with S.

The contents of doubleword element 0 of VSR[XS] are
placed into GPR[RA].

For SX=0, mfvsrd is treated as a Floating-Point
instruction in terms of resource availability.

For SX=1, mfvsrd is treated as a Vector instruction in
terms of resource availability.

Special Registers Altered
None

Move From VSR Word and Zero XX1-form
[Category: Vector-Scalar]

mfvsrwz RA,XS (0x7C00_00E6)

XS ← SX || S

if SX=0 & MSR.FP=0 then FP_Unavailable()
if SX=1 & MSR.VEC=0 then Vector_Unavailable()

GPR[RA] ← EXTZ(VSR[XS].word[1])

Let XS be the value SX concatenated with S.

The contents of word element 1 of VSR[XS] are placed
into bits 32:63 of GPR[RA]. The contents of bits 0:31 of
GPR[RA] are set to 0.

For SX=0, mfvsrwz is treated as a Floating-Point
instruction in terms of resource availability.

For SX=1, mfvsrwz is treated as a Vector instruction in
terms of resource availability.

Special Registers Altered
None

31 S RA /// 51 SX
0 6 11 16 21 31

Extended Mnemonics Equivalent To
mffprd RA,FRS mfvsrd RA,FRS
mfvrd RA,VRS mfvsrd RA,VRS+32

Data Layout for mfvsrd

src = VSR[XS]

unused

tgt = GPR[RA]

0 64 127

31 S RA /// 115 SX
0 6 11 16 21 31

Extended Mnemonics Equivalent To
mffprwz RA,FRS mfvsrwz RA,FRS
mfvrwz RA,VRS mfvsrwz RA,VRS+32

Data Layout for mfvsrwz

src = VSR[XS]

unused unused

tgt = GPR[RA]

0 32 64 127
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Move To VSR Doubleword XX1-form
[Category: Vector-Scalar]

mtvsrd XT,RA

XT ← TX || T
if TX=0 & MSR.FP=0 then FP_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

VSR[XT].doubleword[0] ← GPR[RA]
VSR[XT].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.

The contents of GPR[RA] are placed into doubleword
element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
undefined.

For TX=0, mtvsrd is treated as a Floating-Point
instruction in terms of resource availability.

For TX=1, mtvsrd is treated as a Vector instruction in
terms of resource availability.

Special Registers Altered
None

Move To VSR Word Algebraic XX1-form
[Category: Vector-Scalar]

mtvsrwa XT,RA

XT ← TX || T
if TX=0 & MSR.FP=0 then FP_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

VSR[XT].doubleword[0] ← EXTS(GPR[RA].bit[32:63])
VSR[XT].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.

The two’s-complement integer in bits 32:63 of GPR[RA]
is sign-extended to 64 bits and placed into doubleword
element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
undefined.

For TX=0, mtvsrwa is treated as a Floating-Point
instruction in terms of resource availability.

For TX=1, mtvsrwa is treated as a Vector instruction in
terms of resource availability.

Special Registers Altered
None

31 T RA /// 179 TX
0 6 11 16 21 31

Extended Mnemonics Equivalent To
mtfprd FRT,RA mtvsrd FRT,RA
mtvrd VRT,RA mtvsrd VRT+32,RA

Data Layout for mtvsrd

src = GPR[RA]

tgt = VSR[XT]

undefined
0 64 127

31 T RA /// 211 TX
0 6 11 16 21 31

Extended Mnemonics Equivalent To
mtfprwa FRT,RA mtvsrwa FRT,RA
mtvrwa VRT,RA mtvsrwa VRT+32,RA

Data Layout for mtvsrwa

src = GPR[RA]

undefined

tgt = VSR[XT]

undefined
0 32 64 127
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Move To VSR Word and Zero XX1-form
[Category: Vector-Scalar]

mtvsrwz XT,RA

XT ← TX || T
if TX=0 & MSR.FP=0 then FP_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

VSR[XT].doubleword[0] ← EXTZ(GPR[RA].word[1])
VSR[XT].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.

The contents of bits 32:63 of GPR[RA] are placed into
word element 1 of VSR[XT]. The contents of word
element 0 of VSR[XT] are set to 0.

The contents of doubleword element 1 of VSR[XT] are
undefined.

For TX=0, mtvsrwz is treated as a Floating-Point
instruction in terms of resource availability.

For TX=1, mtvsrwz is treated as a Vector instruction in
terms of resource availability.

Special Registers Altered
None

31 T RA /// 243 TX
0 6 11 16 21 31

Extended Mnemonics Equivalent To
mtfprwz FRT,RA mtvsrwz FRT,RA
mtvrwz VRT,RA mtvsrwz VRT+32,RA

Data Layout for mtvsrwz

src = GPR[RA]

unused

tgt = VSR[XT]

undefined
0 32 64 127
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3.3.17 Move To/From System Register Instructions
The Move To Condition Register Fields instruction has
a preferred form; see Section 1.8.1, “Preferred Instruc-
tion Forms” on page 22. In the preferred form, the FXM
field satisfies the following rule.

Exactly one bit of the FXM field is set to 1.

Extended mnemonics
Extended mnemonics are provided for the mtspr and
mfspr instructions so that they can be coded with the

SPR name as part of the mnemonic rather than as a
numeric operand. An extended mnemonic is provided
for the mtcrf instruction for compatibility with old soft-
ware (written for a version of the architecture that pre-
cedes Version 2.00) that uses it to set the entire
Condition Register. Some of these extended mnemon-
ics are shown as examples with the relevant instruc-
tions. See Appendix E, “Assembler Extended
Mnemonics” on page 709 for additional extended mne-
monics.

Move To Special Purpose Register 
 XFX-form

mtspr SPR,RS

n I spr5:9 || spr0:4
switch (n)
  case(13): see Book III-S
  case(808, 809, 810, 811):
  default:
    if length(SPR(n)) = 64 then
      SPR(n) I (RS)
    else
      SPR(n) I (RS)32:63

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. If the SPR field
contains a value from 808 through 811, the instruction
specifies a reserved SPR, and is treated as a no-op;
see Section 1.3.3, “Reserved Fields, Reserved Values,
and Reserved SPRs”.  Otherwise, unless the SPR field
contains 13 (denoting the AMR<S>), the contents of
register RS are placed into the designated Special Pur-
pose Register. For Special Purpose Registers that are
32 bits long, the low-order 32 bits of RS are placed into
the SPR. 

The AMR (Authority Mask Register) is used for “storage
protection” in the Server environment. This use, and

operation of mtspr for the AMR, are described in Book
III-S.

31 RS spr 467 /
0 6 11 21 31

decimal
SPR1 Register

Name      spr5:9  spr0:4
1 00000 00001 XER
3 00000 00011 DSCR5

8 00000 01000 LR
9 00000 01001 CTR

13 00000 01101 AMR3

128 00100 00000 TFHAR4

129 00100 00001 TFIAR4

130 00100 00010 TEXASR4

131 00100 00011 TEXASRU4

256 01000 00000 VRSAVE
512 10000 00000 SPEFSCR2

769 11000 00001   MMCR28

770 11000 00010   MMCRA8

771 11000 00011   PMC18

772 11000 00100   PMC28

773 11000 00101   PMC38

774 11000 00110   PMC48

775 11000 00111   PMC58

776 11000 01000   PMC68

779 11000 01011   MMCR08

800 11001 00000   BESCRS7

801 11001 00001   BESCRSU7

802 11001 00010   BESCRR7

803 11001 00011   BESCRRU7

804 11001 00100   EBBHR7

805 11001 00101   EBBRR7

806 11001 00110   BESCR7

808 11001 01000 reserved6

1 Note that the order of the two 5-bit  halves 
of the SPR number is reversed.

2 Category: SPE.
3 Category: Server; see Book III-S.
4 Category: Transactional Memory. See 

Chapter 5 of Book II.
5 Category: Stream.
6 Accesses to these registers are noops;  

see  Section 1.3.3, “Reserved Fields, 
Reserved Values, and Reserved SPRs”

7 Category: Server; see Book II.
8 Category: Server; see Section 9.4.4 for 

information about writing this register.
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If execution of this instruction is attempted specifying
an SPR number that is not shown above, or an SPR
number that is shown above but is in a category that is
not supported by the implementation, one of the follow-
ing occurs.

If spr0 = 0, the illegal instruction error handler is
invoked.
If spr0 = 1, the system privileged instruction error
handler is invoked.

If an attempt is made to execute mtspr specifying a TM
SPR in other than Non-transactional state, with the
exception of TFAR in suspended state, a TM Bad Thing
type Program interrupt is generated.

A complete description of this instruction can be found
in Book III.

Special Registers Altered:
See above

Extended Mnemonics:

Examples of extended mnemonics for Move To Special
Purpose Register:

     

  

809 11001 01001 reserved6

810 11001 01010 reserved6

811 11001 01011 reserved6

815 11001 01111   TAR3

896 11100 00000 PPR7

898 11100 00010 PPR32

Extended: Equivalent to:
mtxer Rx mtspr 1,Rx
mtlr Rx mtspr 8,Rx
mtctr Rx mtspr 9,Rx
mtppr Rx mtspr 896,Rx
mtppr32 Rx mtspr 898,Rx

The AMR is part of the “context” of the program
(see Book III-S). Therefore modification of the AMR
requires “synchronization” by software. For this rea-
son, most operating systems provide a system
library program that application programs can use
to modify the AMR.

decimal
SPR1 Register

Name      spr5:9  spr0:4

1 Note that the order of the two 5-bit  halves 
of the SPR number is reversed.

2 Category: SPE.
3 Category: Server; see Book III-S.
4 Category: Transactional Memory. See 

Chapter 5 of Book II.
5 Category: Stream.
6 Accesses to these registers are noops;  

see  Section 1.3.3, “Reserved Fields, 
Reserved Values, and Reserved SPRs”

7 Category: Server; see Book II.
8 Category: Server; see Section 9.4.4 for 

information about writing this register.

Programming Note

For the mtspr and mfspr instructions, the SPR
number coded in Assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit
halves that are reversed in the instruction, with the
high-order 5 bits appearing in bits 16:20 of the
instruction and the low-order 5 bits in bits 11:15. 

Compiler and Assembler Note
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Move From Special Purpose Register 
XFX-form

mfspr RT,SPR

n I spr5:9 || spr0:4
switch (n)
  case(129): see Book III-S
  case(808, 809, 810, 811):
  default:
    if length(SPR(n)) = 64 then
      RT I SPR(n)
    else
      RT I 320 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below.  If the SPR field
contains 129,  the instruction references the Transac-
tion Failure Instruction Address Register (TFIAR)<TM>
and the result is dependent on the privilege with which
it is executed.  See Book III-S.  If the SPR field contains
a value from 808 through 811, the instruction specifies
a reserved SPR, and is treated as a noop; see
Section 1.3.3, “Reserved Fields, Reserved Values, and
Reserved SPRs”.  Otherwise, the contents of the desig-
nated Special Purpose Register are placed into register
RT. For Special Purpose Registers that are 32 bits long,
the low-order 32 bits of RT receive the contents of the
Special Purpose Register and the high-order 32 bits of
RT are set to zero.

If execution of this instruction is attempted specifying
an SPR number that is not shown above, or an SPR

31 RT spr 339 /
0 6 11 21 31

decimal
            SPR1

        spr5:9  spr0:4  
Register

Name
1 00000 00001 XER
3 00000 00011 DSCR8

8 00000 01000 LR
9 00000 01001 CTR
13 00000 01101 AMR6

128 00100 00000 TFHAR7

129 00100 00001 TFIAR7

130 00100 00010 TEXASR7

131 00100 00011 TEXASRU7

1 Note that the order of the two 5-bit halves 
of the SPR number is reversed.

2 Category: Embedded.
3 See Chapter 6 of Book II.
4 Category: SPE.
5 Category: Alternate Time Base.
6 Category: Server; see Book III-S.
7 Category: Transactional Memory. See 

Chapter 5 of Book II.
8 Category: Stream.
9 Accesses to these SPRs are noops; see 

Section 1.3.3, “Reserved Fields, Reserved 
Values, and Reserved SPRs”.

10 Category: Server; see Book II.
11 Category: Server; see Section 9.4.4 for 

information about reading this register.

136 00100 01000 CTRL
256 01000 00000 VRSAVE
259 01000 00011 SPRG3
260 01000 00100 SPRG42

261 01000 00101 SPRG52

262 01000 00110 SPRG62

263 01000 00111 SPRG72

268 01000 01100 TB3

269  01000 01101 TBU3

512 10000 00000 SPEFSCR4

526 10000 01110 ATB3,5

527 10000 01111 ATBU3,5

768 11000 00000   SIER11

769 11000 00001   MMCR211

770 11000 00010   MMCRA11

771 11000 00011   PMC111

772 11000 00100   PMC211

773 11000 00101   PMC311

774 11000 00110   PMC411

775 11000 00111   PMC511

776 11000 01000   PMC611

779 11000 01011   MMCR011

780 11000 01100   SIAR11

781 11000 01101   SDAR11

782 11000 01110   MMCR111

800 11001 00000   BESCRS10

801 11001 00001  BESCRSU10

802 11001 00010   BESCRR10

803 11001 00011   BESCRRU10

804 11001 00100   EBBHR10

805 11001 00101   EBBRR10

806 11001 00110   BESCR10

808 11001 01000 reserved9

809 11001 01001 reserved9

810 11001 01010 reserved9

811 11001 01011 reserved9

815 11001 01111   TAR6

896 11100 00000 PPR10

898 11100 00010 PPR32

decimal
            SPR1

        spr5:9  spr0:4  
Register

Name

1 Note that the order of the two 5-bit halves 
of the SPR number is reversed.

2 Category: Embedded.
3 See Chapter 6 of Book II.
4 Category: SPE.
5 Category: Alternate Time Base.
6 Category: Server; see Book III-S.
7 Category: Transactional Memory. See 

Chapter 5 of Book II.
8 Category: Stream.
9 Accesses to these SPRs are noops; see 

Section 1.3.3, “Reserved Fields, Reserved 
Values, and Reserved SPRs”.

10 Category: Server; see Book II.
11 Category: Server; see Section 9.4.4 for 

information about reading this register.
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number that is shown above but is in a category that is
not supported by the implementation, one of the follow-
ing occurs.

If spr0 = 0, the illegal instruction error handler is
invoked.
If spr0 = 1, the system privileged instruction error
handler is invoked.

A complete description of this instruction can be found
in Book III.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Move From Spe-
cial Purpose Register:

 

Extended: Equivalent to:
mfxer Rx mfspr Rx,1
mflr Rx mfspr Rx,8
mfctr Rx mfspr Rx,9

See the Notes that appear with mtspr.

Note
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Move To One Condition Register Field
 XFX-form

mtocrf FXM,RS 

count I 0
do i = 0 to 7
  if FXMi = 1 then
    n I i
    count I count + 1
if count = 1 then

CR4×n+32:4×n+35 I (RS)4×n+32:4×n+35
else CR I undefined

If exactly one bit of the FXM field is set to 1, let n be the
position of that bit in the field (0 ≤ n ≤ 7). The contents
of bits 4×n+32:4×n+35 of register RS are placed into
CR field n (CR bits 4×n+32:4×n+35). Otherwise, the
contents of the Condition Register are undefined.

Special Registers Altered:
CR field selected by FXM

Move To Condition Register Fields
 XFX-form

mtcrf FXM,RS

mask I 4(FXM0) || 
4(FXM1) || ... 

4(FXM7)
CR I ((RS)32:63 & mask) | (CR & ¬mask)

The contents of bits 32:63 of register RS are placed
into the Condition Register under control of the field
mask specified by FXM. The field mask identifies the
4-bit fields affected. Let i be an integer in the range 0-7.
If FXMi=1 then CR field i (CR bits 4×i+32:4×i+35) is set
to the contents of the corresponding field of the
low-order 32 bits of RS.

Special Registers Altered:
CR fields selected by mask

Extended Mnemonics:

Example of extended mnemonics for Move To Condi-
tion Register Fields:

Move From One Condition Register Field 
 XFX-form

mfocrf RT,FXM

RT I undefined
count I 0
do i = 0 to 7
  if FXMi = 1 then
    n I i
    count I count + 1
if count = 1 then
   [Category: Phased-In: RT I 640]

RT4×n+32:4×n+35 I CR4×n+32:4×n+35

If exactly one bit of the FXM field is set to 1, let n be the
position of that bit in the field (0 ≤ n ≤ 7). The contents
of CR field n (CR bits 4×n+32:4×n+35) are placed into
bits 4×n+32:4×n+35 of register RT, and the contents of
the remaining bits of register RT are undefined. Other-
wise, the contents of register RT are undefined.

[Category: Phased-In] If exactly one bit of the FXM field
is set to 1, the contents of the remaining bits of register
RT are set to 0's instead of being undefined as speci-
fied above.

Special Registers Altered:
None

  

Move From Condition Register  XFX-form

mfcr RT

   RT I 320 || CR

The contents of the Condition Register are placed into
RT32:63. RT0:31 are set to 0.

31 RS 1 FXM / 144 /
0 6 11 12 20 21 31

31 RS 0 FXM / 144 /
0 6 11 12 20 21 31

Extended: Equivalent to:
mtcr Rx mtcrf 0xFF,Rx

31 RT 1 FXM / 19 /
0 6 11 12 20 21 31

[Category: Phased-In] Warning: mfocrf is not
backward compatible with processors that comply
with versions of the architecture that precede Ver-
sion 2.08. Such processors may not set to 0 the
bits of register RT that do not correspond to the
specified CR field.  If programs that depend on this
clearing behavior are run on such processors, the
programs may get incorrect results.

The POWER4, POWER5, POWER7 and POWER8
processors set to 0's all bytes of register RT other
than the byte that contains the specified CR field. In
the byte that contains the CR field, bits other than
those containing the CR field may or may not be
set to 0s.

31 RT 0 /// 19 /
0 6 11 12 21 31

Programming Note
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Special Registers Altered:
None

3.3.17.1 Move To/From System Registers [Category: Embedded]

Move to Condition Register from XER
X-form

mcrxr BF

CR4×BF+32:4×BF+35 I XER32:35
XER32:35 I 0b0000

The contents of XER32:35 are copied to Condition Reg-
ister field BF. XER32:35 are set to zero.

Special Registers Altered:
CR field BF  XER32:35

Move To Device Control Register 
User-mode Indexed X-form

mtdcrux RS,RA
[Category: Embedded.Device Control]

DCRN I (RA)
DCR(DCRN) I RS

Let the contents of register RA denote a Device Control
Register. (The supported Device Control Registers are
implementation-dependent.)

The contents of RS are placed into the designated
Device Control Register. For 32-bit Device Control Reg-
isters, the contents of bits 32:63 of RS are placed into
the Device Control Register. 

See “Move To Device Control Register Indexed X-form”
on page 1054 in Book III for more information on this
instruction.

Special Registers Altered:
Implementation-dependent

 

Move From Device Control Register 
User-mode Indexed X-form

mfdcrux RT,RA
[Category: Embedded.Device Control]

DCRN I (RA)
RT I DCR(DCRN)

Let the contents of register RA denote a Device Control
Register. (The supported Device Control Registers are
implementation-dependent.)

The contents of the designated Device Control Register
are placed into RT. For 32-bit Device Control Registers,
the contents of bits 32:63 of the designated Device
Control Register are placed into RT.

See “Move From Device Control Register Indexed
X-form” on page 1055 in Book III for more information
on this instruction.

Special Registers Altered:
Implementation-dependent

31 BF // /// /// 512 /
0 6 9 11 16 21 31

31 RS RA /// 419 /
0 6 11 16 21 31

31 RT RA /// 291 /
0 6 11 16 21 31
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Chapter 4.  Floating-Point Facility [Category: Floating-Point]

4.1 Floating-Point Facility Over-
view
This chapter describes the registers and instructions
that make up the Floating-Point Facility.

The processor (augmented by appropriate software
support, where required) implements a floating-point
system compliant with the ANSI/IEEE Standard
754-1985, “IEEE Standard for Binary Floating-Point
Arithmetic” (hereafter referred to as “the IEEE stan-
dard”). That standard defines certain required “opera-
tions” (addition, subtraction, etc.). Herein, the term
“floating-point operation” is used to refer to one of these
required operations and to additional operations
defined (e.g., those performed by Multiply-Add or
Reciprocal Estimate instructions). A Non-IEEE mode is
also provided. This mode, which may produce results
not in strict compliance with the IEEE standard, allows
shorter latency. 

Instructions are provided to perform arithmetic, round-
ing, conversion, comparison, and other operations in
floating-point registers; to move floating-point data
between storage and these registers; and to manipu-
late the Floating-Point Status and Control Register
explicitly.

These instructions are divided into two categories.

computational instructions

The computational instructions are those that per-
form addition, subtraction, multiplication, division,
extracting the square root, rounding, conversion,
comparison, and combinations of these opera-
tions. These instructions provide the floating-point
operations. They place status information into the
Floating-Point Status and Control Register. They
are the instructions described in Sections 4.6.6
through 4.6.8.

non-computational instructions

The non-computational instructions are those that
perform loads and stores, move the contents of a
floating-point register to another floating-point reg-
ister possibly altering the sign, manipulate the
Floating-Point Status and Control Register explic-

itly, and select the value from one of two float-
ing-point registers based on the value in a third
floating-point register. The operations performed
by these instructions are not considered float-
ing-point operations. With the exception of the
instructions that manipulate the Floating-Point Sta-
tus and Control Register explicitly, they do not alter
the Floating-Point Status and Control Register.
They are the instructions described in Sections
4.6.2 through 4.6.5, and 4.6.10.

A floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by
this number is the product of the significand and the
number 2exponent. Encodings are provided in the data
format to represent finite numeric values, ±Infinity, and
values that are “Not a Number” (NaN). Operations
involving infinities produce results obeying traditional
mathematical conventions. NaNs have no mathemati-
cal interpretation. Their encoding permits a variable
diagnostic information field. They may be used to indi-
cate such things as uninitialized variables and can be
produced by certain invalid operations.

There is one class of exceptional events that occur dur-
ing instruction execution that is unique to the Float-
ing-Point Facility: the Floating-Point Exception.
Floating-point exceptions are signaled with bits set in
the Floating-Point Status and Control Register
(FPSCR). They can cause the system floating-point
enabled exception error handler to be invoked, pre-
cisely or imprecisely, if the proper control bits are set.

Floating-Point Exceptions
The following floating-point exceptions are detected by
the processor:

Invalid Operation Exception  (VX)
SNaN (VXSNAN)
Infinity-Infinity (VXISI)
Infinity÷Infinity (VXIDI)
Zero÷Zero (VXZDZ)
Infinity×Zero (VXIMZ)
Invalid Compare (VXVC)
Software-Defined Condition (VXSOFT)
Invalid Square Root (VXSQRT)
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Invalid Integer Convert (VXCVI)
Zero Divide Exception (ZX)
Overflow Exception (OX)
Underflow Exception (UX)
Inexact Exception (XX)

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has a
corresponding enable bit in the FPSCR. See
Section 4.2.2, “Floating-Point Status and Control Reg-
ister” on page 114 for a description of these exception
and enable bits, and Section 4.4, “Floating-Point
Exceptions” on page 122 for a detailed discussion of
floating-point exceptions, including the effects of the
enable bits.

4.2 Floating-Point Facility Regis-
ters

4.2.1 Floating-Point Registers
Implementations of this architecture provide 32 float-
ing-point registers (FPRs). The floating-point instruction
formats provide 5-bit fields for specifying the FPRs to
be used in the execution of the instruction. The FPRs
are numbered 0-31. See Figure 50 on page 114.

Each FPR contains 64 bits that support the float-
ing-point double format. Every instruction that interprets
the contents of an FPR as a floating-point value uses
the floating-point double format for this interpretation.

The computational instructions, and the Move and
Select instructions, operate on data located in FPRs
and, with the exception of the Compare instructions,
place the result value into an FPR and optionally (when
Rc=1) place status information into the Condition Reg-
ister. Instruction forms with Rc=1 are part of Category:
Floating-Point.Record.

Load Double and Store Double instructions are pro-
vided that transfer 64 bits of data between storage and
the FPRs with no conversion. Load Single instructions
are provided to transfer and convert floating-point val-
ues in floating-point single format from storage to the
same value in floating-point double format in the FPRs.
Store Single instructions are provided to transfer and
convert floating-point values in floating-point double
format from the FPRs to the same value in float-
ing-point single format in storage.

Instructions are provided that manipulate the Float-
ing-Point Status and Control Register and the Condition
Register explicitly. Some of these instructions copy
data from an FPR to the Floating-Point Status and Con-
trol Register or vice versa.

The computational instructions and the Select instruc-
tion accept values from the FPRs in double format. For
single-precision arithmetic instructions, all input values

must be representable in single format; if they are not,
the result placed into the target FPR, and the setting of
status bits in the FPSCR and in the Condition Register
(if Rc=1), are undefined.

Figure 50. Floating-Point Registers

4.2.2 Floating-Point Status and 
Control Register
The Floating-Point Status and Control Register
(FPSCR) controls the handling of floating-point excep-
tions and records status resulting from the float-
ing-point operations. Bits 32:55 are status bits. Bits
56:63 are control bits.

The exception bits in the FPSCR (bits 35:44, 53:55) are
sticky; that is, once set to 1 they remain set to 1 until
they are set to 0 by an mcrfs, mtfsfi, mtfsf, or mtfsb0
instruction. The exception summary bits in the FPSCR
(FX, FEX, and VX, which are bits 32:34) are not consid-
ered to be “exception bits”, and only FX is sticky.

FEX and VX are simply the ORs of other FPSCR bits.
Therefore these two bits are not listed among the
FPSCR bits affected by the various instructions.

Figure 51. Floating-Point Status and Control
 Register

The bit definitions for the FPSCR are as follows.

Bit(s) Description

0:31 Reserved

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mtfsfi
and mtfsf, implicitly sets FPSCRFX to 1 if that
instruction causes any of the floating-point
exception bits in the FPSCR to change from 0
to 1. mcrfs, mtfsfi, mtfsf, mtfsb0, and
mtfsb1 can alter FPSCRFX explicitly.

FPR 0

FPR 1

. . .

. . .

FPR 30

FPR 31

0                                                                                                                     63

FPSCR
0                                                          63
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33 Floating-Point Enabled Exception Sum-
mary (FEX)
This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits. mcrfs, mtfsfi, mtfsf, mtfsb0, and
mtfsb1 cannot alter FPSCRFEX explicitly.

34 Floating-Point Invalid Operation Exception
Summary (VX)
This bit is the OR of all the Invalid Operation
exception bits. mcrfs, mtfsfi, mtfsf, mtfsb0,
and mtfsb1 cannot alter FPSCRVX explicitly.

35 Floating-Point Overflow Exception (OX)
See Section 4.4.3, “Overflow Exception” on
page 125.

36 Floating-Point Underflow Exception (UX)
See Section 4.4.4, “Underflow Exception” on
page 126.

37 Floating-Point Zero Divide Exception (ZX)
See Section 4.4.2, “Zero Divide Exception” on
page 124.

38 Floating-Point Inexact Exception (XX)
See Section 4.4.5, “Inexact Exception” on
page 126.

FPSCRXX is a sticky version of FPSCRFI (see
below). Thus the following rules completely
describe how FPSCRXX is set by a given
instruction.

If the instruction affects FPSCRFI, the
new value of FPSCRXX is obtained by
ORing the old value of FPSCRXX with
the new value of FPSCRFI.
If the instruction does not affect
FPSCRFI, the value of FPSCRXX is
unchanged.

39 Floating-Point Invalid Operation Exception
(SNaN) (VXSNAN)
See Section 4.4.1, “Invalid Operation Excep-
tion” on page 124.

40 Floating-Point Invalid Operation Exception
(∞ - ∞) (VXISI)
See Section 4.4.1.

41 Floating-Point Invalid Operation Exception
(∞ ÷ ∞) (VXIDI)
See Section 4.4.1.

42 Floating-Point Invalid Operation Exception
(0 ÷0) (VXZDZ)
See Section 4.4.1.

43 Floating-Point Invalid Operation Exception
(∞ ×0) (VXIMZ)
See Section 4.4.1.

44 Floating-Point Invalid Operation Exception
(Invalid Compare) (VXVC)
See Section 4.4.1.

45 Floating-Point Fraction Rounded (FR)
The last Arithmetic or Rounding and Conver-
sion instruction incremented the fraction dur-
ing rounding. See Section 4.3.6, “Rounding”
on page 121. This bit is not sticky.

46 Floating-Point Fraction Inexact (FI)
The last Arithmetic or Rounding and Conver-
sion instruction either produced an inexact
result during rounding or caused a disabled
Overflow Exception. See Section 4.3.6. This
bit is not sticky.

See the definition of FPSCRXX, above,
regarding the relationship between FPSCRFI
and FPSCRXX.

47:51 Floating-Point Result Flags (FPRF)
Arithmetic, rounding, and Convert From Inte-
ger instructions set this field based on the
result placed into the target register and on
the target precision, except that if any portion
of the result is undefined then the value
placed into FPRF is undefined. Floating-point
Compare instructions set this field based on
the relative values of the operands being com-
pared. For Convert To Integer instructions, the
value placed into FPRF is undefined. Addi-
tional details are given below.

 

47 Floating-Point Result Class Descriptor (C)
Arithmetic, rounding, and Convert From Inte-
ger instructions may set this bit with the FPCC
bits, to indicate the class of the result as
shown in Figure 52 on page 117.

48:51 Floating-Point Condition Code (FPCC)
Floating-point Compare instructions set one of

FPSCRFX is defined not to be altered
implicitly by mtfsfi and mtfsf because
permitting these instructions to alter
FPSCRFX implicitly could cause a para-
dox. An example is an mtfsfi or mtfsf
instruction that supplies 0 for FPSCRFX
and 1 for FPSCROX, and is executed
when FPSCROX=0. See also the Pro-
gramming Notes with the definition of
these two instructions.

Programming Note

A single-precision operation that produces
a denormalized result sets FPRF to indi-
cate a denormalized number. When possi-
ble, single-precision denormalized
numbers are represented in normalized
double format in the target register.

Programming Note
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the FPCC bits to 1 and the other three FPCC
bits to 0. Arithmetic, rounding, and Convert
From Integer instructions may set the FPCC
bits with the C bit, to indicate the class of the
result as shown in Figure 52 on page 117.
Note that in this case the high-order three bits
of the FPCC retain their relational significance
indicating that the value is less than, greater
than, or equal to zero.

48 Floating-Point Less Than or Negative (FL
or <)

49 Floating-Point Greater Than or Positive
(FG or >)

50 Floating-Point Equal or Zero (FE or =)

51 Floating-Point Unordered or NaN (FU or ?)

52 Reserved

53 Floating-Point Invalid Operation Exception
(Software-Defined Condition)
(VXSOFT)
This bit can be altered only by mcrfs, mtfsfi,
mtfsf, mtfsb0, or mtfsb1. See Section 4.4.1.

 

54 Floating-Point Invalid Operation Exception
(Invalid Square Root) (VXSQRT)
See Section 4.4.1.

 55 Floating-Point Invalid Operation Exception
(Invalid Integer Convert) (VXCVI)
See Section 4.4.1.

56 Floating-Point Invalid Operation Exception
Enable (VE)
See Section 4.4.1.

57 Floating-Point Overflow Exception Enable
(OE)
See Section 4.4.3, “Overflow Exception” on
page 125.

58 Floating-Point Underflow Exception Enable
(UE)
See Section 4.4.4, “Underflow Exception” on
page 126.

59 Floating-Point Zero Divide Exception
Enable (ZE)
See Section 4.4.2, “Zero Divide Exception” on
page 124.

60 Floating-Point Inexact Exception Enable
(XE)

See Section 4.4.5, “Inexact Exception” on
page 126.

61 Floating-Point Non-IEEE Mode (NI)
Floating-point non-IEEE mode is optional. If
floating-point non-IEEE mode is not imple-
mented, this bit is treated as reserved, and the
remainder of the definition of this bit does not
apply.

If floating-point non-IEEE mode is imple-
mented, this bit has the following meaning.
0 The processor is not in floating-point

non-IEEE mode (i.e., all floating-point
operations conform to the IEEE standard).

1 The processor is in floating-point
non-IEEE mode.

When the processor is in floating-point
non-IEEE mode, the remaining FPSCR bits
may have meanings different from those given
in this document, and floating-point operations
need not conform to the IEEE standard. The
effects of executing a given floating-point
instruction with FPSCRNI=1, and any addi-
tional requirements for using non-IEEE mode,
are implementation-dependent. The results of
executing a given instruction in non-IEEE
mode may vary between implementations,
and between different executions on the same
implementation.

 

62:63 Floating-Point Rounding Control (RN) See
Section 4.3.6, “Rounding” on page 121.

00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

FPSCRVXSOFT can be used by software
to indicate the occurrence of an arbitrary,
software-defined, condition that is to be
treated as an Invalid Operation Exception.
For example, the bit could be set by a pro-
gram that computes a base 10 logarithm if
the supplied input is negative.

Programming Note

When the processor is in floating-point
non-IEEE mode, the results of float-
ing-point operations may be approximate,
and performance for these operations
may be better, more predictable, or less
data-dependent than when the processor
is not in non-IEEE mode. For example, in
non-IEEE mode an implementation may
return 0 instead of a denormalized num-
ber, and may return a large number
instead of an infinity.

Programming Note
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Figure 52. Floating-Point Result Flags

4.3 Floating-Point Data

4.3.1 Data Format
This architecture defines the representation of a float-
ing-point value in two different binary fixed-length for-
mats. The format may be a 32-bit single format for a
single-precision value or a 64-bit double format for a
double-precision value. The single format may be used
for data in storage. The double format may be used for
data in storage and for data in floating-point registers.

The lengths of the exponent and the fraction fields dif-
fer between these two formats. The structure of the sin-
gle and double formats is shown below.

Figure 53.  Floating-point single format

Figure 54. Floating-point double format

Values in floating-point format are composed of three
fields:

S sign bit
EXP exponent+bias
FRACTION fraction

Representation of numeric values in the floating-point
formats consists of a sign bit (S), a biased exponent
(EXP), and the fraction portion (FRACTION) of the sig-
nificand. The significand consists of a leading implied
bit concatenated on the right with the FRACTION. This
leading implied bit is 1 for normalized numbers and 0
for denormalized numbers and is located in the unit bit
position (i.e., the first bit to the left of the binary point).
Values representable within the two floating-point for-

mats can be specified by the parameters listed in
Figure 55.

Figure 55. IEEE floating-point fields

The architecture requires that the FPRs of the Float-
ing-Point Facility support the floating-point double for-
mat only.

4.3.2 Value Representation
This architecture defines numeric and non-numeric val-
ues representable within each of the two supported for-
mats. The numeric values are approximations to the
real numbers and include the normalized numbers,
denormalized numbers, and zero values. The
non-numeric values representable are the infinities and
the Not a Numbers (NaNs). The infinities are adjoined
to the real numbers, but are not numbers themselves,
and the standard rules of arithmetic do not hold when
they are used in an operation. They are related to the
real numbers by order alone. It is possible however to
define restricted operations among numbers and infini-
ties as defined below. The relative location on the real
number line for each of the defined entities is shown in
Figure 56.

Figure 56. Approximation to real numbers

The NaNs are not related to the numeric values or infin-
ities by order or value but are encodings used to con-
vey diagnostic information such as the representation
of uninitialized variables.

The following is a description of the different float-
ing-point values defined in the architecture:

Binary floating-point numbers
Machine representable values used as approximations
to real numbers. Three categories of numbers are sup-
ported: normalized numbers, denormalized numbers,
and zero values.

Result 
Flags Result Value Class

C  <  >  =  ?
  1  0  0  0  1      Quiet NaN
  0  1  0  0  1    - Infinity
  0  1  0  0  0    - Normalized Number
  1  1  0  0  0    - Denormalized Number
  1  0  0  1  0    - Zero
  0  0  0  1  0    + Zero
  1  0  1  0  0    + Denormalized Number
  0  0  1  0  0    + Normalized Number
  0  0  1  0  1    + Infinity

S EXP FRACTION
0 1 9                             31

S EXP FRACTION
0 1 12                                                                                  63

Format
Single Double

Exponent Bias +127 +1023
Maximum Exponent +127 +1023
Minimum Exponent -126 -1022

Widths (bits)
Format 32 64
Sign 1 1
Exponent 8 11
Fraction 23 52
Significand 24 53

+0-DEN -0-NOR +NOR+DEN-INF +INF
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Normalized numbers (± NOR)
These are values that have a biased exponent value in
the range:

1 to 254 in single format
1 to 2046 in double format

They are values in which the implied unit bit is 1. Nor-
malized numbers are interpreted as follows:

NOR = (-1)s x 2E x (1.fraction)

where s is the sign, E is the unbiased exponent, and
1.fraction is the significand, which is composed of a
leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a normal-
ized floating-point number are approximately equal to:

Single Format:

1.2x10-38 ≤ M ≤ 3.4x1038

Double Format:

2.2x10-308 ≤ M ≤ 1.8x10308

Zero values (± 0)
These are values that have a biased exponent value of
zero and a fraction value of zero. Zeros can have a
positive or negative sign. The sign of zero is ignored by
comparison operations (i.e., comparison regards +0 as
equal to -0).

Denormalized numbers (± DEN)
These are values that have a biased exponent value of
zero and a nonzero fraction value. They are nonzero
numbers smaller in magnitude than the representable
normalized numbers. They are values in which the
implied unit bit is 0. Denormalized numbers are inter-
preted as follows:

DEN = (-1)s x 2Emin x (0.fraction)

where Emin is the minimum representable exponent
value (-126 for single-precision, -1022 for double-pre-
cision).

Infinities (± ∞)
These are values that have the maximum biased expo-
nent value:

255 in single format
2047 in double format

and a zero fraction value. They are used to approxi-
mate values greater in magnitude than the maximum
normalized value.

Infinity arithmetic is defined as the limiting case of real
arithmetic, with restricted operations defined among
numbers and infinities. Infinities and the real numbers
can be related by ordering in the affine sense:

- ∞ < every finite number < + ∞

Arithmetic on infinities is always exact and does not
signal any exception, except when an exception occurs

due to the invalid operations as described in
Section 4.4.1, “Invalid Operation Exception” on
page 124.

For comparison operations, +Infinity compares equal to
+Infinity and -Infinity compares equal to -Infinity.

Not a Numbers (NaNs)
These are values that have the maximum biased expo-
nent value and a nonzero fraction value. The sign bit is
ignored (i.e., NaNs are neither positive nor negative). If
the high-order bit of the fraction field is 0 then the NaN
is a Signaling NaN; otherwise it is a Quiet NaN.

Signaling NaNs are used to signal exceptions when
they appear as operands of computational instructions.

Quiet NaNs are used to represent the results of certain
invalid operations, such as invalid arithmetic operations
on infinities or on NaNs, when Invalid Operation Excep-
tion is disabled (FPSCRVE=0). Quiet NaNs propagate
through all floating-point operations except ordered
comparison, Floating Round to Single-Precision, and
conversion to integer. Quiet NaNs do not signal excep-
tions, except for ordered comparison and conversion to
integer operations. Specific encodings in QNaNs can
thus be preserved through a sequence of floating-point
operations, and used to convey diagnostic information
to help identify results from invalid operations.

When a QNaN is the result of a floating-point operation
because one of the operands is a NaN or because a
QNaN was generated due to a disabled Invalid Opera-
tion Exception, then the following rule is applied to
determine the NaN with the high-order fraction bit set to
1 that is to be stored as the result.

if (FRA) is a NaN
     then FRT I (FRA)
     else if (FRB) is a NaN
          then if instruction is frsp
                 then FRT I (FRB)0:34 || 290
                 else FRT I (FRB)
          else if (FRC) is a NaN
                 then FRT I (FRC)
                 else if generated QNaN
                        then FRT I generated QNaN

If the operand specified by FRA is a NaN, then that
NaN is stored as the result. Otherwise, if the operand
specified by FRB is a NaN (if the instruction specifies
an FRB operand), then that NaN is stored as the result,
with the low-order 29 bits of the result set to 0 if the
instruction is frsp. Otherwise, if the operand specified
by FRC is a NaN (if the instruction specifies an FRC
operand), then that NaN is stored as the result. Other-
wise, if a QNaN was generated due to a disabled
Invalid Operation Exception, then that QNaN is stored
as the result. If a QNaN is to be generated as a result,
then the QNaN generated has a sign bit of 0, an expo-
nent field of all 1s, and a high-order fraction bit of 1 with
all other fraction bits 0. Any instruction that generates a
QNaN as the result of a disabled Invalid Operation
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Exception generates this QNaN (i.e.,
0x7FF8_0000_0000_0000).

A double-precision NaN is considered to be represent-
able in single format if and only if the low-order 29 bits
of the double-precision NaN’s fraction are zero.

4.3.3 Sign of Result
The following rules govern the sign of the result of an
arithmetic, rounding, or conversion operation, when the
operation does not yield an exception. They apply even
when the operands or results are zeros or infinities.

The sign of the result of an add operation is the
sign of the operand having the larger absolute
value. If both operands have the same sign, the
sign of the result of an add operation is the same
as the sign of the operands. The sign of the result
of the subtract operation x-y is the same as the
sign of the result of the add operation x+(-y).

When the sum of two operands with opposite sign,
or the difference of two operands with the same
sign, is exactly zero, the sign of the result is posi-
tive in all rounding modes except Round toward
-Infinity, in which mode the sign is negative.

The sign of the result of a multiply or divide opera-
tion is the Exclusive OR of the signs of the oper-
ands.

The sign of the result of a Square Root or Recipro-
cal Square Root Estimate operation is always pos-
itive, except that the square root of -0 is -0 and
the reciprocal square root of -0 is -Infinity.

The sign of the result of a Round to Single-Preci-
sion, or Convert From Integer, or Round to Integer
operation is the sign of the operand being con-
verted.

For the Multiply-Add instructions, the rules given above
are applied first to the multiply operation and then to
the add or subtract operation (one of the inputs to the
add or subtract operation is the result of the multiply
operation).

4.3.4 Normalization and
Denormalization
The intermediate result of an arithmetic or frsp instruc-
tion may require normalization and/or denormalization
as described below. Normalization and denormalization
do not affect the sign of the result.

When an arithmetic or rounding instruction produces an
intermediate result which carries out of the significand,
or in which the significand is nonzero but has a leading
zero bit, it is not a normalized number and must be nor-
malized before it is stored. For the carry-out case, the
significand is shifted right one bit, with a one shifted into
the leading significand bit, and the exponent is incre-

mented by one. For the leading-zero case, the signifi-
cand is shifted left while decrementing its exponent by
one for each bit shifted, until the leading significand bit
becomes one. The Guard bit and the Round bit (see
Section 4.5.1, “Execution Model for IEEE Operations”
on page 127) participate in the shift with zeros shifted
into the Round bit. The exponent is regarded as if its
range were unlimited.

After normalization, or if normalization was not
required, the intermediate result may have a nonzero
significand and an exponent value that is less than the
minimum value that can be represented in the format
specified for the result. In this case, the intermediate
result is said to be “Tiny” and the stored result is deter-
mined by the rules described in Section 4.4.4, “Under-
flow Exception”. These rules may require
denormalization.

A number is denormalized by shifting its significand
right while incrementing its exponent by 1 for each bit
shifted, until the exponent is equal to the format’s mini-
mum value. If any significant bits are lost in this shifting
process then “Loss of Accuracy” has occurred (See
Section 4.4.4, “Underflow Exception” on page 126) and
Underflow Exception is signaled.

4.3.5 Data Handling and Precision
Most of the Floating-Point Facility Architecture, includ-
ing all computational, Move, and Select instructions,
use the floating-point double format to represent data in
the FPRs. Single-precision and integer-valued oper-
ands may be manipulated using double-precision oper-
ations. Instructions are provided to coerce these values
from a double format operand. Instructions are also
provided for manipulations which do not require dou-
ble-precision. In addition, instructions are provided to
access a true single-precision representation in stor-
age, and a fixed-point integer representation in GPRs.

4.3.5.1 Single-Precision Operands
For single format data, a format conversion from single
to double is performed when loading from storage into
an FPR and a format conversion from double to single
is performed when storing from an FPR to storage. No
floating-point exceptions are caused by these instruc-
tions. An instruction is provided to explicitly convert a
double format operand in an FPR to single-precision.
Floating-point single-precision is enabled with four
types of instruction.

1. Load Floating-Point Single

This form of instruction accesses a single-preci-
sion operand in single format in storage, converts it
to double format, and loads it into an FPR. No
floating-point exceptions are caused by these
instructions.
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2. Round to Floating-Point Single-Precision

The Floating Round to Single-Precision instruction
rounds a double-precision operand to single-preci-
sion, checking the exponent for single-precision
range and handling any exceptions according to
respective enable bits, and places that operand
into an FPR in double format. For results produced
by single-precision arithmetic instructions, sin-
gle-precision loads, and other instances of the
Floating Round to Single-Precision instruction, this
operation does not alter the value.

3. Single-Precision Arithmetic Instructions

This form of instruction takes operands from the
FPRs in double format, performs the operation as
if it produced an intermediate result having infinite
precision and unbounded exponent range, and
then coerces this intermediate result to fit in single
format. Status bits, in the FPSCR and optionally in
the Condition Register, are set to reflect the sin-
gle-precision result. The result is then converted to
double format and placed into an FPR. The result
lies in the range supported by the single format.

If any input value is not representable in single for-
mat and either OE=1 or UE=1, the result placed
into the target FPR, and the setting of status bits in
the FPSCR and in the Condition Register (if Rc=1),
are undefined.

For fres[.] or frsqrtes[.], if the input value is finite
and has an unbiased exponent greater than +127,
the input value is interpreted as an Infinity.

4. Store Floating-Point Single

This form of instruction converts a double-preci-
sion operand to single format and stores that oper-
and into storage. No floating-point exceptions are
caused by these instructions. (The value being
stored is effectively assumed to be the result of an
instruction of one of the preceding three types.)

When the result of a Load Floating-Point Single, Float-
ing Round to Single-Precision, or single-precision arith-
metic instruction is stored in an FPR, the low-order 29
FRACTION bits are zero.

 

 

4.3.5.2 Integer-Valued Operands
Instructions are provided to round floating-point oper-
ands to integer values in floating-point format. To facili-
tate exchange of data between the floating-point and
fixed-Point facilities, instructions are provided to con-
vert between floating-point double format and
fixed-point integer format in an FPR. Computation on
integer-valued operands may be performed using arith-
metic instructions of the required precision. (The results
may not be integer values.) The two groups of instruc-
tions provided specifically to support integer-valued
operands are described below.

1. Floating Round to Integer

The Floating Round to Integer instructions round a
double-precision operand to an integer value in
floating-point double format. These instructions
may cause Invalid Operation (VXSNAN) excep-
tions. See Sections 4.3.6 and 4.5.1 for more infor-
mation about rounding. 

2. Floating Convert To/From Integer

The Floating Convert To Integer instructions con-
vert a double-precision operand to a 32-bit or
64-bit signed fixed-point integer format. Variants
are provided both to perform rounding based on

The Floating Round to Single-Precision instruction
is provided to allow value conversion from dou-
ble-precision to single-precision with appropriate
exception checking and rounding. This instruction
should be used to convert double-precision float-
ing-point values (produced by double-precision
load and arithmetic instructions and by fcfid) to sin-
gle-precision values prior to storing them into single
format storage elements or using them as oper-
ands for single-precision arithmetic instructions.
Values produced by single-precision load and arith-
metic instructions are already single-precision val-
ues and can be stored directly into single format
storage elements, or used directly as operands for
single-precision arithmetic instructions, without pre-
ceding the store, or the arithmetic instruction, by a
Floating Round to Single-Precision instruction.

A single-precision value can be used in double-pre-
cision arithmetic operations. The reverse is true
only if the double-precision value is representable
in single format.

Some implementations may execute single-preci-
sion arithmetic instructions faster than double-pre-
cision arithmetic instructions. Therefore, if
double-precision accuracy is not required, sin-
gle-precision data and instructions should be used.

Programming Note
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the value of FPSCRRN and to round toward zero.
These instructions may cause Invalid Operation
(VXSNaN, VXCVI) and Inexact exceptions. The
Floating Convert From Integer instruction converts
a 64-bit signed fixed-point integer to a double-pre-
cision floating-point integer. Because of the limita-
tions of the source format, only an Inexact
exception may be generated.

4.3.6 Rounding
The material in this section applies to operations that
have numeric operands (i.e., operands that are not
infinities or NaNs). Rounding the intermediate result of
such an operation may cause an Overflow Exception,
an Underflow Exception, or an Inexact Exception. The
remainder of this section assumes that the operation
causes no exceptions and that the result is numeric.
See Section 4.3.2, “Value Representation” and
Section 4.4, “Floating-Point Exceptions” for the cases
not covered here.

The Arithmetic and Rounding and Conversion instruc-
tions round their intermediate results. With the excep-
tion of the Estimate instructions, these instructions
produce an intermediate result that can be regarded as
having infinite precision and unbounded exponent
range. All but two groups of these instructions normal-
ize or denormalize the intermediate result prior to
rounding and then place the final result into the target
FPR in double format. The Floating Round to Integer
and Floating Convert To Integer instructions with
biased exponents ranging from 1022 through 1074 are
prepared for rounding by repetitively shifting the signifi-
cand right one position and incrementing the biased
exponent until it reaches a value of 1075. (Intermediate
results with biased exponents 1075 or larger are
already integers, and with biased exponents 1021 or
less round to zero.) After rounding, the final result for
Floating Round to Integer is normalized and put in dou-
ble format, and for Floating Convert To Integer is con-
verted to a signed fixed-point integer.

FPSCR bits FR and FI generally indicate the results of
rounding. Each of the instructions which rounds its
intermediate result sets these bits. If the fraction is
incremented during rounding then FR is set to 1, other-
wise FR is set to 0. If the result is inexact then FI is set
to 1, otherwise FI is set to zero. The Round to Integer
instructions are exceptions to this rule, setting FR and
FI to 0. The Estimate instructions set FR and FI to
undefined values. The remaining floating-point instruc-
tions do not alter FR and FI.

Four user-selectable rounding modes are provided
through the Floating-Point Rounding Control field in the
FPSCR. See Section 4.2.2, “Floating-Point Status and
Control Register”. These are encoded as follows.

Let Z be the intermediate arithmetic result or the oper-
and of a convert operation. If Z can be represented
exactly in the target format, then the result in all round-
ing modes is Z as represented in the target format. If Z
cannot be represented exactly in the target format, let
Z1 and Z2 bound Z as the next larger and next smaller
numbers representable in the target format. Then Z1 or
Z2 can be used to approximate the result in the target
format.

Figure 57 shows the relation of Z, Z1, and Z2 in this
case. The following rules specify the rounding in the
four modes. “LSB” means “least significant bit”.

Figure 57. Selection of Z1 and Z2

Round to Nearest
Choose the value that is closer to Z (Z1 or Z2).
In case of a tie, choose the one that is even
(least significant bit 0).

Round toward Zero
Choose the smaller in magnitude (Z1 or Z2).

Round toward +Infinity
Choose Z1.

Round toward -Infinity
Choose Z2.

See Section 4.5.1, “Execution Model for IEEE Opera-
tions” on page 127 for a detailed explanation of round-
ing.

RN Rounding Mode
00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

0

Positive valuesNegative values

By Incrementing LSB of Z
Infinitely Precise Value
By Truncating after LSB

Z2
Z
Z1 Z2

Z
Z1
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4.4 Floating-Point Exceptions
This architecture defines the following floating-point
exceptions:

Invalid Operation Exception
SNaN
Infinity-Infinity
Infinity÷Infinity
Zero÷Zero
Infinity×Zero
Invalid Compare
Software-Defined Condition
Invalid Square Root
Invalid Integer Convert

Zero Divide Exception
Overflow Exception
Underflow Exception
Inexact Exception

These exceptions, other than Invalid Operation Excep-
tion due to Software-Defined Condition, may occur dur-
ing execution of computational instructions. An Invalid
Operation Exception due to Software-Defined Condi-
tion occurs when a Move To FPSCR instruction sets
FPSCRVXSOFT to 1.

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has a
corresponding enable bit in the FPSCR. The exception
bit indicates occurrence of the corresponding excep-
tion. If an exception occurs, the corresponding enable
bit governs the result produced by the instruction and,
in conjunction with the FE0 and FE1 bits (see
page 123), whether and how the system floating-point
enabled exception error handler is invoked. (In general,
the enabling specified by the enable bit is of invoking
the system error handler, not of permitting the excep-
tion to occur. The occurrence of an exception depends
only on the instruction and its inputs, not on the setting
of any control bits. The only deviation from this general
rule is that the occurrence of an Underflow Exception
may depend on the setting of the enable bit.)

A single instruction, other than mtfsfi or mtfsf, may set
more than one exception bit only in the following cases:

Inexact Exception may be set with Overflow
Exception.
Inexact Exception may be set with Underflow
Exception.
Invalid Operation Exception (SNaN) is set with
Invalid Operation Exception (∞×0) for Multiply-Add
instructions for which the values being multiplied
are infinity and zero and the value being added is
an SNaN.
Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Compare)
for Compare Ordered instructions.
Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Integer
Convert) for Convert To Integer instructions.

When an exception occurs the writing of a result to the
target register may be suppressed or a result may be
delivered, depending on the exception.

The writing of a result to the target register is sup-
pressed for the following kinds of exception, so that
there is no possibility that one of the operands is lost:

Enabled Invalid Operation
Enabled Zero Divide

For the remaining kinds of exception, a result is gener-
ated and written to the destination specified by the
instruction causing the exception. The result may be a
different value for the enabled and disabled conditions
for some of these exceptions. The kinds of exception
that deliver a result are the following:

Disabled Invalid Operation
Disabled Zero Divide
Disabled Overflow
Disabled Underflow
Disabled Inexact
Enabled Overflow
Enabled Underflow
Enabled Inexact

Subsequent sections define each of the floating-point
exceptions and specify the action that is taken when
they are detected.

The IEEE standard specifies the handling of excep-
tional conditions in terms of “traps” and “trap handlers”.
In this architecture, an FPSCR exception enable bit of 1
causes generation of the result value specified in the
IEEE standard for the “trap enabled” case; the expecta-
tion is that the exception will be detected by software,
which will revise the result. An FPSCR exception
enable bit of 0 causes generation of the “default result”
value specified for the “trap disabled” (or “no trap
occurs” or “trap is not implemented”) case; the expecta-
tion is that the exception will not be detected by soft-
ware, which will simply use the default result. The result
to be delivered in each case for each exception is
described in the sections below.

The IEEE default behavior when an exception occurs is
to generate a default value and not to notify software. In
this architecture, if the IEEE default behavior when an
exception occurs is desired for all exceptions, all
FPSCR exception enable bits should be set to 0 and
Ignore Exceptions Mode (see below) should be used.
In this case the system floating-point enabled exception
error handler is not invoked, even if floating-point
exceptions occur: software can inspect the FPSCR
exception bits if necessary, to determine whether
exceptions have occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the correspond-
ing FPSCR exception enable bit must be set to 1 and a
mode other than Ignore Exceptions Mode must be
used. In this case the system floating-point enabled
exception error handler is invoked if an enabled float-
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ing-point exception occurs. The system floating-point
enabled exception error handler is also invoked if a
Move To FPSCR instruction causes an exception bit
and the corresponding enable bit both to be 1; the
Move To FPSCR instruction is considered to cause the
enabled exception.

The FE0 and FE1 bits control whether and how the sys-
tem floating-point enabled exception error handler is
invoked if an enabled floating-point exception occurs.
The location of these bits and the requirements for
altering them are described in Book III. (The system
floating-point enabled exception error handler is never
invoked because of a disabled floating-point excep-
tion.) The effects of the four possible settings of these
bits are as follows.

In all cases, the question of whether a floating-point
result is stored, and what value is stored, is governed
by the FPSCR exception enable bits, as described in
subsequent sections, and is not affected by the value of
the FE0 and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions

before the instruction at which the system floating-point
enabled exception error handler is invoked have com-
pleted, and no instruction after the instruction at which
the system floating-point enabled exception error han-
dler is invoked has begun execution. The instruction at
which the system floating-point enabled exception error
handler is invoked has completed if it is the excepting
instruction and there is only one such instruction. Oth-
erwise it has not begun execution (or may have been
partially executed in some cases, as described in Book
III).

 

In order to obtain the best performance across the wid-
est range of implementations, the programmer should
obey the following guidelines.

If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to 0.
If the IEEE default results are not acceptable to the
application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception
enable bits set to 1 for those exceptions for which
the system floating-point enabled exception error
handler is to be invoked.
Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to 1.
Precise Mode may degrade performance in some
implementations, perhaps substantially, and there-
fore should be used only for debugging and other
specialized applications.

FE0 FE1 Description

0 0 Ignore Exceptions Mode
Floating-point exceptions do not cause
the system floating-point enabled excep-
tion error handler to be invoked.

0 1 Imprecise Nonrecoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. It may not be pos-
sible to identify the excepting instruction
or the data that caused the exception.
Results produced by the excepting
instruction may have been used by or may
have affected subsequent instructions
that are executed before the error handler
is invoked.

1 0 Imprecise Recoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. Sufficient informa-
tion is provided to the error handler that it
can identify the excepting instruction and
the operands, and correct the result. No
results produced by the excepting instruc-
tion have been used by or have affected
subsequent instructions that are executed
before the error handler is invoked.

1 1 Precise Mode
The system floating-point enabled excep-
tion error handler is invoked precisely at
the instruction that caused the enabled
exception.

In any of the three non-Precise modes, a Float-
ing-Point Status and Control Register instruction
can be used to force any exceptions, due to
instructions initiated before the Floating-Point Sta-
tus and Control Register instruction, to be recorded
in the FPSCR. (This forcing is superfluous for Pre-
cise Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be used
to force any invocations of the system floating-point
enabled exception error handler, due to instructions
initiated before the Floating-Point Status and Con-
trol Register instruction, to occur. (This forcing has
no effect in Ignore Exceptions Mode, and is super-
fluous for Precise Mode.)

The last sentence of the paragraph preceding this
Programming Note can apply only in the Imprecise
modes, or if the mode has just been changed from
Ignore Exceptions Mode to some other mode. (It
always applies in the latter case.)

Programming Note
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4.4.1 Invalid Operation Exception

4.4.1.1 Definition
An Invalid Operation Exception occurs when an oper-
and is invalid for the specified operation. The invalid
operations are:

Any floating-point operation on a Signaling NaN
(SNaN)
For add or subtract operations, magnitude subtrac-
tion of infinities (∞ - ∞)
Division of infinity by infinity (∞ ÷ ∞)
Division of zero by zero (0 ÷ 0)
Multiplication of infinity by zero (∞ × 0)
Ordered comparison involving a NaN (Invalid Com-
pare)
Square root or reciprocal square root of a negative
(and nonzero) number (Invalid Square Root)
Integer convert involving a number too large in
magnitude to be represented in the target format,
or involving an infinity or a NaN (Invalid Integer
Convert)

An Invalid Operation Exception also occurs when an
mtfsfi, mtfsf, or mtfsb1 instruction is executed that
sets FPSCRVXSOFT to 1 (Software-Defined Condition).

4.4.1.2 Action
The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled
(FPSCRVE=1) and an Invalid Operation Exception
occurs, the following actions are taken:

1. One or two Invalid Operation Exceptions are set
FPSCRVXSNAN (if SNaN)
FPSCRVXISI (if ∞ - ∞)
FPSCRVXIDI (if ∞ ÷ ∞)
FPSCRVXZDZ (if 0 ÷ 0)
FPSCRVXIMZ (if ∞ × 0)
FPSCRVXVC (if invalid comp)
FPSCRVXSOFT (if sfw-def cond)
FPSCRVXSQRT (if invalid sqrt)
FPSCRVXCVI (if invalid int cvrt)

2. If the operation is an arithmetic, Floating Round to
Single-Precision, Floating Round to Integer, or
convert to integer operation,

the target FPR is unchanged
FPSCRFR FI are set to zero
FPSCRFPRF is unchanged

3. If the operation is a compare,
FPSCRFR FI C are unchanged
FPSCRFPCC is set to reflect unordered

4. If an mtfsfi, mtfsf, or mtfsb1 instruction is exe-
cuted that sets FPSCRVXSOFT to 1,

The FPSCR is set as specified in the instruc-
tion description.

When Invalid Operation Exception is disabled
(FPSCRVE=0) and an Invalid Operation Exception
occurs, the following actions are taken:

1. One or two Invalid Operation Exceptions are set
FPSCRVXSNAN (if SNaN)
FPSCRVXISI (if ∞ - ∞)
FPSCRVXIDI (if ∞ ÷ ∞)
FPSCRVXZDZ (if 0 ÷ 0)
FPSCRVXIMZ (if ∞ × 0)
FPSCRVXVC (if invalid comp)
FPSCRVXSOFT (if sfw-def cond)
FPSCRVXSQRT (if invalid sqrt)
FPSCRVXCVI (if invalid int cvrt)

2. If the operation is an arithmetic or Floating Round
to Single-Precision operation,

the target FPR is set to a Quiet NaN
FPSCRFR FI are set to zero
FPSCRFPRF is set to indicate the class of the

result (Quiet NaN)
3. If the operation is a convert to 64-bit integer opera-

tion,
the target FPR is set as follows:

FRT is set to the most positive 64-bit integer
if the operand in FRB is a positive number
or + ∞, and to the most negative 64-bit inte-
ger if the operand in FRB is a negative num-
ber, - ∞, or NaN

FPSCRFR FI are set to zero
FPSCRFPRF is undefined

4. If the operation is a convert to 32-bit integer opera-
tion,

the target FPR is set as follows:
FRT0:31 I undefined
FRT32:63 are set to the most positive 32-bit
integer if the operand in FRB is a positive
number or +infinity, and to the most nega-
tive 32-bit integer if the operand in FRB is a
negative number, -infinity, or NaN

FPSCRFR FI are set to zero
FPSCRFPRF is undefined

5. If the operation is a compare,
FPSCRFR FI C are unchanged
FPSCRFPCC is set to reflect unordered

6. If an mtfsfi, mtfsf, or mtfsb1 instruction is exe-
cuted that sets FPSCRVXSOFT to 1,

The FPSCR is set as specified in the instruc-
tion description.

4.4.2 Zero Divide Exception

4.4.2.1 Definition
A Zero Divide Exception occurs when a Divide instruc-
tion is executed with a zero divisor value and a finite
nonzero dividend value. It also occurs when a Recipro-
cal Estimate instruction (fre[s] or frsqrte[s]) is exe-
cuted with an operand value of zero.
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4.4.2.2 Action
The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (FPSCRZE=1)
and a Zero Divide Exception occurs, the following
actions are taken:

1. Zero Divide Exception is set
FPSCRZX I 1

2. The target FPR is unchanged
3. FPSCRFR FI are set to zero
4. FPSCRFPRF is unchanged

When Zero Divide Exception is disabled (FPSCRZE=0)
and a Zero Divide Exception occurs, the following
actions are taken:

1. Zero Divide Exception is set
FPSCRZX I 1

2. The target FPR is set to ± Infinity, where the sign is
determined by the XOR of the signs of the oper-
ands

3. FPSCRFR FI are set to zero
4. FPSCRFPRF is set to indicate the class and sign of

the result (± Infinity)

4.4.3 Overflow Exception

4.4.3.1 Definition
An Overflow Exception occurs when the magnitude of
what would have been the rounded result if the expo-
nent range were unbounded exceeds that of the largest
finite number of the specified result precision.

4.4.3.2 Action
The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

When Overflow Exception is enabled (FPSCROE=1)
and an Overflow Exception occurs, the following
actions are taken:

1. Overflow Exception is set
FPSCROX I 1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by subtracting 1536

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by subtracting 192

4. The adjusted rounded result is placed into the tar-
get FPR

5. FPSCRFPRF is set to indicate the class and sign of
the result (± Normal Number)

When Overflow Exception is disabled (FPSCROE=0)
and an Overflow Exception occurs, the following
actions are taken:

1. Overflow Exception is set
FPSCROX I 1

2. Inexact Exception is set
FPSCRXX I 1

3. The result is determined by the rounding mode
(FPSCRRN) and the sign of the intermediate result
as follows:

- Round to Nearest
Store ± Infinity, where the sign is the sign
of the intermediate result

- Round toward Zero
Store the format’s largest finite number
with the sign of the intermediate result

- Round toward + Infinity
For negative overflow, store the format’s
most negative finite number; for positive
overflow, store +Infinity

- Round toward -Infinity
For negative overflow, store -Infinity; for
positive overflow, store the format’s larg-
est finite number

4. The result is placed into the target FPR
5. FPSCRFR is undefined
6. FPSCRFI is set to 1
7. FPSCRFPRF is set to indicate the class and sign of

the result  (± Infinity or ± Normal Number)
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4.4.4 Underflow Exception

4.4.4.1 Definition
Underflow Exception is defined separately for the
enabled and disabled states:

Enabled:
Underflow occurs when the intermediate result is
“Tiny”.

Disabled:
Underflow occurs when the intermediate result is
“Tiny” and there is “Loss of Accuracy”.

A “Tiny” result is detected before rounding, when a non-
zero intermediate result computed as though both the
precision and the exponent range were unbounded
would be less in magnitude than the smallest normal-
ized number.

If the intermediate result is “Tiny” and Underflow
Exception is disabled (FPSCRUE=0) then the interme-
diate result is denormalized (see Section 4.3.4, “Nor-
malization and Denormalization” on page 119) and
rounded (see Section 4.3.6, “Rounding” on page 121)
before being placed into the target FPR.

“Loss of Accuracy” is detected when the delivered
result value differs from what would have been com-
puted were both the precision and the exponent range
unbounded.

4.4.4.2 Action
The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (FPSCRUE=1)
and an Underflow Exception occurs, the following
actions are taken:

1. Underflow Exception is set
FPSCRUX I 1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by adding 1536

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by adding 192

4. The adjusted rounded result is placed into the tar-
get FPR

5. FPSCRFPRF is set to indicate the class and sign of
the result (± Normalized Number)

 

When Underflow Exception is disabled (FPSCRUE=0)
and an Underflow Exception occurs, the following
actions are taken:

1. Underflow Exception is set
FPSCRUX I 1

2. The rounded result is placed into the target FPR
3. FPSCRFPRF is set to indicate the class and sign of

the result  (± Normalized Number, ± Denormalized
Number, or ± Zero)

4.4.5 Inexact Exception

4.4.5.1 Definition
An Inexact Exception occurs when one of two condi-
tions occur during rounding:

1. The rounded result differs from the intermediate
result assuming both the precision and the expo-
nent range of the intermediate result to be
unbounded. In this case the result is said to be
inexact. (If the rounding causes an enabled Over-
flow Exception or an enabled Underflow Exception,
an Inexact Exception also occurs only if the signifi-
cands of the rounded result and the intermediate
result differ.)

2. The rounded result overflows and Overflow Excep-
tion is disabled.

4.4.5.2 Action
The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When an Inexact Exception occurs, the following
actions are taken:

1. Inexact Exception is set
FPSCRXX I 1

2. The rounded or overflowed result is placed into the
target FPR

3. FPSCRFPRF is set to indicate the class and sign of
the result

 

The FR and FI bits are provided to allow the system
floating-point enabled exception error handler,
when invoked because of an Underflow Exception,
to simulate a “trap disabled” environment. That is,
the FR and FI bits allow the system floating-point
enabled exception error handler to unround the
result, thus allowing the result to be denormalized.

In some implementations, enabling Inexact Excep-
tions may degrade performance more than does
enabling other types of floating-point exception.

Programming Note
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4.5 Floating-Point Execution 
Models
All implementations of this architecture must provide
the equivalent of the following execution models to
ensure that identical results are obtained.

Special rules are provided in the definition of the com-
putational instructions for the infinities, denormalized
numbers and NaNs. The material in the remainder of
this section applies to instructions that have numeric
operands and a numeric result (i.e., operands and
result that are not infinities or NaNs), and that cause no
exceptions. See Section 4.3.2 and Section 4.4 for the
cases not covered here.

Although the double format specifies an 11-bit expo-
nent, exponent arithmetic makes use of two additional
bits to avoid potential transient overflow conditions.
One extra bit is required when denormalized dou-
ble-precision numbers are prenormalized. The second
bit is required to permit the computation of the adjusted
exponent value in the following cases when the corre-
sponding exception enable bit is 1:

Underflow during multiplication using a denormal-
ized operand.
Overflow during division using a denormalized divi-
sor.

The IEEE standard includes 32-bit and 64-bit arith-
metic. The standard requires that single-precision arith-
metic be provided for single-precision operands. The
standard permits double-precision floating-point opera-
tions to have either (or both) single-precision or dou-
ble-precision operands, but states that single-precision
floating-point operations should not accept double-pre-
cision operands. The Power ISA follows these guide-
lines; double-precision arithmetic instructions can have
operands of either or both precisions, while single-pre-
cision arithmetic instructions require all operands to be
single-precision. Double-precision arithmetic instruc-
tions and fcfid produce double-precision values, while
single-precision arithmetic instructions produce sin-
gle-precision values.

For arithmetic instructions, conversions from dou-
ble-precision to single-precision must be done explicitly
by software, while conversions from single-precision to
double-precision are done implicitly.

4.5.1 Execution Model for IEEE 
Operations
The following description uses 64-bit arithmetic as an
example. 32-bit arithmetic is similar except that the
FRACTION is a 23-bit field, and the single-precision
Guard, Round, and Sticky bits (described in this sec-
tion) are logically adjacent to the 23-bit FRACTION
field.

IEEE-conforming significand arithmetic is considered to
be performed with a floating-point accumulator having
the following format, where bits 0:55 comprise the sig-
nificand of the intermediate result.

Figure 58. IEEE 64-bit execution model

The S bit is the sign bit.

The C bit is the carry bit, which captures the carry out
of the significand.

The L bit is the leading unit bit of the significand, which
receives the implicit bit from the operand.

The FRACTION is a 52-bit field that accepts the frac-
tion of the operand.

The Guard (G), Round (R), and Sticky (X) bits are
extensions to the low-order bits of the accumulator. The
G and R bits are required for postnormalization of the
result. The G, R, and X bits are required during round-
ing to determine if the intermediate result is equally
near the two nearest representable values. The X bit
serves as an extension to the G and R bits by repre-
senting the logical OR of all bits that may appear to the
low-order side of the R bit, due either to shifting the
accumulator right or to other generation of low-order
result bits. The G and R bits participate in the left shifts
with zeros being shifted into the R bit. Figure 59 shows
the significance of the G, R, and X bits with respect to
the intermediate result (IR), the representable number
next lower in magnitude (NL), and the representable
number next higher in magnitude (NH). 

Figure 59. Interpretation of G, R, and X bits

Figure 60 shows the positions of the Guard, Round,
and Sticky bits for double-precision and single-preci-
sion floating-point numbers relative to the accumulator
illustrated in Figure 58. 

Figure 60. Location of the Guard, Round, and 
Sticky bits in the IEEE execution model

S C L FRACTION G R X
0 1 53 54 55

G R X  Interpretation

0 0 0 IR is exact
0 0 1

IR closer to NL0 1 0

0 1 1

1 0 0 IR midway between NL and NH
1 0 1

IR closer to NH1 1 0

1 1 1

Format Guard Round Sticky
Double G bit R bit X bit

Single 24 25 OR of 26:52, G, R, X
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The significand of the intermediate result is prepared
for rounding by shifting its contents right, if required,
until the least significant bit to be retained is in the
low-order bit position of the fraction. Four user-select-
able rounding modes are provided through FPSCRRN
as described in Section 4.3.6, “Rounding” on page 121.
Using Z1 and Z2 as defined on page 121, the rules for
rounding in each mode are as follows.

Round to Nearest

Guard bit = 0
The result is truncated. (Result exact (GRX=000)
or closest to next lower value in magnitude
(GRX=001, 010, or 011))

Guard bit = 1
Depends on Round and Sticky bits:

Case a
If the Round or Sticky bit is 1 (inclusive), the
result is incremented. (Result closest to next
higher value in magnitude (GRX=101, 110,
or 111))

Case b
If the Round and Sticky bits are 0 (result
midway between closest representable val-
ues), then if the low-order bit of the result is
1 the result is incremented. Otherwise (the
low-order bit of the result is 0) the result is
truncated (this is the case of a tie rounded
to even).

Round toward Zero
Choose the smaller in magnitude of Z1 or Z2. If the
Guard, Round, or Sticky bit is nonzero, the result is
inexact.

Round toward + Infinity
Choose Z1.

Round toward - Infinity
Choose Z2.

If rounding results in a carry into C, the significand is
shifted right one position and the exponent is incre-
mented by one. This yields an inexact result, and possi-
bly also exponent overflow. If any of the Guard, Round,
or Sticky bits is nonzero, then the result is also inexact.
Fraction bits are stored to the target FPR. For Floating
Round to Integer, Floating Round to Single-Precision,
and single-precision arithmetic instructions, low-order
zeros must be appended as appropriate to fill out the
double-precision fraction.
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4.5.2 Execution Model for
Multiply-Add Type Instructions
The Power ISA provides a special form of instruction
that performs up to three operations in one instruction
(a multiplication, an addition, and a negation). With this
added capability comes the special ability to produce a
more exact intermediate result as input to the rounder.
32-bit arithmetic is similar except that the FRACTION
field is smaller.

Multiply-add significand arithmetic is considered to be
performed with a floating-point accumulator having the
following format, where bits 0:106 comprise the signifi-
cand of the intermediate result.

Figure 61. Multiply-add 64-bit execution model

The first part of the operation is a multiplication. The
multiplication has two 53-bit significands as inputs,
which are assumed to be prenormalized, and produces
a result conforming to the above model. If there is a
carry out of the significand (into the C bit), then the sig-
nificand is shifted right one position, shifting the L bit
(leading unit bit) into the most significant bit of the
FRACTION and shifting the C bit (carry out) into the L
bit. All 106 bits (L bit, the FRACTION) of the product
take part in the add operation. If the exponents of the
two inputs to the adder are not equal, the significand of
the operand with the smaller exponent is aligned
(shifted) to the right by an amount that is added to that
exponent to make it equal to the other input’s exponent.
Zeros are shifted into the left of the significand as it is
aligned and bits shifted out of bit 105 of the significand
are ORed into the X’ bit. The add operation also pro-
duces a result conforming to the above model with the
X’ bit taking part in the add operation.

The result of the addition is then normalized, with all
bits of the addition result, except the X’ bit, participating
in the shift. The normalized result serves as the inter-
mediate result that is input to the rounder.

For rounding, the conceptual Guard, Round, and Sticky
bits are defined in terms of accumulator bits. Figure 62
shows the positions of the Guard, Round, and Sticky
bits for double-precision and single-precision float-
ing-point numbers in the multiply-add execution model.

Figure 62. Location of the Guard, Round, and
Sticky bits in the multiply-add execution
model

The rules for rounding the intermediate result are the
same as those given in Section 4.5.1.

If the instruction is Floating Negative Multiply-Add or
Floating Negative Multiply-Subtract, the final result is
negated.

S C L FRACTION X’
0 1 2 3 106

Format Guard Round Sticky
Double 53 54 OR of 55:105, X’
Single 24 25 OR of 26:105, X’
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4.6 Floating-Point Facility Instructions

For each instruction in this section that defines the use
of an Rc bit, the behavior defined for the instruction cor-
responding to Rc=1 is considered part of the Float-
ing-Point.Record category.
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4.6.1 Floating-Point Storage Access Instructions
The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.10.3, “Effective Address Calcu-
lation” on page 26.

 

4.6.1.1 Storage Access Exceptions
Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is unavail-
able.

4.6.2 Floating-Point Load Instructions
There are three basic forms of load instruction: sin-
gle-precision, double-precision, and integer. The inte-
ger form is provided by the Load Floating-Point as
Integer Word Algebraic instruction, described on
page 134. Because the FPRs support only float-
ing-point double format, single-precision Load Float-
ing-Point instructions convert single-precision data to
double format prior to loading the operand into the tar-
get FPR. The conversion and loading steps are as fol-
lows.

Let WORD0:31 be the floating-point single-precision
operand accessed from storage.

Normalized Operand
if WORD1:8 > 0 and WORD1:8 < 255 then

FRT0:1 I WORD0:1
FRT2 I ¬WORD1
FRT3 I ¬WORD1
FRT4 I ¬WORD1
FRT5:63 I WORD2:31 || 290

Denormalized Operand
if WORD1:8 = 0 and WORD9:31 ≠ 0 then
sign I WORD0
exp I -126
frac0:52 I 0b0 || WORD9:31 || 290
normalize the operand
      do while frac0 = 0
             frac0:52 I frac1:52 || 0b0

             exp I exp - 1
FRT0 I sign
FRT1:11 I exp + 1023
FRT12:63 I frac1:52

Zero / Infinity / NaN
if WORD1:8 = 255 or WORD1:31 = 0 then

FRT0:1 I WORD0:1
FRT2 I WORD1
FRT3 I WORD1
FRT4 I WORD1
FRT5:63 I WORD2:31 || 290

For double-precision Load Floating-Point instructions
and for the Load Floating-Point as Integer Word Alge-
braic instruction no conversion is required, as the data
from storage are copied directly into the FPR.

Many of the Load Floating-Point instructions have an
“update” form, in which register RA is updated with the
effective address. For these forms, if RA≠0, the effec-
tive address is placed into register RA and the storage
element (word or doubleword) addressed by EA is
loaded into FRT.

Note: Recall that RA and RB denote General Purpose
Registers, while FRT denotes a Floating-Point Regis-
ter.

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address. This extended mnemonic is
described in Section E.10, “Miscellaneous Mne-
monics” on page 720.

Programming Note
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Load Floating-Point Single D-form

lfs FRT,D(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
FRT I DOUBLE(MEM(EA, 4))

Let the effective address (EA) be the sum (RA|0)+D.

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 131) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single Indexed 
X-form

lfsx FRT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
FRT I DOUBLE(MEM(EA, 4))

Let the effective address (EA) be the sum (RA|0)+(RB).

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 131) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update 
D-form

lfsu FRT,D(RA)

EA I (RA) + EXTS(D)
FRT I DOUBLE(MEM(EA, 4))
RA I EA

Let the effective address (EA) be the sum (RA)+D.

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 131) and placed into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Single with Update 
Indexed X-form

lfsux FRT,RA,RB

EA I (RA) + (RB)
FRT I DOUBLE(MEM(EA, 4))
RA I EA

Let the effective address (EA) be the sum (RA)+(RB).

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 131) and placed into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

48 FRT RA D
0 6 11 16                                                    31 31 FRT RA RB 535 /

0 6 11 16 21 31

49 FRT RA D
0 6 11 16                                                    31

31 FRT RA RB 567 /
0 6 11 16 21 31
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Load Floating-Point Double D-form

lfd FRT,D(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
FRT I MEM(EA, 8)

Let the effective address (EA) be the sum (RA|0)+D.

The doubleword in storage addressed by EA is loaded
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double Indexed 
X-form

lfdx FRT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
FRT I MEM(EA, 8)

Let the effective address (EA) be the sum (RA|0)+(RB).

The doubleword in storage addressed by EA is loaded
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update 
D-form

lfdu FRT,D(RA)

EA I (RA) + EXTS(D)
FRT I MEM(EA, 8)
RA I EA

Let the effective address (EA) be the sum (RA)+D.

The doubleword in storage addressed by EA is loaded
into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Double with Update 
Indexed X-form

lfdux FRT,RA,RB

EA I (RA) + (RB)
FRT I MEM(EA, 8)
RA I EA

Let the effective address (EA) be the sum (RA)+(RB).

The doubleword in storage addressed by EA is loaded
into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

50 FRT RA D
0 6 11 16                                                    31 31 FRT RA RB 599 /

0 6 11 16 21 31

51 FRT RA D
0 6 11 16                                                    31

31 FRT RA RB 631 /
0 6 11 16 21 31
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Load Floating-Point as Integer Word 
Algebraic Indexed X-form

lfiwax FRT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
FRT I EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum (RA|0)+(RB).

The word in storage addressed by EA is loaded into
FRT32:63. FRT0:31 are filled with a copy of bit 0 of the
loaded word.

Special Registers Altered:
None

Load Floating-Point as Integer Word and 
Zero Indexed X-form

lfiwzx FRT,RA,RB
[Category: Floating-Point.Phased-in]

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
FRT I 320 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0)+(RB).

The word in storage addressed by EA is loaded into
FRT32:63. FRT0:31 are set to 0.

Special Registers Altered:
None

31 FRT RA RB 855 /
0 6 11 16 21 31

31 FRT RA RB 887 /
0 6 11 16 21 31
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4.6.3 Floating-Point Store Instructions
There are three basic forms of store instruction: sin-
gle-precision, double-precision, and integer. The inte-
ger form is provided by the Store Floating-Point as
Integer Word instruction, described on page 138.
Because the FPRs support only floating-point double
format for floating-point data, single-precision Store
Floating-Point instructions convert double-precision
data to single format prior to storing the operand into
storage. The conversion steps are as follows.

Let WORD0:31 be the word in storage written to.

No Denormalization Required (includes Zero / Infin-
ity / NaN)
if FRS1:11 > 896 or FRS1:63 = 0 then

WORD0:1 I FRS0:1
WORD2:31 I FRS5:34

Denormalization Required
if 874 ≤ FRS1:11 ≤ 896 then

sign I FRS0
exp I FRS1:11 - 1023
frac0:52 I 0b1 || FRS12:63
denormalize operand
       do while exp < -126
             frac0:52 I 0b0 || frac0:51
             exp I exp + 1
WORD0 I sign
WORD1:8 I 0x00
WORD9:31 I frac1:23

else WORD I undefined

Notice that if the value to be stored by a single-preci-
sion Store Floating-Point instruction is larger in magni-
tude than the maximum number representable in single
format, the first case above (No Denormalization
Required) applies. The result stored in WORD is then a
well-defined value, but is not numerically equal to the
value in the source register (i.e., the result of a sin-

gle-precision Load Floating-Point from WORD will not
compare equal to the contents of the original source
register).

For double-precision Store Floating-Point instructions
and for the Store Floating-Point as Integer Word
instruction no conversion is required, as the data from
the FPR are copied directly into storage.

Many of the Store Floating-Point instructions have an
“update” form, in which register RA is updated with the
effective address. For these forms, if RA≠0, the effec-
tive address is placed into register RA.

Note: Recall that RA and RB denote General Purpose
Registers, while FRS denotes a Floating-Point Regis-
ter.
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Store Floating-Point Single D-form

stfs FRS,D(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
MEM(EA, 4) I SINGLE((FRS))

Let the effective address (EA) be the sum (RA|0)+D.

The contents of register FRS are converted to single
format (see page 135) and stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single Indexed 
X-form

stfsx FRS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 4) I SINGLE((FRS))

Let the effective address (EA) be the sum (RA|0)+(RB).

The contents of register FRS are converted to single
format (see page 135) and stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update 
D-form

stfsu FRS,D(RA)

EA I (RA) + EXTS(D)
MEM(EA, 4) I SINGLE((FRS))
RA I EA

Let the effective address (EA) be the sum (RA)+D.

The contents of register FRS are converted to single
format (see page 135) and stored into the word in stor-
age addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Floating-Point Single with Update 
Indexed X-form

stfsux FRS,RA,RB

EA I (RA) + (RB)
MEM(EA, 4) I SINGLE((FRS))
RA I EA

Let the effective address (EA) be the sum (RA)+(RB).

The contents of register FRS are converted to single
format (see page 135) and stored into the word in stor-
age addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

52 FRS RA D
0 6 11 16                                                    31 31 FRS RA RB 663 /

0 6 11 16 21 31

53 FRS RA D
0 6 11 16                                                    31

31 FRS RA RB 695 /
0 6 11 16 21 31
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Store Floating-Point Double D-form

stfd FRS,D(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
MEM(EA, 8) I (FRS)

Let the effective address (EA) be the sum (RA|0)+D.

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double Indexed 
X-form

stfdx FRS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 8) I (FRS)

Let the effective address (EA) be the sum (RA|0)+(RB).

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update 
D-form

stfdu FRS,D(RA)

EA I (RA) + EXTS(D)
MEM(EA, 8) I (FRS)
RA I EA

Let the effective address (EA) be the sum (RA)+D.

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Floating-Point Double with Update 
Indexed X-form

stfdux FRS,RA,RB

EA I (RA) + (RB)
MEM(EA, 8) I (FRS)
RA I EA

Let the effective address (EA) be the sum (RA)+(RB).

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

54 FRS RA D
0 6 11 16                                        31 31 FRS RA RB 727 /

0 6 11 16 21 31

55 FRS RA D
0 6 11 16                                                    31

31 FRS RA RB 759 /
0 6 11 16 21 31
Chapter 4. Floating-Point Facility [Category: Floating-Point] 137



Version 2.07 B
Store Floating-Point as Integer Word 
Indexed X-form

stfiwx FRS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 4) I (FRS)32:63

Let the effective address (EA) be the sum (RA|0)+(RB).

(FRS)32:63 are stored, without conversion, into the word
in storage addressed by EA.

If the contents of register FRS were produced, either
directly or indirectly, by a Load Floating-Point Single
instruction, a single-precision Arithmetic instruction, or
frsp, then the value stored is undefined. (The contents
of register FRS are produced directly by such an
instruction if FRS is the target register for the instruc-
tion. The contents of register FRS are produced indi-
rectly by such an instruction if FRS is the final target
register of a sequence of one or more Floating-Point
Move instructions, with the input to the sequence hav-
ing been produced directly by such an instruction.)

Special Registers Altered:
None

31 FRS RA RB 983 /
0 6 11 16 21 31
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4.6.4 Floating-Point Load and Store Double Pair Instructions [Category: 
Floating-Point.Phased-Out]
For lfdp[x], the doubleword-pair in storage addressed
by EA is loaded into an even-odd pair of FPRs with the
even-numbered FPR being loaded with the leftmost
doubleword from storage and the odd-numbered FPR
being loaded with the rightmost doubleword.

For stfdp[x], the content of an even-odd pair of FPRs
is  stored into the doubleword-pair in storage
addressed by EA, with the even-numbered FPR being
stored into the leftmost doubleword in storage and the

odd-numbered FPR being stored into the rightmost
doubleword. 

  

The instructions described in this section should
not be used to access an operand in DFP
Extended format when the processor is in Lit-
tle-Endian mode.

Programming Note
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Load Floating-Point Double Pair DS-form

lfdp FRTp,DS(RA)

if RA = 0 then b I 0
else           b I(RA)
EA I b + EXTS(DS||0b00)
FRTpeven I MEM(EA,8)
FRTpodd  I MEM(EA+8, 8)

Let the effective address (EA) be the sum (RA|0) +
(DS||0b00). 

The doubleword in storage addressed by EA is placed
into the even-numbered register of FRTp. 

The doubleword in storage addressed by EA+8 is
placed into the odd-numbered register of FRTp. 

If FRTp is odd, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Double Pair Indexed 
X-form

lfdpx FRTp,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
FRTpeven I MEM(EA,8)
FRTpodd  I MEM(EA+8, 8)

Let the effective address (EA) be the sum (RA|0) +
(RB). 

The doubleword in storage addressed by EA is placed
into the even-numbered register of FRTp. 

The doubleword in storage addressed by EA+8 is
placed into the odd-numbered register of FRTp. 

If FRTp is odd, the instruction form is invalid.

Special Registers Altered:
None

Store Floating-Point Double Pair DS-form

stfdp FRSp,DS(RA)

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(DS||0b00)
MEM(EA, 8)   I FRSpeven
MEM(EA+8, 8) I FRSpodd

Let the effective address (EA) be the sum (RA|0) +
(DS||0b00). 

The contents of the even-numbered register of FRSp
are stored into the doubleword in storage addressed by
EA.

The contents of the odd-numbered register of FRSp are
stored into the doubleword in storage addressed by
EA+8.

If FRSp is odd, the instruction form is invalid.

Special Registers Altered:
None

Store Floating-Point Double Pair Indexed 
X-form

stfdpx FRSp,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 8)   I FRSpeven
MEM(EA+8, 8) I FRSpodd

Let the effective address (EA) be the sum (RA|0) +
(DS||0b00). 

The contents of the even-numbered register of FRSp
are stored into the doubleword in storage addressed by
EA.

The contents of the odd-numbered register of FRSp are
stored into the doubleword in storage addressed by
EA+8.

If FRSp is odd, the instruction form is invalid.

Special Registers Altered:
None

57 FRTp RA DS 00
0 6 11 16 30 31

31 FRTp RA RB 791 /
0 6 11 16 21 31

61 FRSp RA DS 00
0 6 11 16 30 31

31 FRSp RA RB 919 /
0 6 11 16 21 31
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4.6.5 Floating-Point Move Instructions
These instructions copy data from one floating-point
register to another, altering the sign bit (bit 0) as
described below for fneg, fabs, fnabs, and fcpsgn.
These instructions treat NaNs just like any other kind of

value (e.g., the sign bit of a NaN may be altered by
fneg, fabs, fnabs, and fcpsgn). These instructions do
not alter the FPSCR.

Floating Move Register X-form

fmr FRT,FRB (Rc=0)
fmr. FRT,FRB (Rc=1)

The contents of register FRB are placed into register
FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Negate X-form

fneg FRT,FRB (Rc=0)
fneg. FRT,FRB (Rc=1)

The contents of register FRB with bit 0 inverted are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Absolute Value X-form

fabs FRT,FRB (Rc=0)
fabs. FRT,FRB (Rc=1)

The contents of register FRB with bit 0 set to zero are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Negative Absolute Value X-form

fnabs FRT,FRB (Rc=0)
fnabs. FRT,FRB (Rc=1)

The contents of register FRB with bit 0 set to one are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Copy Sign X-form

fcpsgn FRT, FRA, FRB (Rc=0)
fcpsgn. FRT, FRA, FRB (Rc=1)

The contents of register FRB with bit 0 set to the value
of bit 0 of register FRA are placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

63 FRT /// FRB 72 Rc
0 6 11 16 21 31

63 FRT /// FRB 40 Rc
0 6 11 16 21 31

63 FRT /// FRB 264 Rc
0 6 11 16 21 31

63 FRT /// FRB 136 Rc
0 6 11 16 21 31

63 FRT FRA FRB 8 Rc
0 6 11 16 21 31
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Floating Merge Even Word X-form
[Category: Vector-Scalar]

fmrgew FRT,FRA,FRB

if MSR.FP=0 then FP_Unavailable()
FPR[FRT].word[0] ← FPR[FRA].word[0]

FPR[FRT].word[1] ← FPR[FRB].word[0]

The contents of word element 0 of FPR[FRA] are placed
into word element 0 of FPR[FRT].

The contents of word element 0 of FPR[FRB] are placed
into word element 1 of FPR[FRT].

fmrgew is treated as a Floating-Point instruction in
terms of resource availability.

Special Registers Altered
None

Floating Merge Odd Word X-form
[Category: Vector-Scalar]

fmrgow FRT,FRA,FRB

if MSR.FP=0 then FP_Unavailable()
FPR[FRT].word[0] ← FPR[FRA].word[1]

FPR[FRT].word[1] ← FPR[FRB].word[1]

The contents of word element 1 of FPR[FRA] are placed
into word element 0 of FPR[FRT].

The contents of word element 1 of FPR[FRB] are placed
into word element 1 of FPR[FRT].

fmrgow is treated as a Floating-Point instruction in
terms of resource availability.

Special Registers Altered
None

63 FRT FRA FRB 966 /
0 6 11 16 21 31

63 FRT FRA FRB 838 /
0 6 11 16 21 31
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4.6.6 Floating-Point Arithmetic Instructions

4.6.6.1 Floating-Point Elementary Arithmetic Instructions

Floating Add [Single] A-form

fadd FRT,FRA,FRB  (Rc=0)
fadd. FRT,FRA,FRB  (Rc=1) 

fadds FRT,FRA,FRB (Rc=0)
fadds. FRT,FRA,FRB (Rc=1)

The floating-point operand in register FRA is added to
the floating-point operand in register FRB.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point addition is based on exponent compari-
son and addition of the two significands. The exponents
of the two operands are compared, and the significand
accompanying the smaller exponent is shifted right,
with its exponent increased by one for each bit shifted,
until the two exponents are equal. The two significands
are then added or subtracted as appropriate, depend-
ing on the signs of the operands, to form an intermedi-
ate sum. All 53 bits of the significand as well as all three
guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum’s significand is shifted right
one bit position and the exponent is increased by one.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXISI
CR1 (if Rc=1)

Floating Subtract [Single] A-form

fsub FRT,FRA,FRB (Rc=0)
fsub. FRT,FRA,FRB (Rc=1) 

fsubs FRT,FRA,FRB (Rc=0)
fsubs. FRT,FRA,FRB (Rc=1)

The floating-point operand in register FRB is subtracted
from the floating-point operand in register FRA.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

The execution of the Floating Subtract instruction is
identical to that of Floating Add, except that the con-
tents of FRB participate in the operation with the sign
bit (bit 0) inverted.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXISI
CR1 (if Rc=1)

63 FRT FRA FRB /// 21 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB /// 21 Rc
0 6 11 16 21 26 31

63 FRT FRA FRB /// 20 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB /// 20 Rc
0 6 11 16 21 26 31
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Floating Multiply [Single] A-form

fmul FRT,FRA,FRC (Rc=0)
fmul. FRT,FRA,FRC (Rc=1)

fmuls FRT,FRA,FRC (Rc=0)
fmuls. FRT,FRA,FRC (Rc=1)

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point multiplication is based on exponent addi-
tion and multiplication of the significands.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXIMZ
CR1 (if Rc=1)

Floating Divide [Single] A-form

fdiv FRT,FRA,FRB (Rc=0)
fdiv. FRT,FRA,FRB (Rc=1) 

fdivs FRT,FRA,FRB (Rc=0)
fdivs. FRT,FRA,FRB (Rc=1)

The floating-point operand in register FRA is divided by
the floating-point operand in register FRB. The remain-
der is not supplied as a result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point division is based on exponent subtrac-
tion and division of the significands.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1 and Zero Divide Exceptions when
FPSCRZE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  ZX  XX
VXSNAN  VXIDI  VXZDZ
CR1 (if Rc=1)

63 FRT FRA /// FRC 25 Rc
0 6 11 16 21 26 31

59 FRT FRA /// FRC 25 Rc
0 6 11 16 21 26 31

63 FRT FRA FRB /// 18 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB /// 18 Rc
0 6 11 16 21 26 31
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Floating Square Root [Single] A-form

fsqrt FRT,FRB  (Rc=0)
fsqrt. FRT,FRB  (Rc=1)

fsqrts FRT,FRB (Rc=0)
fsqrts. FRT,FRB  (Rc=1)

The square root of the floating-point operand in register
FRB is placed into register FRT.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Operation with various special values of the operand is
summarized below.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF FR FI FX OX UX XX
VXSNAN VXSQRT
CR1 (if Rc=1)

Floating Reciprocal Estimate [Single] 
A-form

fre FRT,FRB  (Rc=0)
fre. FRT,FRB  (Rc=1)

fres FRT,FRB  (Rc=0)
fres. FRT,FRB  (Rc=1)

An estimate of the reciprocal of the floating-point
operand in register FRB is placed into register FRT.
Unless the reciprocal would be a zero, an infinity, the
result of a trap-disabled Overflow exception, or a
QNaN, the estimate is correct to a precision of one
part in 256 of the reciprocal of (FRB), i.e.,

where x is the initial value in FRB. 

Operation with various special values of the operand is
summarized below.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1 and Zero Divide Exceptions when
FPSCRZE=1.

The results of executing this instruction may vary
between implementations, and between different exe-
cutions on the same implementation.

Special Registers Altered:
FPRF  FR (undefined)  FI (undefined)
FX  OX  UX  ZX  XX (undefined)
VXSNAN
CR1 (if Rc=1)

63 FRT /// FRB /// 22 Rc
0 6 11 16 21 26 31

59 FRT /// FRB /// 22 Rc
0 6 11 16 21 26 31

Operand Result Exception
-∞ QNaN1 VXSQRT
< 0 QNaN1 VXSQRT
-0 -0 None
+∞ +∞ None
SNaN QNaN1 VXSNAN
QNaN QNaN None
1 No result if FPSCRVE = 1

63 FRT /// FRB /// 24 Rc
0 6 11 16 21 26 31

59 FRT /// FRB /// 24 Rc
0 6 11 16 21 26 31

Operand Result Exception
-∞ -0 None
-0 -∞1 ZX
+0 +∞1 ZX
+∞ +0 None
SNaN QNaN2 VXSNAN
QNaN QNaN None
1 No result if FPSCRZE = 1.
2 No result if FPSCRVE = 1.

ABS estimate 1 x⁄–
1 x⁄

---------------------------------------( ) 1
256
----------≤
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  Floating Reciprocal Square Root Estimate 
[Single] A-form

frsqrte FRT,FRB (Rc=0)
frsqrte. FRT,FRB (Rc=1)

frsqrtes FRT,FRB (Rc=0)
frsqrtes. FRT,FRB (Rc=1)

A estimate of the reciprocal of the square root of the
floating-point operand in register FRB is placed into
register FRT. The estimate placed into register FRT is
correct to a precision of one part in 32 of the reciprocal
of the square root of (FRB), i.e.,

where x is the initial value in FRB. 

Operation with various special values of the operand is
summarized below.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1 and Zero Divide Exceptions when
FPSCRZE=1.

The results of executing this instruction may vary
between implementations, and between different exe-
cutions on the same implementation.

Special Registers Altered:
FPRF  FR (undefined)  FI (undefined)
FX OX UX ZX XX (undefined)
VXSNAN VXSQRT
CR1 (if Rc=1)

  

For the Floating-Point Estimate instructions,  some
implementations might implement a precision
higher than the minimum architected precision.
Thus, a program may take advantage of the higher
precision instructions to increase performance by
decreasing the iterations needed for software emu-
lation of floating-point instructions. However, there
is no guarantee given about the precision which
may vary (up or down) between implementations.
Only programs targeted at a specific implementa-
tion (i.e., the program will not be migrated to
another implementation) should take advantage of
the higher precision of the instructions. All other
programs should rely on the minimum architected
precision, which will guarantee the program to run
properly across different implementations.

Programming Note

63 FRT /// FRB /// 26 Rc
0 6 11 16 21 26 31

59 FRT /// FRB /// 26 Rc
0 6 11 16 21 26 31

Operand Result Exception
-∞ QNaN2 VXSQRT
< 0 QNaN2 VXSQRT
-0 -∞1 ZX
+0 +∞1 ZX
+∞ +0 None
SNaN QNaN2 VXSNAN
QNaN QNaN None
1 No result if FPSCRZE = 1.
2 No result if FPSCRVE = 1.

See the Notes that appear with fre[s].

ABS estimate 1 x( )⁄–

1 x( )⁄
------------------------------------------------( ) 1

32
------≤

Note
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Floating Test for software Divide  X-form

[Category: Floating Point.Phased-In]
ftdiv BF,FRA,FRB

Let e_a be the unbiased exponent of the double-preci-
sion floating-point operand in register FRA.

Let e_b be the unbiased exponent of the double-preci-
sion floating-point operand in register FRB.

fe_flag is set to 1 if any of the following conditions
occurs.

The double-precision floating-point operand in reg-
ister FRA is a NaN or an Infinity.

The double-precision floating-point operand in reg-
ister FRB is a Zero, a NaN, or an Infinity.

e_b is less than or equal to -1022.

e_b is greater than or equal to 1021.

The double-precision floating-point operand in reg-
ister FRA is not a zero and the difference,
e_a - e_b, is greater than or equal to 1023.

The double-precision floating-point operand in reg-
ister FRA is not a zero and the difference,
e_a - e_b, is less than or equal to -1021.

The double-precision floating-point operand in reg-
ister FRA is not a zero and e_a is less than or
equal to -970

Otherwise fe_flag is set to 0.

fg_flag is set to 1 if either of the following conditions
occurs.

The double-precision floating-point operand in reg-
ister FRA is an Infinity.

The double-precision floating-point operand in reg-
ister FRB is a Zero, an Infinity, or a denormalized
value.

Otherwise fg_flag is set to 0.

If the implementation guarantees a relative error of
fre[s][.] of less than or equal to 2-14, then fl_flag is
set to 1. Otherwise fl_flag is set to 0.

CR field BF is set to the value
fl_flag || fg_flag || fe_flag || 0b0.

Special Registers Altered:
CR field BF

Floating Test for software Square Root  
X-form

[Category: Floating Point.Phased-In]
ftsqrt BF,FRB

Let e_b be the unbiased exponent of the double-preci-
sion floating-point operand in register FRB.

fe_flag is set to 1 if either of the following conditions
occurs.

The double-precision floating-point operand in reg-
ister FRB is a zero, a NaN, or an infinity, or a nega-
tive value.

e_b is less than or equal to -970.

Otherwise fe_flag is set to 0.

fg_flag is set to 1 if the following condition occurs.

The double-precision floating-point operand in reg-
ister FRB is a Zero, an Infinity, or a denormalized
value.

Otherwise fg_flag is set to 0.

If the implementation guarantees a relative error of
frsqrte[s][.] of less than or equal to 2-14, then fl_flag
is set to 1. Otherwise fl_flag is set to 0.

CR field BF is set to the value
fl_flag || fg_flag || fe_flag || 0b0.

Special Registers Altered:
CR field BF

 

63 BF / / FRA FRB 128 /
0 6 9 11 16 21 31 63 BF / / / / / FRB 160 /

0 6 9 11 16 21 31

ftdiv and ftsqrt are provided to accelerate software
emulation of divide and square root operations, by
performing the requisite special case checking.
Software needs only a single branch, on FE=1 (in
CR[BF]), to a special case handler. FG and FL may
provide further acceleration opportunities.

Programming Note
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4.6.6.2 Floating-Point Multiply-Add Instructions

These instructions combine a multiply and an add oper-
ation without an intermediate rounding operation. The
fraction part of the intermediate product is 106 bits wide
(L bit, FRACTION), and all 106 bits take part in the add/
subtract portion of the instruction.

Status bits are set as follows.

Overflow, Underflow, and Inexact Exception bits,
the FR and FI bits, and the FPRF field are set

based on the final result of the operation, and not
on the result of the multiplication.

Invalid Operation Exception bits are set as if the
multiplication and the addition were performed
using two separate instructions (fmul[s], followed
by fadd[s] or fsub[s]). That is, multiplication of
infinity by 0 or of anything by an SNaN, and/or
addition of an SNaN, cause the corresponding
exception bits to be set.

Floating Multiply-Add [Single] A-form

fmadd FRT,FRA,FRC,FRB (Rc=0)
fmadd. FRT,FRA,FRC,FRB (Rc=1) 

fmadds FRT,FRA,FRC,FRB (Rc=0)
fmadds. FRT,FRA,FRC,FRB (Rc=1)

The operation
FRT I [(FRA)×(FRC)] + (FRB)

is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is added to this inter-
mediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXISI  VXIMZ
CR1 (if Rc=1)

Floating Multiply-Subtract [Single] A-form

fmsub FRT,FRA,FRC,FRB (Rc=0)
fmsub. FRT,FRA,FRC,FRB (Rc=1) 

fmsubs FRT,FRA,FRC,FRB  (Rc=0)
fmsubs. FRT,FRA,FRC,FRB  (Rc=1)

The operation
FRT I [(FRA)×(FRC)] - (FRB)

is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is subtracted from
this intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXISI  VXIMZ
CR1 (if Rc=1)

63 FRT FRA FRB FRC 29 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB FRC 29 Rc
0 6 11 16 21 26 31

63 FRT FRA FRB FRC 28 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB FRC 28 Rc
0 6 11 16 21 26 31
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Floating Negative Multiply-Add [Single]  
A-form

fnmadd FRT,FRA,FRC,FRB (Rc=0)
fnmadd. FRT,FRA,FRC,FRB (Rc=1)

fnmadds FRT,FRA,FRC,FRB (Rc=0)
fnmadds. FRT,FRA,FRC,FRB (Rc=1)

The operation
FRT I - ( [(FRA)×(FRC)] + (FRB) )

is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is added to this inter-
mediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR, then negated
and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Add instruction
and then negating the result, with the following excep-
tions.

QNaNs propagate with no effect on their “sign” bit.
QNaNs that are generated as the result of a dis-
abled Invalid Operation Exception have a “sign” bit
of 0.
SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain the
“sign” bit of the SNaN.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXISI  VXIMZ
CR1 (if Rc=1)

Floating Negative Multiply-Subtract 
[Single] A-form

fnmsub FRT,FRA,FRC,FRB (Rc=0)
fnmsub. FRT,FRA,FRC,FRB (Rc=1) 

fnmsubs FRT,FRA,FRC,FRB (Rc=0)
fnmsubs. FRT,FRA,FRC,FRB (Rc=1)

The operation
FRT I - ( [(FRA)×(FRC)] - (FRB) )

is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is subtracted from
this intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR, then negated
and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Subtract
instruction and then negating the result, with the follow-
ing exceptions.

QNaNs propagate with no effect on their “sign” bit.
QNaNs that are generated as the result of a dis-
abled Invalid Operation Exception have a “sign” bit
of 0.
SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain the
“sign” bit of the SNaN.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXISI  VXIMZ
CR1 (if Rc=1)

63 FRT FRA FRB FRC 31 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB FRC 31 Rc
0 6 11 16 21 26 31

63 FRT FRA FRB FRC 30 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB FRC 30 Rc
0 6 11 16 21 26 31
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4.6.7 Floating-Point Rounding and Conversion Instructions
  

4.6.7.1 Floating-Point Rounding 
Instruction

Floating Round to Single-Precision 
X-form

frsp FRT,FRB (Rc=0)
frsp. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded to
single-precision, using the rounding mode specified by
RN, and placed into register FRT.

The rounding is described fully in Section A.1, “Float-
ing-Point Round to Single-Precision Model” on
page 685.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX VXSNAN
CR1 (if Rc=1)

4.6.7.2  Floating-Point Convert To/From 
Integer Instructions

Floating Convert To Integer Doubleword 
X-form

fctid FRT,FRB (Rc=0)
fctid. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x8000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 263-1, then the
result is 0x7FFF_FFFF_FFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -263, then
the result is 0x8000_0000_0000_0000 and VXCVI is set to
1.

Otherwise, the result is the rounded value converted to
64-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

Examples of uses of these instructions to perform
various conversions can be found in Section F.2,
“Floating-Point Conversions [Category: Float-
ing-Point]” on page 726.

Programming Note

63 FRT /// FRB 12 Rc
0 6 11 16 21 31

63 FRT /// FRB 814 Rc
0 6 11 16 21 31
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Floating Convert To Integer Doubleword 
with round toward Zero  X-form

fctidz FRT,FRB (Rc=0)
fctidz. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x8000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 263-1, then the
result is 0x7FFF_FFFF_FFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -263, then
the result is 0x8000_0000_0000_0000 and VXCVI is set to
1.

Otherwise, the result is the rounded value converted to
64-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert To Integer Doubleword 
Unsigned  X-form

[Category: Floating-Point.Phased-In]
fctidu FRT,FRB (Rc=0)
fctidu. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x0000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 264-1, then the
result is 0xFFFF_FFFF_FFFF_FFFF, and VXCVI is set to 1. 

Otherwise, if the rounded value is less than 0, then the
result is 0x0000_0000_0000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
64-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

63 FRT /// FRB 815 Rc
0 6 11 16 21 31 63 FRT /// FRB 942 Rc

0 6 11 16 21 31
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Floating Convert To Integer Doubleword 
Unsigned with round toward Zero  X-form

[Category: Floating-Point.Phased-In]
fctiduz FRT,FRB (Rc=0)
fctiduz. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x0000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 264-1, then the
result is 0xFFFF_FFFF_FFFF_FFFF, and VXCVI is set to 1. 

Otherwise, if the rounded value is less than 0, then the
result is 0x0000_0000_0000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
64-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert To Integer Word  X-form

fctiw FRT,FRB (Rc=0)
fctiw. FRT,FRB (Rc=1) 

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x8000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 231-1, then the
result is 0x7FFF_FFFF, and VXCVI is set to 1. 

Otherwise, if the rounded value is less than -231, then
the result is 0x8000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT32:63 and FRT0:31
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

63 FRT /// FRB 943 Rc
0 6 11 16 21 31

63 FRT /// FRB 14 Rc
0 6 11 16 21 31
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Floating Convert To Integer Word 
with round toward Zero X-form

fctiwz FRT,FRB (Rc=0)
fctiwz. FRT,FRB (Rc=1) 

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x8000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 231-1, then the
result is 0x7FFF_FFFF, and VXCVI is set to 1. 

Otherwise, if the rounded value is less than -231, then
the result is 0x8000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT32:63 and FRT0:31
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert To Integer Word 
Unsigned X-form

[Category: Floating-Point.Phased-In]
fctiwu FRT,FRB  (Rc=0)
fctiwu. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x0000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 232-1, then the
result is 0xFFFF_FFFF and VXCVI is set to 1. 

Otherwise, if the rounded value is less than 0,  then the
result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT32:63 and FRT0:31
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined)  FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

63 FRT /// FRB 15 Rc
0 6 11 16 21 31 63 FRT /// FRB 142 Rc

0 6 11 16 21 31
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Floating Convert To Integer Word 
Unsigned with round toward Zero X-form

[Category: Floating-Point.Phased-In]
fctiwuz FRT,FRB  (Rc=0)
fctiwuz. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x0000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 232-1, then the
result is 0xFFFF_FFFF and VXCVI is set to 1. 

Otherwise, if the rounded value is less than 0.0,  then
the result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT32:63 and FRT0:31
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert From Integer 
Doubleword X-form

fcfid FRT,FRB (Rc=0)
fcfid. FRT,FRB (Rc=1)

The 64-bit signed fixed-point operand in register FRB is
converted to an infinitely precise floating-point integer.
The result of the conversion is rounded to double-preci-
sion, using the rounding mode specified by RN, and
placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPRF is set to the class and sign of the result. FR is set if
the result is incremented when rounded. FI is set if the
result is inexact.

Special Registers Altered:
FPRF FR FI FX XX
CR1 (if Rc=1)

 

63 FRT /// FRB 143 Rc
0 6 11 16 21 31

63 FRT /// FRB 846 Rc
0 6 11 16 21 31

Converting a signed integer word to double-preci-
sion floating-point can be accomplished by loading
the word from storage using Load Float Word Alge-
braic Indexed and then using fcfid.

Programming Note
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Floating Convert From Integer 
Doubleword Unsigned X-form

[Category: Floating-Point.Phased-In]
fcfidu FRT,FRB (Rc=0)
fcfidu. FRT,FRB (Rc=1)

The 64-bit unsigned fixed-point operand in register
FRB is converted to an infinitely precise floating-point
integer. The result of the conversion is rounded to dou-
ble-precision, using the rounding mode specified by
FPSCRRN, and placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPSCRFPRF is set to the class and sign of the result. FR
is set if the result is incremented when rounded.
FPSCRFI is set if the result is inexact.

Special Registers Altered:
FPRF  FR  FI
FX  XX
CR1 (if Rc=1)

 

Floating Convert From Integer 
Doubleword Single X-form

[Category: Floating-Point.Phased-In]
fcfids FRT,FRB (Rc=0)
fcfids. FRT,FRB (Rc=1)

The 64-bit signed fixed-point operand in register FRB is
converted to an infinitely precise floating-point integer.
The result of the conversion is rounded to single-preci-
sion, using the rounding mode specified by FPSCRRN,
and placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPSCRFPRF is set to the class and sign of the result. FR
is set if the result is incremented when rounded.
FPSCRFI is set if the result is inexact.

Special Registers Altered:
FPRF  FR  FI
FX  XX
CR1 (if Rc=1)

 

63 FRT /// FRB 974 Rc
0 6 11 16 21 31

Converting an unsigned integer word to dou-
ble-precision floating-point can be accomplished by
loading the word from storage using Load Float
Word and Zero Indexed and then using fcfidu.

Programming Note

59 FRT /// FRB 846 Rc
0 6 11 16 21 31

Converting a signed integer word to single-preci-
sion floating-point can be accomplished by loading
the word from storage using Load Float Word Alge-
braic Indexed and then using fcfids.

Programming Note
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Floating Convert From Integer 
Doubleword Unsigned Single X-form

[Category: Floating-Point.Phased-In]
fcfidus FRT,FRB (Rc=0)
fcfidus. FRT,FRB (Rc=1)

The 64-bit unsigned fixed-point operand in register
FRB is converted to an infinitely precise floating-point
integer. The result of the conversion is rounded to sin-
gle-precision, using the rounding mode specified by
FPSCRRN, and placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPSCRFPRF is set to the class and sign of the result. FR
is set if the result is incremented when rounded.
FPSCRFI is set if the result is inexact.

Special Registers Altered:
FPRF  FR  FI
FX  XX
CR1 (if Rc=1)

 

4.6.7.3 Floating Round to Integer 
Instructions
The Floating Round to Integer instructions provide
direct support for rounding functions found in high level
languages. For example, frin, friz, frip, and frim imple-
ment C++ round(), trunc(), ceil(), and floor(), respec-
tively. Note that frin does not implement the IEEE
Round to Nearest function, which is often further
described as “ties to even.” The rounding performed by
these instructions is described fully in Section A.4,
“Floating-Point Round to Integer Model” on page 694. 

  

59 FRT /// FRB 974 Rc
0 6 11 16 21 31

Converting a unsigned integer word to single-preci-
sion floating-point can be accomplished by loading
the word from storage using Load Float Word and
Zero Indexed and then using fcfidus.

Programming Note

These instructions set FPSCRFR FI to 0b00 regard-
less of whether the result is inexact or rounded
because there is a desire to preserve the value of
FPSCRXX. Furthermore, it is believed that most
programs do not need to know whether these
rounding operations produce inexact or rounded
results. If it is necessary to determine whether the
result is inexact or rounded, software must com-
pare the result with the original source operand.

Programming Note
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Floating Round to Integer Nearest X-form

frin FRT,FRB  (Rc=0)
frin. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded
to an integral value as follows, with the result placed
into register FRT. If the sign of the operand is positive,
(FRB) + 0.5 is truncated to an integral value, otherwise
(FRB) - 0.5 is truncated to an integral value. 

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE = 1. 

Special Registers Altered: 
FPRF FR (set to 0) FI (set to 0) 
FX 
VXSNAN 
CR1  (if Rc = 1)

Floating Round to Integer Plus X-form

frip FRT,FRB  (Rc=0)
frip. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded
to an integral value using the rounding mode round
toward +infinity, and the result is placed into register
FRT. 

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE = 1.

Special Registers Altered: 
FPRF FR (set to 0) FI (set to 0) 
FX 
VXSNAN 
CR1  (if Rc = 1)

Floating Round to Integer Toward Zero 
X-form

friz FRT,FRB  (Rc=0)
friz. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded
to an integral value using the rounding mode round
toward zero, and the result is placed into register FRT. 

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE = 1.

Special Registers Altered: 
FPRF FR (set to 0) FI (set to 0) 
FX 
VXSNAN 
CR1  (if Rc = 1)

Floating Round to Integer Minus X-form

frim FRT,FRB  (Rc=0)
frim. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded
to an integral value using the rounding mode round
toward -infinity, and the result is placed into register
FRT. 

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE = 1.

Special Registers Altered: 
FPRF FR (set to 0) FI (set to 0) 
FX 
VXSNAN 
CR1  (if Rc = 1)

63 FRT /// FRB 392 Rc
0 6 11 16 21 31

63 FRT /// FRB 456 Rc
0 6 11 16 21 31

63 FRT /// FRB 424 Rc
0 6 11 16 21 31

63 FRT /// FRB 488 Rc
0 6 11 16 21 31
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4.6.8 Floating-Point Compare Instructions
The floating-point Compare instructions compare the
contents of two floating-point registers. Comparison
ignores the sign of zero (i.e., regards +0 as equal to
-0). The comparison can be ordered or unordered.

The comparison sets one bit in the designated CR field
to 1 and the other three to 0. The FPCC is set in the
same way.

The CR field and the FPCC are set as follows.

Floating Compare Unordered X-form

fcmpu BF,FRA,FRB

if (FRA) is a NaN or
   (FRB) is a NaN then c I 0b0001
else if (FRA) < (FRB) then c I 0b1000
else if (FRA) > (FRB) then c I 0b0100
else                       c I 0b0010
FPCC I c
CR4×BF:4×BF+3 I c
if (FRA) is an SNaN or
   (FRB) is an SNaN then
     VXSNAN I 1

The floating-point operand in register FRA is compared
to the floating-point operand in register FRB. The result
of the compare is placed into CR field BF and the
FPCC.

If either of the operands is a NaN, either quiet or signal-
ing, then CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling NaN,
then VXSNAN is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN

Floating Compare Ordered  X-form

fcmpo BF,FRA,FRB

if (FRA) is a NaN or
   (FRB) is a NaN then c I 0b0001
else if (FRA) < (FRB) then c I 0b1000
else if (FRA) > (FRB) then c I 0b0100
else                       c I 0b0010
FPCC I c
CR4×BF:4×BF+3 I c
if (FRA) is an SNaN or
   (FRB) is an SNaN then
     VXSNAN I 1
     if VE = 0 then VXVC I 1
else if (FRA) is a QNaN or
   (FRB) is a QNaN then VXVC I 1

The floating-point operand in register FRA is compared
to the floating-point operand in register FRB. The result
of the compare is placed into CR field BF and the
FPCC.

If either of the operands is a NaN, either quiet or signal-
ing, then CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling NaN,
then VXSNAN is set and, if Invalid Operation is dis-
abled (VE=0), VXVC is set. If neither operand is a Sig-
naling NaN but at least one operand is a Quiet NaN,
then VXVC is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN VXVC

Bit Name Description
0 FL (FRA) < (FRB)
1 FG (FRA) > (FRB)
2 FE (FRA) = (FRB)
3 FU (FRA) ? (FRB) (unordered)

63 BF // FRA FRB 0 /
0 6 9 11 16 21 31

63 BF // FRA FRB 32 /
0 6 9 11 16 21 31
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4.6.9 Floating-Point Select Instruction

Floating Select A-form

fsel FRT,FRA,FRC,FRB (Rc=0)
fsel. FRT,FRA,FRC,FRB (Rc=1)

if (FRA) ≥ 0.0 then FRT I (FRC)
else FRT I (FRB)

The floating-point operand in register FRA is compared
to the value zero. If the operand is greater than or equal
to zero, register FRT is set to the contents of register
FRC. If the operand is less than zero or is a NaN, regis-
ter FRT is set to the contents of register FRB. The com-
parison ignores the sign of zero (i.e., regards +0 as
equal to -0).

Special Registers Altered:
CR1 (if Rc=1)

  

63 FRT FRA FRB FRC 23 Rc
0 6 11 16 21 26 31

Examples of uses of this instruction can be found in
Sections F.2, “Floating-Point Conversions [Cate-
gory: Floating-Point]” on page 726 and F.3, “Float-
ing-Point Selection [Category: Floating-Point]” on
page 730.

Warning: Care must be taken in using fsel if IEEE
compatibility is required, or if the values being
tested can be NaNs or infinities; see Section F.3.4,
“Notes” on page 730.

Programming Note
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4.6.10 Floating-Point Status and Control Register Instructions
Every Floating-Point Status and Control Register
instruction synchronizes the effects of all floating-point
instructions executed by a given processor. Executing
a Floating-Point Status and Control Register instruction
ensures that all floating-point instructions previously ini-
tiated by the given processor have completed before
the Floating-Point Status and Control Register instruc-
tion is initiated, and that no subsequent floating-point
instructions are initiated by the given processor until
the Floating-Point Status and Control Register instruc-
tion has completed. In particular:

All exceptions that will be caused by the previously
initiated instructions are recorded in the FPSCR
before the Floating-Point Status and Control Reg-
ister instruction is initiated.

All invocations of the system floating-point enabled
exception error handler that will be caused by the
previously initiated instructions have occurred
before the Floating-Point Status and Control Reg-
ister instruction is initiated.

No subsequent floating-point instruction that
depends on or alters the settings of any FPSCR
bits is initiated until the Floating-Point Status and
Control Register instruction has completed.

(Floating-point Storage Access instructions are not
affected.)

The instruction descriptions in this section refer to
“FPSCR fields,” where FPSCR field k is FPSCR bits
4xk:4xk+3.

Move From FPSCR X-form

mffs FRT (Rc=0)
mffs. FRT (Rc=1)

The contents of the FPSCR are placed into register
FRT.

Special Registers Altered:
CR1 (if Rc=1)

Move to Condition Register from FPSCR 
X-form

mcrfs BF,BFA

The contents of FPSCR32:63 field BFA are copied to
Condition Register field BF. All exception bits copied
are set to 0 in the FPSCR. If the FX bit is copied, it is
set to 0 in the FPSCR.

Special Registers Altered:
CR field BF
FX  OX (if BFA=0)
UX  ZX  XX  VXSNAN (if BFA=1)
VXISI  VXIDI  VXZDZ  VXIMZ (if BFA=2)
VXVC (if BFA=3)
VXSOFT VXSQRT VXCVI (if BFA=5)

63 FRT /// /// 583 Rc
0 6 11 16 21 31

63 BF // BFA // /// 64 /
0 6 9 11 14 16 21 31
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Move To FPSCR Field Immediate X-form

mtfsfi BF,U,W  (Rc=0)
mtfsfi. BF,U,W (Rc=1)

The value of the U field is placed into FPSCR field
BF+8%(1-W).

FPSCRFX is altered only if BF = 0 and W = 0.

Special Registers Altered:
FPSCR field BF + 8%(1-W)
CR1 (if Rc=1)

  

  

Move To FPSCR Fields XFL-form

mtfsf FLM,FRB,L,W (Rc=0)
mtfsf. FLM,FRB,L,W (Rc=1)

The FPSCR is modified as specified by the FLM, L, and
W fields.

L = 0

The contents of register FRB are placed into the
FPSCR under control of the W field and the field
mask specified by FLM. W and the field mask iden-
tify the 4-bit fields affected. Let i be an integer in
the range 0-7. If FLMi=1 then FPSCR field k is set
to the contents of the corresponding field of regis-
ter FRB, where k = i+8%(1-W).

L = 1

The contents of register FRB are placed into the
FPSCR. 

FPSCRFX is not altered implicitly by this instruction.

Special Registers Altered:
FPSCR fields selected by mask, L, and W
CR1 (if Rc=1)

  

  

  

63 BF // /// W U / 134 Rc
0 6 9 11 15 16 20 21 31

mtfsfi serves as both a basic and an extended
mnemonic. The Assembler will recognize a mtfsfi
mnemonic with three operands as the basic form,
and a mtfsfi mnemonic with two operands as the
extended form. In the extended form the W oper-
and is omitted and assumed to be 0.

When FPSCR32:35 is specified, bits 32 (FX) and 35
(OX) are set to the values of U0 and U3 (i.e., even if
this instruction causes OX to change from 0 to 1,
FX is set from U0 and not by the usual rule that FX
is set to 1 when an exception bit changes from 0 to
1). Bits 33 and 34 (FEX and VX) are set according
to the usual rule, given on page 115, and not from
U1:2.

Programming Note

Programming Note

63 L FLM W FRB 711 Rc
0 6 7 15 16 21 31

mtfsf serves as both a basic and an extended
mnemonic. The Assembler will recognize a mtfsf
mnemonic with four operands as the basic form,
and a mtfsf mnemonic with two operands as the
extended form. In the extended form the W and L
operands are omitted and both are assumed to be
0.

Updating fewer than eight fields of the FPSCR may
have substantially poorer performance on some
implementations than updating eight fields or all of
the fields.

If L=1 or if L=0 and FPSCR32:35 is specified, bits 32
(FX) and 35 (OX) are set to the values of (FRB)32
and (FRB)35 (i.e., even if this instruction causes OX
to change from 0 to 1, FX is set from (FRB)32 and
not by the usual rule that FX is set to 1 when an
exception bit changes from 0 to 1). Bits 33 and 34
(FEX and VX) are set according to the usual rule,
given on page 115, and not from (FRB)33:34.

Programming Note

Programming Note

Programming Note
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Move To FPSCR Bit 0 X-form

mtfsb0 BT (Rc=0)
mtfsb0. BT (Rc=1)

Bit BT+32 of the FPSCR is set to 0.

Special Registers Altered:
FPSCR bit BT+32
CR1 (if Rc=1)

  

Move To FPSCR Bit 1 X-form

mtfsb1 BT (Rc=0)
mtfsb1. BT (Rc=1)

Bit BT+32 of the FPSCR is set to 1.

Special Registers Altered:
FPSCR bits BT+32 and FX
CR1  (if Rc=1)

   

63 BT /// /// 70 Rc
0 6 11 16 21 31

Bits 33 and 34 (FEX and VX) cannot be explicitly
reset.

Programming Note

63 BT /// /// 38 Rc
0 6 11 16 21 31

Bits 33 and 34 (FEX and VX) cannot be explicitly
set.

Programming Note
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Chapter 5.  Decimal Floating-Point [Category: Decimal 
Floating-Point]

5.1 Decimal Floating-Point (DFP) 
Facility Overview
This chapter describes the behavior of the decimal
floating-point facility, the supported data types, formats,
and classes, and the usage of registers. Also included
are the execution model, exceptions, and instructions
supported by the decimal floating-point facility.

The decimal floating-point (DFP) facility shares the 32
floating-point registers (FPRs) and the Floating-Point
Status and Control Register (FPSCR) with the float-
ing-point (BFP) facility.   However, the interpretation of
data formats in the FPRs, and the meaning of some
control and status bits in the FPSCR are different
between the BFP and DFP facilities.

The DFP facility also shares the Condition Register
(CR) with the fixed-Point facility,  the BFP faciltiy, and
the vector facility.

The DFP facility supports three DFP data formats: DFP
Short (single precision), DFP Long (double precision),
and DFP Extended (quad precision). Most operations
are performed on DFP Long or DFP Extended format
directly. Support for DFP Short is limited to conversion
to and from DFP Long. Some DFP instructions operate
on other data types, including signed or unsigned
binary fixed-point data, and signed or unsigned decimal
data.

DFP instructions are provided to perform arithmetic,
compare, test, quantum-adjustment, conversion, and
format operations on operands held in FPRs or FPR
pairs. 

Arithmetic instructions

These instructions perform addition, subtraction,
multiplication, and division operations.

Compare instructions

These instructions perform a comparison opera-
tion on the numerical value of two DFP operands. 

Test instructions

These instructions test the data class, the data
group, the exponent, or the number of significant
digits of a DFP operand.

Quantum-adjustment instructions

These instructions convert a DFP number to a
result in the form that has the designated expo-
nent, which may be explicitly or implicitly specified.

Conversion instructions

These instructions perform conversion between
different data formats or data types.

Format instructions

These instructions facilitate composing or decom-
posing a DFP operand.

These instructions are described in Section 5.6  “DFP
Instruction Descriptions” on page 182.

The three DFP data formats allow finite numbers to be
represented with different precision and ranges. Spe-
cial codes are also provided to represent +Infinity,
-Infinity, Quiet NaN (Not-a-Number), and Signaling
NaN. Operations involving infinities produce results
obeying traditional mathematical conventions. NaNs
have no mathematical interpretation. The encoding of
NaNs provides a diagnostic information field. This diag-
nostic field may be used to indicate such things as the
source of an uninitialized variable or the reason an
invalid result was produced.

The DFP processor recognizes a set of DFP excep-
tions which are indicated via bits set in the FPSCR.
Additionally, the DFP exception actions depend on the
setting of the various exception enable bits in the
FPSCR.

The following DFP exceptions are detected by the DFP
processor. The exception status bits in the FPSCR are
indicated in parentheses.

Invalid Operation Exception (VX)
SNaN (VXSNAN)
∞ - ∞ (VXISI)
∞ ÷ ∞ (VXIDI)
0  ÷  0 (VXZDZ)
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∞  %  0 (VXIMZ)
Invalid Compare (VXVC)
Invalid conversion (VXCVI)

Zero Divide Exception (ZX)
Overflow Exception (OX)
Underflow Exception (UX)
Inexact Exception (XX)

Each DFP exception and each category of Invalid
Operation Exception has an exception status bit in the
FPSCR. In addition, each of the five DFP exceptions
has a corresponding enable bit in the FPSCR. These
enable bits enable or disable the invocation of the sys-
tem floating-point enabled exception error handler, and
may affect the setting of some exception status bits in
the FPSCR.

The usage of these bits by the DFP facility differs from
the usage by the BFP facility. Section 5.5.10  “DFP
Exceptions” on page 174 provides a detailed discus-
sion of DFP exceptions, including the effects of the
enable bits.

5.2 DFP Register Handling
The following sections describe first how the float-
ing-point registers are utilized by the DFP facility. The
subsequent section covers the DFP usage of CR and
FPSCR.

5.2.1 DFP Usage of Floating-Point 
Registers
The DFP facility shares the same 32 64-bit FPRs with
the BFP facility. Like the FP instructions, DFP instruc-
tions also use 5-bit fields for designating the FPRs to
hold the source or target operands.

When data in DFP Short format is held in a FPR, it
occupies the rightmost 32 bits of the FPR. The Load
Floating-Point as Integer Word Algebraic instruction is
provided to load the rightmost 32 bits of a FPR with a
single-word data from storage. The Store Floating-Point
as Integer Word instruction is available to store the
rightmost 32 bits of a FPR to a storage location.

Data in DFP Long format, 64-bit binary fixed-point val-
ues, or 64-bit BCD values is held in a FPR using all 64
bits. Data of 64 bits may be loaded from storage via any
of the Load Floating-Point Double instructions and
stored via any of the Store Floating-Point Double
instructions. 

Data in DFP Extended format or 128-bit BCD values is
held in an even-odd FPR pair using all 128 bits. Data of
128 bits must be loaded into the desired even-odd pair
of floating-point registers using an appropriate
sequence of the Load Floating-Point Double instruc-
tions and stored using an appropriate sequence of the
Store Floating-Point Double instructions.

Data used as a source operand by any Decimal Float-
ing-Point instruction that was produced, either directly
or indirectly, by a Load Floating-Point Single instruction,
a Floating Round to Single-Precision instruction, or a
binary floating-point single-precision arithmetic instruc-
tion is boundedly undefined.

When an even-odd FPR pair is used to hold a 128-bit
operand, the even-numbered FPR is used to hold the
leftmost doubleword of the operand and the next
higher-numbered FPR is used to hold the rightmost
doubleword. A DFP instruction designating an
odd-numbered FPR for a 128-bit operand is an invalid
instruction form.

  

The bit definitions for the FPSCR are as follows.

Bit(s) Description

0:28 Reserved

29:31 DFP Rounding Control (DRN)
See Section 5.5.2, “Rounding Mode Specifi-
cation” on page 171.

000Round to Nearest, Ties to Even
001Round toward Zero
010Round toward +Infinity
011Round toward -Infinity
100Round to Nearest, Ties away from 0
101Round to Nearest, Ties toward 0
110Round to away from Zero
111Round to Prepare for Shorter Precision

  

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mtfsfi
and mtfsf, implicitly sets FPSCRFX to 1 if that
instruction causes any of the floating-point
exception bits in the FPSCR to change from 0
to 1. mcrfs, mtfsfi, mtfsf, mtfsb0, and
mtfsb1 can alter FPSCRFX explicitly.

33 Floating-Point Enabled Exception Sum-
mary (FEX)
This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits.  mcrfs, mtfsfi, mtfsf, mtfsb0,
and mtfsb1 cannot alter FPSCRFEX explicitly.

34 Floating-Point Invalid Operation Exception
Summary (VX)
This bit is the OR of all the Invalid Operation

The Floating-Point Move instructions can be used
to move operands between FPRs.

FPSCR28 is reserved for extension of the
DRN field, therefore DRN may be set
using the mtfsfi instruction to set the
rounding mode.

Programming Note

Programming Note
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exception bits. mcrfs, mtfsfi, mtfsf, mtfsb0,
and mtfsb1 cannot alter FPSCRVX explicitly.

35 Floating-Point Overflow Exception (OX)See
Section 5.5.10.3, “Overflow Exception” on
page 177.

36 Floating-Point Underflow Exception (UX)
See Section 5.5.10.4, “Underflow Exception”
on page 178.

37 Floating-Point Zero Divide Exception (ZX)
See Section 5.5.10.2, “Zero Divide Exception”
on page 177.

38 Floating-Point Inexact Exception (XX)
See Section 5.5.10.5, “Inexact Exception” on
page 179.

FPSCRXX is a sticky version of FPSCRFI (see
below).  Thus the following rules completely
describe how FPSCRXX is set by a given
instruction.

If the instruction affects FPSCRFI, the
new value of FPSCRXX is obtained by
ORing the old value of FPSCRXX with
the new value of FPSCRFI.
If the instruction does not affect
FPSCRFI, the value of FPSCRXX is
unchanged.

39 Floating-Point Invalid Operation Exception
(SNaN) (VXSNAN)
See Section 5.5.10.1, “Invalid Operation
Exception” on page 176.

40 Floating-Point Invalid Operation Exception
(∞ - ∞) (VXISI)
See Section 5.5.10.1.

41 Floating-Point Invalid Operation Exception
(∞ + ∞) (VXIDI)
See Section 5.5.10.1.

142 Floating-Point Invalid Operation Exception
(0+ 0) (VXZDZ)
See Section 5.5.10.1.

43 Floating-Point Invalid Operation Exception
(∞ % 0) (VXIMZ)
See Section 5.5.10.1.

44 Floating-Point Invalid Operation Exception
(Invalid Compare) (VXVC)
See Section 5.5.10.1.

45 Floating-Point Fraction Rounded (FR)
The last Arithmetic or Rounding and Conver-
sion instruction incremented the fraction dur-
ing rounding. See Section 5.5.1, “Rounding”
on page 170. This bit is not sticky.

46 Floating-Point Fraction Inexact (FI)
The last Arithmetic or Rounding and Conver-
sion instruction either produced an inexact
result during rounding or caused a disabled

Overflow Exception. See Section 5.5.1. This
bit is not sticky.

See the definition of FPSCRXX, above,
regarding the relationship between FPSCRFI
and FPSCRXX.

47:51 Floating-Point Result Flags (FPRF)
This field is set as described below.  For arith-
metic, rounding, and conversion instructions,
the field is set based on the result placed into
the target register, except that if any portion of
the result is undefined then the value placed
into FPRF is undefined.

47 Floating-Point Result Class Descriptor (C)
Arithmetic, rounding, and conversion instruc-
tions may set this bit with the FPCC bits, to
indicate the class of the result as shown in
Figure 63 on page 166.

48:51 Floating-Point Condition Code (FPCC)
Floating-point Compare and DFP Test instruc-
tions set one of the FPCC bits to 1 and the
other three FPCC bits to 0. Arithmetic, round-
ing, and conversion instructions may set the
FPCC bits with the C bit, to indicate the class
of the result as shown in Figure 63 on
page 166. Note that in this case the high-order
three bits of the FPCC retain their relational
significance indicating that the value is less
than, greater than, or equal to zero.

48 Floating-Point Less Than or Negative (FL
or <)

49 Floating-Point Greater Than or Positive
(FG or >)

50 Floating-Point Equal or Zero (FE or =)

51 Floating-Point Unordered or NaN (FU or ?)

52 Reserved

53 Floating-Point Invalid Operation Exception
(Software Request) (VXSOFT)
This bit can be altered only by mcrfs, mtfsfi,
mtfsf, mtfsb0, or mtfsb1. See
Section 5.5.10.1, “Invalid Operation Excep-
tion” on page 176.

54 Neither used nor changed by DFP.

  

55 Floating-Point Invalid Operation Exception
(Invalid Conversion) (VXCVI)
See Section 5.5.10.1.

Although the architecture does not pro-
vide a DFP square root instruction, if soft-
ware simulates such an instruction, it
should set bit 54 whenever the source
operand of the square root function is
invalid.

Programming Note
Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 165



Version 2.07 B
56 Floating-Point Invalid Operation Exception
Enable (VE)
See Section 5.5.10.1.

57 Floating-Point Overflow Exception Enable
(OE)
See Section 5.5.10.3, “Overflow Exception” on
page 177.

58 Floating-Point Underflow Exception Enable
(UE)
See Section 5.5.10.4, “Underflow Exception”
on page 178.

59 Floating-Point Zero Divide Exception
Enable (ZE)
See Section 5.5.10.2, “Zero Divide Exception”
on page 177.

60 Floating-Point Inexact Exception Enable
(XE)
See Section 5.5.10.5, “Inexact Exception” on
page 179

61 Reserved (not used by DFP)

62:63 Binary Floating-Point Rounding Control
(RN)
See Section 5.5.1, “Rounding” on page 170.

00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

Figure 63. Floating-Point Result Flags

5.3 DFP Support for Non-DFP 
Data Types
In addition to the DFP data types, the DFP processor
provides limited support for the following non-DFP data
types: signed or unsigned binary fixed-point data, and
signed or unsigned decimal data.

In unsigned binary fixed-point data, all bits are used to
express the absolute value of the number.  For signed
binary fixed-point data, the leftmost bit represents the

sign, which is followed by the numeric field.  Positive
numbers are represented in true binary notation with
the sign bit set to zero.  When the value is zero, all bits
are zeros, including the sign bit.  Negative numbers are
represented in two’s complement binary notation with a
one in the sign-bit position.

For decimal data, each byte contains a pair of four-bit
nibbles; each four-bit nibble contains a
binary-coded-decimal (BCD) code. There are two kinds
of BCD codes: digit code and sign code. For unsigned
decimal data, all nibbles contain a digit code (D) as
shown in Figure 64 

Figure 64. Format for Unsigned Decimal Data

For signed decimal data, the rightmost nibble contains
a sign code (S) and all other nibbles contain a digit
code as shown in Figure 65. 

Figure 65. Format for Signed Decimal Data

The decimal digits 0-9 have the binary encoding
0000-1001. The preferred plus-sign codes are 1100
and 1111. The preferred minus sign code is 1101.
These are the sign codes generated for the results of
the Decode DPD To BCD instruction. A selection is pro-
vided by this instruction to specify which of the two pre-
ferred plus sign codes is to be generated. Alternate
sign codes are also recognized as valid in the sign
position: 1010 and 1110 are alternate sign codes for
plus, and 1011 is an alternate sign code for minus.
Alternate sign codes are accepted for any source oper-
and, but are not generated as a result by the instruc-
tion. When an invalid digit or sign code is detected by
the Encode BCD To DPD instruction, an invalid-opera-

Result 
Flags Result Value Class

C  <  >  =  ?
  0  0  0  0  1       Signaling NaN (DFP only)
  1  0  0  0  1      Quiet NaN
  0  1  0  0  1    - Infinity
  0  1  0  0  0    - Normal Number
  1  1  0  0  0    - Subnormal Number
  1  0  0  1  0    - Zero
  0  0  0  1  0    + Zero
  1  0  1  0  0    + Subnormal Number
  0  0  1  0  0    + Normal Number
  0  0  1  0  1    + Infinity

D D D D . . . D D D D

D D D D . . . D D D S
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tion exception occurs. A summary of digit and sign
codes are provided in Figure 66. 

Figure 66. Summary of BCD Digit and Sign Codes

5.4 DFP Number Representation
A DFP finite number consists of three components: a
sign bit, a signed exponent, and a significand. The
signed exponent is a signed binary integer. The signifi-
cand consists of a number of decimal digits, which are
to the left of the implied decimal point. The rightmost
digit of the significand is called the units digit. The
numerical value of a DFP finite number is represented
as (-1)sign % significand % 10exponent and the unit value
of this number is (1 % 10exponent), which is called the
quantum.

DFP finite numbers are not normalized. This allows
leading zeros and trailing zeros to exist in the signifi-
cand. This unnormalized DFP number representation
allows some values to have redundant forms; each
form represents the DFP number with a different com-
bination of the significand value and the exponent
value. For example, 1000000 % 105 and 10 % 1010 are
two different forms of the same numerical value. A form
of this number representation carries information about
both the numerical value and the quantum of a DFP
finite number. 

The significant digits of a DFP finite number are the dig-
its in the significand beginning with the leftmost non-
zero digit and ending with the units digit.

5.4.1 DFP Data Format
DFP numbers and NaNs may be represented in FPRs
in any of the three data formats: DFP Short, DFP Long,
or DFP Extended. The contents of each data format
represent encoded information. Special codes are
assigned to NaNs and infinities. Different formats sup-
port different sizes in both significand and exponent.
Arithmetic, compare, test, quantum-adjustment, and
format instructions are provided for DFP Long and DFP
Extended formats only. 

The sign is encoded as a one bit binary value. Signifi-
cand is encoded as an unsigned decimal integer in two
distinct parts. The leftmost digit (LMD) of the signifi-
cand is encoded as part of the combination field; the
remaining digits of the significand are encoded in the
trailing significand field. The exponent is contained in
the combination field in two parts. However, prior to
encoding, the exponent is converted to an unsigned
binary value called the biased exponent by adding a
bias value which is a constant for each format. The two
leftmost bits of the biased exponent are encoded with
the leftmost digit of the significand in the leftmost bits of
the combination field.  The rest of the biased exponent
occupies the remaining portion of the combination field.

5.4.1.1 Fields Within the Data Format
The DFP data representation comprises three fields, as
diagrammed below for each of the three formats:

The fields are defined as follows:

Sign bit (S)
The sign bit is in bit 0 of each format, and is zero for
plus and one for minus.

Combination field (G)
As the name implies, this field provides a combination
of the exponent and the left-most digit (LMD) of the sig-
nificand, for finite numbers, or provides a special code

Binary 
Code

Recognized As

Digit Sign

0000 0 Invalid

0001 1 Invalid

0010 2 Invalid

0011 3 Invalid

0100 4 Invalid

0101 5 Invalid

0110 6 Invalid

0111 7 Invalid

1000 8 Invalid

1001 9 Invalid

1010 Invalid Plus

1011 Invalid Minus

1100 Invalid Plus (preferred; option 1)

1101 Invalid Minus (preferred)

1110 Invalid Plus

1111 Invalid Plus (preferred; option 2)

S G T
0 1 12 31

Figure 67. DFP Short format

S G T
0 1 14 63

Figure 68. DFP Long format

S G T
0 1 18 63

T (continued)
64 127

Figure 69. DFP Extended format
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for denoting the value as either a Not-a-Number or an
Infinity.

The first 5 bits of the combination field contain the
encoding of NaN or infinity, or the two leftmost bits of
the biased exponent and the leftmost digit (LMD) of the
significand. The following tables show the encoding:

 

Figure 70. Encoding of the G field for Special
Symbols 

Figure 71. Encoding of bits 0:4 of the G field for
Finite Numbers

For DFP finite numbers, the rightmost N-5 bits of the
N-bit combination field contain the remaining bits of the
biased exponent. For NaNs, bit 5 of the combination
field is used to distinguish a Quiet NaN from a Signal-
ing NaN; the remaining bits in a source operand are
ignored and they are set to zeros in a target operand by
most operations. For infinities, the rightmost N-5 bits of
the N-bit combination field of a source operand are
ignored and they are set to zeros in a target operand by
most operations.

Trailing Significand field (T)
For DFP finite numbers, this field contains the remain-
ing significand digits. For NaNs, this field may be used
to contain diagnostic information. For infinities, con-
tents in this field of a source operand are ignored and
they are set to zeros in a target operand by most opera-
tions. The trailing significand field is a multiple of 10-bit
blocks. The multiple depends on the format. Each
10-bit block is called a declet and represents three dec-
imal digits, using the Densely Packed Decimal (DPD)
encoding defined in Appendix B.

5.4.1.2 Summary of DFP Data Formats
The properties of the three DFP formats are summa-
rized in the following table:.

G0:4 Description

11111 NaN

11110 Infinity

All others Finite Number (see Figure 71)

LMD
Leftmost 2-bits of biased exponent

00 01 10

0 00000 01000 10000

1 00001 01001 10001

2 00010 01010 10010

3 00011 01011 10011

4 00100 01100 10100

5 00101 01101 10101

6 00110 01110 10110

7 00111 01111 10111

8 11000 11010 11100

9 11001 11011 11101

Format

DFP Short DFP Long DFP Extended

Widths (bits):

Format 32 64 128

Sign (S) 1 1 1

Combination (G) 11 13 17

Trailing Significand (T) 20 50 110

Exponent:

Maximum biased 191 767 12,287

Maximum (Xmax) 90 369 6111

Minimum (Xmin) -101 -398 -6176

Bias 101 398 6176

Precision (p) (digits) 7 16 34

Magnitude:

Maximum normal number (Nmax) (107 - 1) x 1090 (1016 - 1) x 10369 (1034 - 1) x 106111

Minimum normal number (Nmin) 1 x 10-95 1 x 10-383 1 x 10-6143
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Figure 72. Summary of DFP Formats

5.4.1.3 Preferred DPD Encoding 
Execution of DFP instructions decodes source oper-
ands from DFP data formats to an internal format for
processing, and encodes the operation result before
the final result is returned as the target operand.

As part of the decoding process, declets in the trailing
significand field of source operands are decoded to
their corresponding BCD digit codes using the
DPD-to-BCD decoding algorithm. As part of the encod-
ing process,   BCD digit codes to be stored into the trail-
ing significand field of the target operand are encoded
into declets using the BCD-to-DPD encoding algorithm.
Both the decoding and encoding algorithms are defined
in Appendix B.

As explained in Appendix B, there are eight 3-digit dec-
imal values that have redundant DPD codes and one
preferred DPD code. All redundant DPD codes are rec-
ognized in source operands for the associated 3-digit
decimal number. DFP operations will always generate
the preferred DPD codes for the trailing significand field
of the target operand.

5.4.2 Classes of DFP Data
There are six classes of DFP data, which include
numerical and nonnumeric entities. The numerical enti-
ties include zero, subnormal number, normal number,
and infinity data classes. The nonnumeric entities
include quiet and signaling NaNs data classes. The
value of a DFP finite number, including zero, subnormal
number, and normal number, is a quantization of the
real number based on the data format. The Test Data
Class instruction may be used to determine the class of
a DFP operand. In general, an operation that returns a
DFP result sets the FPSCRFPRF field to indicate the
data class of the result.

The following tables show the value ranges for
finite-number data classes, and the codes for NaNs
and infinities. 

Minimum subnormal number (Dmin) 1 x 10-101 1 x 10-398 1 x 10-6176

Format

DFP Short DFP Long DFP Extended
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Figure 73. Value Ranges for Finite Number Data
Classes 

Figure 74. Encoding of NaN and Infinity Data
Classes

Zeros
Zeros have a zero significand and any representable
value in the exponent. A +0 is distinct from -0, and
zeros with different exponents are distinct, except that
comparison treats them as equal.

Subnormal Numbers
Subnormal numbers have values that are smaller than
Nmin and greater than zero in magnitude.

Normal Numbers
Normal numbers are nonzero finite numbers whose
magnitude is between Nmin and Nmax inclusively.

Infinities
Infinities are represented by 0b11110 in the leftmost 5
bits of the combination field. When an operation is
defined to generate an infinity as the result, a default
infinity is sometimes supplied. A default infinity has all
remaining bits in the combination field and trailing sig-
nificand field set to zeros.

When infinities are used as source operands, only the
leftmost 5 bits of the combination field are interpreted
(i.e., 0b11110 indicates the value is an infinity). The
trailing significand field of infinities is usually ignored.
For generated infinities, the leftmost 5 bits of the combi-
nation field are set to 0b11110 and all remaining combi-
nation bits are set to zero.

Infinities can participate in most arithmetic operations
and give a consistent result. In comparisons, any
+Infinity compares greater than any finite number, and
any -Infinity compares less than any finite number. All
+Infinity are compared equal and all -Infinity are com-
pared equal.

Signaling and Quiet NaNs
There are two types of Not-a-Numbers (NaNs), Signal-
ing (SNaN) and Quiet (QNaN).

0b111110 in the leftmost 6 bits of the combination field
indicates a Quiet NaN, whereas 0b111111 indicates a
Signaling NaN.

A special QNaN is sometimes supplied as the default
QNaN for a disabled invalid-operation exception; it has
a plus sign, the leftmost 6 bits of the combination field
set to 0b111110 and remaining bits in the combination
field and the trailing significand field set to zero.

Normally, source QNaNs are propagated during opera-
tions so that they will remain visible at the end. When a
QNaN is propagated, the sign is preserved, the decimal
value of the trailing significand field is preserved but
reencoded using the preferred DPD codes, and the
contents in the rightmost N-6 bits of the combination
field set to zero, where N is the width of the combina-
tion field for the format.

A source SNaN generally causes an invalid-operation
exception. If the exception is disabled, the SNaN is
converted to the corresponding QNaN and propagated.
The primary encoding difference between an SNaN
and a QNaN is that bit 5 of an SNaN is 1 and bit 5 of a
QNaN is 0. When an SNaN is propagated as a QNaN,
bit 5 is set to 0, and, just as with QNaN proagation, the
sign is preserved, the decimal value of the trailing sig-
nificand field is preserved but reencoded using the pre-
ferred DPD codes, and the contents in the rightmost
N-6 bits of the combination field set to zero, where N is
the width of the combination field for the format. For
some format-conversion instructions, a source SNaN
does not cause an invalid-operation exception, and an
SNaN is returned as the target operand.

For instructions with two source NaNs and a NaN is to
be propagated as the result, do the following.

If there is a QNaN in FRA and an SNaN in FRB,
the SNaN in FRB is propagated.
Otherwise, propagate the NaN is FRA.

5.5 DFP Execution Model
DFP operations are performed as if they first produce
an intermediate result correct to infinite precision and
with unbounded range. The intermediate result is then
rounded to the destination’s precision according to one
of the eight DFP rounding modes. If the rounded result
has only one form, it is delivered as the final result; if
the rounded result has redundant forms, then an ideal
exponent is used to select the form of the final result.
The ideal exponent determines the form, not the value,
of the final result. (See Section 5.5.3  “Formation of
Final Result” on page 172.)

5.5.1 Rounding
Rounding takes a number regarded as infinitely precise
and, if necessary, modifies it to fit the destination’s pre-
cision.  The destination’s precision of an operation
defines the set of permissible resultant values.  For

Data Class Sign Magnitude

Zero ± 0*

Subnormal ± Dmin  ≤   |X|   <  Nmin 

Normal ± Nmin  ≤   |Y|   ≤  Nmax 

* The significand is zero and the exponent is any rep-
resentable value

 Data Class S G T

+Infinity 0 11110xxx . . . xxx xxx . . . xxx

–Infinity 1 11110xxx . . . xxx xxx . . . xxx

Quiet NaN x 111110xx . . . xxx xxx . . . xxx

Signaling NaN x 111111xx . . . xxx xxx . . . xxx

x Don’t care
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most operations, the destination’s precision is the tar-
get-format precision and the permissible resultant val-
ues are those values representable in the target format.
For some special operations, the destination precision
is constrained by both the target format and some addi-
tional restrictions, and the permissible resultant values
are a subset of the values representable in the target
format.

Rounding sets FPSCR bits FR and FI.  When an inex-
act exception occurs, FI is set to one; otherwise, FI is
set to zero. When an inexact exception occurs and if
the rounded result is greater in magnitude than the
intermediate result, then FR is set to one; otherwise,
FR is set to zero.  The exception is the Round to FP
Integer Without Inexact instruction, which always sets
FR and FI to zero.  Rounding may cause an overflow
exception or underflow exception; it may also cause an
inexact exception.

Refer to Figure 75 below for rounding. Let Z be the
intermediate result of a DFP operation. Z may or may
not fit in the destination’s precision. If Z is exactly one of
the permissible representable resultant values, then the
final result in all rounding modes is Z. Otherwise, either
Z1 or Z2 is chosen to approximate the result, where Z1
and Z2 are the next larger and smaller permissible
resultant values, respectively.

Figure 75. Rounding

Round to Nearest, Ties to Even
Choose the value that is closer to Z (Z1 or Z2).  In case
of a tie, choose the one whose units digit would have
been even in the form with the largest common quan-
tum of the two permissible resultant values.  However,
an infinitely precise result with magnitude at least (Nmax
+ 0.5Q(Nmax))

 is rounded to infinity with no change in
sign; where Q(Nmax) is the quantum of Nmax.

Round toward 0
Choose the smaller in magnitude (Z1 or Z2).

Round toward +∞
Choose Z1.

Round toward -∞
Choose Z2.

Round to Nearest, Ties away from 0
Choose the value that is closer to Z (Z1 or Z2).  In case

of a tie, choose the larger in magnitude (Z1 or Z2).
However, an infinitely precise result with magnitude at
least (Nmax + 0.5Q(Nmax))

 is rounded to infinity with no
change in sign; where Q(Nmax) is the quantum of Nmax.

Round to Nearest, Ties toward 0
Choose the value that is closer to Z (Z1 or Z2).  In case
of a tie, choose the smaller in magnitude (Z1 or Z2).
However, an infinitely precise result with magnitude
greater than (Nmax + 0.5Q(Nmax))

 is rounded to infinity
with no change in sign; where Q(Nmax) is the quantum
of Nmax.

Round away from 0
Choose the larger in magnitude (Z1 or Z2).

Round to prepare for shorter precision
Choose the smaller in magnitude (Z1 or Z2).  If the
selected value is inexact and the units digit of the
selected value is either 0 or 5, then the digit is incre-
mented by one and the incremented result is delivered.
In all other cases, the selected value is delivered.
When a value has redundant forms, the units digit is
determined by using the form that has the smallest
exponent.

5.5.2 Rounding Mode Specifica-
tion
Unless otherwise specified in the instruction definition,
the rounding mode used by an operation is specified in
the DFP rounding control (DRN) field of the FPSCR.
The eight DFP rounding modes are encoded in the
DRN field as specified in the table below.

Figure 76. Encoding of DFP Rounding-Mode
Control (DRN)

For the quantum-adjustment, a 2-bit immediate field,
called RMC (Rounding Mode Control), in the instruction
specifies the rounding mode used. The RMC field may
contain a primary encoding or a secondary encoding.
For Quantize, Quantize Immediate, and Reround, the
RMC field contains the primary encoding.  For Round
to FP Integer the field contains either encoding,
depending on the setting of a RMC-encoding-selection

Negative values Positive Values

0

         By increasing |Z|
Infinitely precise value

      By decreasing |Z|

Z2
Z

Z1 Z2 Z1
Z

DRN Rounding Mode
000 Round to Nearest, Ties to Even
001 Round toward 0
010 Round toward +Infinity
011 Round toward -Infinity
100 Round to Nearest, Ties away from 0
101 Round to Nearest, Ties toward 0
110 Round away from 0
111 Round to Prepare for Shorter Precision
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bit. The following tables define the primary encoding
and the secondary encoding. 

Figure 77. Primary Encoding of Rounding-Mode
Control

Figure 78. Secondary Encoding of Rounding-Mode
Control

5.5.3 Formation of Final Result
An ideal exponent is defined for each DFP instruction
that returns a DFP data operand.

5.5.3.1 Use of Ideal Exponent
For all DFP operations,

if the rounded intermediate result has only one
form, then that form is delivered as the final result.
if the rounded intermediate result has redundant.
forms and is exact, then the form with the exponent
closest to the ideal exponent is delivered.
if the rounded intermediate result has redundant
forms and is inexact, then the form with the small-
est exponent is delivered.

The following table specifies the ideal exponent for
each instruction.

Figure 79. Summary of Ideal Exponents

5.5.4 Arithmetic Operations
Four arithmetic operations are provided: Add, Subtract,
Multiply, and Divide. 

5.5.4.1 Sign of Arithmetic Result
The following rules govern the sign of an arithmetic
operation when the operation does not yield an excep-
tion. They apply even when the operands or results are
zeros or infinities.

The sign of the result of an add operation is the
sign of the source operand having the larger abso-
lute value. If both source operands have the same
sign, the sign of the result of an add operation is
the same as the sign of the source operands.
When the sum of two operands with opposite signs
is exactly zero, the sign of the result is positive in
all rounding modes except Round toward -∞, in
which case the sign is negative.

The sign of the result of the subtract operation x - y
is the same as the sign of the result of the add
operation x + (-y).

The sign of the result of a multiply or divide opera-
tion is the exclusive-OR of the signs of the source
operands.

Primary
RMC

Rounding Mode

00 Round to nearest, ties to even
01 Round toward 0
10 Round to nearest, ties away from 0
11 Round according to FPSCRDRN

Secondary
RMC

Rounding Mode

00 Round to + ∞
01 Round to - ∞
10 Round away from 0
11 Round to nearest, ties toward 0

Operations Ideal Exponent

Add min(E(FRA), E(FRB))

Subtract min(E(FRA), E(FRB))

Multiply E(FRA) + E(FRB)

Divide E(FRA) - E(FRB)

Quantize-Immediate See Instruction Description

Quantize E(FRA)

Reround See Instruction Description

Round to FP Integer max(0, E(FRA))

Convert to DFP Long E(FRA)

Convert to DFP 
Extended

E(FRA)

Round to DFP Short E(FRA)

Round to DFP Long E(FRA)

Convert from Fixed 0

Encode BCD to DPD 0

Insert Biased Expo-
nent

E(FRA)

Notes:
   E(x) - exponent of the DFP operand in register x.
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5.5.5 Compare Operations
Two sets of instructions are provided for comparing
numerical values: Compare Ordered and Compare
Unordered.  In the absence of NaNs, these instructions
work the same.  These instructions work differently
when either of the followings is true:

1. At least one source operand of the instruction is an
SNaN and the invalid-operation exception is dis-
abled.

2. When there is no SNaN in any source operand, at
least one source operand of the instruction is a
QNaN

In case 1, Compare Unordered recognizes an
invalid-operation exception and sets the FPSCRVXSNAN
flag, but Compare Ordered recognizes the exception
and sets both the FPSCRVXSNAN and FPSCRVXVC
flags.   In case 2, Compare Unordered does not recog-
nize an exception, but Compare Ordered recognizes an
invalid-operation exception and sets the FPSCRVXVC
flag. 

For finite numbers, comparisons are performed on val-
ues, that is, all redundant forms of a DFP number are
treated equal.

Comparisons are always exact and cannot cause an
inexact exception.

Comparison ignores the sign of zero, that is, +0 equals
-0.

Infinities with like sign compare equal, that is, +∞
equals +∞, and -∞ equals -∞.

A NaN compares as unordered with any other operand,
whether a finite number, an infinity, or another NaN,
including itself.

Execution of a compare instruction always completes,
regardless of whether any DFP exception occurs or
not, and whether the exception is enabled or not. 

5.5.6 Test Operations
Four kinds of test operations are provided: Test Data
Class, Test Data Group, Test Exponent, and Test Signif-
icance.

The Test Data Class instruction examines the contents
of a source operand and determines if the operand is
one of the specified data classes. The test result and
the sign of the source operand are indicated in the
FPSCRFPCC field and CR field BF.

The Test Data Group instruction examines the contents
of a source operand and determines if the operand is
one of the specified data groups. The test result and
the sign of the source operand are indicated in the
FPSCRFPCC field and CR field BF.

The Test Exponent instruction compares the exponent
of the two source operands. The test operation ignores

the sign and significand of operands. Infinities compare
equal, and NaNs compare equal. The test result is indi-
cated in the FPSCRFPCC field and CR field BF.

The Test Significance instruction compares the number
of significant digits of one source operand with the ref-
erenced number of significant digits in another source
operand. The test result is indicated in the FPSCRFPCC
field and CR field BF. 

Execution of a test instruction does not cause any DFP
exception.

5.5.7 Quantum Adjustment Opera-
tions
Four kinds of quantum-adjustment operations are pro-
vided: Quantize, Quantize Immediate, Reround, and
Round To FP Integer.  Each of them has an immediate
field which specifies whether the rounding mode in
FPSCR or a different one is to be used.

The Quantize instruction is used to adjust a DFP num-
ber to the form that has the specified target exponent.
The Quantize Immediate instruction is similar to the
Quantize instruction, except that the target exponent is
specified in a 5-bit immediate field as a signed binary
integer and has a limited range.

The Reround instruction is used to simulate a DFP
operation of a precision other than that of DFP Long or
DFP Extended. For the Reround instruction to produce
a result which accurately reflects that which would have
resulted from a DFP operation of the desired precision
d in the range {1: 33} inclusively, the following condi-
tions must be met:

The precision of the preceding DFP operation
must be at least one digit larger than d.

The rounding mode used by the preceding DFP
operation must be round-to-pre-
pare-for-shorter-precision.

The Round To FP Integer instruction is used to round a
DFP number to an integer value of the same format.
The target exponent is implicitly specified, and is
greater than or equal to zero.

5.5.8 Conversion Operations
There are two kinds of conversion operations: data-for-
mat conversion and data-type conversion.

5.5.8.1 Data-Format Conversion
The instructions Convert To DFP Long and Convert To
DFP Extended convert DFP operands to wider formats;
the instructions Round To DFP Short and Round To
DFP Long convert DFP operands to narrower formats.

When converting a finite number to a wider format, the
result is exact. When converting a finite number to a
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narrower format, the source operand is rounded to the
target-format precision, which is specified by the
instruction, not by the target register size.

When converting a finite number, the ideal exponent of
the result is the source exponent.

Conversion of an infinity or NaN to a different format
does not preserve the source combination field. Let N
be the width of the target format’s combination field.

When the result is an infinity or a QNaN, the con-
tents of the rightmost N-5 bits of the N-bit target
combination field are set to zero.

When the result is an SNaN, bit 5 of the target for-
mat’s combination field is set to one and the right-
most N-6 bits of the N-bit target combination field
are set to zero.

When converting a NaN to a wider format or when con-
verting an infinity from DFP Short to DFP Long, digits in
the source trailing significand field are reencoded using
the preferred DPD codes with sufficient zeros
appended on the left to form the target trailing signifi-
cand field. When converting a NaN to a narrower for-
mat or when converting an infinity from DFP Long to
DFP Short, the appropriate number of leftmost digits of
the source trailing significand field are removed and the
remaining digits of the field are reencoded using the
preferred DPD codes to form the target trailing signifi-
cand field.

When converting an infinity between DFP Long and
DFP Extended, a default infinity with the same sign is
produced.

When converting an SNaN between DFP Short and
DFP Long, it is converted to an SNaN without causing
an invalid-operation exception. When converting an
SNaN between DFP Long and DFP Extended, the
invalid-operation exception occurs; if the invalid-opera-
tion exception is disabled, the result is converted to the
corresponding QNaN.

5.5.8.2 Data-Type Conversion
The instructions Convert From Fixed and Convert To
Fixed are provided to convert a number between the
DFP data type and the signed 64-bit binary-integer
data type.

Conversion of a signed 64-bit binary integer to a DFP
Extended number is always exact.

Conversion of a DFP number to a signed 64-bit binary
integer results in an invalid-operation exception when
the converted value does not fit into the target format,
or when the source operand is an infinity or NaN. When
the exception is disabled, the most positive integer is
returned if the source operand is a positive number or
+∞, and the most negative integer is returned if the
source operand is a negative number, -∞, or NaN.

5.5.9 Format Operations
The format instructions are provided to facilitate com-
posing or decomposing a DFP number, and consist of
Encode BCD To DPD, Decode DPD To BCD, Extract
Biased Exponent, Insert Biased Exponent, Shift Signifi-
cand Left Immediate, and Shift Significand Right Imme-
diate. A source operand of SNaN does not cause an
invalid-operation exception, and an SNaN may be pro-
duced as the target operand.

5.5.10 DFP Exceptions
This architecture defines the following DFP exceptions:

Invalid Operation Exception
SNaN
∞ - ∞
∞ ÷ ∞
0 ÷ 0
∞ % 0
Invalid Compare
Invalid Conversion

Zero Divide Exception
Overflow Exception
Underflow Exception
Inexact Exception

These exceptions may occur during execution of a DFP
instruction.

Each DFP exception, and each category of the Invalid
Operation Exception, has an exception status bit in the
FPSCR. In addition, each DFP exception has a corre-
sponding enable bit in the FPSCR. The exception sta-
tus bit indicates occurrence of the corresponding
exception. If an exception occurs, the corresponding
enable bit governs the result produced by the instruc-
tion and, in conjunction with the FE0 and FE1 bits (see
the discussion of FE0 and FE1 below), whether and
how the system floating-point enabled exception error
handler is invoked. (In general, the enabling specified
by the enable bit is of invoking the system error handler,
not of permitting the exception to occur. The occur-
rence of an exception depends only on the instruction
and its source operands, not on the setting of any con-
trol bits. The only deviation from this general rule is that
the occurrence of an Underflow Exception may depend
on the setting of the enable bit.)

A single instruction, other than mtfsfi or mtfsf, may set
more than one exception bit only in the following cases:

Inexact Exception may be set with Overflow
Exception.
Inexact Exception may be set with Underflow
Exception.
Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Compare)
for Compare Ordered instructions
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Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Conver-
sion) for Convert To Fixed instructions.

When an exception occurs the instruction execution
may be completed or partially completed, depending on
the exception and the operation.

For all instructions, except for the Compare and Test
instructions, the following exceptions cause the instruc-
tion execution to be partially completed. That is, setting
of CR field 1(when Rc=1) and exception status flags is
performed, but no result is stored into the target FPR or
FPR pair.  For Compare and Test instructions, instruc-
tion execution is always completed, regardless of
whether any DFP exception occurs or not, and whether
the exception is enabled or not.

Enabled Invalid Operation
Enabled Zero Divide

For the remaining kinds of exceptions, instruction exe-
cution is completed, a result, if specified by the instruc-
tion, is generated and stored into the target FPR or
FPR pair, and appropriate status flags are set. The
result may be a different value for the enabled and dis-
abled conditions for some of these exceptions. The
kinds of exceptions that deliver a result in target FPR
are the following:

Disabled Invalid Operation
Disabled Zero Divide
Disabled Overflow
Disabled Underflow
Disabled Inexact
Enabled Overflow
Enabled Underflow
Enabled Inexact

Subsequent sections define each of the DFP excep-
tions and specify the action that is taken when they are
detected.

The IEEE standard specifies the handling of excep-
tional conditions in terms of “traps” and “trap handlers”.
In this architecture, a FPSCR exception enable bit of 1
causes generation of the result value specified in the
IEEE standard for the “trap enabled” case: the expecta-
tion is that the exception will be detected by software,
which will revise the result. A FPSCR exception enable
bit of 0 causes generation of the “default result” value
specified for the “trap disabled” (or “no trap occurs” or
“trap is not implemented”) case: the expectation is that
the exception will not be detected by software, which
will simply use the default result.  The result to be deliv-
ered in each case for each exception is described in the
sections below.

The IEEE default behavior when an exception occurs is
to generate a default value and not to notify software.
In this architecture, if the IEEE default behavior when
an exception occurs is desired for all exceptions, all
FPSCR exception enable bits should be set to zero and
Ignore Exceptions Mode (see below) should be used.

In this case the system floating-point enabled exception
error handler is not invoked, even if DFP exceptions
occur: software can inspect the FPSCR exception bits if
necessary, to determine whether exceptions have
occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the correspond-
ing FPSCR exception enable bit must be set to one and
a mode other than Ignore Exceptions Mode must be
used.  In this case the system floating-point enabled
exception error handler is invoked if an enabled DFP
exception occurs.  The system floating-point enabled
exception error handler is also invoked if a Move To
FPSCR instruction causes an exception bit and the cor-
responding enable bit both to be 1; the Move To
FPSCR instruction is considered to cause the enabled
exception.

The FE0 and FE1 bits control whether and how the sys-
tem floating-point enabled exception error handler is
invoked if an enabled DFP exception occurs.  The loca-
tion of these bits and the requirements for altering them
are described in Book III, Power AS Operating Environ-
ment Architecture.  (The system floating-point enabled
exception error handler is never invoked because of a
disabled DFP exception.)  The effects of the four possi-
ble settings of these bits are as follows.

FE0 FE1 Description

0 0 Ignore Exceptions Mode
DFP exceptions do not cause the system
floating-point enabled exception error
handler to be invoked.

0 1 Imprecise Nonrecoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception.  It may not be pos-
sible to identify the excepting instruction
or the data that caused the exception.
Results produced by the excepting
instruction may have been used by or may
have affected subsequent instructions that
are executed before the error handler is
invoked.

1 0 Imprecise Recoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception.  Sufficient informa-
tion is provided to the error handler that it
can identify the excepting instruction and
the operands, and correct the result.  No
results produced by the excepting instruc-
tion have been used by or have affected
subsequent instructions that are exe-
cuted before the error handler is invoked.
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In all cases, the question of whether a DFP result is
stored, and what value is stored, is governed by the
FPSCR exception enable bits, as described in subse-
quent sections, and is not affected by the value of the
FE0 and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions
before the instruction at which the system floating-point
enabled exception error handler is invoked have com-
pleted, and no instruction after the instruction at which
the system floating-point enabled exception error han-
dler is invoked has begun execution. (Recall that, for
the two Imprecise modes, the instruction at which the
system floating-point enabled exception error handler is
invoked need not be the instruction that caused the
exception.) The instruction at which the system float-
ing-point enabled exception error handler is invoked
has not been executed unless it is the excepting
instruction, in which case it has been executed if the
exception is not among those listed on page 174 as
suppressed.

 

 In order to obtain the best performance across the wid-
est range of implementations, the programmer should
obey the following guidelines.

If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to
zero.

If the IEEE default results are not acceptable to the
application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception

enable bits set to one for those exceptions for
which the system floating-point enabled exception
error handler is to be invoked.

Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to one.

Precise Mode may degrade performance in some
implementations, perhaps substantially, and there-
fore should be used only for debugging and other
specialized applications.

5.5.10.1 Invalid Operation Exception

Definition
An Invalid Operation Exception occurs when an oper-
and is invalid for the specified DFP operation. The
invalid DFP operations are:

Any DFP operation on a signaling NaN (SNaN),
except for Test, Round To DFP Short, Convert To
DFP Long, Decode DPD To BCD, Extract Biased
Exponent, Insert Biased Exponent, Shift Signifi-
cand Left Immediate, and Shift Significand Right
Immediate
For add or subtract operations, magnitude subtrac-
tion of infinities (+∞) + (-∞)
Division of infinity by infinity (∞ ÷ ∞)
Division of zero by zero (0 ÷ 0)
Multiplication of infinity by zero (∞ % 0)
Ordered comparison involving a NaN (Invalid Com-
pare)
The Quantize operation detects that the significand
associated with the specified target exponent
would have more significant digits than the tar-
get-format precision
For the Quantize operation, when one source
operand specifies an infinity and the other speci-
fies a finite number
The Reround operation detects that the target
exponent associated with the specified target sig-
nificance would be greater than Xmax
The Encode BCD To DPD operation detects an
invalid BCD digit or sign code
The Convert To Fixed operation involving a number
too large in magnitude to be represented in the tar-
get format, or involving a NaN. 

1 1 Precise Mode
The system floating-point enabled excep-
tion error handler is invoked precisely at
the instruction that caused the enabled
exception.

In the ignore and both imprecise modes, a Float-
ing-Point Status and Control Register instruction
can be used to force any exceptions, due to instruc-
tions initiated before the Floating-Point Status and
Control Register instruction, to be recorded in the
FPSCR.  (This forcing is superfluous for Precise
Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be
used to force any invocations of the system float-
ing-point enabled exception error handler, due to
instructions initiated before the Floating-Point Sta-
tus and Control Register instruction, to occur.  (This
forcing has no effect in Ignore Exceptions Mode,
and is superfluous for Precise Mode.)

FE0 FE1 Description

Programming Note
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Action
The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled
(FPSCRVE=1) and Invalid Operation occurs, the follow-
ing actions are taken:

1. One or two Invalid Operation Exceptions are set:
FPSCRVXSNAN (if SNaN)
FPSCRVXISI (if ∞  -  ∞)
FPSCRVXIDI (if ∞  ÷  ∞)
FPSCRVXZDZ (if 0  ÷  0)
FPSCRVXIMZ (if ∞  %  0)
FPSCRVXVC (if invalid comp)
FPSCRVXCVI (if invalid conversion)

2. If the operation is an arithmetic, quantum-adjust-
ment, conversion, or format, 

the target FPR is unchanged,
FPSCRFR FI are set to zero, and
FPSCRFPRF is unchanged.

3. If the operation is a compare,
FPSCRFR FI C are unchanged, and
FPSCRFPCC is set to reflect unordered.

When Invalid Operation Exception is disabled
(FPSCRVE=0) and Invalid Operation occurs, the follow-
ing actions are taken:

1. One or two Invalid Operation Exceptions are set:
FPSCRVXSNAN (if SNaN)
FPSCRVXISI (if ∞ - ∞)
FPSCRVXIDI (if ∞ ÷ ∞)
FPSCRVXZDZ (if 0 ÷ 0)
FPSCRVXIMZ (if  ∞ % 0)
FPSCRVXVC (if invalid comp)
FPSCRVXCVI (if invalid conversion)

2. If the operation is an arithmetic, quantum-adjust-
ment, Round to DFP Long, Convert to DFP
Extended, or format

the target FPR is set to a Quiet NaN
FPSCRFR FI are set to zero
FPSCRFPRF is set to indicate the class of the

result (Quiet NaN)
3. If the operation is a Convert To Fixed

the target FPR is set as follows:
FRT is set to the most positive 64-bit binary
integer if the operand in FRB is a positive or

+∞, and to the most negative 64-bit binary
integer if the operand in FRB is a negative
number, -∞ , or NaN.

FPSCRFR FI are set to zero
FPSCRFPRF is unchanged

4.  If the operation is a compare,
FPSCRFR FI C are unchanged
FPSCRFPCC is set to reflect unordered

5.5.10.2 Zero Divide Exception

Definition
A Zero Divide Exception occurs when a Divide instruc-
tion is executed with a zero divisor value and a finite
nonzero dividend value.

Action
The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (FPSCRZE=1)
and Zero Divide occurs, the following actions are taken:

1. Zero Divide Exception is set
FPSCRZX I 1

2. The target FPR is unchanged
3. FPSCRFR FI are set to zero
4. FPSCRFPRF is unchanged

When Zero Divide Exception is disabled (FPSCRZE=0)
and Zero Divide occurs, the following actions are taken:

1. Zero Divide Exception is set
FPSCRZX I 1

2. The target FPR is set to ±∞, where the sign is
determined by the XOR of the signs of the oper-
ands

3. FPSCRFR FI are set to zero
4. FPSCRFPRF is set to indicate the class and sign of

the result (±∞)

5.5.10.3 Overflow Exception

Definition
An overflow exception occurs whenever the target for-
mat’s largest finite number is exceeded in magnitude by
what would have been the rounded result if the expo-
nent range were unbounded.

Action
Except for Reround, the following describes the han-
dling of the IEEE overflow exception condition.  The
Reround operation does not recognize an overflow
exception condition.

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

In addition, an Invalid Operation Exception occurs if
software explicitly requests this by executing an
mtfsfi, mtfsf, or mtfsb1 instruction that sets
FPSCRVXSOFT to 1 (Software Request). The pur-
pose of FPSCRVXSOFT is to allow software to
cause an Invalid Operation Exception for a condi-
tion that is not necessarily associated with the exe-
cution of a DFP instruction.  For example, it might
be set by a program that computes a square root, if
the source operand is negative.

Programming Note
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When Overflow Exception is enabled (FPSCROE=1)
and overflow occurs, the following actions are taken:

1. Overflow Exception is set
FPSCROX I 1

2. The infinitely precise result is divided by 10α. That
is, the exponent adjustment α is subtracted from
the exponent. This is called the wrapped result.
The exponent adjustment for all operations, except
for Round To DFP Short and Round To DFP Long,
is 576 for DFP Long and 9216 for DFP Extended.
For Round To DFP Short and Round To DFP Long,
the exponent adjustment is 192 for the source for-
mat of DFP Long and 3072 for the source format of
DFP Extended.

3. The wrapped result is rounded to the target-format
precision.   This is called the wrapped rounded
result.

4. If the wrapped rounded result has only one form, it
is the delivered result. If the wrapped rounded
result has redundant forms and is exact, the result
of the form that has the exponent closest to the
wrapped ideal exponent is returned. If the wrapped
rounded result has redundant forms and is inexact,
the result of the form that has the smallest expo-
nent is returned. The wrapped ideal exponent is
the result of subtracting the exponent adjustment
from the ideal exponent.

5. FPSCRFPRF is set to indicate the class and sign of
the result (± Normal Number)

When Overflow Exception is disabled (FPSCROE=0)
and overflow occurs, the following actions are taken:

1. Overflow Exception is set 
FPSCROX I 1

2. Inexact Exception is set
FPSCRXX I 1

3. The result is determined by the rounding mode
and the sign of the intermediate result as follows. 

Figure 80. Overflow Results When Exception Is
Disabled

4. The result is placed into the target FPR
5. FPSCRFR is set to one if the returned result is ± ∞,

and is set to zero if the returned result is ±Nmax
6. FPSCRFI is set to one
7. FPSCRFPRF is set to indicate the class and sign of

the result (± ∞ or ± Normal number)

5.5.10.4 Underflow Exception

Definition
Except for Reround, the following describes the han-
dling of the IEEE underflow exception condition. The
Reround operation does not recognize an underflow
exception condition.

The Underflow Exception is defined differently for the
enabled and disabled states. However, a tininess condi-
tion is recognized in both states when a result com-
puted as though both the precision and exponent range
were unbounded would be nonzero and less than the
target format’s smallest normal number, Nmin, in magni-
tude.

Unless otherwise defined in the instruction description,
an underflow exception occurs as follows:

Enabled:
When the tininess condition is recognized.

Disabled:
When the tininess condition is recognized and
when the delivered result value differs from what
would have been computed were both the preci-
sion and the exponent range unbounded.

Action
The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (FPSCRUE=1)
and underflow occurs, the following actions are taken:

1. Underflow Exception is set 
FPSCRUX I 1

2. The infinitely precise result is multiplied by 10α.
That is, the exponent adjustment α is added to the
exponent. This is called the wrapped result. The
exponent adjustment for all operations, except for
Round To DFP Short and Round To DFP Long, is
576 for DFP Long and 9216 for DFP Extended. For
Round To DFP Short and Round To DFP Long, the
exponent adjustment is 192 for the source format
of DFP Long and 3072 for the source format of
DFP Extended.

3. The wrapped result is rounded to the target-format
precision. This is called the wrapped rounded
result. 

4. If the wrapped rounded result has only one form, it
is the delivered result. If the wrapped rounded
result has redundant forms and is exact, the result
of the form that has the exponent closest to the

Rounding Mode

Sign of inter-
mediate result

Plus Minus

Round to Nearest, Ties to Even +∞ -∞ 

Round toward 0 +Nmax -Nmax

Round toward +∞ + ∞ -Nmax

Round toward - ∞ +Nmax -∞ 

Round to Nearest, Ties away 
from 0

+∞ -∞ 

Round to Nearest, Ties toward 0 +∞ -∞ 

Round away from 0 +∞ -∞ 

Round to prepare for shorter pre-
cision

+Nmax -Nmax
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wrapped ideal exponent is returned. If the wrapped
rounded result has redundant forms and is inexact,
the result of the form that has the smallest expo-
nent is returned. The wrapped ideal exponent is
the result of adding the exponent adjustment to the
ideal exponent. 

5. FPSCRFPRF is set to indicate the class and sign of
the result (± Normal number)

When Underflow Exception is disabled (FPSCRUE=0)
and underflow occurs, the following actions are taken:

1. Underflow Exception is set
FPSCRUX I 1

2. The infinitely precise result is rounded to the tar-
get-format precision.

3. The rounded result is returned. If this result has
redundant forms, the result of the form that is clos-
est to the ideal exponent is returned.

4. FPSCRFPRF is set to indicate the class and sign of
the result (± Normal number, ± Subnormal Num-
ber, or ± Zero)

5.5.10.5 Inexact Exception

Definition
Except for Round to FP Integer Without Inexact, the fol-
lowing describes the handling of the IEEE inexact
exception condition.  The Round to FP Integer Without
Inexact does not recognize an inexact exception condi-
tion.

An Inexact Exception occurs when either of two condi-
tions occur during rounding:

1. The delivered result differs from what would have
been computed were both the precision and expo-
nent range unbounded.

2. The rounded result overflows and Overflow Excep-
tion is disabled.

Action
The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When Inexact Exception occurs, the following actions
are taken:

1. Inexact Exception is set
FPSCRXX I 1

2. The rounded or overflowed result is placed into the
target FPR

3. FPSCRFPRF is set to indicate the class and sign of
the result

 

In some implementations, enabling Inexact Excep-
tions may degrade performance more than does
enabling other types of floating-point exception.

Programming Note
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5.5.11 Summary of Normal Rounding And Range Actions
Figure 81 and Figure 82 summarize rounding and
range actions, with the following exceptions:

The Reround operation recognizes neither an
underflow nor an overflow exception.
 The Round to FP Integer Without Inexact opera-
tion does not recognize the inexact operation
exception.

  

Range of v Case

Result (r) 
when Rounding Mode Is

RNE RNTZ RNAZ RAFZ RTMI RFSP RTPI RTZ

v < -Nmax, q < -Nmax Overflow -∞1 -∞1 -∞1 -∞1 -∞1 -Nmax -Nmax -Nmax
v < -Nmax, q = -Nmax Normal -Nmax -Nmax -Nmax — — -Nmax -Nmax -Nmax

-Nmax ≤ v ≤ -Nmin Normal b b b b b b b b
-Nmin < v ≤ -Dmin Tiny b* b* b* b* b* b* b b

-Dmin < v < -Dmin/2 Tiny -Dmin -Dmin -Dmin -Dmin -Dmin -Dmin -0 -0
v = -Dmin/2 Tiny -0 -0 -Dmin -Dmin -Dmin -Dmin -0 -0

-Dmin/2 < v < 0 Tiny -0 -0 -0 -Dmin -Dmin -Dmin -0 -0
v = 0 EZD +0 +0 +0 +0 -0 +0 +0 +0

0 < v < +Dmin/2 Tiny +0 +0 +0 +Dmin +0 +Dmin +Dmin +0
v = +Dmin/2 Tiny +0 +0 +Dmin +Dmin +0 +Dmin +Dmin +0

+Dmin/2 < v < +Dmin Tiny +Dmin +Dmin +Dmin +Dmin +0 +Dmin +Dmin +0
+Dmin ≤ v < +Nmin Tiny b* b* b* b* b b* b* b
+Nmin ≤ v ≤ +Nmax Normal b b b b b b b b

+Nmax < v, q = +Nmax Normal +Nmax +Nmax +Nmax — +Nmax +Nmax — +Nmax

+Nmax < v, q > +Nmax Overflow +∞1 +∞1 +∞1 +∞1 +Nmax +Nmax +∞1 +Nmax
Explanation:

— This situation cannot occur.
1 The normal result r is considered to have been incremented.
* The rounded value, in the extreme case, may be Nmin. In this case, the exception conditions are underflow, 

inexact, and incremented.
b The value derived when the precise result v is rounded to the destination’s precision, including both bounded 

precision and bounded exponent range.
q The value derived when the precise result v is rounded to the destination’s precision, but assuming an 

unbounded exponent range.
r This is the returned value when neither overflow nor underflow is enabled. 
v Precise result before rounding, assuming unbounded precision and an unbounded exponent range. For 

data-format conversion operations, v is the source value.
Dmin Smallest (in magnitude) representable subnormal number in the target format.
EZD The result r of the exact-zero-difference case applies only to ADD and SUBTRACT with both source operands 

having opposite signs. (For ADD and SUBTRACT, when both source operands have the same sign, the sign of 
the zero result is the same sign as the sign of the source operands.)

Nmax Largest (in magnitude) representable finite number in the target format.
Nmin Smallest (in magnitude) representable normalized number in the target format.
RAFZ Round away from 0.
RFSP Round to Prepare for Shorter Precision.
RNAZ Round to Nearest, Ties away from 0.
RNE Round to Nearest, Ties to even.
RNTZ Round to Nearest, Ties toward 0.
RTPI Round toward +∞.
RTMI Round toward -∞.
RTZ Round toward 0.

Figure 81. Rounding and Range Actions (Part 1)
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Case

Is r 
inexact 
(r≠v) OE=1 UE=1 XE=1

Is r Incre-
mented 
(|r|>|v|)

Is q 
inexact 
(q≠v)

Is q Incre-
mented 
(|q|>|v|) Returned Results and Status Setting*

Overflow Yes1 No — No No — — T(r), OX← 1, FI← 1, FR← 0, XX I 1

Overflow Yes1 No — No Yes — — T(r), OX← 1, FI← 1, FR← 1, XX I 1

Overflow Yes1 No — Yes No — — T(r), OX← 1, FI← 1, FR← 0, XX I 1, TX

Overflow Yes1 No — Yes Yes — — T(r), OX← 1, FI← 1, FR← 1, XX I 1, TX

Overflow Yes1 Yes — — — No No1 Tw(q÷β), OX← 1, FI← 0, FR← 0, TO

Overflow Yes1 Yes — — — Yes No Tw(q÷β), OX← 1, FI← 1, FR← 0, XXI 1,TO

Overflow Yes1 Yes — — — Yes Yes Tw(q÷β), OX← 1, FI← 1, FR← 1, XXI 1,TO
Normal No — — — — — — T(r), FI← 0, FR← 0
Normal Yes — — No No — — T(r), FI← 1, FR← 0, XX I 1
Normal Yes — — No Yes — — T(r), FI← 1, FR← 1, XX I 1
Normal Yes — — Yes No — — T(r), FI← 1, FR← 0, XX I 1, TX
Normal Yes — — Yes Yes — — T(r), FI← 1, FR← 1, XX I 1, TX

Tiny No — No — — — — T(r), FI← 0, FR← 0

Tiny No — Yes — — No1 No1 Tw(q•β), UX← 1, FI← 0, FR← 0, TU
Tiny Yes — No No No — — T(r), UX← 1, FI← 1, FR← 0, XX I 1
Tiny Yes — No No Yes — — T(r), UX← 1, FI← 1, FR← 1, XX I 1
Tiny Yes — No Yes No — — T(r), UX← 1, FI← 1, FR← 0, XX I 1, TX
Tiny Yes — No Yes Yes — — T(r), UX← 1, FI← 1, FR← 1, XX I 1, TX

Tiny Yes — Yes — — No No1 Tw(q•β), UX← 1, FI← 0, FR← 0, TU
Tiny Yes — Yes — — Yes No Tw(q•β), UX← 1, FI← 1, FR← 0, XX I 1,TU
Tiny Yes — Yes — — Yes Yes Tw(q•β), UX← 1, FI← 1, FR← 1, XX I 1,TU

Explanation:
— The results do not depend on this condition.
1 This condition is true by virtue of the state of some condition to the left of this column.
* Rounding sets only the FI and FR status flags. Setting of the OX, XX, or UX flag is part of the exception actions. They 

are listed here for reference.
β Wrap adjust, which depends on the type of operation and operand format. For all operations except Round to DFP 

Short and Round to DFP Long, the wrap adjust depends on the target format: β = 10α, where α is 576 for DFP Long, 
and 9216 for DFP Extended. For Round to DFP Short and Round to DFP Long, the wrap adjust depends on the source 

format: β = 10κ where κ is 192 for DFP Long and 3072 for DFP Extended.
q The value derived when the precise result v is rounded to destination’s precision, but assuming an unbounded exponent 

range.
r The result as defined in Part 1 of this figure.
v Precise result before rounding, assuming unbounded precision and unbounded exponent range.
FI Floating-Point-Fraction-Inexact status flag, FPSCRFI. This status flag is non-sticky. 

FR Floating-Point-Fraction-Rounded status flag, FPSCRFR.

OX Floating-Point Overflow Exception status flag, FPSCRoX.

TO The system floating-point enabled exception error handler is invoked for the overflow exception if the FE0 and FE1 bits 
in the machine-state register are set to any mode other than the ignore-exception mode.

TU The system floating-point enabled exception error handler is invoked for the underflow exception if the FE0 and FE1 bits 
in the machine-state register are set to any mode other than the ignore-exception mode.

TX The system floating-point enabled exception error handler is invoked for the inexact exception if the FE0 and FE1 bits in 
the machine-state register are set to any mode other than the ignore-exception mode.

T(x) The value x is placed at the target operand location.
Tw(x) The wrapped rounded result x is placed at the target operand location. For all operations except data format 

conversions, the wrapped rounded result is in the same format and length as normal results at the target location. For 
data format conversions, the wrapped rounded result is in the same format and length as the source, but rounded to the 
target-format precision.

UX Floating-Point-Underflow-Exception status flag, FPSCRUX

XX Float-Point-Inexact-Exception Status flag, FPSCRXX. The flag is a sticky version of FPSCRFI. When FPSCRFI is set to a 
new value, the new value of FPSCRXX is set to the result of ORing the old value of FPSCRXX with the new value of 
FPSCRFI.

Figure 82. Rounding and Range Actions (Part 2)
Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 181



Version 2.07 B
5.6 DFP Instruction Descriptions

The following sections describe the DFP instructions.
When a 128-bit operand is used, it is held in a FPR pair
and the instruction mnemonic uses a letter “q” to mean
the quad-precision operation.  Note that in the following
descriptions, FPXp denotes a FPR pair and must
address an even-odd pair.  If the FPXp field specifies
an odd-numbered register, then the instruction form is
invalid.  The notation FPX[p] means either a FPR, FPX,
or a FPR pair, FPXp.

For DFP instructions, if a DFP operand is returned, the
trailing significand field of the target operand is
encoded using preferred DPD codes.
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5.6.1 DFP Arithmetic Instructions
All DFP arithmetic instructions are X-form instructions.
They all set the FI and FR status flags, and also set the
FPSCRFPRF field.  Furthermore, they all have an ideal
exponent assigned and employ the record bit (Rc).

The arithmetic instructions consist of Add, Divide, Multi-
ply, and Subtract.

DFP Add [Quad] X-form

dadd FRT,FRA,FRB (Rc=0)
dadd. FRT,FRA,FRB (Rc=1)

daddq FRTp,FRAp,FRBp (Rc=0)
daddq. FRTp,FRAp,FRBp (Rc=1) 

The DFP operand in FRA[p] is added to the DFP oper-
and in FRB[p].  

The result is rounded to the target-format precision
under control of the DRN (bits 29:31) of the FPSCR.
An appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the smaller exponent of the two
source operands. 

Figure 83 summarizes the actions for Add.  Figure 83
does not include the setting of the FPSCRFPRF field.
The FPSCRFPRF field is always set to the class and
sign of the result, except for an enabled invalid-opera-
tion exception, in which case the field remains
unchanged.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

DFP Subtract [Quad] X-form

dsub FRT,FRA,FRB (Rc=0)
dsub. FRT,FRA,FRB (Rc=1) 

dsubq FRTp,FRAp,FRBp (Rc=0)
dsubq. FRTp,FRAp,FRBp (Rc=1) 

The DFP operand in FRB[p] is subtracted from the DFP
operand in FRA[p].

The result is rounded to the target-format precision
under control of the DRN (bits 29:31) of the FPSCR.
An appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the smaller exponent of the two
source operands. 

The execution of Subtract is identical to that of Add,
except that the operand in FRB participates in the oper-
ation with its sign bit inverted.  See Figure 83. The table
does not include the setting of the FPSCRFPRF field.
The FPSCRFPRF field is always set to the class and
sign of the result, except for an enabled invalid-opera-
tion exception, in which case the field remains
unchanged.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXISI
CR1 (if Rc=1)

59 FRT FRA FRB 2 Rc
0 6 11 16 21 31

63 FRTp FRAp FRBp 2 Rc
0 6 11 16 21 31

59 FRT FRA FRB 514 Rc
0 6 11 16 21 31

63 FRTp FRAp FRBp 514 Rc
0 6 11 16 21 31
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Operand a 
in FRA[p] is

Actions for Add (a + b) when operand b in FRB[p] is 
-∞ F +∞ QNaN SNaN

-∞ T(-dINF) T(-dINF) VXISI: T(dNaN) P(b) VXSNAN: U(b)

F T(-dINF) S(a + b) T(+dINF) P(b) VXSNAN: U(b)
+∞ VXISI: T(dNaN) T(+dINF) T(+dINF) P(b) VXSNAN: U(b)

QNaN P(a) P(a) P(a) P(a) VXSNAN: U(b)

SNaN VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a)

Explanation:
a + b The value a added to b, rounded to the target-format precision and returned in the appropriate 

form. (See Section 5.5.11 on page 180)

+dINF Default plus infinity.

- dINF Default minus infinity.
dNaN Default quiet NaN.

F All finite numbers, including zeros.

P(x) The QNaN of operand x is propagated and placed in FRT[p]. 
S(x) The value x is placed in FRT[p] with the sign set by the rules of algebra. When the source oper-

ands have the same sign, the sign of the result is the same as the sign of the operands, includ-
ing the case when the result is zero. When the operands have opposite signs, the sign of a zero 
result is positive in all rounding modes, except round toward -∞, in which case, the sign is minus.

T(x) The value x is placed in FRT[p].

U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p]. 
VXISI The Invalid-Operation Exception (VXISI) occurs. The result is produced only when the exception is 

disabled. (See Section 5.5.10.1  “Invalid Operation Exception” on page 176 for the exception 
actions.)

VXSNAN The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the excep-
tion is disabled. (See Section 5.5.10.1  “Invalid Operation Exception” on page 176 for the 
exception actions.)

Figure 83. Actions: Add
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DFP Multiply [Quad] X-form

dmul FRT,FRA,FRB (Rc=0)
dmul. FRT,FRA,FRB (Rc=1) 

dmulq FRTp,FRAp,FRBp (Rc=0)
dmulq. FRTp,FRAp,FRBp (Rc=1) 

The DFP operand in FRA[p] is multiplied by the DFP
operand in FRB[p].  

The result is rounded to the target-format precision
under control of the DRN (bits 29:31) of the FPSCR.
An appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the sum of the two exponents of
the source operands.

Figure 84 summarizes the actions for Multiply.
Figure 84 does not include the setting of the FPSCRF-

PRF field.  The FPSCRFPRF field is always set to the
class and sign of the result, except for an enabled

invalid-operation exception, in which case the field
remains unchanged.

Special Registers Altered:
FPRF FR FI
FX OX UX XX VXSNAN VXIMZ
CR1 (if Rc=1)

Figure 84. Actions: Multiply

59 FRT FRA FRB 34 Rc
0 6 11 16 21 31

63 FRTp FRAp FRBp 34 Rc
0 6 11 16 21 31

Operand a 
in FRA[p] is

Actions for Multiply (a*b) when operand b in FRB[p] is 
0 Fn ∞ QNaN SNaN

0 S(a * b) S(a * b) VXIMZ: T(dNaN) P(b) VXSNAN: U(b)

Fn S(a * b) S(a * b) S(dINF) P(b) VXSNAN: U(b)
∞ VXIMZ: T(dNaN) S(dINF) S(dINF) P(b) VXSNAN: U(b)

QNaN P(a) P(a) P(a) P(a) VXSNAN: U(b)

SNaN VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a)
   Explanation:

  a * b The value a multiplied by b, rounded to the target-format precision and returned in the appropriate 
form. (See Section 5.5.11 on page 180)

dINF Default infinity.
dNaN Default quiet NaN.

Fn Finite nonzero number (includes both normal and subnormal numbers).

P(x) The QNaN of operand x is propagated and placed in FRT[p]. 
S(x) The value x is placed in FRT[p] with the sign set to the exclusive-OR of the source-operand signs.

T(x) The value x is placed in FRT[p].

U(x)  The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p]. 
VXIMZ: The Invalid-Operation Exception (VXIMZ) occurs. The result is produced only when the exception is 

disabled. (See Section 5.5.10.1  “Invalid Operation Exception” on page 176 for the exception 
actions.)

VXSNAN: The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the exception 
is disabled. (See Section 5.5.10.1  “Invalid Operation Exception” on page 176 for the exception 
actions.)
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DFP Divide [Quad] X-form

ddiv FRT,FRA,FRB (Rc=0)
ddiv. FRT,FRA,FRB (Rc=1) 

ddivq FRTp,FRAp,FRBp (Rc=0)
ddivq. FRTp,FRAp,FRBp (Rc=1) 

The DFP operand in FRA[p] is divided by the DFP
operand in FRB[p].  

The result is rounded to the target-format precision
under control of the DRN (bits 29:31) of the FPSCR.
An appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the difference of subtracting the
exponent of the divisor from the exponent of the divi-
dend.

Figure 85 summarizes the actions for Divide.  Figure 85
does not include the setting of the FPSCRFPRF field.
The FPSCRFPRF field is always set to the class and
sign of the result, except for an enabled invalid-opera-
tion and enabled zero-divide exceptions, in which
cases the field remains unchanged.

Special Registers Altered:
FPRF FR FI
FX OX UX ZX XX
VXSNAN VXIDI VXZDZ
CR1 (if Rc=1)

 

Figure 85. Actions: Divide

59 FRT FRA FRB 546 Rc
0 6 11 16 21 31

63 FRTp FRAp FRBp 546 Rc
0 6 11 16 21 31

Operand a  
in FRA[p] is

Actions for Divide (a ÷ b) when operand b in FRB[p]  is 
0 Fn ∞ QNaN SNaN

0 VXZDZ: T(dNaN) S(a ÷ b) S(zt) P(b) VXSNAN: U(b)

Fn Zx:  S(dINF) S(a ÷ b) S(zt) P(b) VXSNAN: U(b)
∞ S(dINF) S(dINF) VXIDI: T(dNaN) P(b) VXSNAN: U(b)

QNaN P(a) P(a) P(a) P(a) VXSNAN: U(b)

SNaN VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a)
Explanation:

a  ÷  b The value a divided by b, rounded to the target-format precision and returned in the appropriate 
form. (See Section 5.5.11 on page 180.)

dINF Default infinity.
dNaN Default quiet NaN.

Fn Finite nonzero number (includes both normal and subnormal numbers).

P(x) The QNaN of operand x is propagated and placed in FRT[p].
S(x) The value x is placed in FRT[p] with the sign set to the exclusive-OR of the source-operand signs.

T(x) The value x is placed in FRT[p].

U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p]. 
VXIDI: The Invalid-Operation Exception (VXIDI) occurs. The result is produced only when the exception is 

disabled. (See Section 5.5.10.1  “Invalid Operation Exception” on page 176 for the exception 
actions.)

VXSNAN: The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the exception 
is disabled. (See Section 5.5.10.1  “Invalid Operation Exception” on page 176 for the exception 
actions.)

VXZDZ: The Invalid-Operation Exception (VXZDZ) occurs. The result is produced only when the exception 
is disabled. (See Section 5.5.10.1  “Invalid Operation Exception” on page 176 for the exception 
actions.)

zt True zero (zero significand and most negative exponent).
Zx The Zero-Divide Exception occurs. The result is produced only when the exception is disabled (See 

Section 5.5.10.2  “Zero Divide Exception” on page 177 for the exception actions.)
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5.6.2 DFP Compare Instructions
The DFP compare instructions consist of the Compare
Ordered and Compare Unordered instructions.  The
compare instructions do not provide the record bit.

The comparison sets the designated CR field to indi-
cate the result.  The FPSCRFPCC is set in the same
way.

The codes in the CR field BF and FPSCRFPCC are
defined for the DFP compare operations as follows.

Bit Name Description
0 FL (FRA[p]) < (FRB[p])
1 FG (FRA[p]) > (FRB[p])
2 FE (FRA[p]) = (FRB[p])
3 FU (FRA[p]) ? (FRB[p])
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DFP Compare Unordered [Quad] X-form

dcmpu BF,FRA,FRB

dcmpuq BF,FRAp,FRBp

The DFP operand in FRA[p] is compared to the DFP
operand in FRB[p].  The result of the compare is placed
into CR field BF and the FPSCRFPCC.

Special Registers Altered:
CR field BF
FPCC
FX VXSNAN 

Figure 86. Actions: Compare Unordered

59 BF // FRA FRB 642 /
0 6 9 11 16 21 31

63 BF // FRAp FRBp 642 /
0 6 9 11 16 21 31

Operand a  in 
FRA[p] is

Actions for Compare Unordered (a:b) when operand b in FRB[p] is
-∞ F +∞ QNaN SNaN

-∞ AeqB AltB AltB AuoB Fu, VXSNAN

F AgtB C(a:b) AltB AuoB Fu, VXSNAN

+∞ AgtB AgtB AeqB AuoB Fu, VXSNAN

QNaN AuoB AuoB AuoB AuoB Fu, VXSNAN

SNaN Fu, VXSNAN Fu, VXSNAN Fu, VXSNAN Fu, VXSNAN Fu, VXSNAN

Explanation:

C(a:b) Algebraic comparison.  See the table below.

F All finite numbers, including zeros.
AeqB CR field BF and FPSCRFPCC are set to 0b0010.

AgtB CR field BF and FPSCRFPCC are set to 0b0100.

AltB CR field BF and FPSCRFPCC are set to 0b1000.
AuoB CR field BF and FPSCRFPCC are set to 0b0001.

VXSNAN  The invalid-operation exception (VXSNAN) occurs. See Section 5.5.10.1 for actions.

Relation of Value a to Value b Action for C(a:b)
a  =  b AeqB

a  <  b AltB
a  >  b AgtB
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DFP Compare Ordered [Quad] X-form

dcmpo BF,FRA,FRB

dcmpoq BF,FRAp,FRBp

The DFP operand in FRA[p] is compared to the DFP
operand in FRB[p].  The result of the compare is placed
into CR field BF and the FPSCRFPCC.

Special Registers Altered:
CR field BF
FPCC
FX VXSNAN VXVC

Figure 87. Actions: Compare Ordered

59 BF // FRA FRB 130 /
0 6 9 11 16 21 31

63 BF // FRAp FRBp 130 /
0 6 9 11 16 21 31

Operand a in  
FRA[p] is

Actions for Compare ordered (a:b) when operand b in FRB[p] is 
-∞ F +∞ QNaN SNaN

-∞ AeqB AltB AltB AuoB, VXVC AuoB, VXSV

F AgtB C(a:b) AltB AuoB, VXVC AuoB, VXSV

+∞ AgtB AgtB AeqB AuoB, VXVC AuoB, VXSV

QNaN AuoB, VXVC AuoB, VXVC AuoB, VXVC AuoB, VXVC AuoB, VXSV

SNaN AuoB, VXSV AuoB, VXSV AuoB, VXSV AuoB, VXSV AuoB, VXSV

Explanation:

C(a:b) Algebraic comparison. See the table below

F All finite numbers, including zeros
AeqB CR field BF and FPSCRFPCC are set to 0b0010.

AgtB CR field BF and FPSCRFPCC are set to 0b0100.

AltB CR field BF and FPSCRFPCC are set to 0b1000.
AuoB CR field BF and FPSCRFPCC are set to 0b0001.

VXSV The invalid-operation exception (VXSNAN) occurs. Additionally, if the exception is disabled 
(FPSCRVE=0), then FPSCRVXVC is also set to one. See Section 5.5.10.1 for actions.

VXVC The invalid-operation exception (VXVC) occurs. See Section 5.5.10.1 for actions.

Relation of Value a to Value b Action for C(a:b)
a  =  b AeqB
a  <  b AltB

a  >  b AgtB
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5.6.3 DFP Test Instructions
The DFP test instructions consist of the Test Data
Class, Test Data Group, Test Exponent, and Test Signif-
icance instructions, and they do not provide the record
bit.

The test instructions set the designated CR field to indi-
cate the result.  The FPSCRFPCC is set in the same
way. 

DFP Test Data Class [Quad] Z22-form

dtstdc BF,FRA,DCM

dtstdcq BF,FRAp,DCM

Let the DCM (Data Class Mask) field specify one or
more of the 6 possible data classes, where each bit
corresponds to a specific data class.

CR field BF and FPSCRFPCC are set to indicate the
sign of the DFP operand in FRA[p] and whether the
data class of the DFP operand in FRA[p] matches any
of the data classes specified by DCM.

Special Registers Altered:
CR field BF
FPCC

DFP Test Data Group [Quad]  Z22-form

dtstdg BF,FRA,DGM

dtstdgq BF,FRAp,DGM

Let the DGM (Data Group Mask) field specify one or
more of the 6 possible data groups, where each bit cor-
responds to a specific data group.

The term extreme exponent means either the maximum
exponent, Xmax, or the minimum exponent, Xmin. 

CR field BF and FPSCRFPCC are set to indicate the
sign of the DFP operand in FRA[p] and whether the
data group of the DFP operand in FRA[p] matches any
of the data groups specified by DGM.

Special Registers Altered:
CR field BF
FPCC

59 BF // FRA DCM 194 /
0 6 9 11 16 22 31

63 BF // FRAp DCM 194 /
0 6 9 11 16 22 31

DCM Bit Data Class
0 Zero
1 Subnormal
2 Normal
3 Infinity
4 Quiet NaN
5 Signaling NaN

Field Meaning
0000 Operand positive with no match
0010 Operand positive with match
1000 Operand negative with no match
1010 Operand negative with match

59 BF // FRA DGM 226 /
0 6 9 11 16 22 31

63 BF // FRAp DGM 226 /
0 6 9 11 16 22 31

DGM Bit Data Group
0 Zero with non-extreme exponent
1 Zero with extreme exponent
2 Subnormal or (Normal with extreme expo-

nent)
3 Normal with non-extreme exponent and 

leftmost zero digit in significand
4 Normal with non-extreme exponent and 

leftmost nonzero digit in significand
5 Special symbol (Infinity, QNaN, or SNaN)

Field Meaning
0000 Operand positive with no match 
0010 Operand positive with match
1000 Operand negative with no match
1010 Operand negative with match
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DFP Test Exponent [Quad] X-form

dtstex BF,FRA,FRB

dtstexq BF,FRAp,FRBp

The exponent value (Ea) of the DFP operand in FRA[p]
is compared to the exponent value (Eb) of the DFP
operand in FRB [p].  The result of the compare is
placed into CR field BF and the FPSCRFPCC.

The codes in the CR field BF and FPSCRFPCC are
defined for the DFP Test Exponent operations as fol-
lows. 

Special Registers Altered:
CR field BF
FPCC

Figure 88. Actions: Test Exponent

59 BF // FRA FRB 162 /
0 6 9 11 16 21 31

63 BF // FRAp FRBp 162 /
0 6 9 11 16 21 31

Bit Description
0 Ea < Eb
1 Ea > Eb
2 Ea = Eb
3 Ea ? Eb

Operand a in  
FRA[p] is

Actions for Test Exponent (Ea:Eb) when operand b in FRB[p] is

F ∞ QNaN SNaN

F C(Ea:Eb) AuoB AuoB AuoB

∞ AuoB AeqB AuoB AuoB
QNaN AuoB AuoB AeqB AeqB

SNaN AuoB AuoB AeqB AeqB

Explanation:
 C(Ea:Eb) Algebraic comparison.  See the table below.

F All finite numbers, including zeros

AeqB CR field BF and FPSCRFPCC are set to 0b0010.
AgtB CR field BF and FPSCRFPCC are set to 0b0100.

AltB CR field BF and FPSCRFPCC are set to 0b1000.

AuoB CR field BF and FPSCRFPCC are set to 0b0001.

Relation of Value Ea to Value Eb Action for C(Ea:Eb)
Ea  =  Eb AeqB
Ea  <  Eb AltB

Ea  >  Eb AgtB
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DFP Test Significance [Quad] X-form

dtstsf BF,FRA,FRB

dtstsfq BF,FRA,FRBp

Let k be the contents of bits 58:63 of FRA that specifies
the reference significance.

The number of significant digits of the DFP operand in
FRB[p], NSDb, is compared to the reference signifi-
cance, k. For this instruction, the number of significant
digits of the value 0 is considered to be zero.  The result
of the compare is placed into CR field BF and the
FPSCRFPCC as follows. 

Special Registers Altered:
CR field BF
FPCC

 

Figure 89. Actions: Test Significance

59 BF // FRA FRB 674 /
0 6 9 11 16 21 31

63 BF // FRA FRBp 674 /
0 6 9 11 16 21 31

Bit Description
0 k g 0 and k <  NSDb
1 k g 0 and k  >  NSDb, or k = 0
2 k g 0 and k  =  NSDb
3 k ? NSDb

The reference significance can be loaded into a
FPR using a Load Float as Integer Word Algebraic
instruction

Programming Note

Actions for Test Significance when the operand in 
FRB[p] is

F ∞ QNaN SNaN

C(k: NSDb) AuoB AuoB AuoB

Explanation:

 C(k: NSDb) Algebraic comparison.  See the 
table below. 

F All finite numbers, including zeros. 
AeqB CR field BF and FPSCRFPCC are 

set to 0b0010.

AgtB CR field BF and FPSCRFPCC are 
set to 0b0100.

AltB CR field BF and FPSCRFPCC are 
set to 0b1000.

AuoB CR field BF and FPSCRFPCC are 
set to 0b0001.

Relation of Value NSDb to 
Value k

Action for 
C(k:NSDb)

k g 0 and k = NSDb AeqB

k g 0 and k < NSDb AltB

k g 0 and k > NSDb, or k = 0 AgtB
Power ISA™ - Book I192



Version 2.07 B
5.6.4 DFP Quantum Adjustment Instructions
The Quantum Adjustment operations consist of the
Quantize, Quantize Immediate, Reround, and Round
To FP Integer operations.

The Quantum Adjustment instructions are Z23-form
instructions and have an immediate RMC (Round-
ing-Mode-Control) field, which specifies the rounding
mode used. For Quantize, Quantize Immediate, and
Reround, the RMC field contains the primary encoding.
For Round to FP Integer, the field contains either pri-

mary or secondary encoding, depending on the setting
of a RMC-encoding-selection bit. See Section 5.5.2
“Rounding Mode Specification” on page 171 for the
definition of RMC encoding.

All Quantum Adjustment instructions set the FI and FR
status flags, and also set the FPSCRFPRF field.  The
record bit is provided to each of these instructions.
They return the target operand in a form with the ideal
exponent.

DFP Quantize Immediate [Quad] Z23-form

dquai TE,FRT,FRB,RMC (Rc=0)
dquai. TE,FRT,FRB,RMC (Rc=1) 

dquaiq TE,FRTp,FRBp,RMC (Rc=0)
dquaiq. TE,FRTp,FRBp,RMC (Rc=1)

The DFP operand in FRB[p] is converted and rounded
to the form with the exponent specified by TE based on
the rounding mode specified in the RMC field. TE is a
5-bit signed binary integer.  The result of that form is
placed in FRT[p].  The sign of the result is the same as
the sign of the operand in FRB[p].  The ideal exponent
is the exponent specified by TE.

When the value of the operand in FRB[p] is greater
than (10p-1) % 10TE, where p is the format precision, an
invalid operation exception is recognized.

When the delivered result differs in value from the oper-
and in FRB[p], an inexact exception is recognized.  No
underflow exception is recognized by this operation,
regardless of the value of the operand in FRB[p].

The FPSCRFPRF field is always set to the class and
sign of the result, except for an enabled invalid-opera-
tion exception, in which case the field remains
unchanged.

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

 

59 FRT TE FRB RMC 67 Rc
0 6 11 16 21 23 31

63 FRTp TE FRBp RMC 67 Rc
0 6 11 16 21 23 31

DFP Quantize Immediate can be used to adjust
values to a form having the specified exponent in
the range -16 to 15. If the adjustment requires the
significand to be shifted left, then:

if the result would cause overflow from the
most significant digit, the result is a default
QNaN.;
otherwise the result is the adjusted value (left
shifted with matching exponent). 

If the adjustment requires the significand to be
shifted right, the result is rounded based on the
value of the RMC field.

DFP Quantize Immediate can round a value to a
specific number of fractional digits. Consider the
computation of sales tax. Values expressed in U.S.
dollars have 2 fractional digits, and sales tax rates
typically have 3 fractional digits. The product of
value and rate will yield 5 fractional digits. For
example:

39.95 * 0.075 = 2.99625

This result needs to be rounded to the penny to
compute the correct tax of $3.00.

The following sequence computes the sales tax
assuming the pre-tax total is in FRA and the tax
rate is in FRB. The DFP Quantize Immediate
instruction rounds the product (FRA * FRB) to 2
fractional digits (TE field = -2) using Round to near-
est, ties away from 0 (RMC field = 2). The quan-
tized and rounded result is placed in FRT.

dmul  f0,FRA,FRB
dquai -2,FRT,f0,2

Programming Note
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DFP Quantize [Quad] Z23-form

dqua FRT,FRA,FRB,RMC (Rc=0)
dqua. FRT,FRA,FRB,RMC (Rc=1) 

dquaq FRTp,FRAp,FRBp,RMC (Rc=0)
dquaq. FRTp,FRAp,FRBp,RMC (Rc=1)

The DFP operand in register FRB[p] is converted and
rounded to the form with the same exponent as that of
the DFP operand in FRA[p] based on the rounding
mode specified in the RMC field. The result of that form
is placed in FRT[p].  The sign of the result is the same
as the sign of the operand in FRB[p]. The ideal expo-
nent is the exponent specified in FRA[p].

When the value of the operand in FRB[p] is greater
than (10p-1) % 10Ea, where p is the format precision
and Ea is the exponent of the operand in FRA[p], an
invalid operation exception is recognized.

When the delivered result differs in value from the oper-
and in FRB[p], an inexact exception is recognized.  No

underflow exception is recognized by this operation,
regardless of the value of the operand in FRB[p].

Figure 91 and Figure 92 summarize the actions.  The
tables do not include the setting of the FPSCRFPRF
field.  The FPSCRFPRF field is always set to the class
and sign of the result, except for an enabled
invalid-operation exception, in which case the field
remains unchanged.

Special Register Altered:
FPRF FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

  

59 FRT FRA FRB RMC 3 Rc
0 6 11 16 21 23 31

63 FRTp FRAp FRBp RMC 3 Rc
0 6 11 16 21 23 31

DFP Quantize can be used to adjust one DFP
value (FRB[p]) to a form having the same exponent
as a second DFP value (FRA[p]). If the adjustment
requires the significand to be shifted left, then:

if the result would cause overflow from the
most significant digit, the result is a default
QNaN.; 
otherwise the result is the adjusted value (left
shifted with matching exponent).

If the adjustment requires the significand to be
shifted right, the result is rounded based on the
value of the RMC field. Figure 90 shows examples
of these adjustments.

Programming Note

FRA FRB FRT when RMC=1 FRT when RMC=2

1 (1 x 100) 9. (9 x 100) 9 (9 x 100) 9 (9 x 100)

1.00 (100 x 10-2) 9. (9 x 100) 9.00 (900 x 10-2) 9.00 (900 x 10-2)

1 (1 x 100) 49.1234 (491234 x 10-4) 49 (49 x 100) 49 (49 x 100)

1.00 (100 x 10-2) 49.1234 (491234 x 10-4) 49.12 (4912 x 10-2) 49.12 (4912 x 10-2)

1 (1 x 100) 49.9876 (499876 x 10-4) 49 (49 x 100) 50 (50 x 100)

1.00 (100 x 10-2) 49.9876 (499876 x 10-4) 49.98 (4998 x 10-2) 49.99 (4999 x 10-2)

0.01 (1 x 10-2) 49.9876 (499876 x 10-4) 49.98 (4998 x 10-2) 49.99 (4999 x 10-2)

1 (1 x 100) 9999999999999999 
(9999999999999999 x 100)

9999999999999999 
(9999999999999999 x 100)

9999999999999999 
(9999999999999999 x 100)

1.0 (10 x 10-1) 9999999999999999 
(9999999999999999 x 100) QNaN QNaN

Figure 90. DFP Quantize examples
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Figure 91. Actions (part 1) Quantize

Figure 92. Actions (part2) Quantize

Operand a 
in FRA[p] is

Actions for Quantize when operand b in FRB[p] is 

0 Fn ∞ QNaN SNaN

0 * * VXCVI: T(dNaN) P(b) VXSNAN:  U(b)
Fn * * VXCVI: T(dNaN) P(b) VXSNAN:  U(b)

• VXCVI: T(dNaN) VXCVI: T(dNaN) T(dINF) P(b) VXSNAN:  U(b)

QNaN P(a) P(a) P(a) P(a) VXSNAN:  U(b)

SNaN VXSNAN:  U(a) VXSNAN:  U(a) VXSNAN:  U(a) VXSNAN:  U(a) VXSNAN:  U(a)
Explanation:

* See next table.

dINF Default infinity
dNaN Default quiet NaN

Fn Finite nonzero numbers (includes both subnormal and normal numbers)

P(x) The QNaN of operand x is propagated and placed in FRT[p]
T(x) The value x is placed in FRT[p]

U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].

VXCVI The Invalid-Operation Exception (VXCVI) occurs. The result is produced only when the exception is 
disabled. (See Section 5.5.10.1 for actions)

VXSNAN The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the exception 
is disabled. (See Section 5.5.10.1 for actions)

Actions for Quantize when operand b in FRB[p] is 
0 Fn

Te  <  Se Vb > (10p - 1) % 10Te E(0) VXCVI: T(dNaN)

Vb [ (10p - 1) % 10Te E(0) L(b)
Te  =  Se E(0) W(b)

Te  >  Se E(0) QR(b)

Explanation:
dNaN Default quiet NaN

E(0) The value of zero with the exponent value Te is placed in FRT[p].

L(x) The operand x is converted to the form with the exponent value Te.
p The precision of the format.

QR(x) The operand x is rounded to the result of the form with the exponent value Te based on the specified 
rounding mode.  The result of that form is placed in FRT[p].

Se The exponent of the operand in FRB[p].
Te The target exponent; FRA[p] for dqua[q], or TE, a 5-bit signed binary integer for dquai[q].

T(x) The value x is placed in FRT[p].

Vb The value of the operand in FRB[p].
W(x) The value and the form of operand x is placed in FRT[p].

VXCVI: The Invalid-Operation Exception (VXCVI) occurs. The result is produced only when the exception is 
disabled. (See Section 5.5.10.1 for actions.)
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DFP Reround [Quad]    Z23-form

drrnd FRT,FRA,FRB,RMC (Rc=0)
drrnd. FRT,FRA,FRB,RMC (Rc=1 

drrndq FRTp,FRA,FRBp,RMC (Rc=0)
drrndq. FRTp,FRA,FRBp,RMC (Rc=1)

Let k be the contents of bits 58:63 of FRA that specifies
the reference significance.

When the DFP operand in FRB[p] is a finite number,
and if the reference significance is zero, or if the refer-
ence significance is nonzero and the number of signifi-
cant digits of the source operand is less than or equal
to the reference significance, then the value and the
form of the source operand is placed in FRT[p].  If the
reference significance is nonzero and the number of
significant digits of the source operand is greater than
the reference significance, then the source operand is
converted and rounded to the number of significant dig-
its specified in the reference significance based on the
rounding mode specified in the RMC field.  The result
of the form with the specified number of significant dig-
its is placed in FRT[p].  The sign of the result is the
same as the sign of the operand in FRB[p].

For this instruction, the number of significant digits of
the value 0 is considered to be zero.  The ideal expo-
nent is the greater value of the exponent of the operand
in FRB[p] and the referenced exponent.  The refer-
enced exponent is the resultant exponent if the operand
in FRB[p] would have been converted and rounded to
the number of significant digits specified in the refer-
ence significance based on the rounding mode speci-
fied in the RMC field.

If the exponent of the rounded result of the form that
has the specified number of significant digits would be
greater than Xmax, an invalid operation exception
(VXCVI) occurs.  When the invalid-operation exception
occurs, and if the exception is disabled, a default QNaN
is returned.  When an invalid-operation exception
occurs, no inexact exception is recognized.

In the absence of an invalid-operation exception, if the
result differs in value from the operand in FRB[p], an
inexact exception is recognized.

This operation causes neither an overflow nor an
underflow exception.

Figure 94 summarizes the actions for Reround.  The
table does not include the setting of the FPSCRFPRF
field.  The FPSCRFPRF field is always set to the class
and sign of the result, except for an enabled

invalid-operation exception, in which case the field
remains unchanged.

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

 

 

59 FRT FRA FRB RMC 35 Rc
0 6 11 16 21 23 31

63 FRTp FRA FRBp RMC 35 Rc
0 6 11 16 21 23 31

DFP Reround can be used to adjust a DFP value
(FRB[p]) to have no more than a specified number
(FRA[p]58:63) of significant digits. The result
(FRT[p]) is right-justified leaving the specified num-
ber of digits and rounded as specified by the RMC
field. If rounding increases the number of significant
digits, the result is adjusted again (the significand is
shifted right 1 digit and the exponent is incremented
by 1). Figure 93 has example results from DFP
Reround for 1, 2, and 10 significant digits.

DFP Reround is primarily used to round a DFP
value to a specific number of digits before conver-
sion to string format for printing or display. Another
use for DFP Reround is to obtain the effective expo-
nent of the most significant digit by specifying a ref-
erence significance of 1. The exponent can be
extracted and used to compute the number of signif-
icant digits or to left-justify a value.

For example, the following sequence computes the
number of significant digits and returns it as an inte-
ger.  FRB is the DFP value for which we want the
number of significant digits; f13 contains the refer-
ence significance value 0x0000000000000001; and
r1 is the stack pointer, with free space for double-
words at offsets -8 and -16. These doublewords are
used to transfer the biased exponents from the
FPRs to GPRs for integer computation. R3 contains
the result of E(reround(1,FRA) )  - E(FRA) + 1,
where E(x) represents the biased exponent of x.

dxex   f0,FRB
stfd   f0,-16(r1)
drrnd  f1,f13,FRB,1 # reround 1 digit toward 0
dxex   f1,f1
stfd   f1,-8(r1)
lfd    r11,-16(r1)
lfd    r3,-8(r1)
subf   r3,r11,r3
addi   r3,r3,1

Given the value 412.34 the result is E(4 x 102) -
E(41234 x 10-2) + 1 = (398+2) - (398-2) + 1 =  400 -
396 + 1 = 5. Additional code is required to detect
and handle special values like Subnormal, Infinity,
and NAN.

Programming Note

Programming Note
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FRA58:63 (binary) FRB FRT when RMC=1 FRT when RMC=2 

1 0.41234 (41234 % 10-5) 0.4 (4 % 10-1) 0.4 (4 % 10-1)

1 4.1234 (41234 % 10-4) 4 (4 % 100) 4 (4 % 100)

1 41.234 (41234 % 10-3) 4 (4 % 101) 4 (4 % 101)

1 412.34 (41234 % 10-2) 4 (4 % 102) 4 (4 % 102)

2 0.491234 (491234 % 10-6) 0.49 (49 % 10-2) 0.49 (49 % 10-2)

2 0.499876 (499876 % 10-6) 0.49 (49 % 10-2) 0.50 (50 % 10-2)

2 0.999876 (999876 % 10-6) 0.99 (99 % 10-2) 1.0 (10 % 10-1)

10 0.491234 (491234 % 10-6) 0.491234 (491234 % 10-6) 0.491234 (491234 % 10-6)

10 999.999 (999999 % 10-3) 999.999 (999999 % 10-3) 999.999 (999999 % 10-3)

10 9999999999999999 
(9999999999999999 % 100)

9.999999999E+14 
(9999999999 % 105)

1.000000000E+15 
(1000000000 % 106)

Figure 93. DFP Reround examples

DFP Reround combined with DFP Quantize can be
used to left justify a value (as needed by the frexp
function). FRB is the DFP value for which we want
to left justify; f13 contains the reference significance
value 0x0000000000000001; and r1 is the stack
pointer, with free space for a doubleword at offset
-8. This doubleword is used to transfer the biased
exponents from the FPR to a GPR, for integer com-
putation. The adjusted biased exponent (+ format
precision - 1) is transferred back into an FPR so it
can be inserted into the rerounded value. The
adjusted rerounded value becomes the quantize
reference value. The quantize instruction returns
the  left justified result in FRT.

drrnd  f1,f13,FRB,1 # reround 1 digit toward 0
dxex   f0,f1
stfd   f0,-8(r1) 
lfd    r11,-8(r1) 
addi   r11,r11,15  # biased exp + precision - 1
lfd    r11,-8(r1)
stfd   f0,-8(r1) 
diex   f1,f0,f1    # adjust exponent
dqua   FRT,f1,f0,1 # quantize to adjusted
                     exponent 

Programming Note
Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 197



Version 2.07 B
Actions for Reround when operand b in FRB[p] is 

0* Fn ∞ QNaN SNaN

k g 0, k < m
- RR(b) or

VXCVI: T(dNaN)
T(dINF) P(b) VXSNAN: U(b)

k g 0, k = m - W(b) T(dINF) P(b) VXSNAN: U(b)

k g 0 and k > m, 
or k = 0

W(b) W(b) T(dINF) P(b) VXSNAN: U(b)

Explanation:

* The number of significant digits of the value 0 is considered to be zero for this instruction.
- Not applicable.

dINF Default infinity.

Fn Finite nonzero numbers (includes both subnormal and normal numbers).
k Reference significance, which specifies the number of significant digits in the target operand.

m Number of significant digits in the operand in FRB[p].

P(x) The QNaN of operand x is propagated and placed in FRT[p]. 
RR(x) The value x is rounded to the form that has the specified number of significant digits. 

If RR(x) [ (10k-1) % 10Xmax, then RR(x) is returned; otherwise an invalid-operation excep-
tion is recognized.

T(x) The value x is placed in FRT[p]. 

U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
VXCVI The Invalid-Operation Exception (VXCVI) occurs. The result is produced only when the excep-

tion is disabled. (See Section 5.5.10.1 for actions.)

VXSNAN: The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the 
exception is disabled. See Section 5.5.10.1 for actions.

W(x) The value and the form of x is placed in FRT[p].

Figure 94. Actions: Reround
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DFP Round To FP Integer With Inexact 
[Quad] Z23-form

drintx R,FRT,FRB,RMC (Rc=0)
drintx. R,FRT,FRB,RMC (Rc=1) 

drintxq R,FRTp,FRBp,RMC (Rc=0)
drintxq. R,FRTp,FRBp,RMC (Rc=1) 

The DFP operand in FRB[p] is rounded to a float-
ing-point integer and placed into FRT[p].  The sign of
the result is the same as the sign of the operand in
FRB[p].  The ideal exponent is the larger value of zero
and the exponent of the operand in FRB[p].

The rounding mode used is specified in the RMC field.
When the RMC-encoding-selection (R) bit is zero, the
RMC field contains the primary encoding; when the bit
is one, the field contains the secondary encoding.

In addition to coercion of the converted value to fit the
target format, the special rounding used by Round To
FP Integer also coerces the target exponent to the ideal
exponent. 

When the operand in FRB[p] is a finite number and the
exponent is less than zero, the operand is rounded to
the result with an exponent of zero.  When the expo-
nent is greater than or equal to zero, the result is set to
the numerical value and the form of the operand in
FRB[p]. 

When the result differs in value from the operand in
FRB[p], an inexact exception is recognized.  No under-
flow exception is recognized by this operation, regard-
less of the value of the operand in FRB[p]. 

Figure 95 summarizes the actions for Round To FP
Integer With Inexact.  The table does not include the
setting of the FPSCRFPRF field.  The FPSCRFPRF field
is always set to the class and sign of the result, except
for an enabled invalid-operation, in which case the field
remains unchanged. 

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN
CR1 (if Rc=1)

 

59 FRT /// R FRB RMC 99 Rc
0 6 11 15 16 21 23 31

63 FRTp /// R FRBp RMC 99 Rc
0 6 11 15 16 21 23 31

The DFP Round To FP Integer With Inexact and
DFP Round To FP Integer With Inexact Quad
instructions can be used to implement the decimal
equivalent of the C99 rint function by specifying the
primary RMC encoding for round according to
FPSCRDRN (R=0, RMC=11). The specification for
rint requires the inexact exception be raised if
detected.

Programming Note
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 Operand b 
in FRB is

Is n not pre-
cise (n ≠ b)

Inv.-Op. 
Exception 
Enabled

Inexact 
Exception 
Enabled

Is n Incre-
mented 

(|n| > |b|) Actions*
-∞ No1  - - - T(-dINF), FI I 0, FR I 0

F No  - - - W(n), FI I 0, FR I 0

F Yes  - No No W(n), FI I 1, FR I 0, XX I 1

F Yes - No Yes W(n), FI I 1, FR I 1, XX I 1
F Yes - Yes No W(n), FI I 1, FR I 0, XX I 1, TX

F Yes - Yes Yes W(n), FI I 1, FR I 1, XX I 1, TX

+∞ No1 - - - T(+dINF), FI I 0, FR I 0
QNaN No1 - - - P(b), FI I 0, FR I 0 

SNaN No1 No - - U(b), FI I 0, FR I 0, VXSNAN I 1

SNaN No1 Yes - - VXSNAN I 1, TV 
 Explanation:     

* Setting of XX and VXSNAN is part of the corresponding exception actions. Also, when an 
invalid-operation exception occurs, setting of FI and FR is part of the exception actions.(See the 
sections, “Inexact Exception” and “Invalid Operation Exception” for more details.)

- The actions do not depend on this condition.     
1 This condition is true by virtue of the state of some condition to the left of this column. 

dINF Default infinity.     

F All finite numbers, including zeros.     
FI Floating-Point-Fraction-Inexact status flag, FPSCRFI.     

FR Floating-Point-Fraction-Rounded status flag, FPSCRFR.     

n The value derived when the source operand, b, is rounded to an integer using the special rounding 
for Round To FP Integer.

P(x) The QNaN of operand x is propagated and placed in FRT[p]. 

T(x) The value x is placed in FRT[p].

TV The system floating-point enabled exception error handler is invoked for the invalid-operation excep-
tion if the FE0 and FE1 bits in the machine-state register are set to any mode other than the 
ignore-exception mode. 

TX The system floating-point enabled exception error handler is invoked for the inexact exception if the 
FE0 and FE1 bits in the machine-state register are set to any mode other than the ignore-excep-
tion mode.

U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FPT[p]. 

W(x) The value x in the form of zero exponent or the source exponent is placed in FRT[p].
XX Floating-Point-Inexact-Exception status flag, FPSCRXX.

Figure 95. Actions: Round to FP Integer With Inexact
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DFP Round To FP Integer Without Inexact 
[Quad] Z23-form

drintn R,FRT,FRB,RMC (Rc=0)
drintn. R,FRT,FRB,RMC (Rc=1) 

drintnq R,FRTp,FRBp,RMC (Rc=0)
drintnq. R,FRTp,FRBp,RMC (Rc=1) 

This operation is the same as the Round To FP Integer
With Inexact operation, except that this operation does
not recognize an inexact exception.

Figure 96 summarizes the actions for Round To FP
Integer Without Inexact.  The table does not include the
setting of the FPSCRFPRF field.  The FPSCRFPRF field
is always set to the class and sign of the result, except
for an enabled invalid-operation, in which case the field
remains unchanged.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

 

 

Figure 96. Actions: Round to FP Integer Without Inexact

59 FRT /// R FRB RMC 227 Rc
0 6 11 15 16 21 23 31

63 FRTp /// R FRBp RMC 227 Rc
0 6 11 15 16 21 23 31

The DFP Round To FP Integer Without Inexact and
DFP Round To FP Integer Without Inexact Quad
instructions can be used to implement decimal
equivalents of several C99 rounding functions by
specifying the appropriate R and RMC field values.

Function R RMC
Ceil 1 0b00
Floor 1 0b01
Nearbyint 0 0b11
Round 0 0b10
Trunc 0 0b01

Note that nearbyint is similar to the rint function but
without raising the inexact exception. Similarly ceil,
floor, round, and trunc do not require the inexact
exception.

Programming Note

Operand b in  
FRB is

Inv.-Op. Exception 
Enabled

Actions*

-∞ - T(-dINF), FI I 0, FR I 0
F - W(n), FI I 0, FR I 0

+∞ - T(+dINF), FI I 0, FR I 0

QNaN - P(b), FI I 0, FR I 0 
SNaN No U(b), FI I 0, FR I 0, VXSNANI1

SNaN Yes VXSNAN I 1, TV 

 Explanation:
* Setting of VXSNAN is part of the corresponding exception actions. Also, when an invalid-operation 

exception occurs, setting of FI and FR bits is part of the exception actions. (See the sections, “Invalid 
Operation Exception” for more details.)

- The actions do not depend on this condition.     

dINF Default infinity.
F All finite numbers, including zeros.

FI Floating-Point-Fraction-Inexact status flag, FPSCRFI.

FR Floating-Point-Fraction-Rounded status flag, FPSCRFR.
n The value derived when the source operand, b, is rounded to an integer using the special rounding for 

Round-To-FP-Integer.    

P(x) The QNaN of operand x is propagated and placed in FRT[p]. 

T(x) The value x is placed in FRT[p].
TV The system floating-point enabled exception error handler is invoked for the invalid-operation exception 

if the FE0 and FE1 bits in the machine-state register are set to any mode other than the 
ignore-exception mode.

U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FPT[p]. 

W(x) The value x in the form of zero exponent or the source exponent is placed in FRT[p].
Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 201



Version 2.07 B
5.6.5 DFP Conversion Instructions
The DFP conversion instructions consist of data-format
conversion instructions and data-type conversion
instructions.  They are all X-form instructions and
employ the record bit (Rc).

5.6.5.1 DFP Data-Format Conversion 
Instructions
The data-format conversion instructions consist of Con-
vert To DFP Long, Convert To DFP Extended, Round
To DFP Short, and Round To DFP Long. Figure 97
summarizes the actions for these instructions.

  

Figure 97. Actions: Data-Format Conversion Instructions

DFP does not provide operations on short oper-
ands, so they must be converted to long format,
and then converted back to be stored. Preserving
correct signaling NaN semantics requires that sig-
naling NaNs be propagated from the source to the
result without recognizing an exception during wid-
ening from short to long or narrowing from long to
short. Because DFP does not provide equivalents
to the FP Load Floating-Point Single and Store
Floating-Point Single functions, the widening is per-
formed by loading the DFP short value with a Load
Floating as Integer Word Indexed followed by a
DFP Convert to DFP Long, and narrowing is per-
formed by a DFP Round to DFP Short followed by
a Store Floating-Point as Integer Word Indexed.  If
the SNaN or infinity in DFP short format uses the
preferred DPD encoding, then converting this oper-
and to DFP long format and back to DFP short will
result in the original bit pattern.

Programming Note

Instruction
Actions when operand b in FRB[p] is

F ∞ QNaN SNaN

Convert To DFP Long T(b)1 P(b)2,4 P(b)2,4 P(b)3,4

Convert To DFP Extended T(b)1 T(dINF) P(b)2,4 VXSNAN:  U(b)2,4

Round To DFP Short R(b)1 P(b)2,5 P(b)2,5 P(b)3,5

Round To DFP Long R(b)1 T(dINF) P(b)2,5 VXSNAN: U(b)2,5

Explanation:
1The ideal exponent is the exponent of the source operand.
2Bits 5:N-1 of the N-bit combination field are set to zero.
3Bit 5 of the N-bit combination field is set to one. Bits 6:N-1 of the combination field are set to zero.
4The trailing significand field is padded on the left with zeros.
5Leftmost digits in the trailing significand field are removed.
dINFDefault infinity.
FAll finite numbers, including zeros.
P(x)The special symbol in operand x is propagated into FRT[p].
R(x)The value x is rounded to the target-format precision; see Section 5.5.11
T(x)The value x is placed in FRT[p]. 
U(x)The SNaN of operand x is converted to the corresponding QNaN.
 VXSNANThe Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the exception 

is disabled. See Section 5.5.10.1 for actions. 
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DFP Convert To DFP Long     X-form

dctdp FRT,FRB (Rc=0)
dctdp. FRT,FRB (Rc=1) 

The DFP short operand in bits 32:63 of FRB is con-
verted to DFP long format and the converted result is
placed into FRT. The sign of the result is the same as
the sign of the source operand. The ideal exponent is
the exponent of the source operand.

If the operand in FRB is an SNaN, it is converted to an
SNaN in DFP long format and does not cause an
invalid-operation exception.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
CR1 (if Rc=1)

  

DFP Convert To DFP Extended   X-form

dctqpq FRTp,FRB (Rc=0)
dctqpq. FRTp,FRB (Rc=1) 

The DFP long operand in the FRB is converted to DFP
extended format and placed into FRTp. The sign of the
result is the same as the sign of the operand in FRB.
The ideal exponent is the exponent of the operand in
FRB.

If the operand in FRB is an SNaN, an invalid-operation
exception is recognized. If the exception is disabled,
the SNaN is converted to the corresponding QNaN in
DFP extended format.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

59 FRT /// FRB 258 Rc
0 6 11 16 21 31

Note that DFP short format is a storage-only for-
mat, Therefore, conversion of a short SNaN to long
format will not cause an exception and the SNaN is
preserved. Subsequent operation on that SNaN in
long format will cause an exception.

Programming Note

63 FRTp /// FRB 258 Rc
0 6 11 16 21 31
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DFP Round To DFP Short    X-form

drsp FRT,FRB (Rc=0)
drsp. FRT,FRB (Rc=1) 

The DFP long operand in FRB is converted and
rounded to DFP short format. The DFP short value is
extended on the left with zeros to form a 64-bit entity
and placed into FRT. The sign of the result is the same
as the sign of the source operand. The ideal exponent
is the exponent of the source operand.

If the operand in FRB is an SNaN, it is converted to an
SNaN in DFP short format and does not cause an
invalid-operation exception.

Normally, the result is in the format and length of the
target.  However, when an overflow or underflow excep-
tion occurs and if the exception is enabled, the opera-
tion is completed by producing a wrapped rounded
result in the same format and length as the source but
rounded to the target-format precision. 

Special Registers Altered:
FPRF FR FI
FX OX UX XX
CR1 (if Rc=1)

  

DFP Round To DFP Long     X-form

drdpq FRTp,FRBp (Rc=0)
drdpq. FRTp,FRBp (Rc=1) 

The DFP extended operand in FRBp is converted and
rounded to DFP long format. The result concatenated
with 64 0s is placed in FRTp. The sign of the result is
the same as the sign of the source operand. The ideal
exponent is the exponent of the operand in FRBp.

If the operand in FRBp is an SNaN, an invalid-operation
exception is recognized. If the exception is disabled,
the SNaN is converted to the corresponding QNaN in
DFP long format.

Normally, the result is in the format and length of the
target.  However, when an overflow or underflow excep-
tion occurs and if the exception is enabled, the opera-
tion is completed by producing a wrapped rounded
result in the same format and length as the source but
rounded to the target-format precision.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN
CR1 (if Rc=1)

  

59 FRT /// FRB 770 Rc
0 6 11 16 21 31

Note that DFP short format is a storage-only for-
mat, Therefore, conversion of a long SNaN to short
format will not cause an exception. Converting a
long format SNaN to short format is an implied
move operation.

Programming Note

63 FRTp /// FRBp 770 Rc
0 6 11 16 21 31

Note that DFP Round to DFP Long, while produc-
ing a result in DFP long format, actually targets a
register pair, writing 64 0s in FRTp+1.

Programming Note
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5.6.5.2 DFP Data-Type  Conversion  Instructions

The DFP data-type conversion instructions are used to
convert data type between DFP and fixed.

The data-type conversion instructions consist of Con-
vert From Fixed and Convert To Fixed.

DFP Convert From Fixed X-form

dcffix FRT,FRB (Rc=0)
dcffix. FRT,FRB (Rc=1) 

The 64-bit signed binary integer in FRB is converted
and rounded to a DFP Long value and placed into FRT.
The sign of the result is the same as the sign of the
source operand.  The ideal exponent is zero.

If the source operand is a zero, then a plus zero with a
zero exponent is returned.

The FPSCRFPRF field is set to the class and sign of the
result.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Rc=1)

DFP Convert From Fixed Quad X-form

dcffixq FRTp,FRB (Rc=0)
dcffixq. FRTp,FRB (Rc=1) 

The 64-bit signed binary integer in FRB is converted
and rounded to a DFP Extended value and placed into
FRTp. The sign of the result is the same as the sign of
the source operand. The ideal exponent is zero.

If the source operand is a zero, then a plus zero with a
zero exponent is returned.

The FPSCRFPRF field is set to the class and sign of the
result.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
CR1 (if Rc=1)

DFP Convert To Fixed [Quad]    X-form

dctfix FRT,FRB (Rc=0)
dctfix. FRT,FRB (Rc=1) 

dctfixq FRT,FRBp (Rc=0)
dctfixq. FRT,FRBp (Rc=1) 

The DFP operand in FRB[p] is rounded to an integer
value and is placed into FRT in the 64-bit signed binary
integer format.  The sign of the result is the same as
the sign of the source operand, except when the source
operand is a NaN or a zero.

Figure 98 summarizes the actions for Convert To Fixed.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

   

59 FRT /// FRB 802 Rc
0 6 11 16 21 31

63 FRTp /// FRB 802 Rc
0 6 11 16 21 31

59 FRT /// FRB 290 Rc
0 6 11 16 21 31

63 FRT /// FRBp 290 Rc
0 6 11 16 21 31

It is recommended that software pre-round the
operand to a floating-point integral using drintx[q]
or drintn[q] is a rounding mode other than the cur-
rent rounding mode specified by FPSCRDRN is
needed. Saving, modifying and restoring the
FPSCR just to temporarily change the rounding
mode is less efficient than just employing drintx[p]
or drint[p] which override the current rounding
mode using an immediate control field.

For example if the desired function rounding is
Round to Nearest, Ties away from 0 but the default
rounding (from FPSCRDRN) is Round to Nearest,
Ties to Even then following is preferred.

drintn    0,f1,f1,2
dctfix    f1,f1

Programming Note
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Operand b 
in FRB[p] is

q  is
Is n not 
precise 
(n ≠ b)

Inv.-Op. 
Except. 
Enabled

Inexact 
Except. 
Enabled

Is n Incre-
mented 

(|n| > |b|)
Actions *

-∞  ≤  b < MN  < MN - No - - T(MN), FI I 0, FR I 0,  VXCVI I 1 

-∞  ≤  b < MN  < MN - Yes - - VXCVI I 1, TV

-∞  <  b < MN  = MN - - No - T(MN),  FI I 1, FR I 0, XX I 1

-∞  <  b < MN  = MN - - Yes - T(MN),  FI I 1, FR I 0, XX I 1,TX
MN ≤  b < 0 - No - - - T(n),  FI I 0, FR I 0

MN ≤  b < 0 - Yes - No No T(n),  FI I 1, FR I 0, XX I 1

MN ≤  b < 0 - Yes - No Yes T(n),  FI I 1, FR I 1, XX I 1
MN ≤  b < 0 - Yes - Yes No T(n),  FI I 1, FR I 0, XX I 1, TX 

MN ≤  b < 0 - Yes - Yes Yes T(n),  FI I 1, FR I 1, XX I 1, TX 

±0 - No - - - T(0),  FI I 0, FR I 0
 0 < b ≤  MP - No - - - T(n),  FI I 0, FR I 0

 0 < b ≤  MP - Yes - No No T(n),  FI I 1, FR I 0, XX I 1

 0 < b ≤  MP - Yes - No Yes T(n),  FI I 1, FR I 1, XX I 1
0 < b ≤ MP - Yes - Yes No T(n),  FI I 1, FR I 0, XX I 1, TX 

0 < b ≤  MP - Yes - Yes Yes T(n),  FI I 1, FR I 1, XX I 1, TX 

MP < b < +∞ = MP - - No - T(MP), FI I 1, FR I 0, XX I 1
MP < b < +∞ = MP - - Yes - T(MP), FI I 1, FR I 0, XX I 1, TX

MP < b ≤ +∞ > MP - No - - T(MP), FI I 0, FR I 0,  VXCVI I 1

MP < b ≤ +∞ > MP - Yes - - VXCVI I 1, TV
QNaN - - No - - T(MN), FII0,  FRI0, VXCVII1

QNaN - - Yes - - VXCVII1, TV 

SNaN - - No - - T(MN),FII0, FRI0, VXCVII1,VXSNAN I1
SNaN - - Yes - - VXCVII1,VXSNAN I 1, TV

Explanation:

* Setting of XX, VXCVI, and VXSNAN is part of the corresponding exception actions. Also, when an 
invalid-operation exception occurs, setting of FI and FR bits is part of the exception actions. (See the 
sections, “Inexact Exception” and “Invalid Operation Exception” for more details.)

- The actions do not depend on this condition.

FI Floating-Point-Fraction-Inexact status flag, FPSCRFI.

FR Floating-Point-Fraction-Rounded status flag, FPSCRFR.
MN Maximum negative number representable by the 64-bit binary integer format

MP Maximum positive number representable by the 64-bit binary integer format.

n The value q converted to a fixed-point result.
q The value derived when the source value b is rounded to an integer using the specified rounding mode

T(x) The value x is placed in FRT[p]. 

TV  The system floating-point enabled exception error handler is invoked for the invalid-operation exception 
if the FE0 and FE1 bits in the machine-state register are set to any mode other than the ignore-excep-
tion mode.

TX The system floating-point enabled exception error handler is invoked for the inexact exception if the FE0 
and FE1 bits in the machine-state register are set to any mode other than the ignore-exception mode.

VXCVI The FPSCRVXCVI invalid operation exception status bit.

VXSNAN The FPSCRVXSNAN invalid operation exception status bit.

XX Floating-Point-Inexact-Exception status flag, FPSCRXX.

Figure 98. Actions: Convert To Fixed 
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5.6.6 DFP Format Instructions
The DFP format instructions are used to compose or
decompose a DFP operand.  A source operand of
SNaN does not cause an invalid-operation exception.
All format instructions employ the record bit (Rc).

The format instructions consist of Decode DPD To
BCD, Encode BCD To DPD, Extract Biased Exponent,
Insert Biased Exponent, Shift Significand Left Immedi-
ate, and Shift Significand Right Immediate.

DFP Decode DPD To BCD [Quad] X-form

ddedpd SP,FRT,FRB (Rc=0)
ddedpd. SP,FRT,FRB (Rc=1)

ddedpdq SP,FRTp,FRBp (Rc=0)
ddedpdq. SP,FRTp,FRBp (Rc=1)

A portion of the significand of the DFP operand in
FRB[p] is converted to a signed or unsigned BCD num-
ber depending on the SP field. For infinity and NaN, the
significand is considered to be the contents in the trail-
ing significand field padded on the left by a zero digit.

SP0 = 0 (unsigned conversion)

The rightmost 16 digits of the significand (32 digits
for ddedpdq) is converted to an unsigned BCD
number and the result is placed into FRT[p].

SP0 = 1 (signed conversion)

The rightmost 15 digits of the significand (31 digits
for ddedpdq) is converted to a signed BCD num-
ber with the same sign as the DFP operand, and
the result is placed into FRT[p]. If the DFP operand
is negative, the sign is encoded as 0b1101. If the
DFP operand is positive, SP1 indicates which pre-
ferred plus sign encoding is used. If SP1 = 0, the
plus sign is encoded as 0b1100 (the option-1 pre-
ferred sign code), otherwise the plus sign is
encoded as 0b1111(the option-2 preferred sign
code).

Special Registers Altered:
CR1 (if Rc=1)

DFP Encode BCD To DPD [Quad] X-form

denbcd S,FRT,FRB (Rc=0)
denbcd. S,FRT,FRB (Rc=1) 

denbcdq S,FRTp,FRBp (Rc=0)
denbcdq. S,FRTp,FRBp (Rc=1) 

The signed or unsigned BCD operand, depending on
the S field, in FRB[p] is converted to a DFP number.
The ideal exponent is zero.

S = 0 (unsigned BCD operand)

The unsigned BCD operand in FRB[p] is converted
to a positive DFP number of the same magnitude
and the result is placed into FRT[p].

S = 1 (signed BCD operand)

The signed BCD operand in FRB[p] is converted to
the corresponding DFP number and the result is
placed into FRT[p].

If an invalid BCD digit or sign code is detected in the
source operand, an invalid-operation exception
(VXCVI) occurs.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exception when
FPSCRVE=1.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXCVI
CR1 (if Rc=1)

59 FRT SP /// FRB 322 Rc
0 6 11 13 16 21 31

63 FRTp SP /// FRBp 322 Rc
0 6 11 13 16 21 31

59 FRT S /// FRB 834 Rc
0 6 11 12 16 21 31

63 FRTp S /// FRBp 834 Rc
0 6 11 12 16 21 31
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DFP Extract Biased Exponent [Quad]
X-form

dxex FRT,FRB (Rc=0)
dxex. FRT,FRB (Rc=1) 

dxexq FRT,FRBp (Rc=0)
dxexq. FRT,FRBp (Rc=1) 

The biased exponent of the operand in FRB[p] is
extracted and placed into FRT in the 64-bit signed
binary integer format.  When the operand in FRB is an
infinity, QNaN, or SNaN, a special code is returned. 

Special Registers Altered:
CR1 (if Rc=1)

  

DFP Insert Biased Exponent [Quad]  
X-form

diex FRT,FRA,FRB (Rc=0)
diex. FRT,FRA,FRB (Rc=1) 

diexq FRTp,FRA,FRBp (Rc=0)
diexq. FRTp,FRA,FRBp (Rc=1) 

Let a be the value of the 64-bit signed binary integer in
FRA.

When 0 [ a [ MBE, a is the biased target exponent that
is combined with the sign bit and the significand value
of the DFP operand in FRB[p] to form the DFP result in
FRT[p]. The ideal exponent is the specified target expo-
nent.

When a specifies a special code (a < 0 or a > MBE), an
infinity, QNaN, or SNaN is formed in FRT[p] with the
trailing significand field containing the value from the
trailing significand field of the source operand in
FRB[p], and with an N-bit combination field set as fol-
lows.

For an Infinity result,
the leftmost 5 bits are set to 0b11110, and
the rightmost N-5 bits are set to zero.

For a QNaN result,
the leftmost 5 bits are set to 0b11111,
bit 5 is set to zero, and
the rightmost N-5 bits are set to zero.

For an SNaN result,
the leftmost 5 bits are set to 0b11111,
bit 5 is set to one, and
the rightmost N-5 bits are set to zero.

Special Registers Altered:
CR1 (if Rc=1)

 

59 FRT /// FRB 354 Rc
0 6 11 16 21 31

63 FRT /// FRBp 354 Rc
0 6 11 16 21 31

Operand Result
Finite Number biased exponent value
Infinity -1
QNaN -2
SNaN -3

The exponent bias value is 101 for DFP Short, 398
for DFP Long, and 6176 for DFP Extended. 

Programming Note

59 FRT FRA FRB 866 Rc
0 6 11 16 21 31

63 FRTp FRA FRBp 866 Rc
0 6 11 16 21 31

a Result
a > MBE1 QNaN
MBE m a m 0 Finite number with biased exponent a
a = -1 Infinity
a = -2 QNaN
a = -3 SNaN
a < -3 QNaN
1 Maximum biased exponent for the target format

The exponent bias value is 101 for DFP Short, 398
for DFP Long, and 6176 for DFP Extended.

Programming Note
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Operand a in 
FRA[p] specifies

Actions for Insert Biased Exponent when operand b in FRB[p] specifies

F ∞ QNaN SNaN

F N, Rb Z, Rb Z, Rb Z, Rb

∞ I, Rb I, Rb I, Rb I, Rb

QNaN Q, Rb Q, Rb Q, Rb Q, Rb
SNaN S, Rb S, Rb S, Rb S, Rb

Explanation:

F All finite numbers, including zeros

I The combination field in FRT[p] is set to indicate a default Infinity.
N The combination field in FRT[p] is set to the specified biased exponent in FRA and 

the leftmost significand digit in FRB[p].

Q The combination field in FRT[p] is set to indicate a default QNaN.

S The combination field in FRT[p] is set to indicate a default SNaN.
Z The combination field in FRT[p] is set to indicate the specific biased exponent in FRA 

and a leftmost coefficient digit of zero.

Rb The contents of the trailing significand field in FRB[p] are reencoded using preferred 
DPD encodings and the reencoded result is placed in the same field in FRT[p]. The 
sign bit of FRB[p] is copied into the sign bit in FRT[p].

Figure 99. Actions: Insert Biased Exponent
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DFP Shift Significand Left Immediate 
[Quad] Z22-form

dscli FRT,FRA,SH (Rc=0)
dscli. FRT,FRA,SH (Rc=1)

dscliq FRTp,FRAp,SH (Rc=0)
dscliq. FRTp,FRAp,SH (Rc=1) 

The significand of the DFP operand in FRA[p] is shifted
left SH digits. For a NaN or infinity, all significand digits
are in the trailing significand field. SH is a 6-bit
unsigned binary integer. Digits shifted out of the left-
most digit are lost. Zeros are supplied to the vacated
positions on the right. The result is placed into FRT[p].
The sign of the result is the same as the sign of the
source operand in FRA[p].

If the source operand in FRA[p] is a finite number, the
exponent of the result is the same as the exponent of
the source operand. 

For an Infinity, QNaN or SNaN result, the target for-
mat’s N-bit combination field is set as follows.

For an Infinity result,
the leftmost 5 bits are set to 0b11110, and
the rightmost N-5 bits are set to zero.

For a QNaN result,
the leftmost 5 bits are set to 0b11111,
bit 5 is set to zero, and
the rightmost N-6 bits are set to zero.

For an SNaN result,
the leftmost 5 bits are set to 0b11111,
bit 5 is set to one, and
the rightmost N-6 bits are set to zero.

Special Registers Altered:
CR1 (if Rc=1)

DFP Shift Significand Right Immediate 
[Quad] Z22-form

dscri FRT,FRA,SH (Rc=0)
dscri. FRT,FRA,SH (Rc=1) 

dscriq FRTp,FRAp,SH (Rc=0)
dscriq. FRTp,FRAp,SH (Rc=1) 

The significand of the DFP operand in FRA[p] is shifted
right SH digits. For a NaN or infinity, all significand dig-
its are in the trailing significand field. SH is a 6-bit
unsigned binary integer. Digits shifted out of the units
digit are lost. Zeros are supplied to the vacated posi-
tions on the left. The result is placed into FRT[p]. The
sign of the result is the same as the sign of the source
operand in FRA[p].

If the source operand in FRA[p] is a finite number, the
exponent of the result is the same as the exponent of
the source operand. 

For an Infinity, QNaN or SNaN result, the target for-
mat’s N-bit combination field is set as follows.

For an Infinity result,
the leftmost 5 bits are set to 0b11110, and
the rightmost N-5 bits are set to zero.

For a QNaN result,
the leftmost 5 bits are set to 0b11111,
bit 5 is set to zero, and
the rightmost N-6 bits are set to zero.

For an SNaN result,
the leftmost 5 bits are set to 0b11111,
bit 5 is set to one, and
the rightmost N-6 bits are set to zero.

Special Registers Altered:
CR1 (if Rc=1)

59 FRT FRA SH 66 Rc
0 6 11 16 22 31

63 FRTp FRAp SH 66 Rc
0 6 11 16 22 31

59 FRT FRA SH 98 Rc
0 6 11 16 22 31

63 FRTp FRAp SH 98 Rc
0 6 11 16 22 31
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5.6.7 DFP Instruction Summary 

M
ne

m
on

ic

Full Name FO
R

M

Operands
SNaN
 Vs  G En

co
di

ng FPRF

FP 
Exception

V  Z  O  U  X FR
\F

I

IE R
c

C FP
C

C

dadd DFP Add X FRT, FRA, FRB  Y    N RE Y Y V       O  U  X Y Y Y
daddq DFP Add Quad X FRTp, FRAp, FRBp  Y    N RE Y Y V       O  U  X Y Y Y
dsub DFP Subtract X FRT, FRA, FRB  Y    N RE Y Y V       O  U  X Y Y Y
dsubq DFP Subtract Quad X FRTp, FRAp, FRBp  Y    N RE Y Y V       O  U  X Y Y Y
dmul DFP Multiply X FRT, FRA, FRB  Y    N RE Y Y V       O  U  X Y Y Y
dmulq DFP Multiply Quad X FRTp, FRAp, FRBp  Y    N RE Y Y V       O  U  X Y Y Y
ddiv DFP Divide X FRT, FRA, FRB  Y    N RE Y Y V  Z  O  U  X Y Y Y
ddivq DFP Divide Quad X FRTp, FRAp, FRBp  Y    N RE Y Y V  Z  O  U  X Y Y Y
dcmpo DFP Compare Ordered X BF, FRA, FRB  Y     - - N Y V -  - N
dcmpoq DFP Compare Ordered Quad X BF, FRAp, FRBp  Y     - - N Y V -  - N
dcmpu DFP Compare Unordered X BF, FRA, FRB  Y     - - N Y V -  - N
dcmpuq DFP Compare Unordered Quad X BF, FRAp, FRBp  Y     - - N Y V -  - N

dtstdc DFP Test Data Class Z22 BF, FRA, DCM  N     - - N Y1 -  - N

dtstdcq DFP Test Data Class Quad Z22 BF, FRAp, DCM  N     - - N Y1 -  - N

dtstdg DFP Test Data Group Z22 BF, FRA,DGM  N     - - N Y1 -  - N

dtstdgq DFP Test Data Group Quad Z22 BF, FRAp, DGM  N     - - N Y1 -  - N

dtstex DFP Test Exponent X BF, FRA, FRB  N     - - N Y -  - N
dtstexq DFP Test Exponent Quad X BF, FRAp, FRBp  N     - - N Y -  - N
dtstsf DFP Test Significance X BF, FRA(FIX), FRB  N     - - N Y -  - N
dtstsfq DFP Test Significance Quad X BF, FRA(FIX), FRBp  N     - - N Y -  - N
dquai DFP Quantize Immediate Z23 TE, FRT, FRB, RMC  Y    N RE Y Y V                 X Y Y Y
dquaiq DFP Quantize Immediate Quad Z23 TE, FRTp, FRBp, RMC  Y    N RE Y Y V                 X Y Y Y
dqua DFP Quantize Z23 FRT,FRA,FRB,RMC  Y    N RE Y Y V                 X Y Y Y
dquaq DFP Quantize Quad Z23 FRTp,FRAp,FRBp, RMC  Y    N RE Y Y V                 X Y Y Y
drrnd DFP Reround Z23 FRT,FRA(FIX),FRB,RMC  Y    N RE Y Y V                 X Y Y Y

drrndq DFP Reround Quad Z23 FRTp, FRA(FIX), FRBp, 
RMC  Y    N RE Y Y V                X Y Y Y

drintx DFP Round To FP Integer With 
Inexact Z23 R,FRT, FRB,RMC  Y    N RE Y Y V                 X Y Y Y

drintxq DFP Round To FP Integer With 
Inexact Quad Z23 R,FRTp,FRBp,RMC  Y    N RE Y Y V                 X Y Y Y

drintn DFP Round To FP Integer With-
out Inexact Z23 R,FRT, FRB,RMC  Y    N RE Y Y V                 Y# Y Y

drintnq DFP Round To FP Integer With-
out Inexact Quad Z23 R,FRTp, FRBp,RMC  Y    N RE Y Y V                 Y# Y Y

dctdp DFP Convert To DFP Long X FRT, FRB (DFP Short)  N    Y RE Y Y2 U Y Y

dctqpq DFP Convert To DFP Extended X FRTp, FRB  Y    N RE Y Y V Y# Y Y

drsp DFP Round To DFP Short X FRT (DFP Short), FRB  N    Y RE Y  Y2           O  U X Y Y Y

drdpq DFP Round To DFP Long X FRTp, FRBp  Y    N RE Y Y V       O  U  X Y Y Y
dcffixq DFP Convert From Fixed Quad X FRTp, FRB (FIX)  -     N RE Y Y U Y Y

dctfix DFP Convert To Fixed X FRT (FIX), FRB  Y    N - U U V                 X Y - Y

dctfixq DFP Convert To Fixed Quad X FRT (FIX), FRBp  Y    N - U U V                 X Y - Y
ddedpd DFP Decode DPD To BCD X SP, FRT(BCD), FRB  N     - - N N - - Y

Figure 100.Decimal Floating-Point Instructions Summary
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ddedpdq DFP Decode DPD To BCD Quad X SP,  FRTp(BCD), FRBp  N     - - N N - - Y

denbcd DFP Encode BCD To DPD X S, FRT, FRB (BCD)  -     N RE Y Y V
 

Y# Y
Y

denbcdq DFP Encode BCD To DPD Quad X S, FRTp, FRBp (BCD)  -     N RE Y Y V Y# Y Y

dxex DFP Extract Biased Exponent X FRT (FIX), FRB  N    N - N N - - Y

dxexq DFP Extract Biased Exponent 
Quad X FRT (FIX), FRBp  N    N - N N - - Y

diex DFP Insert Biased Exponent X FRT, FRA(FIX), FRB  N    Y RE N N - Y Y

diexq DFP Insert Biased Exponent 
Quad X FRTp, FRA(FIX), FRBp  N    Y RE N N - Y Y

dscli DFP Shift Significand Left Imme-
diate Z22 FRT,FRA,SH  N    Y RE N N -  - Y

dscliq DFP Shift Significand Left Imme-
diate Quad Z22 FRTp,FRAp,SH  N    Y RE N N -  - Y

dscri DFP Shift Significand Right Imme-
diate Z22 FRT,FRA,SH  N    Y RE N N -  - Y

dscriq DFP Shift Significand Right Imme-
diate Quad Z22 FRTp,FRAp,SH  N    Y RE N N -  - Y

 Explanation:
# FI and FR are set to zeros for these instructions.
- Not applicable.
1 A unique definition of the FPSCRFPCC field is provided for the instruction.

2
These are the only instructions that may generate an SNaN and also set the FPSCFPRF field. Since the BFP FPSCRFPRF 
field does not include a code for SNaN, these instructions cause the need for redefining the FPSCRFPRF field for DFP. 

DCM A 6-bit immediate operand specifying the data-class mask.
DGM A 6-bit immediate operand specifying the data-group mask.

G An SNaN can be generated as the target operand.
IE An ideal exponent is defined for the instruction.

FI Setting of the FPSCRFI flag.

FR Setting of the FPSCRFR flag.

N No.
O An overflow exception may be recognized.

Rc The record bit, Rc, is provided to record FPSCR32:35 in CR field 1.

RE The trailing significand field is reencoded using preferred DPD encodings.The preferred DPD encoding are also used for 
propagated NaNs, or converted NaNs and infinities.

RMC A 2-bit immediate operand specifying the rounding-mode control.
S An one-bit immediate operand specifying if the operation is signed or unsigned.

SP A two-bit immediate operand: one bit specifies if the operation is signed or unsigned and, for signed operations, another 
bit specifies which preferred plus sign code is generated.

U An underflow exception may be recognized.
V An invalid-operation exception may be recognized.
Vs An input operand of SNaN causes an invalid-operation exception.
X An inexact exception may be recognized.
Y Yes.
U Undefined
Z A zero-divide exception may be recognized.
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Figure 100.Decimal Floating-Point Instructions Summary (Continued)
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Chapter 6.  Vector Facility [Category: Vector]

6.1 Vector Facility Overview
This chapter describes the registers and instructions
that make up the Vector Facility.

6.2 Chapter Conventions

6.2.1 Description of Instruction 
Operation

The following notation, in addition to that described in
Section 1.3.2, is used in this chapter. Additional RTL
functions are described in Appendix C.

x.bit[y]
Return the contents of bit y of x.

x.bit[y:z]
Return the contents of bits y:z of x.

x.byte[y]
Return the contents of byte element y of x.

x.byte[y:z]
Return the contents of byte elements y:z of x.

x.hword[y]
Return the contents of halfword element y of x.

x.hword[y:z]
Return the contents of halfword elements y:z of x.

x.word[y]
Return the contents of word element y of x.

x.word[y:z]
Return the contents of word element y:z of x.

x.dword[y]
Return the contents of doubleword element y of x.

x.dword[y:z]
Return the contents of doubleword elements y:z of
x.

x ? y : z
if the value of x is true, then the value of y,
otherwise the value z.

+int
Integer addition.

+fp
Floating-point addition.

–fp
Floating-point subtraction.

×sui
Multiplication of a signed-integer (first operand) by
an unsigned-integer (second operand).

×fp
Floating-point multiplication.

=int
Integer equals relation.

=fp
Floating-point equals relation.

<ui, ≤ui, >ui,  ≥ui
Unsigned-integer comparison relations.

<si, ≤si, >si, ≥si
Signed-integer comparison relations.

<fp, ≤fp, >fp, ≥fp
Floating-point comparison relations.

LENGTH( x ) 
Length of x, in bits. If x is the word “element”,
LENGTH( x ) is the length, in bits, of the element
implied by the instruction mnemonic.
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x << y
Result of shifting x left by y bits, filling vacated bits
with zeros.

b I LENGTH(x)
result I (y < b) ? (xy:b-1 ||y0) : b0

x >>ui y
Result of shifting x right by y bits, filling vacated
bits with zeros.

b I LENGTH(x)
result I (y < b) ? (y0 || x0:(b-y)-1) : b0

x >> y
Result of shifting x right by y bits, filling vacated
bits with copies of bit 0 (sign bit) of x.

b I LENGTH(x)
result I (y<b) ? (yx0 ||x0:(b-y)-1) : bx0

x <<< y
Result of rotating x left by y bits.

b I LENGTH(x)
result I xy:b-1 || x0:y-1

x >>> y
Returns the contents of x rotated right by y bits.

Chop(x, y)
Result of extending the right-most y bits of x on
the left with zeros.

result I x & ((1<<y)-1)

EXTZ(x)
Result of extending x on the left with zeros.

b I LENGTH(x)
result I x & ((1<<b)-1)

Clamp(x, y, z)
x is interpreted as a signed integer. If the value of
x is less than y, then the value y is returned, else if
the value of x is greater than z, the value z is
returned, else the value x is returned.

if (x < y) then
   result I y
   VSCRSAT I 1
else if (x > z) then
   result I z
   VSCRSAT I 1
else result I x

InvMixColumns(x)
do c = 0 to 3
   result.word[c].byte[0] = 0x0E•x.word[c].byte[0] ^ 0x0B•x.word[c].byte[1] ^ 0x0D•x.word[c].byte[2] ^ 0x09•x.word[c].byte[3]
   result.word[c].byte[1] = 0x09•x.word[c].byte[0] ^ 0x0E•x.word[c].byte[1] ^ 0x0B•x.word[c].byte[2] ^ 0x0D•x.word[c].byte[3]
   result.word[c].byte[2] = 0x0D•x.word[c].byte[0] ^ 0x09•x.word[c].byte[1] ^ 0x0E•x.word[c].byte[2] ^ 0x0B•x.word[c].byte[3]
   result.word[c].byte[3] = 0x0B•x.word[c].byte[0] ^ 0x0D•x.word[c].byte[1] ^ 0x09•x.word[c].byte[2] ^ 0x0E•x.word[c].byte[3]
end
return(result);

where “•” is a GF(28) multiply, a binary polynomial multiplication reduced by modulo 0x11B.

The GF(28) multiply of 0x09•x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[0] ^ x.bit[3]
product.bit[1] = x.bit[1] ^ x.bit[4] ^ x.bit[0]
product.bit[2] = x.bit[2] ^ x.bit[5] ^ x.bit[0] ^ x.bit[1]
product.bit[3] = x.bit[3] ^ x.bit[6] ^ x.bit[1] ^ x.bit[2]
product.bit[4] = x.bit[4] ^ x.bit[7] ^ x.bit[0] ^ x.bit[2]
product.bit[5] = x.bit[5] ^ x.bit[0] ^ x.bit[1]
product.bit[6] = x.bit[6] ^ x.bit[1] ^ x.bit[2]
product.bit[7] = x.bit[7] ^ x.bit[2]

The GF(28) multiply of 0x0B•x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[0] ^ x.bit[1] ^ x.bit[3]
product.bit[1] = x.bit[1] ^ x.bit[2] ^ x.bit[4] ^ x.bit[0]
product.bit[2] = x.bit[2] ^ x.bit[3] ^ x.bit[5] ^ x.bit[0] ^ x.bit[1]
product.bit[3] = x.bit[3] ^ x.bit[4] ^ x.bit[6] ^ x.bit[0] ^ x.bit[1] ^ x.bit[2]
product.bit[4] = x.bit[4] ^ x.bit[5] ^ x.bit[7] ^ x.bit[2]
product.bit[5] = x.bit[5] ^ x.bit[6] ^ x.bit[0] ^ x.bit[1]
product.bit[6] = x.bit[6] ^ x.bit[7] ^ x.bit[0] ^ x.bit[1] ^ x.bit[2]
product.bit[7] = x.bit[7] ^ x.bit[0] ^ x.bit[2]
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The GF(28) multiply of 0x0D•x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[0] ^ x.bit[2] ^ x.bit[3]
product.bit[1] = x.bit[1] ^ x.bit[3] ^ x.bit[4] ^ x.bit[0]
product.bit[2] = x.bit[2] ^ x.bit[4] ^ x.bit[5] ^ x.bit[1]
product.bit[3] = x.bit[3] ^ x.bit[5] ^ x.bit[6] ^ x.bit[0] ^ x.bit[2]
product.bit[4] = x.bit[4] ^ x.bit[6] ^ x.bit[7] ^ x.bit[0] ^ x.bit[1] ^ x.bit[2]
product.bit[5] = x.bit[5] ^ x.bit[7] ^ x.bit[1]
product.bit[6] = x.bit[6] ^ x.bit[0] ^ x.bit[2]
product.bit[7] = x.bit[7] ^ x.bit[1] ^ x.bit[2]

The GF(28) multiply of 0x0E•x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[1] ^ x.bit[2] ^ x.bit[3]
product.bit[1] = x.bit[2] ^ x.bit[3] ^ x.bit[4] ^ x.bit[0]
product.bit[2] = x.bit[3] ^ x.bit[4] ^ x.bit[5] ^ x.bit[1]
product.bit[3] = x.bit[4] ^ x.bit[5] ^ x.bit[6] ^ x.bit[2]
product.bit[4] = x.bit[5] ^ x.bit[6] ^ x.bit[7] ^ x.bit[1] ^ x.bit[2]
product.bit[5] = x.bit[6] ^ x.bit[7] ^ x.bit[1]
product.bit[6] = x.bit[7] ^ x.bit[2]
product.bit[7] = x.bit[0] ^ x.bit[1] ^ x.bit[2]

InvShiftRows(x)
result.word[0].byte[0] = x.word[0].byte[0]
result.word[1].byte[0] = x.word[1].byte[0]
result.word[2].byte[0] = x.word[2].byte[0]
result.word[3].byte[0] = x.word[3].byte[0]

result.word[0].byte[1] = x.word[3].byte[1]
result.word[1].byte[1] = x.word[0].byte[1]
result.word[2].byte[1] = x.word[1].byte[1]
result.word[3].byte[1] = x.word[2].byte[1]

result.word[0].byte[2] = x.word[2].byte[2]
result.word[1].byte[2] = x.word[3].byte[2]
result.word[2].byte[2] = x.word[0].byte[2]
result.word[3].byte[2] = x.word[1].byte[2]

result.word[0].byte[3] = x.word[1].byte[3]
result.word[1].byte[3] = x.word[2].byte[3]
result.word[2].byte[3] = x.word[3].byte[3]
result.word[3].byte[3] = x.word[0].byte[3]

return(result)
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InvSubBytes(x)
InvSBOX.byte[256] = { 0x52,0x09,0x6A,0xD5,0x30,0x36,0xA5,0x38,0xBF,0x40,0xA3,0x9E,0x81,0xF3,0xD7,0xFB,
                      0x7C,0xE3,0x39,0x82,0x9B,0x2F,0xFF,0x87,0x34,0x8E,0x43,0x44,0xC4,0xDE,0xE9,0xCB,
                      0x54,0x7B,0x94,0x32,0xA6,0xC2,0x23,0x3D,0xEE,0x4C,0x95,0x0B,0x42,0xFA,0xC3,0x4E,
                      0x08,0x2E,0xA1,0x66,0x28,0xD9,0x24,0xB2,0x76,0x5B,0xA2,0x49,0x6D,0x8B,0xD1,0x25,
                      0x72,0xF8,0xF6,0x64,0x86,0x68,0x98,0x16,0xD4,0xA4,0x5C,0xCC,0x5D,0x65,0xB6,0x92,
                      0x6C,0x70,0x48,0x50,0xFD,0xED,0xB9,0xDA,0x5E,0x15,0x46,0x57,0xA7,0x8D,0x9D,0x84,
                      0x90,0xD8,0xAB,0x00,0x8C,0xBC,0xD3,0x0A,0xF7,0xE4,0x58,0x05,0xB8,0xB3,0x45,0x06,
                      0xD0,0x2C,0x1E,0x8F,0xCA,0x3F,0x0F,0x02,0xC1,0xAF,0xBD,0x03,0x01,0x13,0x8A,0x6B,
                      0x3A,0x91,0x11,0x41,0x4F,0x67,0xDC,0xEA,0x97,0xF2,0xCF,0xCE,0xF0,0xB4,0xE6,0x73,
                      0x96,0xAC,0x74,0x22,0xE7,0xAD,0x35,0x85,0xE2,0xF9,0x37,0xE8,0x1C,0x75,0xDF,0x6E,
                      0x47,0xF1,0x1A,0x71,0x1D,0x29,0xC5,0x89,0x6F,0xB7,0x62,0x0E,0xAA,0x18,0xBE,0x1B,
                      0xFC,0x56,0x3E,0x4B,0xC6,0xD2,0x79,0x20,0x9A,0xDB,0xC0,0xFE,0x78,0xCD,0x5A,0xF4,
                      0x1F,0xDD,0xA8,0x33,0x88,0x07,0xC7,0x31,0xB1,0x12,0x10,0x59,0x27,0x80,0xEC,0x5F,
                      0x60,0x51,0x7F,0xA9,0x19,0xB5,0x4A,0x0D,0x2D,0xE5,0x7A,0x9F,0x93,0xC9,0x9C,0xEF,
                      0xA0,0xE0,0x3B,0x4D,0xAE,0x2A,0xF5,0xB0,0xC8,0xEB,0xBB,0x3C,0x83,0x53,0x99,0x61,
                      0x17,0x2B,0x04,0x7E,0xBA,0x77,0xD6,0x26,0xE1,0x69,0x14,0x63,0x55,0x21,0x0C,0x7D }

do i = 0 to 15
   result.byte[i] = InvSBOX.byte[x.byte[i]]
end
return(result)

MixColumns(x)
do c = 0 to 3
   result.word[c].byte[0] = 0x02•x.word[c].byte[0] ^ 0x03•x.word[c].byte[1] ^      x.word[c].byte[2] ^      x.word[c].byte[3]
   result.word[c].byte[1] =      x.word[c].byte[0] ^ 0x02•x.word[c].byte[1] ^ 0x03•x.word[c].byte[2] ^      x.word[c].byte[3]
   result.word[c].byte[2] =      x.word[c].byte[0] ^      x.word[c].byte[1] ^ 0x02•x.word[c].byte[2] ^ 0x03•x.word[c].byte[3]
   result.word[c].byte[3] = 0x03•x.word[c].byte[0] ^      x.word[c].byte[1] ^      x.word[c].byte[2] ^ 0x02•x.word[c].byte[3]
end
return(result)

The GF(28) multiply of 0x02•x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[1]
product.bit[1] = x.bit[2]
product.bit[2] = x.bit[3]
product.bit[3] = x.bit[4] ^ x.bit[0]
product.bit[4] = x.bit[5] ^ x.bit[0]
product.bit[5] = x.bit[6]
product.bit[6] = x.bit[7] ^ x.bit[0]
product.bit[7] = x.bit[0]

The GF(28) multiply of 0x03•x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[0] ^ x.bit[1]
product.bit[1] = x.bit[1] ^ x.bit[2]
product.bit[2] = x.bit[2] ^ x.bit[3]
product.bit[3] = x.bit[3] ^ x.bit[4] ^ x.bit[0]
product.bit[4] = x.bit[4] ^ x.bit[5] ^ x.bit[0]
product.bit[5] = x.bit[5] ^ x.bit[6]
product.bit[6] = x.bit[6] ^ x.bit[7] ^ x.bit[0]
product.bit[7] = x.bit[7] ^ x.bit[0]
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ShiftRows(x)
result.word[0].byte[0] = x.word[0].byte[0]
result.word[1].byte[0] = x.word[1].byte[0]
result.word[2].byte[0] = x.word[2].byte[0]
result.word[3].byte[0] = x.word[3].byte[0]

result.word[0].byte[1] = x.word[1].byte[1]
result.word[1].byte[1] = x.word[2].byte[1]
result.word[2].byte[1] = x.word[3].byte[1]
result.word[3].byte[1] = x.word[0].byte[1]

result.word[0].byte[2] = x.word[2].byte[2]
result.word[1].byte[2] = x.word[3].byte[2]
result.word[2].byte[2] = x.word[0].byte[2]
result.word[3].byte[2] = x.word[1].byte[2]

result.word[0].byte[3] = x.word[3].byte[3]
result.word[1].byte[3] = x.word[0].byte[3]
result.word[2].byte[3] = x.word[1].byte[3]
result.word[3].byte[3] = x.word[2].byte[3]

return(result)

Signed_BCD_Add(x,y,z)
Let x and y be 31-digit signed decimal values.

Performs a signed decimal addition of x and y.

If the unbounded result is equal to zero, eq_flag is set to 1. Otherwise, eq_flag is set to 0.
If the unbounded result is greater than zero, gt_flag is set to 1. Otherwise, gt_flag is set to 0.
If the unbounded result is less than zero, lt_flag is set to 1. Otherwise, lt_flag is set to 0.

If the magnitude of the unbounded result is greater than 1031-1, ox_flag is set to 1. Otherwise, ox_flag is set to
0. 

If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1100 if z=0.
If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1111 if z=1.
If the unbounded result is less than zero, the sign code of the result is set to 0b1101.

The low-order 31 digits of the unbounded result magnitude concatented with the sign code are returned.

If either operand is an invalid encoding of a signed decimal value, the result returned is undefined and inv_flag
is set to 1 and lt_flag, gt_flag and eq_flag are set to 0. Otherwise, inv_flag is set to 0.
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Signed_BCD_Subtract(x,y,z)
Let x and y be 31-digit signed decimal values.

Performs a signed decimal subtract of y from x.

If the unbounded result is equal to zero, eq_flag is set to 1. Otherwise, eq_flag is set to 0.
If the unbounded result is greater than zero, gt_flag is set to 1. Otherwise, gt_flag is set to 0.
If the unbounded result is less than zero, lt_flag is set to 1. Otherwise, lt_flag is set to 0.

If the magnitude of the unbounded result is greater than 1031-1, ox_flag is set to 1. Otherwise, ox_flag is set to
0. 

If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1100 if z=0.
If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1111 if z=1.
If the unbounded result is less than zero, the sign code of the result is set to 0b1101.

The low-order 31 digits of the unbounded result magnitude concatented with the sign code are returned.

If either operand is an invalid encoding of a signed decimal value, the result returned is undefined and inv_flag
is set to 1 and lt_flag, gt_flag and eq_flag are set to 0. Otherwise, inv_flag is set to 0.

SubBytes(x)
SBOX.byte[0:255] = { 0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
                     0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
                     0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
                     0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
                     0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
                     0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
                     0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
                     0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
                     0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
                     0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
                     0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
                     0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
                     0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
                     0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
                     0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
                     0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16 }

do i = 0 to 15
   result.byte[i] = SBOX.byte[x.byte[i]]
end
return(result)

RoundToSPIntCeil(x)
The value x if x is a single-precision floating-point
integer; otherwise the smallest single-precision
floating-point integer that is greater than x.

RoundToSPIntFloor(x)
The value x if x is a single-precision floating-point
integer; otherwise the largest single-precision
floating-point integer that is less than x.

RoundToSPIntNear(x)
The value x if x is a single-precision floating-point
integer; otherwise the single-precision
floating-point integer that is nearest in value to x
(in case of a tie, the even single-precision
floating-point integer is used).

RoundToSPIntTrunc(x)
The value x if x is a single-precision floating-point
integer; otherwise the largest single-precision
floating-point integer that is less than x if x>0, or
the smallest single-precision floating-point integer
that is greater than x if x<0.

RoundToNearSP(x)
The single-precision floating-point number that is
nearest in value to the infinitely-precise
floating-point intermediate result x (in case of a tie,
the single-precision floating-point value with the
least-significant bit equal to 0 is used).
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ReciprocalEstimateSP(x)
A single-precision floating-point estimate of the
reciprocal of the single-precision floating-point
number x.

ReciprocalSquareRootEstimateSP(x)
A single-precision floating-point estimate of the
reciprocal of the square root of the
single-precision floating-point number x.

LogBase2EstimateSP(x)
A single-precision floating-point estimate of the
base 2 logarithm of the single-precision
floating-point number x.

Power2EstimateSP(x)
A single-precision floating-point estimate of the 2
raised to the power of the single-precision
floating-point number x.
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6.3 Vector Facility Registers

Figure 101.Vector Register elements

6.3.1 Vector Registers

There are 32 Vector Registers (VRs), each containing
128 bits. See Figure 102. All computations and other
data manipulation are performed on data residing in
Vector Registers, and results are placed into a VR.

Figure 102.Vector Registers

Depending on the instruction, the contents of a Vector
Register are interpreted as a sequence of equal-length
elements (bytes, halfwords, or words) or as a
quadword. Each of the elements is aligned within the
Vector Register, as shown in Figure 101. Many
instructions perform a given operation in parallel on all
elements in a Vector Register. Depending on the
instruction, a byte, halfword, or word element can be
interpreted as a signed-integer, an unsigned-integer,
or a logical value; a word element can also be
interpreted as a single-precision floating-point value. In
the instruction descriptions, phrases like
“signed-integer word element” are used as shorthand
for “word element, interpreted as a signed-integer”.

Load and Store instructions are provided that transfer
a byte, halfword, word, or quadword between storage
and a Vector Register.

6.3.2 Vector Status and Control 
Register

The Vector Status and Control Register (VSCR) is a
special 32-bit register (not an SPR) that is read and
written in a manner similar to the FPSCR in the Power
ISA scalar floating-point unit. Special instructions
(mfvscr and mtvscr) are provided to move the VSCR
from and to a vector register. When moved to or from a
vector register, the 32-bit VSCR is right justified in the
128-bit vector register. When moved to a vector
register, bits 0:95 of the vector register are cleared (set
to 0).

Figure 103.Vector Status and Control Register

The bit definitions for the VSCR are as follows.

Bit(s) Description

96:110 Reserved

111 Vector Non-Java Mode (NJ)

This bit controls how denormalized values
are handled by Vector Floating-Point
instructions.
0 Denormalized values are handled as

specified by Java and the IEEE stan-
dard; see Section 6.6.1.

1 If an element in a source VR contains a
denormalized value, the value 0 is used
instead. If an instruction causes an
Underflow Exception, the correspond-
ing element in the target VR is set to 0.
In both cases the 0 has the same sign
as the denormalized or underflowing
value.

112:126 Reserved

127 Vector Saturation (SAT)

Every vector instruction having “Saturate” in
its name implicitly sets this bit to 1 if any
result of that instruction “saturates”; see

.qword

.word[0] .word[1] .word[2] .word[3]

.hword[0] .hword[1] .hword[2] .hword[3] .hword[4] .hword[5] .hword[6] .hword[7]

.byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

VR0

VR1

...

...

VR30

VR31
0                                                                                                                  127

VSCR
96                                                 127
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Section 6.8. mtvscr can alter this bit explic-
itly. This bit is sticky; that is, once set to 1 it
remains set to 1 until it is set to 0 by an
mtvscr instruction.

After the mfvscr instruction executes, the result in the
target vector register will be architecturally precise.
That is, it will reflect all updates to the SAT bit that
could have been made by vector instructions logically
preceding it in the program flow, and further, it will not
reflect any SAT updates that may be made to it by
vector instructions logically following it in the program
flow. To implement this, processors may choose to
make the mfvscr instruction execution serializing
within the vector unit, meaning that it will stall vector
instruction execution until all preceding vector
instructions are complete and have updated the
architectural machine state. This is permitted in order
to simplify implementation of the sticky status bit (SAT)
which would otherwise be difficult to implement in an
out-of-order execution machine. The implication of this
is that reading the VSCR can be much slower than
typical Vector instructions, and therefore care must be
taken in reading it, as advised in Section 6.5.1, to
avoid performance problems.

The mtvscr is context synchronizing. This implies that
all Vector instructions logically preceding an mtvscr in
the program flow will execute in the architectural
context (NJ mode) that existed prior to completion of
the mtvscr, and that all instructions logically following
the mtvscr will execute in the new context (NJ mode)
established by the mtvscr.

6.3.3 VR Save Register

The VR Save Register (VRSAVE) is a 32-bit register in
the fixed-point processor provided for application and
operating system use; see Section 3.2.3. 

  

6.4 Vector Storage Access 
Operations
The Vector Storage Access instructions provide the
means by which data can be copied from storage to a
Vector Register or from a Vector Register to storage.
Instructions are provided that access byte, halfword,
word, and quadword storage operands. These
instructions differ from the fixed-point and floating-point
Storage Access instructions in that vector storage
operands are assumed to be aligned, and vector
storage accesses are performed as if the appropriate
number of low-order bits of the specified effective
address (EA) were zero. For example, the low-order bit
of EA is ignored for halfword Vector Storage Access
instructions, and the low-order four bits of EA are
ignored for quadword Vector Storage Access
instructions. The effect is to load or store the storage
operand of the specified length that contains the byte
addressed by EA.

If a storage operand is unaligned, additional
instructions must be used to ensure that the operand is
correctly placed in a Vector Register or in storage.
Instructions are provided that shift and merge the
contents of two Vector Registers, such that an
unaligned quadword storage operand can be copied
between storage and the Vector Registers in a
relatively efficient manner.

As shown in Figure 101, the elements in Vector
Registers are numbered; the high-order (or most
significant) byte element is numbered 0 and the
low-order (or least significant) byte element is
numbered 15. The numbering affects the values that
must be placed into the permute control vector for the
Vector Permute instruction in order for that instruction
to achieve the desired effects, as illustrated by the
examples in the following subsections.

A vector quadword Load instruction for which the
effective address (EA) is quadword-aligned places the
byte in storage addressed by EA into byte element 0 of
the target Vector Register, the byte in storage
addressed by EA+1 into byte element 1 of the target
Vector Register, etc. Similarly, a vector quadword
Store instruction for which the EA is quadword-aligned
places the contents of byte element 0 of the source
Vector Register into the byte in storage addressed by
EA, the contents of byte element 1 of the source
Vector Register into the byte in storage addressed by
EA+1, etc.

The VRSAVE register can be used to indicate
which VRs are currently being used by a program.
If this is done, the operating system could save
only those VRs when an “interrupt” occurs (see
Book III), and could restore only those VRs when
resuming the interrupted program.

If this approach is taken it must be applied
rigorously; if a program fails to indicate that a given
VR is in use, software errors may occur that will be
difficult to detect and correct because they are
timing-dependent.

Some operating systems save and restore
VRSAVE only for programs that also use other
vector registers.

Programming Note
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Figure 104 shows an aligned quadword in storage.
Figure 105 shows the result of loading that quadword
into a Vector Register or, equivalently, shows the
contents that must be in a Vector Register if storing
that Vector Register is to produce the storage contents
shown in Figure 104.

When an aligned byte, halfword, or word storage
operand is loaded into a Vector Register, the element
(byte, halfword, or word respectively) that receives the
data is the element that would have received the data
had the entire aligned quadword containing the
storage operand addressed by EA been loaded.
Similarly, when a byte, halfword, or word element in a
Vector Register is stored into an aligned storage
operand (byte, halfword, or word respectively), the
element selected to be stored is the element that
would have been stored into the storage operand
addressed by EA had the entire Vector Register been
stored to the aligned quadword containing the storage
operand addressed by EA. (Byte storage operands are
always aligned.)

For aligned byte, halfword, and word storage
operands, if the corresponding element number is
known when the program is written, the appropriate
Vector Splat and Vector Permute instructions can be
used to copy or replicate the data contained in the
storage operand after loading the operand into a
Vector Register. An example of this is given in the
Programming Note for Vector Splat; see page 244.
Another example is to replicate the element across an
entire Vector Register before storing it into an arbitrary
aligned storage operand of the same length; the
replication ensures that the correct data are stored
regardless of the offset of the storage operand in its
aligned quadword in storage.

Figure 104.Aligned quadword storage operand

Figure 105.Vector Register contents for aligned quadword Load or Store

Figure 106.Unaligned quadword storage operand

Figure 107.Vector Register contents

00 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 01 02 03 04
10 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Vhi 00 01 02 03 04
Vlo 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Vt,Vs 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0 15
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6.4.1 Accessing Unaligned Storage Operands
Figure 106 shows an unaligned quadword storage
operand that spans two aligned quadwords. In the
remainder of this section, the aligned quadword that
contains the most significant bytes of the unaligned
quadword is called the most significant quadword
(MSQ) and the aligned quadword that contains the
least significant bytes of the unaligned quadword is
called the least significant quadword (LSQ). Because

the Vector Storage Access instructions ignore the
low-order bits of the effective address, the unaligned
quadword cannot be transferred between storage and
a Vector Register using a single instruction. The
remainder of this section gives examples of accessing
unaligned quadword storage operands. Similar
sequences can be used to access unaligned halfword
and word storage operands.

Programming Note

The sequence of instructions given below is one
approach that can be used to load the unaligned
quadword shown in Figure 106 into a Vector Register.
In Figure 107 Vhi and Vlo are the Vector Registers that
will receive the most significant quadword and least
significant quadword respectively. VRT is the target
Vector Register.

After the two quadwords have been loaded into Vhi
and Vlo, using Load Vector Indexed instructions, the
alignment is performed by shifting the 32-byte quantity
Vhi || Vlo left by an amount determined by the address
of the first byte of the desired data. The shifting is done
using a Vector Permute instruction for which the
permute control vector is generated by a Load Vector
for Shift Left instruction. The Load Vector for Shift Left
instruction uses the same address specification as the
Load Vector Indexed instruction that loads the Vhi
register; this is the address of the desired unaligned
quadword.

The following sequence of instructions copies the
unaligned quadword storage operand into register Vt.

# Assumptions:
# Rb != 0 and contents of Rb = 0xB
lvx    Vhi,0,Rb       # load MSQ
lvsl   Vp,0,Rb        # set permute control vector
addi   Rb,Rb,16       # address of LSQ
lvx    Vlo,0,Rb       # load LSQ
vperm  Vt,Vhi,Vlo,Vp  # align the data

The procedure for storing an unaligned quadword is
essentially the reverse of the procedure for loading
one. However, a read-modify-write sequence is
required that inserts the source quadword into two
aligned quadwords in storage. The quadword to be

stored is assumed to be in Vs; see Figure 107 The
contents of Vs are shifted right and split into two parts,
each of which is merged (using a Vector Select
instruction) with the current contents of the two aligned
quadwords (MSQ and LSQ) that will contain the most
significant bytes and least significant bytes,
respectively, of the unaligned quadword. The resulting
two quadwords are stored using Store Vector Indexed
instructions. A Load Vector for Shift Right instruction is
used to generate the permute control vector that is
used for the shifting. A single register is used for the
“shifted” contents; this is possible because the
“shifting” is done by means of a right rotation. The
rotation is accomplished by specifying Vs for both
components of the Vector Permute instruction. In
addition, the same permute control vector is used on a
sequence of 1s and 0s to generate the mask used by
the Vector Select instructions that do the merging.

The following sequence of instructions copies the
contents of Vs into an unaligned quadword in storage.

# Assumptions:
# Rb != 0 and contents of Rb = 0xB
lvx       Vhi,0,Rb    # load current MSQ
lvsr      Vp,0,Rb     # set permute control vector
addi      Rb,Rb,16    # address of LSQ
lvx       Vlo,0,Rb    # load current LSQ
vspltisb  V1s,-1      # generate the select mask bits
vspltisb  V0s,0
vperm     Vmask,V0s,V1s,Vp # generate the select mask
vperm     Vs,Vs,Vs,Vp      # right rotate the data
vsel      Vlo,Vs,Vlo,Vmask # insert LSQ component
vsel      Vhi,Vhi,Vs,Vmask # insert MSQ component
stvx      Vlo,0,Rb         # store LSQ
addi      Rb,Rb,-16        # address of MSQ
stvx      Vhi,0,Rb         # store MSQ
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6.5 Vector Integer Operations

Many of the instructions that produce fixed-point
integer results have the potential to compute a result
value that cannot be represented in the target format.
When this occurs, this unrepresentable intermediate
value is converted to a representable result value
using one of the following methods.

1. The high-order bits of the intermediate result that
do not fit in the target format are discarded.  This
method is used by instructions having names that
include the word "Modulo".

2. The intermediate result is converted to the nearest
value that is representable in the target format
(i.e., to the minimum or maximum representable
value, as appropriate). This method is used by
instructions having names that include the word
"Saturate". An intermediate result that is forced to
the minimum or maximum representable value as
just described is said to "saturate".

An instruction for which an intermediate result
saturates causes VSCRSAT to be set to 1; see
Section 6.3.2.

3. If the intermediate result includes non-zero
fraction bits it is rounded up to the nearest
fixed-point integer value. This method is used by
the six Vector Average Integer instructions and by
the Vector Multiply-High-Round-Add Signed
Halfword Saturate instruction. The latter
instruction then uses method 2, if necessary.

  

6.5.1 Integer Saturation

Saturation occurs whenever the result of a saturating
instruction does not fit in the result field. Unsigned
saturation clamps results to zero (0) on underflow and
to the maximum positive integer value (2n-1, e.g. 255
for byte fields) on overflow. Signed saturation clamps
results to the smallest representable negative number
(-2n-1, e.g. -128 for byte fields) on underflow, and to
the largest representable positive number (2n-1-1, e.g.
+127 for byte fields) on overflow.

Because VSCRSAT is sticky, it can be used to
detect whether any instruction in a sequence of
“Saturate”-type instructions produced an inexact
result due to saturation. For example, the contents
of the VSCR can be copied to a VR (mfvscr), bits
other than the SAT bit can be cleared in the VR
(vand with a constant), the result can be
compared to zero setting CR6 (vcmpequb.), and a
branch can be taken according to whether
VSCRSAT was set to 1 (Branch Conditional that
tests CR field 6).

Testing VSCRSAT after each “Saturate”-type
instruction would degrade performance
considerably.  Alternative techniques include the
following:

– Retain sufficient information at "checkpoints"
that the sequence of computations performed
between one checkpoint and the next can be
redone (more slowly) in a manner that detects
exactly when saturation occurs. Test
VSCRSAT only at checkpoints, or when
redoing a sequence of computations that
saturated.

– Perform intermediate computations using an
element length sufficient to prevent saturation,
and then use a Vector Pack Integer Saturate
instruction to pack the final result to the
desired length. (Vector Pack Integer Saturate
causes results to saturate if necessary, and
sets VSCRSAT to 1 if any result saturates.)

Programming Note
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In most cases, the simple maximum/minimum
saturation performed by the vector instructions is
adequate. However, sometimes, e.g. in the creation of
very high quality images, more complex saturation
functions must be applied. To support this, the Vector
facility provides a mechanism for detecting that
saturation has occurred. The VSCR has a bit, the SAT
bit, which is set to a one (1) anytime any field in a
saturating instruction saturates. The SAT bit can only
be cleared by explicitly writing zero to it. Thus SAT
accumulates a summary result of any integer overflow
or underflow that occurs on a saturating instruction.

Borderline cases that generate results equal to
saturation values, for example unsigned 0+0=0 and
unsigned byte 1+254=255, are not considered
saturation conditions and do not cause SAT to be set.

The SAT bit can be set by the following types of
instructions:

– Move To VSCR
– Vector Add Integer with Saturation
– Vector Subtract Integer with Saturation
– Vector Multiply-Add Integer with Saturation
– Vector Multiply-Sum with Saturation
– Vector Sum-Across with Saturation
– Vector Pack with Saturation
– Vector Convert to Fixed-point with Saturation

Note that only instructions that explicitly call for
“saturation” can set SAT. “Modulo” integer instructions
and floating-point arithmetic instructions never set
SAT.

  

The SAT state can be tested and used to alter
program flow by moving the VSCR to a vector
register (with mfvscr), then masking out bits 0:126
(to clear undefined and reserved bits) and
performing a vector compare equal-to unsigned
byte w/record (vcmpequb.) with zero to get a
testable value into the condition register for
consumption by a subsequent branch.

Since mfvscr will be slow compared to other
Vector instructions, reading and testing SAT after
each instruction would be prohibitively expensive.
Therefore, software is advised to employ
strategies that minimize checking SAT. For
example: checking SAT periodically and
backtracking to the last checkpoint to identify
exactly which field in which instruction saturated;
or, working in an element size sufficient to prevent
any overflow or underflow during intermediate
calculations, then packing down to the desired
element size as the final operation (the vector pack
instruction saturates the results and updates SAT
when a loss of significance is detected).

Programming Note
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6.6 Vector Floating-Point Opera-
tions

6.6.1 Floating-Point Overview

Unless VSCRNJ=1 (see Section 6.3.2), the
floating-point model provided by the Vector Facility
conforms to The Java Language Specification
(hereafter referred to as “Java”), which is a subset of
the default environment specified by the IEEE
standard (i.e., by ANSI/IEEE Standard 754-1985,
“IEEE Standard for Binary Floating-Point Arithmetic”).
For aspects of floating-point behavior that are not
defined by Java but are defined by the IEEE standard,
vector floating-point conforms to the IEEE standard.
For aspects of floating-point behavior that are defined
neither by Java nor by the IEEE standard but are
defined by the “C9X Floating-Point Proposal”
(hereafter referred to as “C9X”), vector floating-point
conforms to C9X.

The single-precision floating-point data format, value
representations, and computational models defined in
Chapter 4. “Floating-Point Facility [Category:
Floating-Point]” on page 113 apply to vector
floating-point except as follows.

– In general, no status bits are set to reflect the
results of floating-point operations. The only
exception is that VSCRSAT may be set by the
Vector Convert To Fixed-Point Word instructions.

– With the exception of the two Vector Convert To
Fixed-Point Word instructions and three of the four
Vector Round to Floating-Point Integer
instructions, all vector floating-point instructions
that round use the rounding mode Round to
Nearest.

– Floating-point exceptions (see Section 6.6.2)
cannot cause the system error handler to be
invoked.

  

6.6.2 Floating-Point Exceptions

The following floating-point exceptions may occur
during execution of vector floating-point instructions.

– NaN Operand Exception
– Invalid Operation Exception
– Zero Divide Exception
– Log of Zero Exception
– Overflow Exception
– Underflow Exception

If an exception occurs, a result is placed into the
corresponding target element as described in the
following subsections. This result is the default result
specified by Java, the IEEE standard, or C9X, as
applicable.

Recall that denormalized source values are treated as
if they were zero when VSCRNJ=1.  This has the
following consequences regarding exceptions.

– Exceptions that can be caused by a zero source
value can be caused by a denormalized source
value when VSCRNJ=1.

– Exceptions that can be caused by a nonzero
source value cannot be caused by a denormalized
source value when VSCRNJ=1.

6.6.2.1 NaN Operand Exception

A NaN Operand Exception occurs when a source
value for any of the following instructions is a NaN.

– A vector instruction that would normally produce
floating-point results

– Either of the two Vector Convert To Fixed-Point
Word instructions

– Any of the four Vector Floating-Point Compare
instructions

The following actions are taken:

If the vector instruction would normally produce
floating-point results, the corresponding result is a
source NaN selected as follows. In all cases, if the
selected source NaN is a Signaling NaN it is converted
to the corresponding Quiet NaN (by setting the
high-order bit of the fraction field to 1) before being
placed into the target element.

if the element in VRA is a NaN
   then the result is that NaN
   else if the element in VRB is a NaN

then the result is that NaN
else if the element in VRC is a NaN

If a function is required that is specified by the
IEEE standard, is not supported by the Vector
Facility, and cannot be emulated satisfactorily
using the functions that are supported by the
Vector Facility, the functions provided by the
Floating-Point Facility should be used; see
Chapter 4.
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then the result is that NaN
else if Invalid Operation exception
   (Section 6.6.2.2)
then the result is the QNaN 0x7FC0_0000

If the instruction is either of the two Vector Convert To
Fixed-Point Word instructions, the corresponding result
is 0x0000_0000. VSCRSAT is not affected.

If the instruction is Vector Compare Bounds
Floating-Point, the corresponding result is
0xC000_0000.

If the instruction is one of the other Vector
Floating-Point Compare instructions, the
corresponding result is 0x0000_0000.

6.6.2.2 Invalid Operation Exception

An Invalid Operation Exception occurs when a source
value or set of source values is invalid for the specified
operation.  The invalid operations are:

– Magnitude subtraction of infinities
– Multiplication of infinity by zero
– Reciprocal square root estimate of a negative,

nonzero number or -infinity.
– Log base 2 estimate of a negative, nonzero

number or -infinity.

The corresponding result is the QNaN 0x7FC0_0000.

6.6.2.3 Zero Divide Exception

A Zero Divide Exception occurs when a Vector
Reciprocal Estimate Floating-Point or Vector
Reciprocal Square Root Estimate Floating-Point
instruction is executed with a source value of zero.

The corresponding result is an infinity, where the sign
is the sign of the source value.

6.6.2.4 Log of Zero Exception

A Log of Zero Exception occurs when a Vector Log
Base 2 Estimate Floating-Point instruction is executed
with a source value of zero.

The corresponding result is -Infinity.

6.6.2.5 Overflow Exception

An Overflow Exception occurs under either of the
following conditions.

– For a vector instruction that would normally
produce floating-point results, the magnitude of
what would have been the result if the exponent

range were unbounded exceeds that of the largest
finite floating-point number for the target
floating-point format.

– For either of the two Vector Convert To
Fixed-Point Word instructions, either a source
value is an infinity or the product of a source value
and 2UIM is a number too large in magnitude to be
represented in the target fixed-point format.

The following actions are taken:

1. If the vector instruction would normally produce
floating-point results, the corresponding result is
an infinity, where the sign is the sign of the inter-
mediate result.

2. If the instruction is Vector Convert To Unsigned
Fixed-Point Word Saturate, the corresponding
result is 0xFFFF_FFFF if the source value is a
positive number or +infinity, and is 0x0000_0000 if
the source value is a negative number or -infinity.
VSCRSAT is set to 1.

3. If the instruction is Vector Convert To Signed
Fixed-Point Word Saturate, the corresponding
result is 0x7FFF_FFFF if the source value is a pos-
itive number or +infinity., and is 0x8000_0000 if the
source value is a negative number or -infinity.
VSCRSAT is set to 1.

6.6.2.6 Underflow Exception

An Underflow Exception can occur only for vector
instructions that would normally produce floating-point
results. It is detected before rounding. It occurs when a
nonzero intermediate result computed as though both
the precision and the exponent range were unbounded
is less in magnitude than the smallest normalized
floating-point number for the target floating-point
format.

The following actions are taken:

1. If VSCRNJ=0, the corresponding result is the value
produced by denormalizing and rounding the inter-
mediate result.

2. If VSCRNJ=1, the corresponding result is a zero,
where the sign is the sign of the intermediate
result.
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6.7 Vector Storage Access 
Instructions
The Vector Storage Access instructions compute the
effective address (EA) of the storage to be accessed
as described in Section 1.10.3, “Effective Address
Calculation” on page 26. The low-order bits of the EA
that would correspond to an unaligned storage
operand are ignored.

The Load Vector Element Indexed and Store Vector
Element Indexed instructions transfer a byte, halfword,
or word element between storage and a Vector
Register. The Load Vector Indexed and Store Vector
Indexed instructions transfer an aligned quadword
between storage and a Vector Register.

6.7.1 Storage Access Exceptions

Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is
unavailable.
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6.7.2 Vector Load Instructions
The aligned byte, halfword, word, or quadword in
storage addressed by EA is loaded into register VRT. 

 

Load Vector Element Byte Indexed X-form

lvebx VRT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA  I b + (RB)
eb  I EA60:63
 
VRT I undefined
if Big-Endian byte ordering then 
   VRT8×eb:8×eb+7 I MEM(EA,1)
else
   VRT120-(8×eb):127-(8×eb) I MEM(EA,1)

Let the effective address (EA) be the sum
(RA|0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, the contents of the byte in storage at address
EA are placed into byte eb of register VRT. The
remaining bytes in register VRT are set to undefined
values.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access, the contents of the byte in storage at address
EA are placed into byte 15-eb of register VRT. The
remaining bytes in register VRT are set to undefined
values.

Special Registers Altered:
None

Load Vector Element Halfword Indexed 
X-form

lvehx VRT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA  I (b + (RB)) & 0xFFFF_FFFF_FFFF_FFFE
eb I EA60:63
 
VRT I undefined
if Big-Endian byte ordering then 
   VRT8×eb:8×eb+15 I MEM(EA,2)
else
   VRT112-(8×eb):127-(8×eb) I MEM(EA,2)

Let the effective address (EA) be the result of ANDing
0xFFFF_FFFF_FFFF_FFFE with the sum
(RA|0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, 

– the contents of the byte in storage at address EA
are placed into byte eb of register VRT,

– the contents of the byte in storage at address
EA+1 are placed into byte eb+1 of register VRT,
and

– the remaining bytes in register VRT are set to
undefined values.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access, 

– the contents of the byte in storage at address EA
are placed into byte 15-eb of register VRT,

– the contents of the byte in storage at address
EA+1 are placed into byte 14-eb of register VRT,
and

– the remaining bytes in register VRT are set to
undefined values.

Special Registers Altered:
None

The Load Vector Element instructions load the
specified element into the same location in the
target register as  the location into which it would
be loaded using the Load Vector instruction.

Programming Note

31 VRT RA RB 7 /
0 6 11 16 21 31 31 VRT RA RB 39 /

0 6 11 16 21 31
Chapter 6. Vector Facility [Category: Vector] 229



Version 2.07 B
Load Vector Element Word Indexed 
X-form

lvewx VRT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA  I (b + (RB)) & 0xFFFF_FFFF_FFFF_FFFC
 
eb  I EA60:63
VRT I undefined
if Big-Endian byte ordering then 
   VRT8×eb:8×eb+31 I MEM(EA,4)
else
   VRT96-(8×eb):127-(8×eb) I MEM(EA,4)

Let the effective address (EA) be the result of ANDing
0xFFFF_FFFF_FFFF_FFFC with the sum
(RA|0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, 

– the contents of the byte in storage at address EA
are placed into byte eb of register VRT, 

– the contents of the byte in storage at address
EA+1 are placed into byte eb+1 of register VRT, 

– the contents of the byte in storage at address
EA+2 are placed into byte eb+2 of register VRT,

– the contents of the byte in storage at address
EA+3 are placed into byte eb+3 of register VRT,
and

– the remaining bytes in register VRT are set to
undefined values.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access, 

– the contents of the byte in storage at address EA
are placed into byte 15-eb of register VRT,

– the contents of the byte in storage at address
EA+1 are placed into byte 14-eb of register VRT,

– the contents of the byte in storage at address
EA+2 are placed into byte 13-eb of register VRT,

– the contents of the byte in storage at address
EA+3 are placed into byte 12-eb of register VRT,
and

– the remaining bytes in register VRT are set to
undefined values.

Special Registers Altered:
None

Load Vector Indexed X-form

lvx VRT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA  I b + (RB)
VRT I MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16)

Let the effective address (EA) be the sum
(RA|0)+(RB). The quadword in storage addressed by
the result of EA ANDed with
0xFFFF_FFFF_FFFF_FFF0 is loaded into VRT. 

Special Registers Altered:
None

Load Vector Indexed LRU X-form

lvxl VRT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA  I b + (RB)
VRT I MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16)
mark_as_not_likely_to_be_needed_again_anytime_soon(EA)

Let the effective address (EA) be the sum
(RA|0)+(RB). The quadword in storage addressed by
the result of EA ANDed with
0xFFFF_FFFF_FFFF_FFF0 is loaded into VRT. 

lvxl provides a hint that the quadword in storage
addressed by EA will probably not be needed again by
the program in the near future.

Special Registers Altered:
None

31 VRT RA RB 71 /
0 6 11 16 21 31

31 VRT RA RB 103 /
0 6 11 16 21 31

31 VRT RA RB 359 /
0 6 11 16 21 31
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On some implementations, the hint provided by the
lvxl instruction and the corresponding hint
provided by the stvxl, lvepxl, and stvepxl
instructions are applied to the entire cache block
containing the specified quadword. On such
implementations, the effect of the hint may be to
cause that cache block to be considered a likely
candidate for replacement when space is needed
in the cache for a new block. Thus, on such
implementations, the hint should be used with
caution if the cache block containing the quadword
also contains data that may be needed by the
program in the near future. Also, the hint may be
used before the last reference in a sequence of
references to the quadword if the subsequent
references are likely to occur sufficiently soon that
the cache block containing the quadword is not
likely to be displaced from the cache before the
last reference.

Programming Note
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6.7.3 Vector Store Instructions
Some portion or all of the contents of VRS are stored
into the aligned byte, halfword, word, or quadword in
storage addressed by EA. 

 

Store Vector Element Byte Indexed X-form

stvebx VRS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA  I b + (RB)
eb  I EA60:63
if Big-Endian byte ordering then 
   MEM(EA,1) I VRS8×eb:8×eb+7
else
   MEM(EA,1) I VRS120-(8×eb):127-(8×eb)

Let the effective address (EA) be the sum
(RA|0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, the contents of byte eb of register VRS are
placed in the byte in storage at address EA.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access, the contents of byte 15-eb of register VRS are
placed in the byte in storage at address EA.

Special Registers Altered:
None

 

Store Vector Element Halfword Indexed 
X-form

stvehx VRS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA  I (b + (RB)) & 0xFFFF_FFFF_FFFF_FFFE
eb  I EA60:63
if Big-Endian byte ordering then 
   MEM(EA,2) I VRS8×eb:8×eb+15
else
   MEM(EA,2) I VRS112-(8×eb):127-(8×eb)

Let the effective address (EA) be the result of ANDing
0xFFFF_FFFF_FFFF_FFFE with the sum
(RA|0)+(RB). 

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, 

– the contents of byte eb of register VRS are placed
in the byte in storage at address EA, and

– the contents of byte eb+1 of register VRS are
placed in the byte in storage at address EA+1.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access, 

– the contents of byte 15-eb of register VRS are
placed in the byte in storage at address EA, and

– the contents of byte 14-eb of register VRS are
placed in the byte in storage at address EA+1.

Special Registers Altered:
None

  

The Store Vector Element instructions store the
specified element into the same storage location
as the location into which it would be stored using
the Store Vector instruction.

Programming Note
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Unless bits 60:63 of the address are known to
match the byte offset of the subject byte element in
register VRS, software should use Vector Splat to
splat the subject byte element before performing
the store.

Programming Note

31 VRS RA RB 167 /
0 6 11 16 21 31

Unless bits 60:62 of the address are known to
match the halfword offset of the subject halfword
element in register VRS software should use
Vector Splat to splat the subject halfword element
before performing the store.
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Store Vector Element Word Indexed 
X-form

stvewx VRS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA  I (b + (RB)) & 0xFFFF_FFFF_FFFF_FFFC
eb  I EA60:63
if Big-Endian byte ordering then 
   MEM(EA,4) I VRS8×eb:8×eb+31
else
   MEM(EA,4) I VRS96-(8×eb):127-(8×eb)

Let the effective address (EA) be the result of ANDing
0xFFFF_FFFF_FFFF_FFFC with the sum
(RA|0)+(RB). 

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, 

– the contents of byte eb of register VRS are placed
in the byte in storage at address EA,

– the contents of byte eb+1 of register VRS are
placed in the byte in storage at address EA+1,

– the contents of byte eb+2 of register VRS are
placed in the byte in storage at address EA+2,
and

– the contents of byte eb+3 of register VRS are
placed in the byte in storage at address EA+3.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access,

– the contents of byte 15-eb of register VRS are
placed in the byte in storage at address EA,

– the contents of byte 14-eb of register VRS are
placed in the byte in storage at address EA+1,

– the contents of byte 13-eb of register VRS are
placed in the byte in storage at address EA+2,
and

– the contents of byte 12-eb of register VRS are
placed in the byte in storage at address EA+3.

Special Registers Altered:
None

 

Store Vector Indexed X-form

stvx VRS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA  I b + (RB)
MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16) I (VRS)

Let the effective address (EA) be the sum
(RA|0)+(RB). The contents of VRS are stored into the
quadword in storage addressed by the result of EA
ANDed with 0xFFFF_FFFF_FFFF_FFF0. 

Special Registers Altered:
None

Store Vector Indexed LRU X-form

stvxl VRS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA  I b + (RB)
MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16) I (VRS)
mark_as_not_likely_to_be_needed_again_anytime_soon(EA)

Let the effective address (EA) be the sum
(RA|0)+(RB). The contents of VRS are stored into the
quadword in storage addressed by the result of EA
ANDed with 0xFFFF_FFFF_FFFF_FFF0. 

stvxl provides a hint that the quadword in storage
addressed by EA will probably not be needed again by
the program in the near future.

Special Registers Altered:
None

31 VRS RA RB 199 /
0 6 11 16 21 31

Unless bits 60:61 of the address are known to
match the word offset of the subject word element
in register VRS, software should use Vector Splat
to splat the subject word element before
performing the store.

Programming Note

31 VRS RA RB 231 /
0 6 11 16 21 31

31 VRS RA RB 487 /
0 6 11 16 21 31

See the Programming Note for the lvxl instruction
on page 230.

Programming Note
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6.7.4 Vector Alignment Support Instructions
    

Load Vector for Shift Left Indexed X-form

lvsl VRT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
sh  I (b + (RB))60:63
switch(sh)
   case(0x0): VRTI0x000102030405060708090A0B0C0D0E0F
   case(0x1): VRTI0x0102030405060708090A0B0C0D0E0F10
   case(0x2): VRTI0x02030405060708090A0B0C0D0E0F1011
   case(0x3): VRTI0x030405060708090A0B0C0D0E0F101112
   case(0x4): VRTI0x0405060708090A0B0C0D0E0F10111213
   case(0x5): VRTI0x05060708090A0B0C0D0E0F1011121314
   case(0x6): VRTI0x060708090A0B0C0D0E0F101112131415
   case(0x7): VRTI0x0708090A0B0C0D0E0F10111213141516
   case(0x8): VRTI0x08090A0B0C0D0E0F1011121314151617
   case(0x9): VRTI0x090A0B0C0D0E0F101112131415161718
   case(0xA): VRTI0x0A0B0C0D0E0F10111213141516171819
   case(0xB): VRTI0x0B0C0D0E0F101112131415161718191A
   case(0xC): VRTI0x0C0D0E0F101112131415161718191A1B
   case(0xD): VRTI0x0D0E0F101112131415161718191A1B1C
   case(0xE): VRTI0x0E0F101112131415161718191A1B1C1D
   case(0xF): VRTI0x0F101112131415161718191A1B1C1D1E

Let sh be bits 60:63 of the sum (RA|0)+(RB). Let X be
the 32 byte value 0x00 || 0x01 || 0x02 || … || 0x1E ||
0x1F.

Bytes sh to sh+15 of X are placed into VRT.

Special Registers Altered:
None

Load Vector for Shift Right Indexed 
X-form

lvsr VRT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
sh  I (b + (RB))60:63
switch(sh)
   case(0x0): VRTI0x101112131415161718191A1B1C1D1E1F
   case(0x1): VRTI0x0F101112131415161718191A1B1C1D1E
   case(0x2): VRTI0x0E0F101112131415161718191A1B1C1D
   case(0x3): VRTI0x0D0E0F101112131415161718191A1B1C
   case(0x4): VRTI0x0C0D0E0F101112131415161718191A1B
   case(0x5): VRTI0x0B0C0D0E0F101112131415161718191A
   case(0x6): VRTI0x0A0B0C0D0E0F10111213141516171819
   case(0x7): VRTI0x090A0B0C0D0E0F101112131415161718
   case(0x8): VRTI0x08090A0B0C0D0E0F1011121314151617
   case(0x9): VRTI0x0708090A0B0C0D0E0F10111213141516
   case(0xA): VRTI0x060708090A0B0C0D0E0F101112131415
   case(0xB): VRTI0x05060708090A0B0C0D0E0F1011121314
   case(0xC): VRTI0x0405060708090A0B0C0D0E0F10111213
   case(0xD): VRTI0x030405060708090A0B0C0D0E0F101112
   case(0xE): VRTI0x02030405060708090A0B0C0D0E0F1011
   case(0xF): VRTI0x0102030405060708090A0B0C0D0E0F10

Let sh be bits 60:63 of the sum (RA|0)+(RB). Let X be
the 32-byte value 0x00 || 0x01 || 0x02 || … || 0x1E ||
0x1F.

Bytes 16-sh to 31-sh of X are placed into VRT.

Special Registers Altered:
None

The lvsl and lvsr instructions can be used to cre-
ate the permute control vector to be used by a sub-
sequent vperm instruction (see page 246). Let X
and Y be the contents of register VRA and VRB
specified by the vperm. The control vector created
by lvsl causes the vperm to select the high-order
16 bytes of the result of shifting the 32-byte value X
|| Y left by sh bytes. The control vector created by
lvsr causes the vperm to select the low-order 16
bytes of the result of shifting X || Y right by sh bytes.

Programming Note

Examples of uses of lvsl, lvsr, and vperm to load
and store unaligned data are given in Section 6.4.1.

These instructions can also be used to rotate or
shift the contents of a Vector Register left (lvsl) or
right (lvsr) by sh bytes. For rotating, the Vector
Register to be rotated should be specified as both
register VRA and VRB for vperm. For shifting left,
VRB for vperm should be a register containing all
zeros and VRA should contain the value to be
shifted, and vice versa for shifting right.

Programming Note

31 VRT RA RB 6 /
0 6 11 16 21 31 31 VRT RA RB 38 /

0 6 11 16 21 31
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6.8 Vector Permute and Formatting Instructions

6.8.1 Vector Pack and Unpack Instructions

Vector Pack Pixel VX-form

vpkpx VRT,VRA,VRB

do i = 0 to 63 by 16
   VR[VRT]i         I VR[VRA]i×2+7
   VR[VRT]i+1:i+5   I VR[VRA]i×2+8:i×2+12
   VR[VRT]i+6:i+10  I VR[VRA]i×2+16:i×2+20
   VR[VRT]i+11:i+15 I VR[VRA]i×2+24:i×2+28
   VR[VRT]i+64      I VR[VRB]i×2+7
   VR[VRT]i+65:i+69 I VR[VRB]i×2+8:i×2+12
   VR[VRT]i+70:i+74 I VR[VRB]i×2+16:i×2+20
   VR[VRT]i+75:i+79 I VR[VRB]i×2+24:i×2+28
end

Let the source vector be the concatenation of the
contents of VR[VRA] followed by the contents of
VR[VRB]. 

For each integer value i from 0 to 7, do the following.
Word element i in the source vector is packed to
produce a 16-bit value as described below.

– bit 7 of the first byte (bit 7 of the word)

– bits 0:4 of the second byte (bits 8:12 of the
word)

– bits 0:4 of the third byte (bits 16:20 of the
word)

– bits 0:4 of the fourth byte (bits 24:28 of the
word)

The result is placed into halfword element i of
VR[VRT].

Special Registers Altered:
None

  

Vector Pack Signed Doubleword Signed 
Saturate VX-form

vpksdss VRT,VRA,VRB

src.qword[0] ← VR[VRA]
src.qword[1] ← VR[VRB]
do i = 0 to 3
   VR[VRT].word[i] ← Chop( Clamp( ExtendSign( src.dword[i]), 
-231, 231-1 ), 32 )
end

Let doubleword elements 0 and 1 of src be the
contents of VR[VRA].

Let doubleword elements 2 and 3 of src be the
contents of VR[VRB].

For each integer value i from 0 to 3, do the following.
The signed integer value in doubleword element i
of src is placed into word element i of VR[VRT] in
signed integer format.

– If the value is greater than 231-1 the result
saturates to 231-1.

– If the value is less than -231 the result
saturates to -231. 

Special Registers Altered:
SAT

4 VRT VRA VRB 782
0 6 11 16 21 31

Each source word can be considered to be a 32-bit
"pixel", consisting of four 8-bit "channels". Each
target halfword can be considered to be a 16-bit
pixel, consisting of one 1-bit channel and three
5-bit channels.  A channel can be used to specify
the intensity of a particular color, such as red,
green, or blue, or to provide other information
needed by the application.

Programming Note

4 VRT VRA VRB 1486
0 6 11 16 21 31
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Vector Pack Signed Doubleword 
Unsigned Saturate VX-form

vpksdus VRT,VRA,VRB

src.qword[0] ← VR[VRA]
src.qword[1] ← VR[VRB]
do i = 0 to 3
   VR[VRT].word[i] ← Chop( Clamp( ExtendSign(src.dword[i]), 0, 
232-1 ), 32 )
end

Let doubleword elements 0 and 1 of src be the
contents of VR[VRA].

Let doubleword elements 2 and 3 of src be the
contents of VR[VRB].

For each integer value i from 0 to 3, do the following.
The signed integer value in doubleword element i
of src is placed into word element i of VR[VRT] in
unsigned integer format.

– If the value is greater than 232-1 the result
saturates to 232-1.

– If the value is less than 0 the result saturates
to 0. 

Special Registers Altered:
SAT

Vector Pack Signed Halfword Signed 
Saturate VX-form

vpkshss VRT,VRA,VRB

do i=0 to 63 by 8
   src1 I EXTS((VRA)i×2:i×2+15)
   src2 I EXTS((VRB)i×2:i×2+15)
   VRTi:i+7     I Clamp(src1, -128, 127)24:31
   VRTi+64:i+71 I Clamp(src2, -128, 127)24:31
end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 15, do the following.
Signed-integer halfword element i in the source
vector is converted to an signed-integer byte.

– If the value of the element is greater than 127
the result saturates to 127

– If the value of the element is less than -128
the result saturates to -128. 

The low-order 8 bits of the result is placed into
byte element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 1358
0 6 11 16 21 31

4 VRT VRA VRB 398
0 6 11 16 21 31
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Vector Pack Signed Halfword Unsigned 
Saturate VX-form

vpkshus VRT,VRA,VRB

do i=0 to 63 by 8
   src1 I EXTS((VRA)i×2:i×2+15)
   src2 I EXTS((VRB)i×2:i×2+15)
   VRTi:i+7     I Clamp(src1, 0, 255)24:31
   VRTi+64:i+71 I Clamp(src2, 0, 255)24:31
end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 15, do the following.
Signed-integer halfword element i in the source
vector is converted to an unsigned-integer byte.

– If the value of the element is greater than 255
the result saturates to 255

– If the value of the element is less than 0 the
result saturates to 0. 

The low-order 8 bits of the result is placed into
byte element i of VRT.

Special Registers Altered:
SAT

Vector Pack Signed Word Signed Saturate 
VX-form

vpkswss VRT,VRA,VRB

do i=0 to 63 by 16
   src1 I EXTS((VRA)i×2:i×2+31)
   src2 I EXTS((VRB)i×2:i×2+31)
   VRTi:i+15    I Clamp(src1, -215, 215-1)16:31
   VRTi+64:i+79 I Clamp(src2, -215, 215-1)16:31
end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 7, do the following.
Signed-integer word element i in the source vector
is converted to an signed-integer halfword.

– If the value of the element is greater than
215-1 the result saturates to 215-1

– If the value of the element is less than -215

the result saturates to -215. 

The low-order 16 bits of the result is placed into
halfword element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 270
0 6 11 16 21 31

4 VRT VRA VRB 462
0 6 11 16 21 31
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Vector Pack Signed Word Unsigned 
Saturate VX-form

vpkswus VRT,VRA,VRB

do i=0 to 63 by 16
   src1 I EXTS((VRA)i×2:i×2+31)
   src2 I EXTS((VRB)i×2:i×2+31)
   VRTi:i+15    I Clamp(src1, 0, 216-1)16:31
   VRTi+64:i+79 I Clamp(src2, 0, 216-1)16:31

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 7, do the following.
Signed-integer word element i in the source vector
is converted to an unsigned-integer halfword.

– If the value of the element is greater than
216-1 the result saturates to 216-1

– If the value of the element is less than 0 the
result saturates to 0. 

The low-order 16 bits of the result is placed into
halfword element i of VRT.

Special Registers Altered:
SAT

Vector Pack Unsigned Doubleword 
Unsigned Modulo VX-form

vpkudum VRT,VRA,VRB

if MSR.VEC then Vector_Unavailable()

src.qword[0] ← VR[VRA]
src.qword[1] ← VR[VRB]
do i = 0 to 3
   VR[VRT].word[i] ← Chop( ExtendZero(src.dword[i]), 32 )
end

Let doubleword elements 0 and 1 of src be the
contents of VR[VRA].

Let doubleword elements 2 and 3 of src be the
contents of VR[VRB].

For each integer value i from 0 to 3, do the following.
The contents of bits 32:63 of doubleword element
i of src is placed into word element i of VR[VRT].

Special Registers Altered:
None

Vector Pack Unsigned Doubleword 
Unsigned Saturate VX-form

vpkudus VRT,VRA,VRB

if MSR.VEC then Vector_Unavailable()

src.qword[0] ← VR[VRA]
src.qword[1] ← VR[VRB]
do i = 0 to 3
   VR[VRT].word[i] ← Chop( Clamp( ExtendZero(src.dword[i]), 0, 
232-1 ), 32 )
end

Let doubleword elements 0 and 1 of src be the
contents of VR[VRA].

Let doubleword elements 2 and 3 of src be the
contents of VR[VRB].

For each integer value i from 0 to 3, do the following.
The unsigned integer value in doubleword
element i of src is placed into word element i of
VR[VRT] in unsigned integer format.

– If the value of the element is greater than
232-1 the result saturates to 232-1

Special Registers Altered:
SAT

Vector Pack Unsigned Halfword Unsigned 
Modulo VX-form

vpkuhum VRT,VRA,VRB

do i=0 to 63 by 8
   VRTi:i+7     I (VRA)i×2+8:i×2+15
   VRTi+64:i+71 I (VRB)i×2+8:i×2+15
end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 15, do the following.
The contents of bits 8:15 of halfword element i in
the source vector is placed into byte element i of
VRT.

Special Registers Altered:
None

4 VRT VRA VRB 334
0 6 11 16 21 31

4 VRT VRA VRB 1102
0 6 11 16 21 31

4 VRT VRA VRB 1230
0 6 11 16 21 31

4 VRT VRA VRB 14
0 6 11 16 21 31
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Vector Pack Unsigned Halfword Unsigned 
Saturate VX-form

vpkuhus VRT,VRA,VRB

do i=0 to 63 by 8
   src1 I EXTZ((VRA)i×2:i×2+15)
   src2 I EXTZ((VRB)i×2:i×2+15)
   VRTi:i+7     I Clamp( src1, 0, 255 )24:31
   VRTi+64:i+71 I Clamp( src2, 0, 255 )24:31
end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 15, do the following.
Unsigned-integer halfword element i in the source
vector is converted to an unsigned-integer byte.

– If the value of the element is greater than 255
the result saturates to 255.

The low-order 8 bits of the result is placed into byte
element i of VRT.

Special Registers Altered:
SAT

Vector Pack Unsigned Word Unsigned 
Modulo VX-form

vpkuwum VRT,VRA,VRB

do i=0 to 63 by 16
   VRTi:i+15    I (VRA)i×2+16:i×2+31
   VRTi+64:i+79 I (VRB)i×2+16:i×2+31
end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 7, do the following.
The contents of bits 16:31 of word element i in the
source vector is placed into halfword element i of
VRT.

Special Registers Altered:
None

Vector Pack Unsigned Word Unsigned 
Saturate VX-form

vpkuwus VRT,VRA,VRB

do i=0 to 63 by 16
   src1 I EXTZ((VRA)i×2:i×2+31 )
   src2 I EXTZ((VRB)i×2:i×2+31 )
   VRTi:i+15 I Clamp( src1, 0, 216-1 )16:31
   VRTi+64:i+79 I Clamp( src2, 0, 216-1 )16:31
end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 7, do the following.
Unsigned-integer word element i in the source
vector is converted to an unsigned-integer
halfword.

– If the value of the element is greater than
216-1 the result saturates to 216-1.

The low-order 16 bits of the result is placed into
halfword element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 142
0 6 11 16 21 31

4 VRT VRA VRB 78
0 6 11 16 21 31

4 VRT VRA VRB 206
0 6 11 16 21 31
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Vector Unpack High Pixel VX-form

vupkhpx VRT,VRB

do i=0 to 63 by 16
   VRTi×2:i×2+7     I EXTS((VRB)i        )
   VRTi×2+8:i×2+15  I EXTZ((VRB)i+1:i+5  )
   VRTi×2+16:i×2+23 I EXTZ((VRB)i+6:i+10 )
   VRTi×2+24:i×2+31 I EXTZ((VRB)i+11:i+15)
end

For each vector element i from 0 to 3, do the following.
Halfword element i in VRB is unpacked as follows.

– sign-extend bit 0 of the halfword to 8 bits
– zero-extend bits 1:5 of the halfword to 8 bits
– zero-extend bits 6:10 of the halfword to 8 bits
– zero-extend bits 11:15 of the halfword to 8

bits

The result is placed in word element i of VRT.

Special Registers Altered:
None

  

  

Vector Unpack Low Pixel VX-form

vupklpx VRT,VRB

do i=0 to 63 by 16
   VRTi×2:i×2+7     I EXTS((VRB)i+64     )
   VRTi×2+8:i×2+15  I EXTZ((VRB)i+65:i+69)
   VRTi×2+16:i×2+23 I EXTZ((VRB)i+70:i+74)
   VRTi×2+24:i×2+31 I EXTZ((VRB)i+75:i+79)
end

For each vector element i from 0 to 3, do the following.
Halfword element i+4 in VRB is unpacked as
follows.

– sign-extend bit 0 of the halfword to 8 bits
– zero-extend bits 1:5 of the halfword to 8 bits
– zero-extend bits 6:10 of the halfword to 8 bits
– zero-extend bits 11:15 of the halfword to 8

bits

The result is placed in word element i of VRT.

Special Registers Altered:
None

4 VRT /// VRB 846
0 6 11 16 21 31

The source and target elements can be considered
to be 16-bit and 32-bit “pixels” respectively, having
the formats described in the Programming Note for
the Vector Pack Pixel instruction on page 235.

Notice that the unpacking done by the Vector
Unpack Pixel instructions does not reverse the
packing done by the Vector Pack Pixel instruction.
Specifically, if a 16-bit pixel is unpacked to a 32-bit
pixel which is then packed to a 16-bit pixel, the
resulting 16-bit pixel will not, in general, be equal
to the original 16-bit pixel (because, for each
channel except the first, Vector Unpack Pixel
inserts high-order bits while Vector Pack Pixel
discards low-order bits).

Programming Note

Programming Note

4 VRT /// VRB 974
0 6 11 16 21 31
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Vector Unpack High Signed Byte VX-form

vupkhsb VRT,VRB

do i=0 to 63 by 8
   VRTi×2:i×2+15 I EXTS((VRB)i:i+7)
end

For each vector element i from 0 to 7, do the following.
Signed-integer byte element i in VRB is
sign-extended to produce a signed-integer
halfword and placed into halfword element i in
VRT.

Special Registers Altered:
None

Vector Unpack High Signed Halfword 
VX-form

vupkhsh VRT,VRB

do i=0 to 63 by 16
   VRTi×2:i×2+31 I EXTS((VRB)i:i+15)
end

For each vector element i from 0 to 3, do the following.
Signed-integer halfword element i in VRB is
sign-extended to produce a signed-integer word
and placed into word element i in VRT.

Special Registers Altered:
None

Vector Unpack High Signed Word VX-form

vupkhsw VRT,VRB

VR[VRT].dword[0] ← Chop( ExtendSign(VR[VRB].word[0]), 64 )
VR[VRT].dword[1] ← Chop( ExtendSign(VR[VRB].word[1]), 64 )

For each integer value i from 0 to 1, do the following.
The signed integer value in word element i of
VR[VRB] is sign-extended and placed into
doubleword element i of VR[VRT].

Special Registers Altered:
None

Vector Unpack Low Signed Byte VX-form

vupklsb VRT,VRB

do i=0 to 63 by 8
   VRTi×2:i×2+15 I EXTS((VRB)i+64:i+71)
end

For each vector element i from 0 to 7, do the following.
Signed-integer byte element i+8 in VRB is
sign-extended to produce a signed-integer
halfword and placed into halfword element i in
VRT.

Special Registers Altered:
None

Vector Unpack Low Signed Halfword 
VX-form

vupklsh VRT,VRB

do i=0 to 63 by 16
   VRTi×2:i×2+31 I EXTS((VRB)i+64:i+79)
end

For each vector element i from 0 to 3, do the following.
Signed-integer halfword element i+4 in VRB is
sign-extended to produce a signed-integer word
and placed into word element i in VRT.

Special Registers Altered:
None

Vector Unpack Low Signed Word VX-form

vupklsw VRT,VRB

VR[VRT].dword[0] ← Chop( ExtendSign(VR[VRB].word[2]), 64 )
VR[VRT].dword[1] ← Chop( ExtendSign(VR[VRB].word[3]), 64 )

For each integer value i from 0 to 1, do the following.
The signed integer value in word element i+2 of
VR[VRB] is sign-extended and placed into
doubleword element i of VR[VRT].

Special Registers Altered:
None

4 VRT /// VRB 526
0 6 11 16 21 31

4 VRT /// VRB 590
0 6 11 16 21 31

4 VRT /// VRB 1614
0 6 11 16 21 31

4 VRT /// VRB 654
0 6 11 16 21 31

4 VRT /// VRB 718
0 6 11 16 21 31

4 VRT /// VRB 1742
0 6 11 16 21 31
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6.8.2 Vector Merge Instructions

Vector Merge High Byte VX-form

vmrghb VRT,VRA,VRB

do i=0 to 63 by 8
   VRTi×2:i×2+7    I (VRA)i:i+7
   VRTi×2+8:i×2+15 I (VRB)i:i+7
end

For each vector element i from 0 to 7, do the following.
Byte element i in VRA is placed into byte element
2×i in VRT.

Byte element i in VRB is placed into byte element
2×i+1 in VRT.

Special Registers Altered:
None

Vector Merge High Halfword VX-form

vmrghh VRT,VRA,VRB

do i=0 to 63 by 16
   VRTi×2:i×2+15    I (VRA)i:i+15
   VRTi×2+16:i×2+31 I (VRB)i:i+15
end

For each vector element i from 0 to 3, do the following.
Halfword element i in VRA is placed into halfword
element 2×i in VRT.

Halfword element i in VRB is placed into halfword
element 2×i+1 in VRT.

Special Registers Altered:
None

Vector Merge Low Byte VX-form

vmrglb VRT,VRA,VRB

do i=0 to 63 by 8
   VRTi×2:i×2+7    I (VRA)i+64:i+71
   VRTi×2+8:i×2+15 I (VRB)i+64:i+71
end

For each vector element i from 0 to 7, do the following.
Byte element i+8 in VRA is placed into byte
element 2×i in VRT.

Byte element i+8 in VRB is placed into byte
element 2×i+1 in VRT.

Special Registers Altered:
None

Vector Merge Low Halfword VX-form

vmrglh VRT,VRA,VRB

do i=0 to 63 by 16
   VRTi×2:i×2+15    I (VRA)i+64:i+79
   VRTi×2+16:i×2+31 I (VRB)i+64:i+79
end

For each vector element i from 0 to 3, do the following.
Halfword element i+4 in VRA is placed into
halfword element 2×i in VRT.

Halfword element i+4 in VRB is placed into
halfword element 2×i+1 in VRT.

Special Registers Altered:
None

4 VRT VRA VRB 12
0 6 11 16 21 31

4 VRT VRA VRB 76
0 6 11 16 21 31

4 VRT VRA VRB 268
0 6 11 16 21 31

4 VRT VRA VRB 332
0 6 11 16 21 31
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Vector Merge High Word VX-form

vmrghw VRT,VRA,VRB

do i=0 to 63 by 32
   VRTi×2:i×2+31    I (VRA)i:i+31
   VRTi×2+32:i×2+63 I (VRB)i:i+31
end

For each vector element i from 0 to 1, do the following.
Word element i in VRA is placed into word
element 2×i in VRT.

Word element i in VRB is placed into word
element 2×i+1 in VRT.

The word elements in the high-order half of VRA are
placed, in the same order, into the even-numbered
word elements of VRT. The word elements in the
high-order half of VRB are placed, in the same order,
into the odd-numbered word elements of VRT.

Special Registers Altered:
None

Vector Merge Low Word VX-form

vmrglw VRT,VRA,VRB

do i=0 to 63 by 32
   VRTi×2:i×2+31    I (VRA)i+64:i+95
   VRTi×2+32:i×2+63 I (VRB)i+64:i+95
end

For each vector element i from 0 to 1, do the following.
Word element i+2 in VRA is placed into word
element 2×i in VRT.

Word element i+2 in VRB is placed into word
element 2×i+1 in VRT.

Special Registers Altered:
None

4 VRT VRA VRB 140
0 6 11 16 21 31

4 VRT VRA VRB 396
0 6 11 16 21 31
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Vector Merge Even Word VX-form
[Category: Vector-Scalar]

vmrgew VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()
VR[VRT].word[0] ← VR[VRA].word[0]

VR[VRT].word[1] ← VR[VRB].word[0]

VR[VRT].word[2] ← VR[VRA].word[2]
VR[VRT].word[3] ← VR[VRB].word[2]

The contents of word element 0 of VR[VRA] are placed
into word element 0 of VR[VRT].

The contents of word element 0 of VR[VRB] are placed
into word element 1 of VR[VRT].

The contents of word element 2 of VR[VRA] are placed
into word element 2 of VR[VRT].

The contents of word element 2 of VR[VRB] are placed
into word element 3 of VR[VRT].

vmrgew is treated as a Vector instruction in terms of
resource availability.

Special Registers Altered
None

Vector Merge Odd Word VX-form
[Category: Vector-Scalar]

vmrgow VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()
VR[VRT].word[0] ← VR[VRA].word[1]

VR[VRT].word[1] ← VR[VRB].word[1]

VR[VRT].word[2] ← VR[VRA].word[3]
VR[VRT].word[3] ← VR[VRB].word[3]

The contents of word element 1 of VR[VRA] are placed
into word element 0 of VR[VRT].

The contents of word element 1 of VR[VRB] are placed
into word element 1 of VR[VRT].

The contents of word element 3 of VR[VRA] are placed
into word element 2 of VR[VRT].

The contents of word element 3 of VR[VRB] are placed
into word element 3 of VR[VRT].

vmrgow is treated as a Vector instruction in terms of
resource availability.

Special Registers Altered
None

4 VRT VRA VRB 1932
0 6 11 16 21 31

4 VRT VRA VRB 1676
0 6 11 16 21 31
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6.8.3 Vector Splat Instructions
  

Vector Splat Byte VX-form

vspltb VRT,VRB,UIM

b I UIM || 0b000
do i=0 to 127 by 8
   VRTi:i+7 I (VRB)b:b+7
end

For each integer value i from 0 to 15, do the following.
The contents of byte element UIM in VRB are
placed into byte element i of VRT.

Special Registers Altered:
None

Vector Splat Halfword VX-form

vsplth VRT,VRB,UIM

b I UIM || 0b0000
do i=0 to 127 by 16
   VRTi:i+15 I (VRB)b:b+15
end

For each integer value i from 0 to 7, do the following.
The contents of halfword element UIM in VRB are
placed into halfword element i of VRT.

Special Registers Altered:
None

Vector Splat Word VX-form

vspltw VRT,VRB,UIM

b I UIM || 0b00000
do i=0 to 127 by 32
   VRTi:i+31 I (VRB)b:b+31
end

For each integer value i from 0 to 3, do the following.
The contents of word element UIM in VRB are
placed into word element i of VRT.

Special Registers Altered:
None

The Vector Splat instructions can be used in
preparation for performing arithmetic for which one
source vector is to consist of elements that all
have the same value (e.g., multiplying all elements
of a Vector Register by a constant).

Programming Note

4 VRT / UIM VRB 524
0 6 11 12 16 21 31

4 VRT // UIM VRB 588
0 6 11 13 16 21 31

4 VRT /// UIM VRB 652
0 6 11 14 16 21 31
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Vector Splat Immediate Signed Byte 
VX-form

vspltisb VRT,SIM

do i=0 to 127 by 8
   VRTi:i+7 I EXTS(SIM, 8)
end

For each integer value i from 0 to 15, do the following.
The value of the SIM field, sign-extended to 8 bits,
is placed into byte element i  of VRT.

Special Registers Altered:
None

Vector Splat Immediate Signed Halfword 
VX-form

vspltish VRT,SIM

do i=0 to 127 by 16
   VRTi:i+15 I EXTS(SIM, 16)
end

For each integer value i from 0 to 7, do the following.
The value of the SIM field, sign-extended to 16
bits, is placed into halfword element i of VRT.

Special Registers Altered:
None

Vector Splat Immediate Signed Word 
VX-form

vspltisw VRT,SIM

do i=0 to 127 by 32
   VRTi:i+31 I EXTS(SIM, 32)
end

For each vector element i from 0 to 3, do the following.
The value of the SIM field, sign-extended to 32
bits, is placed into word element i of VRT.

Special Registers Altered:
None

6.8.4 Vector Permute Instruction

The Vector Permute instruction allows any byte in two
source Vector Registers to be copied to any byte in the
target Vector Register. The bytes in a third source
Vector Register specify from which byte in the first two
source Vector Registers the corresponding target byte
is to be copied. The contents of the third source Vector
Register are sometimes referred to as the “permute
control vector”.

Vector Permute VA-form

vperm VRT,VRA,VRB,VRC

temp0:255 I (VRA) || (VRB)
do i=0 to 127 by 8
   b I (VRC)i+3:i+7 || 0b000
   VRTi:i+7 I tempb:b+7
end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB. 

For each integer value i from 0 to 15, do the following.
The contents of the byte element in the source
vector specified by bits 3:7 of byte element i of
VRC are placed into byte element i of VRT.

Special Registers Altered:
None

  

4 VRT SIM /// 780
0 6 11 16 21 31

4 VRT SIM /// 844
0 6 11 16 21 31

4 VRT SIM /// 908
0 6 11 16 21 31

4 VRT VRA VRB VRC 43
0 6 11 16 21 26 31

See the Programming Notes with the Load Vector
for Shift Left and Load Vector for Shift Right
instructions on page 234 for examples of uses of
vperm.

Programming Note
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6.8.5 Vector Select Instruction

Vector Select VA-form

vsel VRT,VRA,VRB,VRC

do i=0 to 127
   VRTi I ((VRC)i=0) ? (VRA)i : (VRB)i
end

For each bit in VRC that contains the value 0, the
corresponding bit in VRA is placed into the
corresponding bit of VRT. Otherwise, the
corresponding bit in VRB is placed into the
corresponding bit of VRT.

Special Registers Altered:
None

4 VRT VRA VRB VRC 42
0 6 11 16 21 26 31
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6.8.6 Vector Shift Instructions
The Vector Shift instructions rotate or shift the contents
of a Vector Register or a pair of Vector Registers left or
right by a specified number of bytes (vslo, vsro,
vsldoi) or bits (vsl, vsr). Depending on the instruction,
this “shift count” is specified either by the contents of a
Vector Register or by an immediate field in the
instruction. In the former case, 7 bits of the shift count
register give the shift count in bits (0 ≤ count ≤ 127). Of
these 7 bits, the high-order 4 bits give the number of
complete bytes by which to shift and are used by vslo
and vsro; the low-order 3 bits give the number of
remaining bits by which to shift and are used by vsl
and vsr.

  

Vector Shift Left VX-form

vsl VRT,VRA,VRB

sh I (VRB)125:127
t I 1
do i=0 to 127 by 8
   t I t & ((VRB)i+5:i+7=sh)
end
if t=1 then VRT I (VRA) << sh
else        VRT I undefined

The contents of VRA are shifted left by the number of
bits specified in (VRB)125:127. 

– Bits shifted out of bit 0 are lost.  

– Zeros are supplied to the vacated bits on the right. 

The result is place into VRT, except if, for any byte
element in register VRB, the low-order 3 bits are not
equal to the shift amount, then VRT is undefined.

Special Registers Altered:
None

Vector Shift Left Double by Octet 
Immediate VA-form

vsldoi VRT,VRA,VRB,SHB

VRT I ( (VRA) || (VRB) )8×SHB:8×SHB+127

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.
Bytes SHB:SHB+15 of the source vector are placed
into VRT.

Special Registers Altered:
None

Vector Shift Left by Octet VX-form

vslo VRT,VRA,VRB

shb I (VRB)121:124
VRT I (VRA) << ( shb || 0b000 )

The contents of VRA are shifted left by the number of
bytes specified in (VRB)121:124. 

– Bytes shifted out of byte 0 are lost. 

– Zeros are supplied to the vacated bytes on the
right.  

The result is placed into VRT.

Special Registers Altered:
None

A pair of these instructions, specifying the same
shift count register, can be used to shift the
contents of a Vector Register left or right by the
number of bits (0-127) specified in the shift count
register.  The following example shifts the contents
of register Vx left by the number of bits specified in
register Vy and places the result into register Vz.

vslo     Vz,Vx,Vy
vsl      Vz,Vz,Vy

Programming Note

4 VRT VRA VRB 452
0 6 11 16 21 31 4 VRT VRA VRB / SHB 44

0 6 11 16 21 22 26 31

4 VRT VRA VRB 1036
0 6 11 16 21 31
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Vector Shift Right VX-form

vsr VRT,VRA,VRB

sh I (VRB)125:127
t I 1
do i=0 to 127 by 8
   t I t & ((VRB)i+5:i+7=sh)
end
if t=1 then VRT I (VRA) >>ui sh
else        VRT I undefined

The contents of VRA are shifted right by the number of
bits specified in (VRB)125:127. 

– Bits shifted out of bit 127 are lost.

– Zeros are supplied to the vacated bits on the left. 

The result is place into VRT, except if, for any byte
element in register VRB, the low-order 3 bits are not
equal to the shift amount, then VRT is undefined.

Special Registers Altered:
None

  

Vector Shift Right by Octet VX-form

vsro VRT,VRA,VRB

shb I (VRB)121:124
VRT I (VRA) >>ui ( shb || 0b000 )

The contents of VRA are shifted right by the number of
bytes specified in (VRB)121:124. 

– Bytes shifted out of byte 15 are lost.

– Zeros are supplied to the vacated bytes on the
left.  

The result is placed into VRT.

Special Registers Altered:
None

4 VRT VRA VRB 708
0 6 11 16 21 31

A double-register shift by a dynamically specified
number of bits (0-127) can be performed in six
instructions. The following example shifts Vw || Vx
left by the number of bits specified in Vy and
places the high-order 128 bits of the result into Vz.

vslo      Vt1,Vw,Vy    #shift high-order reg left
vsl       Vt1,Vt1,Vy
vsububm   Vt3,V0,Vy    #adjust shift count ((V0)=0)
vsro      Vt2,Vx,Vt3   #shift low-order reg right
vsr       Vt2,Vt2,Vt3
vor       Vz,Vt1,Vt2   #merge to get final result

Programming Note

4 VRT VRA VRB 1100
0 6 11 16 21 31
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6.9 Vector Integer Instructions

6.9.1 Vector Integer Arithmetic Instructions

6.9.1.1 Vector Integer Add Instructions

Vector Add and Write Carry-Out Unsigned 
Word VX-form

vaddcuw VRT,VRA,VRB

do i=0 to 127 by 32
aop  I EXTZ((VRA)i:i+31)
bop  I EXTZ((VRB)i:i+31)
VRTi:i+31 I Chop( ( aop +int bop ) >>ui 32,1)

end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRA is added
to unsigned-integer word element i in VRB. The
carry out of the 32-bit sum is zero-extended to 32
bits and placed into word element i of VRT.

Special Registers Altered:
None

Vector Add Signed Byte Saturate VX-form

vaddsbs VRT,VRA,VRB

do i=0 to 127 by 8
aop I EXTS(VRAi:i+7)
bop I EXTS(VRBi:i+7)
VRTi:i+7 I Clamp( aop +int bop, -128, 127 )24:31

end

For each integer value i from 0 to 15, do the following.
Signed-integer byte element i in VRA is added to
signed-integer byte element i in VRB. 

– If the sum is greater than 127 the result
saturates to 127.

– If the sum is less than -128 the result
saturates to -128. 

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
SAT

Vector Add Signed Halfword Saturate 
VX-form

vaddshs VRT,VRA,VRB

do i=0 to 127 by 16
   aop I EXTS((VRA)i:i+15)
   bop I EXTS((VRB)i:i+15)
   VRTi:i+15 I Clamp(aop +int bop, -2

15, 215-1)16:31
end

For each integer value i from 0 to 7, do the following.
Signed-integer halfword element i in VRA is added
to signed-integer halfword element i in VRB.

– If the sum is greater than 215-1 the result
saturates to 215-1

– If the sum is less than -215 the result
saturates to -215. 

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 384
0 6 11 16 21 31

4 VRT VRA VRB 768
0 6 11 16 21 31

4 VRT VRA VRB 832
0 6 11 16 21 31
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Vector Add Signed Word Saturate 
VX-form

vaddsws VRT,VRA,VRB

do i=0 to 127 by 32
   aop I EXTS((VRA)i:i+31)
   bop I EXTS((VRB)i:i+31)
   VRTi:i+31 I Clamp(aop +int bop, -2

31, 231-1)
end

For each integer value i from 0 to 3, do the following.
Signed-integer word element i in VRA is added to
signed-integer word element i in VRB.

– If the sum is greater than 231-1 the result
saturates to 231-1.

– If the sum is less than -231 the result
saturates to -231.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

Vector Add Unsigned Byte Modulo 
VX-form

vaddubm VRT,VRA,VRB

do i=0 to 127 by 8
aop I EXTZ((VRA)i:i+7)
bop I EXTZ((VRB)i:i+7)
VRTi:i+7 I Chop( aop +int bop, 8 )

end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is added
to unsigned-integer byte element i in VRB.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
None

  

Vector Add Unsigned Doubleword Modulo 
VX-form

vaddudm VRT,VRA,VRB

do i = 0 to 1
   aop ← VR[VRA].dword[i]
   bop ← VR[VRB].dword[i]
   VR[VRT].dword[i] ← Chop( aop +int bop, 64 )
end

For each integer value i from 0 to 1, do the following.
The integer value in doubleword element i of
VR[VRB] is added to the integer value in
doubleword element i of VR[VRA].

The low-order 64 bits of the result are placed into
doubleword element i of VR[VRT].

Special Registers Altered:
None

  

4 VRT VRA VRB 896
0 6 11 16 21 31

4 VRT VRA VRB 0
0 6 11 16 21 31

vaddubm can be used for unsigned or
signed-integers.

Programming Note

4 VRT VRA VRB 192
0 6 11 16 21 31

vaddudm can be used for signed or unsigned inte-
gers.

Programming Note
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Vector Add Unsigned Halfword Modulo 
VX-form

vadduhm VRT,VRA,VRB

do i=0 to 127 by 16
aop  I EXTZ((VRA)i:i+15)
bop  I EXTZ((VRB)i:i+15)
VRTi:i+15 I Chop( aop +int bop, 16 )

end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
added to unsigned-integer halfword element i in
VRB.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
None

  

Vector Add Unsigned Word Modulo 
VX-form

vadduwm VRT,VRA,VRB

do i=0 to 127 by 32
aop  I EXTZ((VRA)i:i+31)
bop  I EXTZ((VRB)i:i+31)
temp I aop +int bop
VRTi:i+31 I Chop( aop +int bop, 32 )

end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRA is added
to unsigned-integer word element i in VRB.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
None

  

4 VRT VRA VRB 64
0 6 11 16 21 31

vadduhm can be used for unsigned or
signed-integers.

Programming Note

4 VRT VRA VRB 128
0 6 11 16 21 31

vadduwm can be used for unsigned or
signed-integers.

Programming Note
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Vector Add Unsigned Byte Saturate 
VX-form

vaddubs VRT,VRA,VRB

do i=0 to 127 by 8
aop I EXTZ((VRA)i:i+7)
bop I EXTZ((VRB)i:i+7)
VRTi:i+7 I Clamp( aop +int bop, 0, 255 )24:31

end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is added
to unsigned-integer byte element i in VRB.

– If the sum is greater than 255 the result
saturates to 255.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
SAT

Vector Add Unsigned Halfword Saturate 
VX-form

vadduhs VRT,VRA,VRB

do i=0 to 127 by 16
aop I EXTZ((VRA)i:i+15)
bop I EXTZ((VRB)i:i+15)
VRTi:i+15 I Clamp(aop +int bop, 0, 2

16-1)16:31
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
added to unsigned-integer halfword element i in
VRB.

– If the sum is greater than 216-1 the result
saturates to 216-1.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

Vector Add Unsigned Word Saturate 
VX-form

vadduws VRT,VRA,VRB

do i=0 to 127 by 32
   aop  I EXTZ((VRA)i:i+31)
   bop  I EXTZ((VRB)i:i+31)
   VRTi:i+31 I Clamp(aop +int bop, 0, 2

32-1)
end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRA is added
to unsigned-integer word element i in VRB.

– If the sum is greater than 232-1 the result
saturates to 232-1.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 512
0 6 11 16 21 31

4 VRT VRA VRB 576
0 6 11 16 21 31

4 VRT VRA VRB 640
0 6 11 16 21 31
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Vector Add Unsigned Quadword Modulo 
VX-form

vadduqm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← VR[VRA]
src2 ← VR[VRB]
sum  ← EXTZ(src1) + EXTZ(src2)

VR[VRT] ← Chop(sum, 128)

Let src1 be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].

src1 and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of src1 and src2 are
placed into VR[VRT].

Special Registers Altered:
None

Vector Add Extended Unsigned 
Quadword Modulo VA-form

vaddeuqm VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

src1 ← VR[VRA]
src2 ← VR[VRB]
cin  ← VR[VRC].bit[127]
sum  ← EXTZ(src1) + EXTZ(src2) + EXTZ(cin)

VR[VRT] ← Chop(sum, 128)

Let src1 be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].
Let cin be the integer value in bit 127 of VR[VRC].

src1 and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of src1, src2, and cin
are placed into VR[VRT].

Special Registers Altered:
None

Vector Add & write Carry Unsigned 
Quadword VX-form

vaddcuq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← VR[VRA]
src2 ← VR[VRB]
sum  ← EXTZ(src1) + EXTZ(src2)

VR[VRT] ← Chop( EXTZ( Chop(sum>>128, 1) ), 128 )

Let src1 be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].

src1 and src2 can be signed or unsigned integers.

The carry out of the sum of src1 and src2 is placed
into VR[VRT].

Special Registers Altered:
None

Vector Add Extended & write Carry 
Unsigned Quadword VA-form

vaddecuq VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

src1 ← VR[VRA]
src2 ← VR[VRB]
cin  ← VR[VRC].bit[127]
sum  ← EXTZ(src1) + EXTZ(src2) + EXTZ(cin)

VR[VRT] ← Chop( EXTZ( Chop(sum >> 128, 1) ), 128 )

Let src1 be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].
Let cin be the integer value in bit 127 of VR[VRC].

src1 and src2 can be signed or unsigned integers.

The carry out of the sum of src1, src2, and cin  are
placed into VR[VRT].

Special Registers Altered:
None

4 VRT VRA VRB 256
0 6 11 16 21 31

4 VRT VRA VRB VRC 60
0 6 11 16 21 26 31

4 VRT VRA VRB 320
0 6 11 16 21 31

4 VRT VRA VRB VRC 61
0 6 11 16 21 26 31
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The Vector Add Unsigned Quadword instructions support efficient wide-integer addition. The following code
sequence can be used to implement a 512-bit signed or unsigned add operation.

vadduqm vS3,vA3,vB3 # bits 384:511 of sum
vaddcuq vC3,vA3,vB3 # carry out of bit 384 of sum
vaddeuqm vS2,vA2,vB2,vC3 # bits 256:383 of sum
vaddecuq vC2,vA2,vB2,vC3 # carry out of bit 256 of sum
vaddeuqm vS1,vA1,vB1,vC2 # bits 128:255 of sum
vaddecuq vC1,vA1,vB1,vC2 # carry out of bit 128 of sum
vaddeuqm vS0,vA0,vB0,vC1 # bits 0:127 of sum

Programming Note
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6.9.1.2 Vector Integer Subtract Instructions

Vector Subtract and Write Carry-Out 
Unsigned Word VX-form

vsubcuw VRT,VRA,VRB

do i=0 to 127 by 32
   aop  I EXTZ((VRA)i:i+31)
   bop  I EXTZ((VRB)i:i+31)
   temp I (aop +int ¬bop +int 1) >> 32
   VRTi:i+31 I temp & 0x0000_0001
end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRB is
subtracted from unsigned-integer word element i
in VRA. The complement of the borrow out of bit 0
of the 32-bit difference is zero-extended to 32 bits
and placed into word element i of VRT.

Special Registers Altered:
None

Vector Subtract Signed Byte Saturate 
VX-form

vsubsbs VRT,VRA,VRB

do i=0 to 127 by 8
   aop I EXTS((VRA)i:i+7)
   bop I EXTS((VRB)i:i+7)
   VRTi:i+7 I Clamp(aop +int ¬bop +int 1, -128, 127)24:31
end

For each integer value i from 0 to 15, do the following.
Signed-integer byte element i in VRB is subtracted
from signed-integer byte element i in VRA.

– If the intermediate result is greater than 127
the result saturates to 127.

– If the intermediate result is less than -128 the
result saturates to -128.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
SAT

Vector Subtract Signed Halfword Saturate 
VX-form

vsubshs VRT,VRA,VRB

do i=0 to 127 by 16
   aop I EXTS((VRA)i:i+15)
   bop I EXTS((VRB)i:i+15)
   temp I aop +int ¬bop +int 1
   VRTi:i+15 I Clamp(temp, -215, 215-1)16:31
end

For each integer value i from 0 to 7, do the following.
Signed-integer halfword element i in VRB is
subtracted from signed-integer halfword element i
in VRA.

– If the intermediate result is greater than 215-1
the result saturates to 215-1.

– If the intermediate result is less than -215 the
result saturates to -215.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 1408
0 6 11 16 21 31

4 VRT VRA VRB 1792
0 6 11 16 21 31

4 VRT VRA VRB 1856
0 6 11 16 21 31
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Vector Subtract Signed Word Saturate 
VX-form

vsubsws VRT,VRA,VRB

do i=0 to 127 by 32
   aop I EXTS((VRA)i:i+31)
   bop I EXTS((VRB)i:i+31)
   VRTi:i+31 I Clamp(aop +int ¬bop +int 1,-2

31,231-1)
end

For each integer value i from 0 to 3, do the following.
Signed-integer word element i in VRB is
subtracted from signed-integer word element i in
VRA.

– If the intermediate result is greater than 231-1
the result saturates to 231-1.

– If the intermediate result is less than -231 the
result saturates to -231.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 1920
0 6 11 16 21 31
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Vector Subtract Unsigned Byte Modulo 
VX-form

vsububm VRT,VRA,VRB

do i=0 to 127 by 8
   aop I EXTZ((VRA)i:i+7)
   bop I EXTZ((VRB)i:i+7)
   VRTi:i+7 I Chop( aop +int ¬bop +int 1, 8 )
end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRB is
subtracted from unsigned-integer byte element i in
VRA. The low-order 8 bits of the result are placed
into byte element i of VRT.

Special Registers Altered:
None

Vector Subtract Unsigned Doubleword 
Modulo VX-form

vsubudm VRT,VRA,VRB

do i = 0 to 1
   aop ← VR[VRA].dword[i]
   bop ← VR[VRB].dword[i]
   VR[VRT].dword[i] ← Chop( aop +int ~bop +int 1, 64 )
end

For each integer value i from 0 to 1, do the following.
The integer value in doubleword element i of
VR[VRB] is subtracted from the integer value in
doubleword element i of VR[VRA].

The low-order 64 bits of the result are placed into
doubleword element i of VR[VRT].

Special Registers Altered:
None

  

Vector Subtract Unsigned Halfword 
Modulo VX-form

vsubuhm VRT,VRA,VRB

do i=0 to 127 by 16
   aop  I EXTZ((VRA)i:i+15)
   bop  I EXTZ((VRB)i:i+15)
   VRTi:i+16 I Chop( aop +int ¬bop +int 1, 16 )
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRB is
subtracted from unsigned-integer halfword
element i in VRA. The low-order 16 bits of the
result are placed into halfword element i of VRT.

Special Registers Altered:
None

Vector Subtract Unsigned Word Modulo 
VX-form

vsubuwm VRT,VRA,VRB

do i=0 to 127 by 32
   aop  I EXTZ((VRA)i:i+31)
   bop  I EXTZ((VRB)i:i+31)
   VRTi:i+31 I Chop( aop +int ¬bop +int 1, 32 )
end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRB is
subtracted from unsigned-integer word element i
in VRA. The low-order 32 bits of the result are
placed into word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 1024
0 6 11 16 21 31

4 VRT VRA VRB 1216
0 6 11 16 21 31

vsubudm can be used for signed or unsigned inte-
gers.

Programming Note

4 VRT VRA VRB 1088
0 6 11 16 21 31

4 VRT VRA VRB 1152
0 6 11 16 21 31
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Vector Subtract Unsigned Byte Saturate 
VX-form
vsububs VRT,VRA,VRB

do i=0 to 127 by 8
aop I EXTZ((VRA)i:i+7)
bop I EXTZ((VRB)i:i+7)
VRTi:i+7 I Clamp(aop +int ¬bop +int 1, 0, 255)24:31

end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRB is
subtracted from unsigned-integer byte element i in
VRA.  If the intermediate result is less than 0 the
result saturates to 0. The low-order 8 bits of the
result are placed into byte element i of VRT.

Special Registers Altered:
SAT

Vector Subtract Unsigned Halfword 
Saturate VX-form

vsubuhs VRT,VRA,VRB

do i=0 to 127 by 16
   aop  I EXTZ((VRA)i:i+15)
   bop  I EXTZ((VRB)i:i+15)
   VRTi:i+15 I Clamp(aop +int ¬bop +int 1,0,2

16-1)16:31
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRB is
subtracted from unsigned-integer halfword
element i in VRA.  If the intermediate result is less
than 0 the result saturates to 0. The low-order 16
bits of the result are placed into halfword element i
of VRT.

Special Registers Altered:
SAT

Vector Subtract Unsigned Word Saturate 
VX-form

vsubuws VRT,VRA,VRB

do i=0 to 127 by 32
   aop I EXTZ((VRA)i:i+31)
   bop I EXTZ((VRB)i:i+31)
   VRTi:i+31 I Clamp(aop +int ¬bop +int 1, 0, 2

32-1)
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer word element i in VRB is
subtracted from unsigned-integer word element i
in VRA.

– If the intermediate result is less than 0 the
result saturates to 0.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 1536
0 6 11 16 21 31

4 VRT VRA VRB 1600
0 6 11 16 21 31

4 VRT VRA VRB 1664
0 6 11 16 21 31
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Vector Subtract Unsigned Quadword 
Modulo VX-form

vsubuqm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()
src1 ← VR[VRA]
src2 ← VR[VRB]
sum  ← EXTZ(src1) + EXTZ(¬src2) + EXTZ(1)
VR[VRT] ← Chop(sum, 128)

Let src1 be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].

src1 and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of src1, the one’s
complement of src2, and the value 1 are placed into
VR[VRT].

Special Registers Altered:
None

Vector Subtract Extended Unsigned 
Quadword Modulo VA-form

vsubeuqm VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()
src1 ← VR[VRA]
src2 ← VR[VRB]
cin  ← VR[VRC].bit[127]
sum  ← EXTZ(src1) + EXTZ(¬src2) + EXTZ(cin)
VR[VRT] ← Chop(sum, 128)

Let src1 be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].
Let cin be the integer value in bit 127 of VR[VRC].

src1 and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of src1, the one’s
complement of src2, and cin are placed into VR[VRT].

Special Registers Altered:
None

Vector Subtract & write Carry Unsigned 
Quadword VX-form

vsubcuq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()
src1 ←  VR[VRA]
src2 ← VR[VRB]
sum  ← EXTZ(src1) + EXTZ(¬src2) + EXTZ(1)
VR[VRT] ← Chop( EXTZ( Chop(sum >> 128, 1) ), 128 )

Let src1 be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].

src1 and src2 can be signed or unsigned integers.

The carry out of the sum of src1, the one’s
complement of src2, and the value 1 is placed into
VR[VRT].

Special Registers Altered:
None

Vector Subtract Extended & write Carry 
Unsigned Quadword VA-form

vsubecuq VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()
src1 ← VR[VRA]
src2 ← VR[VRB]
cin  ← VR[VRC].bit[127]
sum  ← EXTZ(src1) + EXTZ(¬src2) + EXTZ(cin)
VR[VRT] ← Chop( EXTZ( Chop(sum >> 128, 1) ), 128 )

Let src1 be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].
Let cin be the integer value in bit 127 of VR[VRC].

src1 and src2 can be signed or unsigned integers.

The carry out of the sum of src1, the one’s
complement of src2, and cin are placed into VR[VRT].

Special Registers Altered:
None

4 VRT VRA VRB 1280
0 6 11 16 21 31

4 VRT VRA VRB VRC 62
0 6 11 16 21 26 31

4 VRT VRA VRB 1344
0 6 11 16 21 31

4 VRT VRA VRB VRC 63
0 6 11 16 21 26 31
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The Vector Subtract Unsigned Quadword instructions support efficient wide-integer subtraction. The following
code sequence can be used to implement a 512-bit signed or unsigned subtract operation.

vsubuqm vS3,vA3,vB3 # bits 384:511 of difference
vsubcuq vC3,vA3,vB3 # carry out of bit 384 of difference
vsubeuqm vS2,vA2,vB2,vC3 # bits 256:383 of difference
vsubecuq vC2,vA2,vB2,vC3 # carry out of bit 256 of difference
vsubeuqm vS1,vA1,vB1,vC2 # bits 128:255 of difference
vsubecuq vC1,vA1,vB1,vC2 # carry out of bit 128 of difference
vsubeuqm vS0,vA0,vB0,vC1 # bits 0:127 of difference

Programming Note
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6.9.1.3 Vector Integer Multiply Instructions

Vector Multiply Even Signed Byte VX-form

vmulesb VRT,VRA,VRB

do i=0 to 127 by 16
   prod I EXTS((VRA)i:i+7) ×si EXTS((VRB)i:i+7)
   VRTi:i+15 I Chop( prod, 16 )
end

For each integer value i from 0 to 7, do the following.
Signed-integer byte element i×2 in VRA is
multiplied by signed-integer byte element i×2 in
VRB. The low-order 16 bits of the product are
placed into halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Even Unsigned Byte 
VX-form

vmuleub VRT,VRA,VRB

do i=0 to 127 by 16
   prod I EXTZ((VRA)i:i+7) ×ui EXTZ((VRB)i:i+7)
   VRTi:i+15 I Chop(prod, 16)
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer byte element i×2 in VRA is
multiplied by unsigned-integer byte element i×2 in
VRB. The low-order 16 bits of the product are
placed into halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Odd Signed Byte VX-form

vmulosb VRT,VRA,VRB

do i=0 to 127 by 16
   prod I EXTS((VRA)i+8:i+15) ×si EXTS((VRB)i+8:i+15)
   VRTi:i+15 I Chop( prod, 16 )
end

For each integer value i from 0 to 7, do the following.
Signed-integer byte element i×2+1 in VRA is
multiplied by signed-integer byte element i×2+1 in
VRB. The low-order 16 bits of the product are
placed into halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Odd Unsigned Byte 
VX-form

vmuloub VRT,VRA,VRB

do i=0 to 127 by 16
   prod I EXTZ((VRA)i+8:i+15) ×ui EXTZ((VRB)i+8:i+15)
   VRTi:i+15 I Chop( prod, 16 )
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer byte element i×2+1 in VRA is
multiplied by unsigned-integer byte element i×2+1
in VRB. The low-order 16 bits of the product are
placed into halfword element i VRT.

Special Registers Altered:
None

4 VRT VRA VRB 776
0 6 11 16 21 31

4 VRT VRA VRB 520
0 6 11 16 21 31

4 VRT VRA VRB 264
0 6 11 16 21 31

4 VRT VRA VRB 8
0 6 11 16 21 31
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Vector Multiply Even Signed Halfword 
VX-form

vmulesh VRT,VRA,VRB

do i=0 to 127 by 32
   prod I EXTS((VRA)i:i+15) ×si EXTS((VRB)i:i+15)
   VRTi:i+31 I Chop( prod, 32 )
end

For each integer value i from 0 to 3, do the following.
Signed-integer halfword element i×2 in VRA is
multiplied by signed-integer halfword element i×2
in VRB. The low-order 32 bits of the product are
placed into halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Even Unsigned Halfword 
VX-form

vmuleuh VRT,VRA,VRB

do i=0 to 127 by 32
   prod I EXTZ((VRA)i:i+15) ×ui EXTZ((VRB)i:i+15)
   VRTi:i+31 I Chop(prod, 32)
end

For each integer value i from 0 to 3, do the following.
Unsigned-integer halfword element i×2 in VRA is
multiplied by unsigned-integer halfword element
i×2 in VRB. The low-order 32 bits of the product
are placed into halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Odd Signed Halfword 
VX-form

vmulosh VRT,VRA,VRB

do i=0 to 127 by 32
   prod I EXTS((VRA)i+16:i+31) ×si EXTS((VRB)i+16:i+31)
   VRTi:i+31 I Chop( prod, 32 )
end

For each integer value i from 0 to 3, do the following.
Signed-integer halfword element i×2+1 in VRA is
multiplied by signed-integer halfword element
i×2+1 in VRB. The low-order 32 bits of the product
are placed into halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Odd Unsigned Halfword 
VX-form

vmulouh VRT,VRA,VRB

do i=0 to 127 by 32
   prod I EXTZ((VRA)i+16:i+31)×ui EXTZ((VRB)i+16:i+31)
   VRTi:i+31 I Chop( prod, 32 )
end

For each integer value i from 0 to 3, do the following.
Unsigned-integer halfword element i×2+1 in VRA
is multiplied by unsigned-integer halfword element
i×2+1 in VRB. The low-order 32 bits of the product
are placed into halfword element i VRT.

Special Registers Altered:
None

4 VRT VRA VRB 840
0 6 11 16 21 31

4 VRT VRA VRB 584
0 6 11 16 21 31

4 VRT VRA VRB 328
0 6 11 16 21 31

4 VRT VRA VRB 72
0 6 11 16 21 31
Chapter 6. Vector Facility [Category: Vector] 263



Version 2.07 B
Vector Multiply Even Signed Word 
VX-form

vmulesw VRT,VRA,VRB

do i = 0 to 1
   src1 ← VR[VRA].word[2×i]

   src2 ← VR[VRB].word[2×i]

   VR[VRT].dword[i] ← src1 ×si src2
end

For each integer value i from 0 to 1, do the following.
The signed integer in word element 2×i of VR[VRA]
is multiplied by the signed integer in word element
2×i of VR[VRB].

The 64-bit product is placed into doubleword
element i of VR[VRT].

Special Registers Altered:
None

Vector Multiply Even Unsigned Word 
VX-form

vmuleuw VRT,VRA,VRB

do i = 0 to 1

   src1 ← VR[VRA].word[2×i]

   src2 ← VR[VRB].word[2×i]
   VR[VRT].dword[i] ← src1 ×ui src2

end

For each integer value i from 0 to 1, do the following.
The unsigned integer in word element 2×i of
VR[VRA] is multiplied by the unsigned integer in
word element 2×i of VR[VRB].

The 64-bit product is placed into doubleword
element i of VR[VRT].

Special Registers Altered:
None

Vector Multiply Odd Signed Word
VX-form

vmulosw VRT,VRA,VRB

do i = 0 to 1
   src1 ← VR[VRA].word[2×i+1]

   src2 ← VR[VRB].word[2×i+1]

   VR[VRT].dword[i] ← src1 ×si src2
end

For each integer value i from 0 to 1, do the following.
The signed integer in word element 2×i+1 of
VR[VRA] is multiplied by the signed integer in word
element 2×i+1 of VR[VRB].

The 64-bit product is placed into doubleword
element i of VR[VRT].

Special Registers Altered:
None

Vector Multiply Odd Unsigned Word 
VX-form

vmulouw VRT,VRA,VRB

do i = 0 to 1

   src1 ← VR[VRA].word[2×i+1]

   src2 ← VR[VRB].word[2×i+1]
   VR[VRT].dword[i] ← src1 ×ui src2

end

For each integer value i from 0 to 1, do the following.
The unsigned integer in word element 2×i+1 of
VR[VRA] is multiplied by the unsigned integer in
word element 2×i+1 of VR[VRB].

The 64-bit product is placed into doubleword
element i of VR[VRT].

Special Registers Altered:
None

4 VRT VRA VRB 904
0 6 11 16 21 31

4 VRT VRA VRB 648
0 6 11 16 21 31

4 VRT VRA VRB 392
0 6 11 16 21 31

4 VRT VRA VRB 136
0 6 11 16 21 31
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Vector Multiply Unsigned Word Modulo 
VX-form

vmuluwm VRT,VRA,VRB

do i = 0 to 3
   src1 ← VR[VRA].word[i]

   src2 ← VR[VRB].word[i]

   VR[VRT].word[i] ← Chop( src1 ×ui src2, 32 )
end

The integer in word element i of VR[VRA] is multiplied
by the integer in word element i of VR[VRB].

The least-significant 32 bits of the product are placed
into word element i of VR[VRT].

Special Registers Altered:
None

 

4 VRT VRA VRB 137
0 6 11 16 21 31

vmuluwm can be used for unsigned or signed
integers.

Programming Note
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6.9.1.4 Vector Integer Multiply-Add/Sum Instructions

Vector Multiply-High-Add Signed 
Halfword Saturate VA-form

vmhaddshs VRT,VRA,VRB,VRC

do i=0 to 127 by 16
   prod I EXTS((VRA)i:i+15) ×si EXTS((VRB)i:i+15)
   sum  I (prod >>si 15) +int EXTS((VRC)i:i+15) 
   VRTi:i+15 I Clamp(sum, -215, 215-1)16:31
end

For each vector element i from 0 to 7, do the following.
Signed-integer halfword element i in VRA is
multiplied by signed-integer halfword element i in
VRB, producing a 32-bit signed-integer product.
Bits 0:16 of the product are added to
signed-integer halfword element i in VRC.

– If the intermediate result is greater than 215-1
the result saturates to 215-1.

– If the intermediate result is less than -215 the
result saturates to -215.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

Vector Multiply-High-Round-Add Signed  
Halfword Saturate VA-form

vmhraddshs VRT,VRA,VRB,VRC

do i=0 to 127 by 16
   temp I EXTS((VRC)i:i+15)
   prod I EXTS((VRA)i:i+15) ×si EXTS((VRB)i:i+15)
   sum  I ((prod +int 0x0000_4000) >>si 15) +int temp
   VRTi:i+15 I Clamp(sum, -215, 215-1)16:31
end

For each vector element i from 0 to 7, do the following.
Signed-integer halfword element i in VRA is
multiplied by signed-integer halfword element i in
VRB, producing a 32-bit signed-integer product.
The value 0x0000_4000 is added to the product,
producing a 32-bit signed-integer sum. Bits 0:16 of
the sum are added to signed-integer halfword
element i in VRC.

– If the intermediate result is greater than 215-1
the result saturates to 215-1.

– If the intermediate result is less than -215 the
result saturates to -215.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB VRC 32
0 6 11 16 21 26 31

4 VRT VRA VRB VRC 33
0 6 11 16 21 26 31
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Vector Multiply-Low-Add Unsigned 
Halfword Modulo VA-form

vmladduhm VRT,VRA,VRB,VRC

do i=0 to 127 by 16
prod I EXTZ((VRA)i:i+15) ×ui EXTZ((VRB)i:i+15)
sum  I Chop( prod, 16 ) +int (VRC)i:i+15
VRTi:i+15 I Chop( sum, 16 )

end

For each integer value i from 0 to 3, do the following.
Unsigned-integer halfword element i in VRA is
multiplied by unsigned-integer halfword element i
in VRB, producing a 32-bit unsigned-integer
product. The low-order 16 bits of the product are
added to unsigned-integer halfword element i in
VRC.

The low-order 16 bits of the sum are placed into
halfword element i of VRT.

Special Registers Altered:
None

  

Vector Multiply-Sum Unsigned Byte
Modulo VA-form

vmsumubm VRT,VRA,VRB,VRC

do i=0 to 127 by 32
   temp I EXTZ((VRC)i:i+31)
   do j=0 to 31 by 8
      prod I EXTZ((VRA)i+j:i+j+7) ×ui EXTZ((VRB)i+j:i+j+7)
      temp I temp +int prod
   end
   VRTi:i+31 I Chop( temp, 32 )
end

For each word element in VRT the following operations
are performed, in the order shown.

– Each of the four unsigned-integer byte elements
contained in the corresponding word element of
VRA is multiplied by the corresponding
unsigned-integer byte element in VRB, producing
an unsigned-integer halfword product.

– The sum of these four unsigned-integer halfword
products is added to the unsigned-integer word
element in VRC.

– The unsigned-integer word result is placed into
the corresponding word element of VRT.

Special Registers Altered:
None

4 VRT VRA VRB VRC 34
0 6 11 16 21 26 31

vmladduhm can be used for unsigned or
signed-integers.

Programming Note

4 VRT VRA VRB VRC 36
0 6 11 16 21 26 31
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Vector Multiply-Sum Mixed Byte Modulo 
VA-form

vmsummbm VRT,VRA,VRB,VRC

do i=0 to 127 by 32
   temp I (VRC)i:i+31
   do j=0 to 31 by 8
      prod0:15 I (VRA)i+j:i+j+7 ×sui (VRB)i+j:i+j+7
      temp    I temp +int EXTS(prod)
   end
   VRTi:i+31 I temp
end

For each word element in VRT the following operations
are performed, in the order shown.

– Each of the four signed-integer byte elements
contained in the corresponding word element of
VRA is multiplied by the corresponding
unsigned-integer byte element in VRB, producing
a signed-integer product.

– The sum of these four signed-integer halfword
products is added to the signed-integer word
element in VRC.

– The signed-integer result is placed into the
corresponding word element of VRT.

Special Registers Altered:
None

Vector Multiply-Sum Signed Halfword
Modulo VA-form

vmsumshm VRT,VRA,VRB,VRC

do i=0 to 127 by 32
   temp I (VRC)i:i+31
   do j=0 to 31 by 16
      prod0:31 I (VRA)i+j:i+j+15 ×si (VRB)i+j:i+j+15
      temp     I temp +int prod
   end
   VRTi:i+31 I temp
end

For each word element in VRT the following operations
are performed, in the order shown.

– Each of the two signed-integer halfword elements
contained in the corresponding word element of
VRA is multiplied by the corresponding
signed-integer halfword element in VRB,
producing a signed-integer product.

– The sum of these two signed-integer word
products is added to the signed-integer word
element in VRC.

– The signed-integer word result is placed into the
corresponding word element of VRT.

Special Registers Altered:
None

4 VRT VRA VRB VRC 37
0 6 11 16 21 26 31

4 VRT VRA VRB VRC 40
0 6 11 16 21 26 31
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Vector Multiply-Sum Signed Halfword
Saturate VA-form

vmsumshs VRT,VRA,VRB,VRC

do i=0 to 127 by 32
   temp I EXTS((VRC)i:i+31)
   do j=0 to 31 by 16
      srcA I EXTS((VRA)i+j:i+j+15)
      srcB I EXTS((VRB)i+j:i+j+15)
      prod I srcA ×si srcB
      temp I temp +int prod
   end
   VRTi:i+31 I Clamp(temp, -231, 231-1)
end

For each word element in VRT the following operations
are performed, in the order shown.

– Each of the two signed-integer halfword elements
contained in the corresponding word element of
VRA is multiplied by the corresponding
signed-integer halfword element in VRB,
producing a signed-integer product.

– The sum of these two signed-integer word
products is added to the signed-integer word
element in VRC.

– If the intermediate result is greater than 231-1 the
result saturates to 231-1 and if it is less than -231 it
saturates to -231.

– The result is placed into the corresponding word
element of VRT.

Special Registers Altered:
SAT

Vector Multiply-Sum Unsigned Halfword 
Modulo VA-form

vmsumuhm VRT,VRA,VRB,VRC

do i=0 to 127 by 32
   temp I EXTZ((VRC)i:i+31)
   do j=0 to 31 by 16
      srcA I EXTZ((VRA)i+j:i+j+15)
      srcB I EXTZ((VRB)i+j:i+j+15)
      prod I srcA ×ui srcB
      temp I temp +int prod
   end
   VRTi:i+31 I Chop( temp, 32 )
end

For each word element in VRT the following operations
are performed, in the order shown.

– Each of the two unsigned-integer halfword
elements contained in the corresponding word
element of VRA is multiplied by the corresponding
unsigned-integer halfword element in VRB,
producing an unsigned-integer word product.

– The sum of these two unsigned-integer word
products is added to the unsigned-integer word
element in VRC.

– The unsigned-integer result is placed into the
corresponding word element of VRT.

Special Registers Altered:
None

4 VRT VRA VRB VRC 41
0 6 11 16 21 26 31

4 VRT VRA VRB VRC 38
0 6 11 16 21 26 31
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Vector Multiply-Sum Unsigned Halfword 
Saturate VA-form

vmsumuhs VRT,VRA,VRB,VRC

do i=0 to 127 by 32
   temp I EXTZ((VRC)i:i+31)
   do j=0 to 31 by 16
      src1 I EXTZ((VRA)i+j:i+j+15)
      src2 I EXTZ((VRB)i+j:i+j+15)
      prod I src1 ×ui src2
   end
   temp I temp +int prod
   VRTi:i+31 I Clamp(temp, 0, 232-1)
end

For each word element in VRT the following operations
are performed, in the order shown.

– Each of the two unsigned-integer halfword
elements contained in the corresponding word
element of VRA is multiplied by the corresponding
unsigned-integer halfword element in VRB,
producing an unsigned-integer product.

– The sum of these two unsigned-integer word
products is added to the unsigned-integer word
element in VRC.

– If the intermediate result is greater than 232-1 the
result saturates to 232-1.

– The result is placed into the corresponding word
element of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB VRC 39
0 6 11 16 21 26 31
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6.9.1.5 Vector Integer Sum-Across Instructions

Vector Sum across Signed Word Saturate 
VX-form

vsumsws VRT,VRA,VRB

temp I EXTS((VRB)96:127)
do i=0 to 127 by 32
   temp I temp +int EXTS((VRA)i:i+31)
end
VRT0:31   I 0x0000_0000
VRT32:63  I 0x0000_0000
VRT64:95  I 0x0000_0000
VRT96:127 I Clamp(temp, -231, 231-1)

The sum of the four signed-integer word elements in
VRA is added to signed-integer word element 3 of
VRB.

– If the intermediate result is greater than 231-1 the
result saturates to 231-1.

– If the intermediate result is less than -231 the
result saturates to -231.

The low-end 32 bits of the result are placed into word
element 3 of VRT.

Word elements 0 to 2 of VRT are set to 0.

Special Registers Altered:
SAT

Vector Sum across Half Signed Word 
Saturate VX-form

vsum2sws VRT,VRA,VRB

do i=0 to 127 by 64
   temp I EXTS((VRB)i+32:i+63)
   do j=0 to 63 by 32
      temp I temp +int EXTS((VRA)i+j:i+j+31)
   end
   VRTi:i+63 I 0x0000_0000 || Clamp(temp, -231, 231-1)
end

Word elements 0 and 2 of VRT are set to 0.

The sum of the signed-integer word elements 0 and 1
in VRA is added to the signed-integer word element in
bits 32:63 of VRB. 

– If the intermediate result is greater than 231-1 the
result saturates to 231-1. 

– If the intermediate result is less than -231 the
result saturates to -231.

The low-order 32 bits of the result are placed into word
element 1 of VRT. 

The sum of signed-integer word elements 2 and 3 in
VRA is added to the signed-integer word element in
bits 96:127 of VRB.

– If the intermediate result is greater than 231-1 the
result saturates to 231-1.

– If the intermediate result is less than -231 the
result saturates to -231.

The low-order 32 bits of the result are placed into word
element 3 of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 1928
0 6 11 16 21 31

4 VRT VRA VRB 1672
0 6 11 16 21 31
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Vector Sum across Quarter Signed Byte 
Saturate VX-form

vsum4sbs VRT,VRA,VRB

do i=0 to 127 by 32
   temp I EXTS((VRB)i:i+31)
   do j=0 to 31 by 8
      temp I temp +int EXTS((VRA)i+j:i+j+7)
   end
   VRTi:i+31 I Clamp(temp, -231, 231-1)
end

For each integer value i from 0 to 3, do the following.
The sum of the four signed-integer byte elements
contained in word element i of VRA is added to
signed-integer word element i in VRB.

– If the intermediate result is greater than 231-1
the result saturates to 231-1.

– If the intermediate result is less than -231 the
result saturates to -231.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

Vector Sum across Quarter Signed 
Halfword Saturate VX-form

vsum4shs VRT,VRA,VRB

do i=0 to 127 by 32
   temp I EXTS((VRB)i:i+31)
   do j=0 to 31 by 16
      temp I temp +int EXTS((VRA)i+j:i+j+15)
   end
   VRTi:i+31 I Clamp(temp, -231, 231-1)
end

For each integer value i from 0 to 3, do the following.
The sum of the two signed-integer halfword
elements contained in word element i of VRA is
added to signed-integer word element i in VRB.

– If the intermediate result is greater than 231-1
the result saturates to 231-1.

– If the intermediate result is less than -231 the
result saturates to -231.

The low-order 32 bits of the result are placed into
the corresponding word element of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 1800
0 6 11 16 21 31

4 VRT VRA VRB 1608
0 6 11 16 21 31
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Vector Sum across Quarter Unsigned 
Byte Saturate VX-form

vsum4ubs VRT,VRA,VRB

do i=0 to 127 by 32
   temp I EXTZ((VRB)i:i+31)
   do j=0 to 31 by 8
      temp I temp +int EXTZ((VRA)i+j:i+j+7)
   end
   VRTi:i+31 I Clamp( temp, 0, 232-1 )
end

For each integer value i from 0 to 3, do the following.
The sum of the four unsigned-integer byte
elements contained in word element i of VRA is
added to unsigned-integer word element i in VRB.

– If the intermediate result is greater than 232-1
it saturates to 232-1.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 1544
0 6 11 16 21 31
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6.9.1.6 Vector Integer Average Instructions

Vector Average Signed Byte VX-form

vavgsb VRT,VRA,VRB

do i=0 to 127 by 8
   aop I EXTS((VRA)i:i+7)
   bop I EXTS((VRB)i:i+7)
   VRTi:i+7 I Chop(( aop +int bop +int 1 ) >> 1, 8)

end

For each integer value i from 0 to 15, do the following.
Signed-integer byte element i in VRA is added to
signed-integer byte element i in VRB. The sum is
incremented by 1 and then shifted right 1 bit.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
None

Vector Average Signed Halfword VX-form

vavgsh VRT,VRA,VRB

do i=0 to 127 by 16
   aop I EXTS((VRA)i:i+15)
   bop I EXTS((VRB)i:i+15)
   VRTi:i+15 I Chop(( aop +int bop +int 1 ) >> 1, 16)
end

For each integer value i from 0 to 7, do the following.
Signed-integer halfword element i in VRA is added
to signed-integer halfword element i in VRB. The
sum is incremented by 1 and then shifted right 1
bit.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
None

Vector Average Signed Word VX-form

vavgsw VRT,VRA,VRB

do i=0 to 127 by 32
   aop I EXTS((VRA)i:i+31)
   bop I EXTS((VRB)i:i+31)
   VRTi:i+31 I Chop(( aop +int bop +int 1 ) >> 1, 32)
end

For each integer value i from 0 to 3, do the following.
Signed-integer word element i in VRA is added to
signed-integer word element i in VRB. The sum is
incremented by 1 and then shifted right 1 bit.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 1282
0 6 11 16 21 31

4 VRT VRA VRB 1346
0 6 11 16 21 31

4 VRT VRA VRB 1410
0 6 11 16 21 31
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Vector Average Unsigned Byte VX-form

vavgub VRT,VRA,VRB

do i=0 to 127 by 8
   aop I EXTZ((VRA)i:i+7)
   bop I EXTZ((VRB)i:i+7 
   VRTi:i+7 I Chop((aop +int bop +int 1) >>ui 1, 8)
end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is added
to unsigned-integer byte element i in VRB. The
sum is incremented by 1 and then shifted right 1
bit.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
None

Vector Average Unsigned Halfword 
VX-form

vavguh VRT,VRA,VRB

do i=0 to 127 by 16
   aop I EXTZ((VRA)i:i+15)
   bop I EXTZ((VRB)i:i+15)
   VRTi:i+15 I Chop((aop +int bop +int 1) >>ui 1, 16)
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
added to unsigned-integer halfword element i in
VRB. The sum is incremented by 1 and then
shifted right 1 bit.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
None

Vector Average Unsigned Word VX-form

vavguw VRT,VRA,VRB

do i=0 to 127 by 32
   aop I EXTZ((VRA)i:i+31)
   bop I EXTZ((VRB)i:i+31)
   VRTi:i+31 I Chop((aop +int bop +int 1) >>ui 1, 32)
end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRA is added
to unsigned-integer word element i in VRB. The
sum is incremented by 1 and then shifted right 1
bit.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 1026
0 6 11 16 21 31 4 VRT VRA VRB 1090

0 6 11 16 21 31

4 VRT VRA VRB 1154
0 6 11 16 21 31
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6.9.1.7 Vector Integer Maximum and Minimum Instructions

Vector Maximum Signed Byte VX-form

vmaxsb VRT,VRA,VRB

do i=0 to 127 by 8
aop I EXTS((VRA)i:i+7)
bop I EXTS((VRB)i:i+7)

   VRTi:i+7 I ( aop >si bop ) ? (VRA)i:i+7 : (VRB)i:i+7
end

For each integer value i from 0 to 15, do the following.
Signed-integer byte element i in VRA is compared
to signed-integer byte element i in VRB. The
larger of the two values is placed into byte
element i of VRT.

Special Registers Altered:
None

Vector Maximum Signed Doubleword 
VX-form

vmaxsd VRT,VRA,VRB

do i = 0 to 1
   aop ← VR[VRA].dword[i]
   bop ← VR[VRB].dword[i]
   VR[VRT].dword[i] ← (aop >si bop) ? aop : bop
end

For each integer value i from 0 to 1, do the following.
The signed integer value in doubleword element i
of VR[VRA] is compared to the signed integer value
in doubleword element i of VR[VRB]. The larger of
the two values is placed into doubleword element
i of VR[VRT].

Special Registers Altered:
None

Vector Maximum Unsigned Byte VX-form

vmaxub VRT,VRA,VRB

do i=0 to 127 by 8
aop I EXTZ((VRA)i:i+7)
bop I EXTZ((VRB)i:i+7)
VRTi:i+7 I (aop >ui bop) ? (VRA)i:i+7 : (VRB)i:i+7

end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is
compared to unsigned-integer byte element i in
VRB. The larger of the two values is placed into
byte element i of VRT.

Special Registers Altered:
None

Vector Maximum Unsigned Doubleword 
VX-form

vmaxud VRT,VRA,VRB

do i = 0 to 1
   aop ← VR[VRA].dword[i]
   bop ← VR[VRB].dword[i]
   VR[VRT].dword[i] ← (aop >ui bop) ? aop : bop
end

For each integer value i from 0 to 1, do the following.
The unsigned integer value in doubleword
element i of VR[VRA] is compared to the unsigned
integer value in doubleword element i of VR[VRB].
The larger of the two values is placed into
doubleword element i of VR[VRT].

Special Registers Altered:
None

4 VRT VRA VRB 258
0 6 11 16 21 31

4 VRT VRA VRB 450
0 6 11 16 21 31

4 VRT VRA VRB 2
0 6 11 16 21 31

4 VRT VRA VRB 194
0 6 11 16 21 31
Power ISA™ - Book I276



Version 2.07 B
Vector Maximum Signed Halfword 
VX-form

vmaxsh VRT,VRA,VRB

do i=0 to 127 by 16
aop I EXTS((VRA)i:i+15)
bop I EXTS((VRB)i:i+15 
VRTi:i+15 I ( aop >si bop ) ? (VRA)i:i+15 : (VRB)i:i+15

end

For each integer value i from 0 to 7, do the following.
Signed-integer halfword element i in VRA is
compared to signed-integer halfword element i in
VRB. The larger of the two values is placed into
halfword element i of VRT.

Special Registers Altered:
None

Vector Maximum Signed Word VX-form

vmaxsw VRT,VRA,VRB

do i=0 to 127 by 32
aop I EXTS((VRA)i:i+31)
bop I EXTS((VRB)i:i+31)
VRTi:i+31 I ( aop >si bop ) ? (VRA)i:i+31 : (VRB)i:i+31

end

For each integer value i from 0 to 3, do the following.
Signed-integer word element i in VRA is
compared to signed-integer word element i in
VRB. The larger of the two values is placed into
word element i of VRT.

Special Registers Altered:
None

Vector Maximum Unsigned Halfword 
VX-form

vmaxuh VRT,VRA,VRB

do i=0 to 127 by 16
aop I EXTZ((VRA)i:i+15)
bop I EXTZ((VRB)i:i+15)
VRTi:i+15 I (aop >ui bop) ? (VRA)i:i+15 : (VRB)i:i+15

end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
compared to unsigned-integer halfword element i
in VRB. The larger of the two values is placed into
halfword element i of VRT.

Special Registers Altered:
None

Vector Maximum Unsigned Word VX-form

vmaxuw VRT,VRA,VRB

do i=0 to 127 by 32
aop I EXTZ((VRA)i:i+31)
bop I EXTZ((VRB)i:i+31)
VRTi:i+31 I (aop >ui bop) ? (VRA)i:i+31 : (VRB)i:i+31

end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRA is
compared to unsigned-integer word element i in
VRB. The larger of the two values is placed into
word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 322
0 6 11 16 21 31

4 VRT VRA VRB 386
0 6 11 16 21 31

4 VRT VRA VRB 66
0 6 11 16 21 31

4 VRT VRA VRB 130
0 6 11 16 21 31
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Vector Minimum Signed Byte VX-form

vminsb VRT,VRA,VRB

do i=0 to 127 by 8
aop I EXTS((VRA)i:i+7)
bop I EXTS((VRB)i:i+7)
VRTi:i+7 I (aop <si bop) ? (VRA)i:i+7 : (VRB)i:i+7

end

For each integer value i from 0 to 15, do the following.
Signed-integer byte element i in VRA is compared
to signed-integer byte element i in VRB. The
smaller of the two values is placed into byte
element i of VRT.

Special Registers Altered:
None

Vector Minimum Signed Doubleword 
VX-form

vminsd VRT,VRA,VRB

do i = 0 to 1
   aop ← VR[VRA].dword[i]
   bop ← VR[VRB].dword[i]
   VR[VRT].dword[i] ← (ExtendSign(aop) <si ExtendSign(bop)) ? 
aop : bop
end

For each integer value i from 0 to 1, do the following.
The signed integer value in doubleword element i
of VR[VRA] is compared to the signed integer value
in doubleword element i of VR[VRB]. The smaller
of the two values is placed into doubleword
element i of VR[VRT].

Special Registers Altered:
None

Vector Minimum Unsigned Byte VX-form

vminub VRT,VRA,VRB

do i=0 to 127 by 8
aop I EXTZ((VRA)i:i+7)
bop I EXTZ((VRB)i:i+7 
VRTi:i+7 I ( aop <ui bop ) ? (VRA)i:i+7 : (VRB)i:i+7

end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is
compared to unsigned-integer byte element i in
VRB. The smaller of the two values is placed into
byte element i of VRT.

Special Registers Altered:
None

Vector Minimum Unsigned Doubleword 
VX-form

vminud VRT,VRA,VRB

do i = 0 to 1
   aop ← VR[VRA].dword[i]
   bop ← VR[VRB].dword[i]
   VR[VRT].dword[i] ← (aop <ui bop) ? aop : bop
end

For each integer value i from 0 to 1, do the following.
The unsigned integer value in doubleword
element i of VR[VRA] is compared to the unsigned
integer value in doubleword element i of VR[VRB].
The smaller of the two values is placed into
doubleword element i of VR[VRT].

Special Registers Altered:
None

4 VRT VRA VRB 770
0 6 11 16 21 31

4 VRT VRA VRB 962
0 6 11 16 21 31

4 VRT VRA VRB 514
0 6 11 16 21 31

4 VRT VRA VRB 706
0 6 11 16 21 31
Power ISA™ - Book I278



Version 2.07 B
Vector Minimum Signed Halfword 
VX-form

vminsh VRT,VRA,VRB

do i=0 to 127 by 16
aop I EXTS((VRA)i:i+15)
bop I EXTS((VRB)i:i+15)
VRTi:i+15 I ( aop <si bop ) ? (VRA)i:i+15 : (VRB)i:i+15

end

For each integer value i from 0 to 7, do the following.
Signed-integer halfword element i in VRA is
compared to signed-integer halfword element i in
VRB. The smaller of the two values is placed into
halfword element i of VRT.

Special Registers Altered:
None

Vector Minimum Signed Word VX-form

vminsw VRT,VRA,VRB

do i=0 to 127 by 32
aop I EXTS((VRA)i:i+31)
bop I EXTS((VRB)i:i+31)
VRTi:i+31 I ( aop <si bop ) ? (VRA)i:i+31 : (VRB)i:i+31

end

For each integer value i from 0 to 3, do the following.
Signed-integer word element i in VRA is
compared to signed-integer word element i in
VRB. The smaller of the two values is placed into
word element i of VRT.

Special Registers Altered:
None

Vector Minimum Unsigned Halfword 
VX-form

vminuh VRT,VRA,VRB

do i=0 to 127 by 16
aop I EXTZ((VRA)i:i+15)
bop I EXTZ((VRB)i:i+15)
VRTi:i+15 I ( aop <ui bop ) ? (VRA)i:i+15 : (VRB)i:i+15

end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
compared to unsigned-integer halfword element i
in VRB. The smaller of the two values is placed
into halfword element i of VRT.

Special Registers Altered:
None

Vector Minimum Unsigned Word VX-form

vminuw VRT,VRA,VRB

do i=0 to 127 by 32
aop I EXTZ((VRA)i:i+31)
bop I EXTZ((VRB)i:i+31)
VRTi:i+31 I ( aop <ui bop ) ? (VRA)i:i+31 : (VRB)i:i+31

end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRA is
compared to unsigned-integer word element i in
VRB. The smaller of the two values is placed into
word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 834
0 6 11 16 21 31

4 VRT VRA VRB 898
0 6 11 16 21 31

4 VRT VRA VRB 578
0 6 11 16 21 31

4 VRT VRA VRB 642
0 6 11 16 21 31
Chapter 6. Vector Facility [Category: Vector] 279



Version 2.07 B
6.9.2 Vector Integer Compare Instructions
The Vector Integer Compare instructions compare two
Vector Registers element by element, interpreting the
elements as unsigned or signed-integers depending on
the instruction, and set the corresponding element of
the target Vector Register to all 1s if the relation being
tested is true and to all 0s if the relation being tested is
false.

If Rc=1 CR Field 6 is set to reflect the result of the
comparison, as follows.

 

  

Vector Compare Equal To Unsigned Byte
 VC-form

vcmpequb VRT,VRA,VRB (Rc=0)
vcmpequb. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 8
   VRTi:i+7 I ((VRA)i:i+7 =int (VRB)i:i+7) ? 

81 : 80
end
if Rc=1 then do
   t I (VRT=1281)
   f I (VRT=1280)
   CR6 I t || 0b0 || f || 0b0
end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is
compared to unsigned-integer byte element i in
VRB. Byte element i in VRT is set to all 1s if
unsigned-integer byte element i in VRA is equal to
unsigned-integer byte element i in VRB, and is set
to all 0s otherwise.

Special Registers Altered:
CR field 6  . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

Vector Compare Equal To Unsigned 
Halfword VC-form

vcmpequh VRT,VRA,VRB (Rc=0)
vcmpequh. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 16
   VRTi:i+15 I((VRA)i:i+15 =int (VRB)i:i+15) ? 

161 : 160
end
if Rc=1 then do
   t I (VRT=1281)
   f I (VRT=1280)
   CR6 I t || 0b0 || f || 0b0
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
compared to unsigned-integer halfword element
element i in VRB. Halfword element i in VRT is set
to all 1s if unsigned-integer halfword element i in
VRA is equal to unsigned-integer halfword
element i in VRB, and is set to all 0s otherwise.

Special Registers Altered:
CR field 6 . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)

Bit Description
0 The relation is true for all element pairs

(i.e., VRT is set to all 1s)
1 0
2 The relation is false for all element pairs

(i.e., VRT is set to all 0s)
3 0

vcmpequb[.], vcmpequh[.], vcmpequw[.], and
vcmpequd[.] can be used for unsigned or
signed-integers.

Programming Note

4 VRT VRA VRB Rc 6
0 6 11 16 21 22 31

4 VRT VRA VRB Rc 70
0 6 11 16 21 22 31
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Vector Compare Equal To Unsigned Word
 VC-form

vcmpequw VRT,VRA,VRB (Rc=0)
vcmpequw. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   VRTi:i+31 I((VRA)i:i+31 =int (VRB)i:i+31) ? 

321 : 320
end
if Rc=1 then do
   t I (VRT=1281)
   f I (VRT=1280)
   CR6 I t || 0b0 || f || 0b0
end

For each integer value i from 0 to 3, do the following.
The unsigned integer value in word element i in
VR[VRA] is compared to the unsigned integer value
in word element i in VR[VRB]. Word element i in
VR[VRT] is set to all 1s if unsigned-integer word
element i in VR[VRA] is equal to unsigned-integer
word element i in VR[VRB], and is set to all 0s
otherwise.

Special Registers Altered:
CR field 6  . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)

Vector Compare Equal To Unsigned 
Doubleword VX-form

vcmpequd VRT,VRA,VRB (Rc=0)
vcmpequd. VRT,VRA,VRB (Rc=1)

do i = 0 to 1
   aop ← EXTZ(VR[VRA].dword[i])
   bop ← EXTZ(VR[VRB].dword[i])
   if (aop = bop) then do
      VR[VRT].dword[i] ← 0xFFFF_FFFF_FFFF_FFFF
      flag.bit[i] ← 0b1
   end
   else do
      VR[VRT].dword[i] ← 0x0000_0000_0000_0000
      flag.bit[i] ← 0b0
   end
end
if Rc=1 then do
   CR.bit[24] ← (flag=0b11)
   CR.bit[25] ← 0b0
   CR.bit[26] ← (flag=0b00)
   CR.bit[27] ← 0b0
end

For each integer value i from 0 to 1, do the following.
The unsigned integer value in doubleword
element i of VR[VRA] is compared to the unsigned
integer value in doubleword element i of VR[VRB].
Doubleword element i of VR[VRT] is set to all 1s if
the unsigned integer value in doubleword element
i of VR[VRA] is equal to the unsigned integer value
in doubleword element i of VR[VRB], and is set to
all 0s otherwise.

Special Registers Altered:
CR field 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)

4 VRT VRA VRB Rc 134
0 6 11 16 21 22 31

4 VRT VRA VRB Rc 199
0 6 11 16 21 22 31
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Vector Compare Greater Than Signed 
Byte VC-form

vcmpgtsb VRT,VRA,VRB (Rc=0)
vcmpgtsb. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 8
   VRTi:i+7 I ((VRA)i:i+7 >si (VRB)i:i+7) ? 

81 : 80
end
if Rc=1 then do
   t I (VRT=1281)
   f I (VRT=1280)
   CR6 I t || 0b0 || f || 0b0
end

For each integer value i from 0 to 15, do the following.
The signed integer value in byte element i in
VR[VRA] is compared to the signed integer value in
byte element i in VR[VRB]. Byte element i in
VR[VRT] is set to all 1s if signed-integer byte
element i in VR[VRA] is greater than to
signed-integer byte element i in VR[VRB], and is set
to all 0s otherwise.

Special Registers Altered:
CR field 6  . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)

Vector Compare Greater Than Signed 
Doubleword VX-form

vcmpgtsd VRT,VRA,VRB (Rc=0)
vcmpgtsd. VRT,VRA,VRB (Rc=1)

do i = 0 to 1
   aop ← EXTS(VR[VRA].dword[i])
   bop ← EXTS(VR[VRB].dword[i])
   if (aop >si bop) then do
      VR[VRT].dword[i] ← 0xFFFF_FFFF_FFFF_FFFF
      flag.bit[i] ← 0b1
   end
   else do
      VR[VRT].dword[i] ← 0x0000_0000_0000_0000
      flag.bit[i] ← 0b0
   end
end
if “vcmpgtsd.” then do
   CR.bit[24] ← (flag=0b11)
   CR.bit[25] ← 0b0
   CR.bit[26] ← (flag=0b00)
   CR.bit[27] ← 0b0
end

For each integer value i from 0 to 1, do the following.
The signed integer value in doubleword element i
of VR[VRA] is compared to the signed integer value
in doubleword element i of VR[VRB]. Doubleword
element i of VR[VRT] is set to all 1s if the signed
integer value in doubleword element i of VR[VRA]
is greater than the signed integer value in
doubleword element i of VR[VRB], and is set to all
0s otherwise.

Special Registers Altered:
CR field 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)

4 VRT VRA VRB Rc 774
0 6 11 16 21 22 31

4 VRT VRA VRB Rc 967
0 6 11 16 21 22 31
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Vector Compare Greater Than Signed 
Halfword VC-form

vcmpgtsh VRT,VRA,VRB (Rc=0)
vcmpgtsh. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 16
   VRTi:i+15 I ((VRA)i:i+15 >si (VRB)i:i+15) ? 

161 : 160
end
if Rc=1 then do
   t I (VRT=1281)
   f I (VRT=1280)
   CR6 I t || 0b0 || f || 0b0
end

For each integer value i from 0 to 7, do the following.
Signed-integer halfword element i in VRA is
compared to signed-integer halfword element i in
VRB. Halfword element i in VRT is set to all 1s if
signed-integer halfword element i in VRA is
greater than signed-integer halfword element i in
VRB, and is set to all 0s otherwise.

Special Registers Altered:
CR field 6  . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

Vector Compare Greater Than Signed 
Word VC-form

vcmpgtsw VRT,VRA,VRB (Rc=0)
vcmpgtsw. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   VRTi:i+31 I ((VRA)i:i+31 >si (VRB)i:i+31) ? 

321 : 320
end
if Rc=1 then do
   t I (VRT=1281)
   f I (VRT=1280)
   CR6 I t || 0b0 || f || 0b0
end

For each integer value i from 0 to 3, do the following.
Signed-integer word element i in VRA is
compared to signed-integer word element i in
VRB. Word element i in VRT is set to all 1s if
signed-integer word element i in VRA is greater
than signed-integer word element i in VRB, and is
set to all 0s otherwise.

Special Registers Altered:
CR field 6 . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)

4 VRT VRA VRB Rc 838
0 6 11 16 21 22 31

4 VRT VRA VRB Rc 902
0 6 11 16 21 22 31
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Vector Compare Greater Than Unsigned 
Byte VC-form

vcmpgtub VRT,VRA,VRB (Rc=0)
vcmpgtub. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 8
   VRTi:i+7 I ((VRA)i:i+7 >ui (VRB)i:i+7) ? 

81 : 80
end
if Rc=1 then do
   t I (VRT=1281)
   f I (VRT=1280)
   CR6 I t || 0b0 || f || 0b0
end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is
compared to unsigned-integer byte element i in
VRB. Byte element i in VRT is set to all 1s if
unsigned-integer byte element i in VRA is greater
than to unsigned-integer byte element i in VRB,
and is set to all 0s otherwise.

Special Registers Altered:
CR field 6  . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)

Vector Compare Greater Than Unsigned 
Doubleword VX-form

vcmpgtud VRT,VRA,VRB (Rc=0)
vcmpgtud. VRT,VRA,VRB (Rc=1)

do i = 0 to 1
   aop ← EXTZ(VR[VRA].dword[i])
   bop ← EXTZ(VR[VRB].dword[i])
   if (ExtendZero(aop) >ui ExtendZero(bop)) then do
      VR[VRT].dword[i] ← 0xFFFF_FFFF_FFFF_FFFF
      flag.bit[i] ← 0b1
   end
   else do
      VR[VRT].dword[i] ← 0x0000_0000_0000_0000
      flag.bit[i] ← 0b1
   end
end
if “vcmpgtud.” then do
   CR.bit[24] ← (flag=0b11)
   CR.bit[25] ← 0b0
   CR.bit[26] ← (flag=0b00)
   CR.bit[27] ← 0b0
end

For each integer value i from 0 to 1, do the following.
The unsigned integer value in doubleword
element i of VR[VRA] is compared to the unsigned
integer value in doubleword element i of VR[VRB].
Doubleword element i of VR[VRT] is set to all 1s if
the unsigned integer value in doubleword element
i of VR[VRA] is greater than the unsigned integer
value in doubleword element i of VR[VRB], and is
set to all 0s otherwise.

Special Registers Altered:
CR field 6 (if Rc=1)

4 VRT VRA VRB Rc 518
0 6 11 16 21 22 31

4 VRT VRA VRB Rc 711
0 6 11 16 21 22 31
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Vector Compare Greater Than Unsigned 
Halfword VC-form

vcmpgtuh VRT,VRA,VRB (Rc=0)
vcmpgtuh. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 16
   VRTi:i+15 I ((VRA)i:i+15 >ui (VRB)i:i+15) ? 

161 : 160
end
if Rc=1 then do
   t I (VRT=1281)
   f I (VRT=1280)
   CR6 I t || 0b0 || f || 0b0
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
compared to unsigned-integer halfword element i
in VRB. Halfword element i in VRT is set to all 1s
if unsigned-integer halfword element i in VRA is
greater than to unsigned-integer halfword element
i in VRB, and is set to all 0s otherwise.

Special Registers Altered:
CR field 6  . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

Vector Compare Greater Than Unsigned 
Word VC-form

vcmpgtuw VRT,VRA,VRB (Rc=0)
vcmpgtuw. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   VRTi:i+31 I ((VRA)i:i+31 >ui (VRB)i:i+31) ? 

321 : 320
end
if Rc=1 then do
   t I (VRT=1281)
   f I (VRT=1280)
   CR6 I t || 0b0 || f || 0b0
end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRA is
compared to unsigned-integer word element i in
VRB. Word element i in VRT is set to all 1s if
unsigned-integer word element i in VRA is greater
than to unsigned-integer word element i in VRB,
and is set to all 0s otherwise.

Special Registers Altered:
CR field 6 . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)

4 VRT VRA VRB Rc 582
0 6 11 16 21 22 31

4 VRT VRA VRB Rc 646
0 6 11 16 21 22 31
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6.9.3 Vector Logical Instructions
Extended mnemonics for vector logical opera-
tions

Extended mnemonics are provided that use the Vector
OR and Vector NOR instructions to copy the contents
of one Vector Register to another, with and without
complementing. These are shown as examples with
the two instructions.

Vector Move Register

Several vector instructions can be coded in a way
such that they simply copy the contents of one
Vector Register to another.  An extended
mnemonic is provided to convey the idea that no
computation is being performed but merely data
movement (from one register to another).

The following instruction copies the contents of
register Vy to register Vx.

vmr   Vx,Vy    (equivalent to:     vor   Vx,Vy,Vy)

Vector Complement Register

The Vector NOR instruction can be coded in a
way such that it complements the contents of one
Vector Register and places the result into another
Vector Register.  An extended mnemonic is
provided that allows this operation to be coded
easily.

The following instruction complements the
contents of register Vy and places the result into
register Vx.

vnot  Vx,Vy    (equivalent to:     vnor  Vx,Vy,Vy)

Vector Logical AND VX-form

vand VRT,VRA,VRB

VR[VRT] I VR[VRA] & VR[VRB]

The contents of VR[VRA] are ANDed with the contents
of VR[VRB] and the result is placed into VR[VRT].

Special Registers Altered:
None

Vector Logical AND with Complement 
VX-form

vandc VRT,VRA,VRB

VR[VRT] I VR[VRA] & ¬VR[VRB]

The contents of VR[VRA] are ANDed with the
complement of the contents of VR[VRB] and the result is
placed into VR[VRT].

Special Registers Altered:
None

Vector Logical Equivalent VX-form

veqv VRT,VRA,VRB

VR[VRT] ← VR[VRA] h VR[VRB]

The contents of VR[VRA] are XORed with the contents
of VR[VRB] and the complemented result is placed into
VR[VRT].

Special Registers Altered:
None

Vector Logical NAND VX-form

vnand VRT,VRA,VRB

if MSR.VEC=0 then VECTOR_UNAVAILABLE()

VR[VRT] ← ¬( VR[VRA] & VR[VRB] )

The contents of VR[VRA] are ANDed with the contents
of VR[VRB] and the complemented result is placed into
VR[VRT].

Special Registers Altered:
None

4 VRT VRA VRB 1028
0 6 11 16 21 31

4 VRT VRA VRB 1092
0 6 11 16 21 31

4 VRT VRA VRB 1668
0 6 11 16 21 31

4 VRT VRA VRB 1412
0 6 11 16 21 31
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Vector Logical OR with Complement 
VX-form

vorc VRT,VRA,VRB

VR[VRT] ← VR[VRA] | ¬VR[VRB]

The contents of VR[VRA] are ORed with the
complement of the contents of VR[VRB] and the result is
placed into VR[VRT].

Special Registers Altered:
None

Vector Logical NOR VX-form

vnor VRT,VRA,VRB

VR[VRT] I ¬( VR[VRA] | VR[VRB] )

The contents of VR[VRA] are ORed with the contents of
VR[VRB] and the complemented result is placed into
VR[VRT].

Special Registers Altered:
None

Vector Logical OR VX-form

vor VRT,VRA,VRB

VR[VRT] I VR[VRA] | VR[VRB]

The contents of VR[VRA] are ORed with the contents of
VR[VRB] and the result is placed into VR[VRT].

Special Registers Altered:
None

Vector Logical XOR VX-form

vxor VRT,VRA,VRB

VR[VRT] I VR[VRA] ⊕ VR[VRB]

The contents of VR[VRA] are XORed with the contents
of VR[VRB] and the result is placed into VR[VRT].

Special Registers Altered:
None

4 VRT VRA VRB 1348
0 6 11 16 21 31

4 VRT VRA VRB 1284
0 6 11 16 21 31

4 VRT VRA VRB 1156
0 6 11 16 21 31

4 VRT VRA VRB 1220
0 6 11 16 21 31
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6.9.4 Vector Integer Rotate and Shift Instructions

Vector Rotate Left Byte VX-form

vrlb VRT,VRA,VRB

do i=0 to 127 by 8
   sh I (VRB)i+5:i+7
   VRTi:i+7 I (VRA)i:i+7 <<< sh
end

For each integer value i from 0 to 15, do the following.
Byte element i in VRA is rotated left by the
number of bits specified in the low-order 3 bits of
the corresponding byte element i in VRB. 

The result is placed into byte element i in VRT.

Special Registers Altered:
None

Vector Rotate Left Halfword VX-form

vrlh VRT,VRA,VRB

do i=0 to 127 by 16
   sh I (VRB)i+12:i+15
   VRTi:i+15 I (VRA)i:i+15 <<< sh
end

For each integer value i from 0 to 7, do the following.
Halfword element i in VRA is rotated left by the
number of bits specified in the low-order 4 bits of
the corresponding halfword element i in VRB. 

The result is placed into halfword element i in
VRT.

Special Registers Altered:
None

Vector Rotate Left Word VX-form

vrlw VRT,VRA,VRB

do i=0 to 127 by 32
   sh I (VRB)i+27:i+31
   VRTi:i+31 I (VRA)i:i+31 <<< sh
end

For each integer value i from 0 to 3, do the following.
Word element i in VRA is rotated left by the
number of bits specified in the low-order 5 bits of
the corresponding word element i in VRB. 

The result is placed into word element i in VRT.

Special Registers Altered:
None

Vector Rotate Left Doubleword VX-form

vrld VRT,VRA,VRB

do i = 0 to 1
   sh ← VR[VRB].dword[i].bit[58:63]
   VR[VRT].dword[i] ← VR[VRA].dword[i] <<< sh
end

For each integer value i from 0 to 1, do the following.
The contents of doubleword element i of VR[VRA]
are rotated left by the number of bits specified in
bits 58:63 of doubleword element i of VR[VRB]. 

The result is placed into doubleword element i of
VR[VRT].

Special Registers Altered:
None

4 VRT VRA VRB 4
0 6 11 16 21 31

4 VRT VRA VRB 68
0 6 11 16 21 31

4 VRT VRA VRB 132
0 6 11 16 21 31

4 VRT VRA VRB 196
0 6 11 16 21 31
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Vector Shift Left Byte VX-form

vslb VRT,VRA,VRB

do i=0 to 127 by 8
   sh I (VRB)i+5:i+7
   VRTi:i+7 I (VRA)i:i+7 << sh
end

For each integer value i from 0 to 15, do the following.
Byte element i in VRA is shifted left by the number
of bits specified in the low-order 3 bits of byte
element i in VRB. 

– Bits shifted out of bit 0 are lost. 

– Zeros are supplied to the vacated bits on the
right. 

The result is placed into byte element i of VRT.

Special Registers Altered:
None

Vector Shift Left Halfword VX-form

vslh VRT,VRA,VRB

do i=0 to 127 by 16
   sh I (VRB)i+12:i+15
   VRTi:i+15 I (VRA)i:i+15 << sh
end

For each integer value i from 0 to 7, do the following.
Halfword element i in VRA is shifted left by the
number of bits specified in the low-order 4 bits of
halfword element i in VRB. 

– Bits shifted out of bit 0 are lost. 

– Zeros are supplied to the vacated bits on the
right. 

The result is placed into halfword element i of
VRT.

Special Registers Altered:
None

Vector Shift Left Word VX-form

vslw VRT,VRA,VRB

do i=0 to 127 by 32
   sh I (VRB)i+27:i+31
   VRTi:i+31 I (VRA)i:i+31 << sh
end

For each integer value i from 0 to 3, do the following.
Word element i in VRA is shifted left by the
number of bits specified in the low-order 5 bits of
word element i in VRB. 

– Bits shifted out of bit 0 are lost. 

– Zeros are supplied to the vacated bits on the
right. 

The result is placed into word element i of VRT.

Special Registers Altered:
None

Vector Shift Left Doubleword VX-form

vsld VRT,VRA,VRB

do i = 0 to 1
   sh ← VR[VRB].dword[i].bit[58:63]
   VR[VRT].dword[i] ← VR[VRA].dword[i] << sh
end

For each integer value i from 0 to 1, do the following.
The contents of doubleword element i of VR[VRA]
are shifted left by the number of bits specified in
bits 58:63 of doubleword element i of VR[VRB]. 

– Bits shifted out of bit 0 are lost. 
– Zeros are supplied to the vacated bits on the

right. 

The result is placed into doubleword element i of
VR[VRT].

Special Registers Altered:
None

4 VRT VRA VRB 260
0 6 11 16 21 31

4 VRT VRA VRB 324
0 6 11 16 21 31

4 VRT VRA VRB 388
0 6 11 16 21 31

4 VRT VRA VRB 1476
0 6 11 16 21 31
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Vector Shift Right Byte VX-form

vsrb VRT,VRA,VRB

do i=0 to 127 by 8
   sh I (VRB)i+5:i+7
   VRTi:i+7 I (VRA)i:i+7 >>ui sh
end

For each integer value i from 0 to 15, do the following.
Byte element i in VRA is shifted right by the
number of bits specified in the low-order 3 bits of
byte element i in VRB. Bits shifted out of the
least-significant bit are lost. Zeros are supplied to
the vacated bits on the left. The result is placed
into byte element i of VRT.

Special Registers Altered:
None

Vector Shift Right Halfword VX-form

vsrh VRT,VRA,VRB

do i=0 to 127 by 16
   sh I (VRB)i+12:i+15
   VRTi:i+15 I (VRA)i:i+15 >>ui sh
end

For each integer value i from 0 to 7, do the following.
Halfword element i in VRA is shifted right by the
number of bits specified in the low-order 4 bits of
halfword element i in VRB. Bits shifted out of the
least-significant bit are lost. Zeros are supplied to
the vacated bits on the left. The result is placed
into halfword element i of VRT.

Special Registers Altered:
None

Vector Shift Right Word VX-form

vsrw VRT,VRA,VRB

do i=0 to 127 by 32
   sh I (VRB)i+27:i+31
   VRTi:i+31 I (VRA)i:i+31 >>ui sh
end

For each integer value i from 0 to 3, do the following.
Word element i in VRA is shifted right by the
number of bits specified in the low-order 5 bits of
word element i in VRB. Bits shifted out of the
least-significant bit are lost. Zeros are supplied to
the vacated bits on the left. The result is placed
into word element i of VRT.

Special Registers Altered:
None

Vector Shift Right Doubleword VX-form

vsrd VRT,VRA,VRB

do i = 0 to 1
   sh ← VR[VRB].dword[i].bit[58:63]
   VR[VRT].dword[i] ← VR[VRA].dword[i] >>ui sh
end

For each integer value i from 0 to 1, do the following.
The contents of doubleword element i of VR[VRA]
are shifted right by the number of bits specified in
bits 58:63 of doubleword element i of VR[VRB].
Zeros are supplied to the vacated bits on the left.

The result is placed into doubleword element i of
VR[VRT].

Special Registers Altered:
None

4 VRT VRA VRB 516
0 6 11 16 21 31

4 VRT VRA VRB 580
0 6 11 16 21 31

4 VRT VRA VRB 644
0 6 11 16 21 31

4 VRT VRA VRB 1732
0 6 11 16 21 31
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Vector Shift Right Algebraic Byte VX-form

vsrab VRT,VRA,VRB

do i=0 to 127 by 8
   sh I (VRB)i+5:i+7
   VRTi:i+7 I (VRA)i:i+7 >>si sh
end

For each integer value i from 0 to 15, do the following.
Byte element i in VRA is shifted right by the
number of bits specified in the low-order 3 bits of
the corresponding byte element i in VRB. Bits
shifted out of bit 7 of the byte element are lost. Bit
0 of the byte element is replicated to fill the
vacated bits on the left. The result is placed into
byte element i of VRT.

Special Registers Altered:
None

Vector Shift Right Algebraic Halfword 
VX-form

vsrah VRT,VRA,VRB

do i=0 to 127 by 16
   sh I (VRB)i+12:i+15
   VRTi:i+15 I (VRA)i:i+15 >>si sh
end

For each integer value i from 0 to 7, do the following.
Halfword element i in VRA is shifted right by the
number of bits specified in the low-order 4 bits of
the corresponding halfword element i in VRB. Bits
shifted out of bit 15 of the halfword are lost. Bit 0
of the halfword is replicated to fill the vacated bits
on the left. The result is placed into halfword
element i of VRT.

Special Registers Altered:
None

Vector Shift Right Algebraic Word 
VX-form

vsraw VRT,VRA,VRB

do i=0 to 127 by 32
   sh I (VRB)i+27:i+31
   VRTi:i+31 I (VRA)i:i+31 >>si sh
end

For each integer value i from 0 to 3, do the following.
Word element i in VRA is shifted right by the
number of bits specified in the low-order 5 bits of
the corresponding word element i in VRB. Bits
shifted out of bit 31 of the word are lost. Bit 0 of
the word is replicated to fill the vacated bits on the
left. The result is placed into word element i of
VRT.

Special Registers Altered:
None

Vector Shift Right Algebraic Doubleword 
VX-form

vsrad VRT,VRA,VRB

do i = 0 to 1
   sh ← VR[VRB].dword[i].bit[58:63]
   VR[VRT].dword[i] ← VR[VRA].dword[i] >>si sh
end

For each integer value i from 0 to 1, do the following.
The contents of doubleword element i of VR[VRA]
are shifted right by the number of bits specified in
bits 58:63 of doubleword element i of VR[VRB]. Bit
0 of doubleword element i of VR[VRA] is replicated
to fill the vacated bits on the left.

The result is placed into doubleword element i of
VR[VRT].

Special Registers Altered:
None

4 VRT VRA VRB 772
0 6 11 16 21 31

4 VRT VRA VRB 836
0 6 11 16 21 31

4 VRT VRA VRB 900
0 6 11 16 21 31

4 VRT VRA VRB 964
0 6 11 16 21 31
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6.10 Vector Floating-Point Instruction Set

6.10.1 Vector Floating-Point Arithmetic Instructions

Vector Add Single-Precision VX-form

vaddfp VRT,VRA,VRB

do i=0 to 127 by 32
VRTi:i+31 I RoundToNearSP((VRA)i:i+31 +fp (VRB)i:i+31)

end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
added to single-precision floating-point element i
in VRB. The intermediate result is rounded to the
nearest single-precision floating-point number and
placed into word element i of VRT.

Special Registers Altered:
None

Vector Subtract Single-Precision VX-form

vsubfp VRT,VRA,VRB

do i=0 to 127 by 32
   VRTi:i+31 I RoundToNearSP((VRA)i:i+31 -fp (VRB)i:i+31)
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRB is
subtracted from single-precision floating-point
element i in VRA. The intermediate result is
rounded to the nearest single-precision
floating-point number and placed into word
element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 10
0 6 11 16 21 31

4 VRT VRA VRB 74
0 6 11 16 21 31
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Vector Multiply-Add Single-Precision 
VA-form

vmaddfp VRT,VRA,VRC,VRB

do i=0 to 127 by 32
   prod I (VRA)i:i+31 ×fp (VRC)i:i+31
   VRTi:i+31 I RoundToNearSP( prod +fp (VRB)i:i+31 )
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
multiplied by single-precision floating-point
element i in VRC. Single-precision floating-point
element i in VRB is added to the infinitely-precise
product. The intermediate result is rounded to the
nearest single-precision floating-point number and
placed into word element i of VRT.

Special Registers Altered:
None

 

Vector Negative Multiply-Subtract 
Single-Precision VA-form

vnmsubfp VRT,VRA,VRC,VRB

do i=0 to 127 by 32
   prod0:inf I (VRA)i:i+31 ×fp (VRC)i:i+31
   VRTi:i+31 I -RoundToNearSP(prod0:inf -fp (VRB)i:i+31)
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
multiplied by single-precision floating-point
element i in VRC. Single-precision floating-point
element i in VRB is subtracted from the
infinitely-precise product. The intermediate result
is rounded to the nearest single-precision
floating-point number, then negated and placed
into word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB VRC 46
0 6 11 16 21 26 31

To use a multiply-add to perform an IEEE or Java
compliant multiply, the addend must be -0.0. This
is necessary to insure that the sign of a zero result
will be correct when the product is -0.0 (+0.0 + -0.0
≥ +0.0, and -0.0 + -0.0≥ -0.0). When the sign of a
resulting 0.0 is not important, then +0.0 can be
used as an addend which may, in some cases,
avoid the need for a second register to hold a -0.0
in addition to the integer 0/floating-point +0.0 that
may already be available.

Programming Note

4 VRT VRA VRB VRC 47
0 6 11 16 21 26 31
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6.10.2 Vector Floating-Point Maximum and Minimum Instructions

Vector Maximum Single-Precision 
VX-form

vmaxfp VRT,VRA,VRB

do i=0 to 127 by 32
   gt_flag I ( (VRA)i:i+31 >fp (VRB)i:i+31 )
   VRTi:i+31 I gt_flag ? (VRA)i:i+31 : (VRB)i:i+31
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
compared to single-precision floating-point
element i in VRB. The larger of the two values is
placed into word element i of VRT.

The maximum of +0 and -0 is +0. The maximum of any
value and a NaN is a QNaN.

Special Registers Altered:
None

Vector Minimum Single-Precision VX-form

vminfp VRT,VRA,VRB

do i=0 to 127 by 32
lt_flag I ( (VRA)i:i+31 <fp (VRB)i:i+31 )
VRTi:i+31 I lt_flag ? (VRA)i:i+31 : (VRB)i:i+31

end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
compared to single-precision floating-point
element i in VRB. The smaller of the two values is
placed into word element i of VRT.

The minimum of +0 and -0 is -0. The minimum of any
value and a NaN is a QNaN.

Special Registers Altered:
None

4 VRT VRA VRB 1034
0 6 11 16 21 31

4 VRT VRA VRB 1098
0 6 11 16 21 31
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6.10.3 Vector Floating-Point Rounding and Conversion Instructions
See Appendix C, “Vector RTL Functions [Category:
Vector]” on page 701, for RTL function descriptions.

Vector Convert To Signed Fixed-Point 
Word Saturate VX-form

vctsxs VRT,VRB,UIM

do i=0 to 127 by 32
   VRTi:i+31 I ConvertSPtoSXWsaturate((VRB)i:i+31, UIM)
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point word element i in
VRB is multiplied by 2UIM. The product is
converted to a 32-bit signed fixed-point integer
using the rounding mode Round toward Zero.

– If the intermediate result is greater than 231-1
the result saturates to 231-1.

– If the intermediate result is less than -231 the
result saturates to -231. 

The result is placed into word element i of VRT.

Special Registers Altered:
SAT

Extended Mnemonics:
Example of an extended mnemonics for Vector
Convert to Signed Fixed-Point Word Saturate: 

Vector Convert To Unsigned Fixed-Point 
Word Saturate VX-form

vctuxs VRT,VRB,UIM

do i=0 to 127 by 32
   VRTi:i+31 I ConvertSPtoUXWsaturate((VRB)i:i+31, UIM)
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point word element i in
VRB is multiplied by 2UIM. The product is
converted to a 32-bit unsigned fixed-point integer
using the rounding mode Round toward Zero. 

– If the intermediate result is greater than 232-1
the result saturates to 232-1. 

The result is placed into word element i of VRT.

Special Registers Altered:
SAT

Extended Mnemonics:
Example of an extended mnemonics for Vector
Convert to Unsigned Fixed-Point Word Saturate: 

4 VRT UIM VRB 970
0 6 11 16 21 31

Extended: Equivalent to:
vcfpsxws VRT,VRB,UIM vctsxs VRT,VRB,UIM

4 VRT UIM VRB 906
0 6 11 16 21 31

Extended: Equivalent to:
vcfpuxws VRT,VRB,UIM vctuxs VRT,VRB,UIM
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Vector Convert From Signed Fixed-Point 
Word VX-form

vcfsx VRT,VRB,UIM

do i=0 to 127 by 32
   VRTi:i+31 I ConvertSXWtoSP( (VRB)i:i+31 ) ÷fp 2

UIM

end

For each integer value i from 0 to 3, do the following.
Signed fixed-point word element i in VRB is
converted to the nearest single-precision
floating-point value. Each result is divided by 2UIM

and placed into word element i of VRT.

Special Registers Altered:
None

Extended Mnemonics:
Examples of extended mnemonics for Vector Convert
from Signed Fixed-Point Word 

Vector Convert From Unsigned 
Fixed-Point Word VX-form

vcfux VRT,VRB,UIM

do i=0 to 127 by 32
   VRTi:i+31 I ConvertUXWtoSP( (VRB)i:i+31 ) ÷fp 2

UIM

end

For each integer value i from 0 to 3, do the following.
Unsigned fixed-point word element i in VRB is
converted to the nearest single-precision
floating-point value. The result is divided by 2UIM

and placed into word element i of VRT.

Special Registers Altered:
None

Extended Mnemonics:
Examples of extended mnemonics for Vector Convert
from Unsigned Fixed-Point Word 

4 VRT UIM VRB 842
0 6 11 16 21 31

Extended: Equivalent to:
vcsxwfp VRT,VRB,UIM vcfsx VRT,VRB,UIM

4 VRT UIM VRB 778
0 6 11 16 21 31

Extended: Equivalent to:
vcuxwfp VRT,VRB,UIM vcfux VRT,VRB,UIM
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Vector Round to Single-Precision Integer 
toward -Infinity VX-form

vrfim VRT,VRB

do i=0 to 127 by 32
   VRT0:31 I RoundToSPIntFloor( (VRB)0:31 )
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRB is
rounded to a single-precision floating-point integer
using the rounding mode Round toward -Infinity. 

The result is placed into the corresponding word
element i  of VRT.

Special Registers Altered:
None

 

 

Vector Round to Single-Precision Integer 
Nearest VX-form

vrfin VRT,VRB

do i=0 to 127 by 32
   VRT0:31 I RoundToSPIntNear( (VRB)0:31 )
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRB is
rounded to a single-precision floating-point integer
using the rounding mode Round to Nearest. 

The result is placed into the corresponding word
element i  of VRT.

Special Registers Altered:
None

Vector Round to Single-Precision Integer 
toward  +Infinity VX-form

vrfip VRT,VRB

do i=0 to 127 by 32
   VRT0:31 I RoundToSPIntCeil( (VRB)0:31 )
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRB is
rounded to a single-precision floating-point integer
using the rounding mode Round toward +Infinity. 

The result is placed into the corresponding word
element i  of VRT.

Special Registers Altered:
None

4 VRT /// VRB 714
0 6 11 16 21 31

The Vector Convert To Fixed-Point Word
instructions support only the rounding mode
Round toward Zero. A floating-point number can
be converted to a fixed-point integer using any of
the other three rounding modes by executing the
appropriate Vector Round to Floating-Point Integer
instruction before the Vector Convert To
Fixed-Point Word instruction.

The fixed-point integers used by the Vector
Convert instructions can be interpreted as
consisting of 32-UIM integer bits followed by UIM
fraction bits.

Programming Note

Programming Note

4 VRT /// VRB 522
0 6 11 16 21 31

4 VRT /// VRB 650
0 6 11 16 21 31
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Vector Round to Single-Precision Integer 
toward Zero VX-form

vrfiz VRT,VRB

do i=0 to 127 by 32
   VRT0:31 I RoundToSPIntTrunc( (VRB)0:31 )
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRB is
rounded to a single-precision floating-point integer
using the rounding mode Round toward Zero. 

The result is placed into the corresponding word
element i  of VRT.

Special Registers Altered:
None

4 VRT /// VRB 586
0 6 11 16 21 31
Power ISA™ - Book I298



Version 2.07 B
6.10.4 Vector Floating-Point Compare Instructions
The Vector Floating-Point Compare instructions
compare two Vector Registers word element by word
element, interpreting the elements as single-precision
floating-point numbers. With the exception of the
Vector Compare Bounds Floating-Point instruction,
they set the target Vector Register, and CR Field 6 if
Rc=1, in the same manner as do the Vector Integer
Compare instructions; see Section 6.9.2.

The Vector Compare Bounds Floating-Point instruction
sets the target Vector Register, and CR Field 6 if
Rc=1, to indicate whether the elements in VRA are
within the bounds specified by the corresponding
element in VRB, as explained in the instruction
description. A single-precision floating-point value x is
said to be “within the bounds” specified by a
single-precision floating-point value y if -y ≤ x ≤ y.

Vector Compare Bounds Single-Precision
 VC-form

vcmpbfp VRT,VRA,VRB (Rc=0)
vcmpbfp. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   le I ( (VRA)i:i+31 ≤fp (VRB)i:i+31 )
   ge I ( (VRA)i:i+31 ≥fp -(VRB)i:i+31 )
   VRTi:i+31 I ¬le || ¬ge || 300
end
if Rc=1 then do
   ib I (VRT=1280)
   CR6 I 0b00 || ib || 0b0
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point word element i in
VRA is compared to single-precision floating-point
word element i in VRB. A 2-bit value is formed that
indicates whether the element in VRA is within the
bounds specified by the element in VRB, as
follows.

– Bit 0 of the 2-bit value is set to 0 if the
element in VRA is less than or equal to the
element in VRB, and is set to 1 otherwise.

– Bit 1 of the 2-bit value is set to 0 if the
element in VRA is greater than or equal to the
negation of the element in VRB, and is set to
1 otherwise.

The 2-bit value is placed into the high-order two
bits of word element i of VRT and the remaining
bits of element i are set to 0.

If Rc=1, CR field 6 is set as follows.

Special Registers Altered:
CR field 6 . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)

 

4 VRT VRA VRB Rc 966
0 6 11 16 21 22 31

Bit Description
0 Set to 0
1 Set to 0

2 Set to indicate whether all four elements in VRA
are within the bounds specified by the
corresponding element in VRB, otherwise set to
0.

3 Set to 0

Each single-precision floating-point word element
in VRB should be non-negative; if it is negative,
the corresponding element in VRA will necessarily
be out of bounds.

One exception to this is when the value of an
element in VRB is -0.0 and the value of the
corresponding element in VRA is either +0.0 or
-0.0. +0.0 and -0.0 compare equal to -0.0.

Bit Description

Programming Note
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Vector Compare Equal To
Single-Precision VC-form

vcmpeqfp VRT,VRA,VRB (Rc=0)
vcmpeqfp. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   VRTi:i+31 I ((VRA)i:i+31 =fp (VRB)i:i+31) ? 

321 : 320
end
if Rc=1 then do
   t I ( VRT=1281 )
   f I ( VRT=1280 )
   CR6 I t || 0b0 || f || 0b0
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
compared to single-precision floating-point
element i in VRB. Word element i in VRT is set to
all 1s if single-precision floating-point element i in
VRA is equal to single-precision floating-point
element i in VRB, and is set to all 0s otherwise.

If the source element i in VRA or the source
element i in VRB is a NaN, VRT is set to all 0s,
indicating “not equal to”. If the source element i in
VRA and the source element i in VRB are both
infinity with the same sign, VRT is set to all 1s,
indicating “equal to”. 

Special Registers Altered:
CR field 6  . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

Vector Compare Greater Than or Equal To 
Single-Precision VC-form

vcmpgefp VRT,VRA,VRB (Rc=0)
vcmpgefp. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   VRTi:i+31 I((VRA)i:i+31 ≥fp (VRB)i:i+31) ? 

321 : 320
end
if Rc=1 then do
   t I ( VRT=1281 )
   f I ( VRT=1280 )
   CR6 I t || 0b0 || f || 0b0
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
compared to single-precision floating-point
element i in VRB. Word element i in VRT is set to
all 1s if single-precision floating-point element i in
VRA is greater than or equal to single-precision
floating-point element i in VRB, and is set to all 0s
otherwise.

If the source element i in VRA or the source
element i in VRB is a NaN, VRT is set to all 0s,
indicating “not greater than or equal to”. If the
source element i in VRA and the source element i
in VRB are both infinity with the same sign, VRT is
set to all 1s, indicating “greater than or equal to”. 

Special Registers Altered:
CR field 6 . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)

4 VRT VRA VRB Rc 198
0 6 11 16 21 22 31

4 VRT VRA VRB Rc 454
0 6 11 16 21 22 31
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Vector Compare Greater Than 
Single-Precision VC-form

vcmpgtfp VRT,VRA,VRB (Rc=0)
vcmpgtfp. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   VRTi:i+31 I ((VRA)i:i+31 >fp (VRB)i:i+31) ? 

321 : 320
end
if Rc=1 then do
   t I ( VRT=1281 )
   f I ( VRT=1280 )
   CR6 I t || 0b0 || f || 0b0
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
compared to single-precision floating-point
element i in VRB. Word element i in VRT is set to
all 1s if single-precision floating-point element i in
VRA is greater than single-precision floating-point
element i in VRB, and is set to all 0s otherwise.

If the source element i in VRA or the source
element i in VRB is a NaN, VRT is set to all 0s,
indicating “not greater than”. If the source element
i in VRA and the source element i in VRB are both
infinity with the same sign, VRT is set to all 0s,
indicating “not greater than”.

Special Registers Altered:
CR field 6  . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

4 VRT VRA VRB Rc 710
0 6 11 16 21 22 31
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6.10.5 Vector Floating-Point Estimate Instructions

Vector 2 Raised to the Exponent Estimate 
Floating-Point VX-form

vexptefp VRT,VRB

do i=0 to 127 by 32
   VRTi:i+31 I Power2EstimateSP( (VRB)i:i+31 )
end

For each integer value i from 0 to 3, do the following.
The single-precision floating-point estimate of 2
raised to the power of single-precision
floating-point element i in VRB is placed into word
element i of VRT.

Let x be any single-precision floating-point input value.
Unless x< -146 or the single-precision floating-point
result of computing 2 raised to the power x would be a
zero, an infinity, or a QNaN, the estimate has a relative
error in precision no greater than one part in 16. The
most significant 12 bits of the estimate’s significand
are monotonic. An integral input value returns an
integral value when the result is representable.

The result for various special cases of the source
value is given below. 

Special Registers Altered:
None

Vector Log Base 2 Estimate
Floating-Point VX-form

vlogefp VRT,VRB

do i=0 to 127 by 32
   VRTi:i+31 I LogBase2EstimateSP((VRB)i:i+31)
end

For each integer value i from 0 to 3, do the following.
The single-precision floating-point estimate of the
base 2 logarithm of single-precision floating-point
element i in VRB is placed into the corresponding
word element of VRT. 

Let x be any single-precision floating-point input value.
Unless | x-1 | is less than or equal to 0.125 or the
single-precision floating-point result of computing the
base 2 logarithm of x would be an infinity or a QNaN,
the estimate has an absolute error in precision
(absolute value of the difference between the estimate
and the infinitely precise value) no greater than 2-5.
Under the same conditions, the estimate has a relative
error in precision no greater than one part in 8.

The most significant 12 bits of the estimate’s
significand are monotonic. The estimate is exact if
x=2y, where y is an integer between -149 and +127
inclusive. Otherwise the value placed into the element
of register VRT may vary between implementations,
and between different executions on the same
implementation.

The result for various special cases of the source
value is given below.  

Special Registers Altered:
None

4 VRT /// VRB 394
0 6 11 16 21 31

Value Result
- Infinity +0

-0 +1

+0 +1

+Infinity +Infinity

NaN QNaN

4 VRT /// VRB 458
0 6 11 16 21 31

Value Result
- Infinity QNaN

< 0 QNaN

- 0 - Infinity

+0 - Infinity

+Infinity +Infinity

NaN QNaN
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Vector Reciprocal Estimate 
Single-Precision VX-form

vrefp VRT,VRB

do i=0 to 127 by 32
   VRTi:i+31 I ReciprocalEstimateSP( (VRB)i:i+31 )
end

For each integer value i from 0 to 3, do the following.
The single-precision floating-point estimate of the
reciprocal of single-precision floating-point
element  i in VRB is placed into word element  i of
VRT.

Unless the single-precision floating-point result of
computing the reciprocal of a value would be a zero,
an infinity, or a QNaN, the estimate has a relative error
in precision no greater than one part in 4096.

Note that results may vary between implementations,
and between different executions on the same
implementation.

The result for various special cases of the source
value is given below.  

Special Registers Altered:
None

Vector Reciprocal Square Root Estimate 
Single-Precision VX-form

vrsqrtefp VRT,VRB

do i=0 to 127 by 32
   VRTi:i+31 I RecipSquareRootEstimateSP((VRB)i:i+31)
end

For each integer value i from 0 to 3, do the following.
The single-precision floating-point estimate of the
reciprocal of the square root of single-precision
floating-point element i in VRB is placed into word
element i of VRT.

Let x be any single-precision floating-point value.
Unless the single-precision floating-point result of
computing the reciprocal of the square root of x would
be a zero, an infinity, or a QNaN, the estimate has a
relative error in precision no greater than one part in
4096.

Note that results may vary between implementations,
and between different executions on the same
implementation.

The result for various special cases of the source
value is given below.  

Special Registers Altered:
None

4 VRT /// VRB 266
0 6 11 16 21 31

Value Result
- Infinity -0

- 0 - Infinity
+0 + Infinity

+Infinity +0
NaN QNaN

4 VRT /// VRB 330
0 6 11 16 21 31

Value Result
- Infinity QNaN

< 0 QNaN
- 0 - Infinity
+0 + Infinity

+Infinity +0
NaN QNaN
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6.11 Vector Exclusive-OR-based Instructions

6.11.1 Vector AES Instructions
This section describes a set of instructions that support
the Federal Information Processing Standards Publica-

tion 197 Advanced Encryption Standard for encryption
and decryption.

Vector AES Cipher VX-form
[Category:Vector.AES]

vcipher VRT,VRA,VRB

State    ← VR[VRA]
RoundKey ← VR[VRB]
vtemp1   ← SubBytes(State)
vtemp2   ← ShiftRows(vtemp1)
vtemp3   ← MixColumns(vtemp2)
VR[VRT]  ← vtemp3 ^ RoundKey

Let State be the contents of VR[VRA], representing the
intermediate state array during AES cipher operation.

Let RoundKey be the contents of VR[VRB], representing
the round key.

One round of an AES cipher operation is performed on
the intermediate State array, sequentially applying the
transforms, SubBytes(), ShiftRows(), MixColumns(),
and AddRoundKey(), as defined in FIPS-197.

The result is placed into VR[VRT], representing the new
intermediate state of the cipher operation.

Special Registers Altered:
None

Vector AES Cipher Last VX-form
[Category:Vector.AES]

vcipherlast VRT,VRA,VRB

State    ← VR[VRA]
RoundKey ← VR[VRB]
vtemp1   ← SubBytes(State)
vtemp2   ← ShiftRows(vtemp1)
VR[VRT]  ← vtemp2 ^ RoundKey

Let State be the contents of VR[VRA], representing the
intermediate state array during AES cipher operation.

Let RoundKey be the contents of VR[VRB], representing
the round key.

The final round in an AES cipher operation is
performed on the intermediate State array,
sequentially applying the transforms, SubBytes(),
ShiftRows(), AddRoundKey(), as defined in FIPS-197.

The result is placed into VR[VRT], representing the final
state of the cipher operation.

Special Registers Altered:
None

4 VRT VRA VRB 1288
0 6 11 16 21 31

4 VRT VRA VRB 1289
0 6 11 16 21 31
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Vector AES Inverse Cipher VX-form
[Category:Vector.AES]

vncipher VRT,VRA,VRB

State    ← VR[VRA]
RoundKey ← VR[VRB]
vtemp1   ← InvShiftRows(State)
vtemp2   ← InvSubBytes(vtemp1)
vtemp3   ← vtemp2 ^ RoundKey
VR[VRT]  ← InvMixColumns(vtemp3)

Let State be the contents of VR[VRA], representing the
intermediate state array during AES inverse cipher
operation.

Let RoundKey be the contents of VR[VRB], representing
the round key.

One round of an AES inverse cipher operation is
performed on the intermediate State array,
sequentially applying the transforms, InvShiftRows(),
InvSubBytes(), AddRoundKey(), and InvMixColumns(),
as defined in FIPS-197.

The result is placed into VR[VRT], representing the new
intermediate state of the inverse cipher operation.

Special Registers Altered:
None

Vector AES Inverse Cipher Last VX-form
[Category:Vector.AES]

vncipherlast VRT,VRA,VRB

State    ← VR[VRA]
RoundKey ← VR[VRB]
vtemp1   ← InvShiftRows(State)
vtemp2   ← InvSubBytes(vtemp1)
VR[VRT]  ← vtemp2 ^ RoundKey

Let State be the contents of VR[VRA], representing the
intermediate state array during AES inverse cipher
operation.

Let RoundKey be the contents of VR[VRB], representing
the round key.

The final round in an AES inverse cipher operation is
performed on the intermediate State array,
sequentially applying the transforms, InvShiftRows(),
InvSubBytes(), and AddRoundKey(), as defined in
FIPS-197.

The result is placed into VR[VRT], representing the final
state of the inverse cipher operation.

Special Registers Altered:
None

Vector AES SubBytes VX-form
[Category:Vector.AES]

vsbox VRT,VRA

State   ← VR[VRA]
VR[VRT] ← SubBytes(State)

Let State be the contents of VR[VRA], representing the
intermediate state array during AES cipher operation.

The result of applying the transform, SubBytes() on
State, as defined in FIPS-197, is placed into VR[VRT].

Special Registers Altered:
None

4 VRT VRA VRB 1352
0 6 11 16 21 31

4 VRT VRA VRB 1353
0 6 11 16 21 31

4 VRT VRA /// 1480
0 6 11 16 21 31
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6.11.2 Vector SHA-256 and SHA-512 Sigma Instructions
This section describes a set of instructions that support
the Federal Information Processing Standards Publica-
tion 180-3 Secure Hash Standard.

Vector SHA-512 Sigma Doubleword 
VX-form
[Category:Vector.SHA2]

vshasigmad VRT,VRA,ST,SIX

do i = 0 to 1
   src ← VR[VRA].doubleword[i]
   if ST=0 & SIX.bit[2×i]=0 then  // SHA-512 σ0 function
      VR[VRT].dword[i] ← (src >>>  1) ^
      VR[VRT].dword[i] ← (src >>>  8) ^
      VR[VRT].dword[i] ← (src >> 7)
   if ST=0 & SIX.bit[2×i]=1 then  // SHA-512 σ1 function
      VR[VRT].dword[i] ← (src >>> 19) ^
      VR[VRT].dword[i] ← (src >>> 61) ^
      VR[VRT].dword[i] ← (src >> 6)
   if ST=1 & SIX.bit[2×i]=0 then  // SHA-512 Σ0 function
      VR[VRT].dword[i] ← (src >>> 28) ^
      VR[VRT].dword[i] ← (src >>> 34) ^
      VR[VRT].dword[i] ← (src >>> 39)
   if ST=1 & SIX.bit[2×i]=1  then  // SHA-512 Σ1 function
      VR[VRT].dword[i] ← (src >>> 14) ^
      VR[VRT].dword[i] ← (src >>> 18) ^
      VR[VRT].dword[i] ← (src >>> 41)
end   

For each integer value i from 0 to 1, do the following.
When ST=0 and bit 2×i of SIX is 0, a SHA-512 σ0
function is performed on the contents of
doubleword element i of VR[VRA] and the result is
placed into doubleword element i of VR[VRT].

When ST=0 and bit 2×i of SIX is 1, a SHA-512 σ1
function is performed on the contents of
doubleword element i of VR[VRA] and the result is
placed into doubleword element i of VR[VRT].

When ST=1 and bit 2×i of SIX is 0, a SHA-512 Σ0
function is performed on the contents of
doubleword element i of VR[VRA] and the result is
placed into doubleword element i of VR[VRT].

When ST=1 and bit 2×i of SIX is 1, a SHA-512 Σ1
function is performed on the contents of
doubleword element i of VR[VRA] and the result is
placed into doubleword element i of VR[VRT].

Bits 1 and 3 of SIX are reserved.

Special Registers Altered:
None

Vector SHA-256 Sigma Word VX-form
[Category:Vector.SHA2]

vshasigmaw VRT,VRA,ST,SIX

do i = 0 to 3
   src ← VR[VRA].word[i]
   if ST=0 & SIX.bit[i]=0 then  // SHA-256 σ0 function
      VR[VRT].word[i] ← (src >>>  7) ^
      VR[VRT].word[i] ← (src >>> 18) ^
      VR[VRT].word[i] ← (src >>  3)
   if ST=0 & SIX.bit[i]=1 then  // SHA-256 σ1 function
      VR[VRT].word[i] ← (src >>> 17) ^
      VR[VRT].word[i] ← (src >>> 19) ^
      VR[VRT].word[i] ← (src >> 10)
   if ST=1 & SIX.bit[i]=0 then  // SHA-256 Σ0 function
      VR[VRT].word[i] ← (src >>>  2) ^
      VR[VRT].word[i] ← (src >>> 13) ^
      VR[VRT].word[i] ← (src >>> 22)
   if ST=1 & SIX.bit[i]=1 then  // SHA-256 Σ1 function
      VR[VRT].word[i] ← (src >>>  6) ^
      VR[VRT].word[i] ← (src >>> 11) ^
      VR[VRT].word[i] ← (src >>> 25)
end

For each integer value i from 0 to 3, do the following.
When ST=0 and bit i of SIX is 0, a SHA-256 σ0
function is performed on the contents of word
element i of VR[VRA] and the result is placed into
word element i of VR[VRT].

When ST=0 and bit i of SIX is 1, a SHA-256 σ1
function is performed on the contents of word
element i of VR[VRA] and the result is placed into
word element i of VR[VRT].

When ST=1 and bit i of SIX is 0, a SHA-256 Σ0
function is performed on the contents of word
element i of VR[VRA] and the result is placed into
word element i of VR[VRT].

When ST=1 and bit i of SIX is 1, a SHA-256 Σ1
function is performed on the contents of word
element i of VR[VRA] and the result is placed into
word element i of VR[VRT].

Special Registers Altered:
None

4 VRT VRA ST SIX 1730
0 6 11 16 17 21 31

4 VRT VRA ST SIX 1666
0 6 11 16 17 21 31
Power ISA™ - Book I306



Version 2.07 B
6.11.3 Vector Binary Polynomial Multiplication Instructions
This section describes a set of binary polynomial multi-
ply-sum instructions. Corresponding elements are mul-
tiplied and the exclusive-OR of each even-odd pair of

products sum, useful for a variety of finite field arith-
metic operations.

Vector Polynomial Multiply-Sum Byte 
VX-form

vpmsumb VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()
do i = 0 to 15
   prod[i].bit[0:14] ← 0
   srcA ← VR[VRA].byte[i]
   srcB ← VR[VRB].byte[i]
   do j = 0 to 7
      do k = 0 to j
         gbit ← srcA.bit[k] & srcB.bit[j-k]
         prod[i].bit[j] ← prod[i].bit[j] ^ gbit
      end
   end
   do j = 8 to 14
      do k = j-7 to 7
         gbit ← (srcA.bit[k] & srcB.bit[j-k])
         prod[i].bit[j] ← prod[i].bit[j] ^ gbit
      end
   end
end
do i = 0 to 7
   VR[VRT].hword[i] ← 0b0 æ (prod[2×i] ^ prod[2×i+1])
end

For each integer value i from 0 to 15, do the following.
Let prod[i] be the 15-bit result of a binary
polynomial multiplication of the contents of byte
element i of VR[VRA] and the contents of byte
element i of VR[VRB].

For each integer value i from 0 to 7, do the following.
The exclusive-OR of prod[2×i] and prod[2×i+1] is
placed in bits 1:15 of halfword element i of
VR[VRT]. Bit 0 of halfword element i of VR[VRT] is
set to 0.

Special Registers Altered:
None

Vector Polynomial Multiply-Sum 
Doubleword VX-form

vpmsumd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()
do i = 0 to 1
   prod[i].bit[0:126] ← 0
   srcA ← VR[VRA].doubleword[i]
   srcB ← VR[VRB].doubleword[i]
   do j = 0 to 63
      do k = 0 to j
         gbit ← srcA.bit[k] & srcB.bit[j-k]
         prod[i].bit[j] ← prod[i].bit[j] ^ gbit
      end
   end
   do j = 64 to 126
      do k = j-63 to 63
         gbit ← (srcA.bit[k] & srcB.bit[j-k])
         prod[i].bit[j] ← prod[i].bit[j] ^ gbit
      end
   end
end
VR[VRT] ← 0b0 æ (prod[0] ^ prod[1])

Let prod[0] be the 127-bit result of a binary polynomial
multiplication of the contents of doubleword element 0
of VR[VRA] and the contents of doubleword element 0
of VR[VRB].

Let prod[1] be the 127-bit result of a binary polynomial
multiplication of the contents of doubleword element 1
of VR[VRA] and the contents of doubleword element 1
of VR[VRB].

The exclusive-OR of prod[0] and prod[1] is placed in
bits 1:127 of VR[VRT]. Bit 0 of VR[VRT] is set to 0.

Special Registers Altered:
None

4 VRT VRA VRB 1032
0 6 11 16 21 31

4 VRT VRA VRB 1224
0 6 11 16 21 31
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Vector Polynomial Multiply-Sum Halfword 
VX-form

vpmsumh VRT,VRA,VRB

do i = 0 to 7
   prod.bit[0:30] ← 0
   srcA ← VR[VRA].halfword[i]
   srcB ← VR[VRB].halfword[i]
   do j = 0 to 15
      do k = 0 to j
         gbit ← srcA.bit[k] & srcB.bit[j-k]
         prod[i].bit[j] ← prod[i].bit[j] ^ gbit
      end
   end
   do j = 16 to 30
      do k = j-15 to 15
         gbit ← (srcA.bit[k] & srcB.bit[j-k])
         prod[i].bit[j] ← prod[i].bit[j] ^ gbit
      end
   end
end
VR[VRT].word[0] ← 0b0 æ (prod[0] ^ prod[1])
VR[VRT].word[1] ← 0b0 æ (prod[2] ^ prod[3])
VR[VRT].word[2] ← 0b0 æ (prod[4] ^ prod[5])
VR[VRT].word[3] ← 0b0 æ (prod[6] ^ prod[7])

For each integer value i from 0 to 7, do the following.
Let prod[i] be the 31-bit result of a binary
polynomial multiplication of the contents of
halfword element i of VR[VRA] and the contents of
halfword element i of VR[VRB].

For each integer value i from 0 to 3, do the following.
The exclusive-OR of prod[2×i] and prod[2×i+1] is
placed in bits 1:31 of word element i of VR[VRT].
Bit 0 of word element i of VR[VRT] is set to 0.

Special Registers Altered:
None

Vector Polynomial Multiply-Sum Word 
VX-form

vpmsumw VRT,VRA,VRB

do i = 0 to 3
   prod[i].bit[0:62] ← 0
   srcA ← VR[VRA].word[i]
   srcB ← VR[VRB].word[i]
   do j = 0 to 31
      do k = 0 to j
         gbit ← srcA.bit[k] & srcB.bit[j-k]
         prod[i].bit[j] ← prod[i].bit[j] ^ gbit
      end
   end
   do j = 32 to 62
      do k = j-31 to 31
         gbit ← (srcA.bit[k] & srcB.bit[j-k])
         prod[i].bit[j] ← prod[i].bit[j] ^ gbit
      end
   end
end
VR[VRT].dword[0] ← 0b0 æ (prod[0] ^ prod[1])
VR[VRT].dword[1] ← 0b0 æ (prod[2] ^ prod[3])

For each integer value i from 0 to 3, do the following.
Let prod[i] be the 63-bit result of a binary
polynomial multiplication of the contents of word
element i of VR[VRA] and the contents of word
element i of VR[VRB].

For each integer value i from 0 to 1, do the following.
The exclusive-OR of prod[2×i] and prod[2×i+1] is
placed in bits 1:63 of doubleword element i of
VR[VRT]. Bit 0 of doubleword element i of VR[VRT]
is set to 0.

Special Registers Altered:
None

4 VRT VRA VRB 1096
0 6 11 16 21 31

4 VRT VRA VRB 1160
0 6 11 16 21 31
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6.11.4 Vector Permute and Exclusive-OR Instruction

Vector Permute and Exclusive-OR 
VA-form
[Category:Vector.RAID]

vpermxor VRT,VRA,VRB,VRC

do i = 0 to 15
   indexA ← VR[VRC].byte[i].bit[0:3]
   indexB ← VR[VRC].byte[i].bit[4:7]
   src1   ← VR[VRA].byte[indexA]
   src2   ← VR[VRB].byte[indexB]
   VSR[VRT].byte[i] ← src1 ^ src2
end

For each integer value i from 0 to 15, do the following.
Let indexA be the contents of bits 0:3 of byte
element i of VR[VRC].
Let indexB be the contents of bits 4:7 of byte
element i of VR[VRC].

The exclusive OR of the contents of byte element
indexA of VR[VRA] and the contents of byte
element indexB of VR[VRB] is placed into byte
element i of VR[VRT].

Special Registers Altered:
None

4 VRT VRA VRB VRC 45
0 6 11 16 21 26 31
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6.12 Vector Gather Instruction

Vector Gather Bits by Bytes by 
Doubleword VX-form

vgbbd VRT,VRB

do i = 0 to 1
    do j = 0 to 7
        do k = 0 to 7
            b ← VSR[VRB].dword[i].byte[k].bit[j]
            VSR[VRT].dword[i].byte[j].bit[k] ← b
        end
    end
end

Let src be the contents of VR[VRB], composed of two
doubleword elements numbered 0 and 1.

Let each doubleword element be composed of eight
bytes  numbered 0 through 7.

An 8-bit × 8-bit bit-matrix transpose is performed on
the contents of each doubleword element of VR[VRB]
(see Figure 108).

For each integer value i from 0 to 1, do the following,
The contents of bit 0 of each byte of doubleword
element i of VR[VRB] are concatenated and placed
into byte 0 of doubleword element i of VR[VRT].

The contents of bit 1 of each byte of doubleword
element i of VR[VRB] are concatenated and placed
into byte 1 of doubleword element i of VR[VRT].

The contents of bit 2 of each byte of doubleword
element i of VR[VRB] are concatenated and placed
into byte 2 of doubleword element i of VR[VRT].

The contents of bit 3 of each byte of doubleword
element i of VR[VRB] are concatenated and placed
into byte 3 of doubleword element i of VR[VRT].

The contents of bit 4 of each byte of doubleword
element i of VR[VRB] are concatenated and placed
into byte 4 of doubleword element i of VR[VRT].

The contents of bit 5 of each byte of doubleword
element i of VR[VRB] are concatenated and placed
into byte 5 of doubleword element i of VR[VRT].

The contents of bit 6 of each byte of doubleword
element i of VR[VRB] are concatenated and placed
into byte 6 of doubleword element i of VR[VRT].

The contents of bit 7 of each byte of doubleword
element i of VR[VRB] are concatenated and placed
into byte 7 of doubleword element i of VR[VRT].

Special Registers Altered:
None

Figure 108.Vector Gather Bits by Bytes by Doubleword

4 VRT /// VRB 1292
0 6 11 16 21 31
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6.13 Vector Count Leading Zeros Instructions

Vector Count Leading Zeros Byte VX-form

vclzb VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15
   n ← 0
   do while n < 8
      if VR[VRB].byte[i].bit[n] = 0b1 then leave 
      n ← n + 1
   end
   VSR[VRT].byte[i] ← n
end

For each integer value i from 0 to 15, do the following.
A count of the number of consecutive zero bits
starting at bit 0 of byte element i of VR[VRB] is
placed into byte element i of VR[VRT]. This
number ranges from 0 to 8, inclusive.

Special Registers Altered:
None

Vector Count Leading Zeros Halfword 
VX-form

vclzh VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7
   n  ← 0
   do while n < 16
      if VR[VRB].hword[i].bit[n] = 0b1 then leave 
      n  ← n + 1
   end
   VSR[VRT].hword[i] ← n
end

For each integer value i from 0 to 7, do the following.
A count of the number of consecutive zero bits
starting at bit 0 of halfword element i of VR[VRB] is
placed into halfword element i of VR[VRT]. This
number ranges from 0 to 16, inclusive.

Special Registers Altered:
None

Vector Count Leading Zeros Word 
VX-form

vclzw VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3
   n  ← 0
   do while n < 32
      if VR[VRB].word[i].bit[n] = 0b1 then leave 
      n  ← n + 1
   end
   VSR[VRT].word[i] ← n
end

For each integer value i from 0 to 3, do the following.
A count of the number of consecutive zero bits
starting at bit 0 of word element i of VR[VRB] is
placed into word element i of VR[VRT]. This
number ranges from 0 to 32, inclusive.

Special Registers Altered:
None

Vector Count Leading Zeros Doubleword

vclzd VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1
   n ← 0
   do while (n<64) & (VR[VRB].dword[i].bit[n]=0b0)
      n ← n + 1
   end
   VSR[VRT].dword[i] ← n
end

For each integer value i from 0 to 1, do the following.
A count of the number of consecutive zero bits
starting at bit 0 of doubleword element i of
VR[VRB] is placed into doubleword element i of
VR[VRT]. This number ranges from 0 to 64,
inclusive.

Special Registers Altered:
None

4 VRT /// VRB 1794
0 6 11 16 21 31

4 VRT /// VRB 1858
0 6 11 16 21 31

4 VRT /// VRB 1922
0 6 11 16 21 31

4 VRT /// VRB 1986
0 6 11 16 21 31
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6.14 Vector Population Count Instructions

Vector Population Count Byte

vpopcntb VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15
   n ← 0
   do j = 0 to 7
      n ← n + VR[VRB].byte[i].bit[j]
   end
   VSR[VRT].byte[i] ← n
end

For each integer value i from 0 to 15, do the following.
A count of the number of bits set to 1 in byte
element i of VR[VRB] is placed into byte element i
of VR[VRT]. This number ranges from 0 to 8,
inclusive.

Special Registers Altered:
None

Vector Population Count Doubleword

vpopcntd VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1
   n ← 0
   do j = 0 to 63
      n ← n + VR[VRB].dword[i].bit[j]
   end
   VSR[VRT].dword[i] ← n
end

For each integer value i from 0 to 1, do the following.
A count of the number of bits set to 1 in
doubleword element i of VR[VRB] is placed into
doubleword element i of VR[VRT]. This number
ranges from 0 to 64, inclusive.

Special Registers Altered:
None

Vector Population Count Halfword

vpopcnth VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7
   n ← 0
   do j = 0 to 15
      n ← n + VR[VRB].hword[i].bit[j]
   end
   VSR[VRT].hword[i] ← n
end

For each integer value i from 0 to 7, do the following.
A count of the number of bits set to 1 in halfword
element i of VR[VRB] is placed into halfword
element i of VR[VRT]. This number ranges from 0
to 16, inclusive.

Special Registers Altered:
None

Vector Population Count Word

vpopcntw VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3
   n ← 0
   do j = 0 to 31
      n ← n + VR[VRB].word[i].bit[j]
   end
   VSR[VRT].word[i] ← n
end

For each integer value i from 0 to 3, do the following.
A count of the number of bits set to 1 in word
element i of VR[VRB] is placed into word element i
of VR[VRT]. This number ranges from 0 to 32,
inclusive.

Special Registers Altered:
None

4 VRT /// VRB 1795
0 6 11 16 21 31

4 VRT /// VRB 1987
0 6 11 16 21 31

4 VRT /// VRB 1859
0 6 11 16 21 31

4 VRT /// VRB 1923
0 6 11 16 21 31
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6.15 Vector Bit Permute Instruction

Vector Bit Permute Quadword VX-form

vbpermq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15
   index I VR[VRB].byte[i]
   if index < 128 then
      perm.bit[i] I VR[VRA].bit[index]
   else
      perm.bit[i] I 0
end
VR[VRT].dword[0] I Chop(EXTZ(perm),64)
VR[VRT].dword[1] I 0x0000_0000_0000_0000

For each integer value i from 0 to 15, do the following.

Let index be the contents of byte element i of
VR[VRB].

If index is less than 128, then the contents of bit
index of VR[VRA] are placed into bit 48+i of double-
word element i of VR[VRT]. Otherwise, bit 48+i of
doubleword element i of VR[VRT] is set to 0.

The contents of bits 0:47 of VR[VRT] are set to 0. 
The contents of bits 64:127 of VR[VRT] are set to 0. 

Special Registers Altered:
None

  

4 VRT VRA VRB 1356
0 6 11 16 21 31

The fact that the permuted bit is 0 if the
corresponding index value exceeds 127 permits
the permuted bits to be selected from a 256-bit
quantity, using a single index register. For
example, assume that the 256-bit quantity Q, from
which the permuted bits are to be selected, is in
registers v2 (high-order 128 bits of Q) and v3
(low-order 128 bits of Q), that the index values are
in register v1, with each byte of v1 containing a
value in the range 0:255, and that each byte of
register v4 contains the value 128. The following
code sequence selects eight permuted bits from Q
and places them into the low-order byte of v6.

vbpermq v6,v1,v2 # select from high-order half
    of Q

vxor v0,v1,v4 # adjust index values
vbpermq v5,v0,v3 # select from low-order half

    of Q
vor v6,v6,v5 # merge the two selections

Programming Note
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6.16 Decimal Integer Arithmetic Instructions

The Decimal Integer Arithmetic instructions operate on
decimal integer values only in signed packed decimal
format. Signed packed decimal format consists of 31
4-bit base-10 digits of magnitude and a trailing 4-bit
sign code. Operations are performed as
sign-magnitude, and produce a decimal result placed
in a Vector Register (i.e., bcdadd, bcdsub).

A valid encoding of a decimal integer value requires
the following properties.

– Each of the 31 4-bit digits of the operand’s
magnitude (bits 0:123) must be in the range 0-9.

– The sign code (bits 124:127) must be in the range
10-15.

Source operands with sign codes of 0b1010, 0b1100,
0b1110, and 0b1111 are interpreted as positive values.

Source operands with sign codes of 0b1011 and 0b1101
are interpreted as negative values.

Positive and zero results are encoded with a either
sign code of 0b1100 or 0b1111, depending on the
preferred sign (indicated as an immediate operand).

Negative results are encoded with a sign code of
0b1101.
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Decimal Add Modulo VX-form

bcdadd. VRT,VRA,VRB,PS

if MSR.VEC=0 then Vector_Unavailable()

VR[VRT] ← Signed_BCD_Add(VR[VRA],VR[VRB],PS)

CR.bit[56] ← inv_flag ? 0b0 : lt_flag
CR.bit[57] ← inv_flag ? 0b0 : gt_flag
CR.bit[58] ← inv_flag ? 0b0 : eq_flag
CR.bit[59] ← ox_flag | inv_flag

Let src1 be the decimal integer value in VR[VRA].
Let src2 be the decimal integer value in VR[VRB].

src1 is added to src2.

If the unbounded result is equal to zero, do the
following.

If PS=0, the sign code of the result is set to 0b1100.
If PS=1, the sign code of the result is set to 0b1111.

CR field 6 is set to 0b0010.

If the unbounded result is greater than zero, do the
following.

If PS=0, the sign code of the result is set to 0b1100.
If PS=1, the sign code of the result is set to 0b1111.

If the operation overflows, CR field 6 is set to
0b0101. Otherwise, CR field 6 is set to 0b0100.

If the unbounded result is less than zero, do the
following.

The sign code of the result is set to 0b1101.

If the operation overflows, CR field 6 is set to
0b1001. Otherwise, CR field 6 is set to 0b1000.

The low-order 31 digits of the magnitude of the result
are placed in bits 0:123 of VR[VRT]. 

The sign code is placed in bits 124:127 of VR[VRT].

If either src1 or src2 is an invalid encoding of a 31-digit
signed decimal value, the result is undefined and CR
field 6 is set to 0b0001.

Special Registers Altered:
CR field 6

Decimal Subtract Modulo VX-form

bcdsub. VRT,VRA,VRB,PS

if MSR.VEC=0 then Vector_Unavailable()

VR[VRT] ← Signed_BCD_Subtract(VR[VRA],VR[VRB],PS)

CR.bit[56] ← inv_flag ? 0b0 : lt_flag
CR.bit[57] ← inv_flag ? 0b0 : gt_flag
CR.bit[58] ← inv_flag ? 0b0 : eq_flag
CR.bit[59] ← ox_flag | inv_flag

Let src1 be the decimal integer value in VR[VRA].
Let src2 be the decimal integer value in VR[VRB].

src1 is subtracted by src2.

If the unbounded result is equal to zero, do the
following.

If PS=0, the sign code of the result is set to 0b1100.
If PS=1, the sign code of the result is set to 0b1111.

CR field 6 is set to 0b0010.

If the unbounded result is greater than zero, do the
following.

If PS=0, the sign code of the result is set to 0b1100.
If PS=1, the sign code of the result is set to 0b1111.

If the operation overflows, CR field 6 is set to
0b0101. Otherwise, CR field 6 is set to 0b0100.

If the unbounded result is less than zero, do the
following.

The sign code of the result is set to 0b1101.

If the operation overflows, CR field 6 is set to
0b1001. Otherwise, CR field 6 is set to 0b1000.

The low-order 31 digits of the magnitude of the result
are placed in bits 0:123 of VR[VRT]. 

The sign code is placed in bits 124:127 of VR[VRT].

If either src1 or src2 is an invalid encoding of a 31-digit
signed decimal value, the result is undefined and CR
field 6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT VRA VRB 1 PS 1
0 6 11 16 21 22 23 31

4 VRT VRA VRB 1 PS 65
0 6 11 16 21 22 23 31
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6.17 Vector Status and Control Register Instructions

Move To Vector Status and Control 
Register VX-form

mtvscr VRB

VSCR I (VRB)96:127

The contents of word element 3 of VRB are placed into
the VSCR.

Special Registers Altered:
None

Move From Vector Status and Control 
Register VX-form

mfvscr VRT

VRT I 960 || (VSCR)

The contents of the VSCR are placed into word
element 3 of VRT.

The remaining word elements in VRT are set to 0.

Special Registers Altered:
None

4 /// /// VRB 1604
0 6 11 16 21 31

4 VRT /// /// 1540
0 6 11 16 21 31
Power ISA™ - Book I316



Version 2.07 B
Chapter 7.  Vector-Scalar Floating-Point Operations 
[Category: VSX]

7.1 Introduction

7.1.1 Overview of the 
Vector-Scalar Extension
Category Vector-Scalar Extension (VSX) provides
facilities supporting vector and scalar binary
floating-point operations. The following VSX features
are provided to increase opportunities for vectorization.

– A unified register file, a set of Vector-Scalar
Registers (VSR), supporting both scalar and
vector operations is provided, eliminating the
overhead of vector-scalar data transfer through
storage.

– Support for word-aligned storage accesses for
both scalar and vector operations is provided.

– Robust support for IEEE-754 for both vector and
scalar floating-point operations is provided.

Combining the Floating-Point Registers (FPR) defined
in Chapter 4. Floating-Point Facility [Category:
Floating-Point] and the Vector Registers (VR) defined
in Chapter 6. Vector Facility [Category: Vector]
provides additional registers to support more
aggressive compiler optimizations for both vector and
scalar operations.

Implementations of VSX must also implement the
Floating-Point (Chapter 4) and Vector (Chapter 6)
categories.

7.1.1.1 Compatibility with Category 
Floating-Point and Category Decimal 
Floating-Point Operations

The instruction sets defined in Chapter 4.
Floating-Point Facility [Category: Floating-Point] and
Chapter 5. Decimal Floating-Point [Category: Decimal

Floating-Point] retain their definition with one primary
difference. The FPRs are mapped to doubleword
element 0 of VSRs 0-31. The contents of doubleword 1
of the VSR corresponding to a source FPR specified
by an instruction are ignored. The contents of
doubleword 1 of a VSR corresponding to the target
FPR specified by an instruction are undefined. 

 

7.1.1.2 Compatibility with Category 
Vector Operations

The instruction set defined in Chapter 6. Vector Facility
[Category: Vector], retains its definition with one
primary difference. The VRs are mapped to VSRs
32-63.

Application binary interfaces extended to support
VSX require special care of vector data written to
VSRs 0-31 (i.e., VSRs corresponding to FPRs).
Legacy scalar function calls employ
doubleword-based loads and stores to preserve
the contents of any nonvolatile registers, This has
the adverse effect of not preserving the contents of
doubleword 1 of these VSRs.

Programming Note
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7.2 VSX Registers

7.2.1 Vector-Scalar Registers
Sixty-four 128-bit VSRs are provided. See Figure 109
All VSX floating-point computations and other data
manipulation are performed on data residing in
Vector-Scalar Registers, and results are placed into a
VSR.

Depending on the instruction, the contents of a VSR
are interpreted as a sequence of equal-length
elements (words or doublewords) or as a quadword.
Each of the elements is aligned within the VSR, as
shown in Figure 109. Many instructions perform a

given operation in parallel on all elements in a VSR.
Depending on the instruction, a word element can be
interpreted as a signed integer word (SW), an
unsigned integer word (UW), a logical mask value
(MW), or a single-precision floating-point value (SP); a
doubleword element can be interpreted as a
doubleword signed integer (SD),  a doubleword
unsigned integer (UD), a doubleword mask (DM), or a
double-precision floating-point value (DP). In the
instructions descriptions, phrases like signed integer
word element are used as shorthand for word element,
interpreted as a signed integer.

Load and Store instructions are provided that transfer
a byte, halfword, word, doubleword, or quadword
between storage and a VSR.

7.2.1.1 Floating-Point Registers

Chapter 4. Floating-Point Facility [Category:
Floating-Point] provides 32 64-bit FPRs. Chapter 5.
Decimal Floating-Point [Category: Decimal
Floating-Point] also employs FPRs in decimal
floating-point (DFP) operations. When VSX is
implemented, the 32 FPRs are mapped to doubleword
0 of VSRs 0-31.  For example, FPR[0] is located in
doubleword element 0 of VSR[0], FPR[1] is located in
doubleword element 0 of VSR[1], and so forth.

All instructions that operate on an FPR are redefined
to operate on doubleword element 0 of the
corresponding VSR. The contents of doubleword
element 1 of the VSR corresponding to a source FPR
or FPR pair for these instructions are ignored and the
contents of doubleword element 1 of the VSR
corresponding to the target FPR or FPR pair for these
instructions are undefined.

VSR[0]

VSR[1]

…
…

VSR[62]

VSR[63]
0 127

Figure 109.Vector-Scalar Registers

SD/UD/MD/DP 0 SD/UD/MD/DP 1

SW/UW/MW/SP 0 SW/UW/MW/SP 1 SW/UW/MW/SP 2 SW/UW/MW/SP 3
0 32 64 96 127

Figure 110.Vector-Scalar Register Elements
Power ISA™ - Book I318



Version 2.07 B
VSR[0] FPR[0]

VSR[1] FPR[1]

…
…

VSR[30] FPR[30]

VSR[31] FPR[31]

VSR[32]

VSR[33]

…
…

VSR[62]

VSR[63]

0 63 127

Figure 111.Floating-Point Registers as part of VSRs
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7.2.1.2 Vector Registers

Chapter 6. Vector Facility [Category: Vector] provides
32 128-bit VRs. When VSX is implemented, the 32
VRs are mapped to VSRs 32-63.  For example, VR[0]
is located in VSR[32], VR[1] is located in VSR[33], and
so forth. 

All instructions that operate on a VR are redefined to
operate on the corresponding VSR.

VSR[0]

VSR[1]

…
…

VSR[30]

VSR[31]

VSR[32] VR[0]

VSR[33] VR[1]

…
…

VSR[62] VR[30]

VSR[63] VR[31]
0 127

Figure 112.Vector Registers as part of VSRs
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7.2.2 Floating-Point Status and Control Register

The Floating-Point Status and Control Register
(FPSCR) controls the handling of floating-point
exceptions and records status resulting from the
floating-point operations. Bits 0:19 and 32:55 are
status bits. Bits 56:63 are control bits.

The exception status bits in the FPSCR (bits 35:44,
53:55) are sticky; that is, once set to 1 they remain set
to 1 until they are set to 0 by an mcrfs, mtfsfi, mtfsf,
or mtfsb0 instruction. The exception summary bits in
the FPSCR (FX, FEX, and VX, which are bits 32:34)
are not considered to be “exception status bits”, and
only FX is sticky.

 

FEX and VX are simply the ORs of other FPSCR bits.
Therefore these two bits are not listed among the
FPSCR bits affected by the various instructions.

The bit definitions for the FPSCR are as follows.

Bits Definition

0:28 Decimal Floating-Point Rounding
Control (DRN)
This field is not used by VSX instructions.

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mtfsfi
and mtfsf, implicitly sets FX to 1 if that
instruction causes any of the floating-point
exception bits in the FPSCR to change from 0
to 1. mcrfs, mtfsfi, mtfsf, mtfsb0, and
mtfsb1 can alter FX explicitly.

 

33 Floating-Point Enabled Exception
Summary (FEX)
This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits. mcrfs, mtfsfi, mtfsf, mtfsb0, and
mtfsb1 cannot alter FEX explicitly.

Bits Definition

34 Floating-Point Invalid Operation Exception
Summary (VX)
This bit is the OR of all the Invalid Operation
exception bits. mcrfs, mtfsfi, mtfsf, mtfsb0,
and mtfsb1 cannot alter VX explicitly.

35 Floating-Point Overflow Exception (OX)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic, VSX Vector
Floating-Point Arithmetic, VSX Scalar DP-SP
Conversion or VSX Vector DP-SP Conversion
class instruction causes an Overflow
exception. See Section 7.4.3 , “Floating-Point
Overflow Exception” on page 349.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

36 Floating-Point Underflow Exception (UX)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic, VSX Vector
Floating-Point Arithmetic, VSX Scalar DP-SP
Conversion or VSX Vector DP-SP Conversion
class instruction causes an Underflow
exception. See Section 7.4.4 , “Floating-Point
Underflow Exception” on page 351.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

37 Floating-Point Zero Divide Exception (ZX)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic or VSX Vector
Floating-Point Arithmetic class instruction
causes an Zero Divide exception. See
Section 7.4.2 , “Floating-Point Zero Divide
Exception” on page 347.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

38 Floating-Point Inexact Exception (XX)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic, VSX Vector
Floating-Point Arithmetic, VSX Scalar Integer
Conversion, VSX Vector Integer Conversion,
VSX Scalar Round to Floating-Point Integer,
or VSX Vector Round to Floating-Point Integer
class instruction causes an Inexact exception.
See Section 7.4.5 , “Floating-Point Inexact
Exception” on page 354.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Access to Move To FPSCR and Move From
FPSCR instructions requires FP=1.

FX is defined not to be altered implicitly
by mtfsfi and mtfsf because permitting
these instructions to alter FX implicitly can
cause a paradox. An example is an mtfsfi
or mtfsf instruction that supplies 0 for FX
and 1 for OX, and is executed when
OX=0. See also the Programming Notes
with the definition of these two
instructions.

Programming Note

Programming Note
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Bits Definition

39 Floating-Point Invalid Operation Exception
(SNAN) (VXSNAN)
This bit is set to 1 when a VSX Scalar
Floating-Point and VSX Vector Floating-Point
class instruction causes an SNaN type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

40 Floating-Point Invalid Operation Exception
(Inf-Inf) (VXISI)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic and VSX Vector
Floating-Point Arithmetic class instruction
causes an Infinity – Infinity type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

41 Floating-Point Invalid Operation Exception
(Inf÷Inf) (VXIDI)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic and VSX Vector
Floating-Point Arithmetic class instruction
causes an Infinity ÷ Infinity type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

42 Floating-Point Invalid Operation Exception
(Zero÷Zero) (VXZDZ)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic and VSX Vector
Floating-Point Arithmetic class instruction
causes a Zero ÷ Zero type Invalid Operation
exception. See Section 7.4.1 , “Floating-Point
Invalid Operation Exception” on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Bits Definition

43 Floating-Point Invalid Operation Exception
(Inf×Zero) (VXIMZ)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic and VSX Vector
Floating-Point Arithmetic class instruction
causes a Infinity × Zero type Invalid Operation
exception. See Section 7.4.1 , “Floating-Point
Invalid Operation Exception” on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

44 Floating-Point Invalid Operation Exception
(Invalid Compare) (VXVC)
This bit is set to 1 when a VSX Scalar
Compare Double-Precision, VSX Vector
Compare Double-Precision, or VSX Vector
Compare Single-Precision class instruction
causes an Invalid Compare type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

45 Floating-Point Fraction Rounded (FR)
This bit is set to 0 or 1 by VSX Scalar
Floating-Point Arithmetic, VSX Scalar Integer
Conversion, and VSX Scalar Round to
Floating-Point Integer class instructions to
indicate whether or not the fraction was
incremented during rounding. See Section
7.3.2.6 , “Rounding” on page 333. This bit is
not sticky.

46 Floating-Point Fraction Inexact (FI)
This bit is set to 0 or 1 by VSX Scalar
Floating-Point Arithmetic, VSX Scalar Integer
Conversion, and VSX Scalar Round to
Floating-Point Integer class instructions to
indicate whether or not the rounded result is
inexact or the instruction caused a disabled
Overflow exception. See Section 7.3.2.6 on
page 333. This bit is not sticky.

See the definition of XX, above, regarding the
relationship between FI and XX.
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Bits Definition

47:51 Floating-Point Result Flags (FPRF)
VSX Scalar Floating-Point Arithmetic, VSX
Scalar DP-SP Conversion, VSX Scalar
Convert Integer to Double-Precision, and
VSX Scalar Round to Double-Precision
Integer class instructions set this field based
on the result placed into the target register
and on the target precision, except that if any
portion of the result is undefined then the
value placed into FPRF is undefined.

For VSX Scalar Convert Double-Precision to
Integer class instructions, the value placed
into FPRF is undefined.

Additional details are as follows.

47 Floating-Point Result Class
Descriptor (C)
VSX Scalar Floating-Point Arithmetic, VSX
Scalar DP-SP Conversion, VSX Scalar
Convert Integer to Double-Precision, and
VSX Scalar Round to Double-Precision
Integer class instructions set this bit with the
FPCC bits, to indicate the class of the result
as shown in Table 2, “Floating-Point Result
Flags,” on page 325.

48:51 Floating-Point Condition Code (FPCC)
VSX Scalar Compare Double-Precision
instruction sets one of the FPCC bits to 1 and
the other three FPCC bits to 0 based on the
relative values of the operands being
compared. 

VSX Scalar Floating-Point Arithmetic, VSX
Scalar DP-SP Conversion, VSX Scalar
Convert Integer to Double-Precision, and
VSX Scalar Round to Double-Precision
Integer class instructions set the FPCC bits
with the C bit, to indicate the class of the
result as shown in Table 2, “Floating-Point
Result Flags,” on page 325. Note that in this
case the high-order three bits of the FPCC
retain their relational significance indicating
that the value is less than, greater than, or
equal to zero.

48 Floating-Point Less Than or
Negative (FL)

49 Floating-Point Greater Than or
Positive (FG)

50 Floating-Point Equal or Zero (FE)

51 Floating-Point Unordered or NaN (FU)

Bits Definition

52 Reserved

53 Floating-Point Invalid Operation Exception
(Software-Defined Condition) (VXSOFT)
This bit can be altered only by mcrfs, mtfsfi,
mtfsf, mtfsb0, or mtfsb1. See Section
7.4.1 , “Floating-Point Invalid Operation
Exception” on page 341.

 

54 Floating-Point Invalid Operation Exception
(Invalid Square Root) (VXSQRT)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic or VSX Vector
Floating-Point Arithmetic class instruction
causes a Invalid Square Root type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

55 Floating-Point Invalid Operation Exception
(Invalid Integer Convert) (VXCVI)
This bit is set to 1 when a VSX Scalar
Convert Double-Precision to Integer, VSX
Vector Convert Double-Precision to Integer, or
VSX Vector Convert Single-Precision to
Integer class instruction causes a Invalid
Integer Convert type Invalid Operation
exception. See Section 7.4.1 , “Floating-Point
Invalid Operation Exception” on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

56 Floating-Point Invalid Operation Exception
Enable (VE)
This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Invalid
Operation exceptions. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 341.

VXSOFT can be used by software to
indicate the occurrence of an arbitrary,
software-defined, condition that is to be
treated as an Invalid Operation exception.
For example, the bit could be set by a
program that computes a base 10
logarithm if the supplied input is negative.

Programming Note
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Bits Definition

57 Floating-Point Overflow Exception
Enable (OE)
This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Overflow
exceptions. See Section 7.4.3 ,
“Floating-Point Overflow Exception” on page
349.

58 Floating-Point Underflow Exception
Enable (UE)
This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Underflow
exceptions. See Section 7.4.4 ,
“Floating-Point Underflow Exception” on page
351.

59 Floating-Point Zero Divide Exception
Enable (ZE)
This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Zero Divide
exceptions. See Section 7.4.2 ,
“Floating-Point Zero Divide Exception” on
page 347.

60 Floating-Point Inexact Exception
Enable (XE)
This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Inexact
exceptions. See Section 7.4.5 ,
“Floating-Point Inexact Exception” on page
354.

61 Floating-Point Non-IEEE Mode (NI)
Floating-point non-IEEE mode is optional. If
floating-point non-IEEE mode is not
implemented, this bit is treated as reserved,
and the remainder of the definition of this bit
does not apply.

If floating-point non-IEEE mode is
implemented, this bit has the following
meaning.

0 The processor is not in floating-point
non-IEEE mode (i.e., all floating-point
operations conform to the IEEE
standard).

1 The processor is in floating-point
non-IEEE mode.

Bits Definition

61 Floating-Point Non-IEEE Mode (NI)
(continued)

When the processor is in floating-point
non-IEEE mode, the remaining FPSCR bits is
permitted to have meanings different from
those given in this document, and
floating-point operations need not conform to
the IEEE standard. The effects of executing a
given floating-point instruction with NI=1, and
any additional requirements for using
non-IEEE mode, are
implementation-dependent. The results of
executing a given instruction in non-IEEE
mode is permitted to vary between
implementations, and between different
executions on the same implementation.

 

62:63 Floating-Point Rounding Control (RN)

This field is used by VSX Scalar
Floating-Point and VSX Vector Floating-Point
class instructions that round their result and
the rounding mode is not implied by the
opcode.

This bit can be explicitly set or reset by a new
Move To FPSCR class instruction.

See Section 7.3.2.6 , “Rounding” on page
333.

00 Round to Nearest Even
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

When the processor is in floating-point
non-IEEE mode, the results of
floating-point operations is permitted to be
approximate, and performance for these
operations might be better, more
predictable, or less data-dependent than
when the processor is not in non-IEEE
mode.  For example, in non-IEEE mode
an implementation is permitted to return 0
instead of a denormalized number and
return a large number instead of an
infinity.

Programming Note
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Result Flags 
Result Value Class

C FL FG FE FU

1 0 0 0 1     Quiet NaN

0 1 0 0 1   - Infinity

0 1 0 0 0   - Normalized Number

1 1 0 0 0   - Denormalized Number

1 0 0 1 0   - Zero

0 0 0 1 0   + Zero

1 0 1 0 0   + Denormalized Number

0 0 1 0 0   + Normalized Number

0 0 1 0 1   + Infinity

Table 2. Floating-Point Result Flags
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7.3 VSX Operations

7.3.1 VSX Floating-Point Arith-
metic Overview

This section describes the floating-point arithmetic and
exception model supported by category Vector-Scalar
Extension. Except for extensions to support 32-bit
single-precision floating-point vector operations, the
models are identical to that described in Chapter 4.
Floating-Point Facility [Category: Floating-Point].

The processor (augmented by appropriate software
support, where required) implements a floating-point
system compliant with the ANSI/IEEE Standard
754-1985, IEEE Standard for Binary Floating-Point
Arithmetic (hereafter referred to as the IEEE standard).
That standard defines certain required "operations"
(addition, subtraction, and so on). Herein, the term,
floating-point operation, is used to refer to one of these
required operations and to additional operations
defined (e.g., those performed by Multiply-Add or
Reciprocal Estimate instructions). A Non-IEEE mode is
also provided. This mode, which is permitted to
produce results not in strict compliance with the IEEE
standard, allows shorter latency. 

Instructions are provided to perform arithmetic,
rounding, conversion, comparison, and other
operations in VSRs; to move floating-point data
between storage and these registers.

These instructions are divided into two categories.

– computational instructions

The computational instructions are those that
perform addition, subtraction, multiplication,
division, extracting the square root, rounding,
conversion, comparison, and combinations of
these operations. These instructions provide the
floating-point operations. There are two forms of
computational instructions, scalar, which perform
a single floating-point operation, and vector, which
perform either two double-precision floating-point
operations or four single-precision operations.
Computational instructions place status
information into the Floating-Point Status and
Control Register. They are the instructions
described in Sections 7.6.1.3 through 7.6.1.7.2.

– noncomputational instructions

The noncomputational instructions are those that
perform loads and stores, move the contents of a
VSR to another floating-point register possibly
altering the sign, and select the value from one of
two VSRs based on the value in a third VSR. The

operations performed by these instructions are not
considered floating-point operations. These
instructions do not alter the Floating-Point Status
and Control Register. They are the instructions
listed in Sections 7.6.1.1, 7.6.1.2.1, and 7.6.1.8
through 7.6.1.9.

A floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by
this number is the product of the significand and the
number 2exponent. Encodings are provided in the data
format to represent finite numeric values, ±Infinity, and
values that are “Not a Number” (NaN). Operations
involving infinities produce results obeying traditional
mathematical conventions. NaNs have no
mathematical interpretation. Their encoding permits a
variable diagnostic information field. NaNs might be
used to indicate such things as uninitialized variables
and can be produced by certain invalid operations.

There is one class of exceptional events that occur
during instruction execution that is unique to
categories Vector-Scalar Extension and Floating-Point:
the Floating-Point Exception. Floating-point exceptions
are signaled with bits set in the FPSCR. They can
cause the system floating-point enabled exception
error handler to be invoked, precisely or imprecisely, if
the proper control bits are set.

Floating-Point Exceptions

The following floating-point exceptions are detected by
the processor:

– Invalid Operation exception (VX)
SNaN (VXSNAN)
Infinity-Infinity (VXISI)
Infinity÷Infinity (VXIDI)
Zero÷Zero (VXZDZ)
Infinity×Zero (VXIMZ)
Invalid Compare (VXVC)
Software-Defined Condition (VXSOFT)
Invalid Square Root (VXSQRT)
Invalid Integer Convert (VXCVI)

– Zero Divide exception (ZX)
– Overflow exception (OX)
– Underflow exception (UX)
– Inexact exception (XX)

Each floating-point exception, and each category of
Invalid Operation exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has
a corresponding enable bit in the FPSCR. See
Section 7.2.2, “Floating-Point Status and Control
Register” on page 321 for a description of these
exception and enable bits, and Section 7.3.3 , “VSX
Floating-Point Execution Models” on page 335 for a
detailed discussion of floating-point exceptions,
including the effects of the enable bits.
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7.3.2 VSX Floating-Point Data

7.3.2.1 Data Format

This architecture defines the representation of a
floating-point value in two different binary fixed-length
formats, 32-bit single-precision format and 64-bit
double-precision format. The single-precision format is
used for SP data in storage and registers. The
double-precision format is used for DP data in storage
and registers.

The lengths of the exponent and the fraction fields
differ between these two formats. The structure of the
single-precision and double-precision formats is shown
below.

Values in floating-point format are composed of three
fields:

S sign bit
EXP exponent+bias
FRACTION fraction

Representation of numeric values in the floating-point
formats consists of a sign bit (S), a biased exponent
(EXP), and the fraction portion (FRACTION) of the
significand. The significand consists of a leading
implied bit concatenated on the right with the
FRACTION. This leading implied bit is 1 for normalized
numbers and 0 for denormalized numbers and is
located in the unit bit position (that is, the first bit to the
left of the binary point). Values representable within
the two floating-point formats can be specified by the
parameters listed in Table 3.

S EXP FRACTION
0 9 31

Figure 113. Floating-point single-precision format

S EXP FRACTION
0 1 12 63

Figure 114.Floating-point double-precision format

Single-Precision Format Double-Precision Format

Exponent Bias +127 +1023

Maximum Exponent (Emax) +127 +1023

Minimum Exponent (Emin) -126 -1022

Widths (bits):Format
Sign
Exponent
Fraction
Significand

32
1
8

23
24

64
1
11
52
53

Nmax (1-2-24) x 2128≈3.4 x 1038 (1-2-53) x 21024≈1.8 x 10308

Nmin 1.0 x 2-126≈1.2 x 10-38 1.0 x 2-1022≈2.2 x 10-308

Dmin 1.0 x 2-149≈1.4 x 10-45 1.0 x 2-1074≈4.9 x 10-324

≈ Value is approximate
DminSmallest (in magnitude) representable denormalized number.
NmaxLargest (in magnitude) representable number.
NminSmallest (in magnitude) representable normalized number.

Table 3. IEEE floating-point fields
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7.3.2.2 Value Representation

This architecture defines numeric and nonnumeric
values representable within each of the two supported
formats. The numeric values are approximations to the
real numbers and include the normalized numbers,
denormalized numbers, and zero values. The
nonnumeric values representable are the infinities and
the Not a Numbers (NaNs). The infinities are adjoined
to the real numbers, but are not numbers themselves,
and the standard rules of arithmetic do not hold when
they are used in an operation. They are related to the
real numbers by order alone. It is possible however to
define restricted operations among numbers and
infinities as defined below. The relative location on the
real number line for each of the defined entities is
shown in Figure 115.

Figure 115.Approximation to real numbers

The NaNs are not related to the numeric values or
infinities by order or value but are encodings used to
convey diagnostic information such as the
representation of uninitialized variables.

The following is a description of the different
floating-point values defined in the architecture:

Binary floating-point numbers
Machine representable values used as
approximations to real numbers. Three categories
of numbers are supported: normalized numbers,
denormalized numbers, and zero values.

Normalized numbers (±NOR)
These are values that have a biased exponent
value in the range:

1 to 254 in single-precision format
1 to 2046 in double-precision format

They are values in which the implied unit bit is 1.
Normalized numbers are interpreted as follows:

NOR = (-1)s x 2E x (1.fraction)

where s is the sign, E is the unbiased exponent,
and 1.fraction is the significand, which is
composed of a leading unit bit (implied bit) and a
fraction part.

Zero values (±0)
These are values that have a biased exponent
value of zero and a fraction value of zero. Zeros
can have a positive or negative sign. The sign of

zero is ignored by comparison operations (that is,
comparison regards +0 as equal to -0).

Denormalized numbers (±DEN)
These are values that have a biased exponent
value of zero and a nonzero fraction value. They
are nonzero numbers smaller in magnitude than
the representable normalized numbers. They are
values in which the implied unit bit is 0.
Denormalized numbers are interpreted as follows:

DEN = (-1)s x 2Emin x (0.fraction)

where Emin is the minimum representable
exponent value (-126 for single-precision, -1022
for double-precision).

Infinities (±INF)
These are values that have the maximum biased
exponent value:

255 in single-precision format
2047 in double-precision format

and a zero fraction value. They are used to
approximate values greater in magnitude than the
maximum normalized value.

Infinity arithmetic is defined as the limiting case of
real arithmetic, with restricted operations defined
among numbers and infinities. Infinities and the
real numbers can be related by ordering in the
affine sense:

-Infinity < every finite number < +Infinity

Arithmetic on infinities is always exact and does
not signal any exception, except when an
exception occurs due to the invalid operations as
described in Section 7.4.1 , “Floating-Point Invalid
Operation Exception” on page 341.

For comparison operations, +Infinity compares
equal to +Infinity and -Infinity compares equal to
-Infinity.

Not a Numbers (NaNs)
These are values that have the maximum biased
exponent value and a nonzero fraction value. The
sign bit is ignored (that is, NaNs are neither
positive nor negative). If the high-order bit of the
fraction field is 0, the NaN is a Signaling NaN;
otherwise it is a Quiet NaN.

Signaling NaNs are used to signal exceptions
when they appear as operands of computational
instructions.

-NOR +0 +DEN-INF –0-DEN +NOR +INF
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Quiet NaNs are used to represent the results of
certain invalid operations, such as invalid
arithmetic operations on infinities or on NaNs,
when Invalid Operation exception is disabled
(VE=0). Quiet NaNs propagate through all
floating-point operations except ordered
comparison and conversion to integer. Quiet
NaNs do not signal exceptions, except for ordered
comparison and conversion to integer operations.
Specific encodings in QNaNs can thus be
preserved through a sequence of floating-point
operations, and used to convey diagnostic
information to help identify results from invalid
operations.

Assume the following generic arithmetic
templates.

  f(src1,src3,src2)
    ex: result = (src1 x src3) - src2

  f(src1,src2)
    ex: result = src1 x src2
    ex: result = src1 + src2

  f(src1)  
    ex: result = f(src1)

When a QNaN is the result of a floating-point
operation because one of the operands is a NaN
or because a QNaN was generated due to a
trap-disabled Invalid Operation exception, the
following rule is applied to determine the NaN with
the high-order fraction bit set to 1 that is to be
stored as the result. 

if src1 is a NaN
  then result = Quiet(src1)
  else if src2 is a NaN (if there is a src2)
    then result = Quiet(src2)
    else if src3 is a NaN (if there is a src3)
       then result = Quiet(src3)
       else if disabled invalid operation exception
          then result = generated QNaN

where Quiet(x) means x if x is a QNaN and x
converted to a QNaN if x is an SNaN. Any
instruction that generates a QNaN as the result of
a disabled Invalid Operation exception generates
the value 0x7FF8_0000_0000_0000 for
double-precision and 0x7FC0_0000 for
single-precision.

Note that the M-form multiply-add-type
instructions use the B source operand to specify
src3 and the T target operand to specify src2,
whereas A-form multiply-add-type instructions use
the B source operand to specify src2 and the T
target operand to specify src3.

A double-precision NaN is considered to be
representable in single-precision format if and only
if the low-order 29 bits of the double-precision
NaN’s fraction are zero.

7.3.2.3 Sign of Result

The following rules govern the sign of the result of an
arithmetic, rounding, or conversion operation, when
the operation does not yield an exception. They apply
even when the operands or results are zeros or
infinities.

– The sign of the result of an add operation is the
sign of the operand having the larger absolute
value. If both operands have the same signs, the
sign of the result of an add operation is the same
as the sign of the operands. The sign of the result
of the subtract operation x-y is the same as the
sign of the result of the add operation x+(-y).

When the sum of two operands with opposite sign,
or the difference of two operands with the same
signs, is exactly zero, the sign of the result is
positive in all rounding modes except Round
toward -Infinity, in which mode the sign is
negative.

– The sign of the result of a multiply or divide
operation is the Exclusive OR of the signs of the
operands.

– The sign of the result of a Square Root or
Reciprocal Square Root Estimate operation is
always positive, except that the square root of -0
is -0 and the reciprocal square root of -0 is
-Infinity.

– The sign of the result of a Convert From Integer or
Round to Floating-Point Integer operation is the
sign of the operand being converted.

For the Multiply-Add instructions, the rules given above
are applied first to the multiply operation and then to
the add or subtract operation (one of the inputs to the
add or subtract operation is the result of the multiply
operation).

7.3.2.4 Normalization and 
Denormalization

The intermediate result of an arithmetic instruction can
require normalization and/or denormalization as
described below. Normalization and denormalization
do not affect the sign of the result.

When an arithmetic or rounding instruction produces
an intermediate result which carries out of the
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significand, or in which the significand is nonzero but
has a leading zero bit, it is not a normalized number
and must be normalized before it is stored. For the
carry-out case, the significand is shifted right one bit,
with a one shifted into the leading significand bit, and
the exponent is incremented by one. For the
leading-zero case, the significand is shifted left while
decrementing its exponent by one for each bit shifted,
until the leading significand bit becomes one. The
Guard bit and the Round bit (see Section 7.3.3.1, “VSX
Execution Model for IEEE Operations” on page 335)
participate in the shift with zeros shifted into the Round
bit. The exponent is regarded as if its range were
unlimited.

After normalization, or if normalization was not
required, the intermediate result can have a nonzero
significand and an exponent value that is less than the
minimum value that can be represented in the format
specified for the result. In this case, the intermediate
result is said to be “Tiny” and the stored result is
determined by the rules described in Section 7.4.4 ,
“Floating-Point Underflow Exception” on page 351.
These rules can require denormalization.

A number is denormalized by shifting its significand
right while incrementing its exponent by 1 for each bit
shifted, until the exponent is equal to the format’s
minimum value. If any significant bits are lost in this
shifting process, “Loss of Accuracy” has occurred (See
Section 7.4.4 , “Floating-Point Underflow Exception”
on page 351) and Underflow exception is signaled.

 

7.3.2.5 Data Handling and Precision

Scalar double-precision floating-point data is
represented in double-precision format in VSRs and
storage.

Vector double-precision floating-point data is
represented in double-precision format in VSRs and
storage.

Scalar single-precision floating-point data is
represented in double-precision format in VSRs and in
single-precision format in storage.

Vector single-precision floating-point data is
represented in single-precision format in VSRs and
storage.

Double-precision operands may be used as input for
double-precision scalar arithmetic operations.

Double-precision operands may be used as input for
single-precision scalar arithmetic operations when
trapping on overflow and underflow exceptions is
disabled.

Single-precision operands may be used as input for
double-precision and single-precision scalar arithmetic
operations.

Double-precision operands may be used as input for
double-precision vector arithmetic operations.

Single-precision operands may be used as input for
single-precison vector arithmetic operations.

Instructions are also provided for manipulations which
do not require double-precision or single-precision. In
addition, instructions are provided to access an integer
representation in GPRs.

Single-Precision Operands

For single-precision scalar data, a conversion from
single-precision format to double-precision format is
performed when loading from storage into a VSR and
a conversion from double-precision format to
single-precision format is performed when storing from
a VSR to storage. No floating-point exceptions are
caused by these instructions.

Instructions are provided to convert between
single-precision and double-precision formats for
scalar and vector data in VSRs.

An instruction is provided to explicitly convert a double
format operand in a VSR to single-precision. Scalar
single-precision floating-point is enabled with six types
of instruction.

1. Load Scalar Single-Precision

This form of instruction accesses a floating-point
operand in single-precision format in storage,
converts it to double-precision format, and loads it
into a VSR. No floating-point exceptions are
caused by these instructions.

2. Scalar Round to Single-Precision 

xsrsp rounds a double-precision operand to
single-precision, checking the exponent for
single-precision range and handling any
exceptions according to respective enable bits,
and places that operand into a VSR in
double-precision format. For results produced by
single-precision arithmetic instructions,
single-precision loads, and other instances of

When denormalized numbers are operands of
multiply, divide, and square root operations, some
implementations might prenormalize the operands
internally before performing the operations.

Engineering Note
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xsrsp, xsrsp does not alter the value. Values
greater in magnitude than 2319 when Overflow is
enabled (OE=1) produce undefined results because
the value cannot be scaled back into the
normalized range. Values smaller in magnitude
than 2-318 when Underflow is enabled (UE=1)
produce undefined results because the value
cannot be scaled back into the normalized range.

3. Scalar Convert Single-Precision to
Double-Precision

xscvspdp accesses a floating-point operand in
single-precision format from word element 0 of the
source VSR, converts it to double-precision format,
and places it into doubleword element 0 of the
target VSR.

4. Scalar Convert Double-Precision to
Single-Precision

xscvdpsp rounds the double-precision
floating-point value in doubleword element 0 of the
source VSR to single-precision, and places the
result into word element 0 of the target VSR in
single-precision format. This function would be
used to port scalar floating-point data to a format
compatible for single-precision vector operations.
Values greater in magnitude than 2319 when
Overflow is enabled (OE=1) produce undefined
results because the value cannot be scaled back
into the normalized range. Values smaller in
magnitude than 2-318 when Underflow is enabled
(UE=1) produce undefined results because the
value cannot be scaled back into the normalized
range.

5. VSX Scalar Single-Precision Arithmetic

This form of instruction takes operands from the
VSRs in double format, performs the operation as
if it produced an intermediate result having infinite
precision and unbounded exponent range, and
then coerces this intermediate result to fit in
single-precision format. Status bits, in the FPSCR
and optionally in the Condition Register, are set to
reflect the single-precision result. The result is
then placed into the target VSR in double-precision
format. The result lies in the range supported by
the single format.

If any input value is not representable in
single-precision format and either OE=1 or UE=1, the

result placed into the target VSR and the setting of
status bits in the FPSCR are undefined.

For xsresp or xsrsqrtesp, if the input value is
finite and has an unbiased exponent greater than
+127, the input value is interpreted as an Infinity.

6. Store VSX Scalar Single-Precision

stxsspx converts a single-precision value that is
in double-precision format to single-precision
format and stores that operand into storage. No
floating-point exceptions are caused by stxsspx.
(The value being stored is effectively assumed to
be the result of an instruction of one of the
preceding five types.)

When the result of a Load VSX Scalar Single-Precision
(lxsspx), a VSX Scalar Round to Single-Precision
(xsrsp), or a VSX Scalar Single-Precision Arithmetic[1]

instruction is stored in a VSR, the low-order 29 bits of
FRACTION are zero.

 

1. VSX Scalar Single-Precision Arithmetic instructions:
xsaddsp, xsdivsp, xsmulsp, xsresp, xssubsp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp, xsnmaddmsp, 
xsnmsubasp, xsnmsubmsp

VSX Scalar Round to Single-Precision (xsrsp) is
provided to allow value conversion from
double-precision to single-precision with
appropriate exception checking and rounding.
xsrsp should be used to convert double-precision
floating-point values to single-precision values
prior to storing them into single format storage
elements or using them as operands for
single-precision arithmetic instructions. Values
produced by single-precision load and arithmetic
instructions are already single-precision values
and can be stored directly into single format
storage elements, or used directly as operands for
single-precision arithmetic instructions, without
preceding the store, or the arithmetic instruction,
by an xsrsp.

Programming Note
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Integer-Valued Operands

Instructions are provided to round floating-point
operands to integer values in floating-point format. To
facilitate exchange of data between the floating-point
and integer processing, instructions are provided to
convert between floating-point double and
single-precision format and integer word and
doubleword format in a VSR. Computation on
integer-valued operands can be performed using
arithmetic instructions of the required precision. (The
results might not be integer values.) The three groups
of instructions provided specifically to support
integer-valued operands are described below.

1. Rounding to a floating-point integer

VSX Scalar Round to Double-Precision Integer[1]

instructions round a double-precision operand to
an integer value in double-precision format. 

VSX Vector Round to Double-Precision Integer[2]

instructions round each double-precision vector
operand element to an integer value in
double-precision format.

VSX Vector Round to Single-Precision Integer[3]

instructions round each single-precision vector
operand element to an integer value in
single-precision format.

Except for xsrdpic, xvrdpic, and xvrspic,
rounding is performed using the rounding mode
specified by the opcode. For xsrdpic, xvrdpic,
and xvrspic, rounding is performed using the
rounding mode specified by RN. 

VSX Round to Floating-Point Integer[4]

instructions can cause Invalid Operation
(VXSNAN) exceptions.

xsrdpic, xvrdpic, and xvrspic can also cause
Inexact exception.

See Sections 7.3.2.6 and 7.3.3.1 for more
information about rounding. 

2. Converting floating-point format to integer format

VSX Scalar Double-Precision to Integer Format
Conversion[5] instructions convert a
double-precision operand to 32-bit or 64-bit signed
or unsigned integer format.

VSX Vector Double-Precision to Integer Format
Conversion[6] instructions convert either
double-precision or single-precision vector
operand elements to 32-bit or 64-bit signed or
unsigned integer format.

VSX Vector Single-Precision to Integer
Doubleword Format Conversion[7] instructions
converts the single-precision value in each
odd-numbered word element of the source vector
operand to a 64-bit signed or unsigned integer
format.

VSX Vector Single-Precision to Integer Word
Format Conversion[8] instructions converts the
single-precision value in each word element of the
source vector operand to either a 32-bit signed or
unsigned integer format.

A single-precision value can be used in
double-precision scalar arithmetic operations. 

Except for xsresp or xsrsqrtesp, any
double-precision value can be used in
single-precision scalar arithmetic operations when
OE=0 and UE=0. When OE=1 or UE=1, or if the
instruction is xsresp or xsrsqrtesp, source
operands must be respresentable in
single-precision format.

Some implementations may execute
single-precision arithmetic instructions faster than
double-precision arithmetic instructions. Therefore,
if double-precision accuracy is not required,
single-precision data and instructions should be
used.

1. VSX Scalar Round to Double-Precision Integer instructions:
xsrdpi, xsrdpip, xsrdpim, xsrdpiz, xsrdpic

2. VSX Vector Round to Double-Precision Integer instructions:
xvrdpi, xvrdpip, xvrdpim, xvrdpiz, xvrdpic

Programming Note

3. VSX Vector Round to Single-Precision Integer instructions:
xvrspi, xvrspip, xvrspim, xvrspiz, xvrspic

4. VSX Round to Floating-Point Integer instructions:
xsrdpi, xsrdpip, xsrdpim, xsrdpiz, xsrdpic, xvrdpi, xvrdpip, xvrdpim, xvrdpiz, xvrdpic, xvrspi, xvrspip, xvrspim, xvrspiz, and xvrspic

5. VSX Scalar Double-Precision to Integer Format Conversion instructions:
xscvdpsxds, xscvdpsxws, xscvdpuxds, xscvdpuxws

6. VSX Vector Double-Precision to Integer Format Conversion instructions:
xvcvdpsxds, xvcvdpsxws, xvcvdpuxds, xvcvdpuxws

7. VSX Vector Single-Precision to Integer Doubleword Format Conversion instructions:
xvcvspsxds, xvcvspuxds

8. VSX Vector Single-Precision to Integer Word Format Conversion instructions:
xvcvspsxws, xvcvspuxws
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Rounding is performed using Round Towards
Zero rounding mode. These instructions can
cause Invalid Operation (VXSNAN, VXCVI) and
Inexact exceptions. 

3. Converting integer format to floating-point format

VSX Scalar Integer Doubleword to
Double-Precision Format Conversion[1]

instructions convert a 64-bit signed or unsigned
integer to a double-precision floating-point value
and returns the result in double-precision format.

VSX Scalar Integer Doubleword to
Single-Precision Format Conversion[2] instructions
converts a 64-bit signed or unsigned integer to a
single-precision floating-point value and returns
the result in double-precision format.

VSX Vector Integer Doubleword to
Double-Precision Format Conversion[3]

instructions converts the 64-bit signed or unsigned
integer in each doubleword element in the source
vector operand to double-precision floating-point
format.

VSX Vector Integer Word to Double-Precision
Format Conversion[4] instructions converts the
32-bit signed or unsigned integer in each
odd-numbered word element in the source vector
operand to double-precision floating-point format.

VSX Vector Integer Doubleword to
Single-Precision Format Conversion[5] instructions
convert the 64-bit signed or unsigned integer in
each doubleword element in the source vector
operand to single-precision floating-point format.

VSX Vector Integer Word to Single-Precision
Format Conversion[6] instructions convert the
32-bit signed or unsigned integer in each word
element in the source vector operand to
single-precision floating-point format.

Rounding is performed using the rounding mode
specificed in RN. Because of the limitations of the
source format, only an Inexact exception can be
generated.

7.3.2.6 Rounding

The material in this section applies to operations that
have numeric operands (that is, operands that are not
infinities or NaNs). Rounding the intermediate result of
such an operation can cause an Overflow exception,
an Underflow exception, or an Inexact exception. The
remainder of this section assumes that the operation
causes no exceptions and that the result is numeric.
See Section 7.3.2.2, “Value Representation” and
Section 7.4, “VSX Floating-Point Exceptions” for the
cases not covered here.

The floating-point arithmetic, and rounding and
conversion instructions round their intermediate
results. With the exception of the estimate instructions,
these instructions produce an intermediate result that
can be regarded as having unbounded precision and
exponent range. All but two groups of these
instructions normalize or denormalize the intermediate
result prior to rounding and then place the final result
into the target element of the target VSR in either
double or single-precision format.

The scalar round to double-precision integer, vector
round to double-precision integer, and convert
double-precision to integer instructions with biased
exponents ranging from 1022 through 1074 are
prepared for rounding by repetitively shifting the
significand right one position and incrementing the
biased exponent until it reaches a value of 1075.
(Intermediate results with biased exponents 1075 or
larger are already integers, and with biased exponents
1021 or less round to zero.) After rounding, the final
result for round to double-precision integer instructions
is normalized and put in double-precision format, and,
for the convert double-precision to integer instructions,
is converted to a signed or unsigned integer.

The vector round to single-precision integer and vector
convert single-precision to integer instructions with
biased exponents ranging from 126 through 178 are
prepared for rounding by repetitively shifting the
significand right one position and incrementing the
biased exponent until it reaches a value of 179.
(Intermediate results with biased exponents 179 or
larger are already integers, and with biased exponents
125 or less round to zero.) After rounding, the final
result for vector round to single-precision integer is
normalized and put in double-precision format, and for

1. VSX Scalar Integer Doubleword to Double-Precision Format Conversion instructions:
xscvsxddp, xscvuxddp

2. VSX Scalar Integer Doubleword to Single-Precision Format Conversion instructions:
xscvsxdsp, xscvuxdsp

3. VSX Vector Integer Doubleword to Double-Precision Format Conversion instructions:
xscvsxddp, xscvuxddp

4. VSX Vector Integer Word to Double-Precision Format Conversion instructions:
xscvsxwdp, xscvuxwdp

5. VSX Vector Integer Doubleword to Single-Precision Format Conversion instructions:
xscvsxdsp, xscvuxdsp

6. VSX Vector Integer Word to Single-Precision Format Conversion instructions:
xscvsxwsp, xscvuxwsp
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vector convert single-precision to integer is converted
to a signed or unsigned integer.

FR and FI generally indicate the results of rounding.
Each of the scalar instructions which rounds its
intermediate result sets these bits. There are no vector
instructions that modify FR and FI. If the fraction is
incremented during rounding, FR is set to 1, otherwise
FR is set to 0. If the result is inexact, FI is set to 1,
otherwise FI is set to zero. The scalar round to
double-precision integer instructions are exceptions to
this rule, setting FR and FI to 0. The scalar
double-precision estimate instructions set FR and FI to
undefined values. The remaining scalar floating-point
instructions do not alter FR and FI.

Four user-selectable rounding modes are provided
through the Floating-Point Rounding Control field in
the FPSCR. See Section 7.2.2, “Floating-Point Status
and Control Register” on page 321. These are
encoded as follows.

RN Rounding Mode
00 Round to Nearest Even
01 Round towards Zero
10 Round towards +Infinity
11 Round towards -Infinity

A fifth rounding mode is provided in the round to
floating-point integer instructions (Section 7.6.1.7.2 on
page 366), Round to Nearest Away.

Let Z be the intermediate arithmetic result or the
operand of a convert operation. If Z can be
represented exactly in the target format, the result in
all rounding modes is Z as represented in the target
format. If Z cannot be represented exactly in the target
format, let Z1 and Z2 bound Z as the next larger and
next smaller numbers representable in the target
format. Then Z1 or Z2 can be used to approximate the
result in the target format.

Figure 116 shows the relation of Z, Z1, and Z2 in this
case. The following rules specify the rounding in the
four modes.

See Section 7.3.3.1, “VSX Execution Model for IEEE
Operations” on page 335 for a detailed explanation of
rounding.

Figure 116 also summarizes the rounding actions for
floating-point intermediate result for all supported
rounding modes.

Round to Nearest Away
Choose the value that is closer to Z (Z1 or Z2). In case of a tie, choose the
one that is furthest away from 0.

Round to Nearest Even
Choose the value that is closer to Z (Z1 or Z2). In case of a tie, choose the
one that is even (least significant bit is 0).

Round toward Zero
Choose the smaller in magnitude (Z1 or Z2).

Round toward +Infinity
Choose Z1.

Round toward -Infinity
Choose Z2.

Figure 116.Selection of Z1 and Z2

0

Positive valuesNegative values

By Incrementing the least-significant bit of Z
Infinitely-Precise Value

By Truncating after the least-significant bit

Z2
Z
Z1 Z2

Z
Z1
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7.3.3 VSX Floating-Point Execution Models

All implementations of this architecture must provide
the equivalent of the following execution models to
ensure that identical results are obtained.

Special rules are provided in the definition of the
computational instructions for the infinities,
denormalized numbers and NaNs. The material in the
remainder of this section applies to instructions that
have numeric operands and a numeric result (that is,
operands and result that are not infinities or NaNs),
and that cause no exceptions. See Section 7.3.2.2 and
Section 7.3.3 for the cases not covered here.

Although the double-precision format specifies an
11-bit exponent, exponent arithmetic makes use of two
additional bits to avoid potential transient overflow and
underflow conditions. One extra bit is required when
denormalized double-precision numbers are
prenormalized. The second bit is required to permit the
computation of the adjusted exponent value in the
following cases when the corresponding exception
enable bit is 1:

– Underflow during multiplication using a
denormalized operand.

– Overflow during division using a denormalized
divisor.

– Undeflow during division using denormalized
dividend and a large divisor.

The IEEE standard includes 32-bit and 64-bit
arithmetic. The standard requires that single-precision
arithmetic be provided for single-precision operands.

VSX defines both scalar and vector double-precision
floating-point operations to operate only on
double-precision operands. VSX also defines vector
single-precision floating-point operations to operate
only on single-precision operands.

7.3.3.1 VSX Execution Model for IEEE 
Operations

The following description uses 64-bit arithmetic as an
example. 32-bit arithmetic is similar except that the
FRACTION is a 23-bit field, and the single-precision
Guard, Round, and Sticky bits (described in this
section) are logically adjacent to the 23-bit FRACTION
field.

IEEE-conforming significand arithmetic is considered
to be performed with a floating-point accumulator

having the following format, where bits 0:55 comprise
the significand of the intermediate result.

The S bit is the sign bit.

The C bit is the carry bit, which captures the carry out
of the significand.

The L bit is the leading unit bit of the significand, which
receives the implicit bit from the operand.

The FRACTION is a 52-bit field that accepts the
fraction of the operand.

The Guard (G), Round (R), and Sticky (X) bits are
extensions to the low-order bits of the accumulator.
The G and R bits are required for postnormalization of
the result. The G, R, and X bits are required during
rounding to determine if the intermediate result is
equally near the two nearest representable values.
The X bit serves as an extension to the G and R bits
by representing the logical OR of all bits that appear to
the low-order side of the R bit, resulting from either
shifting the accumulator right or to other generation of
low-order result bits. The G and R bits participate in
the left shifts with zeros being shifted into the R bit.
Table 4 shows the significance of the G, R, and X bits
with respect to the intermediate result (IR), the
representable number next lower in magnitude (NL),
and the representable number next higher in
magnitude (NH).

Table 5 shows the positions of the Guard, Round, and
Sticky bits for double-precision and single-precision

S C L FRACTION G R X
0 1 53 54 55

Figure 117.IEEE floating-point execution model

G R X  Interpretation

0 0 0 IR is exact

0 0 1 IR closer to NL

0 1 0

0 1 1

1 0 0 IR midway between NL and NH

1 0 1 IR closer to NH

1 1 0

1 1 1

Table 4. Interpretation of G, R, and X bits 
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floating-point numbers relative to the accumulator
illustrated in Figure 117.

The significand of the intermediate result is prepared
for rounding by shifting its contents right, if required,
until the least significant bit to be retained is in the
low-order bit position of the fraction.

Four user-selectable rounding modes are provided
through RN as described in Section 7.3.2.6,
“Rounding” on page 333. The rules for rounding in
each mode are as follows.

– Round to Nearest Even

Guard bit = 0
The result is truncated.

Guard bit = 1
Depends on Round and Sticky bits:

Case a
If the Round or Sticky bit is 1 (inclusive), the
result is incremented.

Case b
If the Round and Sticky bits are 0 (result
midway between closest representable
values), if the low-order bit of the result is 1,
the result is incremented. Otherwise (the
low-order bit of the result is 0), the result is
truncated. This is the case of a tie rounded to
even.

– Round toward Zero
Choose the smaller in magnitude of Z1 or Z2. If
the Guard, Round, or Sticky bit is nonzero, the
result is inexact.
The result is truncated.

– Round toward +Infinity
If positive, the result is incremented.
If negative, the result is truncated.

– Round toward -Infinity
If positive, the result is truncated.
If negative, the result is incremented.

A fifth rounding mode is provided in the VSX Round to
Floating-Point Integer instructions (Section 7.6.1.7.2
on page 366) with the rules for rounding as follows.

– Round to Nearest Away

Guard bit = 0
The result is truncated.

Guard bit = 1
The result is incremented.

If any of the Guard, Round, or Sticky bits is nonzero,
the result is also inexact.

If rounding results in a carry into C, the significand is
shifted right one position and the exponent is
incremented by one. This yields an inexact result, and
possibly also exponent overflow. Fraction bits are
stored to the target VSR.

7.3.3.2 VSX Execution Model for 
Multiply-Add Type Instructions

This architecture provides a special form of instruction
that performs up to three operations in one instruction
(a multiplication, an addition, and a negation). With this
added capability comes the special ability to produce a
more exact intermediate result as input to the rounder.
32-bit arithmetic is similar, except that the FRACTION
field is smaller.

Multiply-add significand arithmetic is considered to be
performed with a floating-point accumulator having the
following format, where bits 0:106 comprise the
significand of the intermediate result.

The first part of the operation is a multiplication. The
multiplication has two 53-bit significands as inputs,
which are assumed to be prenormalized, and produces
a result conforming to the above model. If there is a
carry out of the significand (into the C bit), the
significand is shifted right one position, shifting the L
bit (leading unit bit) into the most significant bit of the
FRACTION and shifting the C bit (carry out) into the L
bit. All 106 bits (L bit, the FRACTION) of the product
take part in the add operation. If the exponents of the
two inputs to the adder are not equal, the significand of
the operand with the smaller exponent is aligned
(shifted) to the right by an amount that is added to that
exponent to make it equal to the other input’s
exponent. Zeros are shifted into the left of the
significand as it is aligned and bits shifted out of bit
105 of the significand are ORed into the X’ bit. The add

Format Guard Round Sticky

Double G bit R bit X bit

Single 24 25 OR of bits 26:52, G, R, X

Table 5. Location of the Guard, Round, and Sticky 
bits in the IEEE execution model 

S C L FRACTION X’
0 1 2 3 106

Figure 118.Multiply-add 64-bit execution model
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operation also produces a result conforming to the
above model with the X’ bit taking part in the add
operation.

The result of the addition is then normalized, with all
bits of the addition result, except the X’ bit,
participating in the shift. The normalized result serves
as the intermediate result that is input to the rounder.

For rounding, the conceptual Guard, Round, and
Sticky bits are defined in terms of accumulator bits.
Figure 6 shows the positions of the Guard, Round, and
Sticky bits for double-precision and single-precision
floating-point numbers in the multiply-add execution
model.

The rules for rounding the intermediate result are the
same as those given in Section 7.3.3.1.

If the instruction is a negative multiply-add or negative
multiply-subtract type instruction, the final result is
negated.

Format Guard Round Sticky

Double 53 54 OR of 55:105, X’

Single 24 25 OR of 26:105, X’

Table 6. Location of the Guard, Round, and Sticky 
bits in the multiply-add execution model
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7.4 VSX Floating-Point Exceptions

This architecture defines the following floating-point
exceptions under the IEEE-754 exception model:

– Invalid Operation exception

SNaN
Infinity-Infinity
Infinity÷Infinity
Zero÷Zero
Infinity×Zero
Invalid Compare
Software-Defined Condition
Invalid Square Root
Invalid Integer Convert

– Zero Divide exception
– Overflow exception
– Underflow exception
– Inexact exception

These exceptions, other than Invalid Operation
exception resulting from a Software-Defined Condition,
can occur during execution of computational
instructions. An Invalid Operation exception resulting
from a Software-Defined Condition occurs when a
Move To FPSCR instruction sets VXSOFT to 1.

Each floating-point exception, and each category of
Invalid Operation exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has
a corresponding enable bit in the FPSCR. The
exception bit indicates the occurrence of the
corresponding exception. If an exception occurs, the
corresponding enable bit governs the result produced
by the instruction and, in conjunction with the FE0 and
FE1 bits (see page 339), whether and how the system
floating-point enabled exception error handler is
invoked. In general, the enabling specified by the
enable bit is of invoking the system error handler, not
of permitting the exception to occur. The occurrence of
an exception depends only on the instruction and its
inputs, not on the setting of any control bits. The only
deviation from this general rule is that the occurrence
of an Underflow exception depends on the setting of
the enable bit.

A single instruction, other than mtfsfi or mtfsf, can set
more than one exception bit only in the following
cases:

– An Inexact exception can be set with an Overflow
exception.

– An Inexact exception can be set with an
Underflow exception.

– An Invalid Operation exception (SNaN) is set with
an Invalid Operation exception (Infinity×0) for
multiply-add class instructions for which the
values being multiplied are infinity and zero and
the value being added is an SNaN.

– An Invalid Operation exception (SNaN) can be set
with an Invalid Operation exception (Invalid
Compare) for ordered comparison instructions.

– An Invalid Operation exception (SNaN) can be set
with an Invalid Operation exception (Invalid
Integer Convert) for convert to integer instructions.

When an exception occurs, the writing of a result to the
target register can be suppressed, or a result can be
delivered, depending on the exception.

The writing of a result to the target register is
suppressed for the certain kinds of exceptions, based
on whether the instruction is a vector or a scalar
instruction, so that there is no possibility that one of the
operands is lost. For other kinds of exceptions and
also depending on whether the instruction is a vector
or a scalar instruction, a result is generated and written
to the destination specified by the instruction causing
the exception. The result can be a different value for
the enabled and disabled conditions for some of these
exceptions. Table 7 lists the types of exceptions and
indicates whether a result is written to the target VSR
or suppressed.

On exception type...
Scalar

Instruction
Results

Vector
Instruction

Results

Enabled Invalid Operation suppressed suppressed

Enabled Zero Divide suppressed suppressed

Enabled Overflow written suppressed

Enabled Underflow written suppressed

Enabled Inexact written suppressed

Disabled Invalid Operation written written

Table 7. Exception Types Result Suppression
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The subsequent sections define each of the
floating-point exceptions and specify the action that is
taken when they are detected.

The IEEE standard specifies the handling of
exceptional conditions in terms of traps and trap
handlers. In this architecture, an FPSCR exception
enable bit of 1 causes generation of the result value
specified in the IEEE standard for the trap enabled
case; the expectation is that the exception is detected
by software, which revises the result. An FPSCR
exception enable bit of 0 causes generation of the
default result value specified for the trap disabled (or
no trap occurs or trap is not implemented) case. The
expectation is that the exception is not detected by
software, which uses the default result. The result to
be delivered in each case for each exception is
described in the following sections.

The IEEE default behavior when an exception occurs
is to generate a default value and not to notify
software. In this architecture, if the IEEE default
behavior when an exception occurs is required for all
exceptions, all FPSCR exception enable bits must be
set to 0, and Ignore Exceptions Mode (see below)
should be used. In this case, the system floating-point
enabled exception error handler is not invoked, even if
floating-point exceptions occur: software can inspect
the FPSCR exception bits, if necessary, to determine
whether exceptions have occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the
corresponding FPSCR exception enable bit must be
set to 1, and a mode other than Ignore Exceptions
Mode must be used. In this case, the system
floating-point enabled exception error handler is
invoked if an enabled floating-point exception occurs.
The system floating-point enabled exception error
handler is also invoked if a Move To FPSCR instruction
causes an exception bit and the corresponding enable
bit both to be 1. The Move To FPSCR instruction is
considered to cause the enabled exception.

The FE0 and FE1 bits control whether and how the
system floating-point enabled exception error handler
is invoked if an enabled floating-point exception
occurs. The location of these bits and the requirements

for altering them are described in Book III. The system
floating-point enabled exception error handler is never
invoked because of a disabled floating-point exception.
The effects of the four possible settings of these bits
are as follows.

In all cases, the question of whether a floating-point
result is stored, and what value is stored, is governed
by the FPSCR exception enable bits, as described in
subsequent sections, and is not affected by the value
of the FE0 and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions
before the instruction at which the system
floating-point enabled exception error handler is
invoked have been completed, and no instruction after
the instruction at which the system floating-point
enabled exception error handler is invoked has begun
execution. The instruction at which the system
floating-point enabled exception error handler is
invoked has completed if it is the excepting instruction,

Disabled Zero Divide written written

Disabled Overflow written written

Disabled Underflow written written

Disabled Inexact written written

On exception type...
Scalar

Instruction
Results

Vector
Instruction

Results

Table 7. Exception Types Result Suppression

FE0 FE1 Description

0 0 Ignore Exceptions Mode
Floating-point exceptions do not cause the
system floating-point enabled exception
error handler to be invoked.

0 1 Imprecise Nonrecoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused the
enabled exception. It may not be possible
to identify the excepting instruction or the
data that caused the exception. Results
produced by the excepting instruction might
have been used by or might have affected
subsequent instructions that are executed
before the error handler is invoked.

1 0 Imprecise Recoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused the
enabled exception. Sufficient information is
provided to the error handler for it to identify
the excepting instruction, the operands, and
correct the result. No results produced by
the excepting instruction have been used
by or affected subsequent instructions that
are executed before the error handler is
invoked.

1 1 Precise Mode
The system floating-point enabled excep-
tion error handler is invoked precisely at the
instruction that caused the enabled excep-
tion.
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and there is only one such instruction. Otherwise, it
has not begun execution, or has been partially
executed in some cases, as described in Book III.

 

To obtain the best performance across the widest
range of implementations, the programmer should
obey the following guidelines.

– If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to
0.

– If the IEEE default results are not acceptable to
the application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception
enable bits set to 1 for those exceptions for which
the system floating-point enabled exception error
handler is to be invoked.

– Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to 1.

– Precise Mode can degrade performance in some
implementations, perhaps substantially, and
therefore should be used only for debugging and
other specialized applications.

In any of the three non-Precise modes, a
Floating-Point Status and Control Register
instruction can be used to force any exceptions,
because of instructions initiated before the
Floating-Point Status and Control Register
instruction, to be recorded in the FPSCR.  (This
forcing is superfluous for Precise Mode.)

In both Imprecise modes, a Floating-Point Status
and Control Register instruction can be used to
force any invocations of the system floating-point
enabled exception error handler that result from
instructions initiated before the Floating-Point
Status and Control Register instruction to occur.
This forcing has no effect in Ignore Exceptions
Mode, and is superfluous for Precise Mode.

The last sentence of the paragraph preceding this
Programming Note can apply only in the Imprecise
modes, or if the mode has just been changed from
Ignore Exceptions Mode to some other mode.  It
always applies in the latter case.

Programming Note
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7.4.1 Floating-Point Invalid Operation Exception

7.4.1.1 Definition

An Invalid Operation exception occurs when an
operand is invalid for the specified operation. The
invalid operations are:

SNaN
Any floating-point operation on a Signaling NaN.

Infinity–Infinity
Magnitude subtraction of infinities.

Infinity÷Infinity
Floating-point division of infinity by infinity.

Zero÷Zero
Floating-point division of zero by zero.

Infinity × Zero
Floating-point multiplication of infinity by zero.

Invalid Compare
Floating-point ordered comparison involving a
NaN.

Invalid Square Root
Floating-point square root or reciprocal square
root of a nonzero negative number.

Invalid Integer Convert
Floating-point-to-integer convert involving a
number too large in magnitude to be represented
in the target format, or involving an infinity or a
NaN.

An Invalid Operation exception also occurs when an
mtfsfi, mtfsf, or mtfsb1 instruction is executed that
sets VXSOFT to 1 (Software-Defined Condition).

The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

7.4.1.2 Action for VE=1

When Invalid Operation exception is enabled (VE=1)
and an Invalid Operation exception occurs, the
following actions are taken:

For VSX Scalar Floating-Point Arithmetic, VSX
Scalar DP-SP Conversion, VSX Scalar Convert
Floating-Point to Integer, and VSX Scalar Round
to Floating-Point Integer instructions:

1. One or two of the following Invalid Operation

exceptions are set to 1.

VXSNAN (if SNaN)
VXISI (if Infinity–Infinity)
VXIDI (if Infinity÷Infinity)
VXZDZ (if Zero÷Zero)
VXIMZ (if Infinity×Zero)
VXSQRT (if Invalid Square Root)
VXCVI (if Invalid Integer Convert)

2. Update of VSR[XT] is suppressed.

3. FR and FI are set to zero.

4. FPRF is unchanged.

For VSX Scalar Floating-Point Compare
instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXVC (if Invalid Compare)

2. FR, FI, and C are unchanged.

3. FPCC is set to reflect unordered.

For VSX Vector Floating-Point Arithmetic, VSX
Vector Floating-Point Compare, VSX Vector
DP-SP Conversion, VSX Vector Convert
Floating-Point to Integer, and VSX Vector Round
to Floating-Point Integer instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXISI (if Infinity – Infinity)
VXIDI (if Infinity ÷ Infinity)
VXZDZ (if Zero ÷ Zero)
VXIMZ (if Infinity × Zero)
VXVC (if Invalid Compare)
VXSQRT (if Invalid Square Root)
VXCVI (if Invalid Integer Convert)

2. Update of VSR[XT] is suppressed for all
vector elements.

3. FR and FI are unchanged.

4. FPRF is unchanged.
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7.4.1.3 Action for VE=0

When Invalid Operation exception is disabled (VE=0) and an Invalid Operation exception occurs, the following
actions are taken:

For the VSX Scalar round and Convert
Double-Precision to Single-Precision format
(xscvdpsp) instruction:

1. VXSNAN is set to 1.

2. The single-precision representation of a Quiet
NaN is placed into word element 0 of
VSR[XT]. The contents of word elements 1-3
of VSR[XT] are undefined.

3. FR and FI are set to 0.

4. FPRF is set to indicate the class of the result
(Quiet NaN).

For the VSX Vector Single-Precision Arithmetic
instructions, VSX Vector Single-Precision
Maximum/Minimum instructions, the VSX Vector
round and Convert Double-Precision to
Single-Precision format (xvcvdpsp) instruction,
and the VSX Vector Round to Single-Precision
Integer instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXISI (if Infinity – Infinity)
VXIDI (if Infinity ÷ Infinity)
VXZDZ (if Zero ÷ Zero)
VXIMZ (if Infinity × Zero)
VXSQRT (if Invalid Square Root)

2. The single-precision representation of a Quiet
NaN is placed into its respective word
element of VSR[XT].

3. FR, FI, and FPRF are not modified.

For the VSX Scalar Double-Precision Arithmetic
instructions, VSX Scalar Double-Precision
Maximum/Minimum instructions, the VSX Scalar
Convert Single-Precision to Double-Precision
format (xscvspdp) instruction, and the VSX
Scalar Round to Double-Precision Integer
instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXISI (if Infinity – Infinity)
VXIDI (if Infinity ÷ Infinity)
VXZDZ (if Zero ÷ Zero)

VXIMZ (if Infinity × Zero)
VXSQRT (if Invalid Square Root)

2. The double-precision representation of a
Quiet NaN is placed into doubleword element
0 of VSR[XT]. The contents of doubleword
element 1 of VSR[XT] are undefined.

3. FR and FI are set to 0.

4. FPRF is set to indicate the class of the result
(Quiet NaN).

For the VSX Vector Double-Precision Arithmetic
instructions, VSX Vector Double-Precision
Maximum/Minimum instructions, the VSX Vector
Convert Single-Precision to Double-Precision
format (xvcvspdp) instruction, and the VSX
Vector Round to Double-Precision Integer
instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXISI (if Infinity – Infinity)
VXIDI (if Infinity ÷ Infinity)
VXZDZ (if Zero ÷ Zero)
VXIMZ (if Infinity × Zero)
VXSQRT (if Invalid Square Root)

2. The double-precision representation of a
Quiet NaN is placed into its respective
doubleword element of VSR[XT].

3. FR, FI, and FPRF are not modified.
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For the VSX Scalar Convert Double-Precision to
Signed Integer Doubleword (xscvdpsxd)
instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF_FFFF_FFFF is placed into
doubleword element 0 of VSR[XT] if the
double-precision operand in doubleword
element 0 of VSR[XB] is a positive number or
+Infinity.

0x8000_0000_0000_0000 is placed into
doubleword element 0 of VSR[XT] if the
double-precision operand in doubleword
element 0 of VSR[XB] is a negative number,
-Infinity, or NaN.

The contents of doubleword element 1 of
VSR[XT] are undefined.

3. FR and FI are set to 0.

4. FPRF is undefined.

For the VSX Scalar Convert Double-Precision to
Unsigned Integer Doubleword (xscvdpuxd)
instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF_FFFF_FFFF is placed into
doubleword element 0 of VSR[XT] if the
double-precision operand in doubleword
element 0 of VSR[XB] is a positive number or
+Infinity.

0x0000_0000_0000_0000 is placed into
doubleword element 0 of VSR[XT] if the
double-precision operand in doubleword
element 0 of VSR[XB] is a negative number,
-Infinity, or NaN.

The contents of doubleword element 1 of
VSR[XT] are undefined.

3. FR and FI are set to 0.

4. FPRF is undefined.

For the VSX Scalar Convert Double-Precision to
Signed Integer Word (xscvdpsxw) instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF is placed into word element 1
of VSR[XT] if the double-precision operand in
doubleword element 0 of VSR[XB] is a
positive number or +Infinity.

0x8000_0000 is placed into word element 1
of VSR[XT] if the double-precision operand in
doubleword element 0 of VSR[XB] is a
negative number, -Infinity, or NaN.

The contents of word elements 0, 2, and 3 of
VSR[XT] are undefined.

3. FR and FI are set to 0.

4. FPRF is undefined.

For the VSX Scalar Convert Double-Precision to
Unsigned Integer Word (xscvdpuxw) instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF is placed into word element 1
of VSR[XT] if the double-precision operand in
doubleword element 0 of VSR[XB] is a
positive number or +Infinity.

0x0000_0000 is placed into word element 1
of VSR[XT] if the double-precision operand in
doubleword element 0 of VSR[XB] is a
negative number, -Infinity, or NaN.

The contents of word elements 0, 2, and 3 of
VSR[XT] are undefined.

3. FR and FI are set to 0.

4. FPRF is undefined.
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For the VSX Vector Convert Double-Precision to
Signed Integer Doubleword (xvcvdpsxd)
instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF_FFFF_FFFF is placed into
doubleword element i of VSR[XT] if the
double-precision operand in the
corresponding doubleword element of
VSR[XB] is a positive number or +Infinity.

0x8000_0000_0000_0000 is placed into its
respective doubleword element i of VSR[XT]
if the double-precision operand in the
corresponding doubleword element of
VSR[XB] is a negative number, -Infinity, or
NaN.

3. FR, FI, and FPRF are not modified.

For the VSX Vector Convert Double-Precision to
Unsigned Integer Doubleword (xvcvdpuxd)
instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF_FFFF_FFFF is placed into
doubleword element i of VSR[XT] if the
double-precision operand in doubleword
element i of VSR[XB] is a positive number or
+Infinity.

0x0000_0000_0000_0000 is placed into
doubleword element i of VSR[XT] if the
double-precision operand in doubleword
element i of VSR[XB] is a negative number,
-Infinity, or NaN.

3. FR, FI, and FPRF are not modified.

For the VSX Vector Convert Double-Precision to
Signed Integer Word (xvcvdpsxw) instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF is placed intoword element i×2
of VSR[XT] if the double-precision operand in

doubleword element i of VSR[XB] is a positive
number or +Infinity.

0x8000_0000 is placed into word element
i×2 of VSR[XT] if the double-precision
operand in doubleword element i of VSR[XB]
is a negative number, -Infinity, or NaN.

The contents of word element i×2+1 of
VSR[XT] are undefined.

3. FR, FI, and FPRF are not modified.

For the VSX Vector Convert Double-Precision to
Unsigned Integer Word (xvcvdpuxw) instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF is placed into word element
i×2 of VSR[XT] if the double-precision
operand in doubleword element i of VSR[XB]
is a positive number or +Infinity.

0x0000_0000 is placed into word element
i×2 of VSR[XT] if the double-precision
operand in doubleword element i of VSR[XB]
is a negative number, -Infinity, or NaN.

The contents of word element i×2+1 of
VSR[XT] are undefined.

3. FR, FI, and FPRF are not modified.

For the VSX Vector Convert Single-Precision to
Signed Integer Doubleword (xvcvspsxd)
instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF_FFFF_FFFF is placed into
doubleword element i of VSR[XT] if the
single-precision operand in word element i×2
of VSR[XB] is a positive number or +Infinity.

0x8000_0000_0000_0000 is placed into
doubleword element i of VSR[XT] if the
single-precision operand in word element i×2
of VSR[XB] is a negative number, -Infinity, or
NaN.

3. FR, FI, and FPRF are not modified.
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For the VSX Vector Convert Single-Precision to
Unsigned Integer Doubleword (xvcvspuxd)
instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF_FFFF_FFFF is placed into
doubleword element i of VSR[XT] if the
single-precision operand in word element i×2
of VSR[XB] is a positive number or +Infinity.

0x0000_0000_0000_0000 is placed into
doubleword element i of VSR[XT] if the
single-precision operand in word element i×2
of VSR[XB] is a negative number, -Infinity, or
NaN.

3. FR, FI, and FPRF are not modified.

For the VSX Vector Convert Single-Precision to
Signed Integer Word (xvcvspsxw) instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF is placed into word element i
of VSR[XT] if the single-precision operand in
word element i of VSR[XB] is a positive
number or +Infinity.

0x8000_0000 is placed into word element i
of VSR[XT] if the single-precision operand in
word element i of VSR[XB] is a negative
number, -Infinity, or NaN.

The contents of word element i×2+1 of
VSR[XT] are undefined.

3. FR, FI, and FPRF are not modified.

For the VSX Vector Convert Single-Precision to
Unsigned Integer Word (xvcvspuxw) instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF is placed into word element i
of VSR[XT] if the single-precision operand in
the corresponding word element i×2 of
VSR[XB] is a positive number or +Infinity.

0x0000_0000 is placed into word element i
of VSR[XT] if the single-precision operand in
word element i i×2 of VSR[XB] is a negative
number, -Infinity, or NaN.

The contents of word element i×2+1 of
VSR[XT] are undefined.

3. FR, FI, and FPRF are not modified.

For the VSX Scalar Floating-Point Compare
instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. FR, FI and C are unchanged.

3. FPCC is set to reflect unordered.

For the VSX Vector Compare Single-Precision
instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x0000_0000 is placed into its respective
word element of VSR[XT].

3. FR, FI, and FPRF are not modified.
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For the vector double-precision compare
instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x0000_0000_0000_0000 is placed into its
respective doubleword element of VSR[XT].

3. FR, FI, and FPRF are not modified.
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7.4.2 Floating-Point Zero Divide Exception

7.4.2.1 Definition

A Zero Divide exception occurs when a VSX
Floating-Point Divide[1] instruction is executed with a
zero divisor value and a finite nonzero dividend value. 

A Zero Divide exception also occurs when a VSX
Floating-Point Reciprocal Estimate[2] instruction or a
VSX Floating-Point Reciprocal Square Root
Estimate[3] instruction is executed with an operand
value of zero.

The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

7.4.2.2 Action for ZE=1

When Zero Divide exception is enabled (ZE=1) and a
Zero Divide exception occurs, the following actions are
taken:

For VSX Scalar Floating-Point Divide[4]

instructions, VSX  Scalar Floating-Point
Reciprocal Estimate[5] instructions, and VSX
Scalar Floating-Point Reciprocal Square Root
Estimate[6] instructions, do the following.

1. ZX is set to 1.

2. Update of VSR[XT] is suppressed.

3. FR and FI are set to 0.

4. FPRF is unchanged.

For VSX Vector Floating-Point Divide[7]

instructions, VSX  Vector Floating-Point
Reciprocal Estimate[8] instructions, and VSX
Vector Floating-Point Reciprocal Square Root
Estimate[9]  instructions, do the following.

1. ZX is set to 1.

2. Update of VSR[XT] is suppressed for all
vector elements.

3. FR and FI are unchanged.

4. FPRF is unchanged.

1. VSX Floating-Point Divide instructions:
xsdivdp, xsdivsp, xvdivdp, xvdivsp

2. VSX Floating-Point Reciprocal Estimate instructions:
xsredp, xsresp, xvredp, xvresp

3. VSX Floating-Point Reciprocal Square Root Estimate instructions:
xsrsqrtedp, xsrsqrtesp, xvrsqrtedp, xvrsqrtesp

4. VSX Scalar Floating-Point Divide instructions:
xsdivdp, xsdivsp

5. VSX  Scalar Floating-Point Reciprocal Estimate instructions:
xsredp, xsresp

6. VSX  Scalar Floating-Point Reciprocal Square Root Estimate instructions:
xsrsqrtedp, xsrsqrtesp

7. VSX Vector Floating-Point Divide instructions:
xvdivdp, xvdivsp

8. VSX  Vector Floating-Point Reciprocal Estimate instructions:
xvredp, xvresp

9. VSX Vector Floating-Point Reciprocal Square Root Estimate instructions:
xvrsqrtedp, xvrsqrtesp
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7.4.2.3 Action for ZE=0

When Zero Divide exception is disabled (ZE=0) and a
Zero Divide exception occurs, the following actions are
taken:

For VSX Scalar Floating-Point Divide[1]

instructions, do the following.

1. ZX is set to 1.

2. An Infinity, having a sign determined by the
XOR of the signs of the source operands, is
placed into doubleword element 0 of VSR[XT]
in double-precision format. The contents of
doubleword element 1 of VSR[XT] are
undefined.

3. FR and FI are set to 0.

4. FPRF is set to indicate the class and sign of
the result (± Infinity).

For VSX Vector Divide Double-Precision
(xvdivdp), do the following.

1. ZX is set to 1.

2. For each vector element causing a Zero
Divide exception, an Infinity, having a sign
determined by the XOR of the signs of the
source operands, is placed into its respective
doubleword element of VSR[XT] in
double-precision format.

3. FR, FI, and FPRF are not modified.

For VSX Vector Divide Single-Precision
(xvdivsp), do the following.

1. ZX is set to 1.

2. For each vector element causing a Zero
Divide exception, an Infinity, having a sign
determined by the XOR of the signs of the
source operands, is placed into its respective
word element of VSR[XT] in single-precision
format.

3. FR, FI, and FPRF are not modified.

For VSX Scalar Floating-Point Reciprocal
Estimate[2] instructions and VSX Scalar
Floating-Point Reciprocal Square Root Estimate[3]

instructions, do the following.

1. ZX is set to 1.

2. An Infinity, having the sign of the source
operand, is placed into doubleword element 0
of VSR[XT] in double-precision format. The
contents of doubleword element 1 of VSR[XT]
are undefined.

3. FR and FI are set to 0.

4. FPRF is set to indicate the class and sign of
the result (± Infinity).

For the VSX Vector Reciprocal Estimate
Double-Precision (xvredp) and VSX Vector
Reciprocal Square Root Estimate
Double-Precision (xvrsqrtedp) instructions:

1. ZX is set to 1.

2. For each vector element causing a Zero
Divide exception, an Infinity, having the sign
of the source operand, is placed into its
respective doubleword element of VSR[XT] in
double-precision format.

3. FR, FI, and FPRF are not modified.

For the VSX Vector Reciprocal Estimate
Single-Precision (xvresp) and VSX Vector
Reciprocal Square Root Estimate Single-Precision
(xvrsqrtesp) instructions:

1. ZX is set to 1.

2. For each vector element causing a Zero
Divide exception, an Infinity, having the sign
of the source operand, is placed into its
respective word element of VSR[XT] in
single-precision format.

3. FR, FI, and FPRF are not modified.

1. VSX Scalar Floating-Point Divide instructions:
xsdivdp, xsdivsp

2. VSX Scalar Floating-Point Reciprocal Estimate instructions:
xsredp, xsresp

3. VSX Scalar Floating-Point Reciprocal Square Root Estimate instructions:
xsrsqrtedp, xsrsqrtesp
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7.4.3 Floating-Point Overflow Exception

7.4.3.1 Definition

An Overflow exception occurs when the magnitude of
what would have been the rounded result if the
exponent range were unbounded exceeds that of the
largest finite number of the specified result precision.

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

7.4.3.2 Action for OE=1

When Overflow exception is enabled (OE=1) and an
Overflow exception occurs, the following actions are
taken:

For the VSX Vector round and Convert
Double-Precision to Single-Precision format
(xscvdpsp) instruction:

1. OX is set to 1.

2. If the unbiased exponent of the normalized
intermediate result is less than or equal to
318 (Emax+192), the exponent is adjusted by
subtracting 192. Otherwise the result is
undefined.

3. The adjusted rounded result is placed into
word element 0 of VSR[XT] in
single-precision format. The contents of word
elements 1-3 of VSR[XT] are undefined.

4. Unless the result is undefined, FPRF is set to
indicate the class and sign of the result
(±Normal Number).

For VSX Scalar Double-Precision Arithmetic[1]

instructions, do the following.

1. OX is set to 1.

2. The exponent of the normalized intermediate
result is adjusted by subtracting 1536.

3. The adjusted rounded result is placed into
doubleword element 0 of VSR[XT] in
double-precision format. The contents of
doubleword element 1 of VSR[XT] are
undefined.

4. FPRF is set to indicate the class and sign of
the result (±Normal Number).

For VSX Scalar Single-Precision Arithmetic[2]

instructions, do the following.

1. OX is set to 1.

2. The exponent is adjusted by subtracting 192.

3. The adjusted and rounded result is placed
into doubleword element 0 of VSR[XT] in
double-precision format. The contents of
doubleword element 1 of VSR[XT] are
undefined.

4. FPRF is set to indicate the class and sign of
the result (±Normal Number).

For VSX Vector Double-Precision Arithmetic[3]

instructions, VSX Vector Single-Precision
Arithmetic[4] instructions, and VSX Vector round
and Convert Double-Precision to Single-Precision
format instruction (xvcvdpsp), do the following.

1. OX is set to 1.

2. Update of VSR[XT] is suppressed for all
vector elements.

3. FR, FI, and FPRF are not modified.

1. VSX Scalar Double-Precision Arithmetic instructions:
xsadddp, xsdivdp, xsmuldp, xsredp, xssubdp, xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp, xsnmaddadp, xsnmaddmdp, 
xsnmsubadp, xsnmsubmdp

2. VSX Scalar Single-Precision Arithmetic instructions:
xsaddsp, xsdivsp, xsmulsp, xsresp, xssubsp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp, xsnmaddmsp, 
xsnmsubasp, xsnmsubmsp

3. VSX Vector Double-Precision Arithmetic instructions:
xvadddp, xvdivdp, xvmuldp, xvredp,  xvsubdp, xvmaddadp, xsmaddmdp, xvmsubadp, xvmsubmdp, xvnmaddadp, xvnmaddmdp, 
xvnmsubadp, xvnmsubmdp

4. VSX Vector Single-Precision Arithmetic instructions:
xvaddsp, xvdivsp, xvmulsp, xvresp, xvsubsp, xvmaddasp, xvmaddmsp, xvsmsubasp, xvmsubmsp, xvnmaddasp, xvnmaddmsp, 
xvnmsubasp, xvnmsubmsp
Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 349



Version 2.07 B
7.4.3.3 Action for OE=0

When Overflow exception is disabled (OE=0) and an
Overflow exception occurs, the following actions are
taken:

1. OX and XX are set to 1.

2. The result is determined by the rounding
mode (RN) and the sign of the intermediate
result as follows:

Round to Nearest Even
For negative overflow, the result is
-Infinity.
For positive overflow, the result is
+Infinity.

Round toward Zero
For negative overflow, the result is the
format’s most negative finite number.
For positive overflow, the result is the
format’s most positive finite number.

Round toward +Infinity
For negative overflow, the result is the
format’s most negative finite number.
For positive overflow, the result is
+Infinity.

Round toward -Infinity
For negative overflow, the result is
-Infinity.
For positive overflow, the result is the
format’s most positive finite number.

For VSX Scalar round and Convert
Double-Precision to Single-Precision format
(xscvdpsp):

3. The result is placed into word element 0 of
VSR[XT] as a single-precision value. The
contents of word elements 1-3 of VSR[XT]
are undefined.

4. FR is undefined.

5. FI is set to 1.

6. FPRF is set to indicate the class and sign of
the result.

For VSX Scalar Double-Precision Arithmetic[1]

instructions and VSX Scalar Single-Precision
Arithmetic[2] instructions, do the following.

3. The result is placed into doubleword element
0 of VSR[XT] as a double-precision value.
The contents of doubleword element 1 of
VSR[XT] are undefined.

4. FR is undefined.

5. FI is set to 1.

6. FPRF is set to indicate the class and sign of
the result.

For VSX Vector Double-Precision Arithmetic[3]

instructions, do the following.

3. For each vector element causing an Overflow
exception, the result is placed into its
respective doubleword element of VSR[XT] in
double-precision format.

4. FR, FI, and FPRF are not modified.

For VSX Vector Single-Precision Arithmetic[4]

instructions and VSX Vector round and Convert
Double-Precision to Single-Precision format
(xvcvdpsp), do the following.

3. For each vector element causing an Overflow
exception, the result is placed into its
respective word element of VSR[XT] in
single-precision format.

4. FR, FI, and FPRF are not modified.

1. VSX Scalar Double-Precision Arithmetic instructions:
xsadddp, xsdivdp, xsmuldp, xsredp, xssubdp, xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp, xsnmaddadp, xsnmaddmdp, 
xsnmsubadp, xsnmsubmdp

2. VSX Scalar Single-Precision Arithmetic instructions:
xsaddsp, xsdivsp, xsmulsp, xsresp, xssubsp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp, xsnmaddmsp, 
xsnmsubasp, xsnmsubmsp

3. VSX Vector Double-Precision Arithmetic instructions:
xvadddp, xvdivdp, xvmuldp, xvredp, xvsubdp, xvmaddadp, xvmaddmdp, xvmsubadp, xvmsubmdp, xvnmaddadp, xvnmaddmdp, 
xvnmsubadp, xvnmsubmdp

4. VSX Vector Single-Precision Arithmetic instructions:
xvaddsp, xvdivsp, xvmulsp, xvresp, xvsubsp, xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp, xvnmaddasp, xvnmaddmsp, 
xvnmsubasp, xvnmsubmsp
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7.4.4 Floating-Point Underflow Exception

7.4.4.1 Definition

Underflow exception is defined separately for the
enabled and disabled states:

Enabled:
Underflow occurs when the intermediate
result is “Tiny”.

Disabled:
Underflow occurs when the intermediate
result is “Tiny” and there is “Loss of
Accuracy”.

A tiny result is detected before rounding, when a
nonzero intermediate result computed as though both
the precision and the exponent range were unbounded
would be less in magnitude than the smallest
normalized number.

If the intermediate result is tiny and Underflow
exception is disabled (UE=0), the intermediate result is
denormalized (see Section 7.3.2.4 , “Normalization
and Denormalization” on page 329) and rounded (see
Section 7.3.2.6 , “Rounding” on page 333) before
being placed into the target VSR.

Loss of accuracy is detected when the delivered result
value differs from what would have been computed
were both the precision and the exponent range
unbounded.

The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

7.4.4.2 Action for UE=1

When Underflow exception is enabled (UE=1) and an
Underflow exception occurs, the following actions are
taken:

For VSX Scalar round and Convert
Double-Precision to Single-Precision format
(xscvdpsp), do the following.

1. UX is set to 1.

2. If the unbiased exponent of the normalized
intermediate result is greater than or equal to
-319 (Emin-192), the exponent is adjusted by
adding 192. Otherwise the result is undefined.

3. The adjusted rounded result is placed into
word element 0 of VSR[XT] in
single-precision format. The contents of word
elements 1-3 of VSR[XT] are undefined.

4. Unless the result is undefined, FPRF is set to
indicate the class and sign of the result
(±Normal Number).

For VSX Scalar Double-Precision Arithmetic[1]

instructions and VSX Scalar Double-Precision
Reciprocal Estimate (xsredp), do the following.

1. UX is set to 1.

2. The exponent of the normalized intermediate
result is adjusted by adding 1536.

3. The adjusted rounded result is placed into
doubleword element 0 of VSR[XT] in
double-precision format. The contents of
doubleword element 1 of VSR[XT] are
undefined.

4. FPRF is set to indicate the class and sign of
the result (±Normal Number).

1. VSX Scalar Double-Precision Arithmetic instructions:
xsadddp, xsdivdp, xsmuldp, xssubdp, xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp, xsnmaddadp, xsnmaddmdp, xsnmsubadp, 
xsnmsubmdp
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For VSX Scalar Single-Precision Arithmetic[1]

instructions and VSX Scalar Single-Precision
Reciprocal Estimate (xsresp), do the following.

1. UX is set to 1.

2. The exponent is adjusted by adding 192.

3. The adjusted rounded result is placed into
doubleword element 0 of VSR[XT] in
double-precision format. The contents of
doubleword element 1 of VSR[XT] are
undefined.

4. FPRF is set to indicate the class and sign of
the result (±Normal Number).

 

For VSX Vector Floating-Point Arithmetic[2]

instructions, VSX Vector Floating-Point Reciprocal
Estimate[3] instructions, and VSX Vector round
and Convert Double-Precision to Single-Precision
format (xvcvdpsp), do the following.

1. UX is set to 1.

2. Update of VSR[XT] is suppressed for all
vector elements.

3. FR, FI, and FPRF are not modified.

7.4.4.3 Action for UE=0

When Underflow exception is disabled (UE=0) and an
Underflow exception occurs, the following actions are
taken:

For VSX Scalar round and Convert
Double-Precision to Single-Precision format
(xscvdpsp), do the following.

1. UX is set to 1.

2. The result is placed into word element 0 of
VSR[XT] in single-precision format. The
contents of word elements 1-3 of VSR[XT]
are undefined.

3. FPRF is set to indicate the class and sign of
the result.

For VSX Scalar Floating-Point Arithmetic[4]

instructions and VSX Scalar Reciprocal
Estimate[5] instructions, do the following.

1. UX is set to 1.

2. The result is placed into doubleword element
0 of VSR[XT] in double-precision format. The
contents of doubleword element 1 of VSR[XT]
are undefined.

3. FPRF is set to indicate the class and sign of
the result.

For VSX Vector Double-Precision Arithmetic[6]

instructions and VSX Vector Reciprocal Estimate
Double-Precision (xvredp), do the following.

1. UX is set to 1.

2. For each vector element causing an
Underflow exception, the result is placed into
its respective doubleword element of
VSR[XT] in double-precision format.

3. FR, FI, and FPRF are not modified.

1. VSX Scalar Single-Precision Arithmetic instructions:
xsaddsp, xsdivsp, xsmulsp, xssubsp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp, xsnmaddmsp, xsnmsubasp, 
xsnmsubmsp

The FR and FI bits are provided to allow the
system floating-point enabled exception error
handler, when invoked because of an
Underflow exception, to simulate a “trap
disabled” environment. That is, the FR and FI
bits allow the system floating-point enabled
exception error handler to unround the result,
thus allowing the result to be denormalized
and correctly rounded.

2. VSX Vector Arithmetic instructions:
xvadddp, xvdivdp, xvmuldp, xvsubdp, xvaddsp, xvdivsp, xvmulsp, xvsubsp, xvmaddadp, xvmaddmdp, xvmsubadp, xvmsubmdp, 
xvnmaddadp, xvnmaddmdp, xvnmsubadp, xvnmsubmdp, xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp, xvnmaddasp, 
xvnmaddmsp, xvnmsubasp, xvnmsubmsp

3. VSX Vector Floating-Point Reciprocal Estimate instructions:
xvredp, xvresp

Programming Note

4. VSX Scalar Floating-Point Arithmetic instructions:
xsadddp, xsdivdp, xsmuldp, xssubdp, xsaddsp, xsdivsp, xsmulsp, xssubsp, xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp, 
xsnmaddadp, xsnmaddmdp, xsnmsubadp, xsnmsubmdp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp, 
xsnmaddmsp, xsnmsubasp, xsnmsubmsp

5. VSX Scalar Reciprocal Estimate instructions:
xsredp, xsresp

6. VSX Vector Double-Precision Arithmetic instructions:
xvadddp, xvdivdp, xvmuldp, xvsubdp, xvmaddadp, xvmaddmdp, xvmsubadp, xvmsubmdp, xvnmaddadp, xvnmaddmdp, xvnmsubadp, 
xvnmsubmdp
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For VSX Vector Single-Precision Arithmetic[1]

instructions, VSX Vector Reciprocal Estimate
Single-Precision (xvresp), and VSX Vector round
and Convert Double-Precision to Single-Precision
format (xvcvdpsp), do the following.

1. UX is set to 1.

2. For each vector element causing an
Underflow exception, the result is placed into
its respective word element of VSR[XT] in
single-precision format.

3. FR, FI, and FPRF are not modified.

1. VSX Vector Single-Precision Arithmetic instructions:
xvaddsp, xvdivsp, xvmulsp, xvsubsp, xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp, xvnmaddasp, xvnmaddmsp, xvnmsubasp, 
xvnmsubmsp
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7.4.5 Floating-Point Inexact Exception

7.4.5.1 Definition

An Inexact exception occurs when one of two
conditions occur during rounding:

1. The rounded result differs from the intermediate
result assuming both the precision and the
exponent range of the intermediate result to be
unbounded. In this case the result is said to be
inexact. (If the rounding causes an enabled
Overflow exception or an enabled Underflow
exception, an Inexact exception also occurs only if
the significands of the rounded result and the
intermediate result differ.)

2. The rounded result overflows and Overflow
exception is disabled.

The action to be taken depends on the setting of the
Inexact Exception Enable bit of the FPSCR.

7.4.5.2 Action for XE=1
 

When Inexact exception is enabled (UE=1) and an
Inexact exception occurs, the following actions are
taken:

For the VSX Vector round and Convert
Double-Precision to Single-Precision format
(xscvdpsp) instruction:

1. XX is set to 1.

2. The result is placed into word element 0 of
VSR[XT] in single-precision format. The
contents of word elements 1-3 of VSR[XT]
are undefined.

3. FPRF is set to indicate the class and sign of
the result.

For VSX Scalar Floating-Point Arithmetic[1]

instructions, VSX Scalar Round to
Double-Precision Integer Exact using Current
rounding mode (xsrdpic), and VSX Scalar Integer
to Floating-Point Format Conversion[2]

instructions, do the following.

1. XX is set to 1.

2. The result is placed into doubleword element
0 of VSR[XT] in double-precision format. The
contents of doubleword element 1 of VSR[XT]
are undefined.

3. FPRF is set to indicate the class and sign of
the result.

For VSX Scalar Floating-Point to Integer Word
Format Conversion[3] instructions, do the
following.

1. XX is set to 1.

2. The result is placed into word element 1 of
VSR[XT]. The contents of word elements 0, 2,
and 3 of VSR[XT] are undefined.

3. FPRF is set to indicate the class and sign of
the result.

For VSX Vector Floating-Point Arithmetic[4]

instructions, VSX Vector Floating-Point Reciprocal
Estimate[5] instructions, VSX Vector round and
Convert Double-Precision to Single-Precision
format (xvcvdpsp), VSX Vector Double-Precision
to Integer Format Conversion[6] instructions, and
VSX Vector Integer to Floating-Point Format
Conversion[7] instructions, do the following.

1. XX is set to 1.

2. Update of VSR[XT] is suppressed for all
vector elements.

3. FR, FI, and FPRF are not modified.

In some implementations, enabling Inexact
exceptions can degrade performance more than
does enabling other types of floating-point
exception.

Programming Note

1. VSX Scalar Floating-Point Arithmetic instructions:
xsadddp, xsdivdp, xsmuldp, xssubdp, xsaddsp, xsdivsp, xsmulsp, xssubsp, xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp, 
xsnmaddadp, xsnmaddmdp, xsnmsubadp, xsnmsubmdp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp, 
xsnmaddmsp, xsnmsubasp, xsnmsubmsp

2. VSX Scalar Integer to Floating-Point Format Conversion instructions:
xscvsxddp, xscvuxddp, xscvsxdsp, xscvuxdsp

3. VSX Scalar Floating-Point to Integer Word Format Conversion instructions:
xscvdpsxws, xscvdpuxws

4. VSX Vector Floating-Point Arithmetic instructions:
xvadddp, xvdivdp, xvmuldp, xvsubdp, xsaddsp, xvdivsp, xvmulsp, xvsubsp, xvmaddadp, xvmaddmdp, xvmsubadp, xvmsubmdp, 
xvnmaddadp, xvnmaddmdp, xvnmsubadp, xvnmsubmdp, xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp, xvnmaddasp, 
xvnmaddmsp, xvnmsubasp, xvnmsubmsp
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7.4.5.3 Action for XE=0

When Inexact exception is disabled (XE=0) and an
Inexact exception occurs, the following actions are
taken:

For VSX Scalar round and Convert
Double-Precision to Single-Precision format
(xscvdpsp), do the following.

1. XX is set to 1.

2. The result is placed into word element 0 of
VSR[XT] as a single-precision value. The
contents of word elements 1-3 of VSR[XT]
are undefined.

3. FPRF is set to indicate the class and sign of
the result.

For VSX Scalar Double-Precision Arithmetic[1]

instructions, VSX Scalar Single-Precision
Arithmetic[2] instructions, VSX Scalar Round to
Single-Precision (xsrsp), the VSX Scalar Round
to Double-Precision Integer Exact using Current
rounding mode (xsrdpic), and VSX Scalar Integer
to Double-Precision Format Conversion[3]

instructions, do the following.

1. XX is set to 1.

2. The result is placed into doubleword element
0 of VSR[XT] as a double-precision value.
The contents of doubleword element 1 of
VSR[XT] are undefined.

3. FPRF is set to indicate the class and sign of
the result.

For VSX Scalar Convert Double-Precision To
Integer Word format with Saturate[4] instructions,
do the following.

1. XX is set to 1.

2. The result is placed into word element 1 of
VSR[XT]. The contents of word elements 0, 2,
and 3 of VSR[XT] are undefined.

3. FPRF is set to indicate the class and sign of
the result.

For VSX Vector Double-Precision Arithmetic[5]

instructions, do the following.

1. XX is set to 1.

2. For each vector element causing an Inexact
exception, the result is placed into its
respective doubleword element of VSR[XT] in
double-precision format.

3. FR, FI, and FPRF are not modified.

For VSX Vector Single-Precision Arithmetic[6]

instructions, do the following.

1. XX is set to 1.

2. For each vector element causing an Inexact
exception, the result is placed into its
respective word element of VSR[XT] in
single-precision format.

3. FR, FI, and FPRF are not modified.

5. VSX Vector Floating-Point Reciprocal Estimate instructions:
xvredp, xvresp

6. VSX Vector Double-Precision to Integer Format Conversion instructions:
xvcvdpsxds, xvcvdpsxws, xvcvdpuxds, xvcvdpuxws

7. VSX Vector Integer to Floating-Point Format Conversion instructions:
xvcvsxddp, xvcvuxddp, xvcvsxdsp, xvcvuxdsp, xvcvsxwsp, xvcvuxwsp

1. VSX Scalar Double-Precision Arithmetic instructions:
xsadddp, xssubdp, xsmuldp, xsdivdp, xssqrtdp, xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp, xsnmaddadp, xsnmaddmdp, 
xsnmsubadp, xsnmsubmdp

2. VSX Scalar Single-Precision Arithmetic instructions:
xsaddsp, xssubsp, xsmulsp, xsdivsp, xssqrtsp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp, xsnmaddmsp, 
xsnmsubasp, xsnmsubmsp

3. VSX Scalar Integer to Double-Precision Format Conversion instructions:
xscvsxddp, xscvuxddp

4. VSX Scalar Convert Double-Precision To Integer Word format with Saturate instructions:
xscvdpsxws, xscvdpuxws

5. VSX Vector Double-Precision Arithmetic instructions:
xsadddp, xssubdp, xsmuldp, xsdivdp, xssqrtdp, xsmaddadp, xsmaddmdp, xvmsubadp, xvmsubmdp, xvnmaddadp, xvnmaddmdp, 
xvnmsubadp, xvnmsubmdp

6. VSX Vector Single-Precision Arithmetic instructions:
xvaddsp, xvsubsp, xvmulsp, xvdivsp, xvsqrtsp, xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp, xvnmaddasp, xvnmaddmsp, 
xvnmsubasp, xvnmsubmsp
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7.5 VSX Storage Access Operations

The VSX Storage Access instructions compute the
effective address (EA) of the storage to be accessed
as described in Power ISA Book I.

7.5.1 Accessing Aligned Storage Operands
The following quadword-aligned array, AH, consists of
8 halfwords.

short   AW[4] = { 0x0001_0203,
                  0x0405_0607, 
                  0x0809_0A0B,
                  0x0C0D_0E0F };

Figure 119 illustrates the Big-Endian storage image of
array AW.

Figure 120 illustrates the Little-Endian storage image
of array AW.

Figure 121 shows the result of loading that quadword
into a VSR or, equivalently, shows the contents that
must be in a VSR if storing that VSR is to produce the
storage contents shown in Figure 119 for Big-Endian.
Note that Figure  shows the effect of loading the
quadword from both Big-Endian storage and
Little-Endian storage.

0x0000: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0x0010:

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 119.Big-Endian storage image of array AW

0x0000: 03 02 01 00 07 06 05 04 0B 0A 09 08 0F 0E 0D 0C

0x0010:

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 120.Little-Endian storage image of array AW

VSR contents when accessing aligned quadword in 
Big-Endian storage from Figure 119

Vt,Vs 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0 1 2 3 4 5 6 7 8 9 A B C D E F

VSR contents when accessing aligned quadword in 
Little-Endian storage from Figure 120

Vt,Vs 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 121.Vector-Scalar Register contents for 
aligned quadword Load or Store VSX 
Vector
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7.5.2 Accessing Unaligned Storage Operands

The following array, B, consists of 5 word elements.

int   B[5];
B[0] = 0x01234567;
B[1] = 0x00112233;
B[2] = 0x44556677;
B[3] = 0x8899AABB;
B[4] = 0xCCDDEEFF;

Figure 122 illustrates both Big-Endian and
Little-Endian storage images of array B.

Though this example shows the array starting at a
quadword-aligned address, if the subject data of
interest are elements 1 through 4, accessing elements
1 through 4 of array B involves an unaligned quadword
storage access that spans two aligned quadwords.

Loading an Unaligned Quadword from Big-Endian 
Storage

Loading elements from elements 1 through 4 of B (see
Figure 122) into VR[VT] involves an unaligned
quadword storage access.

VSX supports word-aligned vector and scalar storage
accesses using Big-Endian byte ordering. 

Loading an Unaligned Quadword from 
Little-Endian Storage

Loading elements from elements 1 through 4 of B (see
Figure 122) into VR[VT] involves an unaligned
quadword storage access.

VSX supports word-aligned vector and scalar storage
accesses using Little-Endian byte ordering. 

Big-Endian storage image of array B

0x0000: 01 23 45 67 00 11 22 33 44 55 66 77 88 99 AABB

0x0010: CCDDEE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Little-Endian storage image of array B

0x0000: 67 45 23 01 33 22 11 00 77 66 55 44 BBAA 99 88

0x0010: FF EEDDCC

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 122.Storage images of array B

Big-Endian storage image of array B

0x0000: 01 23 45 67 00 11 22 33 44 55 66 77 88 99 AABB

0x0010: CCDDEE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

# Assumptions
   GPR[Ra] = address of B
   GPR[Rb] = 4    (index to B[1])
lxvw4x  Xt,Ra,Rb

Xt: 00 11 22 33 44 55 66 77 88 99 AABBCCDDEE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 123.Process to load unaligned quadword 
from Big-Endian storage using Load 
VSX Vector Word*4 Indexed

Little-Endian storage image of array B

0x0000: 67 45 23 01 33 22 11 00 77 66 55 44 BBAA 99 88

0x0010: FF EEDDCC

0 1 2 3 4 5 6 7 8 9 A B C D E F

# Assumptions
   GPR[A] = address of B
   GPR[B] = 4    (index to B[1])
lxvw4x  Xt,Ra,Rb

Xt: 00 11 22 33 44 55 66 77 88 99 AABBCCDDEE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 124.Process to load unaligned quadword 
from Little-Endian storage Load VSX 
Vector Word*4 Indexed
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Storing an Unaligned Quadword to Big-Endian 
Storage

Storing a VSR to elements 1 through 4 of B (see
Figure 122) into VR[VT] involves an unaligned
quadword storage access.

VSX supports word-aligned vector and scalar storage
accesses using Big-Endian byte ordering. 

Storing an Unaligned Quadword to Little-Endian 
Storage

Storing a VSR to elements 1 through 4 of B (see
Figure 122) into VR[VT] involves an unaligned
quadword storage access.

VSX supports word-aligned vector and scalar storage
accesses using Little-Endian byte ordering. 

7.5.3 Storage Access 
Exceptions
Storage accesses cause the system data storage error
handler to be invoked if the program is not allowed to
modify the target storage (Store only), or if the
program attempts to access storage that is
unavailable.

 

Big-Endian storage image of array B

0x0000: 01 23 45 67 00 11 22 33 44 55 66 77 88 99 AA BB

0x0010: CC DD EE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Xs: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA BB FC FD FE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

# Assumptions
   GPR[Ra] = address of B
   GPR[Rb] = 4    (index to B[1])

stxvw4x  Xs,Ra,Rb

0x0000: 01 23 45 67 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA BB

0x0010: FC FD FE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 125.Process to store unaligned quadword to 
Big-Endian storage using Store VSX 
Vector Word*4 Indexed

Little-Endian storage image of array B

0x0000: 67 45 23 01 33 22 11 00 77 66 55 44 BB AA 99 88

0x0010: FF EE DD CC

0 1 2 3 4 5 6 7 8 9 A B C D E F

Xs: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA BB FC FD FE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

# Assumptions
   GPR[A] = address of B
   GPR[B] = 4    (index to B[1])

stxvw4x  Xs,Ra,Rb

0x0000: 67 45 23 01 F3 F2 F1 F0 F7 F6 F5 F4 FB FA F9 F8

0x0010: FF FE FD FC

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 126.Process to store unaligned quadword to 
Little-Endian storage Store VSX Vector 
Word*4 Indexed
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7.6 VSX Instruction Set

7.6.1 VSX Instruction Set Summary

7.6.1.1 VSX Storage Access Instructions

There are two basic forms of scalar load and scalar
store instructions, word and doubleword. VSX Scalar
Load instructions place a copy of the contents of the
addressed word or doubleword in storage into the
left-most word or doubleword element of the target
VSR. The contents of the right-most element(s) of the
target VSR are undefined. VSX Scalar Store
instructions place a copy of the contents of the
left-most word or doubleword element in the source
VSR into the addressed word or doubleword in
storage.

There are two basic forms of vector load and vector
store instructions, a vector of 4 word elements and a
vector of two doublewords. Both forms access a
quadword in storage.

There is one basic form of vector load and splat
instruction, doubleword. VSX Vector Load and Splat
instruction places a copy of the contents of the
addressed doubleword in storage into both doubleword
elements of the target VSR.

7.6.1.1.1 VSX Scalar Storage Access Instructions

7.6.1.1.2 VSX Vector Storage Access Instructions

Mnemonic Instruction Name Page

lxsdx Load VSX Scalar Doubleword Indexed 392
lxsspx Load VSX Scalar Single-Precision Indexed 393
lxsiwax Load VSX Scalar as Integer Word Algebraic Indexed 392
lxsiwzx Load VSX Scalar as Integer Word and Zero Indexed 393

Table 8. VSX Scalar Load Instructions

Mnemonic Instruction Name Page

stxsdx Store VSX Scalar Doubleword Indexed 395
stxsspx Store VSX Scalar Single-Precision Indexed 396
stxsiwx Store VSX Scalar as Integer Word Indexed 396

Table 9. VSX Scalar Store Instructions

Mnemonic Instruction Name Page

lxvd2x Load VSX Vector Doubleword*2 Indexed 394
lxvw4x Load VSX Vector Word*4 Indexed 395

Table 10.VSX Vector Load Instructions

Mnemonic Instruction Name Page

lxvdsx Load VSX Vector Doubleword and Splat Indexed 394

Table 11.VSX Vector Load and Splat Instruction

Mnemonic Instruction Name Page

stxvd2x Store VSX Vector Doubleword*2 Indexed 397
stxvw4x Store VSX Vector Word*4 Indexed 397

Table 12.VSX Vector Store Instructions
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7.6.1.2 VSX Move Instructions

7.6.1.2.1 VSX Scalar Move Instructions

7.6.1.2.2 VSX Vector Move Instructions

7.6.1.3 VSX Floating-Point Arithmetic Instructions

7.6.1.3.1 VSX Scalar Floating-Point Arithmetic Instructions

Mnemonic Instruction Name Page

xsabsdp VSX Scalar Absolute Value Double-Precision 398
xscpsgndp VSX Scalar Copy Sign Double-Precision 410
xsnabsdp VSX Scalar Negative Absolute Value Double-Precision 448
xsnegdp VSX Scalar Negate Double-Precision 448

Table 13.VSX Scalar Double-Precision Move Instructions

Mnemonic Instruction Name Page

xvabsdp VSX Vector Absolute Value Double-Precision 479
xvcpsgndp VSX Vector Copy Sign Double-Precision 493
xvnabsdp VSX Vector Negative Absolute Value Double-Precision 544
xvnegdp VSX Vector Negate Double-Precision 545

Table 14.VSX Vector Double-Precision Move Instructions

Mnemonic Instruction Name Page

xvabssp VSX Vector Absolute Value Single-Precision 480
xvcpsgnsp VSX Vector Copy Sign Single-Precision 493
xvnabssp VSX Vector Negative Absolute Value Single-Precision 544
xvnegsp VSX Vector Negate Single-Precision 545

Table 15.VSX Vector Single-Precision Move Instructions

Mnemonic Instruction Name Page

xsadddp VSX Scalar Add Double-Precision 399
xsdivdp VSX Scalar Divide Double-Precision 424
xsmuldp VSX Scalar Multiply Double-Precision 444
xsredp VSX Scalar Reciprocal Estimate Double-Precision 467
xsrsqrtedp VSX Scalar Reciprocal Square Root Estimate Double-Precision 470
xssqrtdp VSX Scalar Square Root Double-Precision 472
xssubdp VSX Scalar Subtract Double-Precision 474
xstdivdp VSX Scalar Test for software Divide Double-Precision 478
xstsqrtdp VSX Scalar Test for software Square Root Double-Precision 479

Table 16.VSX Scalar Double-Precision Elementary Arithmetic Instructions
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7.6.1.3.2 VSX Vector Floating-Point Arithmetic Instructions

Mnemonic Instruction Name Page

xsaddsp VSX Scalar Add Single-Precision 404
xsdivsp VSX Scalar Divide Single-Precision 426
xsmulsp VSX Scalar Multiply Single-Precision 446
xsresp VSX Scalar Reciprocal Estimate Single-Precision 468
xsrsqrtesp VSX Scalar Reciprocal Square Root Estimate Single-Precision 471
xssqrtsp VSX Scalar Square Root Single-Precision 473
xssubsp VSX Scalar Subtract Single-Precision 476

Table 17.VSX Scalar Single-Precision Elementary Arithmetic Instructions

Mnemonic Instruction Name Page

xsmaddadp VSX Scalar Multiply-Add Type-A Double-Precision 428
xsmaddmdp VSX Scalar Multiply-Add Type-M Double-Precision 428
xsmsubadp VSX Scalar Multiply-Subtract Type-A Double-Precision 438
xsmsubmdp VSX Scalar Multiply-Subtract Type-M Double-Precision 438
xsnmaddadp VSX Scalar Negative Multiply-Add Type-A Double-Precision 449
xsnmaddmdp VSX Scalar Negative Multiply-Add Type-M Double-Precision 449
xsnmsubadp VSX Scalar Negative Multiply-Subtract Type-A Double-Precision 457
xsnmsubmdp VSX Scalar Negative Multiply-Subtract Type-M Double-Precision 457

Table 18.VSX Scalar Double-Precision Multiply-Add Arithmetic Instructions

Mnemonic Instruction Name Page

xsmaddasp VSX Scalar Multiply-Add Type-A Single-Precision 431
xsmaddmsp VSX Scalar Multiply-Add Type-M Single-Precision 431
xsmsubasp VSX Scalar Multiply-Subtract Type-A Single-Precision 441
xsmsubmsp VSX Scalar Multiply-Subtract Type-M Single-Precision 441
xsnmaddasp VSX Scalar Negative Multiply-Add Type-A Single-Precision 454
xsnmaddmsp VSX Scalar Negative Multiply-Add Type-M Single-Precision 454
xsnmsubasp VSX Scalar Negative Multiply-Subtract Type-A Single-Precision 460
xsnmsubmsp VSX Scalar Negative Multiply-Subtract Type-M Single-Precision 460

Table 19.VSX Scalar Single-Precision Multiply-Add Arithmetic Instructions

Mnemonic Instruction Name Page

xvadddp VSX Vector Add Double-Precision 481
xvdivdp VSX Vector Divide Double-Precision 516
xvmuldp VSX Vector Multiply Double-Precision 540
xvredp VSX Vector Reciprocal Estimate Double-Precision 563
xvrsqrtedp VSX Vector Reciprocal Square Root Estimate Double-Precision 567
xvsqrtdp VSX Vector Square Root Double-Precision 570
xvsubdp VSX Vector Subtract Double-Precision 572
xvtdivdp VSX Vector Test for software Divide Double-Precision 576
xvtsqrtdp VSX Vector Test for software Square Root Double-Precision 578

Table 20.VSX Vector Double-Precision Elementary Arithmetic Instructions
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Mnemonic Instruction Name Page

xvaddsp VSX Vector Add Single-Precision 485
xvdivsp VSX Vector Divide Single-Precision 518
xvmulsp VSX Vector Multiply Single-Precision 542
xvresp VSX Vector Reciprocal Estimate Single-Precision 564
xvrsqrtesp VSX Vector Reciprocal Square Root Estimate Single-Precision 569
xvsqrtsp VSX Vector Square Root Single-Precision 571
xvsubsp VSX Vector Subtract Single-Precision 574
xvtdivsp VSX Vector Test for software Divide Single-Precision 577
xvtsqrtsp VSX Vector Test for software Square Root Single-Precision 578

Table 21.VSX Vector Single-Precision Elementary Arithmetic Instructions

Mnemonic Instruction Name Page

xvmaddadp VSX Vector Multiply-Add Type-A Double-Precision 520
xvmaddmdp VSX Vector Multiply-Add Type-M Double-Precision 520
xvmsubadp VSX Vector Multiply-Subtract Type-A Double-Precision 534
xvmsubmdp VSX Vector Multiply-Subtract Type-M Double-Precision 534
xvnmaddadp VSX Vector Negative Multiply-Add Type-A Double-Precision 546
xvnmaddmdp VSX Vector Negative Multiply-Add Type-M Double-Precision 546
xvnmsubadp VSX Vector Negative Multiply-Subtract Type-A Double-Precision 554
xvnmsubmdp VSX Vector Negative Multiply-Subtract Type-M Double-Precision 554

Table 22.VSX Vector Double-Precision Multiply-Add Arithmetic Instructions

Mnemonic Instruction Name Page

xvmaddasp VSX Vector Multiply-Add Type-A Single-Precision 523
xvmaddmsp VSX Vector Multiply-Add Type-M Single-Precision 523
xvmsubasp VSX Vector Multiply-Subtract Type-A Single-Precision 537
xvmsubmsp VSX Vector Multiply-Subtract Type-M Single-Precision 537
xvnmaddasp VSX Vector Negative Multiply-Add Type-A Single-Precision 551
xvnmaddmsp VSX Vector Negative Multiply-Add Type-M Single-Precision 551
xvnmsubasp VSX Vector Negative Multiply-Subtract Type-A Single-Precision 557
xvnmsubmsp VSX Vector Negative Multiply-Subtract Type-M Single-Precision 557

Table 23.VSX Vector Single-Precision Multiply-Add Arithmetic Instructions
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7.6.1.4 VSX Floating-Point Compare Instructions

7.6.1.4.1 VSX Scalar Floating-Point Compare Instructions

7.6.1.4.2 VSX Vector Floating-Point Compare Instructions

Mnemonic Instruction Name Page

xscmpodp VSX Scalar Compare Ordered Double-Precision 406
xscmpudp VSX Scalar Compare Unordered Double-Precision 408

Table 24.VSX Scalar Compare Double-Precision Instructions

Mnemonic Instruction Name Page

xsmaxdp VSX Scalar Maximum Double-Precision 434
xsmindp VSX Scalar Minimum Double-Precision 436

Table 25.VSX Scalar Double-Precision Maximum/Minimum Instructions

Mnemonic Instruction Name Page

xvcmpeqdp[.] VSX Vector Compare Equal To Double-Precision 487
xvcmpgedp[.] VSX Vector Compare Greater Than or Equal To Double-Precision 489
xvcmpgtdp[.] VSX Vector Compare Greater Than Double-Precision 491

Table 26.VSX Vector Compare Double-Precision Instructions

Mnemonic Instruction Name Page

xvcmpeqsp[.] VSX Vector Compare Equal To Single-Precision 488
xvcmpgesp[.] VSX Vector Compare Greater Than or Equal To Single-Precision 490
xvcmpgtsp[.] VSX Vector Compare Greater Than Single-Precision 492

Table 27.VSX Vector Compare Single-Precision Instructions

Mnemonic Instruction Name Page

xvmaxdp VSX Vector Maximum Double-Precision 526
xvmindp VSX Vector Minimum Double-Precision 530

Table 28.VSX Vector Double-Precision Maximum/Minimum Instructions

Mnemonic Instruction Name Page

xvmaxsp VSX Vector Maximum Single-Precision 528
xvminsp VSX Vector Minimum Single-Precision 532

Table 29.VSX Vector Single-Precision Maximum/Minimum Instructions
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7.6.1.5 VSX DP-SP Conversion Instructions

7.6.1.5.1 VSX Scalar DP-SP Conversion Instructions

7.6.1.5.2 VSX Vector DP-SP Conversion Instructions

7.6.1.6 VSX Integer Conversion Instructions

7.6.1.6.1 VSX Scalar Integer Conversion Instructions

Mnemonic Instruction Name Page

xscvdpsp VSX Scalar round and Convert Double-Precision to Single-Precision format 411
xscvspdp VSX Scalar Convert Single-Precision to Double-Precision format 421

Table 30.VSX Scalar DP-SP Conversion Instructions

Mnemonic Instruction Name Page

xvcvdpsp VSX Vector round and Convert Double-Precision to Single-Precision format 494
xvcvspdp VSX Vector Convert Single-Precision to Double-Precision format 503

Table 31.VSX Vector DP-SP Conversion Instructions

Mnemonic Instruction Name Page

xscvdpsxds VSX Scalar truncate Double-Precision to integer and Convert to Signed Fixed-Point 
Doubleword format with Saturate 412

xscvdpsxws VSX Scalar truncate Double-Precision to integer and Convert to Signed Fixed-Point Word 
format with Saturate 415

xscvdpuxds VSX Scalar truncate Double-Precision to integer and Convert to Unsigned Fixed-Point 
Doubleword format with Saturate 417

xscvdpuxws VSX Scalar truncate Double-Precision to integer and Convert to Unsigned Fixed-Point Word 
format with Saturate 419

Table 32.VSX Scalar Convert Double-Precision to Integer Instructions

Mnemonic Instruction Name Page

xscvsxddp VSX Scalar Convert Signed Fixed-Point Doubleword to floating-point format and round to 
Double-Precision 422

xscvuxddp VSX Scalar Convert Unsigned Fixed-Point Doubleword to floating-point format and round to 
Double-Precision 423

Table 33.VSX Scalar Convert Integer to Double-Precision Instructions

Mnemonic Instruction Name Page

xscvsxdsp VSX Scalar Convert Signed Fixed-Point Doubleword to floating-point format and round to 
Single-Precision 422

xscvuxdsp VSX Scalar Convert Unsigned Fixed-Point Doubleword to floating-point format and round to 
Single-Precision 423

Table 34.VSX Scalar Convert Integer to Single-Precision Instructions
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7.6.1.6.2 VSX Vector Integer Conversion Instructions

Mnemonic Instruction Name Page

xvcvdpsxds VSX Vector truncate Double-Precision to integer and Convert to Signed Fixed-Point 
Doubleword format with Saturate 495

xvcvdpsxws VSX Vector truncate Double-Precision to integer and Convert to Signed Fixed-Point Word 
format with Saturate 497

xvcvdpuxds VSX Vector truncate Double-Precision to integer and Convert to Unsigned Fixed-Point 
Doubleword format with Saturate 499

xvcvdpuxws VSX Vector truncate Double-Precision to integer and Convert to Unsigned Fixed-Point Word 
format with Saturate 501

Table 35.VSX Vector Convert Double-Precision to Integer Instructions

Mnemonic Instruction Name Page

xvcvspsxds VSX Vector truncate Single-Precision to integer and Convert to Signed Fixed-Point 
Doubleword format with Saturate 504

xvcvspsxws VSX Vector truncate Single-Precision to integer and Convert to Signed Fixed-Point Word 
format with Saturate 506

xvcvspuxds VSX Vector truncate Single-Precision to integer and Convert to Unsigned Fixed-Point 
Doubleword format with Saturate 508

xvcvspuxws VSX Vector truncate Single-Precision to integer and Convert to Unsigned Fixed-Point Word 
format with Saturate 510

Table 36.VSX Vector Convert Single-Precision to Integer Instructions

Mnemonic Instruction Name Page

xvcvsxddp VSX Vector Convert and round Signed Fixed-Point Doubleword to Double-Precision format 512
xvcvsxwdp VSX Vector Convert Signed Fixed-Point Word to Double-Precision format 513
xvcvuxddp VSX Vector Convert and round Unsigned Fixed-Point Doubleword to Double-Precision format 514
xvcvuxwdp VSX Vector Convert Unsigned Fixed-Point Word to Double-Precision format 515

Table 37.VSX Vector Convert Integer to Double-Precision Instructions

Mnemonic Instruction Name Page

xvcvsxdsp VSX Vector Convert and round Signed Fixed-Point Doubleword to Single-Precision format 512
xvcvsxwsp VSX Vector Convert and round Signed Fixed-Point Word to Single-Precision format 513
xvcvuxdsp VSX Vector Convert and round Unsigned Fixed-Point Doubleword to Single-Precision format 514
xvcvuxwsp VSX Vector Convert and round Unsigned Fixed-Point Word to Single-Precision format 515

Table 38.VSX Vector Convert Integer to Single-Precision Instructions
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7.6.1.7 VSX Round to Floating-Point Integer Instructions

7.6.1.7.1 VSX Scalar Round to Floating-Point Integer Instructions

7.6.1.7.2 VSX Vector Round to Floating-Point Integer Instructions

7.6.1.8 VSX Logical Instructions

Mnemonic Instruction Name Page

xsrdpi VSX Scalar Round to Double-Precision Integer using round to Nearest Away 463
xsrdpic VSX Scalar Round to Double-Precision Integer Exact using Current rounding mode 464
xsrdpim VSX Scalar Round to Double-Precision Integer using round towards -Infinity rounding mode 465
xsrdpip VSX Scalar Round to Double-Precision Integer using round towards +Infinity rounding mode 465
xsrdpiz VSX Scalar Round to Double-Precision Integer using round towards Zero rounding mode 466

Table 39.VSX Scalar Round to Double-Precision Integer Instructions

Mnemonic Instruction Name Page

xvrdpi VSX Vector Round to Double-Precision Integer using round to Nearest Away 560
xvrdpic VSX Vector Round to Double-Precision Integer Exact using Current rounding mode 560
xvrdpim VSX Vector Round to Double-Precision Integer using round towards -Infinity rounding mode 561
xvrdpip VSX Vector Round to Double-Precision Integer using round towards +Infinity rounding mode 561
xvrdpiz VSX Vector Round to Double-Precision Integer using round towards Zero rounding mode 562

Table 40.VSX Vector Round to Double-Precision Integer Instructions

Mnemonic Instruction Name Page

xvrspi VSX Vector Round to Single-Precision Integer using round to Nearest Away 565
xvrspic VSX Vector Round to Single-Precision Integer Exact using Current rounding mode 565
xvrspim VSX Vector Round to Single-Precision Integer using round towards -Infinity rounding mode 566
xvrspip VSX Vector Round to Single-Precision Integer using round towards +Infinity rounding mode 566
xvrspiz VSX Vector Round to Single-Precision Integer using round towards Zero rounding mode 567

Table 41.VSX Vector Round to Single-Precision Integer Instructions

Mnemonic Instruction Name Page

xxland VSX Logical AND 579
xxlandc VSX Logical AND with Complement 579
xxlnor VSX Logical NOR 581
xxlor VSX Logical OR 582
xxlxor VSX Logical XOR 582

Table 42.VSX Logical Instructions

Mnemonic Instruction Name Page

xxsel VSX Select 584

Table 43.VSX Vector Select Instruction
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7.6.1.9 VSX Permute Instructions

Mnemonic Instruction Name Page
xxmrghw VSX Merge High Word 583
xxmrglw VSX Merge Low Word 583

Table 44.VSX Merge Instructions

Mnemonic Instruction Name Page

xxspltw VSX Splat Word 585

Table 45.VSX Splat Instruction

Mnemonic Instruction Name Page

xxpermdi VSX Permute Doubleword Immediate 584

Table 46.VSX Permute Instruction

Mnemonic Instruction Name Page

xxsldwi VSX Shift Left Double by Word Immediate 585

Table 47.VSX Shift Instruction
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7.6.2 VSX Instruction Description Conventions

7.6.2.1 VSX Instruction RTL Operators

x.bit[y]
Return the contents of bit y of x.

x.bit[y:z]
Return the contents of bits y:z of x.

x.word[y]
Return the contents of word element y of x.

x.word[y:z]
Return the contents of word elements y:z of x.

x.dword[y]
Return the contents of doubleword element y of x.

x.dword[y:z]
Return the contents of doubleword elements y:z
of x.

x = y
The value of y is placed into x.

x |= y
The value of y is ORed with the value x and
placed into x.

~x
Return the one’s complement of x.

!x
Return 1 if the contents of x are equal to 0,
otherwise return 0.

x || y
Return the value of x concatenated with the value
of y. For example, 0b010 || 0b111 is the same as
0b010111.

x ^ y
Return the value of x exclusive ORed with the
value of y.

x ? y : z
If the value of x is true, return the value of y,
otherwise return the value z.

x+y
x and y are integer values.

Return the sum of x and y.

 

x–y
x and y are integer values.

Return the difference of x and y.

x!=y
x and y are integer values.

Return 1 if x is not equal to y, otherwise return 0.

x<=y
x and y are integer values.

Return 1 if x is less than or equal to y, otherwise
return 0.

x>=y
x and y are integer values.

Return 1 if x is greater than or equal to y,
otherwise return 0.
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7.6.2.2 VSX Instruction RTL Function Calls

AddDP(x,y)
x and y are double-precision floating-point values.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is an Infinity and y is an Infinity of the opposite sign, vxisi_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return y.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, if x and y are infinities of opposite sign, return the standard QNaN.
Otherwise, return the normalized sum of x and y, having unbounded range and precision.

AddSP(x,y)
x and y are single-precision floating-point values.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is an Infinity and y is an Infinity of the opposite sign, vxisi_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return y.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, if x and y are infinities of opposite sign, return the standard QNaN.
Otherwise, return the normalized sum of x added to y, having unbounded range and precision.

ClassDP(x,y)
Return a 5-bit characterization of the double-precision floating-point number x.

0b10001 = Quiet NaN
0b01001 = -Infinity
0b01000 = -Normalized Number
0b11000 = -Denormalized Number
0b10010 = -Zero
0b00010 = +Zero
0b10100 = +Denormalized Number
0b00100 = +Normalized Number
0b00101 = +Infinity

ClassSP(x,y)
Return a 5-bit characterization of the single-precision floating-point number x.

0b10001 = Quiet NaN
0b01001 = -Infinity
0b01000 = -Normalized Number
0b11000 = -Denormalized Number
0b10010 = -Zero
0b00010 = +Zero
0b10100 = +Denormalized Number
0b00100 = +Normalized Number
0b00101 = +Infinity
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CompareEQDP(x,y)
x and y are double-precision floating-point values.

If x or y is a NaN, return 0.
Otherwise, if x is equal to y, return 1.
Otherwise, return 0.

CompareEQSP(x,y)
x and y are single-precision floating-point values.

If x or y is a NaN, return 0,
Otherwise, if x is equal to y, return 1.
Otherwise, return 0.

CompareGTDP(x,y)
x and y are double-precision floating-point values.

If x or y is a NaN, return 0,
Otherwise, if x is greater than y, return 1.
Otherwise, return 0.

CompareGTSP(x,y)
x and y are single-precision floating-point values.

If x or y is a NaN, return 0.
Otherwise, if x is greater than y, return 1.
Otherwise, return 0.

CompareLTDP(x,y)
x and y are double-precision floating-point values.

If x or y is a NaN, return 0.
Otherwise, if x is less than y, return 1.
Otherwise, return 0.

CompareLTSP(x,y)
x and y are single-precision floating-point values.

If x or y is a NaN, return 0.
Otherwise, if x is less than y, return 1.
Otherwise, return 0.
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  ConvertDPtoSD(x)
x is a floating-point value in double-precision format.

If x is a NaN,
vxcvi_flag is set to 1,
vxsnan_flag is set to 1 if x is an SNaN, and
return 0x8000_0000_0000_0000,

Otherwise, do the following.
Let rnd be the value x truncated to an integral value.

If rnd is greater than 263-1,
vxcvi_flag is set to 1,
return 0x7FFF_FFFF_FFFF_FFFF.

Otherwise, if rnd is less than -263,
vxcvi_flag is set to 1,
return 0x8000_0000_0000_0000.

Otherwise, 
xx_flag is set to 1 if rnd is inexact.
return rnd in 64-bit signed integer format.

ConvertDPtoSP(x)
x is a floating-point value in double-precision format.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a SNaN, returns x, converted to a QNaN, in single-precision floating-point format.

Otherwise, if x is a QNaN, an Infinity, or a Zero, returns x in single-precision floating-point format.

Otherwise, returns x, rounded to single-precision using the rounding mode specified in RN, in single-precision
floating-point format.

ox_flag is set to 1 if rounding x resulted in an Overflow exception.
ux_flag is set to 1 if rounding x resulted in an Underflow exception.
xx_flag is set to 1 if rounding x returns an inexact result.
inc_flag is set to 1 if the significand of the result was incremented during rounding.

ConvertDPtoSP_NS(x)
x is a single-precision floating-point value represented in double-precision format.

Returns x in single-precision format.

sign     ← x.bit[0]
exponent ← x.bit[1:11]
fraction ← 0b1 æ x.bit[12:63] // implicit bit set to 1 (for now)

if (exponent == 0) & (fraction.bit[1:52] != 0) then do // DP Denormal operand
   exponent ← 0b000_0000_0001 //   exponent override to DP Emin = 1
   fraction.bit[0] ← 0b0 //   implicit bit override to 0
end

if (exponent < 897) && (fraction != 0) then do // SP tiny operand
   fraction ← fraction >>ui (897 - exponent) //  denormalize until exponent = SP Emin
   exponent ← 0b011_1000_0000 //  exponent override to SP Emin-1 = 896
end

return(sign æ exponent.bit[0] æ exponent.bit[4:10] æ fraction.bit[1:23])
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ConvertDPtoSW(x)
x is a floating-point value in double-precision format.

If x is a NaN,
vxcvi_flag is set to 1,
vxsnan_flag is set to 1 if x is an SNaN, and
return 0x8000_0000,

Otherwise, do the following.
Let rnd be the value x truncated to an integral value.

If rnd is greater than 231-1,
vxcvi_flag is set to 1,
return 0x7FFF_FFFF.

Otherwise, if rnd is less than -231,
vxcvi_flag is set to 1,
return 0x8000_0000.

Otherwise, 
xx_flag is set to 1 if rnd is inexact.
return rnd in 32-bit signed integer format.

  ConvertDPtoUD(x)
x is a floating-point value in double-precision format.

If x is a NaN,
vxcvi_flag is set to 1,
vxsnan_flag is set to 1 if x is an SNaN, and
return 0x8000_0000_0000_0000,

Otherwise, do the following.
Let rnd be the value x truncated to an integral value.

If rnd is greater than 264-1,
vxcvi_flag is set to 1,
return 0xFFFF_FFFF_FFFF_FFFF.

Otherwise, if rnd is less than 0,
vxcvi_flag is set to 1,
return 0x0000_0000_0000_0000.

Otherwise, 
xx_flag is set to 1 if rnd is inexact.
return rnd in 64-bit unsigned integer format.

If x is not representable in single-precision, some exponent and/or significand bits will be discarded, likely
producing undesirable results.  The low-order 29 bits of the significand of x are discarded, more if the
unbiased exponent of x is less than -126 (i.e., denormal). Finite values of x having an unbiased exponent
less than -150 will return a result of Zero. Finite values of x having an unbiased exponent greater than +127
will result in discarding significant bits of the exponent. SNaN inputs having no significant bits in the upper
23 bits of the signifcand will return Infinity as the result. No status is set for any of these cases.

Programming Note
Power ISA™ - Book I372



Version 2.07 B
ConvertDPtoUW(x)
x is a floating-point value in double-precision format.

If x is a NaN,
vxcvi_flag is set to 1,
vxsnan_flag is set to 1 if x is an SNaN, and
return 0x0000_0000,

Otherwise, do the following.
Let rnd be the value x truncated to an integral value.

If rnd is greater than 232-1,
vxcvi_flag is set to 1,
return 0xFFFF_FFFF.

Otherwise, if rnd is less than 0,
vxcvi_flag is set to 1,
return 0x0000_0000.

Otherwise, 
xx_flag is set to 1 if rnd is inexact.
return rnd in 32-bit unsigned integer format.

ConvertFPtoDP(x)
Return the floating-point value x in DP format.

ConvertFPtoSP(x)
Return the floating-point value x in single-precision format.

ConvertSDtoFP(x)
x is a 64-bit signed integer value.
Return the value x converted to floating-point format having unbounded significand precision.

ConvertSPtoDP_NS(x)
x is a single-precision floating-point value.

Returns x in double-precision format.

sign     ← x.bit[0]
exponent ← (x.bit[1] æ ¬x.bit[1] æ ¬x.bit[1] æ ¬x.bit[1] æ x.bit[2:8])
fraction ← 0b0 æ x.bit[9:31] æ 0b0_0000_0000_0000_0000_0000_0000_0000

if (x.bit[1:8] == 255) then do // Infinity or NaN operand
   exponent ← 2047 //   override exponent to DP Emax+1
end

else if (x.bit[1:8] == 0) && (fraction == 0) then do // SP Zero operand
   exponent ← 0 //   override exponent to DP Emin-1
end

else if (x.bit[1:8] == 0) && (fraction != 0) then do // SP Denormal operand
   exponent ← 897 //   override exponent to SP Emin
   do while (fraction.bit[0] == 0) //   normalize operand
      fraction ← fraction << 1
      exponent ← exponent - 1
   end
end

return(sign æ exponent æ fraction.bit[1:52])
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ConvertSP64toSP(x)
x is a single-precision floating-point value in double-precision format.

Returns the value x in single-precision format. x must be representable in single-precision, or else result returned
is undefined. x may require denormalization. No rounding is performed. If x is a SNaN, it is converted to a sin-
gle-precision SNaN having the same payload as x.

sign ← x.bit[0]
exp  ← x.bit[1:11] - 1023
frac ← x.bit[12:63]

if      (exp = -1023) & (frac  = 0) & (sign=0) then return(0x0000_0000) // +Zero
else if (exp = -1023) & (frac  = 0) & (sign=1) then return(0x8000_0000) // -Zero
else if (exp = -1023) & (frac != 0)            then return(0xUUUU_UUUU) // DP denorm
else if (exp < -126) then do // denormalization required
   msb = 1
   do while (exp < -126)     // denormalize operand until exp=Emin
      frac.bit[1:51] ← frac.bit[0:50]
      frac.bit[0]    ← msb
      msb            ← 0
      exp            ← exp + 1
   end
   if (frac = 0) then return(0xUUUU_UUUU)  // value not representable in SP format
   else do // return denormal SP
      result.bit[0]    ← sign
      result.bit[1:8]  ← 0
      result.bit[9:31] ← frac.bit[0:22]
      return(result)
   end
end
else if (exp = +1024) & (frac  = 0) & (sign=0) then return(0x7F80_0000) // +Infinity
else if (exp = +1024) & (frac  = 0) & (sign=1) then return(0xFF80_0000) // -Infinity
else if (exp = +1024) & (frac != 0) then do   // QNaN or SNaN
   result.bit[0]    ← sign
   result.bit[1:8]  ← 255
   result.bit[9:31] ← frac.bit[0:22]
   return(result)
end
else if (exp < +1024) & (exp > +126) then return(0xUUUU_UUUU)  // overflow
else do  // normal value
   result.bit[0]    ← sign
   result.bit[1:8]  ← exp.bit[4:11] + 127
   result.bit[9:31] ← frac.bit[0:22]
   return(result)
end

ConvertSPtoDP(x)
x is a single-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is an SNaN, return x represented as a QNaN in double-precision floating-point format.
Otherwise, if x is an QNaN, return x in double-precision floating-point format.
Otherwise, return the value x in double-precision floating-point format.
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ConvertSPtoSD(x)
x is a floating-point value in single-precision format.

If x is a NaN,
vxcvi_flag is set to 1, and
vxsnan_flag is set to 1 if x is an SNaN
return 0x8000_0000_0000_0000 and

Otherwise, do the following.
Let rnd be the value x truncated to an integral value.

If rnd is greater than 263-1,
vxcvi_flag is set to 1, and
return 0x7FFF_FFFF_FFFF_FFFF.

Otherwise, if rnd is less than -263,
vxcvi_flag is set to 1, and
return 0x8000_0000_0000_0000.

Otherwise,
xx_flag is set to 1 if rnd is inexact, and
return rnd in 64-bit signed integer format.

ConvertSPtoSP64(x)
x is a floating-point value in single-precision format.

Returns the value x in double-precision format. If x is a SNaN, it is converted to a double-precision SNaN having
the same payload as x.

sign ← x.bit[0]
exp  ← x.bit[1:8] - 127

frac ← x.bit[9:31]

if (exp = –127) & (frac != 0) then do // Normalize the Denormal value

   msb  ← frac.bit[0]

   frac ← frac << 1
   do while (msb = 0)

      msb  ← frac.bit[0]

      frac ← frac << 1
      exp  ← exp – 1

   end

end
else if (exp = -127) & (frac = 0) then exp ← –1023  // Zero value

else if (exp = +128)              then exp ← +1024  // Infinity, NaN

result.bit[0]     ← sign

result.bit[1:11]  ← exp + 1023

result.bit[12:34] ← frac
result.bit[35:63] ← 0

return(result)
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ConvertSPtoSW(x)
x is a floating-point value in single-precision format.

If x is a NaN,
vxcvi_flag is set to 1,
vxsnan_flag is set to 1 if x is an SNaN, and
return 0x8000_0000.

Otherwise, do the following.
Let rnd be the value x truncated to an integral value.

If rnd is greater than 231-1,
vxcvi_flag is set to 1, and
return 0x7FFF_FFFF.

Otherwise, if rnd is less than -231,
vxcvi_flag is set to 1, and
return 0x8000_0000.

Otherwise,
xx_flag is set to 1 if rnd is inexact, and
return rnd in 32-bit signed integer format.

ConvertSPtoUD(x)
x is a floating-point value in single-precision format.

If x is a NaN,
vxcvi_flag is set to 1, and
vxsnan_flag is set to 1 if x is an SNaN
return 0x0000_0000_0000_0000,

Otherwise, do the following.
Let rnd be the value x truncated to an integral value.

If rnd is greater than 264-1,
vxcvi_flag is set to 1, and
return 0xFFFF_FFFF_FFFF_FFFF.

Otherwise, if rnd is less than 0,
vxcvi_flag is set to 1, and
return 0x0000_0000_0000_0000.

Otherwise,
xx_flag is set to 1 if rnd is inexact, and
return rnd in 64-bit unsigned integer format.
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ConvertSPtoUW(x)
x is a floating-point value in single-precision format.

If x is a NaN,
vxcvi_flag is set to 1,
vxsnan_flag is set to 1 if x is an SNaN, and
return 0x0000_0000.

Otherwise, do the following.
Let rnd be the value x truncated to an integral value.

If rnd is greater than 232-1,
vxcvi_flag is set to 1, and
return 0xFFFF_FFFF.

Otherwise, if rnd is less than 0,
vxcvi_flag is set to 1, and
return 0x0000_0000.

Otherwise,
xx_flag is set to 1 if rnd is inexact, and
return rnd in 32-bit unsigned integer format.

ConvertSWtoFP(x)
x is a 32-bit signed integer value.

Return the value x converted to floating-point format having unbounded significand precision.

ConvertUDtoFP(x)
x is a 64-bit unsigned integer value.

Return the value x converted to floating-point format having unbounded significand precision.

ConvertUWtoFP(x)
x is a 32-bit unsigned integer value.

Return the value x converted to floating-point format having unbounded significand precision.

DivideDP(x,y)
x and y are double-precision floating-point values.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a Zero and y is a Zero, vxzdz_flag is set to 1.

If x is a finite, nonzero value and y is a Zero, zx_flag is set to 1.

If x is an Infinity and y is an Infinity, vxidi_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return y.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, if x is a Zero and y is a Zero, return the standard QNaN.
Otherwise, if x is a finite, nonzero value and y is a Zero with the same sign as x, return +Infinity.
Otherwise, if x is a finite, nonzero value and y is a Zero with the opposite sign as x, return -Infinity.
Otherwise, if x is an Infinity and y is an Infinity, return the standard QNaN.
Otherwise, return the normalized quotient of x divided by y, having unbounded range and precision.
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DivideSP(x,y)
x and y are single-precision floating-point values.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a Zero and y is a Zero, vxzdz_flag is set to 1.

If x is a finite, nonzero value and y is a Zero, zx_flag is set to 1.

If x is an Infinity and y is an Infinity, vxidi_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return y.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, if x is a Zero and y is a Zero, return the standard QNaN.
Otherwise, if x is a finite, nonzero value and y is a Zero with the same sign as x, return +Infinity.
Otherwise, if x is a finite, nonzero value and y is a Zero with the opposite sign as x, return -Infinity.
Otherwise, if x is an Infinity and y is an Infinity, return the standard QNaN.
Otherwise, return the normalized quotient of x divided by y, having unbounded range and precision.

DenormDP(x)
x is a floating-point value having unbounded range and precision.

Return the value x with its significand shifted right by a number of bits equal to the difference of the -1022 and
the unbiased exponent of x, and its unbiased exponent set to -1022.

DenormSP(x)
x is a floating-point value having unbounded range and precision.

Return the value x with its significand shifted right by a number of bits equal to the difference of the -126 and
the unbiased exponent of x, and its unbiased exponent set to -126.

IsInf(x)
Return 1 if x is an Infinity, otherwise return 0.

IsNaN(x)
Return 1 if x is either an SNaN or a QNaN, otherwise return 0.

IsNeg(x)
Return 1 if x is a negative, nonzero value, otherwise return 0.

IsSNaN(x)
Return 1 if x is an SNaN, otherwise return 0.

IsZero(x)
Return 1 if x is a Zero, otherwise return 0.

MaximumDP(x,y)
x and y are double-precision floating-point values.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN and y is not a NaN, return y.
Otherwise, if x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return x.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, return the greater of x and y, where +0 is considered greater than –0.
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MaximumSP(x,y)
x and y are single-precision floating-point values.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN and y is not a NaN, return y.
Otherwise, if x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return x.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, return the greater of x and y, where +0 is considered greater than –0.

 

MinimumDP(x,y)
x and y are double-precision floating-point values.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN and y is not a NaN, return y.
Otherwise, if x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return x.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, return the lesser of x and y, where –0 is considered less than +0.

MinimumSP(x,y)
x and y are single-precision floating-point values.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN and y is not a NaN, return y.
Otherwise, if x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return x.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, return the lesser of x and y, where –0 is considered less than +0.

MultiplyAddDP(x,y,z)
x, y and z are double-precision floating-point values.

If x, y or z is an SNaN, vxsnan_flag is set to 1.

If x is a Zero and y, is an Infinity or x is an Infinity and y is an Zero, vximz_flag is set to 1.

If the product of x and y is an Infinity and z is an Infinity of the opposite sign, vxisi_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if z is a QNaN, return z.
Otherwise, if z is an SNaN, return z represented as a QNaN.
Otherwise, if y is a QNaN, return y.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, if x is a Zero and y is an Infinity or x is an Infinity and y is an Zero, return the standard QNaN.
Otherwise, if the product of x and y is an Infinity, and z is an Infinity of the opposite sign, return the standard
QNaN.
Otherwise, return the normalized sum of z and the  product of x and y, having unbounded range and precision.
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MultiplyAddSP(x,y,z)
x, y and z are single-precision floating-point values.

If x, y or z is an SNaN, vxsnan_flag is set to 1.

If x is a Zero and y is an Infinity, or x is an Infinity and y is an Zero, vximz_flag is set to 1.

If the product of x and y is an Infinity and z is an Infinity of the opposite sign, vxisi_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if z is a QNaN, return z.
Otherwise, if z is an SNaN, return z represented as a QNaN.
Otherwise, if y is a QNaN, return y.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, if x is a Zero and y is an Infinity or x is an Infinity and y is an Zero, return the standard QNaN.
Otherwise, if the product of x and y is an Infinity, and z is an Infinity of the opposite sign, return the standard
QNaN.
Otherwise, return the normalized sum of z and the product of x and y, having unbounded range and precision.

MultiplyDP(x,y)
x and y are double-precision floating-point values.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a Zero and y is an Infinity, or x is an Infinity and y is an Zero, vximz_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return y.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, if x is a Zero and y is as Infinity or x is a Infinity and y is an Zero, return the standard QNaN.
Otherwise, return the normalized product of x and y, having unbounded range and precision.

MultiplySP(x,y)
x and y are single-precision floating-point values.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a Zero and y is an Infinity, or x is an Infinity and y is an Zero, vximz_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return y.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, if x is a Zero and y is as Infinity or x is a Infinity and y is an Zero, return the standard QNaN.
Otherwise, return the normalized product of x and y, having unbounded range and precision.

NegateDP(x)
If the double-precision floating-point value x is a NaN, return x.
Otherwise, return the double-precision floating-point value x with its sign bit complemented.

NegateSP(x)
If the single-precision floating-point value x is a NaN, return x.
Otherwise, return the single-precision floating-point value x with its sign bit complemented.
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ReciprocalEstimateDP(x)
x is a double-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a Zero, zx_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if x is a Zero, return an Infinity with the sign of x.
Otherwise, if x is an Infinity, return a Zero with the sign of x.
Otherwise, return an estimate of the reciprocal of x having unbounded exponent range.

ReciprocalEstimateSP(x)
x is a single-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a Zero, zx_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if x is a Zero, return an Infinity with the sign of x.
Otherwise, if x is an Infinity, return a Zero with the sign of x.
Otherwise, return an estimate of the reciprocal of x having unbounded exponent range.

ReciprocalSquareRootEstimateDP(x)
x is a double-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a Zero, zx_flag is set to 1.

If x is a negative, nonzero number, vxsqrt_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if x is a negative, nonzero value, return the default QNaN.
Otherwise, return an estimate of the reciprocal of the square root of x having unbounded exponent range.

ReciprocalSquareRootEstimateSP(x)
x is a single-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a Zero, zx_flag is set to 1.

If x is a negative, nonzero number, vxsqrt_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if x is a negative, nonzero value, return the default QNaN.
Otherwise, return an estimate of the reciprocal of the square root of x having unbounded exponent range.
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reset_xflags()
vxsnan_flag is set to 0.
vximz_flag is set to 0.
vxidi_flag is set to 0.
vxisi_flag is set to 0. 
vxzdz_flag is set to 0.
vxsqrt_flag is set to 0.
vxcvi_flag is set to 0.
vxvc_flag is set to 0.
ox_flag is set to 0.
ux_flag is set to 0.
xx_flag is set to 0.
zx_flag is set to 0.
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RoundToDP(x,y)
x is a 2-bit unsigned integer specifying one of four rounding modes.

0b00 Round to Nearest Even
0b01 Round towards Zero
0b10 Round towards +Infinity
0b11 Round towards - Infinity

y is a normalized floating-point value having unbounded range and precision.

Return the value y rounded to double-precision under control of the rounding mode specified by x.

if IsQNaN(y) then return ConvertFPtoDP(y)
if IsInf(y)  then return ConvertFPtoDP(y)
if IsZero(y) then return ConvertFPtoDP(y)
if y<Nmin then do
   if UE=0 then do
      if x=0b00 then r ← RoundToDPNearEven( DenormDP(y) )
      if x=0b01 then r ← RoundToDPTrunc( DenormDP(y) )
      if x=0b10 then r ← RoundToDPCeil( DenormDP(y) )
      if x=0b11 then r ← RoundToDPFloor( DenormDP(y) )
      ux_flag ← xx_flag
      return(ConvertFPtoDP(r))
   end
   else do
      y ← Scalb(y,+1536)
      ux_flag ← 1
   end
end
if x=0b00 then r ← RoundToDPNearEven(y)
if x=0b01 then r ← RoundToDPTrunc(y)
if x=0b10 then r ← RoundToDPCeil(y)
if x=0b11 then r ← RoundToDPFloor(y))
if r>Nmax then do
   if OE=0 then do
      if x=0b00 then r ← sign ? -Inf : +Inf
      if x=0b01 then r ← sign ? -Nmax : +Nmax
      if x=0b10 then r ← sign ? -Nmax : +Inf
      if x=0b11 then r ← sign ? -Inf : +Nmax
      ox_flag  ← 0b1
      xx_flag  ← 0b1
      inc_flag ← 0bU
      return(ConvertFPtoDP(r))
   end
   else do
      r ← Scalb(r,-1536)
      ox_flag ← 1
   end
end
return(ConvertFPtoDP(r))
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RoundToDPCeil(x)
x is a floating-point value having unbounded range and precision.

If x is a QNaN, return x.

Otherwise, if x is an Infinity, return x.

Otherwise, do the following.
Return the smallest floating-point number having unbounded exponent range but double-precision
significand precision that is greater or equal in value to x.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

RoundToDPFloor(x)
x is a floating-point value having unbounded range and precision.

If x is a QNaN, return x.

Otherwise, if x is an Infinity, return x.

Otherwise, do the following.
Return the largest floating-point number having unbounded exponent range but double-precision
significand precision that is lesser or equal in value to x.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

RoundToDPIntegerCeil(x)
x is a double-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN, return x.

Otherwise, if x is an SNaN, return x represented as a QNaN.

Otherwise, if x is an infinity, return x.

Otherwise, do the following.
Return the smallest double-precision floating-point integer value that is greater or equal in value to x.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.
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RoundToDPIntegerFloor(x)
x is a double-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN, return x.

Otherwise, if x is an SNaN, return x represented as a QNaN.

Otherwise, if x is an infinity, return x.

Otherwise, do the following.
Return the largest double-precision floating-point integer value that is lesser or equal in value to x

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

RoundToDPIntegerNearAway(x)
x is a double-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN, return x.

Otherwise, if x is an SNaN, return x represented as a QNaN.

Otherwise, if x is an infinity, return x.

Otherwise, do the following.
Return the largest double-precision floating-point integer value that is lesser or equal in value to x+0.5 if
x>0, or the smallest double-precision floating-point integer that is greater or equal in value to x-0.5 if x<0.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

RoundToDPIntegerNearEven(x)
x is a double-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN, return x.

Otherwise, if x is an SNaN, return x represented as a QNaN.

Otherwise, if x is an infinity, return x.

Otherwise, do the following.
Return the double-precision floating-point integer value that is nearest in value to x (in case of a tie, the
double-precision floating-point integer value with the least-significant bit equal to 0 is used).

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.
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RoundToDPIntegerTrunc(x)
x is a double-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN, return x.

Otherwise, if x is an SNaN, return x represented as a QNaN.

Otherwise, if x is an infinity, return x.

Otherwise, do the following.
Return the largest double-precision floating-point integer value that is lesser or equal in value to x if x>0, or
the smallest double-precision floating-point integer value that is greater or equal in value to x if x<0.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

RoundToDPNearEven(x)
x is a floating-point value having unbounded range and precision.

If x is a QNaN, return x.

Otherwise, if x is an Infinity, return x.

Otherwise, do the following.
Return the floating-point number having unbounded exponent range but double-precision significand
precision that is nearest in value to x (in case of a tie, the floating-point number having unbounded
exponent range but double-precision significand precision with the least-significant bit equal to 0 is used).

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

RoundToDPTrunc(x)
x is a floating-point value having unbounded range and precision.

If x is a QNaN, return x.

Otherwise, if x is an Infinity, return x.

Otherwise, do the following.
Return the largest floating-point number having unbounded exponent range but double-precision
significand precision that is lesser or equal in value to x if x>0, or the smallest floating-point number having
unbounded exponent range but double-precision significand precision that is greater or equal in value to x
if x<0.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.
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RoundToSP(x,y)
x is a 2-bit unsigned integer specifying one of four rounding modes.

0b00 Round to Nearest Even
0b01 Round towards Zero
0b10 Round towards +Infinity
0b11 Round towards - Infinity

y is a normalized floating-point value having unbounded range and precision.

Return the value y rounded to single-precision under control of the rounding mode specified by x.

if IsQNaN(y) then return ConvertFPtoSP(y)
if IsInf(y)  then return ConvertFPtoSP(y)
if IsZero(y) then return ConvertFPtoSP(y)
if y<Nmin then do
   if UE=0 then do
      if x=0b00 then r ← RoundToSPNearEven( DenormSP(y) )
      if x=0b01 then r ← RoundToSPTrunc( DenormSP(y) )
      if x=0b10 then r ← RoundToSPCeil( DenormSP(y) )
      if x=0b11 then r ← RoundToSPFloor( DenormSP(y) )
      ux_flag ← xx_flag
      return(ConvertFPtoSP(r))
   end
   else do
      y ← Scalb(y,+192)
      ux_flag ← 1
   end
end
if x=0b00 then r ← RoundToSPNearEven(y)
if x=0b01 then r ← RoundToSPTrunc(y)
if x=0b10 then r ← RoundToSPCeil(y)
if x=0b11 then r ← RoundToSPFloor(y))
if r>Nmax then do
   if OE=0 then do
      if x=0b00 then r ← sign ? -Inf : +Inf
      if x=0b01 then r ← sign ? -Nmax : +Nmax
      if x=0b10 then r ← sign ? -Nmax : +Inf
      if x=0b11 then r ← sign ? -Inf : +Nmax
      ox_flag  ← 0b1
      xx_flag  ← 0b1
      inc_flag ← 0bU
      return(ConvertFPtoSP(r))
   end
   else do
      r ← Scalb(r,-192)
      ox_flag ← 1
   end
end
return(ConvertFPtoSP(r))
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RoundToSPCeil(x)
x is a floating-point value having unbounded range and precision.

If x is a QNaN, return x.

Otherwise, if x is an Infinity, return x.

Otherwise, do the following.
Return the smallest floating-point number having unbounded exponent range but single-precision
significand precision that is greater or equal in value to x.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

RoundToSPFloor(x)
x is a floating-point value having unbounded range and precision.

If x is a QNaN, return x.

Otherwise, if x is an Infinity, return x.

Otherwise, do the following.
Return the largest floating-point number having unbounded exponent range but single-precision significand
precision that is lesser or equal in value to x.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

RoundToSPIntegerCeil(x)
x is a single-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN, return x.

Otherwise, if x is an SNaN, return x represented as a QNaN.

Otherwise, if x is an infinity, return x.

Otherwise, do the following.
Return the smallest single-precision floating-point integer value that is greater or equal in value to x.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.
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RoundToSPIntegerFloor(x)
x is a single-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN, return x.

Otherwise, if x is an SNaN, return x represented as a QNaN.

Otherwise, if x is an infinity, return x.

Otherwise, do the following.
Return the largest single-precision floating-point integer value that is lesser or equal in value to x.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

RoundToSPIntegerNearAway(x)
x is a single-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN, return x.

Otherwise, if x is an SNaN, return x represented as a QNaN.

Otherwise, if x is an infinity, return x.

Otherwise, do the following.
Return x if x is a floating-point integer; otherwise return the largest single-precision floating-point integer
value that is lesser or equal in value to x+0.5 if x>0, or the smallest single-precision floating-point integer
value that is greater or equal in value to x-0.5 if x<0.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

RoundToSPIntegerNearEven(x)
x is a single-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN, return x.

Otherwise, if x is an SNaN, return x represented as a QNaN.

Otherwise, if x is an infinity, return x.

Otherwise, do the following.
Return x if x is a floating-point integer; otherwise return the single-precision floating-point integer value that
is nearest in value to x (in case of a tie, the single-precision floating-point integer value with the
least-significant bit equal to 0 is used).

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.
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RoundToSPIntegerTrunc(x)
x is a single-precision floating-point value.

If x is a QNaN, return x.

Otherwise, if x is an SNaN, return x represented as a QNaN, and vxsnan_flag is set to 1.

Otherwise, if x is an infinity, return x.

Otherwise, do the following.
Return the largest single-precision floating-point integer value that is lesser or equal in value to x if x>0, or
the smallest single-precision floating-point integer value that is greater or equal in value to x if x<0.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

RoundToSPNearEven(x)
x is a floating-point value having unbounded range and precision.

If x is a QNaN, return x.

Otherwise, if x is an Infinity, return x.

Otherwise, do the following.
Return the floating-point number having unbounded exponent range but single-precision significand
precision that is nearest in value to x (in case of a tie, the floating-point number having unbounded
exponent range but single-precision significand precision with the least-significant bit equal to 0 is used).

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

RoundToSPTrunc(x)
x is a floating-point value having unbounded range and precision.

If x is a QNaN, return x.

Otherwise, if x is an Infinity, return x.

Otherwise, do the following.
Return the largest floating-point number having unbounded exponent range but single-precision significand
precision that is lesser or equal in value to x if x>0, or the smallest single-precision floating-point number
that is greater or equal in value to x if x<0.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

Scalb(x,y)
x is a floating-point value having unbounded range and precision.

y is a signed integer.

Result of multiplying the floating-point value x by 2y.

SetFX(x)
x is one of the exception flags in the FPSCR.

If the contents of x is 0, FX and x are set to 1.
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SquareRootDP(x)
x is a double-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a negative, nonzero value, vxsqrt_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if x is a negative, nonzero value, return the default QNaN.
Otherwise, return the normalized square root of x, having unbounded range and precision.

SquareRootSP(x)
x is a single-precision floating-point value.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a negative, nonzero value, vxsqrt_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if x is a negative, nonzero value, return the default QNaN.
Otherwise, return the normalized square root of x, having unbounded range and precision.
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7.6.3 VSX Instruction Descriptions

Load VSX Scalar Doubleword Indexed  
XX1-form

lxsdx XT,RA,RB

XT       ← TX || T
a{0:63}  ← (RA=0) ? 0 : GPR[RA]
EA{0:63} ← a + GPR[RB]
VSR[XT]  ← MEM(EA,8) || 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.

Let EA be the sum of the contents of GPR[RA], or 0 if
RA is equal to 0, and the contents of GPR[RB].

The contents of the doubleword in storage at address
EA are placed in doubleword element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
undefined.

Special Registers Altered
None

Load VSX Scalar as Integer Word Algebraic 
Indexed XX1-form

lxsiwax XT,RA,RB

EA ← ( (RA=0) ? 0 : GPR[RA] ) + GPR[RB]
VSR[32×TX+T].doubleword[0] ← ExtendSign(MEM(EA,4))
VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.

Let EA be the sum of the contents of GPR[RA], or 0 if
RA is equal to 0, and the contents of GPR[RB].

The 32-bit signed integer value in the word in storage
at address EA is sign-extended to a doubleword and
placed in doubleword element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
undefined.

Special Registers Altered
None

31 T RA RB 588 TX
0 6 11 16 21 31

VSR Data Layout for lxsdx

tgt = VSR[XT]

MEM(EA,8) undefined
0 64 127

31 T RA RB 76 TX
0 6 11 16 21 31

VSR Data Layout for lxsiwax
tgt = VSR[XT]

SD undefined
0 64 127
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Load VSX Scalar as Integer Word and Zero 
Indexed XX1-form

lxsiwzx XT,RA,RB

EA ← ( (RA=0) ? 0 : GPR[RA] ) + GPR[RB]
VSR[32×TX+T].doubleword[0] ← ExtendZero(MEM(EA,4))
VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.

Let EA be the sum of the contents of GPR[RA], or 0 if
RA is equal to 0, and the contents of GPR[RB].

The 32-bit unsigned integer value in the word in
storage at address EA is zero-extended to a
doubleword and placed in doubleword element 0 of
VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
undefined.

Special Registers Altered
None

Load VSX Scalar Single-Precision Indexed 
XX1-form

lxsspx XT,RA,RB

EA ← ( (RA=0) ? 0 : GPR[RA] ) + GPR[RB]
VSR[32×TX+T].doubleword[0] ← ConvertSPtoSP64(MEM(EA,4))
VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.

Let EA be the sum of the contents of GPR[RA], or 0 if
RA is equal to 0, and the contents of GPR[RB].

The single-precision floating-point value in the word in
storage at address EA is placed in doubleword
element 0 of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined.

Special Registers Altered
None

31 T RA RB 12 TX
0 6 11 16 21 31

VSR Data Layout for lxsiwzx
tgt = VSR[XT]

UD undefined
0 64 127

31 T RA RB 524 TX
0 6 11 16 21 31

VSR Data Layout for lxsspx
tgt = VSR[XT]

DP undefined
0 64 127
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Load VSX Vector Doubleword*2 Indexed  
XX1-form

lxvd2x XT,RA,RB

XT              ← TX || T
a{0:63}         ← (RA=0) ? 0 : GPR[RA]
EA{0:63}        ← a + GPR[RB]
VSR[XT]{0:63}   ← MEM(EA,8)
VSR[XT]{64:127} ← MEM(EA+8,8)

Let XT be the value TX concatenated with T.

Let EA be the sum of the contents of GPR[RA], or 0 if
RA is equal to 0, and the contents of GPR[RB].

The contents of the doubleword in storage at address
EA are placed into doubleword element 0 of VSR[XT].

The contents of the doubleword in storage at address
EA+8 are placed into doubleword element 1 of
VSR[XT].

Special Registers Altered
None

Load VSX Vector Doubleword & Splat Indexed  
XX1-form

lxvdsx XT,RA,RB

XT              ← TX || T
a{0:63}         ← (RA=0) ? 0 : GPR[RA]
EA{0:63}        ← a + GPR[RB]
load_data{0:63} ← MEM(EA,8)
VSR[XT]{0:63}   ← load_data
VSR[XT]{64:127} ← load_data

Let XT be the value TX concatenated with T.

Let EA be the sum of the contents of GPR[RA], or 0 if
RA is equal to 0, and the contents of GPR[RB].

The contents of the doubleword in storage at address
EA are copied into doubleword elements 0 and 1 of
VSR[XT].

Special Registers Altered
None

31 T RA RB 844 TX
0 6 11 16 21 31

VSR Data Layout for lxvd2x

tgt = VSR[XT]

MEM(EA,8) MEM(EA+8,8)
0 64 127

31 T RA RB 332 TX
0 6 11 16 21 31

VSR Data Layout for lxvdsx

tgt = VSR[XT]

MEM(EA,8) MEM(EA,8)
0 64 127

Extended Mnemonic Equivalent To Usage

lxvx XT,RA,RB lxvd2x XT,RA,RB can be used for vector load operations using Big-Endian 
byte-ordering, independent of element size
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Load VSX Vector Word*4 Indexed  XX1-form

lxvw4x XT,RA,RB

XT              ← TX || T
a{0:63}         ← (RA=0) ? 0 : GPR[RA]
EA{0:63}        ← a + GPR[RB]
VSR[XT]{0:31}   ← MEM(EA,4)
VSR[XT]{32:63}  ← MEM(EA+4,4)
VSR[XT]{64:95}  ← MEM(EA+8,4)
VSR[XT]{96:127} ← MEM(EA+12,4)

Let XT be the value TX concatenated with T.

Let EA be the sum of the contents of GPR[RA], or 0 if
RA is equal to 0, and the contents of GPR[RB].

The contents of the word in storage at address EA are
placed into word element 0 of VSR[XT].

The contents of the word in storage at address EA+4
are placed into word element 1 of VSR[XT].

The contents of the word in storage at address EA+8
are placed into word element 2 of VSR[XT].

The contents of the word in storage at address EA+12
are placed into word element 3 of VSR[XT].

Special Registers Altered
None

 

Store VSX Scalar Doubleword Indexed  
XX1-form

stxsdx XS,RA,RB

XS           ← SX || S
a{0:63}      ← (RA=0) ? 0 : GPR[RA]
EA{0:63}     ← a + GPR[RB]
MEM(EA,8)    ← VSR[XS]{0:63}

Let XS be the value SX concatenated with S.

Let EA be the sum of the contents of GPR[RA], or 0 if
RA is equal to 0, and the contents of GPR[RB].

The contents of doubleword element 0 of VSR[XS] are
placed in the doubleword in storage at address EA.

Special Registers Altered
None

31 T RA RB 780 TX
0 6 11 16 21 31

VSR Data Layout for lxvw4x

tgt = VSR[XT]

MEM(EA,4) MEM(EA+4,4) MEM(EA+8,4) MEM(EA+12,4)
0 32 64 96 127

31 S RA RB 716 SX
0 6 11 16 21 31

VSR Data Layout for stxsdx

src = VSR[XS]

DP/SD/UD/MD unused
0 64 127
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Store VSX Scalar as Integer Word Indexed 
XX1-form

stxsiwx XS,RA,RB

EA ← ( (RA=0) ? 0 : GPR[RA] ) + GPR[RB]
MEM(EA,4) ← VSR[32×SX+S].word[1]

Let XS be the value SX concatenated with S.

Let EA be the sum of the contents of GPR[RA], or 0 if
RA is equal to 0, and the contents of GPR[RB].

The contents of word element 1 of VSR[XS] is placed
in the word in storage at address EA.

Special Registers Altered
None

Store VSX Scalar Single-Precision Indexed 
XX1-form

stxsspx XS,RA,RB

EA ← ( (RA=0) ? 0 : GPR[RA] ) + GPR[RB]
MEM(EA,4) ← ConvertSP64toSP(VSR[32×SX+S].doubleword[0])

Let XS be the value SX concatenated with S.

Let EA be the sum of the contents of GPR[RA], or 0 if
RA is equal to 0, and the contents of GPR[RB].

The single-precision value in double-precision
floating-point format in doubleword element 0 of
VSR[XS] is placed in the word in storage at address
EA in single-precision format.

Special Registers Altered
None

31 S RA RB 140 SX
0 6 11 16 21 31

VSR Data Layout for stxsspx
src = VSR[XS]

unused SW/UW unused
0 32 64 127

31 S RA RB 652 SX
0 6 11 16 21 31

VSR Data Layout for stxsspx
src = VSR[XS]

DP unused
0 64 127
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Store VSX Vector Doubleword*2 Indexed  
XX1-form

stxvd2x XS,RA,RB

XS            ← SX || S
a{0:63}       ← (RA=0) ? 0 : GPR[RA]
EA{0:63}      ← a + GPR[RB]
MEM(EA,8)     ← VSR[XS]{0:63}
MEM(EA+8,8)   ← VSR[XS]{64:127}

Let XS be the value SX concatenated with S.

Let EA be the sum of the contents of GPR[RA], or 0 if
RA is equal to 0, and the contents of GPR[RB].

The contents of doubleword element 0 of VSR[XS] are
placed in the doubleword in storage at address EA.

The contents of doubleword element 1 of VSR[XS] are
placed in the doubleword in storage at address EA+8.

Special Registers Altered
None

Store VSX Vector Word*4 Indexed  XX1-form

stxvw4x XS,RA,RB

XS            ← SX || S
a{0:63}       ← (RA=0) ? 0 : GPR[RA]
EA{0:63}      ← a + GPR[RB]
MEM(EA,4)     ← VSR[XS]{0:31}
MEM(EA+4,4)   ← VSR[XS]{32:63}
MEM(EA+8,4)   ← VSR[XS]{64:95}
MEM(EA+12,4)  ← VSR[XS]{96:127}

Let XS be the value SX concatenated with S.

Let EA be the sum of the contents of GPR[RA], or 0 if
RA is equal to 0, and the contents of GPR[RB].

The contents of word element 0 of VSR[XS] are placed
in the word in storage at address EA.

The contents of word element 1 of VSR[XS] are placed
in the word in storage at address EA+4.

The contents of word element 2 of VSR[XS] are placed
in the word in storage at address EA+8.

The contents of word element 3 of VSR[XS] are placed
in the word in storage at address EA+12.

Special Registers Altered
None

31 S RA RB 972 SX
0 6 11 16 21 31

VSR Data Layout for stxvd2x

src = VSR[XS]

.dword[0] .dword[1]

0 64 127

31 S RA RB 908 SX
0 6 11 16 21 31

VSR Data Layout for stxvw4x

src = VSR[XS]

.word[0] .word[1] .word[2] .word[3]

0 32 64 96 127

Extended Mnemonic Equivalent To Usage

stxvx XS,RA,RB stxvd2x XS,RA,RB
can be used for vector store operations using Big-Endian 
byte-ordering, independent of element size
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Version 2.07 B
VSX Scalar Absolute Value Double-Precision  
XX2-form

xsabsdp XT,XB

XT           ← TX || T
XB           ← BX || B
result{0:63} ← 0b0 || VSR[XB]{1:63}
VSR[XT]      ← result || 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

The absolute value of the double-precision
floating-point operand in doubleword element 0 of
VSR[XB] is placed into doubleword element 0 of
VSR[XT] in double-precision format. 

The contents of doubleword element 1 of VSR[XT] are
undefined. 

Special Registers Altered
None

60 T /// B 345 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xsabsdp

src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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VSX Scalar Add Double-Precision  XX3-form

xsadddp XT,XA,XB

XT           ← TX || T
XA           ← AX || A
XB           ← BX || B
reset_xflags()
src1         ← VSR[XA]{0:63}
src2         ← VSR[XB]{0:63}
v{0:inf}     ← AddDP(src1,src2)
result{0:63} ← RoundToDP(RN,v)
if(vxsnan_flag) then SetFX(VXSNAN)
if(vxisi_flag)  then SetFX(VXISI)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)
vex_flag     ← VE & (vxsnan_flag | vxisi_flag)

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassSP(result)
   FR      ← inc_flag
   FI      ← xx_flag
end
else do
   FR      ← 0b0
   FI      ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value
in doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value
in doubleword element 0 of VSR[XB].

src2 is added[1] to src1, producing a sum having
unbounded range and precision.

The sum is normalized[2].

See Table 48, “Actions for xsadddp,” on page 400.

The intermediate result is rounded to double-precision
using the rounding mode specified by the
Floating-Point Rounding Control field RN of the
FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined.

FPRF is set to the class and sign of the result. FR is
set to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXISI

60 T A B 32 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

VSR Data Layout for xsadddp

src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← -Infinity v ← src2 v ← -Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← -Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].

src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).

A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 48.Actions for xsadddp
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Range of v Case
Rounding Mode

RTN RTZ RTP RTM

v is a QNaN Special r ← v r ← v r ← v r ← v

v = -Infinity Special r ← v r ← v r ← v r ← v

-Infinity < v [ -(Nmax + 1ulp) Overflow q ← Rnd(v)
r ← -Infinity

q ← Rnd(v)
r ← -Nmax

q ← Rnd(v)
r ← -Nmax

q ← Rnd(v)
r ← -Infinity

-(Nmax + 1ulp) < v [ -(Nmax + ½ulp)
Overflow q ← Rnd(v)

r ← -Infinity — — q ← Rnd(v)
r ← -Infinity

Normal — r ← -Nmax r ← -Nmax —

-(Nmax + ½ulp) < v < -Nmax
Overflow – — — q ← Rnd(v)

r ← -Infinity

Normal r ← -Nmax r ← -Nmax r ← -Nmax —
v = -Nmax Normal r ← -Nmax r ← -Nmax r ← -Nmax r ← -Nmax

-Nmax < v < -Nmin Normal r ← Rnd(v) r ← Rnd(v) r ← Rnd(v) r ← Rnd(v)

v = -Nmin Normal r ← -Nmin r ← -Nmin r ← -Nmin r ← -Nmin

-Nmin < v < -Zero Tiny q ← Rnd(v)
r ← Rnd(Den(v))

q ← Rnd(v)
r ← Rnd(Den(v))

q ← Rnd(v)
r ← Rnd(Den(v))

q ← Rnd(v)
r ← Rnd(Den(v))

v = -Zero Special r ← v r ← v r ← v r ← v

v = Rezd Special r ← +Zero r ← +Zero r ← +Zero r ← -Zero

v = +Zero Special r ← v r ← v r ← v r ← v

+Zero < v < +Nmin Tiny q ← Rnd(v)
r ← Rnd(Den(v))

q ← Rnd(v)
r ← Rnd(Den(v))

q ← Rnd(v)
r ← Rnd(Den(v))

q ← Rnd(v)
r ← Rnd(Den(v))

v = +Nmin Normal r ← +Nmin r ← +Nmin r ← +Nmin r ← +Nmin

+Nmin < v < +Nmax Normal r ← Rnd(v) r ← Rnd(v) r ← Rnd(v) r ← Rnd(v)

v = +Nmax Normal r ← +Nmax r ← +Nmax r ← +Nmax r ← +Nmax

+Nmax < v < +(Nmax + ½ulp)
Overflow — — q ← Rnd(v)

r ← +Infinity —

Normal r ← +Nmax r ← +Nmax — r ← +Nmax

+(Nmax + ½ulp) [ v < +(Nmax + 1ulp)
Overflow q ← Rnd(v)

r ← +Infinity — q ← Rnd(v)
r ← +Infinity —

Normal — r ← +Nmax — r ← +Nmax

+(Nmax + 1ulp) [ v < +Infinity Overflow q ← Rnd(v)
r ← -Infinity

q ← Rnd(v)
r ← +Nmax

q ← Rnd(v)
r ← -Infinity

q ← Rnd(v)
r ← +Nmax

v = +Infinity Special r ← v r ← v r ← v r ← v

Explanation:
– This situation cannot occur.

v The precise intermediate result defined in the instruction having unbounded range and precision.

Den(x) The value x is denormalized. The significand is shifted left by the amount of the difference between Emin for the target precision
(that is, -1022 for double-precision, -126 for single-precision) and the unbiased exponent of x. The unbiased exponent of the
denormalized value is Emin. The significand of the denormalized value has unbounded significand precision.

Rezd Exact-zero-difference result. Applies only to add operations involving source operands having the same magnitude and different
signs.

Rnd(x) The significand of x is rounded to the target precision according to the rounding mode specified in FPSCRRN. Exponent range of
the rounded result is unbounded. See Section 7.3.2.6.

Nmax Largest (in magnitude) representable normalized number in the target precision format.

Nmin Smallest (in magnitude) representable normalized number in the target precision format.

ulp Least significant bit in the target precision format’s significand (Unit in the Last Position).

RTN Round To Nearest, ties to Even.

RTZ Round Toward Zero.

RTP Round Toward +infinity.

RTM Round Toward –infinity.

Table 49.Floating-Point Intermediate Result Handling
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Returned Results and Status Setting

Special

– – – – – 0 0 0 0 0 0 0 – – – – T(r), FPRF←ClassFP(r), FI←0, FR←0

– – – 0 – – – – – – – 1 – – – – T(r), FI←0, FR←0, fx(ZX)

– – – 1 – – – – – – – 1 – – – – fx(ZX), error()

0 – – – – – – – – – 1 – – – – – T(r), FPRF←ClassFP(r), FI←0, FR←0, fx(VXSQRT)

0 – – – – – – – – 1 – – – – – – T(r), FPRF←ClassFP(r), FI←0, FR←0, fx(VXZDZ)

0 – – – – – – – 1 – – – – – – – T(r), FPRF←ClassFP(r), FI←0, FR←0, fx(VXIDI)

0 – – – – – – 1 – – – – – – – – T(r), FPRF←ClassFP(r), FI←0, FR←0, fx(VXISI)

0 – – – – 0 1 – – – – – – – – – T(r), FPRF←ClassFP(r), FI←0, FR←0, fx(VXIMZ)

0 – – – – 1 0 – – – – – – – – – T(r), FPRF←ClassFP(r), FI←0, FR←0, fx(VXSNAN)

0 – – – – 1 1 – – – – – – – – – T(r), FPRF←ClassFP(r), FI←0, FR←0, fx(VXSNAN), fx(VXIMZ)

1 – – – – – – – – – 1 – – – – – T(r), FPRF←ClassFP(r), FI←0, FR←0, fx(VXSQRT)

1 – – – – – – – – 1 – – – – – – fx(VXZDZ), error()

1 – – – – – – – 1 – – – – – – – fx(VXIDI), error()

1 – – – – – – 1 – – – – – – – – fx(VXISI), error()

1 – – – – 0 1 – – – – – – – – – fx(VXIMZ), error()

1 – – – – 1 0 – – – – – – – – – fx(VXSNAN), error()

1 – – – – 1 1 – – – – – – – – – fx(VXSNAN), fx(VXIMZ), error()

Explanation:
– The results do not depend on this condition.

ClassFP(x) Classifies the floating-point value x as defined in Table 2, “Floating-Point Result Flags,” on page 325.

fx(x) FX is set to 1 if x=0.  x is set to 1.

β Wrap adjust, where β = 21536 for double-precision and  β = 2192 for single-precision.

q The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, unbounded exponent range.

r The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, bounded exponent range.

v The precise intermediate result defined in the instruction having unbounded signficand precision, unbounded exponent range.

FI Floating-Point Fraction Inexact status flag, FPSCRFI. This status flag is nonsticky. 

FR Floating-Point Fraction Rounded status flag, FPSCRFR.

OX Floating-Point Overflow exception status flag, FPSCROX.

error() The system error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode.

T(x) The value x is placed in element 0 of VSR[XT] in the target precision format.
The contents of the remaining element(s) of VSR[XT] are undefined.

UX Floating-Point Underflow exception status flag, FPSCRUX

VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN.

VXSQRT Floating-Point Invalid Operation Exception (Invalid Square Root) status flag, FPSCRVXSQRT.

VXIDI Floating-Point Invalid Operation Exception (Infinity ÷ Infinity) status flag, FPSCRVXIDI.

VXIMZ Floating-Point Invalid Operation Exception (Infinity × Zero) status flag, FPSCRVXIMZ.

VXISI Floating-Point Invalid Operation Exception (Infinity – Infinity) status flag, FPSCRVXISI.

VXZDZ Floating-Point Invalid Operation Exception (Zero ÷ Zero) status flag, FPSCRVXZDZ.

XX Float-Point Inexact Exception status flag, FPSCRXX. The flag is a sticky version of FPSCRFI. When FPSCRFI is set to a new
value, the new value of FPSCRXX is set to the result of ORing the old value of FPSCRXX with the new value of FPSCRFI.

ZX Floating-Point Zero Divide Exception status flag, FPSCRZX.

Table 50.Scalar Floating-Point Final Result
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Normal

– – – – – – – – – – – – no – – – T(r), FPRF←ClassFP(r), FI←0, FR←0

– – – – 0 – – – – – – – yes no – – T(r), FPRF←ClassFP(r), FI←1, FR←0, fx(XX)

– – – – 0 – – – – – – – yes yes – – T(r), FPRF←ClassFP(r), FI←1, FR←1, fx(XX)

– – – – 1 – – – – – – – yes no – – T(r), FPRF←ClassFP(r), FI←1, FR←0, fx(XX), error()

– – – – 1 – – – – – – – yes yes – – T(r), FPRF←ClassFP(r), FI←1, FR←1, fx(XX), error()

Overflow

– 0 – – 0 – – – – – – – – – – – T(r), FPRF←ClassFP(r), FI←1, FR←?, fx(OX), fx(XX)

– 0 – – 1 – – – – – – – – – – – T(r), FPRF←ClassFP(r), FI←1, FR←?, fx(OX), fx(XX), error()

– 1 – – – – – – – – – – – – no – T(q÷β), FPRF←ClassFP(q÷β), FI←0, FR←0, fx(OX), error()

– 1 – – – – – – – – – – – – yes no T(q÷β), FPRF←ClassFP(q÷β), FI←1, FR←0, fx(OX), fx(XX), error()

– 1 – – – – – – – – – – – – yes yes T(q÷β), FPRF←ClassFP(q÷β), FI←1, FR←1, fx(OX), fx(XX), error()

Tiny

– – 0 – – – – – – – – – no – – – T(r), FPRF←ClassFP(r), FI←0, FR←0

– – 0 – 0 – – – – – – – yes no – – T(r), FPRF←ClassFP(r), FI←1, FR←0, fx(UX), fx(XX)

– – 0 – 0 – – – – – – – yes yes – – T(r), FPRF←ClassFP(r), FI←1, FR←1, fx(UX), fx(XX)

– – 0 – 1 – – – – – – – yes no – – T(r), FPRF←ClassFP(r), FI←1, FR←0, fx(UX), fx(XX), error()

– – 0 – 1 – – – – – – – yes yes – – T(r), FPRF←ClassFP(r), FI←1, FR←1, fx(UX), fx(XX), error()

– – 1 – – – – – – – – – yes – no – T(q×β), FPRF←ClassFP(q×β), FI←0, FR←0, fx(UX), error()

– – 1 – – – – – – – – – yes – yes no T(q×β), FPRF←ClassFP(q×β), FI←1, FR←0, fx(UX), fx(XX), error()

– – 1 – – – – – – – – – yes – yes yes T(q×β), FPRF←ClassFP(q×β), FI←1, FR←1, fx(UX), fx(XX), error()
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Returned Results and Status Setting

Explanation:
– The results do not depend on this condition.

ClassFP(x) Classifies the floating-point value x as defined in Table 2, “Floating-Point Result Flags,” on page 325.

fx(x) FX is set to 1 if x=0.  x is set to 1.

β Wrap adjust, where β = 21536 for double-precision and  β = 2192 for single-precision.

q The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, unbounded exponent range.

r The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, bounded exponent range.

v The precise intermediate result defined in the instruction having unbounded signficand precision, unbounded exponent range.

FI Floating-Point Fraction Inexact status flag, FPSCRFI. This status flag is nonsticky. 

FR Floating-Point Fraction Rounded status flag, FPSCRFR.

OX Floating-Point Overflow exception status flag, FPSCROX.

error() The system error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode.

T(x) The value x is placed in element 0 of VSR[XT] in the target precision format.
The contents of the remaining element(s) of VSR[XT] are undefined.

UX Floating-Point Underflow exception status flag, FPSCRUX

VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN.

VXSQRT Floating-Point Invalid Operation Exception (Invalid Square Root) status flag, FPSCRVXSQRT.

VXIDI Floating-Point Invalid Operation Exception (Infinity ÷ Infinity) status flag, FPSCRVXIDI.

VXIMZ Floating-Point Invalid Operation Exception (Infinity × Zero) status flag, FPSCRVXIMZ.

VXISI Floating-Point Invalid Operation Exception (Infinity – Infinity) status flag, FPSCRVXISI.

VXZDZ Floating-Point Invalid Operation Exception (Zero ÷ Zero) status flag, FPSCRVXZDZ.

XX Float-Point Inexact Exception status flag, FPSCRXX. The flag is a sticky version of FPSCRFI. When FPSCRFI is set to a new
value, the new value of FPSCRXX is set to the result of ORing the old value of FPSCRXX with the new value of FPSCRFI.

ZX Floating-Point Zero Divide Exception status flag, FPSCRZX.

Table 50.Scalar Floating-Point Final Result (Continued)
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VSX Scalar Add Single-Precision XX3-form

xsaddsp XT,XA,XB

reset_xflags()

src1   ← VSR[32×AX+A].doubleword[0]
src2   ← VSR[32×BX+B].doubleword[0]
v      ← AddDP(src1,src2)
result ← RoundToSP(RN,v)

if(vxsnan_flag) then SetFX(VXSNAN)
if(vxisi_flag)  then SetFX(VXISI)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)

vex_flag ← VE & (vxsnan_flag | vxisi_flag)

if( ~vex_flag ) then do
   VSR[32×TX+T].doubleword[0] ← ConverSPtoDP(result)
   VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU
   FPRF ← ClassSP(result)
   FR   ← inc_flag
   FI   ← xx_flag
end
else do
   FR   ← 0b0
   FI   ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src2 is added[1] to src1, producing a sum having
unbounded range and precision.

The sum is normalized[2].

See Table 51, “Actions for xsaddsp,” on page 405.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXISI

60 T A B 0 AXBXTX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared, 
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two 
exponents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an 
intermediate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number 
of bits the significand was shifted.

VSR Data Layout for xsaddsp
src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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src2

-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN
sr

c1

-Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← -Infinity v ← src2 v ← -Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← -Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 51.Actions for xsaddsp
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VSX Scalar Compare Ordered 
Double-Precision  XX3-form

xscmpodp BF,XA,XB

XA          ← AX || A
XB          ← BX || B
reset_xflags()
src1        ← VSR[XA]{0:63}
src2        ← VSR[XB]{0:63}

if( IsSNaN(src1) | IsSNaN(src2) ) then do
   vxsnan_flag ← 0b1
   if(VE=0) then vxvc_flag ← 0b1
end
else if( IsQNaN(src1) | IsQNaN(src2) ) then vxvc_flag = 0b1

FL          ← CompareLTDP(src1,src2)
FG          ← CompareGTDP(src1,src2)
FE          ← CompareEQDP(src1,src2)
FU          ← IsNAN(src1) | IsNAN(src2)
CR[BF]      ← FL || FG || FE || FU
if(vxsnan_flag) then SetFX(VXSNAN)
if(vxvc_flag)   then SetFX(VXVC)

Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value
in doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value
in doubleword element 0 of VSR[XB].

src1 is compared to src2.

Zeros of same or opposite signs compare equal.

Infinities of same signs compare equal.

See Table 52, “Actions for xscmpodp - Part 1:
Compare Ordered,” on page 407.

The result of the compare is placed into CR field BF
and the FPCC.

If either of the operands is a NaN, either quiet or
signaling, CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling
NaN, VXSNAN is set, and Invalid Operation is disabled
(VE=0), VXVC is set. If neither operand is a Signaling
NaN but at least one operand is a Quiet NaN, VXVC is
set.

See Table 53, “Actions for xscmpodp - Part 2: Result,”
on page 407.

Special Registers Altered
CR[BF]
FPCC FX VXSNAN VXVC

60 BF // A B 43 AX BX /
0 6 9 11 16 21 29 30 31

VSR Data Layout for xscmpodp

src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP undefined
0 64 127
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src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity cc←0b0010 cc←0b1000 cc←0b1000 cc←0b1000 cc←0b1000 cc←0b1000 cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

–NZF cc←0b0100 cc←C(src1,src2) cc←0b1000 cc←0b1000 cc←0b1000 cc←0b1000 cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

–Zero cc←0b0100 cc←0b0100 cc←0b0010 cc←0b0010 cc←0b1000 cc←0b1000 cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

+Zero cc←0b0100 cc←0b0100 cc←0b0010 cc←0b0010 cc←0b1000 cc←0b1000 cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

+NZF cc←0b0100 cc←0b0100 cc←0b0100 cc←0b0100 cc←C(src1,src2) cc←0b1000 cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

+Infinity cc←0b0100 cc←0b0100 cc←0b0100 cc←0b0100 cc←0b0100 cc←0b0010 cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

QNaN cc←0b0001
vxvc_flag←1

cc←0b0001
vxvc_flag←1

cc←0b0001
vxvc_flag←1

cc←0b0001
vxvc_flag←1

cc←0b0001
vxvc_flag←1

cc←0b0001
vxvc_flag←1

cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

SNaN
cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].

src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].

NZF Nonzero finite number.

C(x,y) The floating-point value x is compared to the floating-point value y, returning one of three 4-bit results.

0b1000 when x is greater than y

0b0100 when x is less than y

0b0010 when x is equal to y

cc The 4-bit result compare code.

Table 52.Actions for xscmpodp - Part 1: Compare Ordered

V
E

vx
sn

an
_f

la
g

vx
vc

_f
la

g

Returned Results and Status Setting

– 0 0 FPCC←cc, CR[BF]←cc

0 0 1 FPCC←cc, CR[BF]←cc, fx(VXVC)

0 1 0 FPCC←cc, CR[BF]←cc, fx(VXSNAN)

0 1 1 FPCC←cc, CR[BF]←cc, fx(VXSNAN), fx(VXVC)

1 0 1 FPCC←cc, CR[BF]←cc, fx(VXVC), error()

1 1 – FPCC←cc, CR[BF]←cc, fx(VXSNAN), error()

Explanation:
– The results do not depend on this condition.

cc The 4-bit result as defined in Table 52.

fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system  error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode.

FX Floating-Point Summary Exception status flag, FPSCRFX.

VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN. See Section 7.4.1.

VXC Floating-Point Invalid Operation Exception (Invalid Compare) status flag, FPSCRVXVC. See Section 7.4.1.

Table 53.Actions for xscmpodp - Part 2: Result
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VSX Scalar Compare Unordered 
Double-Precision  XX3-form

xscmpudp BF,XA,XB

XA     ← AX || A
XB     ← BX || B
reset_xflags()
src1   ← VSR[XA]{0:63}
src2   ← VSR[XB]{0:63}

if( IsSNaN(src1) | IsSNaN(src2) ) then vxsnan_flag ← 1

FL     ← CompareLTDP(src1,src2)
FG     ← CompareGTDP(src1,src2)
FE     ← CompareEQDP(src1,src2)
FU     ← IsNAN(src1) | IsNAN(src2)
CR[BF] ← FL || FG || FE || FU
if(vxsnan_flag) then SetFX(VXSNAN)

Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value
in doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value
in doubleword element 0 of VSR[XB].

src1 is compared to src2.

Zeros of same or opposite signs compare equal equal.

Infinities of same signs compare equal.

See Table 54, “Actions for xscmpudp - Part 1:
Compare Unordered,” on page 409.

The result of the compare is placed into CR field BF
and the FPCC.

If either of the operands is a NaN, either quiet or
signaling, CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling
NaN, VXSNAN is set.

See Table 55, “Actions for xscmpudp - Part 2: Result,”
on page 409.

Special Registers Altered
CR[BF]
FPCC FX VXSNAN 

60 BF // A B 35 AX BX /
0 6 9 11 16 21 29 30 31

VSR Data Layout for xscmpudp

src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP undefined
0 64 127
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src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity cc = 0b0010 cc = 0b1000 cc = 0b1000 cc = 0b1000 cc = 0b1000 cc = 0b1000 cc = 0b0001
cc = 0b0001

vxsnan_flag = 1

–NZF cc = 0b0100 cc = C(src1,src2) cc = 0b1000 cc = 0b1000 cc = 0b1000 cc = 0b1000 cc = 0b0001
cc = 0b0001

vxsnan_flag = 1

–Zero cc = 0b0100 cc = 0b0100 cc = 0b0010 cc = 0b0010 cc = 0b1000 cc = 0b1000 cc = 0b0001
cc = 0b0001

vxsnan_flag = 1

+Zero cc = 0b0100 cc = 0b0100 cc = 0b0010 cc = 0b0010 cc = 0b1000 cc = 0b1000 cc = 0b0001
cc = 0b0001

vxsnan_flag = 1

+NZF cc = 0b0100 cc = 0b0100 cc = 0b0100 cc = 0b0100 cc = C(src1,src2) cc = 0b1000 cc = 0b0001
cc = 0b0001

vxsnan_flag = 1

+Infinity cc = 0b0100 cc = 0b0100 cc = 0b0100 cc = 0b0100 cc = 0b0100 cc = 0b0010 cc = 0b0001
cc = 0b0001

vxsnan_flag = 1

QNaN cc = 0b0001 cc = 0b0001 cc = 0b0001 cc = 0b0001 cc = 0b0001 cc = 0b0001 cc = 0b0001
cc = 0b0001

vxsnan_flag = 1

SNaN
cc = 0b0001

vxsnan_flag = 1
cc = 0b0001

vxsnan_flag = 1
cc = 0b0001

vxsnan_flag = 1
cc = 0b0001

vxsnan_flag = 1
cc = 0b0001

vxsnan_flag = 1
cc = 0b0001

vxsnan_flag = 1
cc = 0b0001

vxsnan_flag = 1
cc = 0b0001

vxsnan_flag = 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].

src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].

NZF Nonzero finite number.

C(x,y) The floating-point value x is compared to the floating-point value y, returning one of three 4-bit results.

0b1000 when x is greater than y

0b0100 when x is less than y

0b0010 when x is equal to y

cc The 4-bit result compare code.

Table 54.Actions for xscmpudp - Part 1: Compare Unordered

V
E

vx
sn

an
_f

la
g

Returned Results and Status Setting

– 0 FPCC←cc, CR[BF]←cc

0 1 FPCC←cc, CR[BF]←cc, fx(VXSNAN)

1 1 FPCC←cc, CR[BF]←cc, fx(VXSNAN), error()

Explanation:
– The results do not depend on this condition.

cc The 4-bit result as defined in Table 54.

fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system  error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode.

FX Floating-Point Summary Exception status flag, FPSCRFX.

VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN. See Section 7.4.1.

Table 55.Actions for xscmpudp - Part 2: Result
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VSX Scalar Copy Sign Double-Precision  
XX3-form

xscpsgndp XT,XA,XB

XT           ← TX || T
XA           ← AX || A
XB           ← BX || B
result{0:63} ← VSR[XA]{0} || VSR[XB]{1:63}
VSR[XT]      ← result || 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Bit 0 of VSR[XT] is set to the contents of bit 0 of
VSR[XA].

Bits 1:63 of VSR[XT] are set to the contents of bits
1:63 of VSR[XB].

The contents of doubleword element 1 of VSR[XT] are
undefined.

Special Registers Altered
None

60 T A B 176 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xscpsgndp

src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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VSX Scalar round Double-Precision to 
single-precision and Convert  to 
Single-Precision format  XX2-form

xscvdpsp XT,XB

reset_xflags()
src ← VSR[32×BX+B].dword[0]
result ← ConvertDPtoSP(src)
if(vxsnan_flag) then SetFX(FPSCR.VXSNAN)
if(xx_flag) then SetFX(FPSCR.XX)
if(ox_flag) then SetFX(FPSCR.OX)
if(ux_flag) then SetFX(FPSCR.UX)
vex_flag ← FPSCR.VE & vxsnan_flag

if( ~vex_flag ) then do
   VSR[32×TX+T].word[0] ← result
   VSR[32×TX+T].word[1] ← 0xUUUU_UUUU
   VSR[32×TX+T].word[2] ← 0xUUUU_UUUU
   VSR[32×TX+T].word[3] ← 0xUUUU_UUUU
   FPSCR.FPRF ← ClassSP(result)
   FPSCR.FR ← inc_flag
   FPSCR.FI ← xx_flag
end
else do
   FPSCR.FR ← 0b0
   FPSCR.FI ← 0b0
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

If src is a SNaN, the result is src converted to a QNaN
(i.e., bit 12 of src is set to 1). VXSNAN is set to 1.

Otherwise, if src is a QNaN, an Infinity, or a Zero, the
result is src.

Otherwise, the result is src rounded to single-precision
using the rounding mode specified by RN.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into word element 0 of VSR[XT] in
single-precision format.

The contents of word elements 1, 2, and 3 of VSR[XT]
are undefined.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

Special Registers Altered
FPRF FR FI FX OX UX XX VXSNAN

60 T /// B 265 BX TX
0 6 11 16 21 30 31 VSR Data Layout for xscvdpsp

src = VSR[XB]

DP unused

tgt = VSR[XT]

SP undefined undefined
0 32 64 127
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VSX Scalar Convert Scalar Single-Precision to 
Vector Single-Precision format Non-signalling 
XX2-form

xscvdpspn XT,XB

reset_xflags()
src ← VSR[32×BX+B].dword[0]
result ← ConvertDPtoSP_NS(src)
VSR[32×TX+T].word[0] ← result
VSR[32×TX+T].word[1] ← 0xUUUU_UUUU
VSR[32×TX+T].word[2] ← 0xUUUU_UUUU
VSR[32×TX+T].word[3] ← 0xUUUU_UUUU

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the single-precision floating-point value in
doubleword element 0 of VSR[XB] represented in
double-precision format.

src is placed into word element 0 of VSR[XT] in
single-precision format.

The contents of word elements 1, 2, and 3 of VSR[XT]
are undefined.

Special Registers Altered
None

 

VSX Scalar truncate Double-Precision to 
integer and Convert to Signed Integer 
Doubleword format with Saturate  XX2-form

xscvdpsxds XT,XB

XT           ← TX || T
XB           ← BX || B
reset_xflags()
result{0:63} ← ConvertDPtoSD(VSR[XB]{0:63})
if(vxsnan_flag) then SetFX(VXSNAN)
if(vxcvi_flag)  then SetFX(VXCVI)
if(xx_flag)     then SetFX(XX)
vex_flag     ← VE & (vxsnan_flag | vxcvi_flag)

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← 0bUUUUU
   FR      ← inc_flag
   FI      ← xx_flag
end
else do
   FR      ← 0b0
   FI      ← 0b0
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

If src is a NaN, the result is the value
0x8000_0000_0000_0000 and VXCVI is set to 1. If src is
an SNaN, VXSNAN is also set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round Toward Zero.

If the rounded value is greater than 263-1, the result is
0x7FFF_FFFF_FFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -263, the
result is 0x8000_0000_0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
64-bit signed-integer format, and if the result is inexact
(i.e., not equal to src), XX is set to 1.

If a trap-enabled invalid operation exception occurs,
– VSR[XT] and FPRF are not modified
– FR and FI are set to 0.

60 T /// B 267 BXTX
0 6 11 16 21 30 31

VSR Data Layout for xscvdpspn
src = VSR[XB]

SP unused

tgt = VSR[XT]

SP undefined undefined undefined
0 32 64 96 127

xscvdpsp should be used to convert a scalar
double-precision value to vector single-precision
format.

xscvdpspn should be used to convert a scalar
single-precision value to vector single-precision
format.

Programming Note

60 T /// B 344 BXTX
0 6 11 16 21 30 31
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Otherwise,
– The result is placed into doubleword element 0 of

VSR[XT]. The contents of doubleword element 1 of
VSR[XT] are undefined.

– FPRF is set to an undefined value.
– FR is set to indicate if the result was incremented

when rounded.
– FI is set to indicate the result is inexact.

See Table 56.

Special Registers Altered
FPRF=0bUUUUU FR FI FX XX VXSNAN VXCVI

 

VSR Data Layout for xscvdpsxds

src = VSR[XB]

DP unused

tgt = VSR[XT]

SD undefined
0 64 127

xscvdpsxds rounds using Round towards Zero
rounding mode. For other rounding modes, software
must use a Round to Double-Precision Integer
instruction that corresponds to the desired rounding
mode, including xsrdpic which uses the rounding
mode specified by RN.

Programming Note
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Returned Results and Status Setting

src [ Nmin-1
0 – – T(Nmin), FR←0, FI←0, fx(VXCVI)
1 – – FR←0, FI←0, fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), FR←0, FI←1, fx(XX)
1 yes T(Nmin), FR←0, FI←1, fx(XX), error()

src = Nmin – – no T(Nmin), FR←0, FI←0

Nmin < src < Nmax –
– no T(ConvertDPtoSD(RoundToDPintegerTrunc(src))), FR←0, FI←0
0 yes T(ConvertDPtoSD(RoundToDPintegerTrunc(src))), FR←0, FI←1, fx(XX)
1 yes T(ConvertDPtoSD(RoundToDPintegerTrunc(src))), FR←0, FI←1, fx(XX), error()

src = Nmax – – no T(Nmax), FR←0, FI←0
Note: This case cannot occur as Nmax is not representable in DP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), FR←0, FI←1, fx(XX)
1 yes T(Nmax), FR←0, FI←1, fx(XX), error()

src m Nmax+1
0 – – T(Nmax), FR←0, FI←0, fx(VXCVI)
1 – – FR←0, FI←0, fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), FR←0, FI←0, fx(VXCVI)
1 – – FR←0, FI←0, fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), FR←0, FI←0, fx(VXCVI), fx(VXSNAN)
1 – – FR←0, FI←0, fx(VXCVI), fx(VXSNAN), error()

Explanation:
fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system  error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode.

Nmin The smallest signed integer doubleword value, -263 (0x8000_0000_0000_0000).

Nmax The largest signed integer doubleword value, 263-1 (0x7FFF_FFFF_FFFF_FFFF).

src The double-precision floating-point value in doubleword element 0 of VSR[XB].

T(x) The signed integer doubleword value x is placed in doubleword element 0 of VSR[XT].
The contents of doubleword element 1 of VSR[XT] are undefined.

Table 56.Actions for xscvdpsxds
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VSX Scalar truncate Double-Precision to 
integer and Convert to Signed Integer Word 
format with Saturate  XX2-form

xscvdpsxws XT,XB

XT           ← TX || T
XB           ← BX || B
inc_flag     ← 0b0
reset_xflags()
result{0:31} ← ConvertDPtoSW(VSR[XB]{0:63})
if(vxsnan_flag) then SetFX(VXSNAN)
if(vxcvi_flag)  then SetFX(VXCVI)
if(xx_flag)     then SetFX(XX)
vex_flag     ← VE & (vxsnan_flag | vxcvi_flag)

if( ~vex_flag ) then do
   VSR[XT] ← 0xUUUU_UUUU || result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← 0bUUUUU
   FR      ← inc_flag
   FI      ← xx_flag
end
else do
   FR      ← 0b0
   FI      ← 0b0
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

If src is a NaN, the result is the value 0x8000_0000 and
VXCVI is set to 1. If src is an SNaN, VXSNAN is also set
to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round Toward Zero.

If the rounded value is greater than 231-1, the result is
0x7FFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -231, the
result is 0x8000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit signed-integer format, and if the result is inexact
(i.e., not equal to src), XX is set to 1.

If a trap-enabled invalid operation exception occurs,

– VSR[XT] and FPRF are not modified

– FR and FI are set to 0.

Otherwise,

– The result is placed into word element 1 of
VSR[XT]. The contents of word elements 0, 2, and
3 of VSR[XT] are undefined.

– FPRF is set to an undefined value.

– FR is set to indicate if the result was incremented
when rounded.

– FI is set to indicate the result is inexact.

See Table 57.

Special Registers Altered
FPRF=0bUUUUU FR FI FX XX VXSNAN VXCVI

 

60 T /// B 88 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xscvdpsxws

src = VSR[XB]

DP unused

tgt = VSR[XT]

undefined SW undefined
0 32 64 127

xscvdpsxws rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Double-Precision
Integer instruction that corresponds to the desired
rounding mode, including xsrdpic which uses the
rounding mode specified by RN.
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Returned Results and Status Setting

src [ Nmin-1
0 – – T(Nmin), FR←0, FI←0, fx(VXCVI)
1 – – FR←0, FI←0, fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), FR←0, FI←1, fx(XX)
1 yes T(Nmin), FR←0, FI←1, fx(XX), error()

src = Nmin – – no T(Nmin), FR←0, FI←0

Nmin < src < Nmax –
– no T(ConvertDPtoSW(RoundToDPintegerTrunc(src))), FR←0, FI←0
0 yes T(ConvertDPtoSW(RoundToDPintegerTrunc(src))), FR←0, FI←1, fx(XX)
1 yes T(ConvertDPtoSW(RoundToDPintegerTrunc(src))), FR←0, FI←1, fx(XX), error()

src = Nmax – – no T(Nmax), FR←0, FI←0

Nmax < src < Nmax+1 –
0 yes T(Nmax), FR←0, FI←1, fx(XX)
1 yes T(Nmax), FR←0, FI←1, fx(XX), error()

src m Nmax+1
0 – – T(Nmax), FR←0, FI←0, fx(VXCVI)
1 – – FR←0, FI←0, fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), FR←0, FI←0, fx(VXCVI)
1 – – FR←0, FI←0, fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), FR←0, FI←0, fx(VXCVI), fx(VXSNAN)
1 – – FR←0, FI←0, fx(VXCVI), fx(VXSNAN), error()

Explanation:
fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system  error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode.

Nmin The smallest signed integer word value, -231(0x8000_0000).

Nmax The largest signed integer word value, 231-1 (0x7FFF_FFFF).

src The double-precision floating-point value in doubleword element 0 of VSR[XB].

T(x) The signed integer word value x is placed in word element 1 of VSR[XT].
The contents of word elements 0, 2, and 3 of VSR[XT] are undefined.

Table 57.Actions for xscvdpsxws
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Version 2.07 B
VSX Scalar truncate Double-Precision integer 
and Convert to Unsigned Integer Doubleword 
format with Saturate  XX2-form

xscvdpuxds XT,XB

XT           ← TX || T
XB           ← BX || B
inc_flag     ← 0b0
reset_xflags()
result{0:63} ← ConvertDPtoUD(VSR[XB]{0:63})
if(vxsnan_flag) then SetFX(VXSNAN)
if(vxcvi_flag)  then SetFX(VXCVI)
if(xx_flag)     then SetFX(XX)
vex_flag     ← VE & (vxsnan_flag | vxcvi_flag)

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← 0bUUUUU
   FR      ← inc_flag
   FI      ← xx_flag
end
else do
   FR      ← 0b0
   FI      ← 0b0
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

If src is a NaN, the result is the value
0x0000_0000_0000_0000 and VXCVI is set to 1. If src is
an SNaN, VXSNAN is also set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round Toward Zero.

If the rounded value is greater than 264-1, the result is
0xFFFF_FFFF_FFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, the
result is 0x0000_0000_0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
64-bit unsigned-integer format, and if the result is
inexact (i.e., not equal to src), XX is set to 1.

If a trap-enabled invalid operation exception occurs,

– VSR[XT] and FPRF are not modified

– FR and FI are set to 0.

Otherwise,

– The result is placed into doubleword element 0 of
VSR[XT]. The contents of doubleword element 1 of
VSR[XT] are undefined.

– FPRF is set to an undefined value.

– FR is set to indicate if the result was incremented
when rounded.

– FI is set to indicate the result is inexact.

See Table 58.

Special Registers Altered
FPRF=0bUUUUU FR FI FX XX VXSNAN VXCVI

 

60 T /// B 328 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xscvdpuxds

src = VSR[XB]

DP unused

tgt = VSR[XT]

UD undefined
0 64 127

xscvdpuxds rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Double-Precision
Integer instruction that corresponds to the desired
rounding mode, including xsrdpic which uses the
rounding mode specified by RN.
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Returned Results and Status Setting

src [ Nmin-1
0 – – T(Nmin), FR←0, FI←0, fx(VXCVI)
1 – – FR←0, FI←0, fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), FR←0, FI←1, fx(XX)
1 yes T(Nmin), FR←0, FI←1, fx(XX), error()

src = Nmin – – no T(Nmin), FR←0, FI←0

Nmin < src < Nmax –
– no T(ConvertDPtoUD(RoundToDPintegerTrunc(src))), FR←0, FI←0
0 yes T(ConvertDPtoUD(RoundToDPintegerTrunc(src))), FR←0, FI←1, fx(XX)
1 yes T(ConvertDPtoUD(RoundToDPintegerTrunc(src))), FR←0, FI←1, fx(XX), error()

src = Nmax – – no T(Nmax), FR←0, FI←0 
Note: This case cannot occur as Nmax is not representable in DP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), FR←0, FI←1, fx(XX)
1 yes T(Nmax), FR←0, FI←1, fx(XX), error()

src m Nmax+1
0 – – T(Nmax), FR←0, FI←0, fx(VXCVI)
1 – – FR←0, FI←0, fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), FR←0, FI←0, fx(VXCVI)
1 – – FR←0, FI←0, fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), FR←0, FI←0, fx(VXCVI), fx(VXSNAN)
1 – – FR←0, FI←0, fx(VXCVI), fx(VXSNAN), error()

Explanation:
fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system  error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode.

Nmin The smallest unsigned integer doubleword value, 0 (0x0000_0000_0000_0000).

Nmax The largest unsigned integer doubleword value, 264-1 (0xFFFF_FFFF_FFFF_FFFF).

src The double-precision floating-point value in doubleword element 0 of VSR[XB].

T(x) The unsigned integer doubleword value x is placed in doubleword element 0 of VSR[XT].
The contents of doubleword element 1 of VSR[XT] are undefined.

Table 58.Actions for xscvdpuxds
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Version 2.07 B
VSX Scalar truncate Double-Precision to 
integer and Convert to Unsigned Integer Word 
format with Saturate  XX2-form

xscvdpuxws XT,XB

XT           ← TX || T
XB           ← BX || B
inc_flag     ← 0b0
reset_xflags()
result{0:31} ← ConvertDPtoUW(VSR[XB]{0:63})
if(vxsnan_flag) then SetFX(VXSNAN)
if(vxcvi_flag)  then SetFX(VXCVI)
if(xx_flag)     then SetFX(XX)
vex_flag     ← VE & (vxsnan_flag | vxcvi_flag)

if( ~vex_flag ) then do
   VSR[XT] ← 0xUUUU_UUUU || result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← 0bUUUUU
   FR      ← inc_flag
   FI      ← xx_flag
end
else do
   FR      ← 0b0
   FI      ← 0b0
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

If src is a NaN, the result is the value 0x0000_0000 and
VXCVI is set to 1. If src is an SNaN, VXSNAN is also set
to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round Toward Zero.

If the rounded value is greater than 232-1, the result is
0xFFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, the
result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit unsigned-integer format, and if the result is
inexact (i.e., not equal to src), XX is set to 1.

If a trap-enabled invalid operation exception occurs,

– VSR[XT] and FPRF are not modified

– FR and FI are set to 0.

Otherwise,

– The result is placed into word element 1 of
VSR[XT]. The contents of word elements 0, 2, and
3 of VSR[XT] are undefined.

– FPRF is set to an undefined value.

– FR is set to indicate if the result was incremented
when rounded.

– FI is set to indicate the result is inexact.

See Table 59.

Special Registers Altered
FPRF=0bUUUUU FR FI FX XX VXSNAN VXCVI

 

60 T /// B 72 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xscvdpuxws

src = VSR[XB]

DP unused

tgt = VSR[XT]

undefined UW undefined
0 32 64 127

xscvdpuxws rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Double-Precision
Integer instruction that corresponds to the desired
rounding mode, including xsrdpic which uses the
rounding mode specified by RN.
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Returned Results and Status Setting

src [ Nmin-1
0 – – T(Nmin), FR←0, FI←0, fx(VXCVI)
1 – – FR←0, FI←0, fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), FR←0, FI←1, fx(XX)
1 yes T(Nmin), FR←0, FI←1, fx(XX), error()

src = Nmin – – no T(Nmin), FR←0, FI←0

Nmin < src < Nmax –
– no T(ConvertDPtoUW(RoundToDPintegerTrunc(src))), FR←0, FI←0
0 yes T(ConvertDPtoUW(RoundToDPintegerTrunc(src))), FR←0, FI←1, fx(XX)
1 yes T(ConvertDPtoUW(RoundToDPintegerTrunc(src))), FR←0, FI←1, fx(XX), error()

src = Nmax – – no T(Nmax), FR←0, FI←0

Nmax < src < Nmax+1 –
0 yes T(Nmax), FR←0, FI←1, fx(XX)
1 yes T(Nmax), FR←0, FI←1, fx(XX), error()

src m Nmax+1
0 – – T(Nmax), FR←0, FI←0, fx(VXCVI)
1 – – FR←0, FI←0, fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), FR←0, FI←0, fx(VXCVI)
1 – – FR←0, FI←0, fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), FR←0, FI←0, fx(VXCVI), fx(VXSNAN)
1 – – FR←0, FI←0, fx(VXCVI), fx(VXSNAN), error()

Explanation:
fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system  error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode.

Nmin The smallest unsigned integer word value, 0 (0x0000_0000).

Nmax The largest unsigned integer word value, 232-1 (0xFFFF_FFFF).

src The double-precision floating-point value in doubleword element 0 of VSR[XB].

T(x) The unsigned integer word value x is placed in word element 1 of VSR[XT].
The contents of word elements 0, 2, and 3 of VSR[XT] are undefined.

Table 59.Actions for xscvdpuxws
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Version 2.07 B
VSX Scalar Convert Single-Precision to 
Double-Precision format  XX2-form

xscvspdp XT,XB

reset_xflags()
src ← VSR[32×BX+B].word[0]
result ← ConvertVectorSPtoScalarSP(src)
if(vxsnan_flag) then SetFX(FPSCR.VXSNAN)
vex_flag ← FPSCR.VE & vxsnan_flag
FPSCR.FR ← 0b0
FPSCR.FI ← 0b0
if( ~vex_flag ) then do
   VSR[32×TX+T].dword[0] ← result
   VSR[32×TX+T].dword[1] ← 0xUUUU_UUUU_UUUU_UUUU
   FPSCR.FPRF ← ClassDP(result)
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the single-precision floating-point value in
word element 0 of VSR[XB].

If src is a SNaN, the result is src, converted to a
QNaN (i.e., bit 9 of src set to 1). VXSNAN is set to 1.

Otherwise, the result is src.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined.

FPRF is set to the class and sign of the result. FR is set
to 0. FI is set to 0.

If a trap-enabled invalid operation exception occurs,
VSR[XT] is not modified, FPRF is not modified, FR is set
to 0, and FI is set to 0.

Special Registers Altered
FPRF FR=0b0 FI=0b0 FX VXSNAN 

 

VSX Scalar Convert Single-Precision to 
Double-Precision format Non-signalling 
XX2-form

xscvspdpn XT,XB

reset_xflags()
src ← VSR[32×BX+B].word[0]
result ← ConvertSPtoDP_NS(src)
VSR[32×TX+T].dword[0] ← result
VSR[32×TX+T].dword[1] ← 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the single-precision floating-point value in
word element 0 of VSR[XB].

src is placed into doubleword element 0 of VSR[XT] in
double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined.

Special Registers Altered
None

 

60 T /// B 329 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xscvspdp

src = VSR[XB]

.word[0] unused unused

tgt = VSR[XT]

.dword[0] undefined
0 32 64 127

xscvspdp can be used to convert a
single-precision value in single-precision format to
double-precision format for use by category
Floating-Point scalar single-precision operations.

60 T /// B 331 BXTX
0 6 11 16 21 30 31

VSR Data Layout for xscvspdpn
src = VSR[XB]

.word[0] unused unused unused

tgt = VSR[XT]

.dword[0] undefined
0 32 64 96 127

xscvspdp should be used to convert a vector
single-precision floating-point value to scalar
double-precision format.

xscvspdpn should be used to convert a vector
single-precision floating-point value to scalar
single-precision format.

Programming Note
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Version 2.07 B
VSX Scalar Convert Signed Integer 
Doubleword to floating-point format and 
round to Double-Precision format  XX2-form

xscvsxddp XT,XB

XT           ← TX || T
XB           ← BX || B
reset_xflags()
v{0:inf}     ← ConvertSDtoFP(VSR[XB]{0:63})
result{0:63} ← RoundToDP(RN,v)
VSR[XT]      ← result || 0xUUUU_UUUU_UUUU_UUUU
if(xx_flag) then SetFX(XX)
FPRF         ← ClassDP(result)
FR           ← inc_flag
FI           ← xx_flag

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the signed integer value in doubleword
element 0 of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to double-precision
using the rounding mode specified by the
Floating-Point Rounding Control field RN of the
FPSCR. 

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined.

FPRF is set to the class and sign of the result. FR is
set to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

Special Registers Altered
FPRF FR FI FX XX

VSX Scalar Convert Signed Integer 
Doubleword to floating-point format and 
round to Single-Precision XX2-form

xscvsxdsp XT,XB

reset_xflags()

src    ← ConvertSDtoDP(VSR[32×BX+B].doubleword[0])
result ← RoundToSP(RN,src)
VSR[32×TX+T].doubleword[0] ← ConvertSPtoSP64(result)
VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU

if(xx_flag) then SetFX(XX)

FPRF ← ClassSP(result)
FR   ← inc_flag
FI   ← xx_flag

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the two’s-complement integer value in
doubleword element 0 of VSR[XB].

src is converted to floating-point format, and rounded
to single-precision using the rounding mode specified
by RN. 

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

Special Registers Altered
FPRF FR FI FX XX

60 T /// B 376 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xscvsxddp

src = VSR[XB]

SD unused

tgt = VSR[XT]

DP undefined
0 64 127

60 T /// B 312 BXTX
0 6 11 16 21 30 31

VSR Data Layout for xscvsxdsp
src = VSR[XB]

SD unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
VSX Scalar Convert Unsigned Integer 
Doubleword to floating-point format and 
round to Double-Precision format XX2-form

xscvuxddp XT,XB

XT           ← TX || T
XB           ← BX || B
reset_xflags()
src{0:inf}   ← ConvertUDtoFP(VSR[XB]{0:63})
result{0:63} ← RoundToDP(RN,src)
VSR[XT]      ← result || 0xUUUU_UUUU_UUUU_UUUU
if(xx_flag) then SetFX(XX)
FPRF         ← ClassDP(result)
FR           ← inc_flag
FI           ← xx_flag

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the unsigned integer value in doubleword
element 0 of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to double-precision
using the rounding mode specified by the
Floating-Point Rounding Control field RN of the
FPSCR.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined.

FPRF is set to the class and sign of the result. FR is
set to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

Special Registers Altered
FPRF FR FI FX XX

VSX Scalar Convert Unsigned Integer 
Doubleword to floating-point format and 
round to Single-Precision XX2-form

xscvuxdsp XT,XB

reset_xflags()

src    ← ConvertUDtoDP(VSR[32×BX+B].doubleword[0])
result ← RoundToSP(RN,src)
VSR[32×TX+T].doubleword[0] ← ConvertSPtoSP64(result)
VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU

if(xx_flag) then SetFX(XX)

FPRF ← ClassSP(result)
FR   ← inc_flag
FI   ← xx_flag

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the unsigned-integer value in doubleword
element 0 of VSR[XB].

src is converted to floating-point format, and rounded
to single-precision using the rounding mode specified
by RN. 

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

Special Registers Altered
FPRF FR FI FX XX

60 T /// B 360 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xscvuxddp

src = VSR[XB]

UD unused

tgt = VSR[XT]

DP undefined
0 64 127

60 T /// B 296 BXTX
0 6 11 16 21 30 31

VSR Data Layout for xscvuxdsp
src = VSR[XB]

UD unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
VSX Scalar Divide Double-Precision  XX3-form

xsdivdp XT,XA,XB

XT           ← TX || T
XA           ← AX || A
XB           ← BX || B
reset_xflags()
src1         ← VSR[XA]{0:63}
src2         ← VSR[XB]{0:63}
v{0:inf}     ← DivideFP(src1,src2)
result{0:63} ← RoundToDP(RN,v)
if(vxsnan_flag) then SetFX(VXSNAN)
if(vxidi_flag)  then SetFX(VXIDI)
if(vxzdz_flag)  then SetFX(VXZDZ)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)
if(zx_flag)     then SetFX(ZX)
vex_flag     ← VE & (vxsnan_flag | vxidi_flag | vxzdz_flag)
zex_flag     ← ZE & zx_flag

if( ~vex_flag & ~zex_flag ) then do
   VSR[XT] = result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    = ClassDP(result)
   FR      = inc_flag
   FI      = xx_flag
end
else do
   FR      = 0b0
   FI      = 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value
in doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value
in doubleword element 0 of VSR[XB].

src1 is divided[1] by src2, producing a quotient
having unbounded range and precision.

The quotient is normalized[2].

See Actions for xsdivdp (p. 425).

The intermediate result is rounded to double-precision
using the rounding mode specified by the
Floating-Point Rounding Control field RN of the
FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format. 

The contents of doubleword element 1 of VSR[XT] are
undefined.

FPRF is set to the class and sign of the result. FR is
set to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception or a
trap-enabled zero divide exception occurs, VSR[XT]
and FPRF are not modified, and FR and FI are set to
0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

Special Registers Altered
FPRF FR FI FX OX UX ZX XX
VXSNAN VXIDI VXZDZ

60 T A B 56 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point division is based on exponent subtraction and division of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-

ber of bits the significand was shifted.

VSR Data Layout for xsdivdp

src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxidi_flag ← 1 v ← +Infinity v ← +Infinity v ← –Infinity v ← –Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-NZF v ← +Zero v ← D(src1,src2) v ← +Infinity
zx_flag ← 1

v ← –Infinity
zx_flag ← 1 v ← D(src1,src2) v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-Zero v ← +Zero v ← +Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← –Zero v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Zero v ← –Zero v ← –Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← +Zero v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+NZF v ← –Zero v ← D(src1,src2) v ← –Infinity
zx_flag ← 1

v ← +Infinity
zx_flag ← 1 v ← D(src1,src2) v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Infinity v ← dQNaN
vxidi_flag ← 1 v ← –Infinity v ← –Infinity v ← +Infinity v ← +Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].

src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

D(x,y) Return the normalized quotient of floating-point value x divided by floating-point value y, having unbounded range and precision.

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 60.Actions for xsdivdp
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VSX Scalar Divide Single-Precision XX3-form

xsdivsp XT,XA,XB

reset_xflags()

src1   ← VSR[32×AX+A].doubleword[0]
src2   ← VSR[32×BX+B].doubleword[0]
v      ← DivideDP(src1,src2)
result ← RoundToSP(RN,v)

if(vxsnan_flag) then SetFX(VXSNAN)
if(vxidi_flag)  then SetFX(VXIDI)
if(vxzdz_flag)  then SetFX(VXZDZ)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)
if(zx_flag)     then SetFX(ZX)

vex_flag ← VE & (vxsnan_flag|vxidi_flag|vxzdz_flag)
zex_flag ← ZE & zx_flag

if( ~vex_flag & ~zex_flag ) then do
   VSR[32×TX+T].doubleword[0] ← ConvertSPtoSP64(result)
   VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU
   FPRF ← ClassSP(result)
   FR   ← inc_flag
   FI   ← xx_flag
end
else do
   FR   ← 0b0
   FI   ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src1 is divided[1] by src2, producing a quotient having
unbounded range and precision.

The quotient is normalized[2].

See Table 61, “Actions for xsdivsp,” on page 427.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format. 

The contents of doubleword element 1 of VSR[XT] are
undefined.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.
If a trap-enabled invalid operation exception or a
trap-enabled zero divide exception occurs, VSR[XT]
and FPRF are not modified, and FR and FI are set to
0.
See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

Special Registers Altered
FPRF FR FI FX OX UX ZX XX
VXSNAN VXIDI VXZDZ

60 T A B 24 AXBXTX
0 6 11 16 21 29 30 31

1. Floating-point division is based on exponent subtraction and division of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number 

of bits the significand was shifted.

VSR Data Layout for xsdivsp
src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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src2

-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxidi_flag ← 1 v ← +Infinity v ← +Infinity v ← –Infinity v ← –Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-NZF v ← +Zero v ← D(src1,src2) v ← +Infinity
zx_flag ← 1

v ← –Infinity
zx_flag ← 1 v ← D(src1,src2) v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-Zero v ← +Zero v ← +Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← –Zero v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Zero v ← –Zero v ← –Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← +Zero v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+NZF v ← –Zero v ← D(src1,src2) v ← –Infinity
zx_flag ← 1

v ← +Infinity
zx_flag ← 1 v ← D(src1,src2) v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Infinity v ← dQNaN
vxidi_flag ← 1 v ← –Infinity v ← –Infinity v ← +Infinity v ← +Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
D(x,y) Return the normalized quotient of floating-point value x divided by floating-point value y, having unbounded range and precision.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 61.Actions for xsdivsp
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Version 2.07 B
VSX Scalar Multiply-Add Double-Precision  
XX3-form

xsmaddadp XT,XA,XB

xsmaddmdp XT,XA,XB

XT           ← TX || T
XA           ← AX || A
XB           ← BX || B
reset_xflags()
src1         ← VSR[XA]{0:63}
src2         ← “xsmaddadp” ? VSR[XT]{0:63} : VSR[XB]{0:63}
src3         ← “xsmaddadp” ? VSR[XB]{0:63} : VSR[XT]{0:63}
v{0:inf}     ← MultiplyAddFP(src1,src3,src2)
result{0:63} ← RoundToDP(RN,v)
if(vxsnan_flag) then SetFX(VXSNAN)
if(vximz_flag)  then SetFX(VXIMZ)
if(vxisi_flag)  then SetFX(VXISI)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)
vex_flag     ← VE & (vxsnan_flag | vximz_flag | vxisi_flag)

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassDP(result)
   FR      ← inc_flag
   FI      ← xx_flag
end
else do
   FR      ← 0b0
   FI      ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value
in doubleword element 0 of VSR[XA].

For xsmaddadp, do the following.
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsmaddmdp, do the following.
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 62.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 62.

The intermediate result is rounded to double-precision
using the rounding mode specified by the
Floating-Point Rounding Control field RN of the
FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined.

FPRF is set to the class and sign of the result. FR is
set to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXISI VXIMZ

60 T A B 33 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 41 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
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VSR Data Layout for xsmadd(a|m)dp

src1 = VSR[XA]

DP unused

src2 = xsmaddadp ? VSR[XT] : VSR[XB]

DP unused

src3 = xsmaddadp ? VSR[XB] : VSR[XT]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1
QNaN &

src1 not a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].

src2 For xsmaddadp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
For xsmaddmdp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

src3 For xsmaddadp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
For xsmaddmdp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two
nonzero finite number source operands.

Q(x) Return a QNaN with the payload of x.

A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

p The intermediate product having unbounded range and precision.

v The intermediate result having unbounded range and precision.

Table 62.Actions for xsmadd(a|m)dp
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VSX Scalar Multiply-Add Single-Precision 
XX3-form

xsmaddasp XT,XA,XB

xsmaddmsp XT,XA,XB

reset_xflags()

if “xsmaddasp” then do
   src1 ← VSR[32×AX+A].doubleword[0]
   src2 ← VSR[32×TX+T].doubleword[0]
   src3 ← VSR[32×BX+B].doubleword[0]
end
if “xsmaddmsp” then do
   src1 ← VSR[32×AX+A].doubleword[0]
   src2 ← VSR[32×BX+B].doubleword[0]
   src3 ← VSR[32×TX+T].doubleword[0]
end

v      ← MultiplyAddDP(src1,src3,src2)
result ← RoundToSP(RN,v)

if(vxsnan_flag) then SetFX(VXSNAN)
if(vximz_flag)  then SetFX(VXIMZ)
if(vxisi_flag)  then SetFX(VXISI)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)

vex_flag ← VE & (vxsnan_flag | vximz_flag | vxisi_flag)

if( ~vex_flag ) then do
   VSR[32×TX+T].doubleword[0] ← ConvertSPtoSP64(result)
   VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU
   FPRF ← ClassSP(result)
   FR   ← inc_flag
   FI   ← xx_flag
end
else do
   FR   ← 0b0
   FI   ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For xsmaddasp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsmaddmsp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 63, “Actions for xsmadd(a|m)sp,”
on page 433.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 63, “Actions for xsmadd(a|m)sp,”
on page 433.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

60 T A B 1 AXBXTX
0 6 11 16 21 29 30 31

60 T A B 9 AXBXTX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared, 

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two 
exponents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an 
intermediate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number 
of bits the significand was shifted.
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Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXISI VXIMZ

VSR Data Layout for xsmadd(a|m)sp
src1 = VSR[XA]

DP unused

src2 = xsmaddasp ? VSR[XT] : VSR[XB]

DP unused

src3 = xsmaddasp ? VSR[XB] : VSR[XT]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Part 1:
Multiply

src3

–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN
sr

c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2

–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN &
src1 is a 

NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1

QNaN &
src1 not a 

NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 For xsmaddasp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

For xsmaddmsp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
src3 For xsmaddasp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

For xsmaddmsp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 63.Actions for xsmadd(a|m)sp
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VSX Scalar Maximum Double-Precision  
XX3-form

xsmaxdp XT,XA,XB

XT           ← TX || T
XA           ← AX || A
XB           ← BX || B
reset_xflags()
src1         ← VSR[XA]{0:63}
src2         ← VSR[XB]{0:63}
result{0:63} ← MaximumDP(src1,src2)
if(vxsnan_flag) then SetFX(VXSNAN)
vex_flag     ← VE & vxsnan_flag

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value
in doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value
in doubleword element 0 of VSR[XB].

If src1 is greater than src2, src1 is placed into
doubleword element 0 of VSR[XT]. Otherwise, src2 is
placed into doubleword element 0 of VSR[XT] in
double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

The maximum of +0 and –0 is +0. The maximum of a
QNaN and any value is that value. The maximum of
any value and an SNaN is that SNaN converted to a
QNaN.

FPRF, FR and FI are not modified.

If a trap-enabled invalid operation exception occurs,
VSR[XT] is not modified.

See Table 64.

Special Registers Altered
FX VXSNAN

60 T A B 160 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xsmaxdp

src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src1) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

–NZF T(src1) T(M(src1,src2)) T(src2) T(src2) T(src2) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

–Zero T(src1) T(src1) T(src1) T(src2) T(src2) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

+Zero T(src1) T(src1) T(src1) T(src1) T(src2) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

+NZF T(src1) T(src1) T(src1) T(src1) T(M(src1,src2)) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

+Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1)
T(src1)

fx(VXSNAN)

SNaN
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].

src2 The double-precision floating-point value in doubleword element 0 of VSR[XT].

NZF Nonzero finite number.

Q(x) Return a QNaN with the payload of x.

M(x,y) Return the greater of floating-point value x and floating-point value y.

T(x) The value x is placed in doubleword element 0 of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are undefined.

FPRF, FR and FI are not modified.

fx(x) If x is equal to 0, FX is set to 1. x is set to 1.

VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN. If VE=1, update of VSR[XT] is suppressed.

Table 64.Actions for xsmaxdp
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VSX Scalar Minimum Double-Precision  
XX3-form

xsmindp XT,XA,XB

XT           ← TX || T
XA           ← AX || A
XB           ← BX || B
reset_xflags()
src1         ← VSR[XA]{0:63}
src2         ← VSR[XB]{0:63}
result{0:63} ← MinimumDP(src1,src2)
if(vxsnan_flag) then SetFX(VXSNAN)
vex_flag     ← VE & vxsnan_flag 

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value
in doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value
in doubleword element 0 of VSR[XB].

If src1 is less than src2, src1 is placed into
doubleword element 0 of VSR[XT] in double-precision
format. Otherwise, src2 is placed into doubleword
element 0 of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

The minimum of +0 and –0 is –0. The minimum of a
QNaN and any value is that value. The minimum of
any value and an SNaN is that SNaN converted to a
QNaN.

FPRF, FR and FI are not modified.

If a trap-enabled invalid operation exception occurs,
VSR[XT] is not modified.

See Table 65.

Special Registers Altered
FX VXSNAN

60 T A B 168 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xsmindp

src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

–NZF T(src2) T(M(src1,src2)) T(src1) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

–Zero T(src2) T(src2) T(src1) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

+Zero T(src2) T(src2) T(src2) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

+NZF T(src2) T(src2) T(src2) T(src2) T(M(src1,src2)) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

+Infinity T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1)
T(src1)

fx(VXSNAN)

SNaN
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].

src2 The double-precision floating-point value in doubleword element 0 of VSR[XT].

NZF Nonzero finite number.

Q(x) Return a QNaN with the payload of x.

M(x,y) Return the lesser of floating-point value x and floating-point value y.

T(x) The value x is placed in doubleword element i (i∈{0,1}) of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are undefined.

FPRF, FR and FI are not modified.

fx(x) If x is equal to 0, FX is set to 1. x is set to 1.

VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN. If VE=1, update of VSR[XT] is suppressed.

Table 65.Actions for xvmindp
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VSX Scalar Multiply-Subtract 
Double-Precision  XX3-form

xsmsubadp XT,XA,XB

xsmsubmdp XT,XA,XB

XT           ← TX || T
XA           ← AX || A
XB           ← BX || B
reset_xflags()
src1         ← VSR[XA]{0:63}
src2         ← VSR[XT]{0:63}
src3         ← VSR[XB]{0:63}
src2         ← “xsmsubadp” ? VSR[XT]{0:63} : VSR[XB]{0:63}
src3         ← “xsmsubadp” ? VSR[XB]{0:63} : VSR[XT]{0:63}
v{0:inf}     ← MultiplyAddDP(src1,src3,NegateDP(src2))
result{0:63} ← RoundToDP(RN,v)
if(vxsnan_flag) then SetFX(VXSNAN)
if(vximz_flag)  then SetFX(VXIMZ)
if(vxisi_flag)  then SetFX(VXISI)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)
vex_flag     ← VE & (vxsnan_flag | vximz_flag | vxisi_flag)

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassDP(result)
   FR      ← inc_flag
   FI      ← xx_flag
end
else do
   FR      ← 0b0
   FI      ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For xsmsubadp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsmsubmdp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 66.

src2 is negated and added[2] to the product,
producing a sum having unbounded range and
precision.

The result, having unbounded range and precision, is
normalized[3].

See part 2 of Table 66.

The intermediate result is rounded to double-precision
using the rounding mode specified by the
Floating-Point Rounding Control field RN of the
FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format. 

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result. FR is
set to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXISI VXIMZ

60 T A B 49 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 57 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
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VSR Data Layout for xsmsub(a|m)dp

src1 = VSR[XA]

DP unused

src2 = xsmsubadp ? VSR[XT] : VSR[XB]

DP unused

src3 = xsmsubadp ? VSR[XB] : VSR[XT]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← Rezd v ← –Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← +Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1
QNaN &

src1 not a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].

src2 For xsmsubadp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
For xsmsubmdp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

src3 For xsmsubadp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
For xsmsubmdp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two
nonzero finite number source operands.

Q(x) Return a QNaN with the payload of x.

S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

p The intermediate product having unbounded range and precision.

v The intermediate result having unbounded range and precision.

Table 66.Actions for xsmsub(a|m)dp
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VSX Scalar Multiply-Subtract Single-Precision 
XX3-form

xsmsubasp XT,XA,XB

xsmsubmsp XT,XA,XB

reset_xflags()

if “xsmsubasp” then do
   src1 ← VSR[32×AX+A].doubleword[0]
   src2 ← VSR[32×TX+T].doubleword[0]
   src3 ← VSR[32×BX+B].doubleword[0]
end
if “xsmsubmsp” then do
   src1 ← VSR[32×AX+A].doubleword[0]
   src2 ← VSR[32×BX+B].doubleword[0]
   src3 ← VSR[32×TX+T].doubleword[0]
end

v      ← MultiplyAddDP(src1,src3,NegateDP(src2))
result ← RoundToSP(RN,v)

if(vxsnan_flag) then SetFX(VXSNAN)
if(vximz_flag)  then SetFX(VXIMZ)
if(vxisi_flag)  then SetFX(VXISI)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)

vex_flag ← VE & (vxsnan_flag | vximz_flag | vxisi_flag)

if( ~vex_flag ) then do
   VSR[32×TX+T].doubleword[0] ← ConvertSPtoSP64(result)
   VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU
   FPRF ← ClassSP(result)
   FR   ← inc_flag
   FI   ← xx_flag
end
else do
   FR   ← 0b0
   FI   ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For xsmsubasp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsmsubmsp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 67, “Actions for xsmsub(a|m)sp”.

src2 is negated and added[2] to the product, producing
a sum having unbounded range and precision. 

The result, having unbounded range and precision, is
normalized[3]. 

See part 2 of Table 67, “Actions for xsmsub(a|m)sp”.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format. 

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

60 T A B 17 AXBXTX
0 6 11 16 21 29 30 31

60 T A B 25 AXBXTX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared, 

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two 
exponents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an 
intermediate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number 
of bits the significand was shifted.
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Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXISI VXIMZ

 

VSR Data Layout for xsmsub(a|m)sp
src1 = VSR[XA]

DP unused

src2 = xsmsubasp ? VSR[XT] : VSR[XB]

DP unused

src3 = xsmsubasp ? VSR[XB] : VSR[XT]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
Part 1:
Multiply

src3

–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN
sr

c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2

–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← Rezd v ← –Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← +Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN &
src1 is a 

NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1

QNaN &
src1 not a 

NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 For xsmsubasp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

For xsmsubmsp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
src3 For xsmsubasp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

For xsmsubmsp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 67.Actions for xsmsub(a|m)sp
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VSX Scalar Multiply Double-Precision  
XX3-form

xsmuldp XT,XA,XB

XT           ← TX || T
XA           ← AX || A
XB           ← BX || B
reset_xflags()
src1         ← VSR[XA]{0:63}
src2         ← VSR[XB]{0:63}
v{0:inf}     ← MultiplyFP(src1,src2)
result{0:63} ← RoundToDP(RN,v)
if(vxsnan_flag) then SetFX(VXSNAN)
if(vximz_flag)  then SetFX(VXIMZ)
if(vxisi_flag)  then SetFX(VXISI)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)
vex_flag     ← VE & (vxsnan_flag | vximz_flag)

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassDP(result)
   FR      ← inc_flag
   FI      ← xx_flag
end
else do
   FR      ← 0b0
   FI      ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value
in doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value
in doubleword element 0 of VSR[XB].

src1 is multiplied[1] by src2, producing a product
having unbounded range and precision.

The product is normalized[2].

See Table 68.

The intermediate result is rounded to double-precision
using the rounding mode specified by the
Floating-Point Rounding Control field RN of the
FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format. 

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result. FR is
set to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXIMZ

60 T A B 48 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-

ber of bits the significand was shifted.

VSR Data Layout for xsmuldp

src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
Power ISA™ - Book I444



Version 2.07 B
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← M(src1,src2) v ← +Zero v ← –Zero v ← M(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← dQNaN
vximz_flag ← 1 v ← +Zero v ← +Zero v ← –Zero v ← –Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← dQNaN
vximz_flag ← 1 v ← –Zero v ← –Zero v ← +Zero v ← +Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← M(src1,src2) v ← –Zero v ← +Zero v ← M(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← –Infinity v ← +Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].

src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 68.Actions for xsmuldp
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VSX Scalar Multiply Single-Precision 
XX3-form

xsmulsp XT,XA,XB

reset_xflags()

src1 ← VSR[32×AX+A].doubleword[0]
src2 ← VSR[32×BX+B].doubleword[0]

v      ← MultiplyDP(src1,src2)
result ← RoundToSP(RN,v)

if(vxsnan_flag) then SetFX(VXSNAN)
if(vximz_flag)  then SetFX(VXIMZ)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)

vex_flag ← VE & (vxsnan_flag | vximz_flag)

if( ~vex_flag ) then do
   VSR[32×TX+T].doubleword[0] ← ConvertSPtoSP64(result)
   VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU
   FPRF ← ClassSP(result)
   FR   ← inc_flag
   FI   ← xx_flag
end
else do
   FR   ← 0b0
   FI   ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src1 is multiplied[1] by src2, producing a product
having unbounded range and precision.

The product is normalized[2].

See Table 69, “Actions for xsmulsp,” on page 447.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format. 

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXIMZ

60 T A B 16 AXBXTX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number 

of bits the significand was shifted.

VSR Data Layout for xsmulsp
src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
src2

-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN
sr

c1

-Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← M(src1,src2) v ← +Zero v ← –Zero v ← M(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← dQNaN
vximz_flag ← 1 v ← +Zero v ← +Zero v ← –Zero v ← –Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← dQNaN
vximz_flag ← 1 v ← –Zero v ← –Zero v ← +Zero v ← +Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← M(src1,src2) v ← –Zero v ← +Zero v ← M(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← –Infinity v ← +Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 69.Actions for xsmulsp
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Version 2.07 B
VSX Scalar Negative Absolute Value 
Double-Precision  XX2-form

xsnabsdp XT,XB

XT           ← TX || T
XB           ← BX || B
result{0:63} ← 0b1 || VSR[XB]{1:63}
VSR[XT]      ← result || 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

The contents of doubleword element 0 of VSR[XB],
with bit 0 set to 1, is placed into doubleword element 0
of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
undefined. 

Special Registers Altered
None

VSX Scalar Negate Double-Precision  
XX2-form

xsnegdp XT,XB

XT           ← TX || T
XB           ← BX || B
result{0:63} ← ~VSR[XB]{0} || VSR[XB]{1:63}
VSR[XT]      ← result || 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

The contents of doubleword element 0 of VSR[XB],
with bit 0 complemented, is placed into doubleword
element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
undefined.

Special Registers Altered
None

60 T /// B 361 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xsnabsdp

src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127

60 T /// B 377 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xsnegdp

src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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VSX Scalar Negative Multiply-Add  
Double-Precision  XX3-form

xsnmaddadp XT,XA,XB

xsnmaddmdp XT,XA,XB

XT           ← TX || T
XA           ← AX || A
XB           ← BX || B
reset_xflags()
src1         ← VSR[XA]{0:63}
src2         ← “xsnmaddadp” ? VSR[XT]{0:63} : VSR[XB]{0:63}
src3         ← “xsnmaddadp” ? VSR[XB]{0:63} : VSR[XT]{0:63}
v{0:inf}     ← MultiplyAddDP(src1,src3,src2)
result{0:63} ← NegateDP(RoundToDP(RN,v))
if(vxsnan_flag) then SetFX(VXSNAN)
if(vximz_flag)  then SetFX(VXIMZ)
if(vxisi_flag)  then SetFX(VXISI)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)
vex_flag     ← VE & (vxsnan_flag | vximz_flag | vxisi_flag)

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassDP(result)
   FR      ← inc_flag
   FI      ← xx_flag
end
else do
   FR      ← 0
   FI      ← 0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value
in doubleword element 0 of VSR[XA].

For xsnmaddadp, do the following.
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsnmaddmdp, do the following.
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 70.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 70.

The intermediate result is rounded to double-precision
using the rounding mode specified by the
Floating-Point Rounding Control field RN of the
FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is negated and placed into doubleword
element 0 of VSR[XT] in double-precision format. 

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result. FR is
set to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 71, “Scalar Floating-Point Final Result with
Negation,” on page 452.

Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXISI VXIMZ

60 T A B 161 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 169 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 449



Version 2.07 B
VSR Data Layout for xsnmadd(a|m)dp

src1 = VSR[XA]

DP unused

src2 = xsnmaddadp ? VSR[XT] : VSR[XB]

DP unused

src3 = xsnmaddadp ? VSR[XB] : VSR[XT]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1
QNaN &

src1 not a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].

src2 For xsnmaddadp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
For xsnmaddmdp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

src3 For xsnmaddadp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
For xsnmaddmdp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two
nonzero finite number source operands.

Q(x) Return a QNaN with the payload of x.

A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

p The intermediate product having unbounded range and precision.

v The intermediate result having unbounded range and precision.

Table 70.Actions for xsnmadd(a|m)dp
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Returned Results and Status Setting

Special

– – – – – 0 0 0 – – – – T(N(r)), FPRF←ClassFP(r), FI←0, FR←0

0 – – – – – – 1 – – – – T(r), FPRF←ClassFP(r), FI←0, FR←0, fx(VXISI)

0 – – – – 0 1 – – – – – T(r), FPRF←ClassFP(r), FI←0, FR←0, fx(VXIMZ)

0 – – – – 1 0 – – – – – T(r), FPRF←ClassFP(r), FI←0, FR←0, fx(VXSNAN)

0 – – – – 1 1 – – – – – T(r), FPRF←ClassFP(r), FI←0, FR←0, fx(VXSNAN), fx(VXIMZ)

1 – – – – – – 1 – – – – fx(VXISI), error()

1 – – – – 0 1 – – – – – fx(VXIMZ), error()

1 – – – – 1 0 – – – – – fx(VXSNAN), error()

1 – – – – 1 1 – – – – – fx(VXSNAN), fx(VXIMZ), error()

Normal

– – – – – – – – no – – – T(N(r)), FPRF←ClassFP(N(r)), FI←0, FR←0

– – – – 0 – – – yes no – – T(N(r)), FPRF←ClassFP(N(r)), FI←1, FR←0, fx(XX)

– – – – 0 – – – yes yes – – T(N(r)), FPRF←ClassFP(N(r)), FI←1, FR←1, fx(XX)

– – – – 1 – – – yes no – – T(N(r)), FPRF←ClassFP(N(r)), FI←1, FR←0, fx(XX), error()

– – – – 1 – – – yes yes – – T(N(r)), FPRF←ClassFP(N(r)), FI←1, FR←1, fx(XX), error()

Overflow

– 0 – – 0 – – – – – – – T(N(r)), FPRF←ClassFP(N(r)), FI←1, FR←?, fx(OX), fx(XX)

– 0 – – 1 – – – – – – – T(N(r)), FPRF←ClassFP(N(r)), FI←1, FR←?, fx(OX), fx(XX), error()

– 1 – – – – – – – – no – T(N(q)÷β), FPRF←ClassFP(N(q)÷β), FI←0, FR←0, fx(OX), error()

– 1 – – – – – – – – yes no T(N(q)÷β), FPRF←ClassFP(N(q)÷β), FI←1, FR←0, fx(OX), fx(XX), error()

– 1 – – – – – – – – yes yes T(N(q)÷β), FPRF←ClassFP(N(q)÷β), FI←1, FR←1, fx(OX), fx(XX), error()

Explanation:
– The results do not depend on this condition.

ClassFP(x) Classifies the floating-point value x as defined in Table 2, “Floating-Point Result Flags,” on page 325.

fx(x) FX is set to 1 if x=0.  x is set to 1.

β Wrap adjust, where β = 21536 for double-precision and  β = 2192 for single-precision.

q The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, unbounded exponent range.

r The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, bounded exponent range.

v The precise intermediate result defined in the instruction having unbounded signficand precision, unbounded exponent range.

FI Floating-Point Fraction Inexact status flag, FPSCRFI. This status flag is nonsticky. 

FR Floating-Point Fraction Rounded status flag, FPSCRFR.

OX Floating-Point Overflow Exception status flag, FPSCROX.

error() The system error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode.

N(x) The value x is is negated by complementing the sign bit of x.

T(x) The value x is placed in element 0 of VSR[XT] in the target precision format.
The contents of the remaining element(s) of VSR[XT] are undefined.

UX Floating-Point Underflow Exception status flag, FPSCRUX

VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN.

VXIMZ Floating-Point Invalid Operation Exception (Infinity × Zero) status flag, FPSCRVXIMZ.

VXISI Floating-Point Invalid Operation Exception (Infinity – Infinity) status flag, FPSCRVXISI.

XX Float-Point Inexact Exception status flag, FPSCRXX. The flag is a sticky version of FPSCRFI. When FPSCRFI is set to a new
value, the new value of FPSCRXX is set to the result of ORing the old value of FPSCRXX with the new value of FPSCRFI.

Table 71.Scalar Floating-Point Final Result with Negation
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Tiny

– – 0 – – – – – no – – – T(N(r)), FPRF←ClassFP(N(r)), FI←0, FR←0

– – 0 – 0 – – – yes no – – T(N(r)), FPRF←ClassFP(N(r)), FI←1, FR←0, fx(UX), fx(XX)

– – 0 – 0 – – – yes yes – – T(N(r)), FPRF←ClassFP(N(r)), FI←1, FR←1, fx(UX), fx(XX)

– – 0 – 1 – – – yes no – – T(N(r)), FPRF←ClassFP(N(r)), FI←1, FR←0, fx(UX), fx(XX), error()

– – 0 – 1 – – – yes yes – – T(N(r)), FPRF←ClassFP(N(r)), FI←1, FR←1, fx(UX), fx(XX), error()

– – 1 – – – – – yes – no – T(N(q)×β), FPRF←ClassFP(N(q)×β), FI←0, FR←0, fx(UX), error()

– – 1 – – – – – yes – yes no T(N(q)×β), FPRF←ClassFP(N(q)×β), FI←1, FR←0, fx(UX), fx(XX), error()

– – 1 – – – – – yes – yes yes T(N(q)×β), FPRF←ClassFP(N(q)×β), FI←1, FR←1, fx(UX), fx(XX), error()
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Returned Results and Status Setting

Explanation:
– The results do not depend on this condition.

ClassFP(x) Classifies the floating-point value x as defined in Table 2, “Floating-Point Result Flags,” on page 325.

fx(x) FX is set to 1 if x=0.  x is set to 1.

β Wrap adjust, where β = 21536 for double-precision and  β = 2192 for single-precision.

q The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, unbounded exponent range.

r The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, bounded exponent range.

v The precise intermediate result defined in the instruction having unbounded signficand precision, unbounded exponent range.

FI Floating-Point Fraction Inexact status flag, FPSCRFI. This status flag is nonsticky. 

FR Floating-Point Fraction Rounded status flag, FPSCRFR.

OX Floating-Point Overflow Exception status flag, FPSCROX.

error() The system error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode.

N(x) The value x is is negated by complementing the sign bit of x.

T(x) The value x is placed in element 0 of VSR[XT] in the target precision format.
The contents of the remaining element(s) of VSR[XT] are undefined.

UX Floating-Point Underflow Exception status flag, FPSCRUX

VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN.

VXIMZ Floating-Point Invalid Operation Exception (Infinity × Zero) status flag, FPSCRVXIMZ.

VXISI Floating-Point Invalid Operation Exception (Infinity – Infinity) status flag, FPSCRVXISI.

XX Float-Point Inexact Exception status flag, FPSCRXX. The flag is a sticky version of FPSCRFI. When FPSCRFI is set to a new
value, the new value of FPSCRXX is set to the result of ORing the old value of FPSCRXX with the new value of FPSCRFI.

Table 71.Scalar Floating-Point Final Result with Negation (Continued)
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VSX Scalar Negative Multiply-Add  
Single-Precision XX3-form

xsnmaddasp XT,XA,XB

xsnmaddmsp XT,XA,XB

reset_xflags()

if “xsnmaddasp” then do
   src1 ← VSR[32×AX+A].doubleword[0]
   src2 ← VSR[32×TX+T].doubleword[0]
   src3 ← VSR[32×BX+B].doubleword[0]
end
if “xsnmaddmsp” then do
   src1 ← VSR[32×AX+A].doubleword[0]
   src2 ← VSR[32×BX+B].doubleword[0]
   src3 ← VSR[32×TX+T].doubleword[0]
end

v      ← MultiplyAddDP(src1,src3,src2)
result ← NegateSP(RoundToSP(RN,v))

if(vxsnan_flag) then SetFX(VXSNAN)
if(vximz_flag)  then SetFX(VXIMZ)
if(vxisi_flag)  then SetFX(VXISI)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)

vex_flag ← VE & (vxsnan_flag | vximz_flag | vxisi_flag)

if( ~vex_flag ) then do
   VSR[32×TX+T].doubleword[0] ← ConvertToSP(result)
   VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU
   FPRF ← ClassSP(result)
   FR   ← inc_flag
   FI   ← xx_flag
end
else do
   FR   ← 0b0
   FI   ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For xsnmaddasp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsnmaddmsp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 72, “Actions for xsnmadd(a|m)sp,”
on page 456.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 72, “Actions for xsnmadd(a|m)sp,”
on page 456.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is negated and placed into doubleword
element 0 of VSR[XT] in double-precision format. 

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 71, “Scalar Floating-Point Final Result with
Negation,” on page 452.

60 T A B 129 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 137 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared, 

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two 
exponents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an 
intermediate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number 
of bits the significand was shifted.
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Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXISI VXIMZ

VSR Data Layout for xsnmadd(a|m)sp
src1 = VSR[XA]

DP unused

src2 = xsnmadda(dp|sp) ? VSR[XT] : VSR[XB]

DP unused

src3 = xsnmadda(dp|sp) ? VSR[XB] : VSR[XT]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Part 1:
Multiply

src3

–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2

–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN &
src1 is a 

NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1

QNaN &
src1 not a 

NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 For xsnmaddasp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

For xsnmaddmsp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
src3 For xsnmaddasp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

For xsnmaddmsp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 72.Actions for xsnmadd(a|m)sp
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VSX Scalar Negative Multiply-Subtract 
Double-Precision  XX3-form

xsnmsubadp XT,XA,XB

xsnmsubmdp XT,XA,XB

XT           ← TX || T
XA           ← AX || A
XB           ← BX || B
reset_xflags()
src1         ← VSR[XA]{0:63}
src2         ← VSR[XT]{0:63}
src3         ← VSR[XB]{0:63}
src2         ← “xsnmsubadp” ? VSR[XT]{0:63} : VSR[XB]{0:63}
src3         ← “xsnmsubadp” ? VSR[XB]{0:63} : VSR[XT]{0:63}
v{0:inf}     ← MultiplyAddDP(src1,src3,NegateDP(src2))
result{0:63} ← NegateDP(RoundToDP(RN,v))
if(vxsnan_flag) then SetFX(VXSNAN)
if(vximz_flag)  then SetFX(VXIMZ)
if(vxisi_flag)  then SetFX(VXISI)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)
vex_flag     ← VE & (vxsnan_flag | vximz_flag | vxisi_flag)

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassDP(result)
   FR      ← inc_flag
   FI      ← xx_flag
end
else do
   FR      ← 0b0
   FI      ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value
in doubleword element 0 of VSR[XA].

For xsnmsubadp, do the following.
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsnmsubmdp, do the following.
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 73.

src2 is negated and added[2] to the product,
producing a sum having unbounded range and
precision.

The sum is normalized[3].

See part 2 of Table 73.

The intermediate result is rounded to double-precision
using the rounding mode specified by the
Floating-Point Rounding Control field RN of the
FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is negated and placed into doubleword
element 0 of VSR[XT] in double-precision format. 

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result. FR is
set to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 71, “Scalar Floating-Point Final Result with
Negation,” on page 452.

Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXISI VXIMZ

60 T A B 177 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 185 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
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Version 2.07 B
VSR Data Layout for xsnmsub(a|m)dp

src1 = VSR[XA]

DP unused

src2 = xsnmsubadp ? VSR[XT] : VSR[XB]

DP unused

src3 = xsnmsubadp ? VSR[XB] : VSR[XT]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← Rezd v ← –Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← +Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1
QNaN &

src1 not a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].

src2 For xsnmsubadp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
For xsnmsubmdp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

src3 For xsnmsubadp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
For xsnmsubmdp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two
nonzero finite number source operands.

Q(x) Return a QNaN with the payload of x.

S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

p The intermediate product having unbounded range and precision.

v The intermediate result having unbounded range and precision.

Table 73.Actions for xsnmsub(a|m)dp
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Version 2.07 B
VSX Scalar Negative Multiply-Subtract 
Single-Precision XX3-form

xsnmsubasp XT,XA,XB

xsnmsubmsp XT,XA,XB

reset_xflags()

if “xsnmsubasp” then do
   src1 ← VSR[32×AX+A].doubleword[0]
   src2 ← VSR[32×TX+T].doubleword[0]
   src3 ← VSR[32×BX+B].doubleword[0]
end
if “xsnmsubmsp” then do
   src1 ← VSR[32×AX+A].doubleword[0]
   src2 ← VSR[32×BX+B].doubleword[0]
   src3 ← VSR[32×TX+T].doubleword[0]
end

v      ← MultiplyAddDP(src1,src3,NegateDP(src2)))
result ← NegateSP(RoundToSP(RN,v))

if(vxsnan_flag) then SetFX(VXSNAN)
if(vximz_flag)  then SetFX(VXIMZ)
if(vxisi_flag)  then SetFX(VXISI)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)

vex_flag ← VE & (vxsnan_flag | vximz_flag | vxisi_flag)

if( ~vex_flag ) then do
   VSR[32×TX+T].doubleword[0] ← ConvertSPtoSP64(result)
   VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU
   FPRF ← ClassSP(result)
   FR   ← inc_flag
   FI   ← xx_flag
end
else do
   FR   ← 0b0
   FI   ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For xsnmsubasp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsnmsubmsp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 74, “Actions for xsnmsub(a|m)sp,”
on page 462.

src2 is negated and added[2] to the product, producing
a sum having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 74, “Actions for xsnmsub(a|m)sp,”
on page 462.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is negated and placed into doubleword
element 0 of VSR[XT] in double-precision format. 

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 71, “Scalar Floating-Point Final Result with
Negation,” on page 452.

60 T A B 145 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 153 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared, 

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two 
exponents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an 
intermediate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number 
of bits the significand was shifted.
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Version 2.07 B
Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXISI VXIMZ

VSR Data Layout for xsnmsub(a|m)sp
src1 = VSR[XA]

DP unused

src2 = xsnmsubasp ? VSR[XT] : VSR[XB]

DP unused

src3 = xsnmsubasp ? VSR[XB] : VSR[XT]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← Rezd v ← –Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← +Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1
QNaN &

src1 not a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in VSR[XA].doubleword[0].

src2 For xsnmsubasp, the double-precision floating-point value in VSR[XT].doubleword[0].
For xsnmsubmsp, the double-precision floating-point value in VSR[XB].doubleword[0].

src3 For xsnmsubasp, the double-precision floating-point value in VSR[XB].doubleword[0].
For xsnmsubmsp, the double-precision floating-point value in VSR[XT].doubleword[0].

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two
nonzero finite number source operands.

Q(x) Return a QNaN with the payload of x.

S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

p The intermediate product having unbounded range and precision.

v The intermediate result having unbounded range and precision.

Table 74.Actions for xsnmsub(a|m)sp
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Version 2.07 B
VSX Scalar Round to Double-Precision Integer 
using round to Nearest Away  XX2-form

xsrdpi XT,XB

XT           ← TX || T
XB           ← BX || B
reset_xflags()
result{0:63} ← RoundToDPIntegerNearAway(VSR[XB]{0:63})
if(vxsnan_flag) then SetFX(VXSNAN)
FR           ← 0b0
FI           ← 0b0
vex_flag     ← VE & vxsnan_flag

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassFP(result)
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src is rounded to an integer using the rounding mode
Round to Nearest Away.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result. FR is
set to 0. FI is set to 0.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

Special Registers Altered
FPRF FR=0b0 FI=0b0 FX VXSNAN

60 T /// B 73 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xsrdpi

src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
VSX Scalar Round to Double-Precision Integer 
exact using Current rounding mode  XX2-form

xsrdpic XT,XB

XT           ← TX || T
XB           ← BX || B
reset_xflags()
src          ← VSR[XB]{0:63}
if(RN=0b00) then result{0:63} ← RoundToDPIntegerNearEven(src)
if(RN=0b01) then result{0:63} ← RoundToDPIntegerTrunc(src)
if(RN=0b10) then result{0:63} ← RoundToDPIntegerCeil(src)
if(RN=0b11) then result{0:63} ← RoundToDPIntegerFloor(src)
if(vxsnan_flag) then SetFX(VXSNAN)
if(xx_flag)     then SetFX(XX)
vex_flag     ← VE & vxsnan_flag

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassDP(result)
   FR      ← inc_flag
   FI      ← xx_flag
end
else do
   FR      ← 0b0
   FI      ← 0b0
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src is rounded to an integer using the rounding mode
specified by the Floating-Point Rounding Control field
RN of the FPSCR.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result. FR is
set to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

Special Registers Altered
FPRF FR FI FX XX VXSNAN

60 T /// B 107 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xsrdpic

src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
VSX Scalar Round to Double-Precision Integer 
using round toward -Infinity  XX2-form

xsrdpim XT,XB

XT           ← TX || T
XB           ← BX || B
reset_xflags()
result{0:63} ← RoundToDPIntegerFloor(VSR[XB]{0:63})
if(vxsnan_flag) then SetFX(VXSNAN)
FR           ← 0b0
FI           ← 0b0
vex_flag     ← VE & vxsnan_flag

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassDP(result)
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src is rounded to an integer using the rounding mode
Round toward -Infinity.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result. FR is
set to 0. FI is set to 0.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

Special Registers Altered
FPRF FR=0b0 FI=0b0 FX VXSNAN

VSX Scalar Round to Double-Precision Integer 
using round toward +Infinity  XX2-form

xsrdpip XT,XB

XT           ← TX || T
XB           ← BX || B
reset_xflags()
result{0:63} ← RoundToDPIntegerCeil(VSR[XB]{0:63})
if(vxsnan_flag) then SetFX(VXSNAN)
FR           ← 0b0
FI           ← 0b0
vex_flag     ← VE & vxsnan_flag

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassDP(result)
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src is rounded to an integer using the rounding mode
Round toward +Infinity.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result. FR is
set to 0. FI is set to 0.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

Special Registers Altered
FPRF FR=0b0 FI=0b0 FX VXSNAN

60 T /// B 121 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xsrdpim

src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127

60 T /// B 105 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xsrdpip

src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
VSX Scalar Round to Double-Precision Integer 
using round toward Zero  XX2-form

xsrdpiz XT,XB

XT           ← TX || T
XB           ← BX || B
reset_xflags()
result{0:63} ← RoundToDPIntegerTrunc(VSR[XB]{0:63})
if(vxsnan_flag) then SetFX(VXSNAN)
FR           ← 0b0
FI           ← 0b0
vex_flag     ← VE & vxsnan_flag

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassDP(result)
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src is rounded to an integer using the rounding mode
Round toward Zero.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result. FR is
set to 0. FI is set to 0.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

Special Registers Altered
FPRF FR=0b0 FI=0b0 FX VXSNAN

60 T /// B 89 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xsrdpiz

src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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VSX Scalar Reciprocal Estimate 
Double-Precision  XX2-form

xsredp XT,XB

XT           ← TX || T
XB           ← BX || B
reset_xflags()
v{0:inf}     ← ReciprocalEstimateDP(VSR[XB]{0:63})
result{0:63} ← RoundToDP(RN,v)
if(vxsnan_flag) then SetFX(VXSNAN)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(zx_flag)     then SetFX(ZX)
vex_flag     ← VE & vxsnan_flag
zex_flag     ← ZE & zx_flag

if( ~vex_flag & ~zex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassDP(result)
   FR      ← 0bU
   FI      ← 0bU
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

A double-precision floating-point estimate of the
reciprocal of src is placed into doubleword element 0
of VSR[XT] in double-precision format.

Unless the reciprocal of src would be a zero, an
infinity, or a QNaN, the estimate has a relative error in
precision no greater than one part in 16384 of the
reciprocal of src. That is,

Operation with various special values of the operand is
summarized below.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result. FR is
set to an undefined value. FI is set to an undefined
value.

If a trap-enabled invalid operation exception or a
trap-enabled zero divide exception occurs, VSR[XT]
and FPRF are not modified.

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FPRF FR=0bU FI=0bU FX OX UX
XX=0bU VXSNAN

60 T /// B 90 BX TX
0 6 11 16 21 30 31

estimate 1
src
----------–

1
src
----------

----------------------------------------------
1

16384
------------------≤

Source Value Result Exception

–Infinity –Zero None

–Zero –Infinity1 ZX

+Zero +Infinity1 ZX

+Infinity +Zero None

SNaN QNaN2 VXSNAN

QNaN QNaN None

1. No result if ZE=1.
2. No result if VE=1.

VSR Data Layout for xsredp

src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
VSX Scalar Reciprocal Estimate 
Single-Precision XX2-form

xsresp XT,XB

reset_xflags()

src    ← VSR[32×BX+B].doubleword[0]
v      ← ReciprocalEstimateDP(src)
result ← RoundToSP(RN,v)

if(vxsnan_flag) then SetFX(VXSNAN)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(0bU)         then SetFX(XX)
if(zx_flag)     then SetFX(ZX)

vex_flag ← VE & vxsnan_flag
zex_flag ← ZE & zx_flag

if( ~vex_flag & ~zex_flag ) then do
   VSR[32×TX+T].doubleword[0] ← ConvertSPtoSP64(result)
   VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU
   FPRF ← ClassSP(result)
   FR   ← 0bU
   FI   ← 0bU
end
else do
   FR   ← 0b0
   FI   ← 0b0
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

A single-precision floating-point estimate of the
reciprocal of src is placed into doubleword element 0
of VSR[XT] in double-precision format.

Unless the reciprocal of src would be a zero, an
infinity, the result of a trap-disabled Overflow
exception, or a QNaN, the estimate has a relative error
in precision no greater than one part in 16384 of the
reciprocal of src. That is,

Operation with various special values of the operand is
summarized below.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to an
undefined value. FI is set to an undefined value.

If a trap-enabled invalid operation exception or a
trap-enabled zero divide exception occurs, VSR[XT] and
FPRF are not modified.

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FPRF FR=0bU FI=0bU FX OX UX ZX XX=0bU
VXSNAN

60 T /// B 26 BX TX
0 6 11 16 21 30 31

estimate 1
src
----------–

1
src
----------

----------------------------------------------
1

16384
------------------≤

Source Value Result Exception

–Infinity –Zero None

–Zero –Infinity1 ZX

+Zero +Infinity1 ZX

+Infinity +Zero None

SNaN QNaN2 VXSNAN

QNaN QNaN None

1. No result if ZE=1.
2. No result if VE=1.

VSR Data Layout for xsresp
src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
VSX Scalar Round to Single-Precision 
XX2-form

xsrsp XT,XB

reset_xflags()

src    ← VSR[32×BX+B].doubleword[0]
result ← RoundToSP(RN,src)

if(vxsnan_flag) then SetFX(VXSNAN)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)

vex_flag ← VE & vxsnan_flag

if( ~vex_flag ) then do
   VSR[32×TX+T].doubleword[0] ← ConvertSPtoSP64(result)
   VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU
   FPRF ← ClassSP(result)
   FR   ← inc_flag
   FI   ← xx_flag
end
else do
   FR   ← 0b0
   FI   ← 0b0
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src is rounded to single-precision using the rounding
mode specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result as
represented in single-precision format.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified.

Special Registers Altered
FPRF  FR  FI  FX  OX  UX  XX  VXSNAN

60 T /// B 281 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xsrsp
src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
VSX Scalar Reciprocal Square Root Estimate 
Double-Precision  XX2-form

xsrsqrtedp XT,XB

XT           ← TX || T
XB           ← BX || B
reset_xflags()
v{0:inf}     ← ReciprocalSquareRootEstimateDP(VSR[XB]{0:63})
result{0:63} ← RoundToDP(RN,v)
if(vxsnan_flag) then SetFX(VXSNAN)
if(vxsqrt_flag) then SetFX(VXSQRT)
if(zx_flag)     then SetFX(ZX)
vex_flag     ← VE & (vxsnan_flag | vxsqrt_flag)
zex_flag     ← ZE & zx_flag

if( ~vex_flag & ~zex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassDP(result)
   FR      ← 0bU
   FI      ← 0bU
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

A double-precision floating-point  estimate of the
reciprocal square root of src is placed into
doubleword element 0 of VSR[XT] in double-precision
format.

Unless the reciprocal of the square root of src would
be a zero, an infinity, or a QNaN, the estimate has a
relative error in precision no greater than one part in
16384 of the reciprocal of the square root of src. That
is,

Operation with various special values of the operand is
summarized below.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result. FR is
set to an undefined value. FI is set to an undefined
value.

If a trap-enabled invalid operation exception or a
trap-enabled zero divide exception occurs, VSR[XT]
and FPRF are not modified.

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FPRF FR=0bU FI=0bU FX 
XX=0bU VXSNAN VXSQRT

60 T /// B 74 BX TX
0 6 11 16 21 30 31

estimate 1
src

---------------–

1
src

----------------
--------------------------------------------------

1
16384
----------------≤

Source Value Result Exception

–Infinity QNaN1 VXSQRT

–Finite QNaN1 VXSQRT

–Zero –Infinity2 ZX

+Zero +Infinity2 ZX

+Infinity +Zero None

SNaN QNaN1 VXSNAN

QNaN QNaN None

1. No result if VE=1.
2. No result if ZE=1.

VSR Data Layout for xsrsqrtedp

src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
VSX Scalar Reciprocal Square Root Estimate 
Single-Precision XX2-form

xsrsqrtesp XT,XB

reset_xflags()

src    ← VSR[32×BX+B].doubleword[0]
v      ← ReciprocalSquareRootEstimateDP(src)
result ← RoundToSP(RN,v)

if(vxsnan_flag) then SetFX(VXSNAN)
if(vxsqrt_flag) then SetFX(VXSQRT)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(0bU)         then SetFX(XX)
if(zx_flag)     then SetFX(ZX)

vex_flag ← VE & (vxsnan_flag | vxsqrt_flag)
zex_flag ← ZE & zx_flag

if( ~vex_flag & ~zex_flag ) then do
   VSR[32×TX+T].doubleword[0] ← ConvertSPtoSP64(result)
   VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU
   FPRF ← ClassSP(result)
   FR   ← 0bU
   FI   ← 0bU
end
else do
   FR   ← 0b0
   FI   ← 0b0
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

A single-precision floating-point  estimate of the
reciprocal square root of src is placed into doubleword
element 0 of VSR[XT] in double-precision format.

Unless the reciprocal of the square root of src would
be a zero, an infinity, or a QNaN, the estimate has a
relative error in precision no greater than one part in
16384 of the reciprocal of the square root of src. That
is,

Operation with various special values of the operand is
summarized below.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to an
undefined value. FI is set to an undefined value.

If a trap-enabled invalid operation exception or a
trap-enabled zero divide exception occurs, VSR[XT]
and FPRF are not modified.

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FPRF FR=0bU FI=0bU FX OX UX   ZX
XX=0bU VXSNAN VXSQRT

60 T /// B 10 BXTX
0 6 11 16 21 30 31

estimate 1
src

---------------–

1
src

----------------
-------------------------------------------------

1
16384
----------------≤

Source Value Result Exception

–Infinity QNaN1 VXSQRT

–Finite QNaN1 VXSQRT

–Zero –Infinity2 ZX

+Zero +Infinity2 ZX

+Infinity +Zero None

SNaN QNaN1 VXSNAN

QNaN QNaN None

1. No result if VE=1.
2. No result if ZE=1.

VSR Data Layout for xsrsqrtesp
src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
VSX Scalar Square Root Double-Precision  
XX2-form

xssqrtdp XT,XB

XT           ← TX || T
XB           ← BX || B
reset_xflags()
v{0:inf}     ← SquareRootFP(VSR[XB]{0:63})
result{0:63} ← RoundToDP(RN,v)
if(vxsnan_flag) then SetFX(VXSNAN)
if(vxsqrt_flag) then SetFX(VXSQRT)
if(xx_flag)     then SetFX(XX)
vex_flag     ← VE & (vxsnan_flag | vxsqrt_flag)

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassDP(result)
   FR      ← inc_flag
   FI      ← xx_flag
end
else do
   FR      ← 0b0
   FI      ← 0b0
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

The unbounded-precision square root of src is
produced.

See Table 75.

The intermediate result is rounded to double-precision
using the rounding mode specified by the
Floating-Point Rounding Control field RN of the
FPSCR. 

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result. FR is
set to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

Special Registers Altered
FPRF FR FI FX XX VXSNAN VXSQRT

60 T /// B 75 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xssqrtdp

src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127

src
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

v ← dQNaN
vxsqrt_flag ← 1

v ← dQNaN
vxsqrt_flag ← 1 v ← +Zero v ← +Zero v ← SQRT(src) v ← +Infinity v ← src v ← Q(src)

vxsnan_flag ← 1

Explanation:
src The double-precision floating-point value in doubleword element 0 of VSR[XB].

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

SQRT(x) The unbounded-precision square root of the floating-point value x.

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 75.Actions for xssqrtdp
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Version 2.07 B
VSX Scalar Square Root Single-Precision  
XX-form

xssqrtsp XT,XB

reset_xflags()

src    ← VSR[32×BX+B].doubleword[0]
v      ← SquareRootDP(src)
result ← RoundToSP(RN,v)

if(vxsnan_flag) then SetFX(VXSNAN)
if(vxsqrt_flag) then SetFX(VXSQRT)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)

vex_flag ← VE & (vxsnan_flag | vxsqrt_flag)

if( ~vex_flag ) then do
   VSR[32×TX+T].doubleword[0] ← ConvertToDP(result)
   VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU
   FPRF ← ClassSP(result)
   FR   ← inc_flag
   FI   ← xx_flag
end
else do
   FR   ← 0b0
   FI   ← 0b0
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

The unbounded-precision square root of src is
produced.

See Table 75.

The intermediate result is rounded to single-precision
using the rounding mode specified by the
Floating-Point Rounding Control field RN of the
FPSCR. 

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXSQRT

 

60 T /// B 11 BXTX
0 6 11 16 21 30 31

VSR Data Layout for xssqrtsp
src = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127

src

-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

v ← dQNaN
vxsqrt_flag ← 1

v ← dQNaN
vxsqrt_flag ← 1 v ← +Zero v ← +Zero v ← SQRT(src) v ← +Infinity v ← src v ← Q(src)

vxsnan_flag ← 1

Explanation:
src The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
SQRT(x) The unbounded-precision and exponent range square root of the floating-point value x.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 76.Actions for xssqrtsp
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Version 2.07 B
VSX Scalar Subtract Double-Precision  
XX3-form

xssubdp XT,XA,XB

XT           ← TX || T
XA           ← AX || A
XB           ← BX || B
reset_xflags()
src1         ← VSR[XA]{0:63}
src2         ← VSR[XB]{0:63}
v{0:inf}     ← AddDP(src1,NegateDP(src2))
result{0:63} ← RoundToDP(RN,v)
if(vxsnan_flag) then SetFX(VXSNAN)
if(vxisi_flag)  then SetFX(VXISI)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)
vex_flag     ← VE & (vxsnan_flag | vxisi_flag)

if( ~vex_flag ) then do
   VSR[XT] ← result || 0xUUUU_UUUU_UUUU_UUUU
   FPRF    ← ClassDP(result)
   FR      ← inc_flag
   FI      ← xx_flag
end
else do
   FR      ← 0b0
   FI      ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value
in doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value
in doubleword element 0 of VSR[XB].

src2 is negated and added[1] to src1, producing a
sum having unbounded range and precision.

See Table 77.

The sum is normalized[2].

The intermediate result is rounded to double-precision
using the rounding mode specified by the
Floating-Point Rounding Control field RN of the
FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT]. 

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result. FR is
set to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXISI

60 T A B 40 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

VSR Data Layout for xssubdp

src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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Version 2.07 B
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].

src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).

S(x,y) The floating-point value y is negated and then added to the floating-point value x.

S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 77.Actions for xssubdp
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Version 2.07 B
VSX Scalar Subtract Single-Precision  
XX3-form

xssubsp XT,XA,XB

reset_xflags()

src1   ← VSR[32×AX+A].doubleword[0]
src2   ← VSR[32×BX+B].doubleword[0]
v      ← AddDP(src1,NegateDP(src2))
result ← RoundToSP(RN,v)

if(vxsnan_flag) then SetFX(VXSNAN)
if(vxisi_flag)  then SetFX(VXISI)
if(ox_flag)     then SetFX(OX)
if(ux_flag)     then SetFX(UX)
if(xx_flag)     then SetFX(XX)

vex_flag ← VE & (vxsnan_flag | vxisi_flag)

if( ~vex_flag ) then do
   VSR[32×TX+T].doubleword[0] ← ConvertSPtoSP64(result)
   VSR[32×TX+T].doubleword[1] ← 0xUUUU_UUUU_UUUU_UUUU
   FPRF ← ClassSP(result)
   FR   ← inc_flag
   FI   ← xx_flag
end
else do
   FR   ← 0b0
   FI   ← 0b0
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src2 is negated and added[1] to src1, producing the
sum, v, having unbounded range and precision. 

See Table 78, “Actions for xssubsp,” on page 477.

v is normalized[2] and rounded to single-precision
using the rounding mode specified by the
Floating-Point Rounding Control field RN of the
FPSCR. 

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element 0 of
VSR[XT]. 

The contents of doubleword element 1 of VSR[XT] are
undefined. 

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI
are set to 0.

See Table 50, “Scalar Floating-Point Final Result,” on
page 402.

Special Registers Altered
FPRF FR FI FX OX UX XX
VXSNAN VXISI

60 T A B 8 AX BX TX
0 6 11 16 21 30 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared, 
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two 
exponents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an 
intermediate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number 
of bits the significand was shifted.

VSR Data Layout for xssubsp
src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP unused

tgt = VSR[XT]

DP undefined
0 64 127
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src2

-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).
S(x,y) The floating-point value y is negated and then added to the floating-point value x.
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 78.Actions for xssubsp
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VSX Scalar Test for software Divide 
Double-Precision  XX3-form

xstdivdp BF,XA,XB

XA          ← AX || A
XB          ← BX || B
src1        ← VSR[XA]{0:63}
src2        ← VSR[XB]{0:63}
e_a         ← VSR[XA]{1:11} - 1023
e_b         ← VSR[XB]{1:11} - 1023
fe_flag     ← IsNaN(src1) | IsInf(src1) |
               IsNaN(src2) | IsInf(src2) | IsZero(src2) |
               ( e_b <= -1022 ) |
               ( e_b >=  1021 ) |
               ( !IsZero(src1) & ( (e_a - e_b) >=  1023 ) ) |
               ( !IsZero(src1) & ( (e_a - e_b) <= -1021 ) ) |
               ( !IsZero(src1) & ( e_a <= -970 ) )
fg_flag     ← IsInf(src1) | IsInf(src2) |
               IsZero(src2) | IsDen(src2)
fl_flag     ← xsredp_error() <= 2-14

CR[BF]      ← 0b1 || fg_flag || fe_flag || 0b0

Let XA be the value AX concatenated with A.

Let XB be the value BX concatenated with B.

Let src1 be the double-precision floating-point value
in doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value
in doubleword element 0 of VSR[XB].

Let e_a be the unbiased exponent of src1.

Let e_b be the unbiased exponent of src2.

fe_flag is set to 1 for any of the following conditions.
– src1 is a NaN or an infinity.
– src2 is a zero, a NaN, or an infinity.
– e_b is less than or equal to -1022.
– e_b is greater than or equal to 1021.
– src1 is not a zero and the difference,

e_a - e_b, is greater than or equal to 1023.
– src1 is not a zero and the difference,

e_a - e_b, is less than or equal to -1021.
– src1 is not a zero and e_a is less than or equal

to -970

Otherwise fe_flag is set to 0.

fg_flag is set to 1 for any of the following conditions.
– src1 is an infinity.
– src2 is a zero, an infinity, or a denormalized

value.

Otherwise fg_flag is set to 0.

CR field BF is set to the value
0b1 || fg_flag || fe_flag || 0b0.

Special Registers Altered
CR[BF]

60 BF // A B 61 AX BX /
0 6 9 11 16 21 29 30 31

VSR Data Layout for xstdivdp

src1 = VSR[XA]

DP unused

src2 = VSR[XB]

DP undefined
0 64 127
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VSX Scalar Test for software Square Root 
Double-Precision  XX2-form

xstsqrtdp BF,XB

XB         ← BX || B
src        ← VSR[XB]{0:63}
e_b        ← VSR[XB]{1:11} - 1023
fe_flag    ← IsNaN(src) | IsInf(src) | IsZero(src) |
             IsNeg(src) | ( e_b <= -970 )
fg_flag    ← IsInf(src) | IsZero(src) | IsDen(src)
fl_flag    ← xsrsqrtedp_error() <= 2-14

CR[BF]     ← 0b1 || fg_flag || fe_flag || 0b0

Let XB be the value BX concatenated with B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

Let e_b be the unbiased exponent of src.

fe_flag is set to 1 for any of the following conditions.
– src is a zero, a NaN, an infinity, or a negative

value.
– e_b is less than or equal to -970

Otherwise fe_flag is set to 0.

fg_flag is set to 1 for any of the following conditions.
– src is a zero, an infinity, or a denormalized value.

Otherwise fg_flag is set to 0.

CR field BF is set to the value
0b1 || fg_flag || fe_flag || 0b0.

Special Registers Altered
CR[BF]

VSX Vector Absolute Value Double-Precision  
XX2-form

xvabsdp XT,XB

XT ← TX || T
XB ← BX || B

do i=0 to 127 by 64
   VSR[XT]{i:i+63} ← 0b0 || VSR[XB]{i+1:i+63}
end

Let XT be the value TX concatenated with T.

Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
The contents of doubleword element i of VSR[XB],
with bit 0 set to 0, is placed into doubleword
element i of VSR[XT].

Special Registers Altered
None

60 BF // /// B 106 BX /
0 6 9 11 16 21 30 31

VSR Data Layout for xstsqrtdp

src = VSR[XB]

DP unused
0 64 127

60 T /// B 473 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvabsdp

src = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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VSX Vector Absolute Value Single-Precision  
XX2-form

xvabssp XT,XB

XT ← TX || T
XB ← BX || B

do i=0 to 127 by 32
   VSR[XT]{i:i+31} ← 0b0 || VSR[XB]{i+1:i+31}
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
The contents of word element i of VSR[XB], with
bit 0 set to 0, is placed into word element i of
VSR[XT].

Special Registers Altered
None

60 T /// B 409 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvabssp

src = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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VSX Vector Add Double-Precision  XX3-form

xvadddp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   src1           ← VSR[XA]{i:i+63}
   src2           ← VSR[XB]{i:i+63}
   v{0:inf}       ← AddDP(src1,src2)
   result{i:i+63} ← RoundToDP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxisi_flag)  then SetFX(VXISI)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxisi_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src2 is added[1] to src1, producing a sum having
unbounded range and precision.

The sum is normalized[2].

See Table 79.

The intermediate result is rounded to
double-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element i of
VSR[XT] in double-precision format. 

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI

60 T A B 96 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

VSR Data Layout for xvadddp

src1 = VSR[XA]

DP DP

src2 = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← -Infinity v ← src2 v ← -Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← -Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i c {0,1}).

src2 The double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).

A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 79.Actions for xvadddp (element i)
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Returned Results and Status Setting

Special

– – – – – 0 0 0 0 0 0 0 – – – – T(r)

– – – 0 – – – – – – – 1 – – – – T(r), fx(ZX)

– – – 1 – – – – – – – 1 – – – – fx(ZX), error()

0 – – – – – – – – – 1 – – – – – T(r), fx(VXSQRT)

0 – – – – – – – – 1 – – – – – – T(r), fx(VXZDZ)

0 – – – – – – – 1 – – – – – – – T(r), fx(VXIDI)

0 – – – – – – 1 – – – – – – – – T(r), fx(VXISI)

0 – – – – 0 1 – – – – – – – – – T(r), fx(VXIMZ)

0 – – – – 1 0 – – – – – – – – – T(r), fx(VXSNAN)

0 – – – – 1 1 – – – – – – – – – T(r), fx(VXSNAN), fx(VXIMZ)

1 – – – – – – – – – 1 – – – – – T(r), fx(VXSQRT)

1 – – – – – – – – 1 – – – – – – fx(VXZDZ), error()

1 – – – – – – – 1 – – – – – – – fx(VXIDI), error()

1 – – – – – – 1 – – – – – – – – fx(VXISI), error()

1 – – – – 0 1 – – – – – – – – – fx(VXIMZ), error()

1 – – – – 1 0 – – – – – – – – – fx(VXSNAN), error()

1 – – – – 1 1 – – – – – – – – – fx(VXSNAN), fx(VXIMZ), error()

Normal

– – – – – – – – – – – – no – – – T(r)

– – – – 0 – – – – – – – yes no – – T(r), fx(XX)

– – – – 0 – – – – – – – yes yes – – T(r), fx(XX)

– – – – 1 – – – – – – – yes no – – T(r), fx(XX), error()

– – – – 1 – – – – – – – yes yes – – T(r), fx(XX), error()

Explanation:
– The results do not depend on this condition.

fx(x) FX is set to 1 if x=0.  x is set to 1.

q The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, unbounded exponent range.

r The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, bounded exponent range.

v The precise intermediate result defined in the instruction having unbounded signficand precision, unbounded exponent range.

OX Floating-Point Overflow Exception status flag, FPSCROX.

error() The system error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode. Update of the target VSR is suppressed for all vector elements.

T(x) The value x is placed in element i of VSR[XT] in the target precision format (where i c {0,1} for results with 64-bit elements, and i
c {0,1,3,4}) for results with 32-bit elements).

UX Floating-Point Underflow Exception status flag, FPSCRUX

VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN.

VXSQRT Floating-Point Invalid Operation Exception (Invalid Square Root) status flag, FPSCRVXSQRT.

VXIDI Floating-Point Invalid Operation Exception (Infinity ÷ Infinity) status flag, FPSCRVXIDI.

VXIMZ Floating-Point Invalid Operation Exception (Infinity × Zero) status flag, FPSCRVXIMZ.

VXISI Floating-Point Invalid Operation Exception (Infinity – Infinity) status flag, FPSCRVXISI.

VXZDZ Floating-Point Invalid Operation Exception (Zero ÷ Zero) status flag, FPSCRVXZDZ.

XX Float-Point Inexact Exception status flag, FPSCRXX. The flag is a sticky version of FPSCRFI. When FPSCRFI is set to a new
value, the new value of FPSCRXX is set to the result of ORing the old value of FPSCRXX with the new value of FPSCRFI.

ZX Floating-Point Zero Divide Exception status flag, FPSCRZX.

Table 80.Vector Floating-Point Final Result
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Overflow

– 0 – – 0 – – – – – – – – – – – T(r), fx(OX), fx(XX)

– 0 – – 1 – – – – – – – – – – – T(r), fx(OX), fx(XX), error()

– 1 – – – – – – – – – – – – no – fx(OX), error()

– 1 – – – – – – – – – – – – yes no fx(OX), fx(XX), error()

– 1 – – – – – – – – – – – – yes yes fx(OX), fx(XX), error()

Tiny

– – 0 – – – – – – – – – no – – – T(r)

– – 0 – 0 – – – – – – – yes no – – T(r), fx(UX), fx(XX)

– – 0 – 0 – – – – – – – yes yes – – T(r), fx(UX), fx(XX)

– – 0 – 1 – – – – – – – yes no – – T(r), fx(UX), fx(XX), error()

– – 0 – 1 – – – – – – – yes yes – – T(r), fx(UX), fx(XX), error()

– – 1 – – – – – – – – – yes – no – fx(UX), error()

– – 1 – – – – – – – – – yes – yes no fx(UX), fx(XX), error()

– – 1 – – – – – – – – – yes – yes yes fx(UX), fx(XX), error()
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Returned Results and Status Setting

Explanation:
– The results do not depend on this condition.

fx(x) FX is set to 1 if x=0.  x is set to 1.

q The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, unbounded exponent range.

r The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, bounded exponent range.

v The precise intermediate result defined in the instruction having unbounded signficand precision, unbounded exponent range.

OX Floating-Point Overflow Exception status flag, FPSCROX.

error() The system error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode. Update of the target VSR is suppressed for all vector elements.

T(x) The value x is placed in element i of VSR[XT] in the target precision format (where i c {0,1} for results with 64-bit elements, and i
c {0,1,3,4}) for results with 32-bit elements).

UX Floating-Point Underflow Exception status flag, FPSCRUX

VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN.

VXSQRT Floating-Point Invalid Operation Exception (Invalid Square Root) status flag, FPSCRVXSQRT.

VXIDI Floating-Point Invalid Operation Exception (Infinity ÷ Infinity) status flag, FPSCRVXIDI.

VXIMZ Floating-Point Invalid Operation Exception (Infinity × Zero) status flag, FPSCRVXIMZ.

VXISI Floating-Point Invalid Operation Exception (Infinity – Infinity) status flag, FPSCRVXISI.

VXZDZ Floating-Point Invalid Operation Exception (Zero ÷ Zero) status flag, FPSCRVXZDZ.

XX Float-Point Inexact Exception status flag, FPSCRXX. The flag is a sticky version of FPSCRFI. When FPSCRFI is set to a new
value, the new value of FPSCRXX is set to the result of ORing the old value of FPSCRXX with the new value of FPSCRFI.

ZX Floating-Point Zero Divide Exception status flag, FPSCRZX.

Table 80.Vector Floating-Point Final Result (Continued)
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VSX Vector Add Single-Precision  XX3-form

xvaddsp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   src1           ← VSR[XA]{i:i+31}
   src2           ← VSR[XB]{i:i+31}
   v{0:inf}       ← AddSP(src1,src2)
   result{i:i+31} ← RoundToSP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxisi_flag)  then SetFX(VXISI)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxisi_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src2 is added[1] to src1, producing a sum having
unbounded range and precision.

The sum is normalized[2].

See Table 81.

The intermediate result is rounded to
single-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into word element i of
VSR[XT] in single-precision format. 

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI

60 T A B 64 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

VSR Data Layout for xvaddsp

src1 = VSR[XA]

SP SP SP SP

src2 = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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Version 2.07 B
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← -Infinity v ← src2 v ← -Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← -Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i c {0,1,2,3}).

src2 The single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).

dQNaN Default quiet NaN (0x7FC0_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).

A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 81.Actions for xvaddsp (element i)
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Version 2.07 B
VSX Vector Compare Equal To 
Double-Precision [ & Record ]  XX3-form

xvcmpeqdp XT,XA,XB (Rc=0)
xvcmpeqdp. XT,XA,XB (Rc=1)

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0
all_false   ← 0b1
all_true    ← 0b1

do i←0 to 127 by 64
   reset_xflags()
   src1        ← VSR[XA]{i:i+63}
   src2        ← VSR[XB]{i:i+63}
   vxsnan_flag ← IsSNaN(src1) | IsSNaN(src2)

   if( CompareEQDP(src1,src2) ) then
      result{i:i+63} ← 0xFFFF_FFFF_FFFF_FFFF
      all_false      ← 0b0
   end
   else do
      result{i:i+63} ← 0x0000_0000_0000_0000
      all_true       ← 0b0
   end
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

if(Rc=1) then do
   if( !vex_flag ) then
      CR[6] ← all_true || 0b0 || all_false || 0b0
   else
      CR[6] ← 0bUUUU
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src1 is compared to src2.

The contents of doubleword element i of VSR[XT]
are set to all 1s if src1 is equal to src2, and is
set to all 0s otherwise.

A NaN input causes the comparison to return false
for that element.

Two zero inputs of same or different signs return
true for that element.

Two infinity inputs of same signs return true for
that element.

If Rc=1, CR Field 6 is set as follows.
– Bit 0 of CR[6] is set to indicate all vector elements

compared true.
– Bit 1 of CR[6] is set to 0.
– Bit 2 of CR[6] is set to indicate all vector elements

compared false.
– Bit 3 of CR[6] is set to 0.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT] and the
contents of CR[6] are undefined if Rc is equal to 1.

Special Registers Altered
CR[6]  . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)
FX VXSNAN

60 T A B Rc 99 AX BX TX
0 6 11 16 21 22 29 30 31

VSR Data Layout for xvcmpeqdp[.]

src1 = VSR[XA]

DP DP

src2 = VSR[XB]

DP DP

tgt = VSR[XT]

MD MD
0 64 127
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Version 2.07 B
VSX Vector Compare Equal To 
Single-Precision [ & Record ]  XX3-form

xvcmpeqsp XT,XA,XB (Rc=0)
xvcmpeqsp. XT,XA,XB (Rc=1)

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0
all_false   ← 0b1
all_true    ← 0b1

do i=0 to 127 by 32
   reset_xflags()
   src1        ← VSR[XA]{i:i+31}
   src2        ← VSR[XB]{i:i+31}
   vxsnan_flag ← IsSNaN(src1) | IsSNaN(src2)

   if( CompareEQSP(src1,src2) ) then
      result{i:i+31} ← 0xFFFF_FFFF
      all_false      ← 0b0
   end
   else do
      result{i:i+31} ← 0x0000_0000
      all_true       ← 0b0
   end
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

if(Rc=1) then do
   if( !vex_flag ) then
      CR[6] ← all_true || 0b0 || all_false || 0b0
   else
      CR[6] ← 0bUUUU
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src1 is compared to src2.

The contents of word element i of VSR[XT] are set
to all 1s if src1 is equal to src2, and is set to all
0s otherwise.

A NaN input causes the comparison to return false
for that element.

Two zero inputs of same or different signs return
true for that element.

Two infinity inputs of same signs return true for
that element.

If Rc=1, CR Field 6 is set as follows.
– Bit 0 of CR[6] is set to indicate all vector elements

compared true.
– Bit 1 of CR[6] is set to 0.
– Bit 2 of CR[6] is set to indicate all vector elements

compared false.
– Bit 3 of CR[6] is set to 0.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT] and the
contents of CR[6] are undefined if Rc is equal to 1.

Special Registers Altered
CR[6]  . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)
FX VXSNAN

60 T A B Rc 67 AX BX TX
0 6 11 16 21 22 29 30 31

VSR Data Layout for xvcmpeqsp[.]

src1 = VSR[XA]

SP SP SP SP

src2 = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

MW MW MW MW
0 32 64 96 127
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Version 2.07 B
VSX Vector Compare Greater Than or Equal 
To Double-Precision [& Record]  XX3-form

xvcmpgedp XT,XA,XB (Rc=0)
xvcmpgedp. XT,XA,XB (Rc=1)

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0
all_false   ← 0b1
all_true    ← 0b1

do i=0 to 127 by 64
   reset_xflags()
   src1        ← VSR[XA]{i:i+63}
   src2        ← VSR[XB]{i:i+63}

   if( IsSNaN(src1) | IsSNaN(src2) ) then do
      vxsnan_flag ← 0b1
      if(VE=0) then vxvc_flag ← 0b1
   end
   else vxvc_flag ← IsQNaN(src1) | IsQNaN(src2)

   if( CompareGEDP(src1,src2) ) then
      result{i:i+63} ← 0xFFFF_FFFF_FFFF_FFFF
      all_false      ← 0b0
   end
   else do
      result{i:i+63} ← 0x0000_0000_0000_0000
      all_true       ← 0b0
   end
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxvc_flag)   then SetFX(VXVC)
   ex_flag ← ex_flag | (VE & vxsnan_flag)
   ex_flag ← ex_flag | (VE & vxvc_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

if(Rc=1) then do
   if( !vex_flag ) then
      CR[6] ← all_true || 0b0 || all_false || 0b0
   else
      CR[6] ← 0bUUUU
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src1 is compared to src2.

The contents of doubleword element i of VSR[XT]
are set to all 1s if src1 is greater than or equal to
the double-precision floating-point operand in
doubleword element i of VSR[XB]src2, and is set
to all 0s otherwise.

A NaN input causes the comparison to return false
for that element.

Two zero inputs of same or different signs return
true for that element.

Two infinity inputs of same signs return true for
that element.

If Rc=1, CR Field 6 is set as follows.
– Bit 0 of CR[6] is set to indicate all vector elements

compared true.
– Bit 1 of CR[6] is set to 0.
– Bit 2 of CR[6] is set to indicate all vector elements

compared false.
– Bit 3 of CR[6] is set to 0.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT] and the
contents of CR[6] are undefined if Rc is equal to 1.

Special Registers Altered
CR[6]  . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)
FX VXSNAN VXVC

60 T A B Rc 115 AX BX TX
0 6 11 16 21 22 29 30 31

VSR Data Layout for xvcmpgedp[.]

src1 = VSR[XA]

DP DP

src2 = VSR[XB]

DP DP

tgt = VSR[XT]

MD MD
0 64 127
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Version 2.07 B
VSX Vector Compare Greater Than or Equal 
To Single-Precision [ & record CR6 ]  
XX3-form

xvcmpgesp XT,XA,XB (Rc=0)
xvcmpgesp. XT,XA,XB (Rc=1)

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0
all_false   ← 0b1
all_true    ← 0b1

do i=0 to 127 by 32
   reset_xflags()
   src1        ← VSR[XA]{i:i+31}
   src2        ← VSR[XB]{i:i+31}

   if( IsSNaN(src1) | IsSNaN(src2) ) then do
      vxsnan_flag ← 0b1
      if(VE=0) then vxvc_flag ← 0b1
   end
   else vxvc_flag ← IsQNaN(src1) | IsQNaN(src2)

   if( CompareGESP(src1,src2) ) then
      result{i:i+31} ← 0xFFFF_FFFF
      all_false      ← 0b0
   end
   else do
      result{i:i+31} ← 0x0000_0000
      all_true       ← 0b0
   end
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxvc_flag)   then SetFX(VXVC)
   ex_flag ← ex_flag | (VE & vxsnan_flag)
   ex_flag ← ex_flag | (VE & vxvc_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

if(Rc=1) then do
   if( !vex_flag ) then
      CR[6] ← all_true || 0b0 || all_false || 0b0
   else
      CR[6] ← 0bUUUU
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src1 is compared to src2.

The contents of word element i of VSR[XT] are set
to all 1s if src1 is greater than or equal to src2,
and is set to all 0s otherwise.

A NaN input causes the comparison to return false
for that element.

Two zero inputs of same or different signs return
true for that element.

Two infinity inputs of same signs return true for
that element.

If Rc=1, CR Field 6 is set as follows.
– Bit 0 of CR[6] is set to indicate all vector elements

compared true.
– Bit 1 of CR[6] is set to 0.
– Bit 2 of CR[6] is set to indicate all vector elements

compared false.
– Bit 3 of CR[6] is set to 0.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT] and the
contents of CR[6] are undefined if Rc is equal to 1.

Special Registers Altered
CR[6]  . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)
FX VXSNAN VXVC

60 T A B Rc 83 AX BX TX
0 6 11 16 21 22 29 30 31

VSR Data Layout for xvcmpgesp[.]

src1 = VSR[XA]

SP SP SP SP

src2 = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

MW MW MW MW
0 32 64 96 127
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Version 2.07 B
VSX Vector Compare Greater Than 
Double-Precision [ & record CR6 ]  XX3-form

xvcmpgtdp XT,XA,XB (Rc=0)
xvcmpgtdp. XT,XA,XB (Rc=1)

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0
all_false   ← 0b1
all_true    ← 0b1

do i=0 to 127 by 64
   reset_xflags()
   src1        ← VSR[XA]{i:i+63}
   src2        ← VSR[XB]{i:i+63}

   if( IsSNaN(src1) | IsSNaN(src2) ) then do
      vxsnan_flag ← 0b1
      if(VE=0) then vxvc_flag ← 0b1
   end
   else vxvc_flag ← IsQNaN(src1) | IsQNaN(src2)

   if( CompareGTDP(src1,src2) ) then do
      result{i:i+63} ← 0xFFFF_FFFF_FFFF_FFFF
      all_false      ← 0b0
   end
   else do
      result{i:i+63} ← 0x0000_0000_0000_0000
      all_true       ← 0b0
   end
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxvc_flag)   then SetFX(VXVC)
   ex_flag ← ex_flag | (VE & vxsnan_flag)
   ex_flag ← ex_flag | (VE & vxvc_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

if(Rc=1) then do
   if( !vex_flag ) then
      CR[6] ← all_true || 0b0 || all_false || 0b0
   else
      CR[6] ← 0bUUUU
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src1 is compared to src2.

The contents of doubleword element i of VSR[XT]
are set to all 1s if src1 is greater than src2, and
is set to all 0s otherwise.

A NaN input causes the comparison to return false
for that element.

Two zero inputs of same or different signs return
false for that element.

If Rc=1, CR Field 6 is set as follows.
– Bit 0 of CR[6] is set to indicate all vector elements

compared true.
– Bit 1 of CR[6] is set to 0.
– Bit 2 of CR[6] is set to indicate all vector elements

compared false.
– Bit 3 of CR[6] is set to 0.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT] and the
contents of CR[6] are undefined if Rc is equal to 1.

Special Registers Altered
CR[6]  . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)
FX VXSNAN VXVC

60 T A B Rc 107 AX BX TX
0 6 11 16 21 22 29 30 31

VSR Data Layout for xvcmpgtdp[.]

src1 = VSR[XA]

DP DP

src2 = VSR[XB]

DP DP

tgt = VSR[XT]

MD MD
0 64 127
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Version 2.07 B
VSX Vector Compare Greater Than 
Single-Precision [ & record CR6 ]  XX3-form

xvcmpgtsp XT,XA,XB (Rc=0)
xvcmpgtsp. XT,XA,XB (Rc=1)

XT          ← TX || T 
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0
all_false   ← 0b1
all_true    ← 0b1

do i=0 to 127 by 32
   reset_xflags()
   src1        ← VSR[XA]{i:i+31}
   src2        ← VSR[XB]{i:i+31}

   if( IsSNaN(src1) | IsSNaN(src2) ) then do
      vxsnan_flag ← 0b1
      if(VE=0) then vxvc_flag ← 0b1
   end
   else vxvc_flag ← IsQNaN(src1) | IsQNaN(src2)

   if( CompareGTSP(src1,src2) ) then do
      result{i:i+31} ← 0xFFFF_FFFF
      all_false      ← 0b0
   end
   else do
      result{i:i+31} ← 0x0000_0000
      all_true       ← 0b0
   end
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxvc_flag)   then SetFX(VXVC)
   ex_flag ← ex_flag | (VE & vxsnan_flag)
   ex_flag ← ex_flag | (VE & vxvc_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

if(Rc=1) then do
   if( !vex_flag ) then
      CR[6] ← all_true || 0b0 || all_false || 0b0
   else
      CR[6] ← 0bUUUU
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src1 is compared to src2.

The contents of word element i of VSR[XT] are set
to all 1s if src1 is greater than src2, and is set to
all 0s otherwise.

A NaN input causes the comparison to return false
for that element.

Two zero inputs of same or different signs return
false for that element.

If Rc=1, CR Field 6 is set as follows.
– Bit 0 of CR[6] is set to indicate all vector elements

compared true.
– Bit 1 of CR[6] is set to 0.
– Bit 2 of CR[6] is set to indicate all vector elements

compared false.
– Bit 3 of CR[6] is set to 0.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT] and the
contents of CR[6] are undefined if Rc is equal to 1.

Special Registers Altered
CR[6]  . . . . . . . . . . . . . . . . . . . . . . . . . . (if Rc=1)
FX VXSNAN VXVC

60 T A B Rc 75 AX BX TX
0 6 11 16 21 22 29 30 31

VSR Data Layout for xvcmpgtsp[.]

src1 = VSR[XA]

SP SP SP SP

src2 = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

MW MW MW MW
0 32 64 96 127
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Version 2.07 B
VSX Vector Copy Sign Double-Precision  
XX3-form

xvcpsgndp XT,XA,XB

XT ← TX || T
XA ← AX || A
XB ← BX || B

do i=0 to 127 by 64
   VSR[XT]{i:i+63} ← VSR[XA]{i} || VSR[XB]{i+1:i+63}
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
The contents of bit 0 of doubleword element i of
VSR[XA] are concatenated with the contents of
bits 1:63 of doubleword element i of VSR[XB] and
placed into doubleword element i of VSR[XT].

Special Registers Altered
None

VSX Vector Copy Sign Single-Precision  
XX3-form

xvcpsgnsp XT,XA,XB

XT ← TX || T
XA ← AX || A
XB ← BX || B

do i=0 to 127 by 32
   VSR[XT]{i:i+31} ← VSR[XA]{i} || VSR[XB]{i+1:i+31}
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
The contents of bit 0 of word element i of VSR[XA]
are concatenated with the contents of bits 1:31 of
word element i of VSR[XB] and placed into word
element i of VSR[XT].

Special Registers Altered
None

60 T A B 240 AX BX TX
0 6 11 16 21 29 30 31

Extended Mnemonic Equivalent To

xvmovdp XT,XB xvcpsgndp XT,XB,XB

Table 82:

VSR Data Layout for xvcpsgndp

src1 = VSR[XA]

DP DP

src2 = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127

60 T A B 208 AX BX TX
0 6 11 16 21 29 30 31

Extended Mnemonic Equivalent To

xvmovsp XT,XB xvcpsgnsp XT,XB,XB

Table 83:

VSR Data Layout for xvcpsgnsp

src1 = VSR[XA]

SP SP SP SP

src2 = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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Version 2.07 B
VSX Vector round Double-Precision to 
single-precision and Convert to 
Single-Precision format  XX2-form

xvcvdpsp XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   src               ← VSR[XB]{i:i+63}
   result{i:i+31}    ← RoundToSP(RN,src)
   result{i+32:i+63} ← 0xUUUU_UUUU
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag           ← ex_flag | (VE & vxsnan_flag)
   ex_flag           ← ex_flag | (OE & ox_flag)
   ex_flag           ← ex_flag | (UE & ux_flag)
   ex_flag           ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src is rounded to single-precision using the
rounding mode specified by the Floating-Point
Rounding Control field RN of the FPSCR.

The result is placed into bits 0:31 of doubleword
element i of VSR[XT] in single-precision format.

The contents of bits 32:63 of doubleword element
i of VSR[XT] are undefined.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN

60 T /// B 393 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvdpsp

src = VSR[XB]

DP DP

tgt = VSR[XT]

SP undefined SP undefined
0 32 64 96 127
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Version 2.07 B
VSX Vector truncate Double-Precision to 
integer and Convert to Signed Integer 
Doubleword format with Saturate  XX2-form

xvcvdpsxds XT,XB

XT           ← TX || T
XB           ← BX || B
ex_flag      ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   result{i:i+63} ← ConvertDPtoSD(VSR[XB]{i:i+63})
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxcvi_flag)  then SetFX(VXCVI)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxcvi_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

If src is a NaN, the result is the value
0x8000_0000_0000_0000 and VXCVI is set to 1. If
src is an SNaN, VXSNAN is also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 263-1, the
result is 0x7FFF_FFFF_FFFF_FFFF and VXCVI is set to
1.

Otherwise, if the rounded value is less than -263,
the result is 0x8000_0000_0000_0000 and VXCVI is
set to 1.

Otherwise, the result is the rounded value
converted to 64-bit signed-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into doubleword element i of
VSR[XT].

See Table 84.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

 

60 T /// B 472 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvdpsxds

src = VSR[XB]

DP DP

tgt = VSR[XT]

SD SD
0 64 127

xvcvdpsxds rounds using Round towards Zero
rounding mode. For other rounding modes, soft-
ware must use a Round to Double-Precision Inte-
ger instruction that corresponds to the desired
rounding mode, including xvrdpic which uses the
rounding mode specified by the RN.

Programming Note
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Version 2.07 B
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Returned Results and Status Setting

src [ Nmin-1
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)
1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(ConvertDPtoSD(RoundToDPintegerTrunc(src)))
0 yes T(ConvertDPtoSD(RoundToDPintegerTrunc(src))), fx(XX)
1 yes fx(XX), error()

src = Nmax – – no T(Nmax)
Note: This case cannot occur as Nmax is not representable in DP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)
1 yes fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)
1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system  error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State
Register are set to any mode other than the ignore-exception mode.

Update of VSR[XT] is suppressed.

Nmin The smallest signed integer doubleword value, -263 (0x8000_0000_0000_0000).

Nmax The largest signed integer doubleword value, 263-1 (0x7FFF_FFFF_FFFF_FFFF).

src The double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).

T(x) The signed integer doubleword value x is placed in doubleword element i of VSR[XT] (where i c {0,1}).

Table 84.Actions for xvcvdpsxds
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Version 2.07 B
VSX Vector truncate Double-Precision to 
integer and Convert to Signed Integer Word 
format with Saturate  XX2-form

xvcvdpsxws XT,XB

XT           ← TX || T
XB           ← BX || B
ex_flag      ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   result{i:i+31}    ← ConvertDPtoSW(VSR[XB]{i:i+63})
   result{i+32:i+63} ← 0xUUUU_UUUU
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxcvi_flag)  then SetFX(VXCVI)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxcvi_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

If src is a NaN, the result is the value 0x8000_0000
and VXCVI is set to 1. If src is an SNaN, VXSNAN
is also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 231-1, the
result is 0x7FFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -231,
the result is 0x8000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value
converted to 32-bit signed-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into bits 0:31 of doubleword
element i of VSR[XT].

The contents of bits 32:63 of doubleword element
1 of VSR[XT] are undefined.

See Table 85.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

 

60 T /// B 216 BX TX
0 6 11 16 21 30 31 VSR Data Layout for xvcvdpsxws

src = VSR[XB]

DP DP

tgt = VSR[XT]

SW undefined SW undefined
0 32 64 96 127

xvcvdpsxws rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Double-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrdpic which uses the
rounding mode specified by RN.
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Returned Results and Status Setting

src [ Nmin-1
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)
1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(ConvertDPtoSW(RoundToDPintegerTrunc(src)))
0 yes T(ConvertDPtoSW(RoundToDPintegerTrunc(src))), fx(XX)
1 yes fx(XX), error()

src = Nmax – – no T(Nmax)

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)
1 yes T(Nmax), fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)
1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State
Register are set to any mode other than the ignore-exception mode.

Update of VSR[XT] is suppressed.

Nmin The smallest signed integer word value, -231(0x8000_0000).

Nmax The largest signed integer word value, 231-1 (0x7FFF_FFFF).

src The double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).

T(x) The signed integer word value x is placed in word element i of VSR[XT] (where i c {0,2}).

Table 85.Actions for xvcvdpsxws
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Version 2.07 B
VSX Vector truncate Double-Precision to 
integer and Convert to Unsigned Integer 
Doubleword format with Saturate  XX2-form

xvcvdpuxds XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   result{i:i+63} ← ConvertDPtoUD(VSR[XB]{i:i+63})
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxcvi_flag)  then SetFX(VXCVI)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxcvi_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

If src is a NaN, the result is the value
0x0000_0000_0000_0000 and VXCVI is set to 1. If
src is an SNaN, VXSNAN is also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 264-1, the
result is 0xFFFF_FFFF_FFFF_FFFF and VXCVI is set to
1.

Otherwise, if the rounded value is less than 0, the
result is 0x0000_0000_0000_0000 and VXCVI is set to
1.

Otherwise, the result is the rounded value
converted to 64-bit unsigned-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into doubleword element i of
VSR[XT].

See Table 86.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

 

60 T /// B 456 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvdpuxds

src = VSR[XB]

DP DP

tgt = VSR[XT]

UD UD
0 64 127

xvcvdpuxds rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Double-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrdpic which uses the
rounding mode specified by the RN.
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Returned Results and Status Setting

src [ Nmin-1
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)
1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(ConvertDPtoUD(RoundToDPintegerTrunc(src)))
0 yes T(ConvertDPtoUD(RoundToDPintegerTrunc(src))), fx(XX)
1 yes fx(XX), error()

src = Nmax – – no T(Nmax)
Note: This case cannot occur as Nmax is not representable in DP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)
1 yes T(Nmax), fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)
1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system  error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State
Register are set to any mode other than the ignore-exception mode.

Update of VSR[XT] is suppressed.

Nmin The smallest unsigned integer doubleword value, 0 (0x0000_0000_0000_0000).

Nmax The largest unsigned integer doubleword value, 264-1 (0xFFFF_FFFF_FFFF_FFFF).

src The double-precision floating-point value in doubleword element i VSR[XB] (where i c {0,1}).

T(x) The unsigned integer doubleword value x is placed in doubleword element i of VSR[XT] (where i c {0,1}).

Table 86.Actions for xvcvdpuxds
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Version 2.07 B
VSX Vector truncate Double-Precision to 
integer and Convert to Unsigned Integer Word 
format with Saturate  XX2-form

xvcvdpuxws XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   result{i:i+31}    ← ConvertDPtoUW(VSR[XB]{i:i+63})
   result{i+32:i+63} ← 0xUUUU_UUUU
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxcvi_flag)  then SetFX(VXCVI)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxcvi_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

If src is a NaN, the result is the value 0x8000_0000
and VXCVI is set to 1. If src is an SNaN, VXSNAN is
also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 232-1, the
result is 0xFFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, the
result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value
converted to 32-bit unsigned-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into bits 0:31 of doubleword
element i of VSR[XT].

The contents of bits 32:63 of doubleword element
i of VSR[XT] are undefined.

See Table 87.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

 

60 T /// B 200 BX TX
0 6 11 16 21 30 31 VSR Data Layout for xvcvdpuxws

src = VSR[XB]

DP DP

tgt = VSR[XT]

UW undefined UW undefined
0 32 64 96 127

xvcvdpuxws rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Double-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrdpic which uses the
rounding mode specified by RN.
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Returned Results and Status Setting

src [ Nmin-1
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)
1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(ConvertDPtoUW(RoundToDPintegerTrunc(src)))
0 yes T(ConvertDPtoUW(RoundToDPintegerTrunc(src))), fx(XX)
1 yes fx(XX), error()

src = Nmax – – no T(Nmax)

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)
1 yes fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)
1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system  error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State
Register are set to any mode other than the ignore-exception mode.

Update of VSR[XT] is suppressed.

Nmin The smallest unsigned integer word value, 0 (0x0000_0000).

Nmax The largest unsigned integer word value, 232-1 (0xFFFF_FFFF).

src The double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).

T(x) The unsigned integer word value x is placed in word element i of VSR[XT] (where i c {0,2}).

Table 87.Actions for xvcvdpuxws
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Version 2.07 B
VSX Vector Convert Single-Precision to 
Double-Precision format  XX2-form

xvcvspdp XT,XB

XT             ← TX || T
XB             ← BX || B
ex_flag        ← 0b0
do i=0 to 127 by 64
   reset_xflags()
   result{i:i+63} ← ConvertSPtoDP(VSR[XB]{i:i+31})
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the single-precision floating-point
operand in bits 0:31 of doubleword element i of
VSR[XB].

src is placed into doubleword element i of VSR[XT]
in double-precison format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T /// B 457 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvspdp

src = VSR[XB]

SP unused SP unused

tgt = VSR[XT]

DP DP
0 32 64 96 127
Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 503



Version 2.07 B
VSX Vector truncate Single-Precision to 
integer and Convert to Signed Integer 
Doubleword format with Saturate  XX2-form

xvcvspsxds XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   result{i:i+63} ← ConvertSPtoSD(VSR[XB]{i:i+31})
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxcvi_flag)  then SetFX(VXCVI)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxcvi_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the single-precision floating-point
operand in word element i×2 of VSR[XB].

If src is a NaN, the result is the value
0x8000_0000_0000_0000 and VXCVI is set to 1. If src
is an SNaN, VXSNAN is also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 263-1, the
result is 0x7FFF_FFFF_FFFF_FFFF and VXCVI is set to
1.

Otherwise, if the rounded value is less than -263,
the result is 0x8000_0000_0000_0000 and VXCVI is
set to 1.

Otherwise, the result is the rounded value
converted to 64-bit signed-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into doubleword element i of
VSR[XT].

See Table 87.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

 

60 T /// B 408 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvspsxds

src = VSR[XB]

SP unused SP unused

tgt = VSR[XT]

SD SD
0 32 64 96 127

xvcvspsxds rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Single-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrspic which uses the
rounding mode specified by RN.
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Returned Results and Status Setting

src [ Nmin-1
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)
1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(ConvertSPtoSD(RoundToSPintegerTrunc(src)))
0 yes T(ConvertSPtoSD(RoundToSPintegerTrunc(src))), fx(XX)
1 yes fx(XX), error()

src = Nmax – – no T(Nmax)
Note: This case cannot occur as Nmax is not representable in SP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)
1 yes fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)
1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system  error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State
Register are set to any mode other than the ignore-exception mode.

Update of VSR[XT] is suppressed.

Nmin The smallest signed integer doubleword value, -263 (0x8000_0000_0000_0000).

Nmax The largest signed integer doubleword value, 263-1 (0x7FFF_FFFF_FFFF_FFFF).

src The single-precision floating-point value in word element i of VSR[XB] (where i c {0,2}).

T(x) The signed integer doubleword value x is placed in doubleword element i of VSR[XT] (where i c {0,1}).
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Version 2.07 B
VSX Vector truncate Single-Precision to 
integer and Convert to Signed Integer Word 
format with Saturate  XX2-form

xvcvspsxws XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   result{i:i+31} ← ConvertSPtoSW(VSR[XB]{i:i+31})
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxcvi_flag)  then SetFX(VXCVI)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxcvi_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

If src is a NaN, the result is the value 0x8000_0000
and VXCVI is set to 1. If src is an SNaN, VXSNAN is
also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 231-1, the
result is 0x7FFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than -231,
the result is 0x8000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value
converted to 32-bit signed-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into word element i of
VSR[XT].

See Table 87.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

 

60 T /// B 152 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvspsxws

src = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SW SW SW SW
0 32 64 96 127

xvcvspsxws rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Single-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrspic which uses the
rounding mode specified by RN.

Programming Note
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Returned Results and Status Setting

src [ Nmin-1
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)
1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(ConvertSPtoSW(RoundToSPintegerTrunc(src)))
0 yes T(ConvertSPtoSW(RoundToSPintegerTrunc(src))), fx(XX)
1 yes fx(XX), error()

src = Nmax – – no T(Nmax)
Note: This case cannot occur as Nmax is not representable in SP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)
1 yes fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)
1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system  error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State
Register are set to any mode other than the ignore-exception mode.

Update of VSR[XT] is suppressed.

Nmin The smallest signed integer word value, -231 (0x8000_0000).

Nmax The largest signed integer word value, 231-1 (0x7FFF_FFFF).

src The single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).

T(x) The signed integer word value x is placed in word element i of VSR[XT] (where i c {0,1,2,3}).
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Version 2.07 B
VSX Vector truncate Single-Precision to 
integer and Convert to Unsigned Integer 
Doubleword format with Saturate  XX2-form

xvcvspuxds XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   result{i:i+63} ← ConvertSPtoUD(VSR[XB]{i:i+31})
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxcvi_flag)  then SetFX(VXCVI)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxcvi_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the single-precision floating-point
operand in word element i×2 of VSR[XB].

If src is a NaN, the result is the value
0x0000_0000_0000_0000 and VXCVI is set to 1. If src
is an SNaN, VXSNAN is also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 264-1, the
result is 0xFFFF_FFFF_FFFF_FFFF and VXCVI is set to
1.

Otherwise, if the rounded value is less than 0, the
result is 0x0000_0000_0000_0000 and VXCVI is set to
1.

Otherwise, the result is the rounded value
converted to 64-bit unsigned-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into doubleword element i of
VSR[XT].

See Table 87.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

 

60 T /// B 392 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvspuxds

src = VSR[XB]

SP unused SP unused

tgt = VSR[XT]

UD UD
0 32 64 96 127

xvcvspuxds rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Single-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrspic which uses the
rounding mode specified by RN.
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Returned Results and Status Setting

src [ Nmin-1
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)
1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(ConvertSPtoUD(RoundToSPintegerTrunc(src)))
0 yes T(ConvertSPtoUD(RoundToSPintegerTrunc(src))), fx(XX)
1 yes fx(XX), error()

src = Nmax – – no T(Nmax)
Note: This case cannot occur as Nmax is not representable in SP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)
1 yes fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)
1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system  error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State
Register are set to any mode other than the ignore-exception mode.

Update of VSR[XT] is suppressed.

Nmin The smallest unsigned integer doubleword value, 0 (0x0000_0000_0000_0000).

Nmax The largest unsigned integer doubleword value, 264-1 (0xFFFF_FFFF_FFFF_FFFF).

src The single-precision floating-point value in word element i of VSR[XB] (where i c {0,2}).

T(x) The unsigned integer doubleword value x is placed in doubleword element i of VSR[XT] (where i c {0,1}).
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Version 2.07 B
VSX Vector truncate Single-Precision to 
integer and Convert to Unsigned Integer Word 
format with Saturate  XX2-form

xvcvspuxws XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   result{i:i+31} ← ConvertSPtoUW(VSR[XB]{i:i+31})
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxcvi_flag)  then SetFX(VXCVI)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxcvi_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

If src is a NaN, the result is the value 0x0000_0000
and VXCVI is set to 1. If src is an SNaN, VXSNAN is
also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 232-1, the
result is 0xFFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, the
result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value
converted to 32-bit unsigned-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into word element i of
VSR[XT].

See Table 87.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

 

60 T /// B 136 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvspuxws

src = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

UW UW UW UW
0 32 64 96 127

xvcvspuxws rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Single-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrspic which uses the
rounding mode specified by RN.
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Returned Results and Status Setting

src [ Nmin-1
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)
1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(ConvertSPtoUW(RoundToSPintegerTrunc(src)))
0 yes T(ConvertSPtoUW(RoundToSPintegerTrunc(src))), fx(XX)
1 yes fx(XX), error()

src = Nmax – – no T(Nmax)
Note: This case cannot occur as Nmax is not representable in SP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)
1 yes fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)
1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)
1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
fx(x) FX is set to 1 if x=0.  x is set to 1.

error() The system  error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State
Register are set to any mode other than the ignore-exception mode.

Update of VSR[XT] is suppressed.

Nmin The smallest unsigned integer word value, 0 (0x0000_0000).

Nmax The largest unsigned integer word value, 232-1 (0xFFFF_FFFF).

src The single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).

T(x) The unsigned integer word value x is placed in word element i of VSR[XT] (where i c {0,1,2,3}).
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Version 2.07 B
VSX Vector Convert and round Signed Integer 
Doubleword to Double-Precision  format   
XX2-form

xvcvsxddp XT,XB

XT      ← TX || T
XB      ← BX || B
ex_flag ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   v{0:inf}       ← ConvertSDtoFP(VSR[XB]{i:i+63})
   result{i:i+63} ← RoundToDP(RN,v)
   if(xx_flag) then SetFX(XX)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the signed integer in doubleword
element i of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
double-precision using the rounding mode
specified by RN.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

VSX Vector Convert and round Signed Integer 
Doubleword to Single-Precision  format   
XX2-form

xvcvsxdsp XT,XB

XT      ← TX || T
XB      ← BX || B
ex_flag ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   v{0:inf}          ← ConvertSDtoFP(VSR[XB]{i:i+63})
   result{i:i+31}    ← RoundToSP(RN,v)
   result{i+32:i+63} ← 0xUUUU_UUUU
   if(xx_flag) then SetFX(XX)
   ex_flag           ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the signed integer in doubleword
element i of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
single-precision using the rounding mode
specified by RN.

The result is placed into bits 0:31 of doubleword
element i of VSR[XT] in single-precision format.

The contents of bits 32:63 of doubleword element
i of VSR[XT] are undefined.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

60 T /// B 504 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvsxddp

src = VSR[XB]

SD SD

tgt = VSR[XT]

DP DP
0 64 127

60 T /// B 440 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvsxdsp

src = VSR[XB]

SD SD

tgt = VSR[XT]

SP undefined SP undefined
0 32 64 96 127
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Version 2.07 B
VSX Vector Convert Signed Integer Word to 
Double-Precision format   XX2-form

xvcvsxwdp XT,XB

XT      ← TX || T
XB      ← BX || B
ex_flag ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   v{0:inf}       ← ConvertSWtoFP(VSR[XB]{i:i+31})
   result{i:i+63} ← RoundToDP(RN,v)
   if(xx_flag) then SetFX(XX)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the signed integer in bits 0:31 of
doubleword element i of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
double-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

VSX Vector Convert and round Signed Integer 
Word to Single-Precision format   XX2-form

xvcvsxwsp XT,XB

XT      ← TX || T
XB      ← BX || B
ex_flag ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   v{0:inf}       ← ConvertSWtoFP(VSR[XB]{i:i+31})
   result{i:i+31} ← RoundToSP(RN,v)
   if(xx_flag) then SetFX(XX)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src be the signed integer in word element i of
VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
single-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

The result is placed into word element i of
VSR[XT] in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

60 T /// B 248 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvsxwdp

src = VSR[XB]

SW unused SW unused

tgt = VSR[XT]

DP DP
0 32 64 96 127

60 T /// B 184 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvsxwsp

src = VSR[XB]

SW SW SW SW

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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Version 2.07 B
VSX Vector Convert and round Unsigned 
Integer Doubleword to Double-Precision 
format  XX2-form

xvcvuxddp XT,XB

XT      ← TX || T
XB      ← BX || B
ex_flag ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   v{0:inf}       ← ConvertUDtoFP(VSR[XB]{i:i+63})
   result{i:i+63} ← RoundToDP(RN,v)
   if(xx_flag) then SetFX(XX)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the unsigned integer in doubleword
element i of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
double-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

VSX Vector Convert and round Unsigned 
Integer Doubleword to Single-Precision  
format  XX2-form

xvcvuxdsp XT,XB

XT      ← TX || T
XB      ← BX || B
ex_flag ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   v{0:inf}          ← ConvertUDtoFP(VSR[XB]{i:i+63})
   result{i:i+31}    ← RoundToSP(RN,v)
   result{i+32:i+63} ← 0xUUUU_UUUU
   if(xx_flag) then SetFX(XX)
   ex_flag           ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the unsigned integer in doubleword
element i of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
single-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

The result is placed into bits 0:31 of doubleword
element i of VSR[XT] in single-precision format.

The contents of bits 32:63 of doubleword element
i of VSR[XT] are undefined.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

60 T /// B 488 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvuxddp

src = VSR[XB]

UD UD

tgt = VSR[XT]

DP DP
0 32 64 96 127

60 T /// B 424 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvuxdsp

src = VSR[XB]

UD UD

tgt = VSR[XT]

SP undefined SP undefined
0 32 64 96 127
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Version 2.07 B
VSX Vector Convert and round Unsigned 
Integer Word to Double-Precision format  
XX2-form

xvcvuxwdp XT,XB

XT      ← TX || T
XB      ← BX || B
ex_flag ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   v{0:inf}       ← ConvertUWtoFP(VSR[XB]{i:i+31})
   result{i:i+63} ← RoundToDP(RN,v)
   if(xx_flag) then SetFX(XX)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the unsigned integer in bits 0:31 of
doubleword element i of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
double-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

VSX Vector Convert and round Unsigned 
Integer Word to Single-Precision format  
XX2-form

xvcvuxwsp XT,XB

XT      ← TX || T
XB      ← BX || B
ex_flag ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   v{0:inf}       ← ConvertUWtoFP(VSR[XB]{i:i+31})
   result{i:i+31} ← RoundToSP(RN,v)
   if(xx_flag) then SetFX(XX)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src be the unsigned integer in word element i
of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
single-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

The result is placed into word element i of
VSR[XT] in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

60 T /// B 232 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvuxwdp

src = VSR[XB]

UW unused UW unused

tgt = VSR[XT]

DP DP
0 32 64 96 127

60 T /// B 168 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvuxwsp

src = VSR[XB]

UW UW UW UW

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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Version 2.07 B
VSX Vector Divide Double-Precision XX3-form

xvdivdp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   src1           ← VSR[XA]{i:i+63}
   src2           ← VSR[XB]{i:i+63}
   v{0:inf}       ← DivideDP(src1,src2)
   result{i:i+63} ← RoundToDP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxidi_flag)  then SetFX(VXIDI)
   if(vxisi_flag)  then SetFX(VXZDZ)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   if(zx_flag)     then SetFX(ZX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxidi_flag)
   ex_flag        ← ex_flag | (VE & vxzdz_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (ZE & zx_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src1 is divided[1] by src2, producing a quotient
having unbounded range and precision.

The quotient is normalized[2].

See Table 92.

The intermediate result is rounded to
double-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element i of
VSR[XT] in double-precision format. 

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX ZX XX
VXSNAN VXIDI VXZDZ

60 T A B 120 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point division is based on exponent subtraction and division of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-

ber of bits the significand was shifted.

VSR Data Layout for xvdivdp

src1 = VSR[XA]

DP DP

src2 = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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Version 2.07 B
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxidi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-NZF v ← +Zero v ← D(src1,src2) v ← +Infinity
zx_flag ← 1

v ← –Infinity
zx_flag ← 1 v ← D(src1,src2) v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-Zero v ← +Zero v ← +Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← –Zero v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Zero v ← –Zero v ← –Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← +Zero v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+NZF v ← –Zero v ← D(src1,src2) v ← –Infinity
zx_flag ← 1

v ← +Infinity
zx_flag ← 1 v ← D(src1,src2) v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Infinity v ← dQNaN
vxidi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i c {0,1}).

src2 The double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).

D(x,y) Return the normalized quotient of floating-point value x divided by floating-point value y, having unbounded range and precision.

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 92.Actions for xvdivdp (element i)
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Version 2.07 B
VSX Vector Divide Single-Precision XX3-form

xvdivsp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   src1           ← VSR[XA]{i:i+31}
   src2           ← VSR[XB]{i:i+31}
   v{0:inf}       ← DivideSP(src1,src2)
   result{i:i+31} ← RoundToSP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxidi_flag)  then SetFX(VXIDI)
   if(vxisi_flag)  then SetFX(VXZDZ)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   if(zx_flag)     then SetFX(ZX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxidi_flag)
   ex_flag        ← ex_flag | (VE & vxzdz_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (ZE & zx_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src1 is divided[1] by src2, producing a quotient
having unbounded range and precision.

The quotient is normalized[2].

See Table 93.

The intermediate result is rounded to
single-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into word element i of
VSR[XT] in single-precision format. 

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX ZX XX
VXSNAN VXIDI VXZDZ

60 T A B 88 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point division is based on exponent subtraction and division of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-

ber of bits the significand was shifted.

VSR Data Layout for xvdivsp

src1 = VSR[XA]

SP SP SP SP

src2 = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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Version 2.07 B
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxidi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-NZF v ← +Zero v ← D(src1,src2) v ← +Infinity
zx_flag ← 1

v ← –Infinity
zx_flag ← 1 v ← D(src1,src2) v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-Zero v ← +Zero v ← +Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← –Zero v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Zero v ← –Zero v ← –Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← +Zero v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+NZF v ← –Zero v ← D(src1,src2) v ← –Infinity
zx_flag ← 1

v ← +Infinity
zx_flag ← 1 v ← D(src1,src2) v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Infinity v ← dQNaN
vxidi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i c {0,1,2,3}).

src2 The single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).

dQNaN Default quiet NaN (0x7FC0_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).

D(x,y) Return the normalized quotient of floating-point value x divided by floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 93.Actions for xvdivsp (element i)
Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 519



Version 2.07 B
VSX Vector Multiply-Add  Double-Precision  
XX3-form

xvmaddadp XT,XA,XB

xvmaddmdp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   src1 ← VSR[XA]{i:i+63}
   src2 ← “xvmaddadp” ? VSR[XT]{i:i+63} : VSR[XB]{i:i+63}
   src3 ← “xvmaddadp” ? VSR[XB]{i:i+63} : VSR[XT]{i:i+63}
   v{0:inf}       ← MultiplyAddDP(src1,src3,src2)
   result{i:i+63} ← RoundToDP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vximz_flag)  then SetFX(VXIMZ)
   if(vxisi_flag)  then SetFX(VXISI)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vximz_flag)
   ex_flag        ← ex_flag | (VE & vxisi_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.

For xvmaddadp, do the following.
– Let src1 be the double-precision

floating-point operand in doubleword element
i of VSR[XA].

– Let src2 be the double-precision
floating-point operand in doubleword element
i of VSR[XT].

– Let src3 be the double-precision
floating-point operand in doubleword element
i of VSR[XB].

For xvmaddmdp, do the following.
– Let src1 be the double-precision

floating-point operand in doubleword element
i of VSR[XA].

– Let src2 be the double-precision
floating-point operand in doubleword element
i of VSR[XB].

– Let src3 be the double-precision
floating-point operand in doubleword element
i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 94.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 94.

The intermediate result is rounded to
double-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element i of
VSR[XT] in double-precision format. 

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 97 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 105 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
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Version 2.07 B
VSR Data Layout for xvmadd(a|m)dp

src1 = VSR[XA]

DP DP

src2 = xsmaddadp ? VSR[XT] : VSR[XB]

DP DP

src3 = xsmaddadp ? VSR[XB] : VSR[XT]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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Version 2.07 B
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1
QNaN &

src1 not a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i c {0,1}).

src2 For xvmaddadp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i c {0,1}).
For xvmaddmdp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).

src3 For xvmaddadp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).
For xvmaddmdp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i c {0,1}).

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two
nonzero finite number source operands.

Q(x) Return a QNaN with the payload of x.

A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

p The intermediate product having unbounded range and precision.

v The intermediate result having unbounded range and precision.

Table 94.Actions for xvmadd(a|m)dp
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Version 2.07 B
VSX Vector Multiply-Add  Single-Precision 
XX3-form

xvmaddasp XT,XA,XB

xvmaddmsp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   src1 ← VSR[XA]{i:i+31}
   src2 ← “xvmaddasp” ? VSR[XT]{i:i+31} : VSR[XB]{i:i+31}
   src3 ← “xvmaddasp” ? VSR[XB]{i:i+31} : VSR[XT]{i:i+31}
   v{0:inf}       ← MultiplyAddSP(src1,src3,src2)
   result{i:i+63} ← RoundToSP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vximz_flag)  then SetFX(VXIMZ)
   if(vxisi_flag)  then SetFX(VXISI)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vximz_flag)
   ex_flag        ← ex_flag | (VE & vxisi_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.

For xvmaddasp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XT].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XB].

For xvmaddmsp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XB].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 95.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 95.

The intermediate result is rounded to
single-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into word element i of
VSR[XT] in single-precision format. 

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 65 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 73 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
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Version 2.07 B
VSR Data Layout for xvmadd(a|m)sp

src1 = VSR[XA]

SP SP SP SP

src2 = xsmaddasp ? VSR[XT] : VSR[XB]

SP SP SP SP

src3 = xsmaddasp ? VSR[XB] : VSR[XT]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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Version 2.07 B
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1
QNaN &

src1 not a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i c {0,1,2,3}).

src2 For xvmaddasp, the single-precision floating-point value in word element i of VSR[XT] (where i c {0,1,2,3}).
For xvmaddmsp, the single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).

src3 For xvmaddasp, the single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).
For xvmaddmsp, the single-precision floating-point value in word element i of VSR[XT] (where i c {0,1,2,3}).

dQNaN Default quiet NaN (0x7FC0_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two
nonzero finite number source operands.

Q(x) Return a QNaN with the payload of x.

A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

p The intermediate product having unbounded range and precision.

v The intermediate result having unbounded range and precision.

Table 95.Actions for xvmadd(a|m)sp
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Version 2.07 B
VSX Vector Maximum Double-Precision    
XX3-form

xvmaxdp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   src1           ← VSR[XA]{i:i+63}
   src2           ← VSR[XB]{i:i+63}
   result{i:i+63} ← MaximumDP(src1,src2)
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

If src1 is greater than src2, src1 is placed into
doubleword element i of VSR[XT] in
double-precision format. Otherwise, src2 is
placed into doubleword element i of VSR[XT] in
double-precision format.

The maximum of +0 and –0 is +0. The maximum
of a QNaN and any value is that value. The
maximum of any value and an SNaN when VE=0
is that SNaN converted to a QNaN.

See Table 96.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T A B 224 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xvmaxdp

src1 = VSR[XA]

DP DP

src2 = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src1) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

–NZF T(src1) T(M(src1,src2)) T(src2) T(src2) T(src2) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

–Zero T(src1) T(src1) T(src1) T(src2) T(src2) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

+Zero T(src1) T(src1) T(src1) T(src1) T(src2) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

+NZF T(src1) T(src1) T(src1) T(src1) T(M(src1,src2)) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

+Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1)
T(src1)

fx(VXSNAN)

SNaN
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i c {0,1}).

src2 The double-precision floating-point value in doubleword element i of VSR[XT] (where i c {0,1}).

NZF Nonzero finite number.

Q(x) Return a QNaN with the payload of x.

M(x,y) Return the greater of floating-point value x and floating-point value y.

T(x) The value x is placed in doubleword element i (i∈{0,1}) of VSR[XT] in double-precision format.

FPRF, FR and FI are not modified.

fx(x) If x is equal to 0, FX is set to 1. x is set to 1.

VXSNAN Floating-point Invalid Operation Exception (SNaN). If VE=1, update of VSR[XT] is suppressed.

Table 96.Actions for xvmaxdp
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Version 2.07 B
VSX Vector Maximum Single-Precision   
XX3-form

xvmaxsp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   src1           ← VSR[XA]{i:i+31}
   src2           ← VSR[XB]{i:i+31}
   result{i:i+63} ← MaximumSP(src1,src2)
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

If src1 is greater than src2, src1 is placed into
word element i of VSR[XT] in single-precision
format. Otherwise, src2 is placed into word
element i of VSR[XT] in single-precision format.

The maximum of +0 and –0 is +0. The maximum
of a QNaN and any value is that value. The
maximum of any value and an SNaN when VE=0
is that SNaN converted to a QNaN.

See Table 97.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

 

60 T A B 192 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xvmaxsp

src1 = VSR[XA]

SP SP SP SP

src2 = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src1) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

–NZF T(src1) T(M(src1,src2)) T(src2) T(src2) T(src2) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

–Zero T(src1) T(src1) T(src1) T(src2) T(src2) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

+Zero T(src1) T(src1) T(src1) T(src1) T(src2) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

+NZF T(src1) T(src1) T(src1) T(src1) T(M(src1,src2)) T(src2) T(src1)
T(Q(src2))

fx(VXSNAN)

+Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1)
T(src1)

fx(VXSNAN)

SNaN
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i c {0,1,2,3}).

src2 The single-precision floating-point value in word element i of VSR[XT] (where i c {0,1,2,3}).

NZF Nonzero finite number.

Q(x) Return a QNaN with the payload of x.

M(x,y) Return the greater of floating-point value x and floating-point value y.

T(x) The value x is placed in word element i (i∈{0,1,2,3}) of VSR[XT] in single-precision format.

FPRF, FR and FI are not modified.

fx(x) If x is equal to 0, FX is set to 1. x is set to 1.

VXSNAN Floating-point Invalid Operation Exception (SNaN). If VE=1, update of VSR[XT] is suppressed.

Table 97.Actions for xvmaxsp
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Version 2.07 B
VSX Vector Minimum Double-Precision   
XX3-form

xvmindp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   src1           ← VSR[XA]{i:i+63}
   src2           ← VSR[XB]{i:i+63}
   result{i:i+63} ← MinimumDP(src1,src2)
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

If src1 is less than src2, src1 is placed into
doubleword element i of VSR[XT] in
double-precision format. Otherwise, src2 is
placed into doubleword element i of VSR[XT] in
double-precision format.

The minimum of +0 and –0 is –0. The minimum of
a QNaN and any value is that value. The minimum
of any value and an SNaN when VE=0 is that
SNaN converted to a QNaN.

See Table 98.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T A B 232 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xvmindp

src1 = VSR[XA]

DP DP

src2 = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

–NZF T(src2) T(M(src1,src2)) T(src1) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

–Zero T(src2) T(src2) T(src1) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

+Zero T(src2) T(src2) T(src2) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

+NZF T(src2) T(src2) T(src2) T(src2) T(M(src1,src2)) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

+Infinity T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1)
T(src1)

fx(VXSNAN)

SNaN
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i c {0,1}).

src2 The double-precision floating-point value in doubleword element i of VSR[XT] (where i c {0,1}).

NZF Nonzero finite number.

Q(x) Return a QNaN with the payload of x.

M(x,y) Return the lesser of floating-point value x and floating-point value y.

T(x) The value x is placed in doubleword element i (i∈{0,1}) of VSR[XT] in double-precision format.

FPRF, FR and FI are not modified.

fx(x) If x is equal to 0, FX is set to 1. x is set to 1.

VXSNAN Floating-point Invalid Operation Exception (SNaN). If VE=1, update of VSR[XT] is suppressed.

Table 98.Actions for xvmindp
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Version 2.07 B
VSX Vector Minimum Single-Precision  
XX3-form

xvminsp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   src1           ← VSR[XA]{i:i+31}
   src2           ← VSR[XB]{i:i+31}
   result{i:i+31} ← MinimumSP(src1,src2)
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

If src1 is less than src2, src1 is placed into
word element i of VSR[XT] in single-precision
format. Otherwise, src2 is placed into word
element i of VSR[XT] in single-precision format.

The minimum of +0 and –0 is –0. The minimum of
a QNaN and any value is that value. The minimum
of any value and an SNaN when VE=0 is that
SNaN converted to a QNaN.

See Table 99.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T A B 200 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xvminsp

src1 = VSR[XA]

SP SP SP SP

src2 = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

–NZF T(src2) T(M(src1,src2)) T(src1) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

–Zero T(src2) T(src2) T(src1) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

+Zero T(src2) T(src2) T(src2) T(src1) T(src1) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

+NZF T(src2) T(src2) T(src2) T(src2) T(M(src1,src2)) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

+Infinity T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(src1)
T(Q(src2))

fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1)
T(src1)

fx(VXSNAN)

SNaN
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)
T(Q(src1))

fx(VXSNAN)

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i c {0,1,2,3}).

src2 The single-precision floating-point value in word element i of VSR[XT] (where i c {0,1,2,3}).

NZF Nonzero finite number.

Q(x) Return a QNaN with the payload of x.

M(x,y) Return the lesser of floating-point value x and floating-point value y.

T(x) The value x is placed in word element i (i∈{0,1,2,3}) of VSR[XT] in single-precision format.

FPRF, FR and FI are not modified.

fx(x) If x is equal to 0, FX is set to 1. x is set to 1.

VXSNAN Floating-point Invalid Operation Exception (SNaN). If VE=1, update of VSR[XT] is suppressed.

Table 99.Actions for xvminsp
Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 533



Version 2.07 B
VSX Vector Multiply-Subtract 
Double-Precision  XX3-form

xvmsubadp XT,XA,XB

xvmsubmdp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   src1 ← VSR[XA]{i:i+63}
   src2 ← “xvmsubadp” ? VSR[XT]{i:i+63} : VSR[XB]{i:i+63}
   src3 ← “xvmsubadp” ? VSR[XB]{i:i+63} : VSR[XT]{i:i+63}
   v{0:inf}       ← MultiplyAddDP(src1,src3,NegateDP(src2))
   result{i:i+63} ← RoundToDP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vximz_flag)  then SetFX(VXIMZ)
   if(vxisi_flag)  then SetFX(VXISI)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vximz_flag)
   ex_flag        ← ex_flag | (VE & vxisi_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.

For xvmsubadp, do the following.
– Let src1 be the double-precision

floating-point operand in doubleword element
i of VSR[XA].

– Let src2 be the double-precision
floating-point operand in doubleword element
i of VSR[XT].

– Let src3 be the double-precision
floating-point operand in doubleword element
i of VSR[XB].

For xvmsubmdp, do the following.
– Let src1 be the double-precision

floating-point operand in doubleword element
i of VSR[XA].

– Let src2 be the double-precision
floating-point operand in doubleword element
i of VSR[XB].

– Let src3 be the double-precision
floating-point operand in doubleword element
i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 100.

src2 is negated and added[2] to the product,
producing a sum having unbounded range and
precision.

The sum is normalized[3].

See part 2 of Table 100.

The intermediate result is rounded to
double-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element i of
VSR[XT] in double-precision format. 

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 113 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 121 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
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Version 2.07 B
VSR Data Layout for xvmsub(a|m)dp

src1 = VSR[XA]

DP DP

src2 = xvmsubadp ? VSR[XT] : VSR[XB]

DP DP

src3 = xvmsubadp ? VSR[XB] : VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1
QNaN &

src1 not a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i c {0,1}).

src2 For xvmsubadp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i c {0,1}).
For xvmsubmdp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).

src3 For xvmsubadp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).
For xvmsubmdp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i c {0,1}).

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two
nonzero finite number source operands.

Q(x) Return a QNaN with the payload of x.

S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

p The intermediate product having unbounded range and precision.

v The intermediate result having unbounded range and precision.

Table 100.Actions for xvmsub(a|m)dp
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VSX Vector Multiply-Subtract Single-Precision  
XX3-form

xvmsubasp XT,XA,XB

xvmsubmsp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   src1           ← VSR[XA]{i:i+31}
   src2 ← “xvmsubasp” ? VSR[XT]{i:i+31} : VSR[XB]{i:i+31}
   src3 ← “xvmsubasp” ? VSR[XB]{i:i+31} : VSR[XT]{i:i+31}
   v{0:inf}       ← MultiplyAddSP(src1,src3,NegateSP(src2))
   result{i:i+31} ← RoundToSP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vximz_flag)  then SetFX(VXIMZ)
   if(vxisi_flag)  then SetFX(VXISI)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vximz_flag)
   ex_flag        ← ex_flag | (VE & vxisi_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.

For xvmsubasp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XT].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XB].

For xvmsubmsp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XB].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 101.

src2 is negated and added[2] to the product,
producing a sum having unbounded range and
precision.

The sum is normalized[3].

See part 2 of Table 101.

The intermediate result is rounded to
single-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into word element i of
VSR[XT] in single-precision format. 

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 81 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 89 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
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Version 2.07 B
VSR Data Layout for xvmsub(a|m)sp

src1 = VSR[XA]

SP SP SP SP

src2 = xvmsubasp ? VSR[XT] : VSR[XB]

SP SP SP SP

src3 = xvmsubasp ? VSR[XB] : VSR[XT]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1
QNaN &

src1 not a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i c {0,1,2,3}).

src2 For xvmsubasp, the single-precision floating-point value in word element i of VSR[XT] (where i c {0,1,2,3}).
For xvmsubmsp, the single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).

src3 For xvmsubasp, the single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).
For xvmsubmsp, the single-precision floating-point value in word element i of VSR[XT] (where i c {0,1,2,3}).

dQNaN Default quiet NaN (0x7FC0_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two
nonzero finite number source operands.

Q(x) Return a QNaN with the payload of x.

S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

p The intermediate product having unbounded range and precision.

v The intermediate result having unbounded range and precision.

Table 101.Actions for xvmsub(a|m)sp
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VSX Vector Multiply Double-Precision 
XX3-form

xvmuldp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   src1           ← VSR[XA]{i:i+63}
   src3           ← VSR[XB]{i:i+63}
   v{0:inf}       ← MultiplyDP(src1,src3)
   result{i:i+63} ← RoundToDP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vximz_flag)  then SetFX(VXIMZ)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vximz_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src1 is multiplied[1] by src2, producing a product
having unbounded range and precision.

The product is normalized[2].

See Table 102.

The intermediate result is rounded to
double-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element i of
VSR[XT] in double-precision format. 

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXIMZ

60 T A B 112 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-

ber of bits the significand was shifted.

VSR Data Layout for xvmuldp

src1 = VSR[XA]

DP DP

src2 = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
Power ISA™ - Book I540



Version 2.07 B
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← M(src1,src2) v ← +Zero v ← –Zero v ← M(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← dQNaN
vximz_flag ← 1 v ← +Zero v ← +Zero v ← –Zero v ← –Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← dQNaN
vximz_flag ← 1 v ← –Zero v ← –Zero v ← +Zero v ← +Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← M(src1,src2) v ← –Zero v ← +Zero v ← M(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← –Infinity v ← +Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i c {0,1}).

src2 The double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 102.Actions for xvmuldp
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VSX Vector Multiply Single-Precision 
XX3-form

xvmulsp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   src1           ← VSR[XA]{i:i+31}
   src3           ← VSR[XB]{i:i+31}
   v{0:inf}       ← MultiplySP(src1,src3)
   result{i:i+31} ← RoundToSP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vximz_flag)  then SetFX(VXIMZ)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vximz_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src1 is multiplied[1] by src2, producing a product
having unbounded range and precision.

The product is normalized[2].

See Table 103.

The intermediate result is rounded to
single-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into word element i of
VSR[XT] in single-precision format. 

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXIMZ

60 T A B 80 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-

ber of bits the significand was shifted.

VSR Data Layout for xvmulsp

src1 = VSR[XA]

SP SP SP SP

src2 = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← M(src1,src2) v ← +Zero v ← –Zero v ← M(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← dQNaN
vximz_flag ← 1 v ← +Zero v ← +Zero v ← –Zero v ← –Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← dQNaN
vximz_flag ← 1 v ← –Zero v ← –Zero v ← +Zero v ← +Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← M(src1,src2) v ← –Zero v ← +Zero v ← M(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← –Infinity v ← +Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i c {0,1,2,3}).

src2 The single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).

dQNaN Default quiet NaN (0x7FC0_0000).

NZF Nonzero finite number.

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 103.Actions for xvmulsp
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VSX Vector Negative Absolute Value 
Double-Precision  XX2-form

xvnabsdp XT,XB

XT ← TX || T
XB ← BX || B

do i=0 to 127 by 64
   VSR[XT]{i:i+63} ← 0b1 || VSR[XB]{i+1:i+63}
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
The contents of doubleword element i of VSR[XB],
with bit 0 set to 1, is placed into doubleword
element i of VSR[XT].

Special Registers Altered
None

VSX Vector Negative Absolute Value 
Single-Precision  XX2-form

xvnabssp XT,XB

XT ← TX || T
XB ← BX || B

do i=0 to 127 by 32
   VSR[XT]{i:i+31} ← 0b1 || VSR[XB]{i+1:i+31}
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
The contents of word element i of VSR[XB], with
bit 0 set to 1, is placed into word element i of
VSR[XT].

Special Registers Altered
None

60 T /// B 489 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvnabsdp

src = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127

60 T /// B 425 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvnabssp

src = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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VSX Vector Negate Double-Precision  
XX2-form

xvnegdp XT,XB

XT ← TX || T
XB ← BX || B

do i=0 to 127 by 64
   VSR[XT]{i:i+63} ← ~VSR[XB]{i} || VSR[XB]{i+1:i+63}
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
The contents of doubleword element i of VSR[XB],
with bit 0 complemented, is placed into
doubleword element i of VSR[XT].

Special Registers Altered
None

VSX Vector Negate Single-Precision  
XX2-form

xvnegsp XT,XB

XT ← TX || T
XB ← BX || B

do i=0 to 127 by 32
   VSR[XT]{i:i+31} ← ~VSR[XB]{i} || VSR[XB]{i+1:i+31}
end

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
The contents of word element i of VSR[XB], with
bit 0 complemented, is placed into word element i
of VSR[XT].

Special Registers Altered
None

60 T /// B 505 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvnegdp

src = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127

60 T /// B 441 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvnegsp

src = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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VSX Vector Negative Multiply-Add  
Double-Precision  XX3-form

xvnmaddadp XT,XA,XB

xvnmaddmdp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   src1 ← VSR[XA]{i:i+63}
   src2 ← “xvnmaddadp” ? VSR[XT]{i:i+63} : VSR[XB]{i:i+63}
   src3 ← “xvnmaddadp” ? VSR[XB]{i:i+63} : VSR[XT]{i:i+63}
   v{0:inf}       ← MultiplyAddDP(src1,src3,src2)
   result{i:i+63} ← NegateDP(RoundToDP(RN,v))
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vximz_flag)  then SetFX(VXIMZ)
   if(vxisi_flag)  then SetFX(VXISI)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vximz_flag)
   ex_flag        ← ex_flag | (VE & vxisi_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.

For xvnmaddadp, do the following.
– Let src1 be the double-precision

floating-point operand in doubleword element
i of VSR[XA].

– Let src2 be the double-precision
floating-point operand in doubleword element
i of VSR[XT].

– Let src3 be the double-precision
floating-point operand in doubleword element
i of VSR[XB].

For xvnmaddmdp, do the following.
– Let src1 be the double-precision

floating-point operand in doubleword element
i of VSR[XA].

– Let src2 be the double-precision
floating-point operand in doubleword element
i of VSR[XB].

– Let src3 be the double-precision
floating-point operand in doubleword element
i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 104.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 104.

The intermediate result is rounded to
double-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is negated and placed into doubleword
element i of VSR[XT] in double-precision format. 

See Table 105, “Vector Floating-Point Final Result
with Negation,” on page 549.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 225 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 233 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
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VSR Data Layout for xvnmadd(a|m)dp

src1 = VSR[XA]

DP DP

src2 = xsmaddadp ? VSR[XT] : VSR[XB]

DP DP

src3 = xsmaddadp ? VSR[XB] : VSR[XT]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1
QNaN &

src1 not a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i c {0,1}).

src2 For xvnmaddadp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i c {0,1}).
For xvnmaddmdp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).

src3 For xvnmaddadp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).
For xvnmaddmdp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i c {0,1}).

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two
nonzero finite number source operands.

Q(x) Return a QNaN with the payload of x.

A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

M(x,y) Return the product of floating-point value x and floating-point value y, having unbounded range and precision.

p The intermediate product having unbounded range and precision.

v The intermediate result having unbounded range and precision.

Table 104.Actions for xvnmadd(a|m)dp
Power ISA™ - Book I548



Version 2.07 B
Case V
E

O
E

U
E

Z
E

X
E vx
sn

an
_f

la
g

vx
im

z_
fl

ag
vx

is
i_

fl
ag

Is
 r 

in
ex

ac
t?

 (
r g

 v)
Is

 r 
in

cr
em

en
te

d
?

 (
|r|

 >
 |v

|)

Is
 q 

in
ex

ac
t?

 (
q g

 v)
Is

 q 
in

cr
em

en
te

d
?

 (
|q|

 >
 |v

|)

Returned Results and Status Setting

Special

– – – – – 0 0 0 – – – – T(N(r))

0 – – – – – – 1 – – – – T(r), fx(VXISI)

0 – – – – 0 1 – – – – – T(r), fx(VXIMZ)

0 – – – – 1 0 – – – – – T(r), fx(VXSNAN)

0 – – – – 1 1 – – – – – T(r), fx(VXSNAN), fx(VXIMZ)

1 – – – – – – 1 – – – – fx(VXISI), error()

1 – – – – 0 1 – – – – – fx(VXIMZ), error()

1 – – – – 1 0 – – – – – fx(VXSNAN), error()

1 – – – – 1 1 – – – – – fx(VXSNAN), fx(VXIMZ), error()

Normal

– – – – – – – – no – – – T(N(r))

– – – – 0 – – – yes no – – T(N(r)), fx(XX)

– – – – 0 – – – yes yes – – T(N(r)), fx(XX)

– – – – 1 – – – yes no – – T(N(r)), fx(XX), error()

– – – – 1 – – – yes yes – – T(N(r)), fx(XX), error()

Overflow

– 0 – – 0 – – – – – – – T(N(r)), fx(OX), fx(XX)

– 0 – – 1 – – – – – – – T(N(r)), fx(OX), fx(XX), error()

– 1 – – – – – – – – no – fx(OX), error()

– 1 – – – – – – – – yes no fx(OX), fx(XX), error()

– 1 – – – – – – – – yes yes fx(OX), fx(XX), error()

Explanation:
– The results do not depend on this condition.

fx(x) FX is set to 1 if x=0.  x is set to 1.

q The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, unbounded exponent range.

r The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, bounded exponent range.

v The precise intermediate result defined in the instruction having unbounded signficand precision, unbounded exponent range.

FI Floating-Point Fraction Inexact status flag, FPSCRFI. This status flag is nonsticky. 

FR Floating-Point Fraction Rounded status flag, FPSCRFR.

OX Floating-Point Overflow Exception status flag, FPSCROX.

error() The system error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode. Update of the target VSR is suppressed for all vector elements.

N(x) The value x is is negated by complementing the sign bit of x.

T(x) The value x is placed in element i of VSR[XT] in the target precision format (where i c {0,1} for results with 64-bit elements, and i
c {0,1,3,4}) for results with 32-bit elements).

UX Floating-Point Underflow Exception status flag, FPSCRUX

VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN.

VXIMZ Floating-Point Invalid Operation Exception (Infinity × Zero) status flag, FPSCRVXIMZ.

VXISI Floating-Point Invalid Operation Exception (Infinity – Infinity) status flag, FPSCRVXISI.

XX Float-Point Inexact Exception status flag, FPSCRXX. The flag is a sticky version of FPSCRFI. When FPSCRFI is set to a new
value, the new value of FPSCRXX is set to the result of ORing the old value of FPSCRXX with the new value of FPSCRFI.

Table 105.Vector Floating-Point Final Result with Negation
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Tiny

– – 0 – – – – – no – – – T(N(r))

– – 0 – 0 – – – yes no – – T(N(r)), fx(UX), fx(XX)

– – 0 – 0 – – – yes yes – – T(N(r)), fx(UX), fx(XX)

– – 0 – 1 – – – yes no – – T(N(r)), fx(UX), fx(XX), error()

– – 0 – 1 – – – yes yes – – T(N(r)), fx(UX), fx(XX), error()

– – 1 – – – – – yes – no – fx(UX), error()

– – 1 – – – – – yes – yes no fx(UX), fx(XX), error()

– – 1 – – – – – yes – yes yes fx(UX), fx(XX), error()
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Returned Results and Status Setting

Explanation:
– The results do not depend on this condition.

fx(x) FX is set to 1 if x=0.  x is set to 1.

q The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, unbounded exponent range.

r The value defined in Table 49, “Floating-Point Intermediate Result Handling,” on page 401, signficand rounded to the target
precision, bounded exponent range.

v The precise intermediate result defined in the instruction having unbounded signficand precision, unbounded exponent range.

FI Floating-Point Fraction Inexact status flag, FPSCRFI. This status flag is nonsticky. 

FR Floating-Point Fraction Rounded status flag, FPSCRFR.

OX Floating-Point Overflow Exception status flag, FPSCROX.

error() The system error handler is invoked for the trap-enabled exception if the FE0 and FE1 bits in the Machine State Register are set
to any mode other than the ignore-exception mode. Update of the target VSR is suppressed for all vector elements.

N(x) The value x is is negated by complementing the sign bit of x.

T(x) The value x is placed in element i of VSR[XT] in the target precision format (where i c {0,1} for results with 64-bit elements, and i
c {0,1,3,4}) for results with 32-bit elements).

UX Floating-Point Underflow Exception status flag, FPSCRUX

VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN.

VXIMZ Floating-Point Invalid Operation Exception (Infinity × Zero) status flag, FPSCRVXIMZ.

VXISI Floating-Point Invalid Operation Exception (Infinity – Infinity) status flag, FPSCRVXISI.

XX Float-Point Inexact Exception status flag, FPSCRXX. The flag is a sticky version of FPSCRFI. When FPSCRFI is set to a new
value, the new value of FPSCRXX is set to the result of ORing the old value of FPSCRXX with the new value of FPSCRFI.

Table 105.Vector Floating-Point Final Result with Negation (Continued)
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VSX Vector Negative Multiply-Add  
Single-Precision  XX3-form

xvnmaddasp XT,XA,XB

xvnmaddmsp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   src1           ← VSR[XA]{i:i+31}
   src2 ← “xvnmaddasp” ? VSR[XT]{i:i+31} : VSR[XB]{i:i+31}
   src3 ← “xvnmaddasp” ? VSR[XB]{i:i+31} : VSR[XT]{i:i+31}
   v{0:inf}       ← MultiplyAddSP(src1,src3,src2)
   result{i:i+31} ← NegateSP(RoundToSP(RN,v))
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vximz_flag)  then SetFX(VXIMZ)
   if(vxisi_flag)  then SetFX(VXISI)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vximz_flag)
   ex_flag        ← ex_flag | (VE & vxisi_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.

For xvnmaddasp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XT].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XB].

For xvnmaddmsp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XB].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 106.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 106.

The intermediate result is rounded to
single-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is negated and placed into word
element i of VSR[XT] in single-precision format. 

See Table 105, “Vector Floating-Point Final Result
with Negation,” on page 549.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 193 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 201 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
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Version 2.07 B
VSR Data Layout for xvnmadd(a|m)sp

src1 = VSR[XA]

SP SP SP SP

src2 = xsmaddadp ? VSR[XT] : VSR[XB]

SP SP SP SP

src3 = xsmaddadp ? VSR[XB] : VSR[XT]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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Version 2.07 B
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1
QNaN &

src1 not a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i c {0,1,2,3}).

src2 For xvnmaddasp, the single-precision floating-point value in word element i of VSR[XT] (where i c {0,1,2,3}).
For xvnmaddmsp, the single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).

src3 For xvnmaddasp, the single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).
For xvnmaddmsp, the single-precision floating-point value in word element i of VSR[XT] (where i c {0,1,2,3}).

dQNaN Default quiet NaN (0x7FC0_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two
nonzero finite number source operands.

Q(x) Return a QNaN with the payload of x.

A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

p The intermediate product having unbounded range and precision.

v The intermediate result having unbounded range and precision.

Table 106.Actions for xvnmadd(a|m)sp
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Version 2.07 B
VSX Vector Negative Multiply-Subtract 
Double-Precision  XX3-form

xvnmsubadp XT,XA,XB

xvnmsubmdp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   src1 ← VSR[XA]{i:i+63}
   src2 ← “xvmsubadp” ? VSR[XT]{i:i+63} : VSR[XB]{i:i+63}
   src3 ← “xvmsubadp” ? VSR[XB]{i:i+63} : VSR[XT]{i:i+63}
   v{0:inf}       ← MultiplyAddDP(src1,src3,NegateDP(src2))
   result{i:i+63} ← NegateDP(RoundToDP(RN,v))
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vximz_flag)  then SetFX(VXIMZ)
   if(vxisi_flag)  then SetFX(VXISI)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vximz_flag)
   ex_flag        ← ex_flag | (VE & vxisi_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.

For xvmsubadp, do the following.
– Let src1 be the double-precision

floating-point operand in doubleword element
i of VSR[XA].

– Let src2 be the double-precision
floating-point operand in doubleword element
i of VSR[XT].

– Let src3 be the double-precision
floating-point operand in doubleword element
i of VSR[XB].

For xvmsubmdp, do the following.
– Let src1 be the double-precision

floating-point operand in doubleword element
i of VSR[XA].

– Let src2 be the double-precision
floating-point operand in doubleword element
i of VSR[XB].

– Let src3 be the double-precision
floating-point operand in doubleword element
i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 107.

src2 is negated and added[2] to the product,
producing a sum having unbounded range and
precision.

The sum is normalized[3].

See part 2 of Table 107.

The intermediate result is rounded to
double-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is negated and placed into doubleword
element i of VSR[XT] in double-precision format. 

See Table 105, “Vector Floating-Point Final Result
with Negation,” on page 549.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 241 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 249 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
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Version 2.07 B
VSR Data Layout for xvnmsub(a|m)dp

src1 = VSR[XA]

DP DP

src2 = xvnmsubadp ? VSR[XT] : VSR[XB]

DP DP

src3 = xvnmsubadp ? VSR[XB] : VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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Version 2.07 B
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1
QNaN &

src1 not a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i c {0,1}).

src2 For xvnmsubadp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i c {0,1}).
For xvnmsubmdp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).

src3 For xvnmsubadp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).
For xvnmsubmdp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i c {0,1}).

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two
nonzero finite number source operands.

Q(x) Return a QNaN with the payload of x.

S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

p The intermediate product having unbounded range and precision.

v The intermediate result having unbounded range and precision.

Table 107.Actions for xvnmsub(a|m)dp
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Version 2.07 B
VSX Vector Negative Multiply-Subtract 
Single-Precision  XX3-form

xvnmsubasp XT,XA,XB

xvnmsubmsp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   src1 ← VSR[XA]{i:i+31}
   src2 ← “xvnmsubasp” ? VSR[XT]{i:i+31} : VSR[XB]{i:i+31}
   src3 ← “xvnmsubasp” ? VSR[XB]{i:i+31} : VSR[XT]{i:i+31}
   v{0:inf}       ← MultiplyAddSP(src1,src3,NegateSP(src2))
   result{i:i+31} ← NegateSP(RoundToSP(RN,v))
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vximz_flag)  then SetFX(VXIMZ)
   if(vxisi_flag)  then SetFX(VXISI)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vximz_flag)
   ex_flag        ← ex_flag | (VE & vxisi_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.

For xvnmsubasp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XT].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XB].

For xvnmsubmsp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XB].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 108.

src2 is negated and added[2] to the product,
producing a sum having unbounded range and
precision.

The sum is normalized[3].

See part 2 of Table 108.

The intermediate result is rounded to
single-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is negated and placed into word
element i of VSR[XT] in single-precision format. 

See Table 105, “Vector Floating-Point Final Result
with Negation,” on page 549.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 209 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 217 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
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Version 2.07 B
VSR Data Layout for xvnmsub(a|m)sp

src1 = VSR[XA]

SP SP SP SP

src2 = xvnmsubasp ? VSR[XT] : VSR[XB]

SP SP SP SP

src3 = xvnmsubasp ? VSR[XB] : VSR[XT]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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Version 2.07 B
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p

vxsnan_flag ← 1
QNaN &

src1 not a NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i c {0,1,2,3}).

src2 The single-precision floating-point value in word element i of VSR[XT] (where i c {0,1,2,3}).

src3 The single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).

dQNaN Default quiet NaN (0x7FC0_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two
nonzero finite number source operands.

Q(x) Return a QNaN with the payload of x.

S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.

p The intermediate product having unbounded range and precision.

v The intermediate result having unbounded range and precision.

Table 108.Actions for xvnmsub(a|m)sp
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Version 2.07 B
VSX Vector Round to Double-Precision 
Integer using round to Nearest Away  
XX2-form

xvrdpi XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   result{i:i+63} ← RoundToDPIntegerNearAway(VSR[XB]{i:i+63})
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round to Nearest Away.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

VSX Vector Round to Double-Precision 
Integer Exact using Current rounding mode  
XX2-form

xvrdpic XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   src{0:63} ← VSR[XB]{i:i+63}
   if(RN=0b00) then
      result{i:i+63} ← RoundToDPIntegerNearEven(src)
   if(RN=0b01) then
      result{i:i+63} ← RoundToDPIntegerTrunc(src)
   if(RN=0b10) then
      result{i:i+63} ← RoundToDPIntegerCeil(src)
   if(RN=0b11) then
      result{i:i+63} ← RoundToDPIntegerFloor(src)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src is rounded to an integer using the rounding
mode specified by the Floating-Point Rounding
Control field RN of the FPSCR.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN

60 T /// B 201 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrdpi

src = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127

60 T /// B 235 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrdpic

src = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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VSX Vector Round to Double-Precision 
Integer using round toward -Infinity  XX2-form

xvrdpim XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   result{i:i+63} ← RoundToDPIntegerFloor(VSR[XB]{i:i+63})
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round toward -Infinity.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

VSX Vector Round to Double-Precision 
Integer using round toward +Infinity  XX2-form

xvrdpip XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   result{i:i+63} ← RoundToDPIntegerCeil(VSR[XB]{i:i+63})
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round toward +Infinity.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T /// B 249 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrdpim

src = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127

60 T /// B 233 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrdpip

src = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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VSX Vector Round to Double-Precision 
Integer using round toward Zero  XX2-form

xvrdpiz XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   result{i:i+63} ← RoundToDPIntegerTrunc(VSR[XB]{i:i+63})
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round toward Zero.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T /// B 217 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrdpiz

src = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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VSX Vector Reciprocal Estimate 
Double-Precision  XX2-form

xvredp XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   v{0:inf}       ← ReciprocalEstimateDP(VSR[XB]{i:i+63})
   result{i:i+63} ← RoundToDP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(zx_flag)     then SetFX(ZX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (ZE & zx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

A double-precision floating-point estimate of the
reciprocal of src is placed into doubleword
element i of VSR[XT] in double-precision format.

Unless the reciprocal of src would be a zero, an
infinity, or a QNaN, the estimate has a relative
error in precision no greater than one part in
16384 of the reciprocal of src. That is,

Operation with various special values of the operand is
summarized below.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FX OX UX ZX VXSNAN

60 T /// B 218 BX TX
0 6 11 16 21 30 31

estimate 1
src
----------–

1
src
----------

----------------------------------------------
1

16384
------------------≤

Source Value Result Exception

–Infinity –Zero None

–Zero –Infinity1 ZX

+Zero +Infinity1 ZX

+Infinity +Zero None

SNaN QNaN2 VXSNAN

QNaN QNaN None

1. No result if ZE=1.
2. No result if VE=1.

VSR Data Layout for xvredp

src = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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VSX Vector Reciprocal Estimate 
Single-Precision  XX2-form

xvresp XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   v{0:inf}       ← ReciprocalEstimateSP(VSR[XB]{i:i+31})
   result{i:i+31} ← RoundToSP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(zx_flag)     then SetFX(ZX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (ZE & zx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

A single-precision floating-point estimate of the
reciprocal of src is placed into word element i of
VSR[XT] in single-precision format.

Unless the reciprocal of src would be a zero, an
infinity, or a QNaN, the estimate has a relative
error in precision no greater than one part in
16384 of the reciprocal of src. That is,

Operation with various special values of the operand is
summarized below.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FX OX UX ZX VXSNAN

60 T /// B 154 BX TX
0 6 11 16 21 30 31

estimate 1
src
----------–

1
src
----------

----------------------------------------------
1

16384
------------------≤

Source Value Result Exception

–Infinity –Zero None

–Zero –Infinity1 ZX

+Zero +Infinity1 ZX

+Infinity +Zero None

SNaN QNaN2 VXSNAN

QNaN QNaN None

1. No result if ZE=1.
2. No result if VE=1.

VSR Data Layout for xvresp

src = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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VSX Vector Round to Single-Precision Integer 
using round to Nearest Away  XX2-form

xvrspi XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   result{i:i+31} ← RoundToSPIntegerNearAway(VSR[XB]{i:i+31})
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round to Nearest Away.

The result is placed into word element i of
VSR[XT] in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

VSX Vector Round to Single-Precision Integer 
Exact using Current rounding mode  XX2-form

xvrspic XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   src{0:31} ← VSR[XB]{i:i+31}
   if(RN=0b00) then
      result{i:i+31} ← RoundToSPIntegerNearEven(src)
   if(RN=0b01) then
      result{i:i+31} ← RoundToSPIntegerTrunc(src)
   if(RN=0b10) then
      result{i:i+31} ← RoundToSPIntegerCeil(src)
   if(RN=0b11) then
      result{i:i+31} ← RoundToSPIntegerFloor(src)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

src is rounded to an integer value using the
rounding mode specified by the Floating-Point
Rounding Control field RN of the FPSCR. 

The result is placed into word element i of
VSR[XT] in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN

60 T /// B 137 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrspi

src = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127

60 T /// B 171 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrspic

src = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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VSX Vector Round to Single-Precision Integer 
using round toward -Infinity  XX2-form

xvrspim XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   result{i:i+31} = RoundToSPIntegerFloor(VSR[XB]{i:i+31})
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round toward -Infinity.

The result is placed into word element i of
VSR[XT] in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

VSX Vector Round to Single-Precision Integer 
using round toward +Infinity  XX2-form

xvrspip XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   result{i:i+31} = RoundToSPIntegerCeil(VSR[XB]{i:i+31})
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round toward +Infinity.

The result is placed into word element i of
VSR[XT] in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T /// B 185 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrspim

src = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127

60 T /// B 169 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrspip

src = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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VSX Vector Round to Single-Precision Integer 
using round toward Zero  XX2-form

xvrspiz XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   result{i:i+31} = RoundToSPIntegerTrunc(VSR[XB]{i:i+31})
   if(vxsnan_flag) then SetFX(VXSNAN)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round toward Zero.

The result is placed into word element i of
VSR[XT] in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN 

VSX Vector Reciprocal Square Root Estimate 
Double-Precision  XX2-form

xvrsqrtedp XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i←0 to 127 by 64
   reset_xflags()
   v{0:inf}       ← RecipSquareRootEstimateDP(VSR[XB]{i:i+63})
   result{i:i+63} ← RoundToDP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxsqrt_flag) then SetFX(VXSQRT)
   if(zx_flag)     then SetFX(ZX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxsqrt_flag)
   ex_flag        ← ex_flag | (ZE & zx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

A double-precision floating-point estimate of the
reciprocal square root of src is placed into
doubleword element i of VSR[XT] in
double-precision format.

Unless the reciprocal of the square root of src
would be a zero, an infinity, or a QNaN, the
estimate has a relative error in precision no
greater than one part in 16384 of the reciprocal of
the square root of src. That is,

Operation with various special values of the operand is
summarized below.

60 T /// B 153 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrspiz

src = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127

60 T /// B 202 BX TX
0 6 11 16 21 30 31

estimate 1
src

---------------–

1
src

----------------
--------------------------------------------------

1
16384
----------------≤
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Version 2.07 B
If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FX ZX VXSNAN VXSQRT

Source Value Result Exception

–Infinity QNaN1 VXSQRT

+Infinity +Zero None

–Finite QNaN1 VXSQRT

–Zero –Infinity2 ZX

+Zero +Infinity2 ZX

SNaN QNaN1 VXSNAN

QNaN QNaN None

1. No result if VE=1.
2. No result if ZE=1.

VSR Data Layout for xvrsqrtedp

src = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
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VSX Vector Reciprocal Square Root Estimate 
Single-Precision  XX2-form

xvrsqrtesp XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   v{0:inf}       ← RecipSquareRootEstimateSP(VSR[XB]{i:i+31})
   result{i:i+31} ← RoundToDP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxsqrt_flag) then SetFX(VXSQRT)
   if(zx_flag)     then SetFX(ZX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxsqrt_flag)
   ex_flag        ← ex_flag | (ZE & zx_flag)
end

if( ex_flag = 0 ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

A single-precision floating-point estimate of the
reciprocal square root of src is placed into word
element i of VSR[XT] in single-precision format.

Unless the reciprocal of the square root of src
would be a zero, an infinity, or a QNaN, the
estimate has a relative error in precision no
greater than one part in 16384 of the reciprocal of
the square root of src. That is,

Operation with various special values of the operand is
summarized below.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FX ZX VXSNAN VXSQRT

60 T /// B 138 BX TX
0 6 11 16 21 30 31

estimate 1
src

---------------–

1
src

----------------
--------------------------------------------------

1
16384
----------------≤

Source Value Result Exception

–Infinity QNaN1 VXSQRT

+Infinity +Zero None

–Finite QNaN1 VXSQRT

–Zero –Infinity2 ZX

+Zero +Infinity2 ZX

SNaN QNaN1 VXSNAN

QNaN QNaN None

1. No result if VE=1.
2. No result if ZE=1.

VSR Data Layout for xvrsqrtesp

src = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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Version 2.07 B
VSX Vector Square Root Double-Precision  
XX2-form

xvsqrtdp XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i←0 to 127 by 64
   reset_xflags()
   v{0:inf}       ← SquareRootDP(VSR[XB]{i:i+63})
   result{i:i+63} ← RoundToDP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxsqrt_flag) then SetFX(VXSQRT)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxsqrt_flag)
   ex_flag        ← ex_flag | (XE & xx_flag
end

if( ex_flag ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

The unbounded-precision square root of src is
produced.

See Table 109.

The intermediate result is rounded to
double-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXSQRT

60 T /// B 203 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvsqrtdp

src = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127

src
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

v ← dQNaN
vxsqrt_flag ← 1

v ← dQNaN
vxsqrt_flag ← 1 v ← +Zero v ← +Zero v ← SQRT(src) v ← +Infinity v ← src v ← Q(src)

vxsnan_flag ← 1

Explanation:
src The double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

SQRT(x) The unbounded-precision square root of the floating-point value x.

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 109.Actions for xvsqrtdp
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Version 2.07 B
VSX Vector Square Root Single-Precision  
XX2-form

xvsqrtsp XT,XB

XT          ← TX || T
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   v{0:inf}       ← SquareRootSP(VSR[XB]{i:i+31})
   result{i:i+31} ← RoundToSP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxsqrt_flag) then SetFX(VXSQRT)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxsqrt_flag)
   ex_flag        ← ex_flag | (XE & xx_flag
end

if( ex_flag ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

The unbounded-precision square root of src is
produced.

See Table 110.

The intermediate result is rounded to
single-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into word element i of
VSR[XT] in single-precision format.

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXSQRT

60 T /// B 139 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvsqrtsp

src = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127

src
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

v ← dQNaN
vxsqrt_flag ← 1

v ← dQNaN
vxsqrt_flag ← 1 v ← +Zero v ← +Zero v ← SQRT(src) v ← +Infinity v ← src v ← Q(src)

vxsnan_flag ← 1

Explanation:
src The single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).

dQNaN Default quiet NaN (0x7FC0_0000).

NZF Nonzero finite number.

SQRT(x) The unbounded-precision square root of the floating-point value x.

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 110.Actions for xvsqrtsp
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Version 2.07 B
VSX Vector Subtract Double-Precision  
XX3-form

xvsubdp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 64
   reset_xflags()
   src1           ← VSR[XA]{i:i+63}
   src2           ← VSR[XB]{i:i+63}
   v{0:inf}       ← AddDP(src1,NegateDP(src2))
   result{i:i+63} ← RoundToDP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxisi_flag)  then SetFX(VXISI)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxisi_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src2 is negated and added[1] to src1, producing
a sum having unbounded range and precision.

The sum is normalized[2].

See Table 111.

The intermediate result is rounded to
double-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into doubleword element i of
VSR[XT] in double-precision format. 

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI

60 T A B 104 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

VSR Data Layout for xvsubdp

src1 = VSR[XA]

DP DP

src2 = VSR[XB]

DP DP

tgt = VSR[XT]

DP DP
0 64 127
Power ISA™ - Book I572



Version 2.07 B
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i c {0,1}).

src2 The double-precision floating-point value in doubleword element i of VSR[XB] (where i c {0,1}).

dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).

S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 111.Actions for xvsubdp
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Version 2.07 B
VSX Vector Subtract Single-Precision  
XX3-form

xvsubsp XT,XA,XB

XT          ← TX || T
XA          ← AX || A
XB          ← BX || B
ex_flag     ← 0b0

do i=0 to 127 by 32
   reset_xflags()
   src1           ← VSR[XA]{i:i+31}
   src2           ← VSR[XB]{i:i+31}
   v{0:inf}       ← AddSP(src1,NegateSP(src2))
   result{i:i+31} ← RoundToSP(RN,v)
   if(vxsnan_flag) then SetFX(VXSNAN)
   if(vxisi_flag)  then SetFX(VXISI)
   if(ox_flag)     then SetFX(OX)
   if(ux_flag)     then SetFX(UX)
   if(xx_flag)     then SetFX(XX)
   ex_flag        ← ex_flag | (VE & vxsnan_flag)
   ex_flag        ← ex_flag | (VE & vxisi_flag)
   ex_flag        ← ex_flag | (OE & ox_flag)
   ex_flag        ← ex_flag | (UE & ux_flag)
   ex_flag        ← ex_flag | (XE & xx_flag)
end

if( ex_flag ) then VSR[XT] ← result

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

For each vector element i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src2 is negated and added[1] to src1, producing
a sum having unbounded range and precision.

The sum is normalized[2].

See Table 112.

The intermediate result is rounded to
single-precision using the rounding mode
specified by the Floating-Point Rounding Control
field RN of the FPSCR.

See Table 49, “Floating-Point Intermediate Result
Handling,” on page 401.

The result is placed into word element i of
VSR[XT] in single-precision format. 

See Table 80, “Vector Floating-Point Final Result,”
on page 483.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI

60 T A B 72 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

VSR Data Layout for xvsubsp

src1 = VSR[XA]

SP SP SP SP

src2 = VSR[XB]

SP SP SP SP

tgt = VSR[XT]

SP SP SP SP
0 32 64 96 127
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Version 2.07 B
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i c {0,1,2,3}).

src2 The single-precision floating-point value in word element i of VSR[XB] (where i c {0,1,2,3}).

dQNaN Default quiet NaN (0x7FC0_0000).

NZF Nonzero finite number.

Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).

S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).

Q(x) Return a QNaN with the payload of x.

v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 112.Actions for xvsubsp
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Version 2.07 B
VSX Vector Test for software Divide 
Double-Precision XX3-form

xvtdivdp BF,XA,XB

XA      ← AX || A
XB      ← BX || B
eq_flag ← 0b0
gt_flag ← 0b0

do i=0 to 127 by 64
   src1        ← VSR[XA]{i:i+63}
   src2        ← VSR[XB]{i:i+63}
   e_a         ← src1{1:11} - 1023
   e_b         ← src2{1:11} - 1023
   fe_flag     ← fe_flag | IsNaN(src1) | IsInf(src1) |
                 IsNaN(src2) | IsInf(src2) | IsZero(src2) |
                 ( e_b <= -1022 ) |
                 ( e_b >=  1021 ) |
                 ( !IsZero(src1) & ( (e_a - e_b) >=  1023 ) ) |
                 ( !IsZero(src1) & ( (e_a - e_b) <= -1021 ) ) |
                 ( !IsZero(src1) & ( e_a <= -970 ) )
   fg_flag     ← fg_flag | IsInf(src1) | IsInf(src2) |
                 IsZero(src2) | IsDen(src2)
end

fl_flag ← xvredp_error() <= 2-14

CR[BF]  ← 0b1 || fg_flag || fe_flag || 0b0

Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

fe_flag is initialized to 0.
fg_flag is initialized to 0.

For each vector element i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

Let e_a be the unbiased exponent of src1.

Let e_b be the unbiased exponent of src2.

fe_flag is set to 1 for any of the following
conditions.

– src1 is a NaN or an infinity.
– src2 is a zero, a NaN, or an infinity.
– e_b is less than or equal to -1022.
– e_b is greater than or equal to 1021.
– src1 is not a zero and the difference,

e_a - e_b, is greater than or equal to 1023.
– src1 is not a zero and the difference,

e_a - e_b, is less than or equal to -1021.
– src1 is not a zero and e_a is less than or

equal to -970

fg_flag is set to 1 for any of the following
conditions.

– src1 is an infinity.
– src2 is a zero, an infinity, or a denormalized

value.

CR field BF is set to the value
0b1 || fg_flag || fe_flag || 0b0.

Special Registers Altered
CR[BF]

60 BF // A B 125 AX BX /
0 6 9 11 16 21 29 30 31

VSR Data Layout for xvtdivdp

src1 = VSR[XA]

.dword[0] .dword[1]

src2 = VSR[XB]

.dword[0] .dword[1]

0 64 127
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Version 2.07 B
VSX Vector Test for software Divide 
Single-Precision XX3-form

xvtdivsp BF,XA,XB

XA      ← AX || A
XB      ← BX || B
eq_flag ← 0b0
gt_flag ← 0b0

do i=0 to 127 by 32
   src1        ← VSR[XA]{i:i+31}
   src2        ← VSR[XB]{i:i+31}
   e_a         ← src1{1:8} - 127
   e_b         ← src2{1:8} - 127
   fe_flag     ← fe_flag | IsNaN(src1) | IsInf(src1) |
                 IsNaN(src2) | IsInf(src2) | IsZero(src2) |
                 ( e_b <= -126 ) |
                 ( e_b >=  125 ) |
                 ( !IsZero(src1) & ( (e_a - e_b) >=  127 ) ) |
                 ( !IsZero(src1) & ( (e_a - e_b) <= -125 ) ) |
                 ( !IsZero(src1) & ( e_a <= -103 ) )
   fg_flag     ← fg_flag | IsInf(src1) | IsInf(src2) |
                 IsZero(src2) | IsDen(src2)
end

fl_flag ← xvredp_error() <= 2-14

CR[BF]  ← 0b1 || fg_flag || fe_flag || 0b0

Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

fe_flag is initialized to 0.
fg_flag is initialized to 0.

For each vector element i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

Let e_a be the unbiased exponent of src1.

Let e_b be the unbiased exponent of src2.

fe_flag is set to 1 for any of the following
conditions.

– src1 is a NaN or an infinity.
– src2 is a zero, a NaN, or an infinity.
– e_b is less than or equal to -126.
– e_b is greater than or equal to 125.
– src1 is not a zero and the difference,

e_a - e_b, is greater than or equal to 127.
– src1 is not a zero and the difference,

e_a - e_b, is less than or equal to -125.
– src1 is not a zero and e_a is less than or

equal to -103.

fg_flag is set to 1 for any of the following
conditions.

– src1 is an infinity.
– src2 is a zero, an infinity, or a denormalized

value.

CR field BF is set to the value
0b1 || fg_flag || fe_flag || 0b0.

Special Registers Altered
CR[BF]

60 BF // A B 93 AX BX /
0 6 9 11 16 21 29 30 31

VSR Data Layout for xvtdivsp

src1 = VSR[XA]

.word[0] .word[1] .word[2] .word[3]

src2 = VSR[XB]

.word[0] .word[1] .word[2] .word[3]

0 32 64 96 127
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Version 2.07 B
VSX Vector Test for software Square Root 
Double-Precision XX2-form

xvtsqrtdp BF,XB

XB      ← BX || B
fe_flag ← 0b0
fg_flag ← 0b0

do i=0 to 127 by 64
   src        ← VSR[XB]{i:i+63}
   e_b        ← src2{1:11} - 1023
   fe_flag    ← fe_flag | IsNaN(src) | IsInf(src)  |
                 IsZero(src) | IsNeg(src) | ( e_a <= -970 )
   fg_flag    ← fg_flag | IsInf(src) | IsZero(src) |
                 IsDen(src)
end

fl_flag ← xvrsqrtedp_error() <= 2-14

CR[BF]  ← 0b1 || fg_flag || fe_flag || 0b0

Let XB be the value BX concatenated with B.

fe_flag is initialized to 0.
fg_flag is initialized to 0.

For each vector element i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

Let e_b be the unbiased exponent of src.

fe_flag is set to 1 for any of the following
conditions.

– src is a zero, a NaN, an infinity, or a negative
value.

– e_b is less than or equal to -970.

fg_flag is set to 1 for the following condition.
– src is a zero, an infinity, or a denormalized

value.

CR field BF is set to the value
0b1 || fg_flag || fe_flag || 0b0.

Special Registers Altered
CR[BF]

VSX Vector Test for software Square Root 
Single-Precision XX2-form

xvtsqrtsp BF,XB

XB      ← BX || B
fe_flag ← 0b0
fg_flag ← 0b0

do i=0 to 127 by 32
   src      ← VSR[XB]{i:i+31}
   e_b      ← src2{1:8} - 127
   fe_flag  ← fe_flag | IsNaN(src) | IsInf(src) |
               IsZero(src) | IsNeg(src) | ( e_a <= -103 )
   fg_flag  ← fg_flag | IsInf(src) | IsZero(src) |
               IsDen(src)
end

fl_flag = xvrsqrtesp_error() <= 2-14

CR[BF]  = 0b1 || fg_flag || fe_flag || 0b0

Let XB be the value BX concatenated with B.

fe_flag is initialized to 0.
fg_flag is initialized to 0.

For each vector element i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

Let e_b be the unbiased exponent of src.

fe_flag is set to 1 for any of the following
conditions.

– src is a zero, a NaN, an infinity, or a negative
value.

– e_b is less than or equal to -103.

fg_flag is set to 1 for the following condition.
– src is a zero, an infinity, or a denormalized

value.

CR field BF is set to the value
0b1 || fg_flag || fe_flag || 0b0.

Special Registers Altered
CR[BF]

60 BF // /// B 234 BX /
0 6 9 11 16 21 30 31

VSR Data Layout for xvtsqrtdp

src = VSR[XB]

.dword[0] .dword[1]

0 64 127

60 BF // /// B 170 BX /
0 6 9 11 16 21 30 31

VSR Data Layout for xvtsqrtsp

src = VSR[XB]

.word[0] .word[1] .word[2] .word[3]

0 32 64 96 127
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VSX Logical AND XX3-form

xxland XT,XA,XB

XT      ← TX || T
XA      ← AX || A
XB      ← BX || B
VSR[XT] ← VSR[XA] & VSR[XB]

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

The contents of VSR[XA] are ANDed with the contents
of VSR[XB] and the result is placed into VSR[XT].

Special Registers Altered
None

VSX Logical AND with Complement XX3-form

xxlandc XT,XA,XB

XT      ← TX || T
XA      ← AX || A
XB      ← BX || B
VSR[XT] ← VSR[XA] & ~VSR[XB]

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

The contents of VSR[XA] are ANDed with the
complement of the contents of VSR[XB] and the result is
placed into VSR[XT].

Special Registers Altered
None

60 T A B 130 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xxland

src1 = VSR[XA]

src2 = VSR[XB]

tgt = VSR[XT]

0 127

60 T A B 138 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xxland

src1 = VSR[XA]

src2 = VSR[XB]

tgt = VSR[XT]

0 127
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VSX Logical Equivalence XX3-form

xxleqv XT,XA,XB

VSR[32×TX+T] ← VSR[32×AX+A] h VSR[32×BX+B]

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

The contents of VSR[XA] are exclusive-ORed with the
contents of VSR[XB] and the complemented result is
placed into VSR[XT].

Special Registers Altered:
None

VSX Logical NAND XX3-form

xxlnand XT,XA,XB

VSR[32×TX+T] ← ¬( VSR[32×AX+A] & VSR[32×BX+B] )

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

The contents of VSR[XA] are ANDed with the contents
of VSR[XB] and the complemented result is placed into
VSR[XT].

Special Registers Altered:
None

60 T A B 186 AXBXTX
0 6 11 16 21 29 30 31

VSR Data Layout for xxleqv
src = VSR[XA]

src = VSR[XB]

tgt = VSR[XT]

0 127

60 T A B 178 AXBXTX
0 6 11 16 21 29 30 31

VSR Data Layout for xxlnand
src = VSR[XA]

src = VSR[XB]

tgt = VSR[XT]

0 127
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VSX Logical OR with Complement 
XX3-form

xxlorc XT,XA,XB

VSR[32×TX+T] ← VSR[32×AX+A] | ¬VSR[32×BX+B]

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

The contents of VSR[XA] are ORed with the
complement of the contents of VSR[XB] and the result is
placed into VSR[XT].

Special Registers Altered:
None

VSX Logical NOR  XX3-form

xxlnor XT,XA,XB

VSR[32×TX+T] ← ~( VSR[32×AX+A] | VSR[32×BX+B] )

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

The contents of VSR[XA] are ORed with the contents of
VSR[XB] and the complemented result is placed into
VSR[XT].

Special Registers Altered
None

60 T A B 170 AXBXTX
0 6 11 16 21 29 30 31

VSR Data Layout for xxlorc
src1 = VSR[XA]

src2 = VSR[XB]

tgt = VSR[XT]

0 127

60 T A B 162 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xxlnor

src1 = VSR[XA]

src2 = VSR[XB]

tgt = VSR[XT]

0 127
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VSX Logical OR  XX3-form

xxlor XT,XA,XB

VSR[32×TX+T] ← VSR[32×AX+A] | VSR[32×BX+B]

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

The contents of VSR[XA] are ORed with the contents of
VSR[XB] and the result is placed into VSR[XT].

Special Registers Altered
None

VSX Logical XOR  XX3-form

xxlxor XT,XA,XB

VSR[32×TX+T] ← VSR[32×AX+A] ^ VSR[32×BX+B]

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

The contents of VSR[XA] are exclusive-ORed with the
contents of VSR[XB] and the result is placed into
VSR[XT].

Special Registers Altered
None

60 T A B 146 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xxlor

src1 = VSR[XA]

src2 = VSR[XB]

tgt = VSR[XT]

0 127

60 T A B 154 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xxlxor

src1 = VSR[XA]

src2 = VSR[XB]

tgt = VSR[XT]

0 127
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VSX Merge High Word  XX3-form

xxmrghw XT,XA,XB

VSR[32×TX+T].word[0] ← VSR[32×AX+A].word[0]
VSR[32×TX+T].word[1] ← VSR[32×BX+B].word[0]
VSR[32×TX+T].word[2] ← VSR[32×AX+A].word[1]
VSR[32×TX+T].word[3] ← VSR[32×BX+B].word[1]

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

The contents of word element 0 of VSR[XA] are placed
into word element 0 of VSR[XT].

The contents of word element 0 of VSR[XB] are placed
into word element 1 of VSR[XT].

The contents of word element 1 of VSR[XA] are placed
into word element 2 of VSR[XT].

The contents of word element 1 of VSR[XB] are placed
into word element 3 of VSR[XT].

Special Registers Altered
None

VSX Merge Low Word  XX3-form

xxmrglw XT,XA,XB

VSR[32×TX+T].word[0] ← VSR[32×AX+A].word[2]
VSR[32×TX+T].word[1] ← VSR[32×BX+B].word[2]
VSR[32×TX+T].word[2] ← VSR[32×AX+A].word[3]
VSR[32×TX+T].word[3] ← VSR[32×BX+B].word[3]

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

The contents of word element 2 of VSR[XA] are placed
into word element 0 of VSR[XT].

The contents of word element 2 of VSR[XB] are placed
into word element 1 of VSR[XT].

The contents of word element 3 of VSR[XA] are placed
into word element 2 of VSR[XT].

The contents of word element 3 of VSR[XB] are placed
into word element 3 of VSR[XT].

Special Registers Altered
None

60 T A B 18 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xxmrghw

src1 = VSR[XA]

.word[0] .word[1] unused unused

src2 = VSR[XB]

.word[0] .word[1] unused unused

tgt = VSR[XT]

.word[0] .word[1] .word[2] .word[3]

0 32 64 96 127

60 T A B 50 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xxmrglw

src1 = VSR[XA]

unused unused .word[2] .word[3]

src2 = VSR[XB]

unused unused .word[2] .word[3]

tgt = VSR[XT]

.word[0] .word[1] .word[2] .word[3]

0 32 64 96 127
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VSX Permute Doubleword Immediate 
XX3-form

xxpermdi XT,XA,XB,DM

VSR[32×TX+T].dword[0] ← VSR[32×AX+A].dword[DM.bit[0]]
VSR[32×TX+T].dword[1] ← VSR[32×BX+B].dword[DM.bit[1]]

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

If DM.bit[0]=0, the contents of doubleword element 0
of VSR[XA] are placed into doubleword element 0 of
VSR[XT]. Otherwise the contents of doubleword
element 1 of VSR[XA] are placed into doubleword
element 0 of VSR[XT].

If DM.bit[1]=0, the contents of doubleword element 0
of VSR[XB] are placed into doubleword element 1 of
VSR[XT]. Otherwise the contents of doubleword
element 1 of VSR[XB] are placed into doubleword
element 1 of VSR[XT].

Special Registers Altered
None

VSX Select XX4-form

xxsel XT,XA,XB,XC

do i=0 to 127
   if (VSR[32×CX+C].bit[i]=0) then
      VSR[32×TX+T].bit[i] ← VSR[32×AX+A].bit[i]
   else
      VSR[32×TX+T].bit[i] ← VSR[32×BX+B].bit[i]
end

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.
Let XC be the value CX concatenated with C.

For each bit of VSR[XC] that contains the value 0, the
corresponding bit of VSR[XA] is placed into the
corresponding bit of VSR[XT]. Otherwise, the
corresponding bit of VSR[XB] is placed into the
corresponding bit of VSR[XT].

Special Registers Altered
None

60 T A B 0 DM 10 AX BX TX
0 6 11 16 21 22 24 29 30 31

Extended Mnemonic Equivalent To

xxspltd T,A,0 xxpermdi T,A,A,0b00

xxspltd T,A,1 xxpermdi T,A,A,0b11

xxmrghd T,A,B xxpermdi T,A,B,0b00

xxmrgld T,A,B xxpermdi T,A,B,0b11

xxswapd T,A xxpermdi T,A,A,0b10

Table 113:

VSR Data Layout for xxpermdi

src1 = VSR[XA]

.dword[0] .dword[1]

src2 = VSR[XB]

.dword[0] .dword[1]

tgt = VSR[XT]

.dword[0] .dword[1]

0 64 127

60 T A B C 3 CX AX BX TX
0 6 11 16 21 26 28 29 30 31

VSR Data Layout for xxsel

src1 = VSR[XA]

src2 = VSR[XB]

src3 = VSR[XC]

tgt = VSR[XT]

0 127
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VSX Shift Left Double by Word Immediate  
XX3-form

xxsldwi XT,XA,XB,SHW

source.qword[0] ← VSR[32×AX+A]
source.qword[1] ← VSR[32×BX+B]
VSR[32×TX+T] ← source.word[SHW:SHW+3]

Let XT be the value TX concatenated with T.
Let XA be the value AX concatenated with A.
Let XB be the value BX concatenated with B.

Let the source vector be the concatenation of the
contents of VSR[XA] followed by the contents of
VSR[XB].  Words SHW:SHW+3 of the source vector are
placed into VSR[XT].

Special Registers Altered
None

VSX Splat Word  XX2-form

xxspltw XT,XB,UIM

VSR[32×TX+T].word[0] ← VSR[32×BX+B].word[UIM]
VSR[32×TX+T].word[1] ← VSR[32×BX+B].word[UIM]
VSR[32×TX+T].word[2] ← VSR[32×BX+B].word[UIM]
VSR[32×TX+T].word[3] ← VSR[32×BX+B].word[UIM]

Let XT be the value TX concatenated with T.
Let XB be the value BX concatenated with B.

The contents of word element UIM of VSR[XB] are
replicated in each word element of VSR[XT].

Special Registers Altered
None

60 T A B 0 SHW 2 AX BX TX
0 6 11 16 21 22 24 29 30 31

VSR Data Layout for xxsldwi

src1 = VSR[XA]

.word[0] .word[1] .word[2] .word[3]

src2 = VSR[XB]

.word[0] .word[1] .word[2] .word[3]

tgt = VSR[XT]

.word[0] .word[1] .word[2] .word[3]

0 32 64 96 127

60 T /// UIM B 164 BX TX
0 6 11 14 16 21 30 31

VSR Data Layout for xxspltw

src = VSR[XB]

.word[0] .word[1] .word[2] .word[3]

tgt = VSR[XT]

.word[0] .word[1] .word[2] .word[3]

0 32 64 96 127
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Chapter 8.  Signal Processing Engine (SPE)
[Category: Signal Processing Engine]

8.1 Overview
The Signal Processing Engine (SPE) accelerates sig-
nal processing applications normally suited to DSP
operation. This is accomplished using short vectors
(two element) within 64-bit GPRs and using single
instruction multiple data (SIMD) operations to perform
the requisite computations. SPE also architects an
Accumulator register to allow for back to back opera-
tions without loop unrolling.

8.2 Nomenclature and Conven-
tions
Several conventions regarding nomenclature are used
for SPE: 

The Signal Processing Engine category is abbrevi-
ated as SPE.
Bits 0 to 31 of a 64-bit register are referenced as
upper word, even word or high word element of the
register. Bits 32:63 are referred to as lower word,
odd word or low word element of the register. Each
half is an element of a 64-bit GPR.
Bits 0 to 15 and bits 32 to 47 are referenced as
even halfwords. Bits 16 to 31 and bits 48 to 63 are
referenced as odd halfwords. 
Mnemonics for SPE instructions generally begin
with the letters ‘ev’ (embedded vector).

The RTL conventions in described below are used in
addition to those described in Section 1.3:Additional
RTL functions are described in Appendix D.

Notation Meaning
×sf Signed fractional multiplication. Result of

multiplying 2 signed fractional quantities
having bit length n taking the least signifi-
cant 2n-1 bits of the sign extended product
and concatenating a 0 to the least signifi-
cant bit forming a signed fractional result
of 2n bits. Two 16-bit signed fractional
quantities, a and b are multiplied, as
shown below: 
ea0:31 = EXTS(a)

eb0:31 = EXTS(b)
prod0:63 = ea X eb
eprod0:63 = EXTS(prod32:63)
result0:31 = eprod33:63 || 0b0

×gsf Guarded signed fractional multiplication.
Result of multiplying 2 signed fractional
quantities having bit length 16 taking the
least significant 31 bits of the sign
extended product and concatenating a 0 to
the least significant bit forming a guarded
signed fractional result of 64 bits. Since
guarded signed fractional multiplication
produces a 64-bit result, fractional input
quantities of -1 and -1 can produce +1 in
the intermediate product. Two 16-bit frac-
tional quantities, a and b are multiplied, as
shown below: 
ea0:31 = EXTS(a)
eb0:31 = EXTS(b)
prod0:63 = ea X eb
eprod0:63 = EXTS(prod32:63)
result0:63 = eprod1:63 || 0b0

<< Logical shift left. x << y shifts value x left
by y bits, leaving zeros in the vacated bits.

>> Logical shift right. x >> y shifts value x
right by y bits, leaving zeros in the vacated
bits.

8.3 Programming Model

8.3.1 General Operation
SPE instructions generally take elements from one
source register and operate on them with the corre-
sponding elements of a second source register (and/or
the accumulator) to produce results. Results are placed
in the destination register and/or the accumulator.
Instructions that are vector in nature (i.e., produce
results of more than one element) provide results for
each element that are independent of the computation
of the other elements. These instructions can also be
used to perform scalar DSP operations by ignoring the
results of the upper 32-bit half of the register file.
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There are no record forms of SPE instructions. As a
result, the meaning of bits in the CR is different than for
other categories. SPE Compare instructions specify a
CR field, two source registers, and the type of com-
pare: greater than, less than, or equal. Two bits of the
CR field are written with the result of the vector com-
pare, one for each element. The remaining two bits
reflect the ANDing and ORing of the vector compare
results.

8.3.2 GPR Registers
The SPE requires a GPR register file with thirty-two
64-bit registers. For 32-bit implementations, instruc-
tions that normally operate on a 32-bit register file
access and change only the least significant 32-bits of
the GPRs leaving the most significant 32-bits
unchanged. For 64-bit implementations, operation of
these instructions is unchanged, i.e., those instructions
continue to operate on the 64-bit registers as they
would if the SPE was not implemented. Most SPE
instructions view the 64-bit register as being composed
of a vector of two elements, each of which is 32 bits
wide (some instructions read or write 16-bit elements).
The most significant 32-bits are called the upper word,
high word or even word. The least significant 32-bits
are called the lower word, low word or odd word.
Unless otherwise specified, SPE instructions write all
64-bits of the destination register.

Figure 127.GPR

8.3.3 Accumulator Register
A partially visible accumulator register (ACC) is pro-
vided for some SPE instructions. The accumulator is a
64-bit register that holds the results of the Multiply
Accumulate (MAC) forms of SPE Fixed-Point instruc-
tions. The accumulator allows the back-to-back execu-
tion of dependent MAC instructions, something that is
found in the inner loops of DSP code such as FIR and
FFT filters. The accumulator is partially visible to the
programmer in the sense that its results do not have to
be explicitly read to use them. Instead they are always
copied into a 64-bit destination GPR which is specified
as part of the instruction. Based upon the type of
instruction, the accumulator can hold either a single
64-bit value or a vector of two 32-bit elements.

Figure 128.Accumulator 

8.3.4 Signal Processing Embed-
ded Floating-Point Status and Con-
trol Register (SPEFSCR)
Status and control for SPE uses the SPEFSCR regis-
ter. This register is also used by the SPE.Embedded
Float Scalar Double, SPE.Embedded Float Scalar Sin-
gle, and SPE.Embedded Float Vector categories. Sta-
tus and control bits are shared with these categories.
The SPEFSCR register is implemented as special pur-
pose register (SPR) number 512 and is read and writ-
ten by the mfspr and mtspr instructions. SPE
instructions affect both the high element (bits 32:33)
and low element status flags (bits 48:49) of the SPEF-
SCR.

Figure 129. Signal Processing and Embedded
Floating-Point Status and Control Register

The SPEFSCR bits are defined as shown below.

Bit Description

32 Summary Integer Overflow High (SOVH)
SOVH is set to 1 when an SPE instruction
sets OVH. This is a sticky bit.

33 Integer Overflow High (OVH)
OVH is set to 1 to indicate that an overflow
has occurred in the upper element during exe-
cution of an SPE instruction. The bit is set to 1
if a result of an operation performed by the
instruction cannot be represented in the num-
ber of bits into which the result is to be placed,
and is set to 0 otherwise. The OVH bit is not
altered by Modulo instructions, or by other
instructions that cannot overflow.

34 Embedded Floating-Point Guard Bit High
(FGH) [Category: SP.FV]
FGH is supplied for use by the Embedded
Floating-Point Round interrupt handler. FGH
is an extension of the low-order bits of the
fractional result produced from an
SPE.Embedded Float Vector instruction on
the high word. FGH is zeroed if an overflow,
underflow, or invalid input error is detected on
the high element of an SPE.Embedded Float
Vector instruction.

Execution of an SPE.Embedded Float Scalar
instruction leaves FGH undefined.

35 Embedded Floating-Point Inexact Bit High
(FXH) [Category: SP.FV]
FXH is supplied for use by the Embedded
Floating-Point Round interrupt handler. FXH is
an extension of the low-order bits of the frac-
tional result produced from an SPE.Embed-
ded Float Vector instruction on the high word.

GPR Upper Word GPR Lower Word
0 32                                                   63

ACC Upper Word ACC Lower Word
0 32                                                   63

SPEFSCR
32 63
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FXH represents the logical ‘or’ of all the bits
shifted right from the Guard bit when the frac-
tional result is normalized. FXH is zeroed if an
overflow, underflow, or invalid input error is
detected on the high element of an
SPE.Embedded Float Vector instruction.

Execution of an SPE.Embedded Float Scalar
instruction leaves FXH undefined.

36 Embedded Floating-Point Invalid Opera-
tion/Input Error High (FINVH) [Category:
SP.FV]
The FINVH bit is set to 1 if any high word
operand of an SPE.Embedded Float Vector
instruction is infinity, NaN, or a denormalized
value, or if the instruction is a divide and the
dividend and divisor are both 0, or if a conver-
sion to integer or fractional value overflows.

Execution of an SPE.Embedded Float Scalar
instruction leaves FINVH undefined.

37 Embedded Floating-Point Divide By Zero
High (FDBZH) [Category: SP.FV]
The FDBZH bit is set to 1 when an
SPE.Embedded Vector Floating-Point Divide
instruction is executed with a divisor of 0 in the
high word operand, and the dividend is a finite
nonzero number.

Execution of an SPE.Embedded Float Scalar
instruction leaves FDBZH undefined.

38 Embedded Floating-Point Underflow High
(FUNFH) [Category: SP.FV]
The FUNFH bit is set to 1 when the execution
of an SPE.Embedded Float Vector instruction
results in an underflow on the high word oper-
ation.

Execution of an SPE.Embedded Float Scalar
instruction leaves FUNFH undefined.

39 Embedded Floating-Point Overflow High
(FOVFH) [Category: SP.FV]
The FOVFH bit is set to 1 when the execution
of an SPE.Embedded Float Vector instruction
results in an overflow on the high word opera-
tion.

Execution of an SPE.Embedded Float Scalar
instruction leaves FOVFH undefined.

40:41 Reserved

42 Embedded Floating-Point Inexact Sticky
Flag (FINXS) [Categories: SP.FV, SP.FD,
SP.FS]
The FINXS bit is set to 1 whenever the execu-
tion of an Embedded Floating-Point instruction
delivers an inexact result for either the low or
high element and no Embedded Float-
ing-Point Data interrupt is taken for either ele-
ment, or if an Embedded Floating-Point
instruction results in overflow (FOVF=1 or

FOVFH=1), but Embedded Floating-Point
Overflow exceptions are disabled (FOVFE=0),
or if an Embedded Floating-Point instruction
results in underflow (FUNF=1 or FUNFH=1),
but Embedded Floating-Point Underflow
exceptions are disabled (FUNFE=0), and no
Embedded Floating-Point Data interrupt
occurs. This is a sticky bit.

43 Embedded Floating-Point Invalid Opera-
tion/Input Sticky Flag (FINVS) [Categories:
SP.FV, SP.FD, SP.FS]
The FINVS bit is defined to be the sticky result
of any Embedded Floating-Point instruction
that causes FINVH or FINV to be set to 1.
That is, FINVS I FINVS | FINV | FINVH. This
is a sticky bit.

44 Embedded Floating-Point Divide By Zero
Sticky Flag (FDBZS) [Categories: SP.FV,
SP.FD, SP.FS]
The FDBZS bit is set to 1 when an Embedded
Floating-Point Divide instruction sets FDBZH
or FDBZ to 1. That is, FDBZS I FDBZS |
FDBZ | FDBZH. This is a sticky bit.

45 Embedded Floating-Point Underflow Sticky
Flag (FUNFS) [Categories: SP.FV, SP.FD,
SP.FS]
The FUNFS bit is defined to be the sticky
result of any Embedded Floating-Point instruc-
tion that causes FUNFH or FUNF to be set to
1. That is, FUNFS I FUNFS | FUNF | FUNFH.
This is a sticky bit.

46 Embedded Floating-Point Overflow Sticky
Flag (FOVFS) [Categories: SP.FV, SP.FD,
SP.FS]
The FOVFS bit is defined to be the sticky
result of any Embedded Floating-Point instruc-
tion that causes FOVH or FOVF to be set to 1.
That is, FOVFS I FOVFS | FOVF | FOVFH.
This is a sticky bit.

47 Reserved

48 Summary Integer Overflow (SOV)
SOV is set to 1 when an SPE instruction sets
OV to 1. This is a sticky bit.

49 Integer Overflow (OV)
OV is set to 1 to indicate that an overflow has
occurred in the lower element during execu-
tion of an SPE instruction. The bit is set to 1 if
a result of an operation performed by the
instruction cannot be represented in the num-
ber of bits into which the result is to be placed,
and is set to 0 otherwise. The OV bit is not
altered by Modulo instructions, or by other
instructions that cannot overflow.

50 Embedded Floating-Point Guard Bit (Low/
scalar) (FG) [Categories: SP.FV, SP.FD,
SP.FS]
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FG is supplied for use by the Embedded
Floating-Point Round interrupt handler. FG is
an extension of the low-order bits of the frac-
tional result produced from an Embedded
Floating-Point instruction on the low word. FG
is zeroed if an overflow, underflow, or invalid
input error is detected on the low element of
an Embedded Floating-Point instruction.

51 Embedded Floating-Point Inexact Bit (Low/
scalar) (FX) [Categories: SP.FV, SP.FD,
SP.FS]
FX is supplied for use by the Embedded Float-
ing-Point Round interrupt handler. FX is an
extension of the low-order bits of the fractional
result produced from an Embedded Float-
ing-Point instruction on the low word. FX rep-
resents the logical ‘or’ of all the bits shifted
right from the Guard bit when the fractional
result is normalized. FX is zeroed if an over-
flow, underflow, or invalid input error is
detected on Embedded Floating-Point instruc-
tion

52 Embedded Floating-Point Invalid Opera-
tion/Input Error (Low/scalar) (FINV) [Cate-
gories: SP.FV, SP.FD, SP.FS]
The FINV bit is set to 1 if any low word oper-
and of an Embedded Floating-Point instruc-
tion is infinity, NaN, or a denormalized value,
or if the operation is a divide and the dividend
and divisor are both 0, or if a conversion to
integer or fractional value overflows.

53 Embedded Floating-Point Divide By Zero
(Low/scalar) (FDBZ) [Categories: SP.FV,
SP.FD, SP.FS]
The FDBZ bit is set to 1 when an Embedded
Floating-Point Divide instruction is executed
with a divisor of 0 in the low word operand,
and the dividend is a finite nonzero number.

54 Embedded Floating-Point Underflow (Low/
scalar) (FUNF) [Categories: SP.FV, SP.FD,
SP.FS]
The FUNF bit is set to 1 when the execution of
an Embedded Floating-Point instruction
results in an underflow on the low word opera-
tion.

55 Embedded Floating-Point Overflow (Low/
scalar) (FOVF) [Categories: SP.FV, SP.FD,
SP.FS]
The FOVF bit is set to 1 when the execution of
an Embedded Floating-Point instruction
results in an overflow on the low word opera-
tion.

56 Reserved

57 Embedded Floating-Point Round (Inexact)
Exception Enable (FINXE) [Categories:
SP.FV, SP.FD, SP.FS]

0 Exception disabled
1 Exception enabled

The Embedded Floating-Point Round interrupt
is taken if the exception is enabled and if FG |
FGH | FX | FXH (signifying an inexact result)
is set to 1 as a result of an Embedded Float-
ing-Point instruction.

If an Embedded Floating-Point instruction
results in overflow or underflow and the corre-
sponding Embedded Floating-Point Underflow
or Embedded Floating-Point Overflow excep-
tion is disabled then the Embedded Float-
ing-Point Round interrupt is taken.

58 Embedded Floating-Point Invalid Opera-
tion/Input Error Exception Enable (FINVE)
[Categories: SP.FV, SP.FD, SP.FS]

0 Exception disabled
1 Exception enabled

If the exception is enabled, an Embedded
Floating-Point Data interrupt is taken if the
FINV or FINVH bit is set to 1 by an Embedded
Floating-Point instruction.

59 Embedded Floating-Point Divide By Zero
Exception Enable (FDBZE) [Categories:
SP.FV, SP.FD, SP.FS]

0 Exception disabled
1 Exception enabled

If the exception is enabled, an Embedded
Floating-Point Data interrupt is taken if the
FDBZ or FDBZH bit is set to 1 by an Embed-
ded Floating-Point instruction.

60 Embedded Floating-Point Underflow
Exception Enable (FUNFE) [Categories:
SP.FV, SP.FD, SP.FS]

0 Exception disabled
1 Exception enabled

If the exception is enabled, an Embedded
Floating-Point Data interrupt is taken if the
FUNF or FUNFH bit is set to 1 by an Embed-
ded Floating-Point instruction.

61 Embedded Floating-Point Overflow Excep-
tion Enable (FOVFE) [Categories: SP.FV,
SP.FD, SP.FS]

0 Exception disabled
1 Exception enabled

If the exception is enabled, an Embedded
Floating-Point Data interrupt is taken if the
FOVF or FOVFH bit is set to 1 by an Embed-
ded Floating-Point instruction.

62:63 Embedded Floating-Point Rounding Mode
Control (FRMC) [Categories: SP.FV, SP.FD,
SP.FS]

00 Round to Nearest
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01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

  

8.3.5 Data Formats
The SPE provides two different data formats, integer
and fractional. Both data formats can be treated as
signed or unsigned quantities.

8.3.5.1 Integer Format
Unsigned integers consist of 16, 32, or 64-bit binary
integer values. The largest representable value is 2n-1
where n represents the number of bits in the value. The
smallest representable value is 0. Computations that
produce values larger than 2n-1 or smaller than 0 may
set OV or OVH in the SPEFSCR.

Signed integers consist of 16, 32, or 64-bit binary val-
ues in two’s complement form. The largest represent-
able value is 2n-1-1 where n represents the number of
bits in the value. The smallest representable value is
-2n-1. Computations that produce values larger than
2n-1-1 or smaller than -2n-1 may set OV or OVH in the
SPEFSCR.

8.3.5.2 Fractional Format
Fractional data format is conventionally used for DSP
fractional arithmetic. Fractional data is useful for repre-
senting data converted from analog devices.

Unsigned fractions consist of 16, 32, or 64-bit binary
fractional values that range from 0 to less than 1.
Unsigned fractions place the radix point immediately to
the left of the most significant bit. The most significant
bit of the value represents the value 2-1, the next most
significant bit represents the value 2-2 and so on. The
largest representable value is 1-2-n where n represents
the number of bits in the value. The smallest represent-
able value is 0. Computations that produce values
larger than 1-2-n or smaller than 0 may set OV or OVH
in the SPEFSCR. The SPE category does not define
unsigned fractional forms of instructions to manipulate
unsigned fractional data since the unsigned integer
forms of the instructions produce the same results as
would the unsigned fractional forms.

Guarded unsigned fractions are 64-bit binary fractional
values. Guarded unsigned fractions place the decimal
point immediately to the left of bit 32. The largest repre-
sentable value is 232-2-32. The smallest representable
value is 0. Guarded unsigned fractional computations
are always modulo and do not set OV or OVH in the
SPEFSCR.

Signed fractions consist of 16, 32, or 64-bit binary frac-
tional values in two’s-complement form that range from
-1 to less than 1. Signed fractions place the decimal
point immediately to the right of the most significant bit.
The largest representable value is 1-2-(n-1) where n rep-
resents the number of bits in the value. The smallest
representable value is -1. Computations that produce
values larger than 1-2-(n-1)or smaller than -1 may set
OV or OVH in the SPEFSCR. Multiplication of two
signed fractional values causes the result to be shifted
left one bit to remove the resultant redundant sign bit in
the product. In this case, a 0 bit is concatenated as the
least significant bit of the shifted result.

Guarded signed fractions are 64-bit binary fractional
values. Guarded signed fractions place the decimal
point immediately to the left of bit 33. The largest repre-
sentable value is 232-2-31. The smallest representable
value is -232-1+2-31. Guarded signed fractional compu-
tations are always modulo and do not set OV or OVH in
the SPEFSCR.

8.3.6 Computational Operations
The SPE category supports several different computa-
tional capabilities. Both modulo and saturation results
can be performed. Modulo results produce truncation of
the overflow bits in a calculation, therefore overflow
does not occur and no saturation is performed. For
instructions for which overflow occurs, saturation pro-
vides a maximum or minimum representable value (for
the data type) in the case of overflow. Instructions are
provided for a wide range of computational capability.
The operation types can be divided into 4 basic catego-
ries:

Simple Vector instructions. These instructions use
the corresponding low and high word elements of
the operands to produce a vector result that is
placed in the destination register, the accumulator,
or both.
Multiply and Accumulate instructions. These
instructions perform multiply operations, optionally
add the result to the accumulator, and place the
result into the destination register and optionally
into the accumulator. These instructions are com-
posed of different multiply forms, data formats and
data accumulate options. The mnemonics for
these instructions indicate their various character-
istics. These are shown in Table 114.
Load and Store instructions. These instructions
provide load and store capabilities for moving data

Rounding modes 0b10 (+Infinity) and
0b11 (-Infinity) may not be supported by
some implementations. If an implementa-
tion does not support these, Embedded
Floating-Point Round interrupts are gener-
ated for every Embedded Floating-Point
instruction for which rounding is required
when +Infinity or -Infinity modes are set
and software is required to produce the
correctly rounded result

Programming Note
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to and from memory. A variety of forms are pro-
vided that position data for efficient computation.
Compare and miscellaneous instructions. These
instructions perform miscellaneous functions such

as field manipulation, bit reversed incrementing,
and vector compares.

Table 114:Mnemonic Extensions for Multiply Accumulate Instructions

Extension Meaning Comments

Multiply Form

he halfword even 16 X 16 → 32

heg halfword even guarded 16 X 16 → 32, 64-bit final accumulate result

ho halfword odd 16 X 16 → 32

hog halfword odd guarded 16 X 16 → 32, 64-bit final accumulate result

w word 32 X 32 → 64

wh word high 32 X 32 → 32 (high-order 32 bits of product)

wl word low 32 X 32 → 32 (low-order 32 bits of product)

Data Format

smf signed modulo fractional modulo, no saturation or overflow

smi signed modulo integer modulo, no saturation or overflow

ssf signed saturate fractional saturation on product and accumulate

ssi signed saturate integer saturation on product and accumulate

umi unsigned modulo integer modulo, no saturation or overflow

usi unsigned saturate integer saturation on product and accumulate

Accumulate Option

a place in accumulator result → accumulator

aa add to accumulator accumulator + result → accumulator

aaw add to accumulator as word elements accumulator0:31 + result0:31 → accumulator0:31
accumulator32:63 + result32:63 → accumulator32:63

an add negated to accumulator accumulator - result → accumulator

anw add negated to accumulator as word 
elements

accumulator0:31 - result0:31 → accumulator0:31
accumulator32:63 - result32:63 → accumulator32:63
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8.3.7 SPE Instructions

8.3.8 Saturation, Shift, and Bit 
Reverse Models
For saturation, left shifts, and bit reversal, the pseudo
RTL is provided here to more accurately describe those
functions that are referenced in the instruction pseudo
RTL.

8.3.8.1 Saturation
SATURATE(ov, carry, sat_ovn, sat_ov, val)
if ov then

if carry then
return sat_ovn

else
return sat_ov

else
return val

8.3.8.2 Shift Left
SL(value, cnt)
if cnt > 31 then

return 0
else

return (value << cnt)

8.3.8.3 Bit Reverse
BITREVERSE(value)
result I 0
mask I 1
shift I 31
cnt I 32
while cnt > 0 then do

t I value & mask
if shift >= 0 then

result I (t << shift) | result
else

result I (t >> -shift) | result
cnt I cnt - 1
shift I shift - 2
mask I mask << 1

return result
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8.3.9 SPE Instruction Set

Bit Reversed Increment EVX-form

brinc RT,RA,RB

n I implementation-dependent number of mask bits
mask I (RB)64-n:63 
a I (RA)64-n:63
d I BITREVERSE(1 + BITREVERSE(a | (¬ mask)))
RT I (RA)0:63-n || (d & mask) 

brinc computes a bit-reverse index based on the con-
tents of RA and a mask specified in RB. The new index
is written to RT.

The number of bits in the mask is implementa-
tion-dependent but may not exceed 32.

Special Registers Altered:
None

Vector Absolute Value EVX-form

evabs RT,RA

RT0:31 I ABS((RA)0:31)
RT32:63 I ABS((RA)32:63)

The absolute value of each element of RA is placed in
the corresponding elements of RT. An absolute value of
0x8000_0000 (most negative number) returns
0x8000_0000.

Special Registers Altered: 
None

Vector Add Immediate Word EVX-form

evaddiw RT,RB,UI

RT0:31 I (RB)0:31 + EXTZ(UI)
RT32:63 I (RB)32:63 + EXTZ(UI)

UI is zero-extended and added to both the high and low
elements of RB and the results are placed in RT. Note
that the same value is added to both elements of the
register.

Special Registers Altered: 
None

Vector Add Signed, Modulo, Integer to 
Accumulator Word EVX-form

evaddsmiaaw RT,RA

RT0:31 I (ACC)0:31 + (RA)0:31
RT32:63 I (ACC)32:63 + (RA)32:63
ACC0:63 I (RT)0:63

Each word element in RA is added to the correspond-
ing element in the accumulator and the results are
placed in RT and into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 527
0 6 11 16 21 31

brinc provides a way for software to access FFT
data in a bit-reversed manner. RA contains the
index into a buffer that contains data on which FFT
is to be performed. RB contains a mask that allows
the index to be updated with bit-reversed address-
ing. Typically this instruction precedes a load with
index instruction; for example,

brinc r2, r3, r4
lhax r8, r5, r2

RB contains a bit-mask that is based on the num-
ber of points in an FFT. To access a buffer contain-
ing n byte sized data that is to be accessed with
bit-reversed addressing, the mask has log2n 1s in
the least significant bit positions and 0s in the
remaining most significant bit positions. If, however,
the data size is a multiple of a halfword or a word,
the mask is constructed so that the 1s are shifted
left by log2 (size of the data) and 0s are placed in
the least significant bit positions.

This instruction only modifies the lower 32 bits of
the destination register in 32-bit implementations.
For 64-bit implementations in 32-bit mode, the con-
tents of the upper 32-bits of the destination register
are undefined.

Execution of brinc does not cause SPE Unavail-
able exceptions regardless of MSRSPV.

Programming Note

Architecture NoteProgramming Note

Programming Note

4 RT RA /// 520
0 6 11 16 21 31

4 RT UI RB 514
0 6 11 16 21 31

4 RT RA /// 1225
0 6 11 16 21 31
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Vector Add Signed, Saturate, Integer to 
Accumulator Word EVX-form

evaddssiaaw RT,RA

temp0:63 I EXTS((ACC)0:31) + EXTS((RA)0:31)
ovh I temp31 ⊕ temp32
RT0:31 I SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63)

temp0:63 I EXTS((ACC)32:63) + EXTS((RA)32:63)
ovl I temp31 ⊕ temp32
RT32:63 I SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63)

ACC0:63 I (RT)0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

Each signed-integer word element in RA is
sign-extended and added to the corresponding
sign-extended element in the accumulator saturating if
overflow occurs, and the results are placed in RT and
the accumulator. 

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Add Unsigned, Saturate, Integer to 
Accumulator Word EVX-form

evaddusiaaw RT,RA

temp0:63 I EXTZ((ACC)0:31) + EXTZ((RA)0:31)
ovh I temp31
RT0:31 I SATURATE(ovh, temp31, 0xFFFF_FFFF,

0xFFFF_FFFF, temp32:63)

temp0:63 I EXTZ((ACC)32:63) + EXTZ((RA)32:63)
ovl I temp31
RT32:63 I SATURATE(ovl, temp31, 0xFFFF_FFFF,

0xFFFF_FFFF, temp32:63)

ACC0:63 I (RT)0:63

SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

Each unsigned-integer word element in RA is
zero-extended and added to the corresponding
zero-extended element in the accumulator saturating if
overflow occurs, and the results are placed in RT and
the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Add Unsigned, Modulo, Integer to 
Accumulator Word EVX-form

evaddumiaaw RT,RA

RT0:31 I (ACC)0:31 + (RA)0:31
RT32:63 I (ACC)32:63 + (RA)32:63
ACC0:63 I (RT)0:63

Each unsigned-integer word element in RA is added to
the corresponding element in the accumulator and the
results are placed in RT and the accumulator.

Special Registers Altered: 
ACC 

Vector Add Word EVX-form

evaddw RT,RA,RB

RT0:31 I (RA)0:31 + (RB)0:31
RT32:63 I (RA)32:63 + (RB)32:63 

The corresponding elements of RA and RB are added
and the results are placed in RT. The sum is a modulo
sum.

Special Registers Altered:
None

4 RT RA /// 1217
0 6 11 16 21 31

4 RT RA /// 1216
0 6 11 16 21 31

4 RT RA /// 1224
0 6 11 16 21 31

4 RT RA RB 512
0 6 11 16 21 31
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Vector AND EVX-form

evand RT,RA,RB

RT0:31 I (RA)0:31 & (RB)0:31 
RT32:63 I (RA)32:63 & (RB)32:63

The corresponding elements of RA and RB are ANDed
bitwise and the results are placed in the corresponding
element of RT.

Special Registers Altered:
None

Vector AND with Complement EVX-form

evandc RT,RA,RB

RT0:31 I (RA)0:31 & (¬(RB)0:31) 
RT32:63 I (RA)32:63 & (¬(RB)32:63) 

The word elements of RA are ANDed bitwise with the
complement of the corresponding elements of RB. The
results are placed in the corresponding element of RT.

Special Registers Altered:
None

Vector Compare Equal EVX-form

evcmpeq BF,RA,RB

ah I (RA)0:31
al I (RA)32:63
bh I (RB)0:31
bl I (RB)32:63
if (ah = bh) then ch I 1
else ch I 0
if (al = bl) then cl I 1
else cl I 0
CR4×BF+32:4×BF+35 I ch || cl || (ch | cl) || (ch & cl)

The most significant bit in BF is set if the high-order ele-
ment of RA is equal to the high-order element of RB; it
is cleared otherwise. The next bit in BF is set if the
low-order element of RA is equal to the low-order ele-
ment of RB and cleared otherwise. The last two bits of
BF are set to the OR and AND of the result of the com-
pare of the high and low elements.

Special Registers Altered:
CR field BF

Vector Compare Greater Than Signed
EVX-form

evcmpgts BF,RA,RB

ah I (RA)0:31
al I (RA)32:63
bh I (RB)0:31
bl I (RB)32:63
if (ah > bh) then ch I 1
else ch I 0
if (al > bl) then cl I 1
else cl I 0
CR4×BF+32:4×BF+35 I ch || cl || (ch | cl) || (ch & cl)

The most significant bit in BF is set if the high-order ele-
ment of RA is greater than the high-order element of
RB; it is cleared otherwise. The next bit in BF is set if
the low-order element of RA is greater than the
low-order element of RB and cleared otherwise. The
last two bits of BF are set to the OR and AND of the
result of the compare of the high and low elements.

Special Registers Altered:
CR field BF

4 RT RA RB 529
0 6 11 16 21 31

4 RT RA RB 530
0 6 11 16 21 31

4 BF // RA RB 564
0 6 9 11 16 21 31 4 BF // RA RB 561

0 6 9 11 16 21 31
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Vector Compare Greater Than Unsigned
EVX-form

evcmpgtu BF,RA,RB

ah I (RA)0:31
al I (RA)32:63
bh I (RB)0:31
bl I (RB)32:63
if (ah >u bh) then ch I 1
else ch I 0
if (al >u bl) then cl I 1
else cl I 0
CR4×BF+32:4×BF+35 I ch || cl || (ch | cl) || (ch & cl)

The most significant bit in BF is set if the high-order ele-
ment of RA is greater than the high-order element of
RB; it is cleared otherwise. The next bit in BF is set if
the low-order element of RA is greater than the
low-order element of RB and cleared otherwise. The
last two bits of BF are set to the OR and AND of the
result of the compare of the high and low elements.

Special Registers Altered:
CR field BF

Vector Compare Less Than Signed
EVX-form

evcmplts BF,RA,RB

ah I (RA)0:31
al I (RA)32:63
bh I (RB)0:31
bl I (RB)32:63
if (ah < bh) then ch I 1
else ch I 0
if (al < bl) then cl I 1
else cl I 0
CR4×BF+32:4×BF+35 I ch || cl || (ch | cl) || (ch & cl)

The most significant bit in BF is set if the high-order ele-
ment of RA is less than the high-order element of RB; it
is cleared otherwise. The next bit in BF is set if the
low-order element of RA is less than the low-order ele-
ment of RB and cleared otherwise. The last two bits of
BF are set to the OR and AND of the result of the com-
pare of the high and low elements.

Special Registers Altered:
CR field BF

Vector Compare Less Than Unsigned
EVX-form

evcmpltu BF,RA,RB

ah I (RA)0:31
al I (RA)32:63
bh I (RB)0:31
bl I (RB)32:63
if (ah <u bh) then ch I 1
else ch I 0
if (al <u bl) then cl I 1
else cl I 0
CR4×BF+32:4×BF+35 I ch || cl || (ch | cl) || (ch & cl)

The most significant bit in BF is set if the high-order ele-
ment of RA is less than the high-order element of RB; it
is cleared otherwise. The next bit in BF is set if the
low-order element of RA is less than the low-order ele-
ment of RB and cleared otherwise. The last two bits of
BF are set to the OR and AND of the result of the com-
pare of the high and low elements.

Special Registers Altered:
CR field BF

4 BF // RA RB 560
0 6 9 11 16 21 31

4 BF // RA RB 563
0 6 9 11 16 21 31

4 BF // RA RB 562
0 6 9 11 16 21 31
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Vector Count Leading Signed Bits Word 
EVX-form

evcntlsw RT,RA

n I 0
s I (RA)n
do while n < 32

if (RA)n ≠ s then leave
n I n + 1

RT0:31 I n
n I 0
s I (RA)n+32
do while n < 32

if (RA)n+32 ≠ s then leave
n I n + 1

RT32:63 I n

The leading sign bits in each element of RA are
counted, and the respective count is placed into each
element of RT.

Special Registers Altered:
None

Vector Count Leading Zeros Word 
EVX-form

evcntlzw RT,RA

n I 0
do while n < 32

if (RA)n = 1 then leave
n I n + 1

RT0:31 I n
n I 0
do while n < 32

if (RA)n+32 = 1 then leave
n I n + 1

RT32:63 I n

The leading zero bits in each element of RA are
counted, and the respective count is placed into each
element of RT.

Special Registers Altered:
None

Vector Divide Word Signed EVX-form

evdivws RT,RA,RB

ddh I (RA)0:31
ddl I (RA)32:63
dvh I (RB)0:31
dvl I (RB)32:63
RT0:31 I ddh ÷  dvh
RT32:63 I ddl ÷  dvl
ovh I 0
ovl I 0
if ((ddh < 0) & (dvh = 0)) then

RT0:31 I 0x8000_0000
ovh I 1

else if ((ddh >= 0) & (dvh = 0)) then
RT0:31 I 0x7FFFFFFF
ovh I 1

else if (ddh = 0x8000_0000)&(dvh = 0xFFFF_FFFF) 
then

RT0:31 I 0x7FFFFFFF
ovh I 1

if ((ddl < 0) & (dvl = 0)) then
RT32:63 I 0x8000_0000
ovl I 1

else if ((ddl >= 0) & (dvl = 0)) then
RT32:63 I 0x7FFFFFFF
ovl I 1

else if (ddl = 0x8000_0000)&(dvl = 0xFFFF_FFFF) 
then

RT32:63 I 0x7FFFFFFF
ovl I 1

SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

The two dividends are the two elements of the contents
of RA. The two divisors are the two elements of the
contents of RB. The resulting two 32-bit quotients on
each element are placed into RT. The remainders are
not supplied. The operands and quotients are inter-
preted as signed integers.

Special Registers Altered:
OV OVH SOV SOVH

4 RT RA /// 526
0 6 11 16 21 31

evcntlzw is used for unsigned operands; evcntlsw
is used for signed operands.

4 RT RA /// 525
0 6 11 16 21 31

Programming Note

4 RT RA RB 1222
0 6 11 16 21 31

Note that any overflow indication is always set as a
side effect of this instruction. No form is defined
that disables the setting of the overflow bits. In case
of overflow, a saturated value is delivered into the
destination register.

Programming Note
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Vector Divide Word Unsigned EVX-form

evdivwu RT,RA,RB

ddh I (RA)0:31
ddl I(RA)32:63
dvh I (RB)0:31
dvl I (RB)32:63
RT0:31 I ddh ÷  dvh
RT32:63 I ddl ÷  dvl
ovh I 0
ovl I 0
if (dvh = 0) then

RT0:31 I 0xFFFFFFFF
ovh I 1

if (dvl = 0) then
RT32:63 I 0xFFFFFFFF
ovl I 1

SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

The two dividends are the two elements of the contents
of RA. The two divisors are the two elements of the
contents of RB. Two 32-bit quotients are formed as a
result of the division on each of the high and low ele-
ments and the quotients are placed into RT. Remain-
ders are not supplied. Operands and quotients are
interpreted as unsigned integers.

Special Registers Altered:
OV OVH SOV SOVH

Vector Equivalent EVX-form

eveqv RT,RA,RB

RT0:31 I (RA)0:31 ≡ (RB)0:31 
RT32:63 I (RA)32:63 ≡ (RB)32:63 

The corresponding elements of RA and RB are XORed
bitwise, and the complemented results are placed in
RT.

Special Registers Altered:
None

Vector Extend Sign Byte EVX-form

evextsb RT,RA

RT0:31 I EXTS((RA)24:31)
RT32:63 I EXTS((RA)56:63)

The signs of the low-order byte in each of the elements
in RA are extended, and the results are placed in RT.

Special Registers Altered:
None

Vector Extend Sign Halfword EVX-form

evextsh RT,RA

RT0:31 I EXTS((RA)16:31)
RT32:63 I EXTS((RA)48:63)

The signs of the odd halfwords in each of the elements
in RA are extended, and the results are placed in RT.

Special Registers Altered:
None

4 RT RA RB 1223
0 6 11 16 21 31

Note that any overflow indication is always set as a
side effect of this instruction. No form is defined
that disables the setting of the overflow bits. In case
of overflow, a saturated value is delivered into the
destination register.

Programming Note

4 RT RA RB 537
0 6 11 16 21 31

4 RT RA /// 522
0 6 11 16 21 31

4 RT RA /// 523
0 6 11 16 21 31
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Version 2.07 B
Vector Load Double Word into Double 
Word EVX-form

evldd RT,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×8)
RT I MEM(EA, 8)

D in the instruction mnemonic is UI × 8. The double-
word addressed by EA is loaded from memory and
placed in RT.

Special Registers Altered:
None

Vector Load Double Word into Double 
Word Indexed EVX-form

evlddx RT,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
RT I MEM(EA, 8)

The doubleword addressed by EA is loaded from mem-
ory and placed in RT.

Special Registers Altered:
None

Vector Load Double into Four Halfwords
EVX-form

evldh RT,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×8)
RT0:15 I MEM(EA, 2)
RT16:31 I MEM(EA+2,2)
RT32:47 I MEM(EA+4,2)
RT48:63 I MEM(EA+6,2)

D in the instruction mnemonic is UI × 8. The double-
word addressed by EA is loaded from memory and
placed in RT.

Special Registers Altered:
None

Vector Load Double into Four Halfwords 
Indexed EVX-form

evldhx RT,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
RT0:15 I MEM(EA, 2)
RT16:31 I MEM(EA+2,2)
RT32:47 I MEM(EA+4,2)
RT48:63 I MEM(EA+6,2)

The doubleword addressed by EA is loaded from mem-
ory and placed in RT.

Special Registers Altered:
None

4 RT RA UI 769
0 6 11 16 21 31

4 RT RA RB 768
0 6 11 16 21 31

4 RT RA UI 773
0 6 11 16 21 31

4 RT RA RB 772
0 6 11 16 21 31
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Vector Load Double into Two Words
EVX-form

evldw RT,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×8)
RT0:31 I MEM(EA, 4)
RT32:63 I MEM(EA+4, 4)

D in the instruction mnemonic is UI × 8. The double-
word addressed by EA is loaded from memory and
placed in RT.

Special Registers Altered:
None

Vector Load Double into Two Words 
Indexed EVX-form

evldwx RT,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
RT0:31 I MEM(EA, 4)
RT32:63 I MEM(EA+4, 4)

The doubleword addressed by EA is loaded from mem-
ory and placed in RT.

Special Registers Altered:
None

Vector Load Halfword into Halfwords 
Even and Splat EVX-form

evlhhesplat RT,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×2)
RT0:15 I MEM(EA,2)
RT16:31 I 0x0000
RT32:47 I MEM(EA,2)
RT48:63 I 0x0000

D in the instruction mnemonic is UI × 2. The halfword
addressed by EA is loaded from memory and placed in
the even halfwords of each element of RT. The odd
halfwords of each element of RT are set to 0.

Special Registers Altered:
None

Vector Load Halfword into Halfwords 
Even and Splat Indexed EVX-form

evlhhesplatx RT,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
RT0:15 I MEM(EA,2)
RT16:31 I 0x0000
RT32:47 I MEM(EA,2)
RT48:63 I 0x0000

The halfword addressed by EA is loaded from memory
and placed in the even halfwords of each element of
RT. The odd halfwords of each element of RT are set to
0.

Special Registers Altered:
None

4 RT RA UI 771
0 6 11 16 21 31

4 RT RA RB 770
0 6 11 16 21 31

4 RT RA UI 777
0 6 11 16 21 31

4 RT RA RB 776
0 6 11 16 21 31
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Vector Load Halfword into Halfword Odd 
Signed and Splat EVX-form

evlhhossplat RT,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×2)
RT0:31 I EXTS(MEM(EA,2))
RT32:63 I EXTS(MEM(EA,2))

D in the instruction mnemonic is UI × 2. The halfword
addressed by EA is loaded from memory and placed in
the odd halfwords sign extended in each element of RT.

Special Registers Altered:
None

Vector Load Halfword into Halfword Odd 
Signed and Splat Indexed EVX-form

evlhhossplatx RT,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
RT0:31 I EXTS(MEM(EA,2))
RT32:63 I EXTS(MEM(EA,2))

The halfword addressed by EA is loaded from memory
and placed in the odd halfwords sign extended in each
element of RT.

Special Registers Altered:
None

Vector Load Halfword into Halfword Odd 
Unsigned and Splat EVX-form

evlhhousplat RT,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×2)
RT0:31 I EXTZ(MEM(EA,2))
RT32:63 I EXTZ(MEM(EA,2))

D in the instruction mnemonic is UI × 2. The halfword
addressed by EA is loaded from memory and placed in
the odd halfwords zero-extended in each element of
RT.

Special Registers Altered:
None

Vector Load Halfword into Halfword Odd 
Unsigned and Splat Indexed EVX-form

evlhhousplatx RT,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
RT0:31 I EXTZ(MEM(EA,2))
RT32:63 I EXTZ(MEM(EA,2))

The halfword addressed by EA is loaded from memory
and placed in the odd halfwords zero-extended in each
element of RT.

Special Registers Altered:
None

4 RT RA UI 783
0 6 11 16 21 31

4 RT RA RB 782
0 6 11 16 21 31

4 RT RA UI 781
0 6 11 16 21 31

4 RT RA RB 780
0 6 11 16 21 31
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Vector Load Word into Two Halfwords 
Even EVX-form

evlwhe RT,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×4)
RT0:15 I MEM(EA,2)
RT16:31 I 0x0000
RT32:47 I MEM(EA+2,2)
RT48:63 I 0x0000

D in the instruction mnemonic is UI × 4. The word
addressed by EA is loaded from memory and placed in
the even halfwords of each element of RT. The odd
halfwords of each element of RT are set to 0.

Special Registers Altered:
None

Vector Load Word into Two Halfwords 
Even Indexed EVX-form

evlwhex RT,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
RT0:15 I MEM(EA,2)
RT16:31 I 0x0000
RT32:47 I MEM(EA+2,2)
RT48:63 I 0x0000

The word addressed by EA is loaded from memory and
placed in the even halfwords in each element of RT.
The odd halfwords of each element of RT are set to 0.

Special Registers Altered:
None

Vector Load Word into Two Halfwords 
Odd Signed (with sign extension) 

EVX-form

evlwhos RT,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×4)
RT0:31 I EXTS(MEM(EA,2))
RT32:63 I EXTS(MEM(EA+2,2))

D in the instruction mnemonic is UI × 4. The word
addressed by EA is loaded from memory and placed in
the odd halfwords sign extended in each element of RT.

Special Registers Altered:
None

Vector Load Word into Two Halfwords 
Odd Signed Indexed (with sign extension)

EVX-form

evlwhosx RT,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
RT0:31 I EXTS(MEM(EA,2))
RT32:63 I EXTS(MEM(EA+2,2))

The word addressed by EA is loaded from memory and
placed in the odd halfwords sign extended in each ele-
ment of RT.

Special Registers Altered:
None

4 RT RA UI 785
0 6 11 16 21 31

4 RT RA RB 784
0 6 11 16 21 31

4 RT RA UI 791
0 6 11 16 21 31

4 RT RA RB 790
0 6 11 16 21 31
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Vector Load Word into Two Halfwords 
Odd Unsigned (zero-extended) EVX-form

evlwhou RT,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×4)
RT0:31 I EXTZ(MEM(EA,2))
RT32:63 I EXTZ(MEM(EA+2,2))

D in the instruction mnemonic is UI × 4. The word
addressed by EA is loaded from memory and placed in
the odd halfwords zero-extended in each element of
RT.

Special Registers Altered:
None

Vector Load Word into Two Halfwords 
Odd Unsigned Indexed (zero-extended)

EVX-form

evlwhoux RT,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
RT0:31 I EXTZ(MEM(EA,2))
RT32:63 I EXTZ(MEM(EA+2,2))

The word addressed by EA is loaded from memory and
placed in the odd halfwords zero-extended in each ele-
ment of RT.

Special Registers Altered:
None

Vector Load Word into Two Halfwords and 
Splat EVX-form

evlwhsplat RT,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×4)
RT0:15 I MEM(EA,2)
RT16:31 I MEM(EA,2)
RT32:47 I MEM(EA+2,2)
RT48:63 I MEM(EA+2,2)

D in the instruction mnemonic is UI × 4. The word
addressed by EA is loaded from memory and placed in
both the even and odd halfwords in each element of RT.

Special Registers Altered:
None

Vector Load Word into Two Halfwords and 
Splat Indexed EVX-form

evlwhsplatx RT,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
RT0:15 I MEM(EA,2)
RT16:31 I MEM(EA,2)
RT32:47 I MEM(EA+2,2)
RT48:63 I MEM(EA+2,2)

The word addressed by EA is loaded from memory and
placed in both the even and odd halfwords in each ele-
ment of RT.

Special Registers Altered:
None

4 RT RA UI 789
0 6 11 16 21 31 4 RT RA RB 788

0 6 11 16 21 31

4 RT RA UI 797
0 6 11 16 21 31

4 RT RA RB 796
0 6 11 16 21 31
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Vector Load Word into Word and Splat
EVX-form

evlwwsplat RT,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×4)
RT0:31 I MEM(EA,4)
RT32:63 I MEM(EA,4)

D in the instruction mnemonic is UI × 4. The word
addressed by EA is loaded from memory and placed in
both elements of RT.

Special Registers Altered:
None

Vector Load Word into Word and Splat 
Indexed EVX-form

evlwwsplatx RT,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
RT0:31 I MEM(EA,4)
RT32:63 I MEM(EA,4)

The word addressed by EA is loaded from memory and
placed in both elements of RT.

Special Registers Altered:
None

Vector Merge High EVX-form

evmergehi RT,RA,RB

RT0:31 I (RA)0:31
RT32:63 I (RB)0:31

The high-order elements of RA and RB are merged and
placed in RT. 

Special Registers Altered:
None

 

Vector Merge Low EVX-form

evmergelo RT,RA,RB

RT0:31 I (RA)32:63
RT32:63 I (RB)32:63

The low-order elements of RA and RB are merged and
placed in RT.

Special Registers Altered:
None

4 RT RA UI 793
0 6 11 16 21 31

4 RT RA RB 792
0 6 11 16 21 31

4 RT RA RB 556
0 6 11 16 21 31

A vector splat high can be performed by specifying
the same register in RA and RB.

Programming Note

4 RT RA RB 557
0 6 11 16 21 31

A vector splat low can be performed by specifying
the same register in RA and RB.

Programming Note
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Vector Merge High/Low EVX-form

evmergehilo RT,RA,RB

RT0:31 I (RA)0:31
RT32:63 I (RB)32:63

The high-order element of RA and the low-order ele-
ment of RB are merged and placed in RT.

Special Registers Altered:
None

Vector Merge Low/High EVX-form

evmergelohi RT,RA,RB

RT0:31 I (RA)32:63
RT32:63 I (RB)0:31

The low-order element of RA and the high-order ele-
ment of RB are merged and placed in RT.

Special Registers Altered:
None

Vector Multiply Halfwords, Even, Guarded, 
Signed, Modulo, Fractional and 
Accumulate EVX-form

evmhegsmfaa RT,RA,RB 

temp0:63 I (RA)32:47 ×gsf (RB)32:47
RT0:63 I (ACC)0:63 + temp0:63 
ACC0:63 I (RT)0:63

The corresponding low even-numbered, halfword
signed fractional elements in RA and RB are multiplied
using guarded signed fractional multiplication produc-
ing a sign extended 64-bit fractional product with the
decimal between bits 32 and 33. The product is added
to the contents of the 64-bit accumulator and the result
is placed in RT and the accumulator

Special Registers Altered:
ACC

 

Vector Multiply Halfwords, Even, Guarded, 
Signed, Modulo, Fractional and 
Accumulate Negative EVX-form

evmhegsmfan RT,RA,RB 

temp0:63 I (RA)32:47 ×gsf (RB)32:47
RT0:63 I (ACC)0:63 - temp0:63
ACC0:63 I (RT)0:63

The corresponding low even-numbered, halfword
signed fractional elements in RA and RB are multiplied
using guarded signed fractional multiplication produc-
ing a sign extended 64-bit fractional product with the
decimal between bits 32 and 33. The product is sub-
tracted from the contents of the 64-bit accumulator and
the result is placed in RT and the accumulator.

Special Registers Altered:
ACC

 

4 RT RA RB 558
0 6 11 16 21 31

With appropriate specification of RA and RB,
evmergehi, evmergelo, evmergehilo, and
evmergelohi provide a full 32-bit permute of two
source operands.

Programming Note

4 RT RA RB 559
0 6 11 16 21 31

A vector swap can be performed by specifying the
same register in RA and RB.

Programming Note

4 RT RA RB 1323
0 6 11 16 21 31

If the two input operands are both -1.0, the interme-
diate product is represented as +1.0.

Note

4 RT RA RB 1451
0 6 11 16 21 31

If the two input operands are both -1.0, the interme-
diate product is represented as +1.0.

Note
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Version 2.07 B
Vector Multiply Halfwords, Even, Guarded, 
Signed, Modulo, Integer and Accumulate
EVX-form

evmhegsmiaa RT,RA,RB 

temp0:31 I (RA)32:47 ×si (RB)32:47
temp0:63 I EXTS(temp0:31)
RT0:63 I (ACC)0:63 + temp0:63
ACC0:63 I (RT)0:63

The corresponding low even-numbered halfword
signed-integer elements in RA and RB are multiplied.
The intermediate product is sign-extended and added
to the contents of the 64-bit accumulator, and the
resulting sum is placed in RT and into the accumulator.

Special Registers Altered:
ACC

Vector Multiply Halfwords, Even, Guarded, 
Signed, Modulo, Integer and Accumulate 
Negative EVX-form

evmhegsmian RT,RA,RB 

temp0:31 I (RA)32:47 ×si (RB)32:47
temp0:63 I EXTS(temp0:31)
RT0:63 I (ACC)0:63 - temp0:63
ACC0:63 I (RT)0:63

The corresponding low even-numbered halfword
signed-integer elements in RA and RB are multiplied.
The intermediate product is sign-extended and sub-
tracted from the contents of the 64-bit accumulator, and
the result is placed in RT and into the accumulator.

Special Registers Altered:
ACC

Vector Multiply Halfwords, Even, Guarded, 
Unsigned, Modulo, Integer and 
Accumulate EVX-form

evmhegumiaa RT,RA,RB 

temp0:31 I (RA)32:47 ×ui (RB)32:47
temp0:63 I EXTZ(temp0:31)
RT0:63 I (ACC)0:63 + temp0:63
ACC0:63 I (RT)0:63

The corresponding low even-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The intermediate product is zero-extended and
added to the contents of the 64-bit accumulator. The
resulting sum is placed in RT and into the accumulator.

Special Registers Altered:
ACC

Vector Multiply Halfwords, Even, Guarded, 
Unsigned, Modulo, Integer and 
Accumulate Negative EVX-form

evmhegumian RT,RA,RB 

temp0:31 I (RA)32:47 ×ui (RB)32:47
temp0:63 I EXTZ(temp0:31)
RT0:63 I (ACC)0:63 - temp0:63
ACC0:63 I (RT)0:63

The corresponding low even-numbered unsigned-inte-
ger elements in RA and RB are multiplied. The interme-
diate product is zero-extended and subtracted from the
contents of the 64-bit accumulator. The result is placed
in RT and into the accumulator.

Special Registers Altered:
ACC

4 RT RA RB 1321
0 6 11 16 21 31

4 RT RA RB 1449
0 6 11 16 21 31

4 RT RA RB 1320
0 6 11 16 21 31

4 RT RA RB 1448
0 6 11 16 21 31
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Vector Multiply Halfwords, Even, Signed, 
Modulo, Fractional EVX-form

evmhesmf RT,RA,RB

RT0:31 I (RA)0:15 ×sf (RB)0:15 
RT32:63I (RA)32:47 ×sf (RB)32:47 

The corresponding even-numbered halfword signed
fractional elements in RA and RB are multiplied then
placed into the corresponding words of RT. 

Special Registers Altered: 
None

Vector Multiply Halfwords, Even, Signed, 
Modulo, Fractional to Accumulator

EVX-form

evmhesmfa RT,RA,RB 

RT0:31 I (RA)0:15 ×sf (RB)0:15 

RT32:63I (RA)32:47 ×sf (RB)32:47 
ACC0:63 I (RT)0:63

The corresponding even-numbered halfword signed
fractional elements in RA and RB are multiplied then
placed into the corresponding words of RT and into the
accumulator.

Special Registers Altered: 
ACC

Vector Multiply Halfwords, Even, Signed, 
Modulo, Fractional and Accumulate into 
Words EVX-form

evmhesmfaaw RT,RA,RB 

temp0:31 I (RA)0:15 ×sf (RB)0:15 
RT0:31 I (ACC)0:31 + temp0:31 
temp0:31 I (RA)32:47 ×sf (RB)32:47 
RT32:63 I (ACC)32:63 + temp0:31 
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding even-numbered halfword signed fractional
elements in RA and RB are multiplied. The 32 bits of
each intermediate product are added to the contents of
the accumulator words to form intermediate sums,
which are placed into the corresponding RT words and
into the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Even, Signed, 
Modulo, Fractional and Accumulate 
Negative into Words EVX-form

evmhesmfanw RT,RA,RB 

temp0:31 I (RA)0:15 ×sf (RB)0:15 
RT0:31 I (ACC)0:31 - temp0:31

temp0:31 I (RA)32:47 ×sf (RB)32:47 
RT32:63I (ACC)32:63 - temp0:31
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding even-numbered halfword signed fractional
elements in RA and RB are multiplied. The 32-bit inter-
mediate products are subtracted from the contents of
the accumulator words to form intermediate differ-
ences, which are placed into the corresponding RT
words and into the accumulator. 

Special Registers Altered: 
ACC 

4 RT RA RB 1035
0 6 11 16 21 31 4 RT RA RB 1067

0 6 11 16 21 31

4 RT RA RB 1291
0 6 11 16 21 31

4 RT RA RB 1419
0 6 11 16 21 31
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Vector Multiply Halfwords, Even, Signed, 
Modulo, Integer EVX-form

evmhesmi RT,RA,RB 

RT0:31 I (RA)0:15 ×si (RB)0:15 
RT32:63 I (RA)32:47 ×si (RB)32:47 

The corresponding even-numbered halfword
signed-integer elements in RA and RB are multiplied.
The two 32-bit products are placed into the correspond-
ing words of RT. 

Special Registers Altered: 
None

Vector Multiply Halfwords, Even, Signed, 
Modulo, Integer to AccumulatorEVX-form

evmhesmia RT,RA,RB

RT0:31 I (RA)0:15 ×si (RB)0:15 
RT32:63 I (RA)32:47 ×si (RB)32:47 
ACC0:63 I (RT)0:63

The corresponding even-numbered halfword
signed-integer elements in RA and RB are multiplied.
The two 32-bit products are placed into the correspond-
ing words of RT and into the accumulator. 

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Even, Signed, 
Modulo, Integer and Accumulate into 
Words EVX-form

evmhesmiaaw RT,RA,RB 

temp0:31 I (RA)0:15 ×si (RB)0:15 
RT0:31 I (ACC)0:31 + temp0:31
temp0:31 I (RA)32:47 ×si (RB)32:47 
RT32:63 I (ACC)32:63 + temp0:31
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding even-numbered halfword signed-integer ele-
ments in RA and RB are multiplied. Each intermediate
32-bit product is added to the contents of the accumu-
lator words to form intermediate sums, which are
placed into the corresponding RT words and into the
accumulator. 

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Even, Signed, 
Modulo, Integer and Accumulate Negative 
into Words EVX-form

evmhesmianw RT,RA,RB 

temp0:31 I (RA)0:15 ×si (RB)0:15 
RT0:31 I (ACC)0:31 - temp0:31
temp0:31 I (RA)32:47 ×si (RB)32:47 
RT32:63 I (ACC)32:63 - temp0:31
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding even-numbered halfword signed-integer ele-
ments in RA and RB are multiplied. Each intermediate
32-bit product is subtracted from the contents of the
accumulator words to form intermediate differences,
which are placed into the corresponding RT words and
into the accumulator. 

Special Registers Altered: 
ACC 

4 RT RA RB 1033
0 6 11 16 21 31

4 RT RA RB 1065
0 6 11 16 21 31

4 RT RA RB 1289
0 6 11 16 21 31

4 RT RA RB 1417
0 6 11 16 21 31
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Vector Multiply Halfwords, Even, Signed, 
Saturate, Fractional EVX-form

evmhessf RT,RA,RB

temp0:31 I (RA)0:15 ×sf (RB)0:15 
if ((RA)0:15 = 0x8000) & ((RB)0:15 = 0x8000) then

RT0:31 I 0x7FFF_FFFF 
movh I 1

else
RT0:31 I temp0:31
movh I 0

temp0:31 I (RA)32:47 ×sf (RB)32:47 
if ((RA)32:47 = 0x8000) & ((RB)32:47 = 0x8000) then

RT32:63 I 0x7FFF_FFFF 
movl I 1

else
RT32:63 I temp0:31
movl I 0

SPEFSCROVH I movh
SPEFSCROV I movl
SPEFSCRSOVH I SPEFSCRSOVH | movh
SPEFSCRSOV I SPEFSCRSOV | movl

The corresponding even-numbered halfword signed
fractional elements in RA and RB are multiplied. The 32
bits of each product are placed into the corresponding
words of RT. If both inputs are -1.0, the result saturates
to the largest positive signed fraction. 

Special Registers Altered:
OV OVH SOV SOVH

Vector Multiply Halfwords, Even, Signed, 
Saturate, Fractional to Accumulator

EVX-form

evmhessfa RT,RA,RB 

temp0:31 I (RA)0:15 ×sf (RB)0:15 
if ((RA)0:15 = 0x8000) & ((RB)0:15 = 0x8000) then

RT0:31 I 0x7FFF_FFFF 
movh I 1

else
RT0:31 I temp0:31
movh I 0

temp0:31 I (RA)32:47 ×sf (RB)32:47 
if ((RA)32:47 = 0x8000) & ((RB)32:47 = 0x8000) then

RT32:63 I 0x7FFF_FFFF 
movl I 1

else
RT32:63 I temp0:31
movl I 0

ACC0:63 I (RT)0:63
SPEFSCROVH I movh
SPEFSCROV I movl
SPEFSCRSOVH I SPEFSCRSOVH | movh
SPEFSCRSOV I SPEFSCRSOV | movl

The corresponding even-numbered halfword signed
fractional elements in RA and RB are multiplied. The 32
bits of each product are placed into the corresponding
words of RT and into the accumulator. If both inputs are
-1.0, the result saturates to the largest positive signed
fraction. 

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1027
0 6 11 16 21 31 4 RT RA RB 1059

0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Halfwords, Even, Signed, 
Saturate, Fractional and Accumulate into 
Words EVX-form

evmhessfaaw RT,RA,RB 

temp0:31 I (RA)0:15 ×sf (RB)0:15 
if ((RA)0:15 = 0x8000) & ((RB)0:15 = 0x8000) then

temp0:31 I 0x7FFF_FFFF 
movh I 1

else
movh I 0

temp0:63 I EXTS((ACC)0:31) + EXTS(temp0:31)
ovh I (temp31 ⊕ temp32)
RT0:31 I SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 

temp0:31 I (RA)32:47 ×sf (RB)32:47 
if ((RA)32:47 = 0x8000) & ((RB)32:47 = 0x8000) then

temp0:31 I 0x7FFF_FFFF 
movl I 1

else
movl I 0

temp0:63 I EXTS((ACC)32:63) + EXTS(temp0:31)
ovl I (temp31 ⊕ temp32)
RT32:63 I SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh | movh
SPEFSCROV I ovl| movl
SPEFSCRSOVH I SPEFSCRSOVH | ovh | movh
SPEFSCRSOV I SPEFSCRSOV | ovl| movl

The corresponding even-numbered halfword signed
fractional elements in RA and RB are multiplied produc-
ing a 32-bit product. If both inputs are -1.0, the result
saturates to 0x7FFF_FFFF. Each 32-bit product is then
added to the corresponding word in the accumulator
saturating if overflow occurs, and the result is placed in
RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Even, Signed, 
Saturate, Fractional and Accumulate 
Negative into Words EVX-form

evmhessfanw RT,RA,RB 

temp0:31 I (RA)0:15 ×sf (RB)0:15 
if ((RA)0:15 = 0x8000) & ((RB)0:15 = 0x8000) then

temp0:31 I 0x7FFF_FFFF 
movh I 1

else
movh I 0

temp0:63 I EXTS((ACC)0:31) - EXTS(temp0:31)
ovh I (temp31 ⊕ temp32)
RT0:31 I SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:31 I (RA)32:47 ×sf (RB)32:47 
if ((RA)32:47 = 0x8000) & ((RB)32:47 = 0x8000) then

temp0:31 I 0x7FFF_FFFF 
movl I 1

else
movl I 0

temp0:63 I EXTS((ACC)32:63) - EXTS(temp0:31)
ovl I (temp31 ⊕ temp32)
RT32:63 I SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh | movh
SPEFSCROV I ovl| movl
SPEFSCRSOVH I SPEFSCRSOVH | ovh | movh
SPEFSCRSOV I SPEFSCRSOV | ovl| movl

The corresponding even-numbered halfword signed
fractional elements in RA and RB are multiplied produc-
ing a 32-bit product. If both inputs are -1.0, the result
saturates to 0x7FFF_FFFF. Each 32-bit product is then
subtracted from the corresponding word in the accumu-
lator saturating if overflow occurs, and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1283
0 6 11 16 21 31

4 RT RA RB 1411
0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Halfwords, Even, Signed, 
Saturate, Integer and Accumulate into 
Words EVX-form

evmhessiaaw RT,RA,RB 

temp0:31 I (RA)0:15 ×si (RB)0:15 
temp0:63 I EXTS((ACC)0:31) + EXTS(temp0:31)
ovh I (temp31 ⊕ temp32)
RT0:31 I SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 

temp0:31 I (RA)32:47 ×si (RB)32:47 
temp0:63 I EXTS((ACC)32:63) + EXTS(temp0:31)
ovl I (temp31 ⊕ temp32)
RT32:63 I SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

The corresponding even-numbered halfword
signed-integer elements in RA and RB are multiplied
producing a 32-bit product. Each 32-bit product is then
added to the corresponding word in the accumulator
saturating if overflow occurs, and the result is placed in
RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Even, Signed, 
Saturate, Integer and Accumulate 
Negative into Words EVX-form

evmhessianw RT,RA,RB 

temp0:31 I (RA)0:15 ×si (RB)0:15 
temp0:63 I EXTS((ACC)0:31) - EXTS(temp0:31)
ovh I (temp31 ⊕ temp32)
RT0:31 I SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:31 I (RA)32:47 ×si (RB)32:47 
temp0:63 I EXTS((ACC)32:63) - EXTS(temp0:31)
ovl I (temp31 ⊕ temp32)
RT32:63 I SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 I RT0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

The corresponding even-numbered halfword
signed-integer elements in RA and RB are multiplied
producing a 32-bit product. Each 32-bit product is then
subtracted from the corresponding word in the accumu-
lator saturating if overflow occurs, and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1281
0 6 11 16 21 31

4 RT RA RB 1409
0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Halfwords, Even, 
Unsigned, Modulo, Integer EVX-form

evmheumi RT,RA,RB 

RT0:31 I (RA)0:15 ×ui (RB)0:15 
RT32:63 I (RA)32:47 ×ui (RB)32:47 

The corresponding even-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The two 32-bit products are placed into the corre-
sponding words of RT.

Special Registers Altered:
None

Vector Multiply Halfwords, Even, 
Unsigned, Modulo, Integer to 
Accumulator EVX-form

evmheumia RT,RA,RB

RT0:31 I (RA)0:15 ×ui (RB)0:15 
RT32:63 I (RA)32:47 ×ui (RB)32:47 
ACC0:63 I (RT)0:63

The corresponding even-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The two 32-bit products are placed into RT and
into the accumulator.

Special Registers Altered:
ACC

Vector Multiply Halfwords, Even, 
Unsigned, Modulo, Integer and 
Accumulate into Words EVX-form

evmheumiaaw RT,RA,RB 

temp0:31 I (RA)0:15 ×ui (RB)0:15
RT0:31 I (ACC)0:31 + temp0:31
temp0:31 I (RA)32:47 ×ui (RB)32:47
RT32:63 I (ACC)32:63 + temp0:31
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding even-numbered halfword unsigned-integer
elements in RA and RB are multiplied. Each intermedi-
ate product is added to the contents of the correspond-
ing accumulator words and the sums are placed into
the corresponding RT and accumulator words. 

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Even, 
Unsigned, Modulo, Integer and 
Accumulate Negative into Words

EVX-form

evmheumianw RT,RA,RB

temp0:31 I (RA)0:15 ×ui (RB)0:15
RT0:31 I (ACC)0:31 - temp0:31
temp0:31 I (RA)32:47 ×ui (RB)32:47
RT32:63 I (ACC)32:63 - temp0:31
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding even-numbered halfword unsigned-integer
elements in RA and RB are multiplied. Each intermedi-
ate product is subtracted from the contents of the corre-
sponding accumulator words. The differences are
placed into the corresponding RT and accumulator
words. 

Special Registers Altered: 
ACC 

4 RT RA RB 1032
0 6 11 16 21 31 4 RT RA RB 1064

0 6 11 16 21 31

4 RT RA RB 1288
0 6 11 16 21 31 4 RT RA RB 1416

0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Halfwords, Even, 
Unsigned, Saturate, Integer and 
Accumulate into Words EVX-form

evmheusiaaw RT,RA,RB 

temp0:31 I (RA)0:15 ×ui (RB)0:15 
temp0:63 I EXTZ((ACC)0:31) + EXTZ(temp0:31)
ovh I temp31
RT0:31 I SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF,

temp32:63) 
temp0:31 I (RA)32:47 ×ui (RB)32:47 
temp0:63 I EXTZ((ACC)32:63) + EXTZ(temp0:31)
ovl I temp31
RT32:63 I SATURATE(ovl, 0, 0xFFFF_FFFF,

0xFFFF_FFFF, temp32:63)
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

For each word element in the accumulator, correspond-
ing even-numbered halfword unsigned-integer ele-
ments in RA and RB are multiplied producing a 32-bit
product. Each 32-bit product is then added to the corre-
sponding word in the accumulator saturating if overflow
occurs, and the result is placed in RT and the accumu-
lator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Even, 
Unsigned, Saturate, Integer and 
Accumulate Negative into Words

EVX-form

evmheusianw RT,RA,RB 

temp0:31 I (RA)0:15 ×ui (RB)0:15 
temp0:63 I EXTZ((ACC)0:31) - EXTZ(temp0:31)
ovh I temp31
RT0:31 I SATURATE(ovh, 0, 0x0000_0000, 0x0000_0000,

temp32:63) 
temp0:31 I (RA)32:47 ×ui (RB)32:47 
temp0:63 I EXTZ((ACC)32:63) - EXTZ(temp0:31)
ovl I temp31
RT32:63 I SATURATE(ovl, 0, 0x0000_0000,

0x0000_0000, temp32:63)
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

For each word element in the accumulator, correspond-
ing even-numbered halfword unsigned-integer ele-
ments in RA and RB are multiplied producing a 32-bit
product. Each 32-bit product is then subtracted from
the corresponding word in the accumulator saturating if
overflow occurs, and the result is placed in RT and the
accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1280
0 6 11 16 21 31 4 RT RA RB 1408

0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Halfwords, Odd, Guarded, 
Signed, Modulo, Fractional and 
Accumulate EVX-form

evmhogsmfaa RT,RA,RB 

temp0:63 I (RA)48:63 ×gsf (RB)48:63
RT0:63 I (ACC)0:63 + temp0:63
ACC0:63 I (RT)0:63

The corresponding low odd-numbered, halfword signed
fractional elements in RA and RB are multiplied using
guarded signed fractional multiplication producing a
sign extended 64-bit fractional product with the decimal
between bits 32 and 33. The product is added to the
contents of the 64-bit accumulator and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC

 

Vector Multiply Halfwords, Odd, Guarded, 
Signed, Modulo, Fractional and 
Accumulate Negative EVX-form

evmhogsmfan RT,RA,RB 

temp0:63 I (RA)48:63 ×gsf (RB)48:63
RT0:63 I (ACC)0:63 - temp0:63
ACC0:63 I (RT)0:63

The corresponding low odd-numbered, halfword signed
fractional elements in RA and RB are multiplied using
guarded signed fractional multiplication producing a
sign extended 64-bit fractional product with the decimal
between bits 32 and 33. The product is subtracted from
the contents of the 64-bit accumulator and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC

 

Vector Multiply Halfwords, Odd, Guarded, 
Signed, Modulo, Integer and Accumulate

EVX-form

evmhogsmiaa RT,RA,RB 

temp0:31 I (RA)48:63 ×si (RB)48:63
temp0:63 I EXTS(temp0:31)
RT0:63 I (ACC)0:63 + temp0:63
ACC0:63 I (RT)0:63

The corresponding low odd-numbered halfword
signed-integer elements in RA and RB are multiplied.
The intermediate product is sign-extended to 64 bits
then added to the contents of the 64-bit accumulator,
and the result is placed in RT and into the accumulator.

Special Registers Altered: 
ACC

Vector Multiply Halfwords, Odd, Guarded, 
Signed, Modulo, Integer and Accumulate 
Negative EVX-form

evmhogsmian RT,RA,RB 

temp0:31 I (RA)48:63 ×si (RB)48:63
temp0:63 I EXTS(temp0:31)
RT0:63 I (ACC)0:63 - temp0:63
ACC0:63 I (RT)0:63

The corresponding low odd-numbered halfword
signed-integer elements in RA and RB are multiplied.
The intermediate product is sign-extended to 64 bits
then subtracted from the contents of the 64-bit accumu-
lator, and the result is placed in RT and into the accu-
mulator.

Special Registers Altered: 
ACC

4 RT RA RB 1327
0 6 11 16 21 31

If the two input operands are both -1.0, the interme-
diate product is represented as +1.0.

Note

4 RT RA RB 1455
0 6 11 16 21 31

If the two input operands are both -1.0, the interme-
diate product is represented as +1.0.

Note

4 RT RA RB 1325
0 6 11 16 21 31

4 RT RA RB 1453
0 6 11 16 21 31
Chapter 8. Signal Processing Engine (SPE) 615



Version 2.07 B
Vector Multiply Halfwords, Odd, Guarded, 
Unsigned, Modulo, Integer and 
Accumulate EVX-form

evmhogumiaa RT,RA,RB 

temp0:31 I (RA)48:63 ×ui (RB)48:63
temp0:63 I EXTZ(temp0:31)
RT0:63 I (ACC)0:63 + temp0:63
ACC0:63 I (RT)0:63

The corresponding low odd-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The intermediate product is zero-extended to 64
bits then added to the contents of the 64-bit accumula-
tor, and the result is placed in RT and into the accumu-
lator.

Special Registers Altered: 
ACC

Vector Multiply Halfwords, Odd, Guarded, 
Unsigned, Modulo, Integer and 
Accumulate Negative EVX-form

evmhogumian RT,RA,RB 

temp0:31 I (RA)48:63 ×ui (RB)48:63
temp0:63 I EXTZ(temp0:31)
RT0:63 I (ACC)0:63 - temp0:63
ACC0:63 I (RT)0:63

The corresponding low odd-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The intermediate product is zero-extended to 64
bits then subtracted from the contents of the 64-bit
accumulator, and the result is placed in RT and into the
accumulator.

Special Registers Altered: 
ACC

Vector Multiply Halfwords, Odd, Signed, 
Modulo, Fractional EVX-form

evmhosmf RT,RA,RB 

RT0:31 I (RA)16:31 ×sf (RB)16:31 
RT32:63 I (RA)48:63 ×sf (RB)48:63 

The corresponding odd-numbered, halfword signed
fractional elements in RA and RB are multiplied. Each
product is placed into the corresponding words of RT. 

Special Registers Altered: 
None

Vector Multiply Halfwords, Odd, Signed, 
Modulo, Fractional to Accumulator

EVX-form

evmhosmfa RT,RA,RB 

RT0:31 I (RA)16:31 ×sf (RB)16:31 
RT32:63 I (RA)48:63 ×sf (RB)48:63 
ACC0:63 I (RT)0:63

The corresponding odd-numbered, halfword signed
fractional elements in RA and RB are multiplied. Each
product is placed into the corresponding words of RT.
and into the accumulator.

Special Registers Altered: 
ACC

4 RT RA RB 1324
0 6 11 16 21 31

4 RT RA RB 1452
0 6 11 16 21 31

4 RT RA RB 1039
0 6 11 16 21 31 4 RT RA RB 1071

0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Halfwords, Odd, Signed, 
Modulo, Fractional and Accumulate into 
Words EVX-form

evmhosmfaaw RT,RA,RB

temp0:31 I (RA)16:31 ×sf (RB)16:31 
RT0:31 I (ACC)0:31 + temp0:31
temp0:31 I (RA)48:63 ×sf (RB)48:63 
RT32:63 I (ACC)32:63 + temp0:31
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding odd-numbered halfword signed fractional ele-
ments in RA and RB are multiplied. The 32 bits of each
intermediate product are added to the contents of the
corresponding accumulator word and the results are
placed into the corresponding RT words and into the
accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Odd, Signed, 
Modulo, Fractional and Accumulate 
Negative into Words EVX-form

evmhosmfanw RT,RA,RB 

temp0:31 I (RA)16:31 ×sf (RB)16:31 
RT0:31 I (ACC)0:31 - temp0:31
temp0:31 I (RA)48:63 ×sf (RB)48:63 
RT32:63 I (ACC)32:63 - temp0:31
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding odd-numbered halfword signed fractional ele-
ments in RA and RB are multiplied. The 32 bits of each
intermediate product are subtracted from the contents
of the corresponding accumulator word and the results
are placed into the corresponding RT words and into
the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Odd, Signed, 
Modulo, Integer EVX-form

evmhosmi RT,RA,RB 

RT0:31 I (RA)16:31 ×si (RB)16:31 
RT32:63 I (RA)48:63 ×si (RB)48:63 

The corresponding odd-numbered halfword
signed-integer elements in RA and RB are multiplied.
The two 32-bit products are placed into the correspond-
ing words of RT. 

Special Registers Altered: 
None

Vector Multiply Halfwords, Odd, Signed, 
Modulo, Integer to AccumulatorEVX-form

evmhosmia RT,RA,RB 

RT0:31 I (RA)16:31 ×si (RB)16:31 
RT32:63 I (RA)48:63 ×si (RB)48:63 
ACC0:63 I (RT)0:63

The corresponding odd-numbered halfword
signed-integer elements in RA and RB are multiplied.
The two 32-bit products are placed into the correspond-
ing words of RT and into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1295
0 6 11 16 21 31

4 RT RA RB 1423
0 6 11 16 21 31

4 RT RA RB 1037
0 6 11 16 21 31

4 RT RA RB 1069
0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Halfwords, Odd, Signed, 
Modulo, Integer and Accumulate into 
Words EVX-form

evmhosmiaaw RT,RA,RB 

temp0:31 I (RA)16:31 ×si (RB)16:31 
RT0:31 I (ACC)0:31 + temp0:31
temp0:31 I (RA)48:63 ×si (RB)48:63 
RT32:63 I (ACC)32:63 + temp0:31
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding odd-numbered halfword signed-integer ele-
ments in RA and RB are multiplied. Each intermediate
32-bit product is added to the contents of the corre-
sponding accumulator word and the results are placed
into the corresponding RT words and into the accumu-
lator.

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Odd, Signed, 
Modulo, Integer and Accumulate Negative 
into Words EVX-form

evmhosmianw RT,RA,RB 

temp0:31 I(RA)16:31 ×si (RB)16:31 
RT0:31 I (ACC)0:31 - temp0:31
temp0:31 I (RA)48:63 ×si (RB)48:63 
RT32:63 I (ACC)32:63 - temp0:31
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding odd-numbered halfword signed-integer ele-
ments in RA and RB are multiplied. Each intermediate
32-bit product is subtracted from the contents of the
corresponding accumulator word and the results are
placed into the corresponding RT words and into the
accumulator.

Special Registers Altered: 
ACC

4 RT RA RB 1293
0 6 11 16 21 31

4 RT RA RB 1421
0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Halfwords, Odd, Signed, 
Saturate, Fractional EVX-form

evmhossf RT,RA,RB 

temp0:31 I (RA)16:31 ×sf (RB)16:31 
if ((RA)16:31 = 0x8000) & ((RB)16:31 = 0x8000) then

RT0:31 I 0x7FFF_FFFF 
movh I 1

else
RT0:31 I temp0:31
movh I 0

temp0:31 I (RA)48:63 ×sf (RB)48:63 
if ((RA)48:63 = 0x8000) & ((RB)48:63 = 0x8000) then

RT32:63 I 0x7FFF_FFFF 
movl I 1

else
RT32:63 I temp0:31
movl I 0

SPEFSCROVH I movh
SPEFSCROV I movl
SPEFSCRSOVH I SPEFSCRSOVH | movh
SPEFSCRSOV I SPEFSCRSOV | movl

The corresponding odd-numbered halfword signed
fractional elements in RA and RB are multiplied. The 32
bits of each product are placed into the corresponding
words of RT. If both inputs are -1.0, the result saturates
to the largest positive signed fraction. 

Special Registers Altered: 
OV OVH SOV SOVH

Vector Multiply Halfwords, Odd, Signed, 
Saturate, Fractional to Accumulator

EVX-form

evmhossfa RT,RA,RB 

temp0:31 I (RA)16:31 ×sf (RB)16:31 
if ((RA)16:31 = 0x8000) & ((RB)16:31 = 0x8000) then

RT0:31 I 0x7FFF_FFFF 
movh I 1

else
RT0:31 I temp0:31
movh I 0

temp0:31 I (RA)48:63 ×sf (RB)48:63 
if ((RA)48:63 = 0x8000) & ((RB)48:63 = 0x8000) then

RT32:63 I 0x7FFF_FFFF 
movl I 1

else
RT32:63 I temp0:31
movl I 0

ACC0:63 I (RT)0:63
SPEFSCROVH I movh
SPEFSCROV I movl
SPEFSCRSOVH I SPEFSCRSOVH | movh
SPEFSCRSOV I SPEFSCRSOV | movl

The corresponding odd-numbered halfword signed
fractional elements in RA and RB are multiplied. The 32
bits of each product are placed into the corresponding
words of RT and into the accumulator. If both inputs are
-1.0, the result saturates to the largest positive signed
fraction. 

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1031
0 6 11 16 21 31 4 RT RA RB 1063

0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Halfwords, Odd, Signed, 
Saturate, Fractional and Accumulate into 
Words EVX-form

evmhossfaaw RT,RA,RB 

temp0:31 I (RA)16:31 ×sf (RB)16:31 
if ((RA)16:31 = 0x8000) & ((RB)16:31 = 0x8000) then

temp0:31 I 0x7FFF_FFFF 
movh I 1

else
movh I 0

temp0:63 I EXTS((ACC)0:31) + EXTS(temp0:31)
ovh I (temp31 ⊕ temp32)
RT0:31 I SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:31 I (RA)48:63 ×sf (RB)48:63 
if ((RA)48:63 = 0x8000) & ((RB)48:63 = 0x8000) then

temp0:31 I 0x7FFF_FFFF 
movl I 1

else
movl I 0

temp0:63 I EXTS((ACC)32:63) + EXTS(temp0:31)
ovl I (temp31 ⊕ temp32)
RT32:63 I SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh | movh
SPEFSCROV I ovl| movl
SPEFSCRSOVH I SPEFSCRSOVH | ovh | movh
SPEFSCRSOV I SPEFSCRSOV | ovl| movl

The corresponding odd-numbered halfword signed
fractional elements in RA and RB are multiplied produc-
ing a 32-bit product. If both inputs are -1.0, the result
saturates to 0x7FFF_FFFF. Each 32-bit product is then
added to the corresponding word in the accumulator
saturating if overflow occurs, and the result is placed in
RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Odd, Signed, 
Saturate, Fractional and Accumulate 
Negative into Words EVX-form

evmhossfanw RT,RA,RB 

temp0:31 I (RA)16:31 ×sf (RB)16:31 
if ((RA)16:31 = 0x8000) & ((RB)16:31 = 0x8000) then

temp0:31 I 0x7FFF_FFFF 
movh I 1

else
movh I 0

temp0:63 I EXTS((ACC)0:31) - EXTS(temp0:31)
ovh I (temp31 ⊕ temp32)
RT0:31 I SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:31 I (RA)48:63 ×sf (RB)48:63 
if ((RA)48:63 = 0x8000) & ((RB)48:63 = 0x8000) then

temp0:31 I 0x7FFF_FFFF 
movl I 1

else
movl I 0

temp0:63 I EXTS((ACC)32:63) - EXTS(temp0:31)
ovl I (temp31 ⊕ temp32)
RT32:63 I SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh | movh
SPEFSCROV I ovl| movl
SPEFSCRSOVH I SPEFSCRSOVH | ovh | movh
SPEFSCRSOV I SPEFSCRSOV | ovl| movl

The corresponding odd-numbered halfword signed
fractional elements in RA and RB are multiplied produc-
ing a 32-bit product. If both inputs are -1.0, the result
saturates to 0x7FFF_FFFF. Each 32-bit product is then
subtracted from the corresponding word in the accumu-
lator saturating if overflow occurs, and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1287
0 6 11 16 21 31

4 RT RA RB 1415
0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Halfwords, Odd, Signed, 
Saturate, Integer and Accumulate into 
Words EVX-form

evmhossiaaw RT,RA,RB

temp0:31 I (RA)16:31 ×si (RB)16:31 
temp0:63 I EXTS((ACC)0:31) + EXTS(temp0:31)
ovh I (temp31 ⊕ temp32)
RT0:31 I SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:31 I (RA)48:63 ×si (RB)48:63
temp0:63 I EXTS((ACC)32:63) + EXTS(temp0:31)
ovl I (temp31 ⊕ temp32)
RT32:63 I SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

The corresponding odd-numbered halfword
signed-integer elements in RA and RB are multiplied
producing a 32-bit product. Each 32-bit product is then
added to the corresponding word in the accumulator
saturating if overflow occurs, and the result is placed in
RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Odd, Signed, 
Saturate, Integer and Accumulate 
Negative into Words EVX-form

evmhossianw RT,RA,RB 

temp0:31 I (RA)16:31 ×si (RB)16:31 
temp0:63 I EXTS((ACC)0:31) - EXTS(temp0:31)
ovh I (temp31 ⊕ temp32)
RT0:31 I SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:31 I (RA)48:63 ×si (RB)48:63
temp0:63 I EXTS((ACC)32:63) - EXTS(temp0:31)
ovl I (temp31 ⊕ temp32)
RT32:63 I SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

The corresponding odd-numbered halfword
signed-integer elements in RA and RB are multiplied
producing a 32-bit product. Each 32-bit product is then
subtracted from the corresponding word in the accumu-
lator saturating if overflow occurs, and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Odd, 
Unsigned, Modulo, Integer EVX-form

evmhoumi RT,RA,RB 

RT0:31 I (RA)16:31 ×ui (RB)16:31 
RT32:63 I (RA)48:63 ×ui (RB)48:63 

The corresponding odd-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The two 32-bit products are placed into the corre-
sponding words of RT. 

Special Registers Altered: 
None

Vector Multiply Halfwords, Odd, 
Unsigned, Modulo, Integer to 
 Accumulator EVX-form

evmhoumia RT,RA,RB 

RT0:31 I (RA)16:31 ×ui (RB)16:31 
RT32:63 I (RA)48:63 ×ui (RB)48:63 
ACC0:63 I (RT)0:63

The corresponding odd-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The two 32-bit products are placed into RT and
into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1285
0 6 11 16 21 31

4 RT RA RB 1413
0 6 11 16 21 31

4 RT RA RB 1036
0 6 11 16 21 31 4 RT RA RB 1068

0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Halfwords, Odd, 
Unsigned, Modulo, Integer and 
Accumulate into Words EVX-form

evmhoumiaaw RT,RA,RB 

temp0:31 I (RA)16:31 ×ui (RB)16:31
RT0:31 I (ACC)0:31 + temp0:31
temp0:31 I (RA)48:63 ×ui (RB)48:63
RT32:63 I (ACC)32:63 + temp0:31
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding odd-numbered halfword unsigned-integer
elements in RA and RB are multiplied. Each intermedi-
ate product is added to the contents of the correspond-
ing accumulator word. The sums are placed into the
corresponding RT and accumulator words. 

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Odd, 
Unsigned, Modulo, Integer and 
Accumulate Negative into Words
EVX-form

evmhoumianw RT,RA,RB 

temp0:31 I (RA)16:31 ×ui (RB)16:31
RT0:31 I (ACC)0:31 - temp0:31
temp0:31 I (RA)48:63 ×ui (RB)48:63
RT32:63 I (ACC)32:63 - temp0:31
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding odd-numbered halfword unsigned-integer
elements in RA and RB are multiplied. Each intermedi-
ate product is subtracted from the contents of the corre-
sponding accumulator word. The results are placed into
the corresponding RT and accumulator words. 

Special Registers Altered: 
ACC

 

Vector Multiply Halfwords, Odd, 
Unsigned, Saturate, Integer and 
Accumulate into Words EVX-form

evmhousiaaw RT,RA,RB 

temp0:31 I (RA)16:31 ×ui (RB)16:31 
temp0:63 I EXTZ((ACC)0:31) + EXTZ(temp0:31)
ovh I temp31
RT0:31 I SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF,

temp32:63) 
temp0:31 I (RA)48:63 ×ui (RB)48:63 
temp0:63 I EXTZ((ACC)32:63) + EXTZ(temp0:31)
ovl I temp31
RT32:63 I SATURATE(ovl, 0, 0xFFFF_FFFF,

0xFFFF_FFFF, temp32:63)
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

For each word element in the accumulator, correspond-
ing odd-numbered halfword unsigned-integer elements
in RA and RB are multiplied producing a 32-bit product.
Each 32-bit product is then added to the corresponding
word in the accumulator saturating if overflow occurs,
and the result is placed in RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Odd, 
Unsigned, Saturate, Integer and 
Accumulate Negative into Words

EVX-form

evmhousianw RT,RA,RB 

temp0:31 I (RA)16:31 ×ui (RB)16:31 
temp0:63 I EXTZ((ACC)0:31) - EXTZ(temp0:31)
ovh I temp31
RT0:31 I SATURATE(ovh, 0, 0x0000_0000, 0x0000_0000,

temp32:63) 
temp0:31 I (RA)48:63 ×ui (RB)48:63 
temp0:63 I EXTZ((ACC)32:63) - EXTZ(temp0:31)
ovl I temp31
RT32:63 I SATURATE(ovl, 0, 0x0000_0000,0x0000_0000,

temp32:63)
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

For each word element in the accumulator, correspond-
ing odd-numbered halfword unsigned-integer elements
in RA and RB are multiplied producing a 32-bit product.
Each 32-bit product is then subtracted from the corre-
sponding word in the accumulator saturating if overflow
occurs, and the result is placed in RT and the accumu-
lator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1292
0 6 11 16 21 31 4 RT RA RB 1420

0 6 11 16 21 31

4 RT RA RB 1284
0 6 11 16 21 31 4 RT RA RB 1412

0 6 11 16 21 31
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Version 2.07 B
Initialize Accumulator EVX-form

evmra RT,RA

ACC0:63 I (RA)0:63
RT0:63 I (RA)0:63

The contents of RA are placed into the accumulator
and RT. This is the method for initializing the accumula-
tor.

Special Registers Altered: 
ACC

Vector Multiply Word High Signed, 
Modulo, Fractional EVX-form

evmwhsmf RT,RA,RB 

temp0:63 I (RA)0:31 ×sf (RB)0:31 
RT0:31 I temp0:31
temp0:63 I (RA)32:63 ×sf (RB)32:63
RT32:63 I temp0:31 

The corresponding word signed fractional elements in
RA and RB are multiplied and bits 0:31 of the two prod-
ucts are placed into the two corresponding words of RT. 

Special Registers Altered: 
None

Vector Multiply Word High Signed, 
Modulo, Fractional to Accumulator

EVX-form

evmwhsmfa RT,RA,RB 

temp0:63 I (RA)0:31 ×sf (RB)0:31 
RT0:31 I temp0:31
temp0:63 I (RA)32:63 ×sf (RB)32:63
RT32:63 I temp0:31 
ACC0:63 I (RT)0:63

The corresponding word signed fractional elements in
RA and RB are multiplied and bits 0:31 of the two prod-
ucts are placed into the two corresponding words of RT
and into the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Word High Signed, 
Modulo, Integer EVX-form

evmwhsmi RT,RA,RB

temp0:63 I (RA)0:31 ×si (RB)0:31
RT0:31 I temp0:31
temp0:63 I (RA)32:63 ×si (RB)32:63
RT32:63 I temp0:31

The corresponding word signed-integer elements in RA
and RB are multiplied. Bits 0:31 of the two 64-bit prod-
ucts are placed into the two corresponding words of RT. 

Special Registers Altered: 
None 

Vector Multiply Word High Signed, 
Modulo, Integer to AccumulatorEVX-form

evmwhsmia RT,RA,RB 

temp0:63 I (RA)0:31 ×si (RB)0:31
RT0:31 I temp0:31
temp0:63 I (RA)32:63 ×si (RB)32:63
RT32:63 I temp0:31
ACC0:63 I (RT)0:63

The corresponding word signed-integer elements in RA
and RB are multiplied. Bits 0:31 of the two 64-bit prod-
ucts are placed into the two corresponding words of RT
and into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA /// 1220
0 6 11 16 21 31

4 RT RA RB 1103
0 6 11 16 21 31 4 RT RA RB 1135

0 6 11 16 21 31

4 RT RA RB 1101
0 6 11 16 21 31

4 RT RA RB 1133
0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Word High Signed, 
Saturate, Fractional EVX-form

evmwhssf RT,RA,RB 

temp0:63 I (RA)0:31 ×sf (RB)0:31 
if ((RA)0:31 = 0x8000_0000)& ((RB)0:31 = 0x8000_0000)
then

RT0:31 I 0x7FFF_FFFF 
movh I 1

else
RT0:31 I temp0:31
movh I 0

temp0:63 I (RA)32:63 ×sf (RB)32:63 
if ((RA)32:63 = 0x8000_0000 &(RB)32:63 = 0x8000_0000) 
then

RT32:63 I 0x7FFF_FFFF 
movl I 1

else
RT32:63 I temp0:31
movl I 0

SPEFSCROVH I movh
SPEFSCROV I movl
SPEFSCRSOVH I SPEFSCRSOVH | movh
SPEFSCRSOV I SPEFSCRSOV | movl

The corresponding word signed fractional elements in
RA and RB are multiplied. Bits 0:31 of each product are
placed into the corresponding words of RT. If both
inputs are -1.0, the result saturates to the largest posi-
tive signed fraction. 

Special Registers Altered: 
OV OVH SOV SOVH 

Vector Multiply Word High Signed, 
Saturate, Fractional to Accumulator

EVX-form

evmwhssfa RT,RA,RB

temp0:63 I (RA)0:31 ×sf (RB)0:31 
if ((RA)0:31 = 0x8000_0000) & ((RB)0:31 = 0x8000_0000) 
then

RT0:31 I 0x7FFF_FFFF 
movh I 1

else
RT0:31 I temp0:31
movh I 0

temp0:63 I (RA)32:63 ×sf (RB)32:63 
if ((RA)32:63=0x8000_0000)&((RB)32:63=0x8000_0000) 
then

RT32:63 I 0x7FFF_FFFF 
movl I 1

else
RT32:63 I temp0:31
movl I 0

ACC0:63 I (RT)0:63
SPEFSCROVH I movh
SPEFSCROV I movl
SPEFSCRSOVH I SPEFSCRSOVH | movh
SPEFSCRSOV I SPEFSCRSOV | movl

The corresponding word signed fractional elements in
RA and RB are multiplied. Bits 0:31 of each product are
placed into the corresponding words of RT and into the
accumulator. If both inputs are -1.0, the result saturates
to the largest positive signed fraction. 

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Word High Unsigned, 
Modulo, Integer EVX-form

evmwhumi RT,RA,RB 

temp0:63 I (RA)0:31 ×ui (RB)0:31
RT0:31 I temp0:31
temp0:63 I (RA)32:63 ×ui (RB)32:63
RT32:63 I temp0:31

The corresponding word unsigned-integer elements in
RA and RB are multiplied. Bits 0:31 of the two products
are placed into the two corresponding words of RT.

Special Registers Altered: 
None

Vector Multiply Word High Unsigned, 
Modulo, Integer to AccumulatorEVX-form

evmwhumia RT,RA,RB 

temp0:63 I (RA)0:31 ×ui (RB)0:31
RT0:31 I temp0:31
temp0:63 I (RA)32:63 ×ui (RB)32:63
RT32:63 I temp0:31
ACC0:63 I (RT)0:63

The corresponding word unsigned-integer elements in
RA and RB are multiplied. Bits 0:31 of the two products
are placed into the two corresponding words of RT and
into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1095
0 6 11 16 21 31 4 RT RA RB 1127

0 6 11 16 21 31

4 RT RA RB 1100
0 6 11 16 21 31

4 RT RA RB 1132
0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Word Low Signed, 
Modulo, Integer and Accumulate into 
Words EVX-form

evmwlsmiaaw RT,RA,RB 

temp0:63 I (RA)0:31 ×si (RB)0:31
RT0:31 I (ACC)0:31 + temp32:63
temp0:63 I (RA)32:63 ×si (RB)32:63
RT32:63 I (ACC)32:63 + temp32:63
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding word signed-integer elements in RA and RB
are multiplied. The least significant 32 bits of each
intermediate product are added to the contents of the
corresponding accumulator words, and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Word Low Signed, 
Modulo, Integer and Accumulate Negative 
in Words EVX-form

evmwlsmianw RT,RA,RB 

temp0:63 I (RA)0:31 ×si (RB)0:31
RT0:31 I (ACC)0:31 - temp32:63
temp0:63 I (RA)32:63 ×si (RB)32:63
RT32:63 I (ACC)32:63 - temp32:63
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding word elements in RA and RB are multiplied.
The least significant 32 bits of each intermediate prod-
uct are subtracted from the contents of the correspond-
ing accumulator words and the result is placed in RT
and the accumulator. 

Special Registers Altered: 
ACC 

Vector Multiply Word Low Signed, 
Saturate, Integer and Accumulate into 
Words EVX-form

evmwlssiaaw RT,RA,RB 

temp0:63 I (RA)0:31 ×si (RB)0:31 
temp0:63 I EXTS((ACC)0:31) + EXTS(temp32:63)
ovh I (temp31 ⊕ temp32)
RT0:31 I SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:63 I (RA)32:63 ×si (RB)32:63 
temp0:63 I EXTS((ACC)32:63) + EXTS(temp32:63)
ovl I (temp31 ⊕ temp32)
RT32:63 I SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

The corresponding word signed-integer elements in RA
and RB are multiplied producing a 64-bit product. The
least significant 32 bits of each product are then added
to the corresponding word in the accumulator saturat-
ing if overflow occurs, and the result is placed in RT and
the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Word Low Signed, 
Saturate, Integer and Accumulate 
Negative in Words EVX-form

evmwlssianw RT,RA,RB 

temp0:63 I (RA)0:31 ×si (RB)0:31 
temp0:63 I EXTS((ACC)0:31) - EXTS(temp32:63)
ovh I (temp31 ⊕ temp32)
RT0:31 I SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:63 I (RA)32:63 ×si (RB)32:63 
temp0:63 I EXTS((ACC)32:63) - EXTS(temp32:63)
ovl I (temp31 ⊕ temp32)
RT32:63 I SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

The corresponding word signed-integer elements in RA
and RB are multiplied producing a 64-bit product. The
least significant 32 bits of each product are then sub-
tracted from the corresponding word in the accumulator
saturating if overflow occurs, and the result is placed in
RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1353
0 6 11 16 21 31

4 RT RA RB 1481
0 6 11 16 21 31

4 RT RA RB 1345
0 6 11 16 21 31

4 RT RA RB 1473
0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Word Low Unsigned, 
Modulo, Integer EVX-form

evmwlumi RT,RA,RB

temp0:63 I (RA)0:31 ×ui (RB)0:31
RT0:31 I temp32:63
temp0:63 I (RA)32:63 ×ui (RB)32:63
RT32:63 I temp32:63

The corresponding word unsigned-integer elements in
RA and RB are multiplied. The least significant 32 bits
of each product are placed into the two corresponding
words of RT.

Special Registers Altered: 
None

Vector Multiply Word Low Unsigned, 
Modulo, Integer to AccumulatorEVX-form

evmwlumia RT,RA,RB

temp0:63 I (RA)0:31 ×ui (RB)0:31
RT0:31 I temp32:63
temp0:63 I (RA)32:63 ×ui (RB)32:63
RT32:63 I temp32:63
ACC0:63 I (RT)0:63

The corresponding word unsigned-integer elements in
RA and RB are multiplied. The least significant 32 bits
of each product are placed into the two corresponding
words of RT and into the accumulator.

Special Registers Altered: 
ACC

Vector Multiply Word Low Unsigned, 
Modulo, Integer and Accumulate into 
Words EVX-form

evmwlumiaaw RT,RA,RB 

temp0:63 I (RA)0:31 ×ui (RB)0:31
RT0:31 I (ACC)0:31 + temp32:63

temp0:63 I (RA)32:63 ×ui (RB)32:63
RT32:63 I (ACC)32:63 + temp32:63
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding word unsigned-integer elements in RA and
RB are multiplied. The least significant 32 bits of each
product are added to the contents of the corresponding
accumulator word and the result is placed in RT and
the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Word Low Unsigned, 
Modulo, Integer and Accumulate Negative 
in Words EVX-form

evmwlumianw RT,RA,RB 

temp0:63 I (RA)0:31 ×ui (RB)0:31
RT0:31 I (ACC)0:31 - temp32:63
temp0:63 I (RA)32:63 ×ui (RB)32:63
RT32:63 I (ACC)32:63 - temp32:63
ACC0:63 I (RT)0:63

For each word element in the accumulator, the corre-
sponding word unsigned-integer elements in RA and
RB are multiplied. The least significant 32 bits of each
product are subtracted from the contents of the corre-
sponding accumulator word and the result is placed in
RT and the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1096
0 6 11 16 21 31

The least significant 32 bits of the product are inde-
pendent of whether the word elements in RA and
RB are treated as signed or unsigned 32-bit inte-
gers.

Note that evmwlumi can be used for signed or
unsigned integers.

Programming Note

4 RT RA RB 1128
0 6 11 16 21 31

The least significant 32 bits of the product are inde-
pendent of whether the word elements in RA and
RB are treated as signed or unsigned 32-bit inte-
gers.

Note that evmwlumia can be used for signed or
unsigned integers.

Programming Note

4 RT RA RB 1352
0 6 11 16 21 31

4 RT RA RB 1480
0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Word Low Unsigned, 
Saturate, Integer and Accumulate into 
Words EVX-form

evmwlusiaaw RT,RA,RB 

temp0:63 I (RA)0:31 ×ui (RB)0:31 
temp0:63 I EXTZ((ACC)0:31) + EXTZ(temp32:63)
ovh I temp31
RT0:31 I SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF,

temp32:63) 
temp0:63 I (RA)32:63 ×ui (RB)32:63 
temp0:63 I EXTZ((ACC)32:63) + EXTZ(temp32:63)
ovl I temp31
RT32:63 I SATURATE(ovl, 0, 0xFFFF_FFFF,

0xFFFF_FFFF, temp32:63)
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

For each word element in the accumulator, correspond-
ing word unsigned-integer elements in RA and RB are
multiplied producing a 64-bit product. The least signifi-
cant 32 bits of each product are then added to the cor-
responding word in the accumulator saturating if
overflow occurs, and the result is placed in RT and the
accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Word Low Unsigned, 
Saturate, Integer and Accumulate 
Negative in Words EVX-form

evmwlusianw RT,RA,RB 

temp0:63 I (RA)0:31 ×ui (RB)0:31 
temp0:63 I EXTZ((ACC)0:31) - EXTZ(temp32:63)
ovh I temp31
RT0:31 I SATURATE(ovh, 0, 0x0000_0000, 0x0000_0000,

temp32:63) 
temp0:63 I (RA)32:63 ×ui (RB)32:63 
temp0:63 I EXTZ((ACC)32:63) - EXTZ(temp32:63)
ovl I temp31
RT32:63 I SATURATE(ovl, 0, 0x0000_0000,

0x0000_0000, temp32:63)
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

For each word element in the accumulator, correspond-
ing word unsigned-integer elements in RA and RB are
multiplied producing a 64-bit product. The least signifi-
cant 32 bits of each product are then subtracted from
the corresponding word in the accumulator saturating if
overflow occurs, and the result is placed in RT and the
accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Word Signed, Modulo, 
Fractional EVX-form

evmwsmf RT,RA,RB

RT0:63 I (RA)32:63 ×sf (RB)32:63 

The corresponding low word signed fractional elements
in RA and RB are multiplied. The product is placed in
RT.

Special Registers Altered: 
None

Vector Multiply Word Signed, Modulo, 
Fractional to Accumulator EVX-form

evmwsmfa RT,RA,RB 

RT0:63 I (RA)32:63 ×sf (RB)32:63 
ACC0:63 I (RT)0:63

The corresponding low word signed fractional elements
in RA and RB are multiplied. The product is placed in
RT and into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1344
0 6 11 16 21 31

4 RT RA RB 1472
0 6 11 16 21 31

4 RT RA RB 1115
0 6 11 16 21 31

4 RT RA RB 1147
0 6 11 16 21 31
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Version 2.07 B
Vector Multiply Word Signed, Modulo, 
Fractional and Accumulate EVX-form

evmwsmfaa RT,RA,RB 

temp0:63 I (RA)32:63 ×sf (RB)32:63
RT0:63 I (ACC)0:63 + temp0:63
ACC0:63 I (RT)0:63

The corresponding low word signed fractional elements
in RA and RB are multiplied. The intermediate product
is added to the contents of the 64-bit accumulator and
the result is placed in RT and the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Word Signed, Modulo, 
Fractional and Accumulate Negative

EVX-form

evmwsmfan RT,RA,RB 

temp0:63 I (RA)32:63 ×sf (RB)32:63
RT0:63 I (ACC)0:63 - temp0:63
ACC0:63 I (RT)0:63

The corresponding low word signed fractional elements
in RA and RB are multiplied. The intermediate product
is subtracted from the contents of the accumulator and
the result is placed in RT and the accumulator.

Special Registers Altered: 
ACC

 

Vector Multiply Word Signed, Modulo, 
Integer EVX-form

evmwsmi RT,RA,RB 

RT0:63 I (RA)32:63 ×si (RB)32:63

The low word signed-integer elements in RA and RB
are multiplied. The product is placed in RT. 

Special Registers Altered: 
None

Vector Multiply Word Signed, Modulo, 
Integer to Accumulator EVX-form

evmwsmia RT,RA,RB 

RT0:63 I (RA)32:63 ×si (RB)32:63
ACC0:63 I (RT)0:63

The low word signed-integer elements in RA and RB
are multiplied. The product is placed in RT and the
accumulator. 

Special Registers Altered: 
ACC 

Vector Multiply Word Signed, Modulo, 
Integer and Accumulate EVX-form

evmwsmiaa RT,RA,RB 

temp0:63 I (RA)32:63 ×si (RB)32:63
RT0:63 I (ACC)0:63 + temp0:63
ACC0:63 I (RT)0:63

The low word signed-integer elements in RA and RB
are multiplied. The intermediate product is added to the
contents of the 64-bit accumulator and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Word Signed, Modulo, 
Integer and Accumulate Negative

EVX-form

evmwsmian RT,RA,RB 

temp0:63 I (RA)32:63 ×si (RB)32:63
RT0:63 I (ACC)0:63 - temp0:63
ACC0:63 I (RT)0:63

The low word signed-integer elements in RA and RB
are multiplied. The intermediate product is subtracted
from the contents of the 64-bit accumulator and the
result is placed in RT and the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1371
0 6 11 16 21 31 4 RT RA RB 1499

0 6 11 16 21 31

4 RT RA RB 1113
0 6 11 16 21 31

4 RT RA RB 1145
0 6 11 16 21 31

4 RT RA RB 1369
0 6 11 16 21 31 4 RT RA RB 1497

0 6 11 16 21 31
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Vector Multiply Word Signed, Saturate, 
Fractional EVX-form

evmwssf RT,RA,RB 

temp0:63 I (RA)32:63 ×sf (RB)32:63 
if ((RA)32:63 = 0x8000_0000) & (RB32:63 = 0x8000_0000) 
then

RT0:63 I 0x7FFF_FFFF_FFFF_FFFF 
mov I 1

else
RT0:63 I temp0:63
mov I 0

SPEFSCROVH I 0
SPEFSCROV I mov
SPEFSCRSOV I SPEFSCRSOV | mov

The low word signed fractional elements in RA and RB
are multiplied. The 64-bit product is placed in RT. If
both inputs are -1.0, the result saturates to the largest
positive signed fraction. 

Special Registers Altered: 
OV OVH SOV

Vector Multiply Word Signed, Saturate, 
Fractional to Accumulator EVX-form

evmwssfa RT,RA,RB 

temp0:63 I (RA)32:63 ×sf (RB)32:63 
if ((RA)32:63=0x8000_0000)&((RB)32:63=0x8000_0000) 
then

RT0:63 I 0x7FFF_FFFF_FFFF_FFFF 
mov I 1

else
RT0:63 I temp0:63
mov I 0

ACC0:63 I (RT)0:63
SPEFSCROVH I 0
SPEFSCROV I mov
SPEFSCRSOV I SPEFSCRSOV | mov

The low word signed fractional elements in RA and RB
are multiplied. The 64-bit product is placed in RT and
into the accumulator. If both inputs are -1.0, the result
saturates to the largest positive signed fraction. 

Special Registers Altered: 
ACC OV OVH SOV 

4 RT RA RB 1107
0 6 11 16 21 31

4 RT RA RB 1139
0 6 11 16 21 31
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Vector Multiply Word Signed, Saturate, 
Fractional and Accumulate EVX-form

evmwssfaa RT,RA,RB 

temp0:63 I (RA)32:63 ×sf (RB)32:63 
if ((RA)32:63=0x8000_0000)&((RB)32:63=0x8000_0000) 
then

temp0:63 I 0x7FFF_FFFF_FFFF_FFFF 
mov I 1

else
mov I 0

temp0:64 I EXTS((ACC)0:63) + EXTS(temp0:63)
ov I (temp0 ⊕ temp1)
RT0:63 I temp1:64

ACC0:63 I (RT)0:63
SPEFSCROVH I 0
SPEFSCROV I ov | mov
SPEFSCRSOV I SPEFSCRSOV | ov | mov

The low word signed fractional elements in RA and RB
are multiplied producing a 64-bit product. If both inputs
are -1.0, the product saturates to the largest positive
signed fraction. The 64-bit product is then added to the
accumulator and the result is placed in RT and the
accumulator.

Special Registers Altered: 
ACC OV OVH SOV 

Vector Multiply Word Signed, Saturate, 
Fractional and Accumulate Negative

EVX-form

evmwssfan RT,RA,RB 

temp0:63 I (RA)32:63 ×sf (RB)32:63 
if ((RA)32:63=0x8000_0000)&((RB)32:63=0x8000_0000) 
then

temp0:63 I 0x7FFF_FFFF_FFFF_FFFF 
mov I 1

else
mov I 0

temp0:64 I EXTS((ACC)0:63) - EXTS(temp0:63)
ov I (temp0 ⊕ temp1)
RT0:63 I temp1:64
ACC0:63 I (RT)0:63
SPEFSCROVH I 0
SPEFSCROV I ov | mov
SPEFSCRSOV I SPEFSCRSOV | ov | mov

The low word signed fractional elements in RA and RB
are multiplied producing a 64-bit product. If both inputs
are -1.0, the product saturates to the largest positive
signed fraction. The 64-bit product is then subtracted
from the accumulator and the result is placed in RT and
the accumulator.

Special Registers Altered: 
ACC OV OVH SOV 

Vector Multiply Word Unsigned, Modulo, 
Integer EVX-form

evmwumi RT,RA,RB

RT0:63 I (RA)32:63 ×ui (RB)32:63

The low word unsigned-integer elements in RA and RB
are multiplied to form a 64-bit product that is placed in
RT. 

Special Registers Altered: 
None

Vector Multiply Word Unsigned, Modulo, 
Integer to Accumulator EVX-form

evmwumia RT,RA,RB 

RT0:63 I (RA)32:63 ×ui (RB)32:63
ACC0:63 I (RT)0:63

The low word unsigned-integer elements in RA and RB
are multiplied to form a 64-bit product that is placed in
RT and into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1363
0 6 11 16 21 31 4 RT RA RB 1491

0 6 11 16 21 31

4 RT RA RB 1112
0 6 11 16 21 31

4 RT RA RB 1144
0 6 11 16 21 31
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Vector Multiply Word Unsigned, Modulo, 
Integer and Accumulate EVX-form

evmwumiaa RT,RA,RB 

temp0:63 I (RA)32:63 ×ui (RB)32:63
RT0:63 I (ACC)0:63 + temp0:63
ACC0:63 I (RT)0:63

The low word unsigned-integer elements in RA and RB
are multiplied. The intermediate product is added to the
contents of the 64-bit accumulator, and the resulting
value is placed into the accumulator and in RT.

Special Registers Altered: 
ACC 

Vector Multiply Word Unsigned, Modulo, 
Integer and Accumulate Negative
EVX-form

evmwumian RT,RA,RB 

temp0:63 I (RA)32:63 ×ui (RB)32:63
RT0:63 I (ACC)0:63 - temp0:63
ACC0:63 I (RT)0:63

The low word unsigned-integer elements in RA and RB
are multiplied. The intermediate product is subtracted
from the contents of the 64-bit accumulator, and the
resulting value is placed into the accumulator and in
RT.

Special Registers Altered: 
ACC 

Vector NAND EVX-form

evnand RT,RA,RB

RT0:31 I ¬((RA)0:31 & (RB)0:31)
RT32:63 I ¬((RA)32:63 & (RB)32:63) 

Each element of RA and RB is bitwise NANDed. The
result is placed in the corresponding element of RT.

Special Registers Altered: 
None

Vector Negate EVX-form

evneg RT,RA

RT0:31 I NEG((RA)0:31)
RT32:63 I NEG((RA)32:63)

The negative of each element of RA is placed in RT.
The negative of 0x8000_0000 (most negative number)
returns 0x8000_0000.

Special Registers Altered: 
None

4 RT RA RB 1368
0 6 11 16 21 31 4 RT RA RB 1496

0 6 11 16 21 31

4 RT RA RB 542
0 6 11 16 21 31

4 RT RA /// 521
0 6 11 16 21 31
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Vector NOR EVX-form

evnor RT,RA,RB

RT0:31 I ¬((RA)0:31 | (RB)0:31) 
RT32:63 I ¬((RA)32:63 | (RB)32:63)

Each element of RA and RB is bitwise NORed. The
result is placed in the corresponding element of RT.

Special Registers Altered: 
None

Extended Mnemonics:

Extended mnemonics are provided for the Vector NOR
instruction to produce a vector bitwise complement
operation. 

Vector OR EVX-form

evor RT,RA,RB

RT0:31 I (RA)0:31 | (RB)0:31 
RT32:63 I (RA)32:63 | (RB)32:63

Each element of RA and RB is bitwise ORed. The
result is placed in the corresponding element of RT.

Special Registers Altered: 
None

Extended Mnemonics:

Extended mnemonics are provided for the Vector OR
instruction to provide a 64-bit vector move instruction.

Vector OR with Complement EVX-form

evorc RT,RA,RB

RT0:31 I (RA)0:31 | (¬(RB)0:31) 
RT32:63 I (RA)32:63 | (¬(RB)32:63) 

Each element of RA is bitwise ORed with the comple-
ment of RB. The result is placed in the corresponding
element of RT.

Special Registers Altered: 
None

Vector Rotate Left Word EVX-form

evrlw RT,RA,RB

nh I (RB)27:31
nl I (RB)59:63
RT0:31 I ROTL((RA)0:31, nh)
RT32:63 I ROTL((RA)32:63, nl)

Each of the high and low elements of RA is rotated left
by an amount specified in RB. The result is placed in
RT. Rotate values for each element of RA are found in
bit positions RB27:31 and RB59:63.

Special Registers Altered: 
None

4 RT RA RB 536
0 6 11 16 21 31

Extended: Equivalent to:
evnot RT,RA evnor RT,RA,RA

4 RT RA RB 535
0 6 11 16 21 31

Extended: Equivalent to:
evmr RT,RA evor RT,RA,RA

4 RT RA RB 539
0 6 11 16 21 31

4 RT RA RB 552
0 6 11 16 21 31
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Vector Rotate Left Word Immediate
EVX-form

evrlwi RT,RA,UI

n I UI
RT0:31 I ROTL((RA)0:31, n)
RT32:63 I ROTL((RA)32:63, n)

Both the high and low elements of RA are rotated left
by an amount specified by UI.

Special Registers Altered: 
None

Vector Round Word EVX-form

evrndw RT,RA

RT0:31 I ((RA)0:31+0x00008000) & 0xFFFF0000 
RT32:63 I ((RA)32:63+0x00008000) & 0xFFFF0000 

The 32-bit elements of RA are rounded into 16 bits. The
result is placed in RT. The resulting 16 bits are placed
in the most significant 16 bits of each element of RT,
zeroing out the low-order 16 bits of each element.

Special Registers Altered: 
None

Vector Select EVS-form

evsel RT,RA,RB,BFA

ch I CRBFA×4
cl I CRBFA×4+1
if (ch = 1) then RT0:31 I (RA)0:31
else RT0:31 I (RB)0:31
if (cl = 1) then RT32:63 I (RA)32:63
else RT32:63 I (RB)32:63

If the most significant bit in the BFA field of CR is set to
1, the high-order element of RA is placed in the
high-order element of RT; otherwise, the high-order
element of RB is placed into the high-order element of
RT. If the next most significant bit in the BFA field of CR
is set to 1, the low-order element of RA is placed in the
low-order element of RT, otherwise, the low-order ele-
ment of RB is placed into the low-order element of RT. 

Special Registers Altered: 
None

4 RT RA UI 554
0 6 11 16 21 31

4 RT RA /// 524
0 6 11 16 21 31

4 RT RA RB 79 BFA
0 6 11 16 21 29 31
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Vector Shift Left Word EVX-form

evslw RT,RA,RB

nh I (RB)26:31
nl I (RB)58:63
RT0:31 I SL((RA)0:31, nh)
RT32:63 I SL((RA)32:63, nl)

Each of the high and low elements of RA is shifted left
by an amount specified in RB. The result is placed in
RT. The separate shift amounts for each element are
specified by 6 bits in RB that lie in bit positions 26:31
and 58:63.

Shift amounts from 32 to 63 give a zero result.

Special Registers Altered: 
None

Vector Shift Left Word Immediate
EVX-form

evslwi RT,RA,UI

n I UI
RT0:31 I SL((RA)0:31, n)
RT32:63 I SL((RA)32:63, n)

Both high and low elements of RA are shifted left by the
5-bit UI value and the results are placed in RT.

Special Registers Altered: 
None

Vector Splat Fractional Immediate
EVX-form

evsplatfi RT,SI

RT0:31 I SI || 270
RT32:63 I SI || 270

The value specified by SI is padded with trailing zeros
and placed in both elements of RT. The SI ends up in
bit positions RT0:4 and RT32:36.

Special Registers Altered: 
None

Vector Splat Immediate EVX-form

evsplati RT,SI

RT0:31 I EXTS(SI)
RT32:63 I EXTS(SI)

The value specified by SI is sign extended and placed
in both elements of RT.

Special Registers Altered: 
None

Vector Shift Right Word Immediate Signed
EVX-form

evsrwis RT,RA,UI

n I UI
RT0:31 I EXTS((RA)0:31-n)
RT32:63 I EXTS((RA)32:63-n)

Both high and low elements of RA are shifted right by
the 5-bit UI value. Bits in the most significant positions
vacated by the shift are filled with a copy of the sign bit.

Special Registers Altered: 
None

Vector Shift Right Word Immediate 
Unsigned EVX-form

evsrwiu RT,RA,UI

n I UI
RT0:31 I EXTZ((RA)0:31-n)
RT32:63 I EXTZ((RA)32:63-n)

Both high and low elements of RA are shifted right by
the 5-bit UI value; zeros are shifted into the most signif-
icant position.

Special Registers Altered: 
None

4 RT RA RB 548
0 6 11 16 21 31 4 RT RA UI 550

0 6 11 16 21 31

4 RT SI /// 555
0 6 11 16 21 31

4 RT SI /// 553
0 6 11 16 21 31

4 RT RA UI 547
0 6 11 16 21 31

4 RT RA UI 546
0 6 11 16 21 31
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Vector Shift Right Word Signed EVX-form

evsrws RT,RA,RB

nh I (RB)26:31
nl I (RB)58:63
RT0:31 I EXTS((RA)0:31-nh)
RT32:63 I EXTS((RA)32:63-nl)

Both the high and low elements of RA are shifted right
by an amount specified in RB. The result is placed in
RT. The separate shift amounts for each element are
specified by 6 bits in RB that lie in bit positions 26:31
and 58:63. The sign bits are shifted into the most signif-
icant position.

Shift amounts from 32 to 63 give a result of 32 sign bits.

Special Registers Altered: 
None

Vector Shift Right Word Unsigned
EVX-form

evsrwu RT,RA,RB

nh I (RB)26:31
nl I (RB)58:63
RT0:31 I EXTZ((RA)0:31-nh)
RT32:63 I EXTZ((RA)32:63-nl)

Both the high and low elements of RA are shifted right
by an amount specified in RB. The result is placed in
RT. The separate shift amounts for each element are
specified by 6 bits in RB that lie in bit positions 26:31
and 58:63. Zeros are shifted into the most significant
position. 

Shift amounts from 32 to 63 give a zero result.

Special Registers Altered: 
None

Vector Store Double of Double EVX-form

evstdd RS,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×8)
MEM(EA,8) I (RS)0:63

D in the instruction mnemonic is UI × 8. The contents of
RS are stored as a doubleword in storage addressed
by EA.

Special Registers Altered: 
None

Vector Store Double of Double Indexed
EVX-form

evstddx RS,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
MEM(EA,8) I (RS)0:63

The contents of RS are stored as a doubleword in stor-
age addressed by EA.

Special Registers Altered: 
None

4 RT RA RB 545
0 6 11 16 21 31 4 RT RA RB 544

0 6 11 16 21 31

4 RS RA UI 801
0 6 11 16 21 31 4 RS RA RB 800

0 6 11 16 21 31
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Vector Store Double of Four Halfwords
EVX-form

evstdh RS,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×8)
MEM(EA,2) I (RS)0:15
MEM(EA+2,2) I (RS)16:31
MEM(EA+4,2) I (RS)32:47
MEM(EA+6,2) I (RS)48:63

D in the instruction mnemonic is UI × 8. The contents of
RS are stored as four halfwords in storage addressed
by EA.

Special Registers Altered: 
None

Vector Store Double of Four Halfwords 
Indexed EVX-form

evstdhx RS,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
MEM(EA,2) I (RS)0:15
MEM(EA+2,2) I (RS)16:31
MEM(EA+4,2) I (RS)32:47
MEM(EA+6,2) I (RS)48:63

The contents of RS are stored as four halfwords in stor-
age addressed by EA.

Special Registers Altered: 
None

Vector Store Double of Two Words
EVX-form

evstdw RS,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×8)
MEM(EA,4) I (RS)0:31
MEM(EA+4,4) I (RS)32:63

D in the instruction mnemonic is UI × 8. The contents of
RS are stored as two words in storage addressed by
EA.

Special Registers Altered: 
None

Vector Store Double of Two Words 
Indexed EVX-form

evstdwx RS,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
MEM(EA,4) I (RS)0:31
MEM(EA+4,4) I (RS)32:63

The contents of RS are stored as two words in storage
addressed by EA.

Special Registers Altered: 
None

4 RS RA UI 805
0 6 11 16 21 31

4 RS RA RB 804
0 6 11 16 21 31

4 RS RA UI 803
0 6 11 16 21 31

4 RS RA RB 802
0 6 11 16 21 31
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Vector Store Word of Two Halfwords from 
Even EVX-form

evstwhe RS,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×4)
MEM(EA,2) I (RS)0:15
MEM(EA+2,2) I (RS)32:47

D in the instruction mnemonic is UI × 4. The even half-
words from each element of RS are stored as two half-
words in storage addressed by EA.

Special Registers Altered: 
None

Vector Store Word of Two Halfwords from 
Even Indexed EVX-form

evstwhex RS,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
MEM(EA,2) I (RS)0:15
MEM(EA+2,2) I (RS)32:47

The even halfwords from each element of RS are
stored as two halfwords in storage addressed by EA.

Special Registers Altered: 
None

Vector Store Word of Two Halfwords from 
Odd EVX-form

evstwho RS,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×4)
MEM(EA,2) I (RS)16:31
MEM(EA+2,2) I (RS)48:63

D in the instruction mnemonic is UI × 4. The odd half-
words from each element of RS are stored as two half-
words in storage addressed by EA.

Special Registers Altered: 
None

Vector Store Word of Two Halfwords from 
Odd Indexed EVX-form

evstwhox RS,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
MEM(EA,2) I (RS)16:31
MEM(EA+2,2) I (RS)48:63

The odd halfwords from each element of RS are stored
as two halfwords in storage addressed by EA.

Special Registers Altered: 
None

Vector Store Word of Word from Even
EVX-form

evstwwe RS,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×4)
MEM(EA,4) I (RS)0:31

D in the instruction mnemonic is UI × 4. The even word
of RS is stored in storage addressed by EA.

Special Registers Altered: 
None

Vector Store Word of Word from Even 
Indexed EVX-form

evstwwex RS,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
MEM(EA,4) I (RS)0:31

The even word of RS is stored in storage addressed by
EA.

Special Registers Altered: 
None

4 RS RA UI 817
0 6 11 16 21 31

4 RS RA RB 816
0 6 11 16 21 31

4 RS RA UI 821
0 6 11 16 21 31

4 RS RA RB 820
0 6 11 16 21 31

4 RS RA UI 825
0 6 11 16 21 31

4 RS RA RB 824
0 6 11 16 21 31
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Vector Store Word of Word from Odd
EVX-form

evstwwo RS,D(RA)

if (RA = 0) then b I 0
else b I (RA)
EA I b + EXTZ(UI×4)
MEM(EA,4) I (RS)32:63

D in the instruction mnemonic is UI × 4. The odd word
of RS is stored in storage addressed by EA.

Special Registers Altered: 
None

Vector Store Word of Word from Odd 
Indexed EVX-form

evstwwox RS,RA,RB

if (RA = 0) then b I 0
else b I (RA)
EA I b + (RB)
MEM(EA,4) I (RS)32:63

The odd word of RS is stored in storage addressed by
EA.

Special Registers Altered: 
None

Vector Subtract Signed, Modulo, Integer 
to Accumulator Word EVX-form

evsubfsmiaaw RT,RA

RT0:31 I (ACC)0:31 - (RA)0:31
RT32:63 I (ACC)32:63 - (RA)32:63
ACC0:63 I (RT)0:63

Each word element in RA is subtracted from the corre-
sponding element in the accumulator and the difference
is placed into the corresponding RT word and into the
accumulator.

Special Registers Altered: 
ACC 

Vector Subtract Signed, Saturate, Integer 
to Accumulator Word EVX-form

evsubfssiaaw RT,RA

temp0:63 I EXTS((ACC)0:31) - EXTS((RA)0:31)
ovh I temp31 ⊕ temp32
RT0:31 I SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63)
temp0:63 I EXTS((ACC)32:63) - EXTS((RA)32:63)
ovl I temp31 ⊕ temp32
RT32:63 I SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63)
ACC0:63 I (RT)0:63
SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

Each signed-integer word element in RA is
sign-extended and subtracted from the corresponding
sign-extended element in the accumulator saturating if
overflow occurs, and the results are placed in RT and
the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RS RA UI 829
0 6 11 16 21 31

4 RS RA RB 828
0 6 11 16 21 31

4 RT RA /// 1227
0 6 11 16 21 31

4 RT RA /// 1219
0 6 11 16 21 31
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Vector Subtract Unsigned, Modulo, 
Integer to Accumulator Word EVX-form

evsubfumiaaw RT,RA

RT0:31 I (ACC)0:31 - (RA)0:31
RT32:63 I (ACC)32:63 - (RA)32:63
ACC0:63 I (RT)0:63

Each unsigned-integer word element in RA is sub-
tracted from the corresponding element in the accumu-
lator and the results are placed in RT and into the
accumulator.

Special Registers Altered: 
ACC 

Vector Subtract Unsigned, Saturate, 
Integer to Accumulator Word EVX-form

evsubfusiaaw RT,RA

temp0:63 I EXTZ((ACC)0:31) - EXTZ((RA)0:31)
ovh I temp31 
RT0:31 I SATURATE(ovh, temp31, 0x0000_0000,

0x0000_0000, temp32:63)
temp0:63 I EXTS((ACC)32:63) - EXTS((RA)32:63)
ovl I temp31 
RT32:63 I SATURATE(ovl, temp31, 0x0000_0000,

0x0000_0000, temp32:63)
ACC0:63 I (RT)0:63

SPEFSCROVH I ovh
SPEFSCROV I ovl
SPEFSCRSOVH I SPEFSCRSOVH | ovh
SPEFSCRSOV I SPEFSCRSOV | ovl

Each unsigned-integer word element in RA is
zero-extended and subtracted from the corresponding
zero-extended element in the accumulator saturating if
overflow occurs, and the results are placed in RT and
the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Subtract from Word EVX-form

evsubfw RT,RA,RB

RT0:31 I (RB)0:31 - (RA)0:31 
RT32:63 I (RB)32:63 - (RA)32:63 

Each signed-integer element of RA is subtracted from
the corresponding element of RB and the results are
placed in RT. 

Special Registers Altered: 
None

Vector Subtract Immediate from Word
EVX-form

evsubifw RT,UI,RB

RT0:31 I (RB)0:31 - EXTZ(UI) 
RT32:63 I (RB)32:63 - EXTZ(UI)

UI is zero-extended and subtracted from both the high
and low elements of RB. Note that the same value is
subtracted from both elements of the register. 

Special Registers Altered: 
None

Vector XOR EVX-form

evxor RT,RA,RB

RT0:31 I (RA)0:31 ⊕ (RB)0:31 
RT32:63 I (RA)32:63 ⊕ (RB)32:63

Each element of RA and RB is exclusive-ORed. The
results are placed in RT.

Special Registers Altered: 
None

4 RT RA /// 1226
0 6 11 16 21 31

4 RT RA /// 1218
0 6 11 16 21 31

4 RT RA RB 516
0 6 11 16 21 31

4 RT UI RB 518
0 6 11 16 21 31

4 RT RA RB 534
0 6 11 16 21 31
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Chapter 9.  Embedded Floating-Point
[Category: SPE.Embedded Float Scalar Double]
[Category: SPE.Embedded Float Scalar Single]
[Category: SPE.Embedded Float Vector]

9.1 Overview
The Embedded Floating-Point categories require the
implementation of the Signal Processing Engine (SPE)
category and consist of three distinct categories:

Embedded vector single-precision floating-point
(SPE.Embedded Float Vector [SP.FV])
Embedded scalar single-precision floating-point
(SPE.Embedded Float Scalar Single [SP.FS])
Embedded scalar double-precision floating-point
(SPE.Embedded Float Scalar Double [SP.FD])

Although each of these may be implemented indepen-
dently, they are defined in a single chapter because it is
likely that they may be implemented together.

References to Embedded Floating-Point categories,
Embedded Floating-Point instructions, or Embedded
Floating-Point operations apply to all 3 categories.

Single-precision floating-point is handled by the
SPE.Embedded Float Vector and SPE.Embedded
Float Scalar Single categories; double-precision float-
ing-point is handled by the SPE.Embedded Float Sca-
lar Double category.
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9.2 Programming Model
Embedded floating-point operations are performed in
the GPRs of the processor.

The SPE.Embedded Float Vector and SPE.Embedded
Float Scalar Double categories require a GPR register
file with thirty-two 64-bit registers as required by the
Signal Processing Engine category.

The SPE.Embedded Float Scalar Single category
requires a GPR register file with thirty-two 32-bit regis-
ters. When implemented with a 64-bit register file on a
32-bit implementation, instructions in this category only
use and modify bits 32:63 of the GPR. In this case, bits
0:31 of the GPR are left unchanged by the operation.
For 64-bit implementations, bits 0:31 are unchanged
after the operation.

Instructions in the SPE.Embedded Float Scalar Double
category operate on the entire 64 bits of the GPRs.

Instructions in the SPE.Embedded Float Vector cate-
gory operate on the entire 64 bits of the GPRs as well,
but contain two 32-bit data items that are operated on
independently of each other in a SIMD fashion. The for-
mat of both data items is the same as the format of a
data item in the SPE.Embedded Float Scalar Single
category. The data item contained in bits 0:31 is called
the ‘high word’. The data item contained in bits 32:63 is
called the ‘low word’.

There are no record forms of Embedded Floating-Point
instructions. Embedded Floating-Point Compare
instructions treat NaNs, Infinity, and Denorm as normal-
ized numbers for the comparison calculation when
default results are provided. 

9.2.1 Signal Processing Embed-
ded Floating-Point Status and Con-
trol Register (SPEFSCR)
Status and control for the Embedded Floating-Point
categories uses the SPEFSCR. This register is defined
by the Signal Processing Engine category in Section
8.3.4. Status and control bits are shared for Embedded
Floating-Point and SPE operations. Instructions in the
SPE.Embedded Float Vector category affect both the
high element (bits 34:39) and low element floating-point
status flags (bits 50:55). Instructions in the
SPE.Embedded Float Scalar Double and SPE.Embed-
ded Float Scalar Single categories affect only the low
element floating-point status flags and leave the high
element floating-point status flags undefined.

9.2.2 Floating-Point Data Formats
Single-precision floating-point data elements are 32
bits wide with 1 sign bit (s), 8 bits of biased exponent
(e) and 23 bits of fraction (f). Double-precision float-

ing-point data elements are 64 bits wide with 1 sign bit
(s), 11 bits of biased exponent (e) and 52 bits of fraction
(f).

In the IEEE 754 specification, floating-point values are
represented in a format consisting of three explicit
fields (sign field, biased exponent field, and fraction
field) and an implicit hidden bit.

Figure 130.Floating-Point Data Format

For single-precision normalized numbers, the biased
exponent value e lies in the range of 1 to 254 corre-
sponding to an actual exponent value E in the range
-126 to +127. For double-precision normalized num-
bers, the biased exponent value e lies in the range of 1
to 2046 corresponding to an actual exponent value E in
the range -1022 to +1023. With the hidden bit implied to
be ‘1’ (for normalized numbers), the value of the num-
ber is interpreted as follows:

where E is the unbiased exponent and 1.fraction is the
mantissa (or significand) consisting of a leading ‘1’ (the
hidden bit) and a fractional part (fraction field). For the
single-precision format, the maximum positive normal-
ized number (pmax) is represented by the encoding
0x7F7FFFFF which is approximately 3.4E+38 (2128),
and the minimum positive normalized value (pmin) is
represented by the encoding 0x00800000 which is
approximately 1.2E-38 (2-126). For the double-precision
format, the maximum positive normalized number
(pmax) is represented by the encoding
0x7feFFFFF_FFFFFFFF which is approximately
1.8E+307 (21024), and the minimum positive normal-
ized value (pmin) is represented by the encoding
0x00100000_00000000 which is approximately
2.2E-308 (2-1022).

Two specific values of the biased exponent are
reserved (0 and 255 for single-precision; 0 and 2047 for
double-precision) for encoding special values of +0, -0,
+infinity, -infinity, and NaNs. 

Zeros of both positive and negative sign are repre-
sented by a biased exponent value e of 0 and a fraction
f which is 0. 

Infinities of both positive and negative sign are repre-
sented by a maximum exponent field value (255 for sin-
gle-precision, 2047 for double-precision) and a fraction
which is 0.

fraction

0

exp

31 (or 32:63)8

s

s - sign bit; 0 = positive; 1 = negative

exp - biased exponent field
fraction - fractional portion of number

1 9

fraction

0

exp

6311

s

1 12

hidden bit

Double-precision

Single-precision

1–( )s 2E× 1.fraction( )×
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Denormalized numbers of both positive and negative
sign are represented by a biased exponent value e of 0
and a fraction f, which is nonzero. For these numbers,
the hidden bit is defined by the IEEE 754 standard to
be 0. This number type is not directly supported in
hardware. Instead, either a software interrupt handler is
invoked, or a default value is defined.

Not-a-Numbers (NaNs) are represented by a maximum
exponent field value (255 for single-precision, 2047 for
double-precision) and a fraction f which is nonzero.

9.2.3 Exception Conditions

9.2.3.1 Denormalized Values on Input
Any denormalized value used as an operand may be
truncated by the implementation to a properly signed
zero value.

9.2.3.2 Embedded Floating-Point Over-
flow and Underflow
Defining pmax to be the most positive normalized value
(farthest from zero), pmin the smallest positive normal-
ized value (closest to zero), nmax the most negative
normalized value (farthest from zero) and nmin the
smallest normalized negative value (closest to zero), an
overflow is said to have occurred if the numerically cor-
rect result (r) of an instruction is such that r>pmax or
r<nmax. An underflow is said to have occurred if the
numerically correct result of an instruction is such that
0<r<pmin or nmin<r<0. In this case, r may be denor-
malized, or may be smaller than the smallest denormal-
ized number.

The Embedded Floating-Point categories do not pro-
duce +Infinity, -Infinity, NaN, or denormalized numbers.
If the result of an instruction overflows and Embedded
Floating-Point Overflow exceptions are disabled
(SPEFSCRFOVFE=0), pmax or nmax is generated as
the result of that instruction depending upon the sign of
the result. If the result of an instruction underflows and
Embedded Floating-Point Underflow exceptions are
disabled (SPEFSCRFUNFE=0), +0 or -0 is generated as
the result of that instruction based upon the sign of the
result.

If an overflow occurs, SPEFSCRFOVF FOVFH are set
appropriately, or if an underflow occurs, SPEFSCRFUNF

FUNFH are set appropriately. If either Embedded Float-
ing-Point Underflow or Embedded Floating-Point Over-
flow exceptions are enabled and a corresponding
status bit is 1, an Embedded Floating-Point Data inter-
rupt is taken and the destination register is not updated.

9.2.3.3 Embedded Floating-Point 
Invalid Operation/Input Errors
Embedded Floating-Point Invalid Operation/Input errors
occur when an operand to an operation contains an
invalid input value. If any of the input values are Infinity,
Denorm, or NaN, or for an Embedded Floating-Point
Divide instruction both operands are +/-0, SPEFSCRF-

INV FINVH are set to 1 appropriately, and SPEFSCRFGH

FXH FG FX are set to 0 appropriately. If SPEFSCRF-

INVE=1, an Embedded Floating-Point Data interrupt is
taken and the destination register is not updated.

9.2.3.4 Embedded Floating-Point 
Round (Inexact)
If any result element of an Embedded Floating-Point
instruction is inexact, or overflows but Embedded Float-
ing-Point Overflow exceptions are disabled, or under-
flows but Embedded Floating-Point Underflow
exceptions are disabled, and no higher priority interrupt
occurs, SPEFSCRFINXS is set to 1. If the Embedded
Floating-Point Round (Inexact) exception is enabled, an
Embedded Floating-Point Round interrupt occurs. In
this case, the destination register is updated with the
truncated result(s). The SPEFSCRFGH FXH FG FX bits
are properly updated to allow rounding to be performed
in the interrupt handler.

SPEFSCRFG FX (SPEFSCRFGH FXH) are set to 0 if an
Embedded Floating-Point Data interrupt is taken due to
overflow, underflow, or if an Embedded Floating-Point
Invalid Operation/Input error is signaled for the low
(high) element (regardless of SPEFSCRFINVE).

9.2.3.5 Embedded Floating-Point 
Divide by Zero
If an Embedded Floating-Point Divide instruction
executes and an Embedded Floating-Point Invalid
Operation/Input error does not occur and the instruction
is executed with a +/-0 divisor value and a finite
normalized nonzero dividend value, an Embedded
Floating-Point Divide By Zero exception occurs and
SPEFSCRFDBZ FDBZH are set appropriately. If
Embedded Floating-Point Divide By Zero exceptions
are enabled, an Embedded Floating-Point Data

On some implementations, operations that result in
overflow or underflow are likely to take significantly
longer than operations that do not. For example,
these operations may cause a system error handler
to be invoked; on such implementations, the sys-
tem error handler updates the overflow bits appro-
priately.

Programming Note
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interrupt is then taken and the destination register is not
updated.

9.2.3.6 Default Results
Default results are generated when an Embedded
Floating-Point Invalid Operation/Input Error, Embedded
Floating-Point Overflow, Embedded Floating-Point
Underflow, or Embedded Floating-Point Divide by Zero
occurs on an Embedded Floating-Point operation.
Default results provide a normalized value as a result of
the operation. In general, Denorm results and under-
flows are set to 0 and overflows are saturated to the
maximum representable number.

Default results produced for each operation are
described in Section 9.4, “Embedded Floating-Point
Results Summary”.

9.2.4 IEEE 754 Compliance
The Embedded Floating-Point categories require a
floating-point system as defined in the ANSI/IEEE
Standard 754-1985 but may rely on software support in
order to conform fully with the standard. Thus, when-
ever an input operand of the Embedded Floating-Point
instruction has data values that are +Infinity, -Infinity,
Denormalized, NaN, or when the result of an operation
produces an overflow or an underflow, an Embedded
Floating-Point Data interrupt may be taken and the
interrupt handler is responsible for delivering IEEE 754
compliant behavior if desired. 

When Embedded Floating-Point Invalid Operation/Input
Error exceptions are disabled (SPEFSCRFINVE = 0),
default results are provided by the hardware when an
Infinity, Denormalized, or NaN input is received, or for
the operation 0/0. When Embedded Floating-Point
Underflow exceptions are disabled (SPEFSCRFUNFE =
0) and the result of a floating-point operation under-
flows, a signed zero result is produced. The Embedded
Floating-Point Round (Inexact) exception is also sig-
naled for this condition. When Embedded Float-
ing-Point Overflow exceptions are disabled
(SPEFSCRFOVFE = 0) and the result of a floating-point
operation overflows, a pmax or nmax result is pro-
duced. The Embedded Floating-Point Round (Inexact)
exception is also signaled for this condition. An excep-
tion enable flag (SPEFSCRFINXE) is also provided for
generating an Embedded Floating-Point Round inter-
rupt when an inexact result is produced, to allow a soft-
ware handler to conform to the IEEE 754 standard. An
Embedded Floating-Point Divide By Zero exception
enable flag (SPEFSCRFDBZE) is provided for generat-
ing an Embedded Floating-Point Data interrupt when a
divide by zero operation is attempted to allow a soft-
ware handler to conform to the IEEE 754 standard. All
of these exceptions may be disabled, and the hardware
will then deliver an appropriate default result.

The sign of the result of an addition operation is the
sign of the source operand having the larger absolute
value. If both operands have the same sign, the sign of
the result is the same as the sign of the operands. This
includes subtraction which is addition with the negation
of the sign of the second operand. The sign of the
result of an addition operation with operands of differing
signs for which the result is zero is positive except
when rounding to negative infinity. Thus -0 + -0 = -0,
and all other cases which result in a zero value give +0
unless the rounding mode is round to negative infinity.

9.2.4.1 Sticky Bit Handling For Excep-
tion Conditions
The SPEFSCR register defines sticky bits for retaining
information about exception conditions that are
detected. There are 5 sticky bits (FINXS, FINVS,
FDBZS, FUNFS and FOVFS) that can be used to help
provide IEEE 754 compliance. The sticky bits represent
the combined ‘or’ of all the previous status bits pro-
duced from any Embedded Floating-Point operation
since the last time software zeroed the sticky bit. The
hardware will never set a sticky bit to 0.

Note that when exceptions are disabled and default
results computed, operations having input values
that are denormalized may provide different results
on different implementations. An implementation
may choose to use the denormalized value or a
zero value for any computation. Thus a computa-
tional operation involving a denormalized value and
a normal value may return different results depend-
ing on the implementation.

Programming Note
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9.3 Embedded Floating-Point Instructions

9.3.1 Load/Store Instructions
Embedded Floating-Point instructions use GPRs to
hold and operate on floating-point values. The Embed-
ded Floating-Point categories do not define Load and
Store instructions to move the data to and from mem-
ory, but instead rely on existing instructions in Book I to
load and store data.

9.3.2 SPE.Embedded Float Vector 
Instructions [Category: 
SPE.Embedded Float Vector]
All SPE.Embedded Float Vector instructions are sin-
gle-precision. There are no vector floating-point dou-
ble-precision instructions

.

Vector Floating-Point Single-Precision 
Absolute Value EVX-form

evfsabs RT,RA

RT0:31 I 0b0 || (RA)1:31
RT32:63 I 0b0 || (RA)33:63

The sign bit of each element in register RA is set to 0
and the results are placed into register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered:
None

Vector Floating-Point Single-Precision 
Negative Absolute Value EVX-form

evfsnabs RT,RA

RT0:31 I 0b1 || (RA)1:31
RT32:63 I 0b1 || (RA)33:63

The sign bit of each element in register RA is set to 1
and the results are placed into register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

Vector Floating-Point Single-Precision 
Negate EVX-form

evfsneg RT,RA

RT0:31 I ¬(RA)0 || (RA)1:31
RT32:63 I ¬(RA)32 || (RA)33:63

The sign bit of each element in register RA is comple-
mented and the results are placed into register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

4 RT RA /// 644
0 6 11 16 21 31

4 RT RA /// 645
0 6 11 16 21 31

4 RT RA /// 646
0 6 11 16 21 31
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Vector Floating-Point Single-Precision 
Add EVX-form

evfsadd RT,RA,RB

RT0:31 I (RA)0:31 +sp (RB)0:31
RT32:63 I (RA)32:63 +sp (RB)32:63

Each single-precision floating-point element of register
RA is added to the corresponding element of register
RB and the results are stored in register RT.

If an underflow occurs, +0 (for rounding modes RN, RZ,
RP) or -0 (for rounding mode RM) is stored in the corre-
sponding element of register RT.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS
FOVF FOVFH FOVFS
FUNF FUNFH FUNFS

Vector Floating-Point Single-Precision 
Subtract EVX-form

evfssub RT,RA,RB

RT0:31 I (RA)0:31 -sp (RB)0:31
RT32:63 I (RA)32:63 -sp (RB)32:63

Each single-precision floating-point element of register
RB is subtracted from the corresponding element of
register RA and the results are stored in register RT.

If an underflow occurs, +0 (for rounding modes RN, RZ,
RP) or -0 (for rounding mode RM) is stored in the corre-
sponding element of register RT. 

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS
FOVF FOVFH FOVFS
FUNF FUNFH FUNFS

Vector Floating-Point Single-Precision 
Multiply EVX-form

evfsmul RT,RA,RB

RT0:31 I (RA)0:31 ×sp (RB)0:31
RT32:63 I (RA)32:63 ×sp (RB)32:63

Each single-precision floating-point element of register
RA is multiplied with the corresponding element of reg-
ister RB and the result is stored in register RT.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS
FOVF FOVFH FOVFS
FUNF FUNFH FUNFS

Vector Floating-Point Single-Precision 
Divide EVX-form

evfsdiv RT,RA,RB

RT0:31 I (RA)0:31 ÷sp (RB)0:31
RT32:63 I (RA)32:63 ÷sp (RB)32:63

Each single-precision floating-point element of register
RA is divided by the corresponding element of register
RB and the result is stored in register RT.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS
FDBZ FDBZH FDBZS
FOVF FOVFH FOVFS
FUNF FUNFH FUNFS

4 RT RA RB 640
0 6 11 16 21 31

4 RT RA RB 641
0 6 11 16 21 31

4 RT RA RB 648
0 6 11 16 21 31

4 RT RA RB 649
0 6 11 16 21 31
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Vector Floating-Point Single-Precision 
Compare Greater Than EVX-form

evfscmpgt BF,RA,RB

ah I (RA)0:31
al I (RA)32:63
bh I (RB)0:31
bl I (RB)32:63
if (ah > bh) then ch I 1
else ch I 0
if (al > bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I ch || cl || (ch | cl) || (ch & cl)

Each element of register RA is compared against the
corresponding element of register RB. The results of
the comparisons are placed into CR field BF. If RA0:31
is greater than RB0:31, bit 0 of CR field BF is set to 1,
otherwise it is set to 0. If RA32:63 is greater than
RB32:63, bit 1 of CR field BF is set to 1, otherwise it is
set to 0. Bit 2 of CR field BF is set to the OR of both
result bits and Bit 3 of CR field BF is set to the AND of
both result bits. Comparison ignores the sign of 0
(+0 = -0).

If an input error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms as treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX
CR field BF

Vector Floating-Point Single-Precision 
Compare Less Than EVX-form

evfscmplt BF,RA,RB

ah I (RA)0:31
al I (RA)32:63
bh I (RB)0:31
bl I (RB)32:63
if (ah < bh) then ch I 1
else ch I 0
if (al < bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I ch || cl || (ch | cl) || (ch & cl)

Each element of register RA is compared against the
corresponding element of register RB. The results of
the comparisons are placed into CR field BF. If RA0:31
is less than RB0:31, bit 0 of CR field BF is set to 1, oth-
erwise it is set to 0. If RA32:63 is less than RB32:63, bit 1
of CR field BF is set to 1, otherwise it is set to 0. Bit 2 of
CR field BF is set to the OR of both result bits and Bit 3
of CR field BF is set to the AND of both result bits.
Comparison ignores the sign of 0 (+0 = -0).

If an input error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms as treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX
CR field BF

4 BF // RA RB 652
0 6 9 11 16 21 31

4 BF // RA RB 653
0 6 9 11 16 21 31
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Vector Floating-Point Single-Precision 
Compare Equal EVX-form

evfscmpeq BF,RA,RB

ah I (RA)0:31
al I (RA)32:63
bh I (RB)0:31
bl I (RB)32:63
if (ah = bh) then ch I 1
else ch I 0
if (al = bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I ch || cl || (ch | cl) || (ch & cl)

Each element of register RA is compared against the
corresponding element of register RB. The results of
the comparisons are placed into CR field BF. If RA0:31
is equal to RB0:31, bit 0 of CR field BF is set to 1, other-
wise it is set to 0. If RA32:63 is equal to RB32:63, bit 1 of
CR field BF is set to 1, otherwise it is set to 0. Bit 2 of
CR field BF is set to the OR of both result bits and Bit 3
of CR field BF is set to the AND of both result bits.
Comparison ignores the sign of 0 (+0 = -0).

If an input error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms as treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX
CR field BF

Vector Floating-Point Single-Precision 
Test Greater Than EVX-form

evfststgt BF,RA,RB

ah I (RA)0:31
al I (RA)32:63
bh I (RB)0:31
bl I (RB)32:63
if (ah > bh) then ch I 1
else ch I 0
if (al > bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I ch || cl || (ch | cl) || (ch & cl)

Each element of register RA is compared against the
corresponding element of register RB.The results of the
comparisons are placed into CR field BF. If RA0:31 is
greater than RB0:31, bit 0 of CR field BF is set to 1, oth-
erwise it is set to 0. If RA32:63 is greater than RB32:63,
bit 1 of CR field BF is set to 1, otherwise it is set to 0.
Bit 2 of CR field BF is set to the OR of both result bits
and Bit 3 of CR field BF is set to the AND of both result
bits. Comparison ignores the sign of 0 (+0 = -0). The
comparison proceeds after treating NaNs, Infinities,
and Denorms as normalized numbers, using their val-
ues of ‘e’ and ‘f’ directly.

No exceptions are taken during the execution of evfst-
stgt. 

Special Registers Altered: 
CR field BF

4 BF // RA RB 654
0 6 9 11 16 21 31

4 BF // RA RB 668
0 6 9 11 16 21 31

In an implementation, the execution of evfststgt is
likely to be faster than the execution of evfscmpgt;
however, if strict IEEE 754 compliance is required,
the program should use evfscmpgt.

Programming Note
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Vector Floating-Point Single-Precision 
Test Less Than EVX-form

evfststlt BF,RA,RB

ah I (RA)0:31
al I (RA)32:63
bh I (RB)0:31
bl I (RB)32:63
if (ah < bh) then ch I 1
else ch I 0
if (al < bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I ch || cl || (ch | cl) || (ch & cl)

Each element of register RA is compared with the cor-
responding element of register RB. The results of the
comparisons are placed into CR field BF. If RA0:31 is
less than RB0:31, bit 0 of CR field BF is set to 1, other-
wise it is set to 0. If RA32:63 is less than RB32:63, bit 1 of
CR field BF is set to 1, otherwise it is set to 0. Bit 2 of
CR field BF is set to the OR of both result bits and Bit 3
of CR field BF is set to the AND of both result bits.
Comparison ignores the sign of 0 (+0 = -0). The com-
parison proceeds after treating NaNs, Infinities, and
Denorms as normalized numbers, using their values of
‘e’ and ‘f’ directly.

No exceptions are taken during the execution of evfst-
stlt.

Special Registers Altered: 
CR field BF

Vector Floating-Point Single-Precision 
Test Equal EVX-form

evfststeq BF,RA,RB

ah I (RA)0:31
al I (RA)32:63
bh I (RB)0:31
bl I (RB)32:63
if (ah = bh) then ch I 1
else ch I 0
if (al = bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I ch || cl || (ch | cl) || (ch & cl)

Each element of register RA is compared against the
corresponding element of register RB. The results of
the comparisons are placed into CR field BF. If RA0:31
is equal to RB0:31, bit 0 of CR field BF is set to 1, other-
wise it is set to 0. If RA32:63 is equal to RB32:63, bit 1 of
CR field BF is set to 1, otherwise it is set to 0. Bit 2 of
CR field BF is set to the OR of both result bits and Bit 3
of CR field BF is set to the AND of both result bits.
Comparison ignores the sign of 0 (+0 = -0). The com-
parison proceeds after treating NaNs, Infinities, and
Denorms as normalized numbers, using their values of
‘e’ and ‘f’ directly.

No exceptions are taken during the execution of evfst-
steq.

Special Registers Altered: 
CR field BF

4 BF // RA RB 669
0 6 9 11 16 21 31

In an implementation, the execution of evfststlt is
likely to be faster than the execution of evfscmplt;
however, if strict IEEE 754 compliance is required,
the program should use evfscmplt.

Programming Note

4 BF // RA RB 670
0 6 9 11 16 21 31

In an implementation, the execution of evfststeq is
likely to be faster than the execution of evfscmpeq;
however, if strict IEEE 754 compliance is required,
the program should use evfscmpeq.

Programming Note
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Vector Convert Floating-Point 
Single-Precision from Signed Integer
 EVX-form

evfscfsi RT,RB

RT0:31 I CnvtI32ToFP32((RB)0:31, S, HI, I)
RT32:63 I CnvtI32ToFP32((RB)32:63, S, LO, I)

Each signed integer element of register RB is con-
verted to the nearest single-precision floating-point
value using the current rounding mode and the results
are placed into the corresponding element of register
RT.

Special Registers Altered: 
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision from Unsigned Integer
 EVX-form

evfscfui RT,RB

RT0:31 I CnvtI32ToFP32((RB)0:31, U, HI, I)
RT32:63 I CnvtI32ToFP32((RB)32:63, U, LO, I)

Each unsigned integer element of register RB is con-
verted to the nearest single-precision floating-point
value using the current rounding mode and the results
are placed into the corresponding elements of register
RT.

Special Registers Altered: 
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision from Signed Fraction

EVX-form

evfscfsf RT,RB

RT0:31 I CnvtI32ToFP32((RB)0:31, S, HI, F)
RT32:63 I CnvtI32ToFP32((RB)32:63, S, LO, F)

Each signed fractional element of register RB is con-
verted to a single-precision floating-point value using
the current rounding mode and the results are placed
into the corresponding elements of register RT.

Special Registers Altered: 
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision from Unsigned Fraction

EVX-form

evfscfuf RT,RB

RT0:31 I CnvtI32ToFP32((RB)0:31, U, HI, F)
RT32:63 I CnvtI32ToFP32((RB)32:63, U, LO, F)

Each unsigned fractional element of register RB is con-
verted to a single-precision floating-point value using
the current rounding mode and the results are placed
into the corresponding elements of register RT.

Special Registers Altered: 
FGH FXH FG FX FINXS

4 RT /// RB 657
0 6 11 16 21 31

4 RT /// RB 656
0 6 11 16 21 31

4 RT /// RB 659
0 6 11 16 21 31

4 RT /// RB 658
0 6 11 16 21 31
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Vector Convert Floating-Point 
Single-Precision to Signed Integer

EVX-form

evfsctsi RT,RB

RT0:31 I CnvtFP32ToI32Sat((RB)0:31, S, HI, RND, I)
RT32:63 I CnvtFP32ToI32Sat((RB)32:63, S, LO, RND, I)

Each single-precision floating-point element in register
RB is converted to a signed integer using the current
rounding mode and the result is saturated if it cannot be
represented in a 32-bit integer. NaNs are converted as
though they were zero.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision to Signed Integer with 
Round toward Zero EVX-form

evfsctsiz RT,RB

RT0:31 I CnvtFP32ToI32Sat((RB)0:31, S, HI, ZER, I)
RT32:63 I CnvtFP32ToI32Sat((RB)32:63, S, LO, ZER, I)

Each single-precision floating-point element in register
RB is converted to a signed integer using the rounding
mode Round toward Zero and the result is saturated if it
cannot be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision to Unsigned Integer

EVX-form

evfsctui RT,RB

RT0:31 I CnvtFP32ToI32Sat((RB)0:31, U, HI, RND, I)
RT32:63 I CnvtFP32ToI32Sat((RB)32:63,U, LO, RND, I)

Each single-precision floating-point element in register
RB is converted to an unsigned integer using the cur-
rent rounding mode and the result is saturated if it can-
not be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision to Unsigned Integer with 
Round toward Zero EVX-form

evfsctuiz RT,RB

RT0:31 I CnvtFP32ToI32Sat((RB)0:31, U, HI, ZER, I)
RT32:63 I CnvtFP32ToI32Sat((RB)32:63, U, LO, ZER, I)

Each single-precision floating-point element in register
RB is converted to an unsigned integer using the
rounding mode Round toward Zero and the result is
saturated if it cannot be represented in a 32-bit integer.
NaNs are converted as though they were zero.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS

4 RT /// RB 661
0 6 11 16 21 31

4 RT /// RB 666
0 6 11 16 21 31

4 RT /// RB 660
0 6 11 16 21 31

4 RT /// RB 664
0 6 11 16 21 31
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Vector Convert Floating-Point 
Single-Precision to Signed Fraction

EVX-form

evfsctsf RT,RB

RT0:31 I CnvtFP32ToI32Sat((RB)0:31, S, HI, RND ,F)
RT32:63 I CnvtFP32ToI32Sat((RB)32:63, S, LO, RND, F)

Each single-precision floating-point element in register
RB is converted to a signed fraction using the current
rounding mode and the result is saturated if it cannot be
represented in a 32-bit signed fraction. NaNs are con-
verted as though they were zero.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision to Unsigned Fraction

EVX-form

evfsctuf RT,RB

RT0:31 I CnvtFP32ToI32Sat((RB)0:31, U, HI, RND, F)
RT32:63 I CnvtFP32ToI32Sat((RB)32:63, U, LO, RND, F)

Each single-precision floating-point element in register
RB is converted to an unsigned fraction using the cur-
rent rounding mode and the result is saturated if it can-
not be represented in a 32-bit fraction. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS

4 RT /// RB 663
0 6 11 16 21 31

4 RT /// RB 662
0 6 11 16 21 31
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9.3.3 SPE.Embedded Float Scalar Single Instructions
[Category: SPE.Embedded Float Scalar Single]

Floating-Point Single-Precision Absolute 
Value EVX-form

efsabs RT,RA

RT32:63 I 0b0 || (RA)33:63

The sign bit of the low element of register RA is set to 0
and the result is placed into the low element of register
RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

Floating-Point Single-Precision Negative 
Absolute Value EVX-form

efsnabs RT,RA

RT32:63 I 0b1 || (RA)33:63
The sign bit of the low element of register RA is set to 1
and the result is placed into the low element of register
RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

Floating-Point Single-Precision Negate
EVX-form

efsneg RT,RA

RT32:63 I ¬(RA)32 || (RA)33:63

The sign bit of the low element of register RA is com-
plemented and the result is placed into the low element
of register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

4 RT RA /// 708
0 6 11 16 21 31

4 RT RA /// 709
0 6 11 16 21 31

4 RT RA /// 710
0 6 11 16 21 31
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Floating-Point Single-Precision Add
EVX-form

efsadd RT,RA,RB

RT32:63 I (RA)32:63 +sp (RB)32:63

The low element of register RA is added to the low ele-
ment of register RB and the result is stored in the low
element of register RT.

If an underflow occurs, +0 (for rounding modes RN, RZ,
RP) or -0 (for rounding mode RM) is stored in register
RT.

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

Floating-Point Single-Precision Subtract
EVX-form

efssub RT,RA,RB

RT32:63 I (RA)32:63 -sp (RB)32:63

The low element of register RB is subtracted from the
low element of register RA and the result is stored in
the low element of register RT. 

If an underflow occurs, +0 (for rounding modes RN, RZ,
RP) or -0 (for rounding mode RM) is stored in register
RT. 

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

Floating-Point Single-Precision Multiply
EVX-form

efsmul RT,RA,RB

RT32:63 I (RA)32:63 ×sp (RB)32:63

The low element of register RA is multiplied by the low
element of register RB and the result is stored in the
low element of register RT.

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

Floating-Point Single-Precision Divide
EVX-form

efsdiv RT,RA,RB

RT32:63 I (RA)32:63 ÷sp (RB)32:63

The low element of register RA is divided by the low
element of register RB and the result is stored in the
low element of register RT.

Special Registers Altered: 
FINV FINVS
FG FX FINXS
FDBZ FDBZS
FOVF FOVFS
FUNF FUNFS

4 RT RA RB 704
0 6 11 16 21 31

4 RT RA RB 705
0 6 11 16 21 31

4 RT RA RB 712
0 6 11 16 21 31

4 RT RA RB 713
0 6 11 16 21 31
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Floating-Point Single-Precision Compare 
Greater Than EVX-form

efscmpgt BF,RA,RB

al I (RA)32:63
bl I (RB)32:63
if (al > bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I undefined || cl || undefined || undefined

The low element of register RA is compared against the
low element of register RB. The results of the compari-
sons are placed into CR field BF. If RA32:63 is greater
than RB32:63, bit 1 of CR field BF is set to 1, otherwise it
is set to 0. Bits 0, 2, and 3 of CR field BF are undefined.
Comparison ignores the sign of 0 (+0 = -0).

If an Input Error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms are treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVS
FG FX
CR field BF

Floating-Point Single-Precision Compare 
Less Than EVX-form

efscmplt BF,RA,RB

al I (RA)32:63
bl I (RB)32:63
if (al < bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I undefined || cl || undefined || undefined

The low element of register RA is compared against the
low element of register RB. If RA32:63 is less than
RB32:63, bit 1 of CR field BF is set to 1, otherwise it is
set to 0. Bits 0, 2, and 3 of CR field BF are undefined.
Comparison ignores the sign of 0 (+0 = -0).

If an Input Error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms are treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVS
FG FX
CR field BF

4 BF // RA RB 716
0 6 9 11 16 21 31

4 BF // RA RB 717
0 6 9 11 16 21 31
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Floating-Point Single-Precision Compare 
Equal EVX-form

efscmpeq BF,RA,RB

al I (RA)32:63
bl I (RB)32:63
if (al = bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I undefined || cl || undefined || undefined

The low element of register RA is compared against the
low element of register RB. If RA32:63 is equal to
RB32:63, bit 1 of CR field BF is set to 1, otherwise it is
set to 0. Bits 0, 2, and 3 of CR field BF are undefined.
Comparison ignores the sign of 0 (+0 = -0).

If an Input Error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms are treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVS
FG FX
CR field BF

Floating-Point Single-Precision Test 
Greater Than EVX-form

efststgt BF,RA,RB

al I (RA)32:63
bl I (RB)32:63
if (al > bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I undefined || cl || undefined || undefined

The low element of register RA is compared against the
low element of register RB. If RA32:63 is greater than
RB32:63, bit 1 of CR field BF is set to 1, otherwise it is
set to 0. Bits 0, 2, and 3 of CR field BF are undefined.
Comparison ignores the sign of 0 (+0 = -0). The com-
parison proceeds after treating NaNs, Infinities, and
Denorms as normalized numbers, using their values of
‘e’ and ‘f’ directly.

No exceptions are generated during the execution of
efststgt.

Special Registers Altered: 
CR field BF

4 BF // RA RB 718
0 6 9 11 16 21 31

4 BF // RA RB 732
0 6 9 11 16 21 31

In an implementation, the execution of efststgt is
likely to be faster than the execution of efscmpgt;
however, if strict IEEE 754 compliance is required,
the program should use efscmpgt.

Programming Note
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Floating-Point Single-Precision Test Less 
Than EVX-form

efststlt BF,RA,RB

al I (RA)32:63
bl I (RB)32:63
if (al < bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I undefined || cl || undefined || undefined

The low element of register RA is compared against the
low element of register RB. If RA32:63 is less than
RB32:63, bit 1 of CR field BF is set to 1, otherwise it is
set to 0. Bits 0, 2, and 3 of CR field BF are undefined.
Comparison ignores the sign of 0 (+0 = -0). The com-
parison proceeds after treating NaNs, Infinities, and
Denorms as normalized numbers, using their values of
‘e’ and ‘f’ directly.

No exceptions are generated during the execution of
efststlt. 

Special Registers Altered: 
CR field BF

Floating-Point Single-Precision Test 
Equal EVX-form

efststeq BF,RA,RB

al I (RA)32:63
bl I (RB)32:63
if (al = bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I undefined || cl || undefined || undefined

The low element of register RA is compared against the
low element of register RB. If RA32:63 is equal to
RB32:63, bit 1 of CR field BF is set to 1, otherwise it is
set to 0. Bits 0, 2, and 3 of CR field BF are undefined.
Comparison ignores the sign of 0 (+0 = -0). The com-
parison proceeds after treating NaNs, Infinities, and
Denorms as normalized numbers, using their values of
‘e’ and ‘f’ directly.

No exceptions are generated during the execution of
efststeq. 

Special Registers Altered: 
CR field BF

4 BF // RA RB 733
0 6 9 11 16 21 31

In an implementation, the execution of efststlt is
likely to be faster than the execution of efscmplt;
however, if strict IEEE 754 compliance is required,
the program should use efscmplt.

Programming Note

4 BF // RA RB 734
0 6 9 11 16 21 31

In an implementation, the execution of efststeq is
likely to be faster than the execution of efscmpeq;
however, if strict IEEE 754 compliance is required,
the program should use efscmpeq.

Programming Note
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Convert Floating-Point Single-Precision 
from Signed Integer EVX-form

efscfsi RT,RB

RT32:63 I CnvtI32ToFP32((RB)32:63, S, LO, I)

The signed integer low element in register RB is con-
verted to a single-precision floating-point value using
the current rounding mode and the result is placed into
the low element of register RT.

Special Registers Altered: 
FINXS FG FX

Convert Floating-Point Single-Precision 
from Unsigned Integer EVX-form

efscfui RT,RB

RT32:63 I CnvtI32ToFP32((RB)32:63, U, LO, I)

The unsigned integer low element in register RB is con-
verted to a single-precision floating-point value using
the current rounding mode and the result is placed into
the low element of register RT.

Special Registers Altered: 
FINXS FG FX

Convert Floating-Point Single-Precision 
from Signed Fraction EVX-form

efscfsf RT,RB

RT32:63 I CnvtI32ToFP32((RB)32:63, S, LO, F)

The signed fractional low element in register RB is con-
verted to a single-precision floating-point value using
the current rounding mode and the result is placed into
the low element of register RT.

Special Registers Altered: 
FINXS FG FX

Convert Floating-Point Single-Precision 
from Unsigned Fraction EVX-form

efscfuf RT,RB

RT32:63 I CnvtI32ToFP32((RB)32:63, U, LO, F)

The unsigned fractional low element in register RB is
converted to a single-precision floating-point value
using the current rounding mode and the result is
placed into the low element of register RT.

Special Registers Altered: 
FINXS FG FX

Convert Floating-Point Single-Precision 
to Signed Integer EVX-form

efsctsi RT,RB

RT32:63 I CnvtFP32ToI32Sat((RB)32:63, S, LO, RND, I)

The single-precision floating-point low element in regis-
ter RB is converted to a signed integer using the cur-
rent rounding mode and the result is saturated if it
cannot be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Single-Precision 
to Unsigned Integer EVX-form

efsctui RT,RB

RT32:63 I CnvtFP32ToI32Sat((RB)32:63, U, LO, RND, I)

The single-precision floating-point low element in regis-
ter RB is converted to an unsigned integer using the
current rounding mode and the result is saturated if it
cannot be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

4 RT /// RB 721
0 6 11 16 21 31

4 RT /// RB 720
0 6 11 16 21 31

4 RT /// RB 723
0 6 11 16 21 31

4 RT /// RB 722
0 6 11 16 21 31

4 RT /// RB 725
0 6 11 16 21 31

4 RT /// RB 724
0 6 11 16 21 31
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Convert Floating-Point Single-Precision 
to Signed Integer with Round toward Zero

EVX-form

efsctsiz RT,RB

RT32:63 I CnvtFP32ToI32Sat((RB)32:63, S, LO, ZER, I)

The single-precision floating-point low element in regis-
ter RB is converted to a signed integer using the round-
ing mode Round toward Zero and the result is
saturated if it cannot be represented in a 32-bit integer.
NaNs are converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Single-Precision 
to Unsigned Integer with Round toward 
Zero EVX-form

efsctuiz RT,RB

RT32:63 I CnvtFP32ToI32Sat((RB)32:63, U, LO, ZER, I)

The single-precision floating-point low element in regis-
ter RB is converted to an unsigned integer using the
rounding mode Round toward Zero and the result is
saturated if it cannot be represented in a 32-bit integer.
NaNs are converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Single-Precision 
to Signed Fraction EVX-form

efsctsf RT,RB

RT32:63 I CnvtFP32ToI32Sat((RB)32:63, S, LO, RND, F)

The single-precision floating-point low element in regis-
ter RB is converted to a signed fraction using the cur-
rent rounding mode and the result is saturated if it
cannot be represented in a 32-bit fraction. NaNs are
converted as though they were zero. 

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Single-Precision 
to Unsigned Fraction EVX-form

efsctuf RT,RB

RT32:63 I CnvtFP32ToI32Sat((RB)32:63, U, LO, RND, F)

The single-precision floating-point low element in regis-
ter RB is converted to an unsigned fraction using the
current rounding mode and the result is saturated if it
cannot be represented in a 32-bit unsigned fraction.
NaNs are converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

4 RT /// RB 730
0 6 11 16 21 31

4 RT /// RB 728
0 6 11 16 21 31

4 RT /// RB 727
0 6 11 16 21 31

4 RT /// RB 726
0 6 11 16 21 31
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9.3.4 SPE.Embedded Float Scalar Double Instructions
[Category: SPE.Embedded Float Scalar Double]

Floating-Point Double-Precision Absolute 
Value EVX-form

efdabs RT,RA

RT0:63 I 0b0 || (RA)1:63

The sign bit of register RA is set to 0 and the result is
placed in register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

Floating-Point Double-Precision Negative 
Absolute Value EVX-form

efdnabs RT,RA

RT0:63 I 0b1 || (RA)1:63

The sign bit of register RA is set to 1 and the result is
placed in register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

Floating-Point Double-Precision Negate
EVX-form

efdneg RT,RA

RT0:63 I ¬(RA)0 || (RA)1:63

The sign bit of register RA is complemented and the
result is placed in register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

4 RT RA /// 740
0 6 11 16 21 31

4 RT RA /// 741
0 6 11 16 21 31

4 RT RA /// 742
0 6 11 16 21 31
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Floating-Point Double-Precision Add 
EVX-form

efdadd RT,RA,RB

RT0:63 I (RA)0:63 +dp (RB)0:63

RA is added to RB and the result is stored in register
RT.

If an underflow occurs, +0 (for rounding modes RN, RZ,
RP) or -0 (for rounding mode RM) is stored in register
RT.

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

Floating-Point Double-Precision Subtract
EVX-form

efdsub RT,RA,RB

RT0:63 I (RA)0:63 -dp (RB)0:63

RB is subtracted from RA and the result is stored in
register RT. 

If an underflow occurs, +0 (for rounding modes RN, RZ,
RP) or -0 (for rounding mode RM) is stored in register
RT.

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

Floating-Point Double-Precision Multiply
EVX-form

efdmul RT,RA,RB

RT0:63 I (RA)0:63 ×dp (RB)0:63

RA is multiplied by RB and the result is stored in regis-
ter RT. 

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

Floating-Point Double-Precision Divide
EVX-form

efddiv RT,RA,RB

RT0:63 I (RA)0:63 ÷dp (RB)0:63

RA is divided by RB and the result is stored in register
RT. 

Special Registers Altered: 
FINV FINVS
FG FX FINXS
FDBZ FDBZS
FOVF FOVFS
FUNF FUNFS

4 RT RA RB 736
0 6 11 16 21 31

4 RT RA RB 737
0 6 11 16 21 31

4 RT RA RB 744
0 6 11 16 21 31

4 RT RA RB 745
0 6 11 16 21 31
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Floating-Point Double-Precision Compare 
Greater Than EVX-form

efdcmpgt BF,RA,RB

al I (RA)0:63
bl I (RB)0:63
if (al > bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I undefined || cl || undefined || undefined

RA is compared against RB. If RA is greater than RB,
bit 1 of CR field BF is set to 1, otherwise it is set to 0.
Bits 0, 2, and 3 of CR field BF are undefined. Compari-
son ignores the sign of 0 (+0 = -0).

If an input error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms are treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVS
FG FX 
CR field BF

Floating-Point Double-Precision Compare 
Less Than EVX-form

efdcmplt BF,RA,RB

al I (RA)0:63
bl I (RB)0:63
if (al < bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I undefined || cl || undefined || undefined

RA is compared against RB. If RA is less than RB, bit 1
of CR field BF is set to 1, otherwise it is set to 0. Bits 0,
2, and 3 of CR field BF are undefined. Comparison
ignores the sign of 0 (+0 = -0).

If an input error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms are treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVS
FG FX 
CR field BF

Floating-Point Double-Precision Compare 
Equal EVX-form

efdcmpeq BF,RA,RB

al I (RA)0:63
bl I (RB)0:63
if (al = bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I undefined || cl || undefined || undefined

RA is compared against RB. If RA is equal to RB, bit 1
of CR field BF is set to 1, otherwise it is set to 0. Bits 0,
2, and 3 of CR field BF are undefined. Comparison
ignores the sign of 0 (+0 = -0).

If an input error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms are treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVS
FG FX 
CR field BF

Floating-Point Double-Precision Test 
Greater Than EVX-form

efdtstgt BF,RA,RB

al I (RA)0:63
bl I (RB)0:63
if (al > bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I undefined || cl || undefined || undefined

RA is compared against RB. If RA is greater than RB,
bit 1 of CR field BF is set to 1, otherwise it is set to 0.
Bits 0, 2, and 3 of CR field BF are undefined. Compari-
son ignores the sign of 0 (+0 = -0). The comparison
proceeds after treating NaNs, Infinities, and Denorms
as normalized numbers, using their values of ‘e’ and ‘f’
directly.

No exceptions are generated during the execution of
efdtstgt. 

Special Registers Altered: 
CR field BF

4 BF // RA RB 748
0 6 9 11 16 21 31

4 BF // RA RB 749
0 6 9 11 16 21 31

4 BF // RA RB 750
0 6 9 11 16 21 31

4 BF // RA RB 764
0 6 9 11 16 21 31

In an implementation, the execution of efdtstgt is
likely to be faster than the execution of efdcmpgt;
however, if strict IEEE 754 compliance is required,
the program should use efdcmpgt.

Programming Note
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Floating-Point Double-Precision Test Less 
Than EVX-form

efdtstlt BF,RA,RB

al I (RA)0:63
bl I (RB)0:63
if (al < bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I undefined || cl || undefined || undefined

RA is compared against RB. If RA is less than RB, bit 1
of CR field BF is set to 1, otherwise it is set to 0. Bits 0,
2, and 3 of CR field BF are undefined. Comparison
ignores the sign of 0 (+0 = -0). The comparison pro-
ceeds after treating NaNs, Infinities, and Denorms as
normalized numbers, using their values of ‘e’ and ‘f’
directly.

No exceptions are generated during the execution of
efdtstlt. 

Special Registers Altered: 
CR field BF

Floating-Point Double-Precision Test 
Equal EVX-form

efdtsteq BF,RA,RB

al I (RA)0:63
bl I (RB)0:63
if (al = bl) then cl I 1
else cl I 0
CR4×BF:4×BF+3 I undefined || cl || undefined || undefined

RA is compared against RB. If RA is equal to RB, bit 1
of CR field BF is set to 1, otherwise it is set to 0. Bits 0,
2, and 3 of CR field BF are undefined. Comparison
ignores the sign of 0 (+0 = -0). The comparison pro-
ceeds after treating NaNs, Infinities, and Denorms as
normalized numbers, using their values of ‘e’ and ‘f’
directly.

No exceptions are generated during the execution of
efdtsteq. 

Special Registers Altered: 
CR field BF

Convert Floating-Point Double-Precision 
from Signed Integer EVX-form

efdcfsi RT,RB

RT0:63 I CnvtI32ToFP64((RB)32:63, S, I)

The signed integer low element in register RB is con-
verted to a double-precision floating-point value using
the current rounding mode and the result is placed in
register RT.

Special Registers Altered: 
None

Convert Floating-Point Double-Precision 
from Unsigned Integer EVX-form

efdcfui RT,RB

RT0:63 I CnvtI32ToFP64((RB)32:63, U, I)

The unsigned integer low element in register RB is con-
verted to a double-precision floating-point value using
the current rounding mode and the result is placed in
register RT.

Special Registers Altered: 
None

4 BF // RA RB 765
0 6 9 11 16 21 31

In an implementation, the execution of efdtstlt is
likely to be faster than the execution of efdcmplt;
however, if strict IEEE 754 compliance is required,
the program should use efdcmplt.

Programming Note

4 BF // RA RB 766
0 6 9 11 16 21 31

In an implementation, the execution of efdtsteq is
likely to be faster than the execution of efdcmpeq;
however, if strict IEEE 754 compliance is required,
the program should use efdcmpeq.

Programming Note

4 RT /// RB 753
0 6 11 16 21 31

4 RT /// RB 752
0 6 11 16 21 31
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Convert Floating-Point Double-Precision 
from Signed Integer Doubleword

EVX-form

efdcfsid RT,RB

RT0:63 I CnvtI64ToFP64((RB)0:63, S)

The signed integer doubleword in register RB is con-
verted to a double-precision floating-point value using
the current rounding mode and the result is placed in
register RT.

Corequisite Categories: 
64-Bit

Special Registers Altered: 
FINXS FG FX

Convert Floating-Point Double-Precision 
from Unsigned Integer Doubleword

EVX-form

efdcfuid RT,RB

RT0:63 I CnvtI64ToFP64((RB)0:63, U)

The unsigned integer doubleword in register RB is con-
verted to a double-precision floating-point value using
the current rounding mode and the result is placed in
register RT.

Corequisite Categories: 
64-Bit

Special Registers Altered: 
FINXS FG FX

Convert Floating-Point Double-Precision 
from Signed Fraction

EVX-form

efdcfsf RT,RB

RT0:63 I CnvtI32ToFP64((RB)32:63, S, F)

The signed fractional low element in register RB is con-
verted to a double-precision floating-point value using
the current rounding mode and the result is placed in
register RT.

Special Registers Altered: 
None

Convert Floating-Point Double-Precision 
from Unsigned Fraction EVX-form

efdcfuf RT,RB

RT0:63 I CnvtI32ToFP64((RB)32:63, U, F)

The unsigned fractional low element in register RB is
converted to a double-precision floating-point value
using the current rounding mode and the result is
placed in register RT.

Special Registers Altered: 
None

Convert Floating-Point Double-Precision 
to Signed Integer EVX-form

efdctsi RT,RB

RT32:63 I CnvtFP64ToI32Sat((RB)0:63, S, RND, I)

The double-precision floating-point value in register RB
is converted to a signed integer using the current
rounding mode and the result is saturated if it cannot be
represented in a 32-bit integer. NaNs are converted as
though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Double-Precision 
to Unsigned Integer EVX-form

efdctui RT,RB

RT32:63 I CnvtFP64ToI32Sat((RB)0:63, U, RND, I)

The double-precision floating-point value in register RB
is converted to an unsigned integer using the current
rounding mode and the result is saturated if it cannot be
represented in a 32-bit integer. NaNs are converted as
though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

4 RT /// RB 739
0 6 11 16 21 31

4 RT /// RB 738
0 6 11 16 21 31

4 RT /// RB 755
0 6 11 16 21 31

4 RT /// RB 754
0 6 11 16 21 31

4 RT /// RB 757
0 6 11 16 21 31

4 RT /// RB 756
0 6 11 16 21 31
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Convert Floating-Point Double-Precision 
to Signed Integer Doubleword with Round 
toward Zero EVX-form

efdctsidz RT,RB

RT0:63 I CnvtFP64ToI64Sat((RB)0:63, S, ZER)

The double-precision floating-point value in register RB
is converted to a signed integer doubleword using the
rounding mode Round toward Zero and the result is
saturated if it cannot be represented in a 64-bit integer.
NaNs are converted as though they were zero.

Corequisite Categories: 
64-Bit

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Double-Precision 
to Unsigned Integer Doubleword with 
Round toward Zero EVX-form

efdctuidz RT,RB

RT0:63 I CnvtFP64ToI64Sat((RB)0:63, U, ZER)

The double-precision floating-point value in register RB
is converted to an unsigned integer doubleword using
the rounding mode Round toward Zero and the result is
saturated if it cannot be represented in a 64-bit integer.
NaNs are converted as though they were zero.

Corequisite Categories: 
64-Bit

Special Registers Altered: 
FINV FINVS
FINXS FG FX

4 RT /// RB 747
0 6 11 16 21 31

4 RT /// RB 746
0 6 11 16 21 31
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Convert Floating-Point Double-Precision 
to Signed Integer with Round toward Zero

EVX-form

efdctsiz RT,RB

RT32:63 I CnvtFP64ToI32Sat((RB)0:63, S, ZER, I)

The double-precision floating-point value in register RB
is converted to a signed integer using the rounding
mode Round toward Zero and the result is saturated if it
cannot be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Double-Precision 
to Unsigned Integer with Round toward 
Zero EVX-form

efdctuiz RT,RB

RT32:63 I CnvtFP64ToI32Sat((RB)0:63, U, ZER, I)

The double-precision floating-point value in register RB
is converted to an unsigned integer using the rounding
mode Round toward Zero and the result is saturated if it
cannot be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Double-Precision 
to Signed Fraction EVX-form

efdctsf RT,RB

RT32:63 I CnvtFP64ToI32Sat((RB)0:63, S, RND, F)

The double-precision floating-point value in register RB
is converted to a signed fraction using the current
rounding mode and the result is saturated if it cannot be
represented in a 32-bit fraction. NaNs are converted as
though they were zero. 

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Double-Precision 
to Unsigned Fraction EVX-form

efdctuf RT,RB

RT32:63 I CnvtFP64ToI32Sat((RB)0:63, U, RND, F)

The double-precision floating-point value in register RB
is converted to an unsigned fraction using the current
rounding mode and the result is saturated if it cannot be
represented in a 32-bit unsigned fraction. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Floating-Point Double-Precision Convert 
from Single-Precision EVX-form

efdcfs RT,RB

FP32format f;
FP64format result;
f I (RB)32:63
if (fexp = 0) & (ffrac = 0)) then

result I fsign || 
630

else if Isa32NaNorInfinity(f) | Isa32Denorm(f) then
SPEFSCRFINV I 1
result I fsign || 0b11111111110 || 

521
else if Isa32Denorm(f) then

SPEFSCRFINV I 1
result I fsign || 

630
else

resultsign I fsign
resultexp I fexp - 127 + 1023
resultfrac I ffrac || 

290
RT0:63 I result

The single-precision floating-point value in the low ele-
ment of register RB is converted to a double-precision
floating-point value and the result is placed in register
RT.

Corequisite Categories: 
SPE.Embedded Float Scalar Single or
SPE.Embedded Float Vector

Special Registers Altered: 
FINV FINVS
FG FX

4 RT /// RB 762
0 6 11 16 21 31

4 RT /// RB 760
0 6 11 16 21 31

4 RT /// RB 759
0 6 11 16 21 31

4 RT /// RB 758
0 6 11 16 21 31

4 RT /// RB 751
0 6 11 16 21 31
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Floating-Point Single-Precision Convert 
from Double-Precision EVX-form

efscfd RT,RB

FP64format f;
FP32format result;
f I (RB)0:63
if (fexp = 0) & (ffrac = 0)) then

result I fsign || 
310

else if Isa64NaNorInfinity(f) then
SPEFSCRFINV I 1
result I fsign || 0b11111110 || 

231
else if Isa64Denorm(f) then

SPEFSCRFINV I 1
result I fsign || 

310
else

unbias I fexp - 1023
if unbias > 127 then

result I fsign || 0b11111110 || 
231

SPEFSCRFOVF I 1
else if unbias < -126 then

result I fsign || 
310

SPEFSCRFUNF I 1
else

resultsign I fsign
resultexp I unbias + 127
resultfrac I ffrac[0:22]
guard I ffrac[23]
sticky I (ffrac[24:51] ≠ 0)
result I Round32(result, LO, guard, 

sticky)
SPEFSCRFG I guard
SPEFSCRFX I sticky
if guard | sticky then

SPEFSCRFINXS I 1
RT32:63 I result

The double-precision floating-point value in register RB
is converted to a single-precision floating-point value
using the current rounding mode and the result is
placed into the low element of register RT.

Corequisite Categories: 
SPE.Embedded Float Scalar Scalar

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

4 RT /// RB 719
0 6 11 16 21 31
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9.4 Embedded Floating-Point Results Summary

The following tables summarize the results of various
types of Embedded Floating-Point operations on vari-
ous combinations of input operands. Flag settings are
performed on appropriate element flags. For all the
tables the following annotation and general rules apply:

* denotes that this status flag is set based on the
results of the calculation.
_Calc_ denotes that the result is updated with the
results of the computation.
max denotes the maximum normalized number
with the sign set to the computation [sign(operand
A) XOR sign(operand B)].
amax denotes the maximum normalized number
with the sign set to the sign of Operand A.
bmax denotes the maximum normalized number
with the sign set to the sign of Operand B.
pmax denotes the maximum normalized positive
number. The encoding for single-precision is:
0x7F7FFFFF. The encoding for double-precision
is: 0x7FEFFFFF_FFFFFFFF.
nmax denotes the maximum normalized negative
number. The encoding for single-precision is:
0xFF7FFFFF. The encoding for double-precision
is: 0xFFEFFFFF_FFFFFFFF.
pmin denotes the minimum normalized positive
number. The encoding for single-precision is:
0x00800000. The encoding for double-precision is:
0x00100000_00000000.

nmin denotes the minimum normalized negative
number. The encoding for single-precision is:
0x80800000. The encoding for double-precision is:
0x80100000_00000000.
Calculations that overflow or underflow saturate.
Overflow for operations that have a floating-point
result force the result to max. Underflow for opera-
tions that have a floating-point result force the
result to zero. Overflow for operations that have a
signed integer result force the result to
0x7FFFFFFF (positive) or 0x80000000 (negative).
Overflow for operations that have an unsigned inte-
ger result force the result to 0xFFFFFFFF (posi-
tive) or 0x00000000 (negative).
1 (superscript) denotes that the sign of the result is
positive when the sign of Operand A and the sign
of Operand B are different, for all rounding modes
except round to -infinity, where the sign of the
result is then negative.
2 (superscript) denotes that the sign of the result is
positive when the sign of Operand A and the sign
of Operand B are the same, for all rounding modes
except round to -infinity, where the sign of the
result is then negative.
3 (superscript) denotes that the sign for any multi-
ply or divide is always the result of the operation
[sign(Operand A) XOR sign(Operand B)].
4 (superscript) denotes that if an overflow is
detected, the result may be saturated.

Table 115:Embedded Floating-Point Results Summary—Add, Sub, Mul, Div

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX

Add

Add ∞ ∞ amax 1 0 0 0 0

Add ∞ NaN amax 1 0 0 0 0

Add ∞ denorm amax 1 0 0 0 0

Add ∞ zero amax 1 0 0 0 0

Add ∞ Norm amax 1 0 0 0 0

Add NaN ∞ amax 1 0 0 0 0

Add NaN NaN amax 1 0 0 0 0

Add NaN denorm amax 1 0 0 0 0

Add NaN zero amax 1 0 0 0 0

Add NaN norm amax 1 0 0 0 0

Add denorm ∞ bmax 1 0 0 0 0

Add denorm NaN bmax 1 0 0 0 0

Add denorm denorm zero1 1 0 0 0 0

Add denorm zero zero1 1 0 0 0 0

Add denorm norm operand_b4 1 0 0 0 0

Add zero ∞ bmax 1 0 0 0 0

Add zero NaN bmax 1 0 0 0 0

Add zero denorm zero1 1 0 0 0 0
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Add zero zero zero1 0 0 0 0 0

Add zero norm operand_b4 0 0 0 0 0

Add norm ∞ bmax 1 0 0 0 0

Add norm NaN bmax 1 0 0 0 0

Add norm denorm operand_a4 1 0 0 0 0

Add norm zero operand_a4 0 0 0 0 0

Add norm norm _Calc_ 0 * * 0 *

Subtract

Sub ∞ ∞ amax 1 0 0 0 0

Sub ∞ NaN amax 1 0 0 0 0

Sub ∞ denorm amax 1 0 0 0 0

Sub ∞ zero amax 1 0 0 0 0

Sub ∞ Norm amax 1 0 0 0 0

Sub NaN ∞ amax 1 0 0 0 0

Sub NaN NaN amax 1 0 0 0 0

Sub NaN denorm amax 1 0 0 0 0

Sub NaN zero amax 1 0 0 0 0

Sub NaN norm amax 1 0 0 0 0

Sub denorm ∞ -bmax 1 0 0 0 0

Sub denorm NaN -bmax 1 0 0 0 0

Sub denorm denorm zero2 1 0 0 0 0

Sub denorm zero zero2 1 0 0 0 0

Sub denorm norm -operand_b4 1 0 0 0 0

Sub zero ∞ -bmax 1 0 0 0 0

Sub zero NaN -bmax 1 0 0 0 0

Sub zero denorm zero2 1 0 0 0 0

Sub zero zero zero2 0 0 0 0 0

Sub zero norm -operand_b4 0 0 0 0 0

Sub norm ∞ -bmax 1 0 0 0 0

Sub norm NaN -bmax 1 0 0 0 0

Sub norm denorm operand_a4 1 0 0 0 0

Sub norm zero operand_a4 0 0 0 0 0

Sub norm norm _Calc_ 0 * * 0 *

Multiply3

Mul ∞ ∞ max 1 0 0 0 0

Mul ∞ NaN max 1 0 0 0 0

Mul ∞ denorm zero 1 0 0 0 0

Mul ∞ zero zero 1 0 0 0 0

Mul ∞ Norm max 1 0 0 0 0

Mul NaN ∞ max 1 0 0 0 0

Mul NaN NaN max 1 0 0 0 0

Mul NaN denorm zero 1 0 0 0 0

Mul NaN zero zero 1 0 0 0 0

Mul NaN norm max 1 0 0 0 0

Table 115:Embedded Floating-Point Results Summary—Add, Sub, Mul, Div (Continued)

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX
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Mul denorm ∞ zero 1 0 0 0 0

Mul denorm NaN zero 1 0 0 0 0

Mul denorm denorm zero 1 0 0 0 0

Mul denorm zero zero 1 0 0 0 0

Mul denorm norm zero 1 0 0 0 0

Mul zero ∞ zero 1 0 0 0 0

Mul zero NaN zero 1 0 0 0 0

Mul zero denorm zero 1 0 0 0 0

Mul zero zero zero 0 0 0 0 0

Mul zero norm zero 0 0 0 0 0

Mul norm ∞ max 1 0 0 0 0

Mul norm NaN max 1 0 0 0 0

Mul norm denorm zero 1 0 0 0 0

Mul norm zero zero 0 0 0 0 0

Mul norm norm _Calc_ 0 * * 0 *

Divide3

Div ∞ ∞ zero 1 0 0 0 0

Div ∞ NaN zero 1 0 0 0 0

Div ∞ denorm max 1 0 0 0 0

Div ∞ zero max 1 0 0 0 0

Div ∞ Norm max 1 0 0 0 0

Div NaN ∞ zero 1 0 0 0 0

Div NaN NaN zero 1 0 0 0 0

Div NaN denorm max 1 0 0 0 0

Div NaN zero max 1 0 0 0 0

Div NaN norm max 1 0 0 0 0

Div denorm ∞ zero 1 0 0 0 0

Div denorm NaN zero 1 0 0 0 0

Div denorm denorm max 1 0 0 0 0

Div denorm zero max 1 0 0 0 0

Div denorm norm zero 1 0 0 0 0

Div zero ∞ zero 1 0 0 0 0

Div zero NaN zero 1 0 0 0 0

Div zero denorm max 1 0 0 0 0

Div zero zero max 1 0 0 0 0

Div zero norm zero 0 0 0 0 0

Div norm ∞ zero 1 0 0 0 0

Div norm NaN zero 1 0 0 0 0

Div norm denorm max 1 0 0 0 0

Div norm zero max 0 0 0 1 0

Div norm norm _Calc_ 0 * * 0 *

Table 115:Embedded Floating-Point Results Summary—Add, Sub, Mul, Div (Continued)

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX
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Table 116:Embedded Floating-Point Results Summary—Single Convert 
from Double

Operand B efscfd result FINV FOVF FUNF FDBZ FINX

+∞ pmax 1 0 0 0 0

-∞ nmax 1 0 0 0 0

+NaN pmax 1 0 0 0 0

-NaN nmax 1 0 0 0 0

+denorm +zero 1 0 0 0 0

-denorm -zero 1 0 0 0 0

+zero +zero 0 0 0 0 0

-zero -zero 0 0 0 0 0

norm _Calc_ 0 * * 0 *

Table 117:Embedded Floating-Point Results Summary—Double Convert 
from Single

Operand B efdcfs result FINV FOVF FUNF FDBZ FINX

+∞ pmax 1 0 0 0 0

-∞ nmax 1 0 0 0 0

+NaN pmax 1 0 0 0 0

-NaN nmax 1 0 0 0 0

+denorm +zero 1 0 0 0 0

-denorm -zero 1 0 0 0 0

+zero +zero 0 0 0 0 0

-zero -zero 0 0 0 0 0

norm _Calc_ 0 0 0 0 0

Table 118:Embedded Floating-Point Results Summary—Convert to Unsigned

Operand B
Integer Result

ctui[d][z]
Fractional Result

ctuf
FINV FOVF FUNF FDBZ FINX

+∞ 0xFFFF_FFFF 
0xFFFF_FFFF_FFFF_FFFF

0x7FFF_FFFF 1 0 0 0 0

-∞ 0 0 1 0 0 0 0

+NaN 0 0 1 0 0 0 0

-NaN 0 0 1 0 0 0 0

denorm 0 0 1 0 0 0 0

zero 0 0 0 0 0 0 0

+norm _Calc_ _Calc_ * 0 0 0 *

-norm _Calc_ _Calc_ * 0 0 0 *
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X

Table 119:Embedded Floating-Point Results Summary—Convert to Signed

Operand B
Integer Result

ctsi[d][z]
Fractional Result

ctsf
FINV FOVF FUNF FDBZ FINX

+∞ 0x7FFF_FFFF
0x7FFF_FFFF_FFFF_FFFF

0x7FFF_FFFF 1 0 0 0 0

-∞ 0x8000_0000
0x8000_0000_0000_0000

0x8000_0000 1 0 0 0 0

+NaN 0 0 1 0 0 0 0

-NaN 0 0 1 0 0 0 0

denorm 0 0 1 0 0 0 0

zero 0 0 0 0 0 0 0

+norm _Calc_ _Calc_ * 0 0 0 *

-norm _Calc_ _Calc_ * 0 0 0 *

Table 120:Embedded Floating-Point Results Summary—Convert from Unsigned

Operand B
Integer Source

cfui
Fractional Source

cfuf
FINV FOVF FUNF FDBZ FINX

zero zero zero 0 0 0 0 0

norm _Calc_ _Calc_ 0 0 0 0 *

Table 121:Embedded Floating-Point Results Summary—Convert from Signed

Operand B
Integer Source

cfsi
Fractional Source

cfsf
FINV FOVF FUNF FDBZ FINX

zero zero zero 0 0 0 0 0

norm _Calc_ _Calc_ 0 0 0 0 *

Table 122:Embedded Floating-Point Results Summary—*abs, *nabs, *neg

Operand A *abs *nabs *neg FINV FOVF FUNF FDBZ FIN

+∞ pmax | +∞ nmax | -∞ -amax | -∞ 1 0 0 0 0

-∞ pmax | +∞ nmax | -∞ -amax | +∞ 1 0 0 0 0

+NaN pmax | NaN nmax | -NaN -amax | -NaN 1 0 0 0 0

-NaN pmax | NaN nmax | -NaN -amax | +NaN 1 0 0 0 0

+denorm +zero | +denorm -zero | -denorm -zero | -denorm 1 0 0 0 0

-denorm +zero | +denorm -zero | -denorm +zero | +denorm 1 0 0 0 0

+zero +zero -zero -zero 0 0 0 0 0

-zero +zero -zero +zero 0 0 0 0 0

+norm +norm -norm -norm 0 0 0 0 0

-norm +norm -norm +norm 0 0 0 0 0
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Chapter 10.  Legacy Move Assist Instruction 
[Category: Legacy Move Assist]

Determine Leftmost Zero Byte X-form

dlmzb RA,RS,RB (Rc=0)
dlmzb. RA,RS,RB (Rc=1)

d0:63 I (RS)32:63 || (RB)32:63
i I 0
x I 0
y I 0
do while (x<8) & (y=0)
   x I x + 1
   if di:i+7 = 0 then 
      y I 1
   else
      i I i + 8
RA I x
XER57:63 I x
if Rc = 1 then do
   CR35 I SO
   if y = 1 then do
      if x<5 then CR32:34 I 0b010
      else        CR32:34 I 0b100
   else
      CR32:34 I 0b001

The contents of bits 32:63 of register RS and the con-
tents of bits 32:63 of register RB are concatenated to
form an 8-byte operand. The operand is searched for
the leftmost byte in which each bit is 0 (i.e., a null byte).

Bytes in the operand are numbered from left to right
starting with 1. If a null byte is found, its byte number is
placed into bits 57:63 of the XER and into register RA.
Otherwise, the value 0b000_1000 is placed into both
bits 57:63 of the XER and register RA.

If Rc is equal to 1, SO is copied into bit 35 of the CR
and bits 32:34 of the CR are updated as follows:

If no null byte is found, bits 32:34 of the CR are set
to 0b001.

If the leftmost null byte is in the first 4 bytes (i.e.,
from register RS), bits 32:34 of the CR are set to
0b010.

If the leftmost null byte is in the last 4 bytes (i.e.,
from register RB), bits 32:34 of the CR are set to
0b100.

Special Registers Altered:
XER57:63
CR0 (if Rc=1)

31 RS RA RB 78 Rc
0 6 11 16 21 31
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Chapter 11.  Legacy Integer Multiply-Accumulate 
Instructions [Category: Legacy Integer 
Multiply-Accumulate]

The Legacy Integer Multiply-Accumulate instructions
with Rc=1 set the first three bits of CR Field 0 based on
the 32-bit result, as described in Section 3.3.8, “Other
Fixed-Point Instructions”.

The XO-form Legacy Integer Multiply-Accumulate
instructions set SO and OV when OE=1 to reflect over-
flow of the 32-bit result.

 

Multiply Accumulate Cross Halfword to 
Word Modulo Signed XO-form

macchw RT,RA,RB (OE=0 Rc=0)
macchw. RT,RA,RB (OE=0 Rc=1)
macchwo RT,RA,RB (OE=1 Rc=0)
macchwo. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)48:63 ×si (RB)32:47
temp0:32 I prod0:31 + (RT)32:63
RT32:63 I temp1:32
RT0:31  I undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is added to the
signed-integer word in bits 32:63 of register RT.

The low-order 32 bits of the sum are placed into bits
32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Accumulate Cross Halfword to 
Word Saturate Signed XO-form

macchws RT,RA,RB (OE=0 Rc=0)
macchws. RT,RA,RB (OE=0 Rc=1)
macchwso RT,RA,RB (OE=1 Rc=0)
macchwso. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)48:63 ×si (RB)32:47
temp0:32 I prod0:31 + RT32:63
if temp < -231       then RT32:63 I 0x8000_0000
else if temp > 231-1 then RT32:63 I 0x7FFF_FFFF
else                      RT32:63 I temp1:32
RT0:31 I undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is added to the
signed-integer word in bits 32:63 of register RT.

If the sum is less than -231, then the value 0x8000_0000
is placed into bits 32:63 of register RT.

If the sum is greater than 231-1, then the value
0x7FFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the sum is placed into bits 32:63 of register
RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Notice that CR Field 0 may not reflect the “true”
(infinitely precise) result if overflow occurs.

Programming Note

4 RT RA RB OE 172 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 236 Rc
0 6 11 16 21 22 31
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Multiply Accumulate Cross Halfword to 
Word Modulo Unsigned  XO-form

macchwu RT,RA,RB (OE=0 Rc=0)
macchwu. RT,RA,RB (OE=0 Rc=1)
macchwuo RT,RA,RB (OE=1 Rc=0)
macchwuo. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)48:63 ×ui (RB)32:47
temp0:32 I prod0:31 + (RT)32:63
RT I temp1:32

The unsigned-integer halfword in bits 48:63 of register
RA is multiplied by the unsigned-integer halfword in bits
32:47 of register RB. 

The 32-bit unsigned-integer product is added to the
unsigned-integer word in bits 32:63 of register RT.

The low-order 32 bits of the sum are placed into bits
32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Accumulate Cross Halfword to 
Word Saturate Unsigned  XO-form

macchwsu RT,RA,RB (OE=0 Rc=0)
macchwsu. RT,RA,RB (OE=0 Rc=1)
macchwsuo RT,RA,RB (OE=1 Rc=0)
macchwsuo. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)48:63 ×ui (RB)32:47
temp0:32 I prod0:31 + (RT)32:63
if temp > 232-1 then RT I 0xFFFF_FFFF
else                 RT I temp1:32

The unsigned-integer halfword in bits 48:63 of register
RA is multiplied by the unsigned-integer halfword in bits
32:47 of register RB. 

The 32-bit unsigned-integer product is added to the
unsigned-integer word in bits 32:63 of register RT.

If the sum is greater than 232-1, then the value
0xFFFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the sum is placed into bits 32:63 of register
RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 140 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 204 Rc
0 6 11 16 21 22 31
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Multiply Accumulate High Halfword to 
Word Modulo Signed XO-form

machhw RT,RA,RB (OE=0 Rc=0)
machhw. RT,RA,RB (OE=0 Rc=1)
machhwo RT,RA,RB (OE=1 Rc=0)
machhwo. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)32:47 ×si (RB)32:47
temp0:32 I prod0:31 + (RT)32:63
RT32:63 I temp1:32
RT0:31  I undefined

The signed-integer halfword in bits 32:47 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is added to the
signed-integer word in bits 32:63 of register RT.

The low-order 32 bits of the sum are placed into bits
32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Accumulate High Halfword to 
Word Saturate Signed  XO-form

machhws RT,RA,RB (OE=0 Rc=0)
machhws. RT,RA,RB (OE=0 Rc=1)
machhwso RT,RA,RB (OE=1 Rc=0)
machhwso. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)32:47 ×si (RB)32:47
temp0:32 I prod0:31 + (RT)32:63
if temp < -231       then RT32:63 I 0x8000_0000
else if temp > 231-1 then RT32:63 I 0x7FFF_FFFF
else                      RT32:63 I temp1:32
RT0:31  I undefined

The signed-integer halfword in bits 32:47 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is added to the
signed-integer word in bits 32:63 of register RT.

If the sum is less than -231, then the value 0x8000_0000
is placed into bits 32:63 of register RT.

If the sum is greater than 231-1, then the value
0x7FFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the sum is placed into bits 32:63 of register
RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 44 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 108 Rc
0 6 11 16 21 22 31
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Multiply Accumulate High Halfword to 
Word Modulo Unsigned XO-form

machhwu RT,RA,RB (OE=0 Rc=0)
machhwu. RT,RA,RB (OE=0 Rc=1)
machhwuo RT,RA,RB (OE=1 Rc=0)
machhwuo. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)32:47 ×ui (RB)32:47
temp0:32 I prod0:31 + (RT)32:63
RT32:63 I temp1:32
RT0:31  I undefined

The unsigned-integer halfword in bits 32:47 of register
RA is multiplied by the unsigned-integer halfword in bits
32:47 of register RB. 

The 32-bit unsigned-integer product is added to the
unsigned-integer word in bits 32:63 of register RT.

The low-order 32 bits of the sum are placed into bits
32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Accumulate High Halfword to 
Word Saturate Unsigned XO-form

machhwsu RT,RA,RB (OE=0 Rc=0)
machhwsu. RT,RA,RB (OE=0 Rc=1)
machhwsuo RT,RA,RB (OE=1 Rc=0)
machhwsuo. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)32:47 ×ui (RB)32:47
temp0:32 I prod0:31 + (RT)32:63
if temp > 232-1 then RT I 0xFFFF_FFFF
else                 RT I temp1:32

The unsigned-integer halfword in bits 32:47 of register
RA is multiplied by the unsigned-integer halfword in bits
32:47 of register RB. 

The 32-bit unsigned-integer product is added to the
unsigned-integer word in bits 32:63 of register RT.

If the sum is greater than 232-1, then the value
0xFFFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the sum is placed into bits 32:63 of register
RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 12 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 76 Rc
0 6 11 16 21 22 31
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Multiply Accumulate Low Halfword to 
Word Modulo Signed  XO-form

maclhw RT,RA,RB (OE=0 Rc=0)
maclhw. RT,RA,RB (OE=0 Rc=1)
maclhwo RT,RA,RB (OE=1 Rc=0)
maclhwo. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)48:63 ×si (RB)48:63
temp0:32 I prod0:31 + (RT)32:63
RT32:63 I temp1:32
RT0:31  I undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 48:63
of register RB. 

The 32-bit signed-integer product is added to the
signed-integer word in bits 32:63 of register RT.

The low-order 32 bits of the sum are placed into bits
32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Accumulate Low Halfword to 
Word Saturate Signed XO-form

maclhws RT,RA,RB (OE=0 Rc=0)
maclhws. RT,RA,RB (OE=0 Rc=1)
maclhwso RT,RA,RB (OE=1 Rc=0)
maclhwso. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)48:63 ×si (RB)48:63
temp0:32 I prod0:31 + (RT)32:63
if temp < -231       then RT32:63 I 0x8000_0000
else if temp > 231-1 then RT32:63 I 0x7FFF_FFFF
else                      RT32:63 I temp1:32
RT0:31  I undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 48:63
of register RB. 

The 32-bit signed-integer product is added to the
signed-integer word in bits 32:63 of register RT.

If the sum is less than -231, then the value 0x8000_0000
is placed into bits 32:63 of register RT.

If the sum is greater than 231-1, then the value
0x7FFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the sum is placed into bits 32:63 of register
RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 428 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 492 Rc
0 6 11 16 21 22 31
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Multiply Accumulate Low Halfword to 
Word Modulo Unsigned  XO-form

maclhwu RT,RA,RB (OE=0 Rc=0)
maclhwu. RT,RA,RB (OE=0 Rc=1)
maclhwuo RT,RA,RB (OE=1 Rc=0)
maclhwuo. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)48:63 ×ui (RB)48:63
temp0:32 I prod0:31 + (RT)32:63
RT32:63 I temp1:32
RT0:31  I undefined

The unsigned-integer halfword in bits 48:63 of register
RA is multiplied by the unsigned-integer halfword in bits
48:63 of register RB. 

The 32-bit unsigned-integer product is added to the
unsigned-integer word in bits 32:63 of register RT.

The low-order 32 bits of the sum are placed into bits
32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Accumulate Low Halfword to 
Word Saturate Unsigned XO-form

maclhwsu RT,RA,RB (OE=0 Rc=0)
maclhwsu. RT,RA,RB (OE=0 Rc=1)
maclhwsuo RT,RA,RB (OE=1 Rc=0)
maclhwsuo. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)48:63 ×ui (RB)48:63
temp0:32 I prod0:31 + (RT)32:63
if temp > 232-1 then RT I 0xFFFF_FFFF
else                 RT I temp1:32

The unsigned-integer halfword in bits 48:63 of register
RA is multiplied by the unsigned-integer halfword in bits
48:63 of register RB. 

The 32-bit unsigned-integer product is added to the
unsigned-integer word in bits 32:63 of register RT.

If the sum is greater than 232-1, then the value
0xFFFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the sum is placed into bits 32:63 of register
RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Cross Halfword to Word Signed
X-form

mulchw RT,RA,RB (Rc=0)
mulchw. RT,RA,RB (Rc=1)

RT32:63 I (RA)48:63 ×si (RB)32:47
RT0:31  I undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB and the signed-integer word result is
placed into bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
CR0 (if Rc=1)

Multiply Cross Halfword to Word 
Unsigned  X-form

mulchwu RT,RA,RB (Rc=0)
mulchwu. RT,RA,RB (Rc=1)

RT32:63 I (RA)48:63 ×ui (RB)32:47
RT0:31  I undefined

The unsigned-integer halfword in bits 48:63 of register
RA is multiplied by the unsigned-integer halfword in bits
32:47 of register RB and the unsigned-integer word
result is placed into bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
CR0 (if Rc=1)

4 RT RA RB OE 396 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 460 Rc
0 6 11 16 21 22 31

4 RT RA RB 168 Rc
0 6 11 16 21 31

4 RT RA RB 136 Rc
0 6 11 16 21 31
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Multiply High Halfword to Word Signed
X-form

mulhhw RT,RA,RB (Rc=0)
mulhhw. RT,RA,RB (Rc=1)

RT32:63 I (RA)32:47 ×si (RB)32:47
RT0:31  I undefined

The signed-integer halfword in bits 32:47 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB and the signed-integer word result is
placed into bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
CR0 (if Rc=1)

Multiply High Halfword to Word Unsigned
X-form

mulhhwu RT,RA,RB (Rc=0)
mulhhwu. RT,RA,RB (Rc=1)

RT32:63 I (RA)32:47 ×ui (RB)32:47
RT0:31  I undefined

The unsigned-integer halfword in bits 32:47 of register
RA is multiplied by the unsigned-integer halfword in bits
32:47 of register RB and the unsigned-integer word
result is placed into bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
CR0 (if Rc=1)

Multiply Low Halfword to Word Signed
X-form

mullhw RT,RA,RB (Rc=0)
mullhw. RT,RA,RB (Rc=1)

RT32:63 I (RA)48:63 ×si (RB)48:63
RT0:31  I undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 48:63
of register RB and the signed-integer word result is
placed into bits 32:63 of register RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
CR0 (if Rc=1)

Multiply Low Halfword to Word Unsigned
X-form

mullhwu RT,RA,RB (Rc=0)
mullhwu. RT,RA,RB (Rc=1)

RT32:63 I (RA)48:63 ×ui (RB)48:63
RT0:31  I undefined

The unsigned-integer halfword in bits 48:63 of register
RA is multiplied by the unsigned-integer halfword in bits
48:63 of register RB and the unsigned-integer word
result is placed into bits 32:63 of register RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
CR0 (if Rc=1)

4 RT RA RB 40 Rc
0 6 11 16 21 31

4 RT RA RB 8 Rc
0 6 11 16 21 31

4 RT RA RB 424 Rc
0 6 11 16 21 31

4 RT RA RB 392 Rc
0 6 11 16 21 31
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Negative Multiply Accumulate Cross 
Halfword to Word Modulo Signed

XO-form

nmacchw RT,RA,RB (OE=0 Rc=0)
nmacchw. RT,RA,RB (OE=0 Rc=1)
nmacchwo RT,RA,RB (OE=1 Rc=0)
nmacchwo. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)48:63 ×si (RB)32:47
temp0:32 I (RT)32:63 -si prod0:31
RT32:63 I temp1:32
RT0:31  I undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is subtracted from
the signed-integer word in bits 32:63 of register RT.

The low-order 32 bits of the difference are placed into
bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Negative Multiply Accumulate Cross 
Halfword to Word Saturate Signed

XO-form

nmacchws RT,RA,RB (OE=0 Rc=0)
nmacchws. RT,RA,RB (OE=0 Rc=1)
nmacchwso RT,RA,RB (OE=1 Rc=0)
nmacchwso. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)48:63 ×si (RB)32:47
temp0:32 I (RT)32:63 -si prod0:31
if temp < -231       then RT32:63 I 0x8000_0000
else if temp > 231-1 then RT32:63 I 0x7FFF_FFFF
else                      RT32:63 I temp1:32
RT0:31  I undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is subtracted from
the signed-integer word in bits 32:63 of register RT.

If the difference is less than -231, then the value
0x8000_0000 is placed into bits 32:63 of register RT.

If the difference is greater than 231-1, then the value
0x7FFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the difference is placed into bits 32:63 of
register RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 174 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 238 Rc
0 6 11 16 21 22 31
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Negative Multiply Accumulate High 
Halfword to Word Modulo Signed 

XO-form

nmachhw RT,RA,RB (OE=0 Rc=0)
nmachhw. RT,RA,RB (OE=0 Rc=1)
nmachhwo RT,RA,RB (OE=1 Rc=0)
nmachhwo. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)32:47 ×si (RB)32:47
temp0:32 I (RT)32:63 -si prod0:31
RT32:63 I temp1:32
RT0:31  I undefined

The signed-integer halfword in bits 32:47 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is subtracted from
the signed-integer word in bits 32:63 of register RT.

The low-order 32 bits of the difference are placed into
bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Negative Multiply Accumulate High 
Halfword to Word Saturate Signed 

XO-form

nmachhws RT,RA,RB (OE=0 Rc=0)
nmachhws. RT,RA,RB (OE=0 Rc=1)
nmachhwso RT,RA,RB (OE=1 Rc=0)
nmachhwso. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)32:47 ×si (RB)32:47
temp0:32 I (RT)32:63 -si prod0:31
if temp < -231       then RT32:63 I 0x8000_0000
else if temp > 231-1 then RT32:63 I 0x7FFF_FFFF
else                      RT32:63 I temp1:32
RT0:31  I undefined

The signed-integer halfword in bits 32:47 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is subtracted from
the signed-integer word in bits 32:63 of register RT.

If the difference is less than -231, then the value
0x8000_0000 is placed into bits 32:63 of register RT.

If the difference is greater than 231-1, then the value
0x7FFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the difference is placed into bits 32:63 of
register RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 46 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 110 Rc
0 6 11 16 21 22 31
Chapter 11. Legacy Integer Multiply-Accumulate Instructions 683



Version 2.07 B
Negative Multiply Accumulate Low 
Halfword to Word Modulo Signed 

XO-form

nmaclhw RT,RA,RB (OE=0 Rc=0)
nmaclhw. RT,RA,RB (OE=0 Rc=1)
nmaclhwo RT,RA,RB (OE=1 Rc=0)
nmaclhwo. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)48:63 ×si (RB)48:63
temp0:32 I (RT)32:63 -si prod0:31
RT32:63 I temp1:32
RT0:31  I undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 48:63
of register RB. 

The 32-bit signed-integer product is subtracted from
the signed-integer word in bits 32:63 of register RT.

The low-order 32 bits of the difference are placed into
bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Negative Multiply Accumulate Low 
Halfword to Word Saturate Signed 

XO-form

nmaclhws RT,RA,RB (OE=0 Rc=0)
nmaclhws. RT,RA,RB (OE=0 Rc=1)
nmaclhwso RT,RA,RB (OE=1 Rc=0)
nmaclhwso. RT,RA,RB (OE=1 Rc=1)

prod0:31 I (RA)48:63 ×si (RB)48:63
temp0:32 I (RT)32:63 -si prod0:31
if temp < -231       then RT32:63 I 0x8000_0000
else if temp > 231-1 then RT32:63 I 0x7FFF_FFFF
else                      RT32:63 I temp1:32
RT0:31  I undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 48:63
of register RB. 

The 32-bit signed-integer product is subtracted from
the signed-integer word in bits 32:63 of register RT.

If the difference is less than -231, then the value
0x8000_0000 is placed into bits 32:63 of register RT.

If the difference is greater than 231-1, then the value
0x7FFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the difference is placed into bits 32:63 of
register RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 430 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 494 Rc
0 6 11 16 21 22 31
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Appendix A.  Suggested Floating-Point Models 
[Category: Floating-Point]

A.1 Floating-Point Round to Single-Precision Model
The following describes algorithmically the operation of the Floating Round to Single-Precision instruction.

If (FRB)1:11 < 897 and (FRB)1:63 > 0 then
Do

If FPSCRUE = 0 then goto Disabled Exponent Underflow
If FPSCRUE = 1 then goto Enabled Exponent Underflow

End

If (FRB)1:11 > 1150 and (FRB)1:11 < 2047 then
Do

If FPSCROE = 0 then goto Disabled Exponent Overflow
If FPSCROE = 1 then goto Enabled Exponent Overflow

End

If (FRB)1:11 > 896 and (FRB)1:11 < 1151 then goto Normal Operand

If (FRB)1:63 = 0 then goto Zero Operand

If (FRB)1:11 = 2047 then
Do

If (FRB)12:63 = 0 then goto Infinity Operand
If (FRB)12 = 1 then goto QNaN Operand
If (FRB)12 = 0 and (FRB)13:63 > 0 then goto SNaN Operand

End

Disabled Exponent Underflow:
sign I (FRB)0
If (FRB)1:11 = 0 then

Do
exp I -1022
frac0:52 I 0b0 || (FRB)12:63

End
If (FRB)1:11 > 0 then

Do
exp I (FRB)1:11 - 1023
frac0:52 I 0b1 || (FRB)12:63

End
Denormalize operand:

G || R || X I 0b000
Do while exp < -126

exp I exp + 1
frac0:52 || G || R || X I 0b0 || frac0:52 || G || (R | X)

End
FPSCRUX I (frac24:52 || G || R || X) > 0
Round Single(sign,exp,frac0:52,G,R,X)
FPSCRXX I FPSCRXX | FPSCRFI
If frac0:52 = 0 then

Do
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FRT0 I sign
FRT1:63 I 0
If sign = 0 then FPSCRFPRF I “+ zero”
If sign = 1 then FPSCRFPRF I “- zero”

End
If frac0:52 > 0 then

Do
If frac0 = 1 then

Do
If sign = 0 then FPSCRFPRF I “+ normal number”
If sign = 1 then FPSCRFPRF I “- normal number”

End
If frac0 = 0 then

Do
If sign = 0 then FPSCRFPRF I “+ denormalized number”
If sign = 1 then FPSCRFPRF I “- denormalized number”

End
Normalize operand:

Do while frac0 = 0
exp I exp-1
frac0:52 I frac1:52 || 0b0

End
FRT0 I sign
FRT1:11 I exp + 1023
FRT12:63 I frac1:52

End
Done

Enabled Exponent Underflow:
FPSCRUX I 1
sign I (FRB)0
If (FRB)1:11 = 0 then

Do
exp I -1022
frac0:52 I 0b0 || (FRB)12:63

End
If (FRB)1:11 > 0 then

Do
exp I (FRB)1:11 - 1023
frac0:52 I 0b1 || (FRB)12:63

End
Normalize operand:

Do while frac0 = 0
exp I exp - 1
frac0:52 I frac1:52 || 0b0

End
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX I FPSCRXX | FPSCRFI
exp I exp + 192
FRT0 I sign
FRT1:11 I exp + 1023
FRT12:63 I frac1:52
If sign = 0 then FPSCRFPRF I “+ normal number”
If sign = 1 then FPSCRFPRF I “- normal number”
Done

Disabled Exponent Overflow:
FPSCROX I 1
If FPSCRRN = 0b00 then                 /* Round to Nearest */

Do
If (FRB)0 = 0 then FRT I 0x7FF0_0000_0000_0000
If (FRB)0 = 1 then FRT I 0xFFF0_0000_0000_0000
If (FRB)0 = 0 then FPSCRFPRF I “+ infinity”
If (FRB)0 = 1 then FPSCRFPRF I “- infinity”

End
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If FPSCRRN = 0b01 then                 /* Round toward Zero */
Do

If (FRB)0 = 0 then FRT I 0x47EF_FFFF_E000_0000
If (FRB)0 = 1 then FRT I 0xC7EF_FFFF_E000_0000
If (FRB)0 = 0 then FPSCRFPRF I “+ normal number”
If (FRB)0 = 1 then FPSCRFPRF I “- normal number”

End
If FPSCRRN = 0b10 then                 /* Round toward +Infinity */

Do
If (FRB)0 = 0 then FRT I 0x7FF0_0000_0000_0000
If (FRB)0 = 1 then FRT I 0xC7EF_FFFF_E000_0000
If (FRB)0 = 0 then FPSCRFPRF I “+ infinity”
If (FRB)0 = 1 then FPSCRFPRF I “- normal number”

End
If FPSCRRN = 0b11 then                 /* Round toward -Infinity */

Do
If (FRB)0 = 0 then FRT I 0x47EF_FFFF_E000_0000
If (FRB)0 = 1 then FRT I 0xFFF0_0000_0000_0000
If (FRB)0 = 0 then FPSCRFPRF I “+ normal number”
If (FRB)0 = 1 then FPSCRFPRF I “- infinity”

End
FPSCRFR I undefined
FPSCRFI I 1
FPSCRXX I 1
Done

Enabled Exponent Overflow:
sign I (FRB)0
exp I (FRB)1:11 - 1023
frac0:52 I 0b1 || (FRB)12:63
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX I FPSCRXX | FPSCRFI

Enabled Overflow:
FPSCROX I 1
exp I exp - 192
FRT0 I sign
FRT1:11 I exp + 1023
FRT12:63 I frac1:52
If sign = 0 then FPSCRFPRF I “+ normal number”
If sign = 1 then FPSCRFPRF I “- normal number”
Done

Zero Operand:
FRT I (FRB)
If (FRB)0 = 0 then FPSCRFPRF I “+ zero”
If (FRB)0 = 1 then FPSCRFPRF I “- zero”
FPSCRFRFI I 0b00
Done

Infinity Operand:
FRT I (FRB)
If (FRB)0 = 0 then FPSCRFPRF I “+ infinity”
If (FRB)0 = 1 then FPSCRFPRF I “- infinity”
FPSCRFRFI I 0b00
Done

QNaN Operand:
FRT I (FRB)0:34 || 290
FPSCRFPRF I “QNaN”
FPSCRFR FI I 0b00
Done
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SNaN Operand:
FPSCRVXSNAN I 1
If FPSCRVE = 0 then

Do
FRT0:11 I (FRB)0:11
FRT12 I 1
FRT13:63 I (FRB)13:34 || 290
FPSCRFPRF I “QNaN”

End
FPSCRFR FI I 0b00
Done

Normal Operand:
sign I (FRB)0
exp I (FRB)1:11 - 1023
frac0:52 I 0b1 || (FRB)12:63
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX I FPSCRXX | FPSCRFI
If exp > 127 and FPSCROE = 0 then go to Disabled Exponent Overflow
If exp > 127 and FPSCROE = 1 then go to Enabled Overflow
FRT0 I sign
FRT1:11 I exp + 1023
FRT12:63 I frac1:52
If sign = 0 then FPSCRFPRF I “+ normal number”
If sign = 1 then FPSCRFPRF I “- normal number”
Done

Round Single(sign,exp,frac0:52,G,R,X):
inc I 0
lsb I frac23
gbit I frac24
rbit I frac25
xbit I (frac26:52||G||R||X)≠0
If FPSCRRN = 0b00 then                 /* Round to Nearest */

Do                      /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc I 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc I 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc I 1

End
If FPSCRRN = 0b10 then                 /* Round toward + Infinity */

Do                      /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc I 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc I 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc I 1

End
If FPSCRRN = 0b11 then                 /* Round toward - Infinity */

Do                      /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc I 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc I 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc I 1

End
frac0:23 I frac0:23 + inc
If carry_out = 1 then

Do
frac0:23 I 0b1 || frac0:22
exp I exp + 1

End
frac24:52 I 290
FPSCRFR I inc
FPSCRFI I gbit | rbit | xbit
Return
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A.2 Floating-Point Convert to Integer Model
The following describes algorithmically the operation of the Floating Convert To Integer instructions.

if Floating Convert To Integer Word then do
round_mode    I FPSCRRN
tgt_precision I “32-bit signed integer”

end

if Floating Convert To Integer Word Unsigned then do
round_mode    I FPSCRRN
tgt_precision I “32-bit unsigned integer”

end

if Floating Convert To Integer Word with round toward Zero then do
round_mode    I 0b01
tgt_precision I “32-bit signed integer”

end

if Floating Convert To Integer Word Unsigned with round toward Zero then do
round_mode    I 0b01
tgt_precision I “32-bit unsigned integer”

end

if Floating Convert To Integer Doubleword then do
round_mode    I FPSCRRN
tgt_precision I “64-bit signed integer”

end

if Floating Convert To Integer Doubleword Unsigned then do
round_mode    I FPSCRRN
tgt_precision I “64-bit unsigned integer”

end

if Floating Convert To Integer Doubleword with round toward Zero then do
round_mode I 0b01
tgt_precision I “64-bit signed integer”

end

if Floating Convert To Integer Doubleword Unsigned with round toward Zero then do
round_mode    I 0b01
tgt_precision I “64-bit unsigned integer”

end

sign I (FRB)0
if (FRB)1:11 = 2047 and (FRB)12:63 = 0 then goto Infinity Operand
if (FRB)1:11 = 2047 and (FRB)12 = 0 then goto SNaN Operand
if (FRB)1:11 = 2047 and (FRB)12 = 1 then goto QNaN Operand
if (FRB)1:11 > 1086 then goto Large Operand

if (FRB)1:11 > 0 then exp I (FRB)1:11 - 1023   /* exp - bias */
if (FRB)1:11 = 0 then exp I -1022
if (FRB)1:11 > 0 then frac0:64 I 0b01 || (FRB)12:63 || 

110   /* normal */
if (FRB)1:11 = 0 then frac0:64 I 0b00 || (FRB)12:63 || 

110   /* denormal */

gbit || rbit || xbit I 0b000
do i=1,63-exp   /* do the loop 0 times if exp = 63 */

frac0:64 || gbit || rbit || xbit I 0b0 || frac0:64 || gbit || (rbit | xbit)
end

Round Integer( sign, frac0:64, gbit, rbit, xbit, round_mode )

if sign = 1 then frac0:64 I ¬frac0:64 + 1  /* needed leading 0 for -264<(FRB)<-263 */
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if tgt_precision = “32-bit signed integer” and frac0:64 > 2
31-1 then 

goto Large Operand
if tgt_precision = “64-bit signed integer” and frac0:64 > 2

63-1 then
goto Large Operand

if tgt_precision = “32-bit signed integer” and frac0:64 < -2
31  then

goto Large Operand
if tgt_precision = “64-bit signed integer” and frac0:64 < -2

63  then
goto Large Operand

if tgt_precision = “32-bit unsigned integer” & frac0:64 > 2
32-1 then

goto Large Operand
if tgt_precision = “64-bit unsigned integer” & frac0:64 > 2

64-1 then
goto Large Operand

if tgt_precision = “32-bit unsigned integer” & frac0:64 < 0 then
goto Large Operand

if tgt_precision = “64-bit unsigned integer” & frac0:64 < 0 then
goto Large Operand

FPSCRXX I FPSCRXX | FPSCRFI

if tgt_precision = “32-bit signed integer”   then FRT I 0xUUUU_UUUU || frac33:64
if tgt_precision = “32-bit unsigned integer” then FRT I 0xUUUU_UUUU || frac33:64
if tgt_precision = “64-bit signed integer”   then FRT I frac1:64
if tgt_precision = “64-bit unsigned integer” then FRT I frac1:64
FPSCRFPRF I 0bUUUUU
done

Round Integer( sign, frac0:64, gbit, rbit, xbit, round_mode ):
inc I 0
if round_mode = 0b00 then do   /* Round to Nearest */

if sign || frac64 || gbit || rbit || xbit = 0bU11UU then inc I 1
if sign || frac64 || gbit || rbit || xbit = 0bU011U then inc I 1
if sign || frac64 || gbit || rbit || xbit = 0bU01U1 then inc I 1

end
if round_mode = 0b10 then do   /* Round toward +Infinity */

if sign || frac64 || gbit || rbit || xbit = 0b0U1UU then inc I 1
if sign || frac64 || gbit || rbit || xbit = 0b0UU1U then inc I 1
if sign || frac64 || gbit || rbit || xbit = 0b0UUU1 then inc I 1

end
if round_mode = 0b11 then do   /* Round toward -Infinity */

if sign || frac64 || gbit || rbit || xbit = 0b1U1UU then inc I 1
if sign || frac64 || gbit || rbit || xbit = 0b1UU1U then inc I 1
if sign || frac64 || gbit || rbit || xbit = 0b1UUU1 then inc I 1

end
frac0:64 I frac0:64 + inc
FPSCRFR I inc
FPSCRFI I gbit | rbit | xbit
return

Infinity Operand:
FPSCRFR I 0b0
FPSCRFI I 0b0
FPSCRVXCVI I 0b1
if FPSCRVE = 0 then do

if tgt_precision = “32-bit signed integer” then do
if sign=0 then FRT I 0xUUUU_UUUU_7FFF_FFFF
if sign=1 then FRT I 0xUUUU_UUUU_8000_0000

end
else if tgt_precision = “32-bit unsigned integer” then do

if sign=0 then FRT I 0xUUUU_UUUU_FFFF_FFFF
if sign=1 then FRT I 0xUUUU_UUUU_0000_0000

end
else if tgt_precision = “64-bit signed integer” then do

if sign=0 then FRT I 0x7FFF_FFFF_FFFF_FFFF
if sign=1 then FRT I 0x8000_0000_0000_0000
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end

else if tgt_precision = “64-bit unsigned integer” then do
if sign=0 then FRT I 0xFFFF_FFFF_FFFF_FFFF
if sign=1 then FRT I 0x0000_0000_0000_0000

end
FPSCRFPRF I 0bUUUUU

end
done

SNaN Operand:
FPSCRFR I 0b0
FPSCRFI I 0b0
FPSCRVXSNAN I 0b1
FPSCRVXCVI I 0b1
if FPSCRVE = 0 then do

if tgt_precision = “32-bit signed integer” then FRT I 0xUUUU_UUUU_8000_0000
if tgt_precision = “64-bit signed integer” then FRT I 0x8000_0000_0000_0000
if tgt_precision = “32-bit unsigned integer” then FRT I 0xUUUU_UUUU_0000_0000
if tgt_precision = “64-bit unsigned integer” then FRT I 0x0000_0000_0000_0000
FPSCRFPRF I 0bUUUUU

end
done

QNaN Operand:
FPSCRFR I 0b0
FPSCRFI I 0b0
FPSCRVXCVI I 0b1
if FPSCRVE = 0 then do

if tgt_precision = “32-bit signed integer” then FRT I 0xUUUU_UUUU_8000_0000
if tgt_precision = “64-bit signed integer” then FRT I 0x8000_0000_0000_0000
if tgt_precision = “32-bit unsigned integer” then FRT I 0xUUUU_UUUU_0000_0000
if tgt_precision = “64-bit unsigned integer” then FRT I 0x0000_0000_0000_0000
FPSCRFPRF I 0bUUUUU

end
done

Large Operand:
FPSCRFR I 0b0
FPSCRFI I 0b0
FPSCRVXCVI I 0b1
if FPSCRVE = 0 then do

if tgt_precision = “32-bit signed integer” then do
if sign = 0 then FRT I 0xUUUU_UUUU_7FFF_FFFF
if sign = 1 then FRT I 0xUUUU_UUUU_8000_0000

end
else if tgt_precision = “64-bit signed integer” then do

if sign = 0 then FRT I 0x7FFF_FFFF_FFFF_FFFF
if sign = 1 then FRT I 0x8000_0000_0000_0000

end
else if tgt_precision = “32-bit unsigned integer” then do

if sign = 0 then FRT I 0xUUUU_UUUU_FFFF_FFFF
if sign = 1 then FRT I 0xUUUU_UUUU_0000_0000

end
else if tgt_precision = “64-bit unsigned integer” then do

if sign = 0 then FRT I 0xFFFF_FFFF_FFFF_FFFF
if sign = 1 then FRT I 0x0000_0000_0000_0000

end
FPSCRFPRF I 0bUUUUU

end
done
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A.3 Floating-Point Convert from Integer Model
The following describes algorithmically the operation of the Floating Convert From Integer instructions.

if Floating Convert From Integer Doubleword then do
tgt_precision I “double-precision”
sign     I (FRB)0
exp      I 63
frac0:63 I (FRB)

end
if Floating Convert From Integer Doubleword Single then do

tgt_precision I “single-precision”
sign     I (FRB)0
exp      I 63
frac0:63 I (FRB)

end
if Floating Convert From Integer Doubleword Unsigned then do

tgt_precision I “double-precision”
sign     I 0
exp      I 63
frac0:63 I (FRB)

end
if Floating Convert From Integer Doubleword Unsigned Single then do

tgt_precision I “single-precision”
sign     I 0
exp      I 63
frac0:63 I (FRB)

end

if frac0:63 = 0 then go to Zero Operand
if sign = 1 then frac0:63 I ¬frac0:63 + 1

/* do the loop 0 times if (FRB) = max negative 64-bit integer or */
/*                     if (FRB) = max unsigned 64-bit integer    */
do while frac0 = 0

frac0:63 I frac1:63 || 0b0
exp I exp - 1

end

Round Float( sign, exp, frac0:63, RN )
if sign = 0 then FPSCRFPRF I “+normal number”
if sign = 1 then FPSCRFPRF I “-normal number”
FRT0     I sign
FRT1:11  I exp + 1023   /* exp + bias */
FRT12:63 I frac1:52
done

Zero Operand:
FPSCRFR I 0b00
FPSCRFI I 0b00
FPSCRFPRF I “+ zero”
FRT I 0x0000_0000_0000_0000
done

Round Float( sign, exp, frac0:63, round_mode ):
inc  I 0

if tgt_precision = “single-precision” then do
lsb  I frac23
gbit I frac24
rbit I frac25
xbit I frac26:63 > 0

end
else do  /* tgt_precision = “double-precision” */
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lsb  I frac52
gbit I frac53
rbit I frac54
xbit I frac55:63 > 0

end

if round_mode = 0b00 then do                /* Round to Nearest */
if sign || lsb || gbit || rbit || xbit = 0bU11UU then inc I 1
if sign || lsb || gbit || rbit || xbit = 0bU011U then inc I 1
if sign || lsb || gbit || rbit || xbit = 0bU01U1 then inc I 1

end
if round_mode = 0b10 then do                /* Round toward + Infinity */

if sign || lsb || gbit || rbit || xbit = 0b0U1UU then inc I 1
if sign || lsb || gbit || rbit || xbit = 0b0UU1U then inc I 1
if sign || lsb || gbit || rbit || xbit = 0b0UUU1 then inc I 1

end
if round_mode = 0b11 then do                /* Round toward - Infinity */

if sign || lsb || gbit || rbit || xbit = 0b1U1UU then inc I 1
if sign || lsb || gbit || rbit || xbit = 0b1UU1U then inc I 1
if sign || lsb || gbit || rbit || xbit = 0b1UUU1 then inc I 1

end

if tgt_precision = “single-precision” then
frac0:23 I frac0:23 + inc

else  /* tgt_precision = “double-precision” */
frac0:52 I frac0:52 + inc

if carry_out = 1 then exp I exp + 1

FPSCRFR I inc
FPSCRFI I gbit | rbit | xbit
FPSCRXX I FPSCRXX | FPSCRFI
return
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A.4 Floating-Point Round to Integer Model
The following describes algorithmically the operation of the Floating Round To Integer instructions. 

If (FRB)1:11 = 2047 and (FRB)12:63 = 0, then goto Infinity Operand 
If (FRB)1:11 = 2047 and (FRB)12 = 0, then goto SNaN Operand 
If (FRB)1:11 = 2047 and (FRB)12 = 1, then goto QNaN Operand 
if (FRB)1:63 = 0 then goto Zero Operand 
If (FRB)1:11 < 1023 then goto Small Operand /* exp < 0; |value| < 1*/ 
If (FRB)1:11 > 1074 then goto Large Operand /* exp > 51; integral value */ 

sign I (FRB)0 
exp I (FRB)1:11 - 1023 /* exp - bias */ 
frac0:52 I 0b1 || (FRB)12:63 
gbit || rbit || xbit I 0b000 

Do i = 1, 52 - exp 
frac0:52 || gbit || rbit || xbit I 0b0 || frac0:52 || gbit || (rbit | xbit) 

End

Round Integer (sign, frac0:52, gbit, rbit, xbit) 

Do i = 2, 52 - exp 
frac0:52 I frac1:52 || 0b0 

End 

If frac0 = 1, then exp I exp + 1 
Else frac0:52 I frac1:52 || 0b0 

FRT0 I sign 
FRT1:11 I exp + 1023
FRT12:63 I frac1:52 

If (FRT)0 = 0 then FPSCRFPRF I “+ normal number”
Else FPSCRFPRF I “- normal number”
FPSCRFR FI  I 0b00 
Done 

Round Integer(sign, frac0:52, gbit, rbit, xbit): 
inc I 0 
If inst = Floating Round to Integer Nearest then                     /* ties away from zero */

Do   /* comparisons ignore u bits */ 
If sign || frac52 || gbit || rbit || xbit = 0buu1uu then inc I 1

End
If inst = Floating Round to Integer Plus then 

Do   /* comparisons ignore u bits */ 
If sign || frac52 || gbit || rbit || xbit = 0b0u1uu then inc I 1 
If sign || frac52 || gbit || rbit || xbit = 0b0uu1u then inc I 1 
If sign || frac52 || gbit || rbit || xbit = 0b0uuu1 then inc I 1 

End
If inst = Floating Round to Integer Minus then 

Do   /* comparisons ignore u bits */ 
If sign || frac52 || gbit || rbit || xbit = 0b1u1uu then inc I 1 
If sign || frac52 || gbit || rbit || xbit = 0b1uu1u then inc I 1 
If sign || frac52 || gbit || rbit || xbit = 0b1uuu1 then inc I 1 

End 
frac0:52  I frac0:52 + inc 
Return 
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Infinity Operand: 
FRT  I (FRB) 
If (FRB)0 = 0 then FPSCRFPRF  I “+ infinity“
If (FRB)0 = 1 then FPSCRFPRF  I “- infinity”
FPSCRFR FI  I 0b00 
Done 

SNaN Operand:
FPSCRVXSNAN  I 1 
If FPSCRVE = 0 then 

Do 
FRT  I (FRB) 
FRT12  I 1 
FPSCRFPRF  I “QNaN”

End 
FPSCRFR FI  I 0b00 
Done 

QNaN Operand: 
FRT  I (FRB) 
FPSCRFPRF  I “QNaN”
FPSCRFR FI  I 0b00 
Done 

Zero Operand:
If (FRB)0 = 0 then 

Do
FRT I 0x0000_0000_0000_0000
FPSCRFPRF  I “+ zero”

End
Else 

Do
FRT I 0x8000_0000_0000_0000
FPSCRFPRF  I “- zero”

End
FPSCRFR FI  I 0b00 
Done

Small Operand:
If inst = Floating Round to Integer Nearest and 
(FRB)1:11 < 1022 then goto Zero Operand
If inst = Floating Round to Integer Toward Zero 
then goto Zero Operand
If inst = Floating Round to Integer Plus and (FRB)0 
= 1 then goto Zero Operand
If inst = Floating Round to Integer Minus and 
(FRB)0 = 0 then goto Zero Operand

If (FRB)0 = 0 then 
Do

FRT  I 0x3FF0_0000_0000_0000                     
/* value = 1.0 */

FPSCRFPRF  I “+ normal number” 
End 

Else
Do

FRT  I 0xBFF0_0000_0000_0000                     
/* value = -1.0 */

FPSCRFPRF  I “- normal number”
End 

FPSCRFR FI  I 0b00 
Done

Large Operand: 
FRT  I (FRB) 

If FRT0 = 0 then FPSCRFPRF  I “+ normal num-
ber”
Else FPSCRFPRF  I “- normal number”
FPSCRFR FI  I 0b00 
Done
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Appendix B.  Densely Packed Decimal

The trailing significand field of the decimal floating-point
data format is encoded using Densely Packed Decimal
(DPD).  DPD encoding is a compression technique
which supports the representation of decimal integers
of arbitrary length.  Translation operates on three
Binary Coded Decimal (BCD) digits at a time com-
pressing the 12 bits into 10 bits with an algorithm that

can be applied or reversed using simple Boolean oper-
ations.  In the following examples, a 3-digit BCD num-
ber is represented as (abcd)(efgh)(ijkm), a 10-bit DPD
number is represented as (pqr)(stu)(v)(wxy), and the
Boolean operations, & (AND), | (OR), and ¬ (NOT) are
used.

B.1 BCD-to-DPD Translation
The translation from a 3-digit BCD number to a 10-bit
DPD can be performed through the following Boolean
operations.

p = (f & a & i & ¬e) | (j & a & ¬i) | (b & ¬a)
q = (g & a & i & ¬e) | (k & a & ¬i) | (c & ¬a)
r = d

s = (j & ¬a & e & ¬i) | (f & ¬i & ¬e) |
    (f & ¬a & ¬e) | (e & i)
t = (k & ¬a & e & ¬i) | (g & ¬i & ¬e) |
    (g & ¬a & ¬e) | (a & i)
u = h

v = a | e | i

w = (¬e & j & ¬i) | (e & i) | a
x = (¬a & k & ¬i) | (a & i) | e
y = m

Alternatively, the following table can be used to perform
the translation.  The most significant bit of the three
BCD digits (left column) is used to select a specific
10-bit encoding (right column) of the DPD. 

The full translation of a 3-digit BCD number (000 - 999)
to a 10-bit DPD is shown in Table 123 on page 699,

with the DPD entries shown in hexadecimal format.
The BCD number is produced by replacing ‘_’ in the
leftmost column with the corresponding digit along the
top row. The table is split into two halves, with the right
half being a continuation of the left half.

B.2 DPD-to-BCD Translation
The translation from a 10-bit DPD to a 3-digit BCD
number can be performed through the following Bool-
ean operations.

a = (¬s & v & w) | (t & v & w & s) | (v & w & ¬x)
b = (p & s & x & ¬t) | (p & ¬w) | (p & ¬v)
c = (q & s & x & ¬t) | (q & ¬w) | (q & ¬v)
d = r

e = (v & ¬w & x) | (s & v & w & x) |
    (¬t & v & x & w)
f = (p & t & v & w & x & ¬s) | (s & ¬x & v) |
    (s & ¬v)
g = (q & t & w & v & x & ¬s) | (t & ¬x & v) |
    (t & ¬v)
h = u

i = (t & v & w & x) | (s & v & w & x) |
    (v & ¬w & ¬x)
j = (p & ¬s & ¬t & w & v) | (s & v & ¬w & x) |
    (p & w & ¬x & v) | (w & ¬v)
k = (q & ¬s & ¬t & v & w) | (t & v & ¬w & x) |
    (q & v & w & ¬x) | (x & ¬v)
m = y

Alternatively, the following table can be used to perform
the translation.  A combination of five bits in the DPD
encoding (leftmost column) are used to specify a trans-
lation to the 3-digit BCD encoding.  Dashes (-) in the
table are don’t cares, and can be either one or zero. 

aei pqr stu v wxy

000 bcd fgh 0 jkm

001 bcd fgh 1 00m

010 bcd jkh 1 01m

011 bcd 10h 1 11m

100 jkd fgh 1 10m

101 fgd 01h 1 11m

110 jkd 00h 1 11m

111 00d 11h 1 11m
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The full translation of the 10-bit DPD to a 3-digit BCD
number is shown in Table 124 on page 700.  The 10-bit
DPD index is produced by concatenating the 6-bit value
shown in the left column with the 4-bit index along the
top row, both represented in hexadecimal. The values
in parentheses are non-preferred translations and are
explained further in the following section.

B.3 Preferred DPD encoding
Translating from a 3-digit BCD number (1000 numbers)
to a 10-bit DPD encoding (1024 combinations) leaves
24 redundant translations.  The 24 redundant combina-
tions are evenly assigned to eight BCD numbers and
are shown in the following table, with the non-preferred
encoding in parentheses.  The preferred encoding is
produced by translating a 3-digit BCD number with the
translation table or Boolean operations shown in Sec-
tion B.1.  The redundant DPD encodings are all valid
and will be correctly translated to their respective BCD
value through the mechanisms provided in Section B.2.
For decimal floating-point operations all DPD encod-
ings are recognized as source operands.

vwxst abcd efgh ijkm

0---- 0pqr 0stu 0wxy

100-- 0pqr 0stu 100y

101-- 0pqr 100u 0sty

110-- 100r 0stu 0pqy

11100 100r 100u 0pqy

11101 100r 0pqu 100y

11110 0pqr 100u 100y

11111 100r 100u 100y

DPD Code BCD Value DPD Code BCD Value

0x06E
888

0x0EE
988(0x16E) (0x1EE)

(0x26E) (0x2EE)

(0x36E) (0x3EE)

0x06F
889

0x0EF
989(0x16F) (0x1EF)

(0x26F) (0x2EF)

(0x36F) (0x3EF)

0x07E
898

0x0FE
998(0x17E) (0x1FE)

(0x27E) (0x2FE)

(0x37E) (0x3FE)

0x07F
899

0x0FF
999(0x17F) (0x1FF)

(0x27F) (0x2FF)

(0x37F) (0x3FF)
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Table 123:BCD-to-DPD translation
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

00_ 000 001 002 003 004 005 006 007 008 009 50_ 280 281 282 283 284 285 286 287 288 289
01_ 010 011 012 013 014 015 016 017 018 019 51_ 290 291 292 293 294 295 296 297 298 299
02_ 020 021 022 023 024 025 026 027 028 029 52_ 2A0 2A1 2A2 2A3 2A4 2A5 2A6 2A7 2A8 2A9
03_ 030 031 032 033 034 035 036 037 038 039 53_ 2B0 2B1 2B2 2B3 2B4 2B5 2B6 2B7 2B8 2B9
04_ 040 041 042 043 044 045 046 047 048 049 54_ 2C0 2C1 2C2 2C3 2C4 2C5 2C6 2C7 2C8 2C9
05_ 050 051 052 053 054 055 056 057 058 059 55_ 2D0 2D1 2D2 2D3 2D4 2D5 2D6 2D7 2D8 2D9
06_ 060 061 062 063 064 065 066 067 068 069 56_ 2E0 2E1 2E2 2E3 2E4 2E5 2E6 2E7 2E8 2E9
07_ 070 071 072 073 074 075 076 077 078 079 57_ 2F0 2F1 2F2 2F3 2F4 2F5 2F6 2F7 2F8 2F9
08_ 00A 00B 02A 02B 04A 04B 06A 06B 04E 04F 58_ 28A 28B 2AA 2AB 2CA 2CB 2EA 2EB 2CE 2CF
09_ 01A 01B 03A 03B 05A 05B 07A 07B 05E 05F 59_ 29A 29B 2BA 2BB 2DA 2DB 2FA 2FB 2DE 2DF
10_ 080 081 082 083 084 085 086 087 088 089 60_ 300 301 302 303 304 305 306 307 308 309
11_ 090 091 092 093 094 095 096 097 098 099 61_ 310 311 312 313 314 315 316 317 318 319
12_ 0A0 0A1 0A2 0A3 0A4 0A5 0A6 0A7 0A8 0A9 62_ 320 321 322 323 324 325 326 327 328 329
13_ 0B0 0B1 0B2 0B3 0B4 0B5 0B6 0B7 0B8 0B9 63_ 330 331 332 333 334 335 336 337 338 339
14_ 0C0 0C1 0C2 0C3 0C4 0C5 0C6 0C7 0C8 0C9 64_ 340 341 342 343 344 345 346 347 348 349
15_ 0D0 0D1 0D2 0D3 0D4 0D5 0D6 0D7 0D8 0D9 65_ 350 351 352 353 354 355 356 357 358 359
16_ 0E0 0E1 0E2 0E3 0E4 0E5 0E6 0E7 0E8 0E9 66_ 360 361 362 363 364 365 366 367 368 369
17_ 0F0 0F1 0F2 0F3 0F4 0F5 0F6 0F7 0F8 0F9 67_ 370 371 372 373 374 375 376 377 378 379
18_ 08A 08B 0AA 0AB 0CA 0CB 0EA 0EB 0CE 0CF 68_ 30A 30B 32A 32B 34A 34B 36A 36B 34E 34F
19_ 09A 09B 0BA 0BB 0DA 0DB 0FA 0FB 0DE 0DF 69_ 31A 31B 33A 33B 35A 35B 37A 37B 35E 35F
20_ 100 101 102 103 104 105 106 107 108 109 70_ 380 381 382 383 384 385 386 387 388 389
21_ 110 111 112 113 114 115 116 117 118 119 71_ 390 391 392 393 394 395 396 397 398 399
22_ 120 121 122 123 124 125 126 127 128 129 72_ 3A0 3A1 3A2 3A3 3A4 3A5 3A6 3A7 3A8 3A9
23_ 130 131 132 133 134 135 136 137 138 139 73_ 3B0 3B1 3B2 3B3 3B4 3B5 3B6 3B7 3B8 3B9
24_ 140 141 142 143 144 145 146 147 148 149 74_ 3C0 3C1 3C2 3C3 3C4 3C5 3C6 3C7 3C8 3C9
25_ 150 151 152 153 154 155 156 157 158 159 75_ 3D0 3D1 3D2 3D3 3D4 3D5 3D6 3D7 3D8 3D9
26_ 160 161 162 163 164 165 166 167 168 169 76_ 3E0 3E1 3E2 3E3 3E4 3E5 3E6 3E7 3E8 3E9
27_ 170 171 172 173 174 175 176 177 178 179 77_ 3F0 3F1 3F2 3F3 3F4 3F5 3F6 3F7 3F8 3F9
28_ 10A 10B 12A 12B 14A 14B 16A 16B 14E 14F 78_ 38A 38B 3AA 3AB 3CA 3CB 3EA 3EB 3CE 3CF
29_ 11A 11B 13A 13B 15A 15B 17A 17B 15E 15F 79_ 39A 39B 3BA 3BB 3DA 3DB 3FA 3FB 3DE 3DF
30_ 180 181 182 183 184 185 186 187 188 189 80_ 00C 00D 10C 10D 20C 20D 30C 30D 02E 02F
31_ 190 191 192 193 194 195 196 197 198 199 81_ 01C 01D 11C 11D 21C 21D 31C 31D 03E 03F
32_ 1A0 1A1 1A2 1A3 1A4 1A5 1A6 1A7 1A8 1A9 82_ 02C 02D 12C 12D 22C 22D 32C 32D 12E 12F
33_ 1B0 1B1 1B2 1B3 1B4 1B5 1B6 1B7 1B8 1B9 83_ 03C 03D 13C 13D 23C 23D 33C 33D 13E 13F
34_ 1C0 1C1 1C2 1C3 1C4 1C5 1C6 1C7 1C8 1C9 84_ 04C 04D 14C 14D 24C 24D 34C 34D 22E 22F
35_ 1D0 1D1 1D2 1D3 1D4 1D5 1D6 1D7 1D8 1D9 85_ 05C 05D 15C 15D 25C 25D 35C 35D 23E 23F
36_ 1E0 1E1 1E2 1E3 1E4 1E5 1E6 1E7 1E8 1E9 86_ 06C 06D 16C 16D 26C 26D 36C 36D 32E 32F
37_ 1F0 1F1 1F2 1F3 1F4 1F5 1F6 1F7 1F8 1F9 87_ 07C 07D 17C 17D 27C 27D 37C 37D 33E 33F
38_ 18A 18B 1AA 1AB 1CA 1CB 1EA 1EB 1CE 1CF 88_ 00E 00F 10E 10F 20E 20F 30E 30F 06E 06F
39_ 19A 19B 1BA 1BB 1DA 1DB 1FA 1FB 1DE 1DF 89_ 01E 01F 11E 11F 21E 21F 31E 31F 07E 07F
40_ 200 201 202 203 204 205 206 207 208 209 90_ 08C 08D 18C 18D 28C 28D 38C 38D 0AE 0AF
41_ 210 211 212 213 214 215 216 217 218 219 91_ 09C 09D 19C 19D 29C 29D 39C 39D 0BE 0BF
42_ 220 221 222 223 224 225 226 227 228 229 92_ 0AC 0AD 1AC 1AD 2AC 2AD 3AC 3AD 1AE 1AF
43_ 230 231 232 233 234 235 236 237 238 239 93_ 0BC 0BD 1BC 1BD 2BC 2BD 3BC 3BD 1BE 1BF
44_ 240 241 242 243 244 245 246 247 248 249 94_ 0CC 0CD 1CC 1CD 2CC 2CD 3CC 3CD 2AE 2AF
45_ 250 251 252 253 254 255 256 257 258 259 95_ 0DC 0DD 1DC 1DD 2DC 2DD 3DC 3DD 2BE 2BF
46_ 260 261 262 263 264 265 266 267 268 269 96_ 0EC 0ED 1EC 1ED 2EC 2ED 3EC 3ED 3AE 3AF
47_ 270 271 272 273 274 275 276 277 278 279 97_ 0FC 0FD 1FC 1FD 2FC 2FD 3FC 3FD 3BE 3BF
48_ 20A 20B 22A 22B 24A 24B 26A 26B 24E 24F 98_ 08E 08F 18E 18F 28E 28F 38E 38F 0EE 0EF
49_ 21A 21B 23A 23B 25A 25B 27A 27B 25E 25F 99_ 09E 09F 19E 19F 29E 29F 39E 39F 0FE 0FF
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Table 124: DPD-to-BCD translation
0 1 2 3 4 5 6 7 8 9 A B C D E F

00_ 000 001 002 003 004 005 006 007 008 009 080 081 800 801 880 881
01_ 010 011 012 013 014 015 016 017 018 019 090 091 810 811 890 891
02_ 020 021 022 023 024 025 026 027 028 029 082 083 820 821 808 809
03_ 030 031 032 033 034 035 036 037 038 039 092 093 830 831 818 819
04_ 040 041 042 043 044 045 046 047 048 049 084 085 840 841 088 089
05_ 050 051 052 053 054 055 056 057 058 059 094 095 850 851 098 099
06_ 060 061 062 063 064 065 066 067 068 069 086 087 860 861 888 889
07_ 070 071 072 073 074 075 076 077 078 079 096 097 870 871 898 899
08_ 100 101 102 103 104 105 106 107 108 109 180 181 900 901 980 981
09_ 110 111 112 113 114 115 116 117 118 119 190 191 910 911 990 991
0A_ 120 121 122 123 124 125 126 127 128 129 182 183 920 921 908 909
0B_ 130 131 132 133 134 135 136 137 138 139 192 193 930 931 918 919
0C_ 140 141 142 143 144 145 146 147 148 149 184 185 940 941 188 189
0D_ 150 151 152 153 154 155 156 157 158 159 194 195 950 951 198 199
0E_ 160 161 162 163 164 165 166 167 168 169 186 187 960 961 988 989
0F_ 170 171 172 173 174 175 176 177 178 179 196 197 970 971 998 999
10_ 200 201 202 203 204 205 206 207 208 209 280 281 802 803 882 883
11_ 210 211 212 213 214 215 216 217 218 219 290 291 812 813 892 893
12_ 220 221 222 223 224 225 226 227 228 229 282 283 822 823 828 829
13_ 230 231 232 233 234 235 236 237 238 239 292 293 832 833 838 839
14_ 240 241 242 243 244 245 246 247 248 249 284 285 842 843 288 289
15_ 250 251 252 253 254 255 256 257 258 259 294 295 852 853 298 299
16_ 260 261 262 263 264 265 266 267 268 269 286 287 862 863 (888) (889)
17_ 270 271 272 273 274 275 276 277 278 279 296 297 872 873 (898) (899)
18_ 300 301 302 303 304 305 306 307 308 309 380 381 902 903 982 983
19_ 310 311 312 313 314 315 316 317 318 319 390 391 912 913 992 993
1A_ 320 321 322 323 324 325 326 327 328 329 382 383 922 923 928 929
1B_ 330 331 332 333 334 335 336 337 338 339 392 393 932 933 938 939
1C_ 340 341 342 343 344 345 346 347 348 349 384 385 942 943 388 389
1D_ 350 351 352 353 354 355 356 357 358 359 394 395 952 953 398 399
1E_ 360 361 362 363 364 365 366 367 368 369 386 387 962 963 (988) (989)
1F_ 370 371 372 373 374 375 376 377 378 379 396 397 972 973 (998) (999)
20_ 400 401 402 403 404 405 406 407 408 409 480 481 804 805 884 885
21_ 410 411 412 413 414 415 416 417 418 419 490 491 814 815 894 895
22_ 420 421 422 423 424 425 426 427 428 429 482 483 824 825 848 849
23_ 430 431 432 433 434 435 436 437 438 439 492 493 834 835 858 859
24_ 440 441 442 443 444 445 446 447 448 449 484 485 844 845 488 489
25_ 450 451 452 453 454 455 456 457 458 459 494 495 854 855 498 499
26_ 460 461 462 463 464 465 466 467 468 469 486 487 864 865 (888) (889)
27_ 470 471 472 473 474 475 476 477 478 479 496 497 874 875 (898) (899)
28_ 500 501 502 503 504 505 506 507 508 509 580 581 904 905 984 985
29_ 510 511 512 513 514 515 516 517 518 519 590 591 914 915 994 995
2A_ 520 521 522 523 524 525 526 527 528 529 582 583 924 925 948 949
2B_ 530 531 532 533 534 535 536 537 538 539 592 593 934 935 958 959
2C_ 540 541 542 543 544 545 546 547 548 549 584 585 944 945 588 589
2D_ 550 551 552 553 554 555 556 557 558 559 594 595 954 955 598 599
2E_ 560 561 562 563 564 565 566 567 568 569 586 587 964 965 (988) (989)
2F_ 570 571 572 573 574 575 576 577 578 579 596 597 974 975 (998) (999)
30_ 600 601 602 603 604 605 606 607 608 609 680 681 806 807 886 887
31_ 610 611 612 613 614 615 616 617 618 619 690 691 816 817 896 897
32_ 620 621 622 623 624 625 626 627 628 629 682 683 826 827 868 869
33_ 630 631 632 633 634 635 636 637 638 639 692 693 836 837 878 879
34_ 640 641 642 643 644 645 646 647 648 649 684 685 846 847 688 689
35_ 650 651 652 653 654 655 656 657 658 659 694 695 856 857 698 699
36_ 660 661 662 663 664 665 666 667 668 669 686 687 866 867 (888) (889)
37_ 670 671 672 673 674 675 676 677 678 679 696 697 876 877 (898) (899)
38_ 700 701 702 703 704 705 706 707 708 709 780 781 906 907 986 987
39_ 710 711 712 713 714 715 716 717 718 719 790 791 916 917 996 997
3A_ 720 721 722 723 724 725 726 727 728 729 782 783 926 927 968 969
3B_ 730 731 732 733 734 735 736 737 738 739 792 793 936 937 978 979
3C_ 740 741 742 743 744 745 746 747 748 749 784 785 946 947 788 789
3D_ 750 751 752 753 754 755 756 757 758 759 794 795 956 957 798 799
3E_ 760 761 762 763 764 765 766 767 768 769 786 787 966 967 (988) (989)
3F_ 770 771 772 773 774 775 776 777 778 779 796 797 976 977 (998) (999)
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Appendix C.  Vector RTL Functions [Category: Vector]

ConvertSPtoSXWsaturate( X, Y )
sign     = X0
exp0:7   = X1:8
frac0:30 = X9:31 || 0b0000_0000
if((exp==255)&(frac!=0)) then return(0x0000_0000) // NaN operand
if((exp==255)&(frac==0)) then do // infinity operand

VSCRSAT = 1
return( (sign==1) ? 0x8000_0000 : 0x7FFF_FFFF )

if((exp+Y-127)>30) then do // large operand
VSCRSAT = 1
return( (sign==1) ? 0x8000_0000 : 0x7FFF_FFFF )

   if((exp+Y-127)<0) then return(0x0000_0000) // -1.0 < value < 1.0 (value rounds to 0)
significand0:31 = 0b1 || frac
do i=1 to 31-(exp+Y-127)

significand = significand >>ui 1
return( (sign==0) ? significand : (¬significand + 1) )

ConvertSPtoUXWsaturate( X, Y )
sign     = X0

   exp0:7   = X1:8
   frac0:30 = X9:31 || 0b0000_0000
   if((exp==255)&&(frac!=0)) then return(0x0000_0000) // NaN operand
   if((exp==255)&&(frac==0)) then do   // infinity operand
      VSCRSAT = 1
      return( (sign==1) ? 0x0000_0000 : 0xFFFF_FFFF )
   if((exp+Y-127)>31) then do // large operand
      VSCRSAT = 1
      return( (sign==1) ? 0x0000_0000 : 0xFFFF_FFFF )
   if((exp+Y-127)<0) then return(0x0000_0000) // -1.0 < value < 1.0

//   value rounds to 0
   if( sign==1 ) then do // negative operand
      VSCRSAT = 1
      return(0x0000_0000)
   significand0:31 = 0b1 || frac
   do i=1 to 31-(exp+Y-127)
      significand = significand >>ui 1
   return( significand )

ConvertSXWtoSP( X )
   sign     = X0
   exp0:7   = 32 + 127
   frac0:32 = X0 || X0:31
   if( frac==0 ) return( 0x0000_0000 ) // Zero operand
   if( sign==1 ) then frac = ¬frac + 1
   do while( frac0==0 )
      frac = frac << 1
      exp = exp - 1
   lsb = frac23
   gbit = frac24
   xbit = frac25:32!=0
   inc = ( lsb && gbit ) | ( gbit && xbit )
   frac0:23 = frac0:23 + inc
   if( carry_out==1 ) exp = exp + 1
   return( sign || exp || frac1:23 )
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ConvertUXWtoSP( X )
   exp0:7 = 31 + 127
   frac0:31 = X0:31
   if( frac==0 ) return( 0x0000_0000 ) // Zero Operand
   do while( frac0==0 )
      frac = frac << 1
      exp = exp - 1
   lsb = frac23
   gbit = frac24
   xbit = frac25:31!=0
   inc = ( lsb && gbit ) | ( gbit && xbit )
   frac0:23 = frac0:23 + inc
   if( carry_out==1 ) exp = exp + 1
   return( 0b0 || exp || frac1:23 )
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Appendix D.  Embedded Floating-Point RTL Functions

[Category: SPE.Embedded Float Scalar Double]
[Category: SPE.Embedded Float Scalar Single]
[Category: SPE.Embedded Float Vector]

D.1 Common Functions
// Check if 32-bit fp value is a NaN or Infinity
Isa32NaNorInfinity(fp)
return (fpexp = 255)

Isa32NaN(fp)
return ((fpexp = 255) & (fpfrac ≠ 0))

// Check if 32-bit fp value is denormalized
Isa32Denorm(fp)
return ((fpexp = 0) & (fpfrac ≠ 0))

// Check if 64-bit fp value is a NaN or Infinity
Isa64NaNorInfinity(fp)
return (fpexp = 2047)

Isa64NaN(fp)
return ((fpexp = 2047) & (fpfrac ≠ 0))

// Check if 32-bit fp value is denormalized
Isa64Denorm(fp)
return ((fpexp = 0) & (fpfrac ≠ 0))

// Signal an error in the SPEFSCR
SignalFPError(upper_lower, bits)
if (upper_lower = HI) then

bits I bits << 15
SPEFSCR I SPEFSCR | bits
bits I (FG | FX)
if (upper_lower = HI) then

bits I bits << 15
SPEFSCR I SPEFSCR & ¬bits

// Round a 32-bit fp result
Round32(fp, guard, sticky)

FP32format fp;
if (SPEFSCRFINXE = 0) then

if (SPEFSCRFRMC = 0b00) then // nearest
if (guard) then

if (sticky | fpfrac[22]) then
v0:23 I fpfrac + 1
if v0 then

if (fpexp >= 254) then
// overflow
fp I fpsign || 0b11111110 || 

231
else

fpexp I fpexp + 1
fpfrac I v1:23

else
fpfrac I v1:23

else if ((SPEFSCRFRMC & 0b10) = 0b10) then
// infinity modes
// implementation dependent

return fp

// Round a 64-bit fp result
Round64(fp, guard, sticky)

FP32format fp;
if (SPEFSCRFINXE = 0) then

if (SPEFSCRFRMC = 0b00) then // nearest
if (guard) then

if (sticky | fpfrac[51]) then
v0:52 I fpfrac + 1
if v0 then

if (fpexp >= 2046) then
// overflow
fp I fpsign ||

0b11111111110 || 521
else

fpexp I fpexp + 1
fpfrac I v1:52

else
fpfrac I v1:52

else if ((SPEFSCRFRMC & 0b10) = 0b10) then
// infinity modes
// implementation dependent

return fp
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D.2 Convert from Single-Preci-
sion Embedded Floating-Point to 
Integer Word with Saturation
// Convert 32-bit Floating-Point to 32-bit integer 
// or fractional
// signed = S (signed) or U (unsigned)
// upper_lower = HI (high word) or LO (low word)
// round = RND (round) or ZER (truncate)
// fractional = F (fractional) or I (integer)

CnvtFP32ToI32Sat(fp, signed, 
upper_lower, round, fractional)

FP32format fp;
if (Isa32NaNorInfinity(fp)) then

SignalFPError(upper_lower, FINV)
if (Isa32NaN(fp)) then

return 0x00000000 // all NaNs
if (signed = S) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
if (fpsign = 1) then

return 0x00000000
else

return 0xffffffff
if (Isa32Denorm(fp)) then

SignalFPError(upper_lower, FINV)
return 0x00000000 // regardless of sign

if ((signed = U) & (fpsign = 1)) then
SignalFPError(upper_lower, FOVF) // overflow
return 0x00000000

if ((fpexp = 0) & (fpfrac = 0)) then
return 0x00000000 // all zero values

if (fractional = I) then // convert to integer
max_exp I 158
shift I 158 - fpexp
if (signed = S) then

if ((fpexp≠158)|(fpfrac≠0)|(fpsign≠1)) then
max_exp I max_exp - 1

else  // fractional conversion
max_exp I 126
shift I 126 - fpexp
if (signed = S) then

shift I shift + 1
if (fpexp > max_exp) then

SignalFPError(upper_lower, FOVF) // overflow
if (signed = S) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
return 0xffffffff

result I 0b1 || fpfrac || 0b00000000 // add U bit
guard I 0
sticky I 0
for (n I 0; n < shift; n I n + 1) do

sticky I sticky | guard

guard I result & 0x00000001
result I result > 1

// Report sticky and guard bits
if (upper_lower = HI) then

SPEFSCRFGH I guard
SPEFSCRFXH I sticky

else
SPEFSCRFG I guard
SPEFSCRFX I sticky

if (guard | sticky) then
SPEFSCRFINXS I 1

// Round the integer result
if ((round = RND) & (SPEFSCRFINXE = 0)) then

if (SPEFSCRFRMC = 0b00) then // nearest
if (guard) then

if (sticky | (result & 0x00000001)) then
result I result + 1

else if ((SPEFSCRFRMC & 0b10) = 0b10) then
// infinity modes
// implementation dependent

if (signed = S) then
if (fpsign = 1) then

result I ¬result + 1
return result
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D.3 Convert from Double-Preci-
sion Embedded Floating-Point to 
Integer Word with Saturation
// Convert 64-bit Floating-Point to 32-bit integer
// or fractional
// signed = S (signed) or U (unsigned)
// round = RND (round) or ZER (truncate)
// fractional = F (fractional) or I (integer)

CnvtFP64ToI32Sat(fp, signed, round, 
fractional)
FP64format fp;

if (Isa64NaNorInfinity(fp)) then
SignalFPError(LO, FINV)
if (Isa64NaN(fp)) then

return 0x00000000 // all NaNs
if (signed = S) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
if (fpsign = 1) then

return 0x00000000
else

return 0xffffffff

if (Isa64Denorm(fp)) then
SignalFPError(LO, FINV)
return 0x00000000 // regardless of sign

if ((signed = U) & (fpsign = 1)) then
SignalFPError(LO, FOVF) // overflow
return 0x00000000

if ((fpexp = 0) & (fpfrac = 0)) then
return 0x00000000 // all zero values

if (fractional = I) then // convert to integer
max_exp I 1054
shift I 1054 - fpexp
if (signed I S) then

if ((fpexp≠1054)|(fpfrac≠0)|(fpsign≠1)) then
max_exp I max_exp - 1

else // fractional conversion
max_exp I 1022
shift I 1022 - fpexp
if (signed = S) then

shift I shift + 1

if (fpexp > max_exp) then
SignalFPError(LO, FOVF) // overflow
if (signed = S) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
return 0xffffffff

result I 0b1 || fpfrac[0:30] // add U to frac
guard I fpfrac[31]
sticky I (fpfrac[32:63] ≠ 0)
for (n I 0; n < shift; n I n + 1) do

sticky I sticky | guard

guard I result & 0x00000001
result I result > 1

// Report sticky and guard bits

SPEFSCRFG I guard
SPEFSCRFX I sticky

if (guard | sticky) then
SPEFSCRFINXS I 1

// Round the result
if ((round = RND) & (SPEFSCRFINXE = 0)) then

if (SPEFSCRFRMC = 0b00) then // nearest
if (guard) then

if (sticky | (result & 0x00000001)) then
result I result + 1

else if ((SPEFSCRFRMC & 0b10) = 0b10) then
// infinity modes
// implementation dependent

if (signed = S) then
if (fpsign = 1) then

result I ¬result + 1
return result
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D.4 Convert from Double-Preci-
sion Embedded Floating-Point to 
Integer Doubleword with Satura-
tion
// Convert 64-bit Floating-Point to 64-bit integer
// signed = S (signed) or U (unsigned)
// round = RND (round) or ZER (truncate)

CnvtFP64ToI64Sat(fp, signed, round)
FP64format fp;
if (Isa64NaNorInfinity(fp)) then

SignalFPError(LO, FINV)
if (Isa64NaN(fp)) then

return 0x00000000_00000000 // all NaNs
if (signed = S) then

if (fpsign = 1) then
return 0x80000000_00000000

else
return 0x7fffffff_ffffffff

else
if (fpsign = 1) then

return 0x00000000_00000000
else

return 0xffffffff_ffffffff

if (Isa64Denorm(fp)) then
SignalFPError(LO, FINV)
return 0x00000000_00000000

if ((signed = U) & (fpsign = 1)) then
SignalFPError(LO, FOVF) // overflow
return 0x00000000_00000000

if ((fpexp = 0) & (fpfrac = 0)) then
return 0x00000000_00000000 // all zero values

max_exp I 1086
shift I 1086 - fpexp
if (signed = S) then

if ((fpexp≠1086)|(fpfrac≠0)|(fpsign≠1)) then
max_exp I max_exp - 1

if (fpexp > max_exp) then
SignalFPError(LO, FOVF) // overflow
if (signed = S) then

if (fpsign = 1) then
return 0x80000000_00000000

else
return 0x7fffffff_ffffffff

else
return 0xffffffff_ffffffff

result I 0b1 || fpfrac || 0b00000000000 //add U bit
guard I 0
sticky I 0
for (n I 0; n < shift; n I n + 1) do

sticky I sticky | guard
guard I result & 0x00000000_00000001
result I result > 1

// Report sticky and guard bits
SPEFSCRFG I guard
SPEFSCRFX I sticky

if (guard | sticky) then
SPEFSCRFINXS I 1

// Round the result
if ((round = RND) & (SPEFSCRFINXE = 0)) then

if (SPEFSCRFRMC = 0b00) then // nearest
if (guard) then

if (sticky | (result&0x00000000_00000001))
then

result I result + 1
else if ((SPEFSCRFRMC & 0b10) = 0b10) then

// infinity modes
// implementation dependent

if (signed = S) then
if (fpsign = 1) then

result I ¬result + 1
return result
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D.5 Convert to Single-Precision 
Embedded Floating-Point from 
Integer Word
// Convert from 32-bit integer or fractional to
// 32-bit Floating-Point
// signed = S (signed) or U (unsigned)
// round = RND (round) or ZER (truncate)
// fractional = F (fractional) or I (integer)
CnvtI32ToFP32(v, signed, upper_lower, 
fractional)
FP32format result;
resultsign I 0
if (v = 0) then

result I 0
if (upper_lower = HI) then

SPEFSCRFGH I 0
SPEFSCRFXH I 0

else
SPEFSCRFG I 0
SPEFSCRFX I 0

else
if (signed = S) then

if (v0 = 1) then
v I ¬v + 1
resultsign I 1

if (fractional = F) then // frac bit align
maxexp I 127
if (signed = U) then

maxexp I maxexp - 1
else

maxexp I 158 // integer bit alignment
sc I 0
while (v0 = 0)

v I v << 1
sc I sc + 1

v0 I 0 // clear U bit
resultexp I maxexp - sc
guard I v24
sticky I (v25:31 ≠ 0)

// Report sticky and guard bits
if (upper_lower = HI) then

SPEFSCRFGH I guard
SPEFSCRFXH I sticky

else
SPEFSCRFG I guard
SPEFSCRFX I sticky

if (guard | sticky) then
SPEFSCRFINXS I 1

// Round the result

resultfrac I v1:23
result I Round32(result, guard, sticky)

return result

D.6 Convert to Double-Preci-
sion Embedded Floating-Point 
from Integer Word
// Convert from integer or fractional to 64 bit
// Floating-Point
// signed = S (signed) or U (unsigned)
// fractional = F (fractional) or I (integer)
CnvtI32ToFP64(v, signed, fractional)
FP64format result;
resultsign I 0
if (v = 0) then

result I 0
SPEFSCRFG I 0
SPEFSCRFX I 0

else
if (signed = S) then

if (v0 = 1) then
v I ¬v + 1
resultsign I 1

if (fractional = F) then // frac bit align
maxexp I 1023
if (signed = U) then

maxexp I maxexp - 1
else

maxexp I 1054 // integer bit align 
sc I 0
while (v0 = 0)

v I v << 1
sc I sc + 1

v0 I 0 // clear U bit
resultexp I maxexp - sc

// Report sticky and guard bits

SPEFSCRFG I 0
SPEFSCRFX I 0

resultfrac I v1:31 || 
210

return result
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D.7 Convert to Double-Preci-
sion Embedded Floating-Point 
from Integer Doubleword 
// Convert from 64-bit integer to 64-bit
// floating-point
// signed = S (signed) or U (unsigned)
CnvtI64ToFP64(v, signed)
FP64format result;
resultsign I 0
if (v = 0) then

result I 0
SPEFSCRFG I 0
SPEFSCRFX I 0

else
if (signed = S) then

if (v0 = 1) then
v I ¬v + 1
resultsign I 1

maxexp I 1054
sc I 0
while (v0 = 0)

v I v << 1
sc I sc + 1

v0 I 0 // clear U bit
resultexp I maxexp - sc
guard I v53
sticky I (v54:63 ≠ 0)

// Report sticky and guard bits

SPEFSCRFG I guard
SPEFSCRFX I sticky
if (guard | sticky) then

SPEFSCRFINXS I 1
// Round the result

resultfrac I v1:52
result I Round64(result, guard, sticky)

return result
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Appendix E.  Assembler Extended Mnemonics

In order to make assembler language programs simpler to write and easier to understand, a set of extended mne-
monics and symbols is provided that defines simple shorthand for the most frequently used forms of Branch Condi-
tional, Compare, Trap, Rotate and Shift, and certain other instructions.

Assemblers should provide the extended mnemonics and symbols listed here, and may provide others.

E.1 Symbols
The following symbols are defined for use in instructions (basic or extended mnemonics) that specify a Condition
Register field or a Condition Register bit. The first five (lt, ..., un) identify a bit number within a CR field. The remainder
(cr0, ..., cr7) identify a CR field. An expression in which a CR field symbol is multiplied by 4 and then added to a
bit-number-within-CR-field symbol and 32 can be used to identify a CR bit.

The extended mnemonics in Sections E.2.2 and E.3 require identification of a CR bit: if one of the CR field symbols is
used, it must be multiplied by 4 and added to a bit-number-within-CR-field (value in the range 0-3, explicit or sym-
bolic) and 32. The extended mnemonics in Sections E.2.3 and E.5 require identification of a CR field: if one of the CR
field symbols is used, it must not be multiplied by 4 or added to 32. (For the extended mnemonics in Section E.2.3,
the bit number within the CR field is part of the extended mnemonic. The programmer identifies the CR field, and the
Assembler does the multiplication and addition required to produce a CR bit number for the BI field of the underlying
basic mnemonic.)

Symbol Value Meaning
lt 0 Less than
gt 1 Greater than
eq 2 Equal
so 3 Summary overflow
un 3 Unordered (after floating-point comparison)
cr0 0 CR Field 0
cr1 1 CR Field 1
cr2 2 CR Field 2
cr3 3 CR Field 3
cr4 4 CR Field 4
cr5 5 CR Field 5
cr6 6 CR Field 6
cr7 7 CR Field 7
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E.2 Branch Mnemonics
The mnemonics discussed in this section are variations of the Branch Conditional instructions.

Note: bclr, bclrl, bcctr, and bcctrl each serve as both a basic and an extended mnemonic. The Assembler will rec-
ognize a bclr, bclrl, bcctr, or bcctrl mnemonic with three operands as the basic form, and a bclr, bclrl, bcctr, or
bcctrl mnemonic with two operands as the extended form. In the extended form the BH operand is omitted and
assumed to be 0b00. Similarly, for all the extended mnemonics described in Sections E.2.2 - E.2.4 that devolve to any
of these four basic mnemonics the BH operand can either be coded or omitted. If it is omitted it is assumed to be
0b00.

E.2.1 BO and BI Fields
The 5-bit BO and BI fields control whether the branch is taken. Providing an extended mnemonic for every possible
combination of these fields would be neither useful nor practical. The mnemonics described in Sections E.2.2 - E.2.4
include the most useful cases. Other cases can be coded using a basic Branch Conditional mnemonic (bc[l][a],
bclr[l], bcctr[l]) with the appropriate operands.

E.2.2 Simple Branch Mnemonics
Instructions using one of the mnemonics in Table 125 that tests a Condition Register bit specify the corresponding bit
as the first operand. The symbols defined in Section E.1 can be used in this operand.

Notice that there are no extended mnemonics for relative and absolute unconditional branches.  For these the basic
mnemonics b, ba, bl, and bla should be used.

Examples
1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a count loaded into CTR).

bdnz target (equivalent to: bc 16,0,target)

2. Same as (1) but branch only if CTR is nonzero and condition in CR0 is “equal”.

bdnzt eq,target (equivalent to: bc 8,2,target)

3. Same as (2), but “equal” condition is in CR5.

bdnzt 4×cr5+eq,target (equivalent to: bc 8,22,target)

Table 125:Simple branch mnemonics

Branch Semantics
LR not Set LR Set

bc
Relative

bca
Absolute

bclr
To LR

bcctr
To CTR

bcl
Relative

bcla
Absolute

bclrl
To LR

bcctrl
To CTR

Branch unconditionally - - blr bctr - - blrl bctrl

Branch if CRBI=1 bt bta btlr btctr btl btla btlrl btctrl

Branch if CRBI=0 bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR, branch if
CTR nonzero

bdnz bdnza bdnzlr - bdnzl bdnzla bdnzlrl -

Decrement CTR, branch if
CTR nonzero and CRBI=1 

bdnzt bdnzta bdnztlr - bdnztl bdnztla bdnztlrl -

Decrement CTR, branch if
CTR nonzero and CRBI=0  

bdnzf bdnzfa bdnzflr - bdnzfl bdnzfla bdnzflrl -

Decrement CTR, branch if
CTR zero

bdz bdza bdzlr - bdzl bdzla bdzlrl -

Decrement CTR, branch if
CTR zero and CRBI=1

bdzt bdzta bdztlr - bdztl bdztla bdztlrl -

Decrement CTR, branch if
CTR zero and CRBI=0

bdzf bdzfa bdzflr - bdzfl bdzfla bdzflrl -
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4. Branch if bit 59 of CR is 0.

bf 27,target (equivalent to: bc 4,27,target)

5. Same  as  (4),  but  set  the  Link  Register.   This is a form of conditional “call”.

bfl 27,target (equivalent to: bcl 4,27,target)

E.2.3 Branch Mnemonics Incorporating Conditions
In the mnemonics defined in Table 126, the test of a bit in a Condition Register field is encoded in the mnemonic.

Instructions using the mnemonics in Table 126 specify the CR field as an optional first operand. One of the CR field
symbols defined in Section E.1 can be used for this operand. If the CR field being tested is CR Field 0, this operand
need not be specified unless the resulting basic mnemonic is bclr[l] or bcctr[l] and the BH operand is specified.

A standard set of codes has been adopted for the most common combinations of branch conditions.

These codes are reflected in the mnemonics shown in Table 126.

Examples
1. Branch if CR0 reflects condition “not equal”.

bne target (equivalent to: bc 4,2,target)

2. Same as (1), but condition is in CR3.

Code Meaning
lt Less than
le Less than or equal
eq Equal
ge Greater than or equal
gt Greater than
nl Not less than
ne Not equal
ng Not greater than
so Summary overflow
ns Not summary overflow
un Unordered (after floating-point comparison)
nu Not unordered (after floating-point comparison)

Table 126:Branch mnemonics incorporating conditions

Branch Semantics
LR not Set LR Set

bc
Relative

bca
Absolute

bclr
To LR

bcctr
To CTR

bcl
Relative

bcla
Absolute

bclrl
To LR

bcctrl
To CTR

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than or equal bge bgea bgelr bgectr bgel bgela bgelrl  bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl  bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary overflow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl
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bne cr3,target (equivalent to: bc 4,14,target)

3. Branch to an absolute target if CR4 specifies “greater than”, setting the Link Register.  This is a form of condi-
tional “call”.

bgtla cr4,target (equivalent to: bcla 12,17,target)

4. Same as (3), but target address is in the Count Register.

bgtctrl cr4 (equivalent to: bcctrl 12,17,0)

E.2.4 Branch Prediction
Software can use the “at” bits of Branch Conditional instructions to provide a hint to the processor about the behavior
of the branch.  If, for a given such instruction, the branch is almost always taken or almost always not taken, a suffix
can be added to the mnemonic indicating the value to be used for the “at” bits.

+   Predict branch to be taken (at=0b11)

-   Predict branch not to be taken (at=0b10)

Such a suffix can be added to any Branch Conditional mnemonic, either basic or extended, that tests either the Count
Register or a CR bit (but not both).  Assemblers should use 0b00 as the default value for the “at” bits, indicating that
software has offered no prediction.

Examples
1. Branch if CR0 reflects condition “less than”, specifying that the branch should be predicted to be taken.

blt+ target

2. Same as (1), but target address is in the Link Register and the branch should be predicted not to be taken.

bltlr-
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E.3 Condition Register Logical Mnemonics
The Condition Register Logical instructions can be used to set (to 1), clear (to 0), copy, or invert a given Condition
Register bit.  Extended mnemonics are provided that allow these operations to be coded easily.

The symbols defined in Section E.1 can be used to identify the Condition Register bits.

Examples
1. Set CR bit 57.

crset 25 (equivalent to: creqv 25,25,25)

2. Clear the SO bit of CR0.

crclr so (equivalent to: crxor 3,3,3)

3. Same as (2), but SO bit to be cleared is in CR3.

crclr 4×cr3+so (equivalent to:  crxor 15,15,15)

4. Invert the EQ bit.

crnot eq,eq (equivalent to: crnor 2,2,2)

5. Same as (4), but EQ bit to be inverted is in CR4, and the result is to be placed into the EQ bit of CR5.

crnot 4×cr5+eq,4×cr4+eq (equivalent to: crnor 22,18,18)

E.4 Subtract Mnemonics

E.4.1 Subtract Immediate
Although there is no “Subtract Immediate” instruction, its effect can be achieved by using an Add Immediate instruc-
tion with the immediate operand negated.  Extended mnemonics are provided that include this negation, making the
intent of the computation clearer.

subi Rx,Ry,value (equivalent to: addi Rx,Ry,-value)
subis Rx,Ry,value (equivalent to: addis Rx,Ry,-value)
subic Rx,Ry,value (equivalent to: addic Rx,Ry,-value)
subic. Rx,Ry,value (equivalent to: addic. Rx,Ry,-value)

E.4.2 Subtract
The Subtract From instructions subtract the second operand (RA) from the third (RB).  Extended mnemonics are pro-
vided that use the more “normal” order, in which the third operand is subtracted from the second.  Both these mne-
monics can be coded with a final “o” and/or “.”  to cause the OE and/or Rc bit to be set in the underlying instruction.

sub Rx,Ry,Rz (equivalent to: subf Rx,Rz,Ry)
subc Rx,Ry,Rz (equivalent to: subfc Rx,Rz,Ry)

Table 127:Condition Register logical mnemonics

Operation Extended Mnemonic Equivalent to

Condition Register set crset bx creqv bx,bx,bx

Condition Register clear crclr bx crxor bx,bx,bx

Condition Register move crmove bx,by cror bx,by,by

Condition Register not crnot bx,by crnor bx,by,by
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E.5 Compare Mnemonics
The L field in the fixed-point Compare instructions controls whether the operands are treated as 64-bit quantities or
as 32-bit quantities. Extended mnemonics are provided that represent the L value in the mnemonic rather than requir-
ing it to be coded as a numeric operand.

The BF field can be omitted if the result of the comparison is to be placed into CR Field 0. Otherwise the target CR
field must be specified as the first operand. One of the CR field symbols defined in Section E.1 can be used for this
operand.

Note: The basic Compare mnemonics of Power ISA are the same as those of POWER, but the POWER instructions
have three operands while the Power ISA instructions have four. The Assembler will recognize a basic Compare mne-
monic with three operands as the POWER form, and will generate the instruction with L=0. (Thus the Assembler must
require that the BF field, which normally can be omitted when CR Field 0 is the target, be specified explicitly if L is.)

E.5.1 Doubleword Comparisons

Examples
1. Compare register Rx and immediate value 100 as unsigned 64-bit integers and place result into CR0.

cmpldi Rx,100 (equivalent to: cmpli 0,1,Rx,100)

2. Same as (1), but place result into CR4.

cmpldi cr4,Rx,100 (equivalent to: cmpli 4,1,Rx,100)

3. Compare registers Rx and Ry as signed 64-bit integers and place result into CR0.

cmpd Rx,Ry (equivalent to: cmp 0,1,Rx,Ry)

E.5.2 Word Comparisons

Examples
1. Compare bits 32:63 of register Rx and immediate value 100 as signed 32-bit integers and place result into CR0.

cmpwi Rx,100 (equivalent to: cmpi 0,0,Rx,100)

2. Same as (1), but place result into CR4.

cmpwi cr4,Rx,100 (equivalent to: cmpi 4,0,Rx,100)

3. Compare bits 32:63 of registers Rx and Ry as unsigned 32-bit integers and place result into CR0.

cmplw Rx,Ry (equivalent to: cmpl 0,0,Rx,Ry)

Table 128:Doubleword compare mnemonics

Operation Extended Mnemonic Equivalent to

Compare doubleword immediate cmpdi bf,ra,si cmpi bf,1,ra,si

Compare doubleword cmpd bf,ra,rb cmp bf,1,ra,rb

Compare logical doubleword immediate cmpldi bf,ra,ui cmpli bf,1,ra,ui

Compare logical doubleword cmpld bf,ra,rb cmpl bf,1,ra,rb

Table 129:Word compare mnemonics

Operation Extended Mnemonic Equivalent to

Compare word immediate cmpwi bf,ra,si cmpi bf,0,ra,si

Compare word cmpw bf,ra,rb cmp bf,0,ra,rb

Compare logical word immediate cmplwi bf,ra,ui cmpli bf,0,ra,ui

Compare logical word cmplw bf,ra,rb cmpl bf,0,ra,rb
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E.6 Trap Mnemonics
The mnemonics defined in Table 130 are variations of the Trap instructions, with the most useful values of TO repre-
sented in the mnemonic rather than specified as a numeric operand.

A standard set of codes has been adopted for the most common combinations of trap conditions.

These codes are reflected in the mnemonics shown in Table 130.

Code Meaning TO encoding <   >   =  <u  >u

lt Less than 16 1   0   0   0   0
le Less than or equal 20 1   0   1   0   0
eq Equal 4 0   0   1   0   0
ge Greater than or equal 12 0   1   1   0   0
gt Greater than 8 0   1   0   0   0
nl Not less than 12 0   1   1   0   0
ne Not equal 24 1   1   0   0   0
ng Not greater than 20 1   0   1   0   0
llt Logically less than 2 0   0   0   1   0
lle Logically less than or equal 6 0   0   1   1   0
lge Logically greater than or equal 5 0   0   1   0   1
lgt Logically greater than 1 0   0   0   0   1
lnl Logically not less than 5 0   0   1   0   1
lng Logically not greater than 6 0   0   1   1   0
u Unconditionally with parameters 31 1   1   1   1   1
(none) Unconditional 31 1   1   1   1   1

Table 130:Trap mnemonics

Trap Semantics
64-bit Comparison 32-bit Comparison

tdi
Immediate

td
Register

twi
Immediate

tw
Register

Trap unconditionally - - - trap

Trap unconditionally with parameters tdui tdu twui twu

Trap if less than tdlti tdlt twlti twlt

Trap if less than or equal tdlei tdle twlei twle

Trap if equal tdeqi tdeq tweqi tweq

Trap if greater than or equal tdgei tdge twgei twge

Trap if greater than tdgti tdgt twgti twgt

Trap if not less than tdnli tdnl twnli twnl

Trap if not equal tdnei tdne twnei twne

Trap if not greater than tdngi tdng twngi twng

Trap if logically less than tdllti tdllt twllti twllt

Trap if logically less than or equal tdllei tdlle twllei twlle

Trap if logically greater than or equal tdlgei tdlge twlgei twlge

Trap if logically greater than tdlgti tdlgt twlgti twlgt

Trap if logically not less than tdlnli tdlnl twlnli twlnl

Trap if logically not greater than tdlngi tdlng twlngi twlng
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Examples
1. Trap if register Rx is not 0.

tdnei Rx,0 (equivalent to: tdi 24,Rx,0)

2. Same as (1), but comparison is to register Ry.

tdne Rx,Ry (equivalent to: td 24,Rx,Ry)

3. Trap if bits 32:63 of register Rx, considered as a 32-bit quantity, are logically greater than 0x7FF.

twlgti Rx,0x7FF (equivalent to: twi 1,Rx,0x7FF)

4. Trap unconditionally.

trap (equivalent to: tw 31,0,0)

5. Trap unconditionally with immediate parameters Rx and Ry

tdu Rx,Ry (equivalent to: td 31,Rx,Ry)

E.7 Integer Select Mnemonics
The mnemonics defined in Table 131, “Integer Select mnemonics,” on page 716 are variations of the Integer Select
instructions, with the most useful values of BC represented in the mnemonic rather than specified as a numeric oper-
and..

These codes are reflected in the mnemonics shown in Table 131.

Examples
1. Set register Rx to Ry if the LT bit is set in CR0, and to Rz otherwise.

isellt Rx,Ry,Rz (equivalent to: isel Rx,Ry,Rz,0)

2. Set register Rx to Ry if the GT bit is set in CR0, and to Rz otherwise.

iselgt Rx,Ry,Rz (equivalent to: isel Rx,Ry,Rz,1)

3. Set register Rx to Ry if the EQ bit is set in CR0, and to Rz otherwise.

iseleq Rx,Ry,Rz (equivalent to: isel Rx,Ry,Rz,2)

Code Meaning
lt Less than
eq Equal
gt Greater than

Table 131: Integer Select mnemonics

Select semantics
isel

extended 
mnemonic

Integer Select if less than isellt

Integer Select if equal iseleq

Integer Select if greater than iselgt
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E.8 Rotate and Shift Mnemonics
The Rotate and Shift instructions provide powerful and general ways to manipulate register contents, but can be diffi-
cult to understand. Extended mnemonics are provided that allow some of the simpler operations to be coded easily.

Mnemonics are provided for the following types of operation.

Extract Select a field of n bits starting at bit position b in the source register; left or right justify this field in the target
register; clear all other bits of the target register to 0.

Insert Select a left-justified or right-justified field of n bits in the source register; insert this field starting at bit posi-
tion b of the target register; leave other bits of the target register unchanged.  (No extended mnemonic is
provided for insertion of a left-justified field when operating on doublewords, because such an insertion
requires more than one instruction.)

Rotate Rotate the contents of a register right or left n bits without masking.

Shift Shift the contents of a register right or left n bits, clearing vacated bits to 0 (logical shift).

Clear Clear the leftmost or rightmost n bits of a register to 0.

Clear left and shift left
Clear the leftmost b bits of a register, then shift the register left by n bits.  This operation can be used to
scale a (known nonnegative) array index by the width of an element.

E.8.1 Operations on Doublewords
All these mnemonics can be coded with a final “.” to cause the Rc bit to be set in the underlying instruction.

Examples
1. Extract the sign bit (bit 0) of register Ry and place the result right-justified into register Rx.

extrdi Rx,Ry,1,0 (equivalent to: rldicl Rx,Ry,1,63)

2. Insert the bit extracted in (1) into the sign bit (bit 0) of register Rz.

insrdi Rz,Rx,1,0 (equivalent to: rldimi Rz,Rx,63,0)

3. Shift the contents of register Rx left 8 bits.

sldi Rx,Rx,8 (equivalent to: rldicr Rx,Rx,8,55)

4. Clear the high-order 32 bits of register Ry and place the result into register Rx.

clrldi Rx,Ry,32 (equivalent to: rldicl Rx,Ry,0,32)

Table 132:Doubleword rotate and shift mnemonics

Operation Extended Mnemonic Equivalent to

Extract and left justify immediate extldi ra,rs,n,b  (n > 0) rldicr ra,rs,b,n-1

Extract and right justify immediate extrdi ra,rs,n,b  (n > 0) rldicl ra,rs,b+n,64-n

Insert from right immediate insrdi ra,rs,n,b  (n > 0) rldimi ra,rs,64-(b+n),b

Rotate left immediate rotldi ra,rs,n rldicl ra,rs,n,0

Rotate right immediate rotrdi ra,rs,n rldicl ra,rs,64-n,0

Rotate left rotld ra,rs,rb rldcl ra,rs,rb,0

Shift left immediate sldi ra,rs,n  (n < 64) rldicr ra,rs,n,63-n

Shift right immediate srdi ra,rs,n  (n < 64) rldicl ra,rs,64-n,n

Clear left immediate clrldi ra,rs,n  (n < 64) rldicl ra,rs,0,n

Clear right immediate clrrdi ra,rs,n  (n < 64) rldicr ra,rs,0,63-n

Clear left and shift left immediate clrlsldi ra,rs,b,n  (n <= b < 64) rldic ra,rs,n,b-n
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E.8.2 Operations on Words
All these mnemonics can be coded with a final “.”  to cause the Rc bit to be set in the underlying instruction.  The
operations as described above apply to the low-order 32 bits of the registers, as if the registers were 32-bit registers.
The Insert operations either preserve the high-order 32 bits of the target register or place rotated data there; the other
operations clear these bits.

Examples
1. Extract the sign bit (bit 32) of register Ry and place the result right-justified into register Rx.

extrwi Rx,Ry,1,0 (equivalent to: rlwinm Rx,Ry,1,31,31)

2. Insert the bit extracted in (1) into the sign bit (bit 32) of register Rz.

insrwi Rz,Rx,1,0 (equivalent to: rlwimi Rz,Rx,31,0,0)

3. Shift the contents of register Rx left 8 bits, clearing the high-order 32 bits.

slwi Rx,Rx,8 (equivalent to: rlwinm Rx,Rx,8,0,23)

4. Clear the high-order 16 bits of the low-order 32 bits of register Ry and place the result into register Rx, clearing
the high-order 32 bits of register Rx.

clrlwi Rx,Ry,16 (equivalent to: rlwinm Rx,Ry,0,16,31)

Table 133:Word rotate and shift mnemonics

Operation Extended Mnemonic Equivalent to

Extract and left justify immediate extlwi   ra,rs,n,b    (n > 0) rlwinm   ra,rs,b,0,n-1

Extract and right justify immediate extrwi   ra,rs,n,b    (n > 0) rlwinm   ra,rs,b+n,32-n,31

Insert from left immediate inslwi   ra,rs,n,b    (n > 0) rlwimi   ra,rs,32-b,b,(b+n)-1

Insert from right immediate insrwi   ra,rs,n,b    (n > 0) rlwimi   ra,rs,32-(b+n),b,(b+n)-1

Rotate left immediate rotlwi   ra,rs,n rlwinm   ra,rs,n,0,31

Rotate right immediate rotrwi   ra,rs,n rlwinm   ra,rs,32-n,0,31

Rotate left rotlw   ra,rs,rb rlwnm   ra,rs,rb,0,31

Shift left immediate slwi   ra,rs,n    (n < 32) rlwinm   ra,rs,n,0,31-n

Shift right immediate srwi   ra,rs,n    (n < 32) rlwinm   ra,rs,32-n,n,31

Clear left immediate clrlwi   ra,rs,n    (n < 32) rlwinm   ra,rs,0,n,31

Clear right immediate clrrwi   ra,rs,n    (n < 32) rlwinm   ra,rs,0,0,31-n

Clear left and shift left immediate clrlslwi   ra,rs,b,n    (n ≤ b < 32) rlwinm   ra,rs,n,b-n,31-n
Power ISA™ - Book I718



Version 2.07 B
E.9 Move To/From Special Purpose Register Mnemonics
The mtspr and mfspr instructions specify a Special Purpose Register (SPR) as a numeric operand.  Extended mne-
monics are provided that represent the SPR in the mnemonic rather than requiring it to be coded as an operand.

Table 134:Extended mnemonics for moving to/from an SPR

Special Purpose Register
Move To SPR Move From SPR

Extended Equivalent to Extended Equivalent to

XER mtxer  Rx mtspr  1,Rx mfxer  Rx mfspr  Rx,1

DSCR <STM> mtudscr  Rx mtspr  3,Rx mfudscr  Rx mfspr  Rx,3

LR mtlr    Rx mtspr  8,Rx mflr    Rx mfspr  Rx,8

CTR mtctr  Rx mtspr  9,Rx mfctr  Rx mfspr  Rx,9

AMR <S> mtuamr Rx mtspr 13,Rx mfuamr Rx mfspr Rx,13

TFHAR <TM> mttfhar Rx mtspr 128,Rx mftfhar Rx mfspr Rx,128

TFIAR <TM> mttfiar Rx mtspr 129,Rx mftfiar Rx mfspr Rx,129

TEXASR <TM> mttexasr Rx mtspr 130,Rx mftexasr Rx mfspr Rx,130

TEXASRU <TM> mttxasru Rx mtspr 131,Rx mftexaru Rx mfspr Rx,131

CTRL - - mfctrl Rx mfspr Rx,136

VRSAVE mtvrsave Rx mtspr 256,Rx mfvrsave Rx mfspr Rx,256

SPRG3 - - mfusprg3 Rx mfspr Rx,259

SPRG4 <E> - - mfsprg4 Rx mfspr Rx,260

SPRG5 <E> - - mfsprg5 Rx mfspr Rx,261

SPRG6 <E> - - mfsprg6 Rx mfspr Rx,262

SPRG7 <E> - - mfsprg7 Rx mfspr Rx,264

TB - - mftb Rx mftb Rx,268
mfspr Rx,268

TBU - - mftbu Rx mftb Rx,269
mfspr Rx,269

SIER <S> - - mfusier Rx mfspr Rx,768

MMCR2 <S> mtummcr2 Rx mtspr 769,Rx mfummcr2 Rx mfspr Rx,769

MMCRA <S> mtummcra Rx mtspr 770,Rx mfummcra Rx mfspr Rx,770

PMC1 <S> mtupmc1 Rx mtspr 771,Rx mfupmc1 Rx mfspr Rx,771

PMC2 <S> mtupmc2 Rx mtspr 772,Rx mfupmc2 Rx mfspr Rx,772

PMC3 <S> mtupmc3 Rx mtspr 773,Rx mfupmc3 Rx mfspr Rx,773

PMC4 <S> mtupmc4 Rx mtspr 774,Rx mfupmc4 Rx mfspr Rx,774

PMC5 <S> mtupmc5 Rx mtspr 775,Rx mfupmc5 Rx mfspr Rx,775

PMC6 <S> mtupmc6 Rx mtspr 776,Rx mfupmc6 Rx mfspr Rx,776

MMCR0 <S> mtummcr0 Rx mtspr 779,Rx mfummcr0 Rx mfspr Rx,779

SIAR <S> - - mfusiar Rx mfspr Rx,780

SDAR <S> - - mfusdar Rx mfspr Rx,781

MMCR1 <S> - - mfummcr1 Rx mfspr Rx,782

BESCRS <S> mtbescrs Rx mtspr 800,Rx mfbescrs Rx mfspr Rx,800

BESCRU <S> mtbescru Rx mtspr 801,Rx mfbescru Rx mfspr Rx,801

BESCRR <S> mtbescrr Rx mtspr 802,Rx mfbescrr Rx mfspr Rx,802

BESCRRU <S> mtbescrru Rx mtspr 803,Rx mfbescrru Rx mfspr Rx,803

EBBHR <S> mtebbhr Rx mtspr 804,Rx mfebbhr Rx mfspr Rx,804

EBBRR <S> mtebbrr Rx mtspr 805,Rx mfebbrr Rx mfspr Rx,805

BESCR <S> mtbescr Rx mtspr 806,Rx mfbescr Rx mfspr Rx,806
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Examples

1. Copy the contents of register Rx to the XER.

mtxer Rx (equivalent to: mtspr 1,Rx)

2. Copy the contents of the LR to register Rx.

mflr Rx (equivalent to: mfspr Rx,8)

3. Copy the contents of register Rx to the CTR.

mtctr Rx (equivalent to: mtspr 9,Rx)

E.10 Miscellaneous Mnemonics

No-op
Many Power ISA instructions can be coded in a way such that, effectively, no operation is performed. An extended
mnemonic is provided for the preferred form of no-op. If an implementation performs any type of run-time optimization
related to no-ops, the preferred form is the no-op that will trigger this.

nop (equivalent to: ori 0,0,0)

For some uses of a no-op instruction, optimizations related to no-ops, such as removal from the execution stream,
are not desireable. An extended mnemonic is provided for the executed form of no-op. This form of no-op will still con-
sume execution resources.

xnop (equivalent to: xori 0,0,0)

Load Immediate
The addi and addis instructions can be used to load an immediate value into a register.  Extended mnemonics are
provided to convey the idea that no addition is being performed but merely data movement (from the immediate field
of the instruction to a register).

Load a 16-bit signed immediate value into register Rx.

li Rx,value (equivalent to: addi Rx,0,value)

Load a 16-bit signed immediate value, shifted left by 16 bits, into register Rx.

lis Rx,value (equivalent to: addis Rx,0,value)

TAR <S> mttar Rx mtspr 815,Rx mftar Rx mfspr Rx,815

PPR <S> mtppr Rx mtspr 896,Rx mfppr Rx mfspr Rx,896

PPR32 mtppr32 Rx mtspr 898,Rx mfppr32 Rx mfspr Rx,898

Table 134:Extended mnemonics for moving to/from an SPR

Special Purpose Register
Move To SPR Move From SPR

Extended Equivalent to Extended Equivalent to
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Load Address
This mnemonic permits computing the value of a base-displacement operand, using the addi instruction which nor-
mally requires separate register and immediate operands.

la Rx,D(Ry) (equivalent to: addi Rx,Ry,D)

The la mnemonic is useful for obtaining the address of a variable specified by name, allowing the Assembler to sup-
ply the base register number and compute the displacement.  If the variable v is located at offset Dv bytes from the
address in register Rv, and the Assembler has been told to use register Rv as a base for references to the data struc-
ture containing v, then the following line causes the address of v to be loaded into register Rx.

la Rx,v (equivalent to: addi Rx,Rv,Dv)

Move Register
Several Power ISA instructions can be coded in a way such that they simply copy the contents of one register to
another. An extended mnemonic is provided to convey the idea that no computation is being performed but merely
data movement (from one register to another).

The following instruction copies the contents of register Ry to register Rx.  This mnemonic can be coded with a final
“.”  to cause the Rc bit to be set in the underlying instruction.

mr Rx,Ry (equivalent to: or Rx,Ry,Ry)

Complement Register
Several Power ISA instructions can be coded in a way such that they complement the contents of one register and
place the result into another register. An extended mnemonic is provided that allows this operation to be coded easily.

The following instruction complements the contents of register Ry and places the result into register Rx.  This mne-
monic can be coded with a final “.”  to cause the Rc bit to be set in the underlying instruction.

not Rx,Ry (equivalent to: nor Rx,Ry,Ry)

Move To/From Condition Register
This mnemonic permits copying the contents of the low-order 32 bits of a GPR to the Condition Register, using the
same style as the mfcr instruction.

mtcr Rx (equivalent to: mtcrf 0xFF,Rx)

The following instructions may generate either the (old) mtcrf or mfcr instructions or the (new) mtocrf or mfocrf
instruction, respectively, depending on the target machine type assembler parameter.

mtcrf FXM,Rx
mfcr Rx

All three extended mnemonics in this subsection are being phased out. In future assemblers the form “mtcr Rx” may
not exist, and the mtcrf and mfcr mnemonics may generate the old form instructions (with bit 11 = 0) regardless of
the target machine type assembler parameter, or may cease to exist. 
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Appendix F.  Programming Examples

F.1 Multiple-Precision Shifts
This section gives examples of how multiple-precision
shifts can be programmed.

A multiple-precision shift is defined to be a shift of an
N-doubleword quantity (64-bit mode) or an N-word
quantity (32-bit mode), where N>1. The quantity to be
shifted is contained in N registers. The shift amount is
specified either by an immediate value in the instruc-
tion, or by a value in a register.

The examples shown below distinguish between the
cases N=2 and N>2.  If N=2, the shift amount may be in
the range 0 through 127 (64-bit mode) or 0 through 63
(32-bit mode), which are the maximum ranges sup-
ported by the Shift instructions used.  However if N>2,
the shift amount must be in the range 0 through 63
(64-bit mode) or 0 through 31 (32-bit mode), in order for
the examples to yield the desired result.  The specific
instance shown for N>2 is N=3; extending those code
sequences to larger N is straightforward, as is reducing

them to the case N=2 when the more stringent restric-
tion on shift amount is met.  For shifts with immediate
shift amounts only the case N=3 is shown, because the
more stringent restriction on shift amount is always
met.

In the examples it is assumed that GPRs 2 and 3 (and
4) contain the quantity to be shifted, and that the result
is to be placed into the same registers, except for the
immediate left shifts in 64-bit mode for which the result
is placed into GPRs 3, 4, and 5. In all cases, for both
input and result, the lowest-numbered register contains
the highest-order part of the data and highest-num-
bered register contains the lowest-order part.  For
non-immediate shifts, the shift amount is assumed to
be in GPR 6. For immediate shifts, the shift amount is
assumed to be greater than 0. GPRs 30 and 31 are
used as scratch registers.

For N>2, the number of instructions required is 2N-1
(immediate shifts) or 3N-1 (non-immediate shifts).
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Multiple-precision shifts in 64-bit 
mode [Category: 64-Bit]

Shift Left Immediate, N = 3  (shift amnt < 64)
rldicr r5,r4,sh,63-sh
rldimi r4,r3,0,sh
rldicl r4,r4,sh,0
rldimi r3,r2,0,sh
rldicl r3,r3,sh,0

Shift Left, N = 2  (shift amnt < 128)
subfic r31,r6,64
sld r2,r2,r6
srd r30,r3,r31
or r2,r2,r30
addi r31,r6,-64
sld r30,r3,r31
or r2,r2,r30
sld r3,r3,r6

Shift Left, N = 3  (shift amnt < 64)
subfic r31,r6,64
sld r2,r2,r6
srd r30,r3,r31
or r2,r2,r30
sld r3,r3,r6
srd r30,r4,r31
or r3,r3,r30
sld r4,r4,r6

Shift Right Immediate, N = 3  (shift amnt < 64)
rldimi r4,r3,0,64-sh
rldicl r4,r4,64-sh,0
rldimi r3,r2,0,64-sh
rldicl r3,r3,64-sh,0
rldicl r2,r2,64-sh,sh

Shift Right, N = 2  (shift amnt < 128)
subfic r31,r6,64
srd r3,r3,r6
sld r30,r2,r31
or r3,r3,r30
addi r31,r6,-64
srd r30,r2,r31
or r3,r3,r30
srd r2,r2,r6

Shift Right, N = 3  (shift amnt < 64)
subfic r31,r6,64
srd r4,r4,r6
sld r30,r3,r31
or r4,r4,r30
srd r3,r3,r6
sld r30,r2,r31
or r3,r3,r30
srd r2,r2,r6

Multiple-precision shifts in 32-bit 
mode

Shift Left Immediate, N = 3  (shift amnt < 32)
rlwinm r2,r2,sh,0,31-sh
rlwimi r2,r3,sh,32-sh,31
rlwinm r3,r3,sh,0,31-sh
rlwimi r3,r4,sh,32-sh,31
rlwinm r4,r4,sh,0,31-sh

Shift Left, N = 2  (shift amnt < 64)
subfic r31,r6,32
slw r2,r2,r6
srw r30,r3,r31
or r2,r2,r30
addi r31,r6,-32
slw r30,r3,r31
or r2,r2,r30
slw r3,r3,r6

Shift Left, N = 3  (shift amnt < 32)
subfic r31,r6,32
slw r2,r2,r6
srw r30,r3,r31
or r2,r2,r30
slw r3,r3,r6
srw r30,r4,r31
or r3,r3,r30
slw r4,r4,r6

Shift Right Immediate, N = 3  (shift amnt < 32)
rlwinm r4,r4,32-sh,sh,31
rlwimi r4,r3,32-sh,0,sh-1
rlwinm r3,r3,32-sh,sh,31
rlwimi r3,r2,32-sh,0,sh-1
rlwinm r2,r2,32-sh,sh,31

Shift Right, N = 2  (shift amnt < 64)
subfic r31,r6,32
srw r3,r3,r6
slw r30,r2,r31
or r3,r3,r30
addi r31,r6,-32
srw r30,r2,r31
or r3,r3,r30
srw r2,r2,r6

Shift Right, N = 3 (shift amnt < 32)
subfic r31,r6,32
srw r4,r4,r6
slw r30,r3,r31
or r4,r4,r30
srw r3,r3,r6
slw r30,r2,r31
or r3,r3,r30
srw r2,r2,r6
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Multiple-precision shifts in 64-bit 
mode, continued [Category: 64-Bit]

Shift Right Algebraic Immediate, N = 3 (shift amnt < 
64)

rldimi r4,r3,0,64-sh
rldicl r4,r4,64-sh,0
rldimi r3,r2,0,64-sh
rldicl r3,r3,64-sh,0
sradi r2,r2,sh

Shift Right Algebraic, N = 2  (shift amnt < 128)
subfic r31,r6,64
srd r3,r3,r6
sld r30,r2,r31
or r3,r3,r30
addic. r31,r6,-64
srad r30,r2,r31
isel r3,r30,r3,gt
srad r2,r2,r6

Shift Right Algebraic, N = 3  (shift amnt < 64)
subfic r31,r6,64
srd r4,r4,r6
sld r30,r3,r31
or r4,r4,r30
srd r3,r3,r6
sld r30,r2,r31
or r3,r3,r30
srad r2,r2,r6

Multiple-precision shifts in 32-bit 
mode, continued

Shift Right Algebraic Immediate, N = 3 (shift amnt < 
32)

rlwinm r4,r4,32-sh,sh,31
rlwimi r4,r3,32-sh,0,sh-1
rlwinm r3,r3,32-sh,sh,31
rlwimi r3,r2,32-sh,0,sh-1
srawi r2,r2,sh

Shift Right Algebraic, N = 2 (shift amnt < 64)
subfic r31,r6,32
srw r3,r3,r6
slw r30,r2,r31
or r3,r3,r30
addic. r31,r6,-32
sraw r30,r2,r31
isel r3,r30,r3,gt
sraw r2,r2,r6

Shift Right Algebraic, N = 3 (shift amnt < 32)
subfic r31,r6,32
srw r4,r4,r6
slw r30,r3,r31
or r4,r4,r30
srw r3,r3,r6
slw r30,r2,r31
or r3,r3,r30
sraw r2,r2,r6
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F.2 Floating-Point Conversions [Category: Floating-Point]

This section gives examples of how the Floating-Point
Conversion instructions can be used to perform various
conversions.

Warning: Some of the examples use the fsel instruc-
tion. Care must be taken in using fsel if IEEE compati-
bility is required, or if the values being tested can be
NaNs or infinities; see Section F.3.4, “Notes” on
page 730.

F.2.1 Conversion from
Floating-Point Number to
Floating-Point Integer
The full convert to floating-point integer function can be
implemented with the sequence shown below, assum-
ing the floating-point value to be converted is in FPR 1
and the result is returned in FPR 3.

mtfsb0 23 #clear VXCVI
fctid[z] f3,f1 #convert to fx int
fcfid f3,f3 #convert back again
mcrfs 7,5 #VXCVI to CR
bf 31,$+8 #skip if VXCVI was 0
fmr f3,f1 #input was fp int

F.2.2 Conversion from
Floating-Point Number to Signed 
Fixed-Point Integer Doubleword
The full convert to signed fixed-point integer double-
word function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR 1, the result is returned in GPR 3,
and a doubleword at displacement “disp” from the
address in GPR 1 can be used as scratch space.

fctid[z] f2,f1 #convert to dword int
stfd f2,disp(r1) #store float
ld r3,disp(r1) #load dword

F.2.3 Conversion from
Floating-Point Number to Unsigned 
Fixed-Point Integer Doubleword
The full convert to unsigned fixed-point integer double-
word function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR 1, the value 0 is in FPR 0, the value
264-2048 is in FPR 3, the value 263 is in FPR 4 and
GPR 4, the result is returned in GPR 3, and a double-
word at displacement “disp” from the address in GPR 1
can be used as scratch space.

fsel f2,f1,f1,f0 #use 0 if < 0
fsub f5,f3,f1 #use max if > max
fsel f2,f5,f2,f3
fsub f5,f2,f4 #subtract 263

fcmpu cr2,f2,f4 #use diff if >= 263

fsel f2,f5,f5,f2
fctid[z] f2,f2 #convert to fx int
stfd f2,disp(r1) #store float
ld r3,disp(r1) #load dword
blt cr2,$+8 #add 263 if input
add r3,r3,r4 #  was >= 263

F.2.4 Conversion from
Floating-Point Number to Signed 
Fixed-Point Integer Word
The full convert to signed fixed-point integer word func-
tion can be implemented with the sequence shown
below, assuming the floating-point value to be con-
verted is in FPR 1, the result is returned in GPR 3, and
a doubleword at displacement “disp” from the address
in GPR 1 can be used as scratch space.

fctiw[z] f2,f1 #convert to fx int
stfd f2,disp(r1) #store float
lwa r3,disp+4(r1) #load word algebraic
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F.2.5 Conversion from
Floating-Point Number to Unsigned 
Fixed-Point Integer Word
The full convert to unsigned fixed-point integer word
function can be implemented with the sequence shown
below, assuming the floating-point value to be con-
verted is in FPR 1, the value 0 is in FPR 0, the value
232-1 is in FPR 3, the result is returned in GPR 3, and a
doubleword at displacement “disp” from the address in
GPR 1 can be used as scratch space.

fsel f2,f1,f1,f0 #use 0 if < 0
fsub f4,f3,f1 #use max if > max
fsel f2,f4,f2,f3
fctid[z] f2,f2 #convert to fx int
stfd f2,disp(r1) #store float
lwz r3,disp+4(r1) #load word and zero

F.2.6 Conversion from Signed 
Fixed-Point Integer Doubleword to 
Floating-Point Number
The full convert from signed fixed-point integer double-
word function, using the rounding mode specified by
FPSCRRN, can be implemented with the sequence
shown below, assuming the fixed-point value to be con-
verted is in GPR 3, the result is returned in FPR 1, and
a doubleword at displacement “disp” from the address
in GPR 1 can be used as scratch space.

std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fp int

F.2.7 Conversion from Unsigned 
Fixed-Point Integer Doubleword to 
Floating-Point Number
The full convert from unsigned fixed-point integer dou-
bleword function, using the rounding mode specified by
FPSCRRN, can be implemented with the sequence
shown below, assuming the fixed-point value to be con-
verted is in GPR 3, the value 232 is in FPR 4, the result
is returned in FPR 1, and two doublewords at displace-
ment “disp” from the address in GPR 1 can be used as
scratch space.

rldicl r2,r3,32,32 #isolate high half
rldicl r0,r3,0,32 #isolate low half
std r2,disp(r1) #store dword both
std r0,disp+8(r1)
lfd f2,disp(r1) #load float both
lfd f1,disp+8(r1)
fcfid f2,f2 #convert each half to
fcfid f1,f1 #  fp int (exact result)
fmadd f1,f4,f2,f1 #(232)×high + low

An alternative, shorter, sequence can be used if round-
ing according to FSCPRRN is desired and FPSCRRN
specifies Round toward +Infinity or Round toward
-Infinity, or if it is acceptable for the rounded answer to
be either of the two representable floating-point inte-
gers nearest to the given fixed-point integer.  In this
case the full convert from unsigned fixed-point integer
doubleword function can be implemented with the
sequence shown below, assuming the value 264 is in
FPR 2.

std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fp int
fadd f4,f1,f2 #add 264

fsel f1,f1,f1,f4 #  if r3 < 0

F.2.8 Conversion from Signed 
Fixed-Point Integer Word to Float-
ing-Point Number
The full convert from signed fixed-point integer word
function can be implemented with the sequence shown
below, assuming the fixed-point value to be converted
is in GPR 3, the result is returned in FPR 1, and a dou-
bleword at displacement “disp” from the address in
GPR 1 can be used as scratch space.  (The result is
exact.)

extsw r3,r3 #extend sign
std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fp int

The following sequence can be used, assuming a word
at the address in GPR 1 + GPR 2 can be used as
scratch space.

stwx r3,r1,r2 # store word
lfiwax f1,r1,r2 # load float
fcfid f1,f1 # convert to fp int

F.2.9 Conversion from Unsigned 
Fixed-Point Integer Word to Float-
ing-Point Number
The full convert from unsigned fixed-point integer word
function can be implemented with the sequence shown
below, assuming the fixed-point value to be converted
is in GPR 3, the result is returned in FPR 1, and a dou-
bleword at displacement “disp” from the address in
GPR 1 can be used as scratch space. (The result is
exact.)

rldicl r0,r3,0,32 #zero-extend
std r0,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fp int
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F.2.10 Unsigned Single-Preci-
sion  BCD Arithmetic
addg6s can be used to add or subtract two BCD oper-
ands.  In these examples it is assumed that r0 contains
0x666...666. (BCD data formats are described in
Section 5.3 of Book I.)

Addition of the unsigned BCD operand in register RA to
the unsigned BCD operand in register RB can be
accomplished as follows.

add r1,RA,r0
add r2,r1,RB
addg6s RT,r1,RB
subf RT,RT,r2   # RT = RA +BCD RB

Subtraction of the unsigned BCD operand in register
RA from the unsigned BCD operand in register RB can
be accomplished as follows.  (In this example it is
assumed that RB is not register 0.)

addi r1,RB,1
nor r2,RA,RA   # one's complement of RA
add r3,r1,r2
addg6s RT,r1,r2
subf RT,RT,r3   # RT = RB -BCD RA 

Additional instructions are needed to handle signed
BCD operands, and BCD operands that occupy more
than one register (e.g., unsigned BCD operands that
have more than 16 decimal digits).

F.2.11 Signed Single-Precision 
BCD Arithmetic
Addition of the signed 15-digit  BCD operand in register
RA to the signed BCD operand in register RB can be
accomplished as follows. If the signs of  operands are
different, then the operand of smaller magnitude is sub-
tracted from the operand of larger magnitude and the
sign of the larger operand is preserved; otherwise the
operands are added and the sign is preserved.

The sign code is in the low order 4 bits of the operands
and uses one of the standard encodings. (See
Section 5.3 of Book I for a description of BCD and sign
encodings.) This example assumes preferred sign
option 1 (0b1100 is plus and 0b1101 is minus). For pre-
ferred sign option 2 (0b1111 is plus and 0b1101 is
minus), replace the xori after the "SignedSub" label
with "xori RA,RA,2".

Preserving the appropriate sign code is accomplished
by zeroing the sign code of the other operand before
performing a 16 digit BCD addition/subtraction. Other
addends (ones complement or 6's) must leave the sign
code position as zero.

(In this example r11 contains 0x6666 6666 6666 6660.)

SignedSub:

xori RA,RA,1

SignedAdd:
xor r5,RA,RB
andi. r5,r5, 15 # compare sign codes
cmpld cr1,RA,RB # compare magnitudes
beq cr0,samesign
ble cr1,BminusA

# set up for RT = RA -BCD RB
nor r9,RB,RB # one's complement of RB
addi r10,RA,16 # generate the carry in
b submag

BminusA:
# set up for RT = RB -BCD RA
nor r9,RA,RA # one's complement of RA
addi r10,RB,16 # generate the carry in

submag:
rldicr r9,r9,0,59 # remove the sign code
add r8,r10,r9
addg6s RT,r10,r9
rldicr RT,RT,0,59 # remove generated 6 from

# sign position
subf RT,RT,r8
b done

samesign:
rldicr r8,RB,0,59 # remove the sign code
add r10,RA,r11 # add 6's 
add r9,r10,r8
addg6s RT,r10,RB
subf RT,RT,r9 # RT = RA +BCD RB

done:

F.2.12 Unsigned Extended-Preci-
sion BCD Arithmetic
Multiple precision BCD arithmetic requires additional
code to add/subtract higher order digits and handle the
carry between 16 digit groups. For example, the follow-
ing sequence implements a 32-digit BCD add. In this
example the contents of register R3 concatenated with
the contents of R4 represent the first 32-digit operand
and the contents of register R5 concatenated with the
contents of R6 represents the second operand. The
contents of register R3 concatenated with the contents
of register R4 represents the result.

(In this example r0 contains 0x6666 6666 6666 6666.)

add r10,R4,r0
addc r9,r10,R6 # generate the carry
addg6s R4,r10,R6
subf R4,R4,r9 # RT1 = RA1 +BCD RB1

addze R5,R5 # propagate the carry
add r10,R3,r0
add r9,r10,R5
addg6s R3,r10,R5
subf R3,R3,r9 # RT0 = RA0 +BCD RB0
Power ISA™ - Book I728



Version 2.07 B
Note that an extra instruction (addze) is required to
propagate the carry so that the same value is used in
the subsequent add and addg6s.

The following sequence implements a 32-digit BCD
subtraction. In this example the first operand in R3 and
R4 is subtracted from the 2nd operand in R5 and
R6.The result is in R3 and R4.

addi r10,R6,1
nor r9,R4,R4 # one's complement of RA0
addc r8,r10,r9 # Generate the carry
addg6s R4,r10,r9
subf R4,R4,r8 # RT1 = RB1 -BCD RA1

addze r10,R5 # propagate the carry
nor r9,R3,R3 # one's complement of RA0
add r8,r10,r2
addg6s R3,r10,r9
subf R3,R3,r8 # RT0 = RB0 -BCD RA0
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F.3 Floating-Point Selection [Category: Floating-Point]

This section gives examples of how the Floating Select
instruction can be used to implement floating-point min-
imum and maximum functions, and certain simple
forms of if-then-else constructions, without branching.

The examples show program fragments in an imagi-
nary, C-like, high-level programming language, and the
corresponding program fragment using fsel and other
Power ISA instructions. In the examples, a, b, x, y, and
z are floating-point variables, which are assumed to be

in FPRs fa, fb, fx, fy, and fz. FPR fs is assumed to be
available for scratch space.

Additional examples can be found in Section F.2,
“Floating-Point Conversions [Category: Floating-Point]”
on page 726.

Warning: Care must be taken in using fsel if IEEE
compatibility is required, or if the values being tested
can be NaNs or infinities; see Section F.3.4.

F.3.1 Comparison to Zero

F.3.2 Minimum and Maximum

F.3.3 Simple if-then-else
Constructions

F.3.4 Notes
The following Notes apply to the preceding examples
and to the corresponding cases using the other three
arithmetic relations (<, ≤, and ≠). They should also be
considered when any other use of fsel is contemplated.

In these Notes, the “optimized program” is the Power
ISA program shown, and the “unoptimized program”
(not shown) is the corresponding Power ISA program
that uses fcmpu and Branch Conditional instructions
instead of fsel.

1. The unoptimized program affects the VXSNAN bit
of the FPSCR, and therefore may cause the sys-
tem error handler to be invoked if the correspond-
ing exception is enabled, while the optimized
program does not affect this bit.  This property of
the optimized program is incompatible with the
IEEE standard.

2. The optimized program gives the incorrect result if
a is a NaN.

3. The optimized program gives the incorrect result if
a and/or b is a NaN (except that it may give the
correct result in some cases for the minimum and
maximum functions, depending on how those func-
tions are defined to operate on NaNs).

4. The optimized program gives the incorrect result if
a and b are infinities of the same sign.  (Here it is
assumed that Invalid Operation Exceptions are
disabled, in which case the result of the subtraction
is a NaN.  The analysis is more complicated if
Invalid Operation Exceptions are enabled,
because in that case the target register of the sub-
traction is unchanged.)

5. The optimized program affects the OX, UX, XX,
and VXISI bits of the FPSCR, and therefore may
cause the system error handler to be invoked if the
corresponding exceptions are enabled, while the
unoptimized program does not affect these bits.
This property of the optimized program is incom-
patible with the IEEE standard.

High-level language: Power ISA: Notes

if a ≥ 0.0 then x I y
else x I z

fsel  fx,fa,fy,fz (1)

if a > 0.0 then x I y
else x I z

fneg  fs,fa
fsel  fx,fs,fz,fy

(1,2)

if a = 0.0 then x I y
else x I z

fsel  fx,fa,fy,fz
fneg  fs,fa
fsel  fx,fs,fx,fz

(1)

High-level language: Power ISA: Notes

x I min(a,b) fsub  fs,fa,fb
fsel  fx,fs,fb,fa

(3,4,5)

x I max(a,b) fsub  fs,fa,fb
fsel  fx,fs,fa,fb

(3,4,5)

High-level language: Power ISA: Notes

if a ≥ b then x I y
else x I z

fsub  fs,fa,fb
fsel  fx,fs,fy,fz

(4,5)

if a > b then x I y
else x I z

fsub  fs,fb,fa
fsel  fx,fs,fz,fy

(3,4,5)

if a = b then x I y
else x I z

fsub  fs,fa,fb
fsel  fx,fs,fy,fz
fneg  fs,fs
fsel  fx,fs,fx,fz

(4,5)
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F.4 Vector Unaligned Storage Operations [Category: Vector]

F.4.1 Loading a Unaligned Quad-
word Using Permute from 
Big-Endian Storage
The following sequence of instructions copies the
unaligned quadword storage operand into VRT.
# Assumptions:
# Rb != 0 and contents of Rb = 0xB
lvx Vhi,0,Rb # load MSQ
lvsl Vp,0,Rb     # set permute control vector
addi Rb,Rb,16 # address of LSQ
lvx Vlo,0,Rb # load LSQ
perm Vt,Vhi,Vlo,Vp # align the data
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Chapter 1.  Storage Model

1.1 Definitions
The following definitions, in addition to those specified
in Book I, are used in this Book.  In these definitions,
“Load instruction” includes the Cache Management
and other instructions that are stated  in the instruction
descriptions to be “treated as a Load”, and similarly for
“Store instruction”.

system
A combination of processors, storage, and associ-
ated mechanisms that is capable of executing pro-
grams.  Sometimes the reference to system
includes services provided by the privileged soft-
ware.

main storage  
The level of storage hierarchy in which all storage
state is visible to all processors and mechanisms
in the system.

primary cache  
The level of cache closest to the processor.

secondary cache  
After the primary cache, the next closest level of
cache to the processor.

instruction storage  
The view of storage as seen by the mechanism
that fetches instructions.

data storage  
The view of storage as seen by a Load or Store
instruction.

program order   
The execution of instructions in the order required
by the sequential execution model. (See
Section 2.2 of Book I.)  A dcbz instruction that
modifies storage which contains instructions has
the same effect with respect to the sequential exe-
cution model as a Store instruction as described
there.) 
For the instructions and facilities defined in this
Book, there are two additional exceptions to the

sequential execution model beyond those
described in Book 1 Section 2.2 of Book I.

- transaction failure (see Section 5.3.3)

- An event-based branch (see Chapter 7)

storage location 
A contiguous sequence of one or more bytes in
storage.  When used in association with a specific
instruction or the instruction fetching mechanism,
the length of the sequence of one or more bytes is
typically implied by the operation.  In other uses, it
may refer more abstractly to a group of bytes which
share common storage attributes.

storage access 
An access to a storage location.  There are three
(mutually exclusive) kinds of storage access.

- data access

An access to the storage location specified by
a Load or Store instruction, or, if the access is
performed “out-of-order” (see Section 5.5 of
Book III-S and Section 6.5 of Book III-E), an
access to a storage location as if it were the
storage location specified by a Load or Store
instruction.

- instruction fetch

An access for the purpose of fetching an
instruction.

- implicit access

An access by the processor for the purpose of
address translation or reference and change
recording (see Book III-S).

caused by, associated with

- caused by

A storage access is said to be caused by an
instruction if the instruction is a Load or Store
and the access (data access) is to the storage
location specified by the instruction.
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- associated with

A storage access is said to be associated with
an instruction if the access is for the purpose
of fetching the instruction (instruction fetch), or
is a data access caused by the instruction, or
is an implicit access that occurs as a side
effect of fetching or executing the instruction.

prefetched instructions
Instructions for which a copy of the instruction has
been fetched from instruction storage, but the
instruction has not yet been executed.

uniprocessor
A system that contains one processor.

multiprocessor
A system that contains two or more processors.

shared storage multiprocessor
A multiprocessor that contains some common stor-
age, which all the processors in the system can
access.

performed  
A load or instruction fetch by a processor or mech-
anism (P1) is performed with respect to any pro-
cessor or mechanism (P2) when the value to be
returned by the load or instruction fetch can no
longer be changed by a store by P2.  A store by P1
is performed with respect to P2 when a load by P2
from the location accessed by the store will return
the value stored (or a value stored subsequently).
An instruction cache block invalidation by P1 is
performed with respect to P2 when an instruction
fetch by P2 will not be satisfied from the copy of
the block that existed in its instruction cache when
the instruction causing the invalidation was exe-
cuted, and similarly for a data cache block invalida-
tion.

The preceding definitions apply regardless of
whether P1 and P2 are the same entity.

page (virtual page)  
2n contiguous bytes of storage aligned such that
the effective address of the first byte in the page is
an integral multiple of the page size for which pro-
tection and control attributes are independently
specifiable and for which reference and change
status <S> are independently recorded.

block
The aligned unit of storage operated on by the
Cache Management instructions. The size of an
instruction cache block may differ from the size of a
data cache block, and both sizes may vary
between implementations. The maximum block
size is equal to the minimum page size.
 

aggregate store   
The set of stores caused by a successful transac-
tion, which are performed as an atomic unit.

1.2 Introduction
The Power ISA User Instruction Set Architecture, dis-
cussed in Book I, defines storage as a linear array of
bytes indexed from 0 to a maximum of 264-1. Each byte
is identified by its index, called its address, and each
byte contains a value. This information is sufficient to
allow the programming of applications that require no
special features of any particular system environment.
The Power ISA Virtual Environment Architecture,
described herein, expands this simple storage model to
include caches, virtual storage, and shared storage
multiprocessors. The Power ISA Virtual Environment
Architecture, in conjunction with services based on the
Power ISA Operating Environment Architecture (see
Book III) and provided by the operating system, permits
explicit control of this expanded storage model. A sim-
ple model for sequential execution allows at most one
storage access to be performed at a time and requires
that all storage accesses appear to be performed in
program order. In contrast to this simple model, the
Power ISA specifies a relaxed model of storage consis-
tency. In a multiprocessor system that allows multiple
copies of a storage location, aggressive implementa-
tions of the architecture can permit intervals of time
during which different copies of a storage location have
different values. This chapter describes features of the
Power ISA that enable programmers to write correct
programs for this storage model. 

1.3 Virtual Storage  
The Power ISA system implements a virtual storage
model for applications. This means that a combination
of hardware and software can present a storage model
that allows applications to exist within a “virtual”
address space larger than either the effective address
space or the real address space.

Each program can access 264 bytes of “effective
address” (EA) space, subject to limitations imposed by
the operating system. In a typical Power ISA system,
each program's EA space is a subset of a larger “virtual
address” (VA) space managed by the operating sys-
tem.

Each effective address is translated to a real address
(i.e., to an address of a byte in real storage or on an I/O
device) before being used to access storage.  The
hardware accomplishes this, using the address transla-
tion mechanism described in Book III.  The operating
system manages the real (physical) storage resources
of the system, by setting up the tables and other infor-
mation used by the hardware address translation
mechanism.
 

In general, real storage may not be large enough to
map all the virtual pages used by the currently active
applications.  With support provided by hardware, the
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operating system can attempt to use the available real
pages to map a sufficient set of virtual pages of the
applications.  If a sufficient set is maintained, “paging”
activity is minimized.  If not, performance degradation is
likely.

The operating system can support restricted access to
virtual pages (including read/write, read only, and no
access; see Book III), based on system standards (e.g.,
program code might be read only) and application
requests.

1.4 Single-Copy Atomicity   
An access is single-copy atomic, or simply atomic, if it
is always performed in its entirety with no visible frag-
mentation. Atomic accesses are thus serialized: each
happens in its entirety in some order, even when that
order is not specified in the program or enforced
between processors.

The access caused by an instruction other than a Load/
Store Multiple or Move Assist instruction is guaranteed
to be atomic if the storage operand is not larger than a
doubleword and is aligned (see Section 1.10.1 of Book
I).

Quadword accesses with aligned storage operands are
guaranteed to be atomic when caused by the following
instructions.

lq
stq
lqarx
stqcx.

Quadword atomicity applies only to storage that is nei-
ther Write Through Required nor Caching Inhibited.
The cases described above are the only cases in which
the access to the storage operand is guaranteed to be
atomic. For example, the access caused by the follow-
ing instructions is not guaranteed to be atomic.

any Load or Store instruction for which the storage
operand is unaligned
lmw, stmw, lswi, lswx, stswi, stswx
 lfdp, lfdpx, stfdp, stfdpx
any Cache Management instruction

An access that is not atomic is performed as a set of
smaller disjoint atomic accesses. In general, the num-
ber and alignment of these accesses are implementa-
tion-dependent, as is the relative order in which they
are performed. The only exception to the preceding rule
is that, for lfdp, lfdpx, stfdp, and stfdpx, if the access
is aligned on a doubleword boundary, it is performed as
a pair of disjoint atomic doubleword accesses.

The results for several combinations of loads and
stores to the same or overlapping locations are
described below.

1. When two processors perform atomic stores to
locations that do not overlap, and no other stores

are performed to those locations, the contents of
those locations are the same as if the two stores
were performed by a single processor.

2. When two processors perform atomic stores to the
same storage location, and no other store is per-
formed to that location, the contents of that loca-
tion are the result stored by one of the processors.

3. When two processors perform stores that have the
same target location and are not guaranteed to be
atomic, and no other store is performed to that
location, the result is some combination of the
bytes stored by both processors.

4. When two processors perform stores to overlap-
ping locations, and no other store is performed to
those locations, the result is some combination of
the bytes stored by the processors to the overlap-
ping bytes. The portions of the locations that do
not overlap contain the bytes stored by the proces-
sor storing to the location.

5. When a processor performs an atomic store to a
location, a second processor performs an atomic
load from that location, and no other store is per-
formed to that location, the value returned by the
load is the contents of the location before the store
or the contents of the location after the store.

6. When a load and a store with the same target loca-
tion can be performed simultaneously, and the
accesses are not guaranteed to be atomic, and no
other store is performed to that location, the value
returned by the load is some combination of the
contents of the location before the store and the
contents of the location after the store. 

1.5 Cache Model
A cache model in which there is one cache for instruc-
tions and another cache for data is called a “Har-
vard-style” cache. This is the model assumed by the
Power ISA, e.g., in the descriptions of the Cache Man-
agement instructions in Section 4.3. Alternative cache
models may be implemented (e.g., a “combined cache”
model, in which a single cache is used for both instruc-
tions and data, or a model in which there are several
levels of caches), but they support the programming
model implied by a Harvard-style cache.

The processor is not required to maintain copies of
storage locations in the instruction cache consistent
with modifications to those storage locations (e.g.,
modifications caused by Store instructions).

A location in the data cache is considered to be modi-
fied in that cache if the location has been modified
(e.g., by a Store instruction) and the modified data have
not been written to main storage.
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Cache Management instructions are provided so that
programs can manage the caches when needed. For
example, program management of the caches is
needed when a program generates or modifies code
that will be executed (i.e., when the program modifies
data in storage and then attempts to execute the modi-
fied data as instructions). The Cache Management
instructions are also useful in optimizing the use of
memory bandwidth in such applications as graphics
and numerically intensive computing. The functions
performed by these instructions depend on the storage
control attributes associated with the specified storage
location (see Section 1.6, “Storage Control Attributes”).

The Cache Management instructions allow the program
to do the following.

invalidate the copy of storage in an instruction
cache block (icbi)
provide a hint that an instruction will probably soon
be accessed from a specified instruction cache
block (icbt)
provide a hint that the program will probably soon
access a specified data cache block (dcbt, dcbtst)
<E> allocate a data cache block and set the con-
tents of that block to zeros, but perform no opera-
tion if no write access is allowed to the data cache
block (dcba)
set the contents of a data cache block to zeros
(dcbz)
copy the contents of a modified data cache block
to main storage (dcbst)
copy the contents of a modified data cache block
to main storage and make the copy of the block in
the data cache invalid (dcbf or dcbfl) 

1.6 Storage Control Attributes  
Some operating systems may provide a means to allow
programs to specify the storage control attributes
described in this section.  Because the support pro-
vided for these attributes by the operating system may
vary between systems, the details of the specific sys-
tem being used must be known before these attributes
can be used.

Storage control attributes are associated with units of
storage that are multiples of the page size.  Each stor-
age access is performed according to the storage con-
trol attributes of the specified storage location, as
described below.  The storage control attributes are the
following.

Write Through Required
Caching Inhibited
Memory Coherence Required
Guarded
Endianness<E>
Strong Access Order [Category: SAO]

These attributes have meaning only when an effective
address is translated by the processor performing the
storage access.

<E> Additional storage control attributes may be
defined for some implementations. See Section 6.8 of
Book III-E for additional information.

 

In the remainder of this section, “Load instruction”
includes the Cache Management and other instructions
that are stated in the instruction descriptions to be
“treated as a Load” unless they are explicitly excluded,
and similarly for “Store instruction”.

1.6.1 Write Through Required  
A store to a Write Through Required storage location is
performed in main storage.  A Store instruction that
specifies a location in Write Through Required storage
may cause additional locations in main storage to be
accessed.  If a copy of the block containing the speci-
fied location is retained in the data cache, the store is
also performed in the data cache.  The store does not
cause the block to be considered to be modified in the
data cache.

In general, accesses caused by separate Store instruc-
tions that specify locations in Write Through Required
storage may be combined into one access. Such com-
bining does not occur if the Store instructions are sepa-
rated by a sync, eieio<S>, or mbar<E> instruction.

1.6.2 Caching Inhibited  
An access to a Caching Inhibited storage location is
performed in main storage.  A Load instruction that
specifies a location in Caching  Inhibited storage may
cause additional locations in main storage to be

The Write Through Required and Caching Inhibited
attributes are mutually exclusive because, as
described below, the Write Through Required
attribute permits the storage location to be in the
data cache while the Caching Inhibited attribute
does not.

Storage that is Write Through Required or Caching
Inhibited is not intended to be used for general-pur-
pose programming. For example, the lbarx, lharx,
lwarx, ldarx, lqarx, stbcx., sthcx., stwcx., stdcx.,
and stqcx. instructions may cause the system data
storage error handler to be invoked if they specify a
location in storage having either of these attributes.
To obtain the best performance across the widest
range of implementations, storage that is Write
Through Required or Caching Inhibited should be
used only when the use of such storage meets spe-
cific functional or semantic needs or enables a per-
formance optimization.

Programming Note
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accessed unless the specified location is also Guarded.
An instruction fetch from Caching Inhibited storage may
cause additional words in main storage to be accessed.
No copy of the accessed locations is placed into the
caches.

In general, non-overlapping accesses caused by sepa-
rate Load instructions that specify locations in Caching
Inhibited storage may be combined into one access, as
may non-overlapping accesses caused by separate
Store instructions that specify locations in Caching
Inhibited storage. Such combining does not occur if the
Load or Store instructions are separated by a sync or
mbar<E> instruction. Combining may also occur
among such accesses from multiple processors that
share a common memory interface.   No combining
occurs if the storage is also Guarded.

  

1.6.3 Memory Coherence 
Required [Category: Memory 
Coherence] 
An access to a Memory Coherence Required storage
location is performed coherently, as follows.

Memory coherence refers to the ordering of stores to a
single location.  Atomic stores to a given location are
coherent if they are serialized in some order, and no
processor or mechanism is able to observe any subset
of those stores as occurring in a conflicting order.  This
serialization order is an abstract sequence of values;
the physical storage location need not assume each of
the values written to it.  For example, a processor may
update a location several times before the value is writ-
ten to physical storage.  The result of a store operation
is not available to every processor or mechanism at the
same instant, and it may be that a processor or mecha-
nism observes only some of the values that are written
to a location.  However, when a location is accessed
atomically and coherently by all processors and mech-
anisms, the sequence of values loaded from the loca-
tion by any processor or mechanism during any interval
of time forms a subsequence of the sequence of values
that the location logically held during that interval.  That
is, a processor or mechanism can never load a “newer”
value first and then, later, load an “older” value.

Memory coherence is managed in blocks called coher-
ence blocks.  Their size is implementation-dependent,
but is larger than a word and is usually the size of a
cache block.

For storage that is not Memory Coherence Required,
software must explicitly manage memory coherence to
the extent required by program correctness.  The oper-
ations required to do this may be system-dependent.

Because the Memory Coherence Required attribute for
a given storage location is of little use unless all proces-
sors that access the location do so coherently, in state-
ments about Memory Coherence Required storage
elsewhere in this document it is generally assumed that
the storage has the Memory Coherence Required
attribute for all processors that access it.

   

1.6.4 Guarded   
A data access to a Guarded storage location is per-
formed only if either (a) the access is caused by an
instruction that is known to be required by the sequen-
tial execution model, or (b) the access is a load and the
storage location is already in a cache.  If the storage is
also Caching Inhibited, only the storage location speci-
fied by the instruction is accessed; otherwise any stor-
age location in the cache block containing the specified
storage location may be accessed.

For the Server environment, instructions are not
fetched from virtual storage that is Guarded. If the
instruction addressed by the current instruction
address is in such storage, the system instruction stor-
age error handler may be invoked (see Section 6.5.5 of
Book III-S).

None of the memory barrier instructions prevent
the combining of accesses from different proces-
sors.  The Guarded storage attribute must be used
in combination with Caching Inhibited to prevent
such combining.

Programming Note

Operating systems that allow programs to request
that storage not be Memory Coherence Required
should provide services to assist in managing
memory coherence for such storage, including all
system-dependent aspects thereof.

In most systems the default is that all storage is
Memory Coherence Required.  For some applica-
tions in some systems, software management of
coherence may yield better performance.  In such
cases, a program can request that a given unit of
storage not be Memory Coherence Required, and
can manage the coherence of that storage by using
the sync instruction, the Cache Management
instructions, and services provided by the operating
system.

Programming Note
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1.6.5 Endianness [Category: 
Embedded.Little-Endian]
The Endianness storage control attribute specifies the
byte ordering (Big-Endian or Little-Endian) that is used
when the storage location is accessed; see
Section 1.10 of Book I.

 

1.6.6 Variable Length Encoded 
(VLE) Instructions
VLE storage is used to store VLE instructions. Instruc-
tions fetched from VLE storage are processed as VLE
instructions. VLE storage must also be Big-Endian.
Instructions fetched from VLE storage that is Lit-
tle-Endian cause a Byte-ordering exception, and the
system instruction storage error handler will be
invoked. 

The VLE attribute has no effect on data accesses. See
Chapter 1 of Book VLE.

In some implementations, instructions may be exe-
cuted before they are known to be required by the
sequential execution model.  Because the results of
instructions executed in this manner are discarded
if it is later determined that those instructions would
not have been executed in the sequential execution
model, this behavior does not affect most pro-
grams.

This behavior does affect programs that access
storage locations that are not “well-behaved” (e.g.,
a storage location that represents a control register
on an I/O device that, when accessed, causes the
device to perform an operation).  To avoid unin-
tended results, programs that access such storage
locations should request that the storage be
Guarded, and should prevent such storage loca-
tions from being in a cache (e.g., by requesting that
the storage also be Caching Inhibited).

Programming Note
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1.6.7 Strong Access Order [Cate-
gory: SAO] 
All accesses to storage with the Strong Access Order
(SAO) attribute (referred to as SAO storage) will be per-
formed using a set of ordering rules different from that
of the weakly consistent model that is described in
Section 1.7.1, “Storage Access Ordering”.  These rules
apply only to accesses that are caused by a Load or a
Store, and not to accesses associated with those
instructions.  Furthermore, these rules do not apply to
accesses that are caused by or associated with instruc-
tions that are stated in their descriptions to be “treated
as a Load” or “treated as a Store.”  The details are
described below, from the programmer’s point of view.
(The processor may deviate from these rules if the pro-
grammer cannot detect the deviation.)  The SAO
attribute is not intended to be used for general purpose
programming.  It is provided in a manner that is not fully
independent of the other storage attributes.  Specifi-
cally, it is only provided for storage that is Memory
Coherence Required, but not Write Through Required,
not Caching Inhibited, and not Guarded.  See
Section 5.8.2.1, “Storage Control Bit Restrictions”, in
Book III-S for more details.  Accesses to SAO storage
are likely to be performed more slowly than similar
accesses to non-SAO storage.

The order in which a processor performs storage
accesses to SAO storage, the order in  which those
accesses are performed with respect to other proces-
sors and mechanisms, and the order in which those
accesses are performed in main storage are the same
except in the circumstances described in the following
paragraph.  The ordering rules for accesses performed
by a single processor to SAO storage are as follows.
Stores are performed in program order.  When a store
accesses data adjacent to that which is accessed by
the next store in program order, the two storage
accesses may be combined into a single larger access.
Loads are performed in program order.  When a load
accesses data adjacent to that which is accessed by
the next load in program order, the two storage
accesses may be combined into a single larger access.
Stores may not be performed before loads which pre-
cede them in program order.  Loads may be performed
before stores which precede them in program order,
with the provision that a load which follows a store of
the same datum (to the same address) must obtain a
value which is no older (in consideration of the possibil-
ity of programs on other processors sharing the same
storage) than the value stored by the preceding store.

When any given processor loads the datum it just
stored, as described above, the load may be performed
by the processor before the preceding store has been
performed with respect to other processors and mecha-
nisms, and in main storage.  This may cause the pro-
cessor to see its store earlier relative to stores
performed by other processors than it is observed by

other processors and mechanisms, and than it is per-
formed in memory.   A direct consequence of this con-
sideration is that although programs running on each
processor will see the same sequence of accesses
from any individual processor to SAO storage, each
may in general see a different interleaving of the indi-
vidual sequences. The memory barrier instructions
may be used to establish stronger ordering, as
described in Section 1.7.1, “Storage Access Ordering”,
beginning with the third major bullet.
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1.7 Shared Storage   
This architecture supports the sharing of storage
between programs, between different instances of the
same program, and between processors and other
mechanisms.  It also supports access to a storage loca-
tion by one or more programs using different effective
addresses.  All these cases are considered storage
sharing.  Storage is shared in blocks that are an inte-
gral number of pages.

When the same storage location has different effective
addresses, the addresses are said to be aliases.  Each
application can be granted separate access privileges
to aliased pages.

1.7.1 Storage Access Ordering    
The Power ISA defines two models for the ordering of
storage accesses: weakly consistent and strong access
ordering.  The predominant model is weakly consistent.
This model provides an opportunity for improved perfor-
mance over a model that has stronger consistency
rules, but places the responsibility on the program to
ensure that ordering or synchronization instructions are
properly placed when storage is shared by two or more
programs.  Implementations which support Category
SAO apply a stronger consistency model among
accesses to SAO storage.  The order between
accesses to SAO storage and those performed using
the weakly consistent model is characteristic of the
weakly consistent model.  The following description,
through the second major bullet, applies only to the
weakly consistent model.  The corresponding descrip-
tion for SAO storage is found in Section 1.6.7, “Strong
Access Order [Category: SAO]”. The rest of the
description following the second bulletted item applies
to both models.

The order in which the processor performs storage
accesses, the order in which those accesses are per-
formed with respect to another processor or mecha-
nism, and the order in which those accesses are
performed in main storage may all be different.  Several
means of enforcing an ordering of storage accesses
are provided to allow programs to share storage with
other programs, or with mechanisms such as I/O
devices.  These means are listed below.  The phrase
“to the extent required by the associated Memory
Coherence Required attributes” refers to the Memory
Coherence Required attribute, if any, associated with
each access.

If two Store instructions or two Load instructions
specify storage locations that are both Caching
Inhibited and Guarded, the corresponding storage
accesses are performed in program order with
respect to any processor or mechanism.

If a Load instruction depends on the value returned
by a preceding Load instruction (because the

value is used to compute the effective address
specified by the second Load), the corresponding
storage accesses are performed in program order
with respect to any processor or mechanism to the
extent required by the associated Memory Coher-
ence Required attributes.  This applies even if the
dependency has no effect on program logic (e.g.,
the value returned by the first Load is ANDed with
zero and then added to the effective address spec-
ified by the second Load).

When a processor (P1) executes a Synchronize,
eieio<S>, or mbar<E> instruction a memory bar-
rier is created, which orders applicable storage
accesses pairwise, as follows. Let A be a set of
storage accesses that includes all storage
accesses associated with instructions preceding
the barrier-creating instruction, and let B be a set
of storage accesses that includes all storage
accesses associated with instructions following the
barrier-creating instruction. For each applicable
pair ai,bj of storage accesses such that ai is in A
and bj is in B, the memory barrier ensures that ai
will be performed with respect to any processor or
mechanism, to the extent required by the associ-
ated Memory Coherence Required attributes,
before bj is performed with respect to that proces-
sor or mechanism.

The ordering done by a memory barrier is said to
be “cumulative” if it also orders storage accesses
that are performed by processors and mechanisms
other than P1, as follows.

- A includes all applicable storage accesses by
any such processor or mechanism that have
been performed with respect to P1 before the
memory barrier is created.

- B includes all applicable storage accesses by
any such processor or mechanism that are
performed after a Load instruction executed
by that processor or mechanism has returned
the value stored by a store that is in B. 

No ordering should be assumed among the storage
accesses caused by a single instruction (i.e, by an
instruction for which the access is not atomic), even if
the accesses are to SAO storage, and no means are
provided for controlling that order.
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Programming Note

Because stores cannot be performed “out-of-order”
(see Book III), if a Store instruction depends on the
value returned by a preceding Load instruction
(because the value returned by the Load is used to
compute either the effective address specified by the
Store or the value to be stored), the corresponding stor-
age accesses are performed in program order.  The
same applies if whether the Store instruction is exe-
cuted depends on a conditional Branch instruction that
in turn depends on the value returned by a preceding
Load instruction.

Because an isync instruction prevents the execution of
instructions following the isync until instructions pre-
ceding the isync have completed, if an isync follows a
conditional Branch instruction that depends on the
value returned by a preceding Load instruction, the
load on which the Branch depends is performed before
any loads caused by instructions following the isync.
This applies even if the effects of the “dependency” are
independent of  the value loaded (e.g., the value is
compared to itself and the Branch tests the EQ bit in
the selected CR field), and even if the branch target is
the sequentially next instruction. 

With the exception of the cases described above and
earlier in this section, data dependencies and control
dependencies do not order storage accesses.  Exam-
ples include the following.

If a Load instruction specifies the same storage
location as a preceding Store instruction and the
location is in storage that is not Caching Inhibited,
the load may be satisfied from a “store queue” (a
buffer into which the processor places  stored val-
ues before presenting them to the storage sub-
system), and not be visible to other processors and
mechanisms.  A consequence is that if a subse-
quent Store depends on the value returned by the
Load, the two stores need not be performed in pro-
gram order with respect to other processors and
mechanisms.

Because a Store Conditional instruction may com-
plete before its store has been performed, a condi-
tional Branch instruction that depends on the CR0
value set by a Store Conditional instruction does

not order the Store Conditional's store with respect
to storage accesses caused by instructions that
follow  the Branch.

Because processors may predict branch target
addresses and branch condition resolution, control
dependencies (e.g., branches) do not order stor-
age accesses except as described above.  For
example, when a subroutine returns to its caller the
return address may be predicted, with the result
that loads caused by instructions at or after the
return address may be performed before the load
that obtains the return address is performed.

Because processors may implement nonarchitected
duplicates of architected resources (e.g., GPRs, CR
fields, and the Link Register), resource dependencies
(e.g., specification of the same target register for two
Load instructions) do not order storage accesses.

Examples of correct uses of dependencies, sync,
lwsync, and eieio<S> to order storage accesses can
be found in Appendix B. “Programming Examples for
Sharing Storage” on page 831.

Because the storage model is weakly consistent, the
sequential execution model as applied to instructions
that cause storage accesses guarantees only that
those accesses appear to be performed in program
order with respect to the processor executing the
instructions.  For example, an instruction may com-
plete, and subsequent instructions may be executed,
before storage accesses caused by the first instruction
have been performed.  However, for a sequence of
atomic accesses to the same storage location, if the
location is in storage that is Memory Coherence
Required the definition of coherence guarantees that
the accesses are performed in program order with
respect to any processor or mechanism that accesses
the location coherently, and similarly if the location is in
storage that is Caching Inhibited.

Because accesses to storage that is Caching Inhibited
are performed in main storage, memory barriers and
dependencies on Load instructions order such
accesses with respect to any  processor or mechanism
even if the storage is not Memory Coherence Required.
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1.7.2 Storage Ordering of I/O 
Accesses
A “coherence domain” consists of all processors and all
interfaces to main storage.  Memory reads and writes
initiated by mechanisms outside the coherence domain
are performed within the coherence domain in the
order in which they enter the coherence domain and
are performed as coherent accesses.

1.7.3 Atomic Update
The Load And Reserve and Store Conditional instruc-
tions together permit atomic update of a shared storage
location. There are byte, halfword, word, doubleword,
and quadword forms of each of these instructions.
Described here is the operation of the word forms
lwarx and stwcx.; operation of the byte, halfword, dou-

bleword, and quadword forms lbarx, stbcx., lharx,
sthcx., ldarx, stdcx., lqarx, and stqcx. is the same
except for obvious substitutions. 

The lwarx instruction is a load from a word-aligned
location that has two side effects. Both of these side
effects occur at the same time that the load is per-
formed.

The first example below illustrates cumulative
ordering of storage accesses preceding a memory
barrier, and the second illustrates cumulative order-
ing of storage accesses following a memory barrier.
Assume that locations X, Y, and Z initially contain
the  value 0.

Example 1:

Processor A:
stores the value 1 to location X 

Processor B:
loads from location X obtaining the value
1, executes a sync instruction, then
stores the value 2 to location Y

Processor C:
loads from location Y obtaining the value
2, executes a  sync instruction, then loads
from location X

Example 2:

Processor A:
stores the value 1 to location X, executes
a sync instruction, then stores the value 2
to location Y

Processor B:
loops loading from location Y until the
value 2 is obtained, then stores the value
3 to location Z 

Processor C:
loads from location Z obtaining the value
3, executes a sync instruction, then loads
from location X

In both cases, cumulative ordering dictates that the
value loaded from location X by processor C is 1. 

Programming Note
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1. A reservation for a subsequent stwcx. instruction
is created.

2. The memory coherence mechanism is notified that
a reservation exists for the storage location speci-
fied by the lwarx.

The stwcx. instruction is a store to a word-aligned loca-
tion that is conditioned on the existence of the reserva-
tion created by the lwarx and on whether the same
storage location is specified by both instructions. To
emulate an atomic operation with these instructions, it
is necessary that both the lwarx and the stwcx. specify
the same storage location.

A stwcx. performs a store to the target storage location
only if the storage location specified by the lwarx that
established the reservation has not been stored into by
another processor or mechanism since the reservation
was created. If the storage locations specified by the
two instructions differ, the store is not necessarily per-
formed except that if the Store Conditional Page Mobil-
ity category is supported and the storage locations are
in different aligned blocks of real storage whose size is
the smallest real page size supported by the implemen-
tation, the store is not performed.

A stwcx. that performs its store is said to “succeed”.

Examples of the use of lwarx and stwcx. are given in
Appendix B. “Programming Examples for Sharing Stor-
age” on page 831.

A successful stwcx. to a given location may complete
before its store has been performed with respect to
other processors and mechanisms. As a result, a sub-
sequent load or lwarx from the given location by
another processor may return a “stale” value. However,
a subsequent lwarx from the given location by the
other processor followed by a successful stwcx. by that
processor is guaranteed to have returned the value
stored by the first processor’s stwcx. (in the absence of
other stores to the given location). 

If a Store Conditional instruction is used with a preced-
ing Load and Reserve instruction that has a different
storage operand length (e.g., stwcx. with ldarx), the
reservation is cleared and it is undefined whether the
store is performed.

  

1.7.3.1  Reservations 
The ability to emulate an atomic operation using lwarx
and stwcx. is based on the conditional behavior of
stwcx., the reservation created by lwarx, and the
clearing of that reservation if the target storage location
is modified by another processor or mechanism before
the stwcx. performs its store.

A reservation is held on an aligned unit of real storage
called a reservation granule. The size of the reservation
granule is 2n bytes, where n is implementation-depen-
dent but is always at least 4 (thus the minimum reserva-
tion granule size is a quadword) and, if the Store
Conditional Page Mobility category is supported, where
2n is not larger than the smallest real page size sup-
ported by the implementation. The reservation granule
associated with effective address EA contains the real
address to which EA maps. (“real_addr(EA)” in the RTL
for the Load And Reserve and Store Conditional
instructions stands for “real address to which EA
maps”.) The reservation also has an associated length,
which is equal to the storage operand length, in bytes,
of the Load and Reserve instruction that established
the reservation.

A processor has at most one reservation at any time. A
reservation is established by executing a lbarx, lharx,
lwarx, ldarx, or lqarx instruction, as described in item
1 below, and is lost or may be lost, depending on the
item, if any of the following occur. Items 1-8 apply only if
the relevant access is performed. (For example, an
access that would ordinarily be caused by an instruc-

The store caused by a successful stwcx. is
ordered, by a dependence on the reservation, with
respect to the load caused by the lwarx that estab-
lished the reservation, such that the two storage
accesses are performed in program order with
respect to any processor or mechanism.

Programming Note

Before reassigning a virtual address to a different
real page, privileged software may need to clear all
processors’ reservations for the original real page
in order to avoid a Store Conditional being suc-
cessful only because the corresponding reserva-
tion for the original location is not cleared by a store
to the new real page by some other processor or
mechanism. This clearing of reservations is unnec-
essary on processors that support the Store Condi-
tional Page Mobility category.

The Store Conditional Page Mobility category does
not provide a mechanism for the Store Conditional
instruction to detect that a virtual page has been
moved to a new real page and back again to the
original real page that was accessed by a Load and
Reserve instruction. Privileged software that moves
a virtual page could clear the reservation on the
processor it is running on in order to ensure that a
Store Conditional instruction executed by that pro-
cessor does not succeed in this case. (The stores
that occur naturally as part of moving the virtual
page will cause any reservations, held by other pro-
cessors, in the target real page to be lost.)

Programming Note
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tion might not be performed if the instruction causes the
system error handler to be invoked.)

1. The processor holding the reservation executes
another lbarx, lharx, lwarx, or ldarx: this clears
the first reservation and establishes a new one.

2. The processor holding the reservation executes
any stbcx., sthcx., stwcx., stdcx., or stqcx.,
regardless of whether the specified address
matches the address specified by the lbarx, lharx,
lwarx, ldarx, or lqarx that established the reserva-
tion, and regardless of whether the storage oper-
and lengths of the two instructions are the same.

3. <TM> Any of the following occurs on the processor
holding the reservation.

a. The transaction state changes (from
Non-transactional, Transactional, or Sus-
pended state to one of the other two states;
see Section 5.2, “Transactional Memory
Facility States”), except in the following
cases

If the change is from Transactional
state to Suspended state, the reserva-
tion is not lost.
If the change is from Suspended state
to Transactional state, the reservation
is not lost if it was established in Trans-
actional state.
If the change is caused by a treclaim.
or trechkpt. instruction, whether the
reservation is lost is undefined.

b. The transaction nesting depth (see
Section 5.4, “Transactional Memory Facility
Registers”) changes; whether the reserva-
tion is lost is undefined.  (This item applies
only if the processor is in Transactional state
both before and after the change.)

c. The processor is in Suspended state and
executes a Store Conditional instruction
(stbcx., sthcx., stwcx., stdcx., or stqcx.)
or a waitrsv instruction; the reservation is
lost if it was established in Transactional
state.  In this case the Store Conditional
instruction’s store is not performed, and the
waitrsv does not wait.  (For Store Condi-
tional, the reservation is also lost if it was
established in Suspended state; see item
2.)

4. Some other processor executes a Store, dcbz, or
dcbzep<E> that specifies a location in the same
reservation granule.

5. Some other processor executes a dcbtst, dcbt-
step<E>, or dcbtstls<E> that specifies a location
in the same reservation granule: whether the res-
ervation is lost is undefined. (For a dcbtst instruc-
tion that specifies a data stream, "location" in the
preceding sentence includes all locations in the
data stream.)

6. <E> Some other processor executes a dcba that
specifies a location in the same reservation gran-
ule: the reservation is lost if the instruction causes
the target block to be newly established in a data
cache or to be modified; otherwise whether the
reservation is lost is undefined.

7. <E> Some other processor executes a dcbi that
specifies a location in the same reservation gran-
ule: the reservation may be lost if the instruction is
treated as a Store.

8. <S> Any processor modifies a Reference or
Change bit (see Book III-S) in the same reserva-
tion granule: whether the reservation is lost is
undefined.

9. Some mechanism other than a processor modifies
a storage location in the same reservation granule.

10. An interrupt (see Book III) occurs on the processor
holding the reservation: for the Embedded environ-
ment, the reservation may be lost if the interrupt is
asynchronous. (For the Server environment the
reservation is not lost. However, for both environ-
ments, system software invoked by interrupts may
clear the reservation.)

11. Implementation-specific characteristics of the
coherence mechanism cause the reservation to be
lost.

 

   

A reservation may be lost if:
Software executes a privileged instruction or
utilizes a privileged facility
Software accesses storage not intended for
general-purpose programming
Software executes a Decorated Storage
instruction <DS>
Software accesses a Device Control Register

Virtualized Implementation  Note
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1.7.3.2  Forward Progress 
Forward progress in loops that use lwarx and stwcx. is
achieved by a cooperative effort among hardware, sys-
tem software, and application software.

The architecture guarantees that when a processor
executes a lwarx to obtain a reservation for location X
and then a stwcx. to store a value to location X, either

1. the stwcx. succeeds and the value is written to
location X, or 

2. the stwcx. fails because some other processor or
mechanism modified location X, or 

3. the stwcx. fails because the processor’s reserva-
tion was lost for some other reason.

In Cases 1 and 2, the system as a whole makes
progress in the sense that some processor successfully
modifies location X. Case 3 covers reservation loss
required for correct operation of the rest of the system.
This includes cancellation caused by some other pro-
cessor or mechanism writing elsewhere in the reserva-
tion granule, cancellation caused by the operating
system in managing certain limited resources such as
real storage, and cancellation caused by any of the
other effects listed in see Section 1.7.3.1.

An implementation may make a forward progress guar-
antee, defining the conditions under which the system
as a whole makes progress. Such a guarantee must
specify the possible causes of reservation loss in Case
3. While the architecture alone cannot provide such a
guarantee, the characteristics listed in Cases 1 and 2
are necessary conditions for any forward progress
guarantee. An implementation and operating system
can build on them to provide such a guarantee.

One use of lwarx and stwcx. is to emulate a “Com-
pare and Swap” primitive like that provided by the
IBM System/370 Compare and Swap instruction;
see Section B.1, “Atomic Update Primitives” on
page 831. A System/370-style Compare and Swap
checks only that the old and current values of the
word being tested are equal, with the result that
programs that use such a Compare and Swap to
control a shared resource can err if the word has
been modified and the old value subsequently
restored. The combination of lwarx and stwcx.
improves on such a Compare and Swap, because
the reservation reliably binds the lwarx and stwcx.
together. The reservation is always lost if the word
is modified by another processor or mechanism
between the lwarx and stwcx., so the stwcx.
never succeeds unless the word has not been
stored into (by another processor or mechanism)
since the lwarx.

In general, programming conventions must ensure
that lwarx and stwcx. specify addresses that
match; a stwcx. should be paired with a specific
lwarx to the same storage location. Situations in
which a stwcx. may erroneously be issued after
some lwarx other than that with which it is intended
to be paired must be scrupulously avoided. For
example, there must not be a context switch in
which the processor holds a reservation in behalf of
the old context, and the new context resumes after
a lwarx and before the paired stwcx.. The stwcx.
in the new context might succeed, which is not
what was intended by the programmer. Such a situ-
ation must be prevented by executing a stbcx.,
sthcx., stwcx., stdcx., or stqcx. that specifies a
dummy writable aligned location as part of the con-
text switch; see Section 6.4.3 of Book III-S and
Section 7.5 of Book III-E.

Programming Note

Programming Note

Because the reservation is lost if another processor
stores anywhere in the reservation granule, lock
words (or bytes, halfwords, or doublewords) should
be allocated such that few such stores occur, other
than perhaps to the lock word itself.  (Stores by
other processors to the lock word result from con-
tention for the lock, and are an expected conse-
quence of using locks to control access to shared
storage; stores to other locations in the reservation
granule can cause needless reservation loss.)
Such allocation can most easily be accomplished
by allocating an entire reservation granule for the
lock and wasting all but one word.  Because reser-
vation granule size is implementation-dependent,
portable code must do such allocation dynamically.

Similar considerations apply to other data that are
shared directly using lwarx and stwcx. (e.g., point-
ers in certain linked lists; see Section B.3, “List
Insertion” on page 835). 

Programming Note
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1.8 Transactions [Category: 
Transactional Memory]
A transaction is a group of instructions that collectively
have unique storage access behavior intended to facili-
tate parallel programming.  (It is possible to nest trans-
actions within one another.  The description in this
chapter will ignore nesting because it does not have a
significant impact on the properties of the memory
model.  Nesting and its consequences will be described
elsewhere.)  Sequences of instructions that are part of
the transaction may be interleaved with sequences of
Suspended state instructions that are not part of the
transaction.  A transaction is said to “succeed” or to
“fail,” and failure may happen before all of the instruc-
tions in the transaction have completed.  If the transac-
tion fails, it is as if the instructions that are part of the
transaction were never executed.  If the transaction
succeeds, it appears to execute as an atomic unit as
viewed by other processors and mechanisms.
(Although the transaction appears to execute atomi-
cally, some knowledge of the inner workings will be
necessary to avoid apparent paradoxes in the rest of
the model.  These details are described below.)  The
execution of Suspended state sequences have the
same effect that the sequence would have in the
absence of a transaction, independent of the success
or failure of the transaction, including accessing stor-
age according to the weakly consistent storage model
or SAO, based on  storage attributes.  Upon failure, nor-
mal execution continues at the failure handler.  Except
for  the rollback of the effects of transactional instruc-
tions upon transaction failure, as viewed by the execut-
ing thread, the interleaved sequences of Transactional
and Suspended state instructions appear to execute
according to the sequential execution model.  See
Chapter 5. “Transactional Memory Facility [Category:
Transactional Memory]” on page 795 for more details.
The unique attributes of the storage model for transac-
tions are described below.

Transaction processing does not support the rollback of
operations on the reservation mechanism.  To prevent

this possibility, a reservation is lost as a result of a state
change from Transactional to Non-transactional or
Non-transactional to Transactional.  It is possible to
successfully complete an atomic update in Transac-
tional state, though such a sequence would have no
benefit.  It is also possible to complete an atomic
update in Suspended state, or straddling an interval in
Suspended state if Suspended state is entered via an
interrupt or tsuspend. and exited via tresume., rfebb,
rfid, hrfid, or mtmsrd.  However, an atomic update will
not succeed if only one of the Load and Reserve / Store
Conditional instruction pair is executed in Suspended
state.

 

 

Successful transactions are serialized in some order,
and no processor or mechanism is able to observe the
accesses caused by any subset of these transactions
as occurring in an order that conflicts with this order.
Specifically, let processor i execute transactions 0, 1,…,
j, j+1, …, where only successful transactions are num-
bered, and the numbering reflects program order.  Let
Tij be transaction j on processor i.  Then there is an
ordering of the Tij such that no processor or mecha-
nism is able to observe the accesses  caused by the
transactions Tij in an order that conflicts with this order-

On a virtualized implementation, Case 3 includes
reservation loss caused by the virtualization soft-
ware.  Thus, on a virtualized implementation, a res-
ervation may be lost at any time without
apparent cause.  The virtualization software partici-
pates in any forward progress assurances, as
described above.

The architecture does not include a “fairness guar-
antee”. In competing for a reservation, two proces-
sors can indefinitely lock out a third.

Virtualized Implementation Note

Programming Note

Note that if a Store Conditional instruction within a
transaction does not store, it may still be possible
for the transaction to succeed.  Software must not
depend on the two operations having the same out-
come.  For example, software must not use suc-
cess of an enclosing transaction as a replacement
for checking the condition code from a transactional
Store Conditional instruction.

Accessing storage locations in Suspended state
that have been accessed transactionally has the
potential to create apparent storage paradoxes.
Consider, for example, a case where variable X has
intial value zero, is updated transactionally to one,
is read in Suspended state, subsequently the trans-
action fails, and variable X is read again.  In the
absence of external conflicts, the observed
sequence of values will be zero, one, zero: old,
new, old. 

Performing an atomic update on X in Suspended
state may be even more confusing.  Suppose the
atomic sequence increments X, but that the only
way to have X=1 is via the transactional store that
occurs before entering Suspended state.  The store
conditional, if it succeeds, will store X=2 and in so
doing, kill the transaction.  But with the transaction
having failed, X was never equal to one.

The flexibility of the Suspended state programming
model can create unintuitive results.  It must be
used with care.

Programming Note

Programming Note
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ing.   Note that Suspended state storage accesses are
not included in the serialization property.

 

Because of the difference between a transaction’s
instantaneous appearance and the finite time required
to execute it in an implementation, it is exposed to
changes in memory management state in a way that is
not true for individual accesses.  A change to the trans-
lation or protection state that would prevent any access
from taking place at any time during its processing for
the transaction compromises the integrity of the trans-
action.  Any such change must either be prevented or
must cause the transaction to fail.  The architecture will
automatically fail a transaction if the memory manage-
ment state change is accomplished using tlbie.   An
implementation may overdetect such conflicts between
the tlbie and the transaction footprint.  (Overdetection
may result from the technique used to detect the con-
flict.  A bloom filter may be used, as an example.  Sub-
sequent references to translation invalidation conflicts
implicitly include any cases of spurious overdetection.)
Changes made in some other manner must be man-
aged by software, for example by explicitly terminating
any affected transactions.  Examples of instructions
that require software management are tlbiel, slbie,
slbia, and tlbia.

The atomic nature of a transaction, together with the
cumulative memory barrier created by the transaction
and the memory barriers created by tbegin. and tend.
described below, has the potential to eliminate the
need for explicit memory barriers within the transaction,
and before and after the transaction as well.  However,
since there may be a desire to preserve existing algo-
rithms while exploiting transactions, the interaction of
memory barriers and transactions is defined.  In the
presence of transactions, storage access ordering is
the same as if no transactions are present, with the fol-
lowing exceptions.  Memory barriers that are created
while the transaction is running (other than the inte-
grated cumulative memory barrier of the transaction
described below), data dependencies, and SAO do not
order transactional stores.  Instead, transactional
stores are grouped together into an “aggregate store,”
which is performed as an atomic unit with respect to
other processors and mechanisms when the transac-
tion succeeds, after all the transactional loads have
been performed.  With this store behavior, the appear-
ance of transactional atomicity is created in a manner
similarly to that for a Load and Reserve / Store Condi-
tional pair.  Success of the transaction is conditional on
the storage locations specified by the loads not having
been stored into by a more recent Suspended state
store or by any store by another processor or mecha-
nism since the load was performed.  (There are addi-
tional conditions for the success of transactions.)

A tbegin. instruction that begins a successful transac-
tion creates a memory barrier that immediately pre-
cedes the transaction and orders storage accesses
pairwise, as follows. Let A and B be sets of storage
accesses as defined below. For each pair aibj of stor-
age accesses such that ai is in A and bj is in B, the
memory barrier ensures that ai will be performed with
respect to any processor or mechanism, to the extent
required by the associated Memory Coherence
Required attributes, before bj is performed with respect
to that processor or mechanism.  Set A contains all
data accesses caused by instructions preceding the
tbegin. that are neither Write Through Required nor
Caching Inhibited.  Set B contains all data accesses
caused by instructions following the tbegin., including
Suspended state accesses, that are neither Write
Through Required nor Caching Inhibited.

 

A successful transaction has an integrated memory
barrier behavior.  When a processor (P1) executes a
tend. instruction and tend. processing determines that
the transaction will succeed, a memory barrier is cre-
ated, which orders storage accesses pairwise, as fol-
lows. Let A and B be sets of storage accesses as
defined below. For each pair aibj of storage accesses
such that ai is in A and bj is in B, the memory barrier
ensures that ai will be performed with respect to any
processor or mechanism, to the extent required by the
associated Memory Coherence Required attributes,
before bj is performed with respect to that processor or
mechanism.  Set A contains all non-transactional data
accesses by other processors and mechanisms that
have been performed with respect to P1 before the
memory barrier is created and are neither Write
Through Required nor Caching Inhibited.  Set B con-
tains the aggregate store and all non-transactional data
accesses by other processors and mechanisms that
are performed after a Load instruction executed by that
processor or mechanism has returned the value stored
by a store that is in set B.  Note that the cumulative
memory barrier does not order Suspended state stor-
age accesses interleaved with the transaction.

A tend. instruction that ends a successful transaction
creates a memory barrier that immediately follows the
transaction and orders storage accesses pairwise, as
follows. Let A and B be sets of storage accesses as
defined below. For each pair aibj of storage accesses
such that ai is in A and bj is in B, the memory barrier
ensures that ai will be performed with respect to any
processor or mechanism, to the extent required by the
associated Memory Coherence Required attributes,
before bj is performed with respect to that processor or

The ordering of the Tij for a given i is consistent
with program order for processor i.

Programming Note

The reason the creation of the memory barrier by
tbegin. is specified to be contingent on the transac-
tion succeeding  is that delaying the creation may
improve performance, and does not seriously
inconvenience software.

Programming Note
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mechanism.  Set A contains all data accesses caused
by instructions preceding the tend., including Sus-
pended state accesses, that are neither Write Through
Required nor Caching Inhibited.  Set B contains all data
accesses caused by instructions following the tend.
that are neither Write Through Required nor Caching
Inhibited.

 

1.8.1 Rollback-Only Transactions
A Rollback-Only Transaction (ROT) is a sequence of
instructions that is executed, or not, as a unit.  The pur-
pose of the ROT is to enable bulk speculation of
instructions with minimum overhead.  It leverages the
rollback mechanism that is invoked as part of transac-
tion failure handling, but has reduced overhead in that it
does not have the full atomic nature of the transaction
and its synchronization and serialization properties.
The absence of a (normal) transaction’s atomic quality
means that a ROT must not be used to manipulate
shared data.

More specifically, a ROT differs from a normal transac-
tion as follows.

ROTs are not serialized.
There are no memory barriers created by tbegin.
and tend.
A ROT has no integrated cumulative memory bar-
rier.
There is no monitoring of storage locations speci-
fied by loads for modification by other processors
and mechanisms between the performing of the
loads and the completion of the ROT.
The stores that are included in the ROT need not
appear to be performed as an aggregate store.
(Implementations are likely to provide an aggre-
gate store appearance, but the correctness of the
program must not depend on the aggregate store
appearance.)

1.9 Instruction Storage
The instruction execution properties and requirements
described in this section, including its subsections,
apply only to instruction execution that is required by
the sequential execution model.

 In this section, including its subsections, it is assumed
that all instructions for which execution is attempted are
in storage that is not Caching Inhibited and (unless
instruction address translation is disabled; see
Book III-S) is not Guarded, and from which instruction
fetching does not cause the system error handler to be
invoked (e.g., from which instruction fetching is not pro-
hibited by the “address translation mechanism” or the
“storage protection mechanism”; see Book III).

  

For each instance of executing an instruction from loca-
tion X, the instruction may be fetched multiple times.

The instruction cache is not necessarily kept consistent
with the data cache or with main storage. It is the
responsibility of software to ensure that instruction stor-
age is consistent with data storage when such consis-
tency is required for program correctness. 

After one or more bytes of a storage location have been
modified and before an instruction located in that stor-
age location is executed, software must execute the
appropriate sequence of instructions to make instruc-
tion storage consistent with data storage. Otherwise the
result of attempting to execute the instruction is bound-
edly undefined except as described in Section 1.9.1,
“Concurrent Modification and Execution of Instructions”
on page 752.

The barriers that are created by the execution of a
successful transaction (those associated with tbe-
gin., tend., and the integrated cumulative barrier)
render most explicit barriers in and around transac-
tions redundant.  An exception is when there is a
need to establish order among Suspended state
accesses.

Programming Note

The results of attempting to execute instructions
from storage that does not satisfy this assumption
are described in Section 1.6.2 and Section 1.6.4 of
this Book and in Book III.

Programming Note
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Programming Note

Following are examples of how to make instruction stor-
age consistent with data storage. Because the optimal
instruction sequence to make instruction storage con-
sistent with data storage may vary between systems,
many operating systems will provide a system service
to perform this function.

Case 1: The given program does not modify instruc-
tions executed by another program nor does another
program modify the instructions executed by the given
program.

Assume that location X previously contained the
instruction A0; the program modified one of more bytes
of that location such that, in data storage, the location
contains the instruction A1; and location X is wholly
contained in a single cache block. The following instruc-
tion sequence will make instruction storage consistent
with data storage such that if the isync was in location
X-4, the instruction A1 in location X would be executed
immediately after the isync.

dcbst X #copy the block to main storage
sync #order copy before invalidation
icbi X #invalidate copy in instr cache
isync #discard prefetched instructions

Case 2: One or more programs execute the instruc-
tions that are concurrently being modified by another
program.

Assume program A has modified the instruction at loca-
tion X and other programs are waiting for program A to
signal that the new instruction is ready to execute. The
following instruction sequence will make instruction
storage consistent with data storage and then set a flag
to indicate to the waiting programs that the new instruc-
tion can be executed.

li r0,1 #put a 1 value in r0
dcbst X #copy the block in main storage
sync #order copy before invalidation
icbi X #invalidate copy in instr cache
sync #order invalidation before store

#  to flag
stw r0,flag #set flag indicating instruction

#  storage is now consistent

The following instruction sequence, executed by the
waiting program, will prevent the waiting programs from
executing the instruction at location X until location X in
instruction storage is consistent with data storage, and
then will cause any prefetched instructions to be dis-
carded.

lwz r0,flag #loop until flag = 1 (when 1 is
cmpwi r0,1 #   loaded, location X in inst’n
bne $-8 #   storage is consistent with 

#   location X in data storage)
isync #discard any prefetched inst’ns

In the preceding instruction sequence any context syn-
chronizing instruction (e.g., rfid) can be used instead of
isync.  (For Case 1 only isync can be used.)

For both cases, if two or more instructions in separate
data cache blocks have been modified, the dcbst
instruction in the examples must be replaced by a
sequence of dcbst instructions such that each block
containing the modified instructions is copied back to
main storage.  Similarly, for icbi the sequence must
invalidate each instruction cache block containing a
location of an instruction that was modified.  The sync
instruction that appears above between “dcbst X” and
“icbi X” would be placed between the sequence of
dcbst instructions and the sequence of icbi instructions.
Chapter 1. Storage Model 751
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1.9.1 Concurrent Modification and 
Execution of Instructions
The phrase “concurrent modification and execution of
instructions” (CMODX) refers to the case in which a
processor fetches and executes an instruction from
instruction storage which is not consistent with data
storage or which becomes inconsistent with data stor-
age prior to the completion of its processing.  This sec-
tion describes the only case in which executing this
instruction under these conditions produces defined
results.

In the remainder of this section the following terminol-
ogy is used.

Location X is an arbitrary word-aligned storage
location.

X0 is the value of the contents of location X for
which software has made the location X in instruc-
tion storage consistent with data storage.

X1, X2, ..., Xn are the sequence of the first n values
occupying location X after X0.

Xn is the first value of X subsequent to X0 for which
software has again made instruction storage con-
sistent with data storage.

The “patch class” of instructions consists of the
I-form Branch instruction (b[l][a]) and the preferred
no-op instruction (ori 0,0,0).

If the instruction from location X is executed after the
copy of location X in instruction storage is made consis-
tent for the value X0 and before it is made consistent for
the value Xn, the results of executing the instruction are
defined if and only if the following conditions are satis-
fied.

1. The stores that place the values X1, ..., Xn into
location X are atomic stores that modify all four
bytes of location X.

2. Each Xi, 0 ≤ i ≤ n, is a patch class instruction.

3. Location X is in storage that is Memory Coherence
Required.

If these conditions are satisfied, the result of each exe-
cution of an instruction from location X will be the exe-
cution of some Xi, 0 ≤ i ≤ n. The value of the ordinate i
associated with each value executed may be different
and the sequence of ordinates i associated with a
sequence of values executed is not constrained, (e.g.,
a valid sequence of executions of the instruction at
location X could be the sequence Xi, Xi+2, then Xi-1). If
these conditions are not satisfied, the results of each
such execution of an instruction from location X are
boundedly undefined, and may include causing incon-
sistent information to be presented to the system error
handler.

  

  

  

An example of how failure to satisfy the require-
ments given above can cause inconsistent informa-
tion to be presented to the system error handler is
as follows.  If the value X0 (an illegal instruction) is
executed, causing the system illegal instruction
handler to be invoked, and before the error handler
can load X0 into a register, X0 is replaced with X1,
an Add Immediate instruction, it will appear that a
legal instruction caused an illegal instruction
exception. 

It is possible to apply a patch or to instrument a
given program without the need to suspend or halt
the program.  This can be accomplished by modify-
ing the example shown in the Programming Note at
the end of Section 1.9 where one program  is creat-
ing instructions to be executed by one or more
other programs.

In place of the Store to a flag to indicate to the
other programs that the code is ready to be exe-
cuted, the program that is applying the patch would
replace a patch class instruction in the original pro-
gram with a Branch instruction that would cause
any program executing the Branch to branch to the
newly created code.  The first instruction in the
newly created code must be an isync, which will
cause any prefetched instructions to be discarded,
ensuring that the execution is consistent with the
newly created code.  The instruction storage loca-
tion containing the isync instruction in the patch
area must be consistent with data storage with
respect to the processor that will execute the
patched code before the Store which stores the
new Branch instruction is performed. 

It is believed that all processors that comply with
versions of the architecture that precede Version
2.01 support concurrent modification and execution
of instructions as described in this section if the
requirements given above are satisfied, and that
most such processors yield boundedly undefined
results if the requirements given above are not sat-
isfied.  However, in general such support has not
been verified by processor testing.  Also, one such
processor is known to yield undefined results in
certain cases if the requirements given above are
not satisfied.

Programming Note

Programming Note
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Chapter 2.  Performance Considerations and Instruction 
Restart

2.1 Performance-Optimized 
Instruction Sequences
Performance-optimized instruction sequences are
instruction sequences that provide better performance
than other ways of achieving the same results.  The
supported performance-optimized sequences are
shown in Figure 1 and Figure 2 below.  In order to
achieve the improved performance, the sequences
must be coded exactly as shown, including instruction
order, register re-use, and lack of intervening instruc-
tions, and must conform to the specifications in the
Notes. The processor achieves the improved perfor-
mance by executing the sequence as a single opera-
tion,  or in some other highly efficient,
sequence-specific, manner. (The improved perfor-
mance may not be obtained if the sequence causes the
system error handler to be invoked, or for implementa-
tion-dependent reasons.)

The sequences shown in Figure 1 can be used to
achieve the effect of having a displacement field, for
certain D-form and DS-form fixed-point Load instruc-
tions, that is larger than 16 bits (larger than 14 bits for
the DS-form Load)..

Figure 1. Fixed-point load sequences 

  

The sequences shown in Figure 2 can be used to
achieve the effect of having a displacement field for cer-

Operation Instruction 
sequence

Fixed-point byte load addis Rx,RA,SI
lbz     Rx,D(Rx)

Fixed-point halfword load addis Rx,RA,SI
lhz     Rx,D(Rx)

Fixed-point word load addis Rx,RA,SI
lwz     Rx,D(Rx)

Fixed-point doubleword load addis Rx,RA,SI
ld     Rx,DS(Rx)

Notes:
1. Rx is any GPR other than GPR 0.
2. If D0=0 (or DS0=0), -16≤SI≤15. 
    If D0=1 (or DS0=1), -15≤SI≤15. 

Some processors may provide the improved perfor-
mance for a larger range of SI values, that includes
this range. 

The minimum SI value shown in Note 2 of Figure 1
depends on D0 (or DS0) because implementations
may provide the improved performance only when
the number of significant bits in the SI value (includ-
ing the sign bit) does not exceed 5, and may pro-
vide it by using SI12:15 || D (or SI12:15  || DS || 0b00)
as the displacement value for the Load. On such
implementations, if D0=1 (or DS0=1) hardware
must use (SI-1)12:15 instead of SI12:15 in this con-
catenation, to obtain the effect of sign-extending
the D (DS) field when the EA is computed by the
Load instruction. This effect corresponds to the
subtraction of 216 in the EA computation for this
case shown in the Programming Note on page 755.
The 5-bit limitation applies also to SI-1 in this case.

Future versions of the architecture may enlarge the
range of SI values for which performance of the
sequences in Figure 1 is optimized.

Programming Note
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tain X-form and XX1-form Vector and VSX Load
instructions.

Figure 2. Vector and VSX load sequences 

  

Operation Instruction sequence

Vector byte load addi Rx,0,SI
lvebx VRT,RA,Rx

Vector halfword load addi Rx,0,SI
lvehx VRT,RA,Rx

Vector word load addi Rx,0,SI
lvewx VRT,RA,Rx

Vector load addi Rx,0,SI
lvx    VRT,RA,Rx

VSX Scalar doubleword
load

addi Rx,0,SI
lxsdx XT,RA,Rx

VSX Vector word*4 load addi Rx,0,SI
lxvw4x XT,RA,Rx

VSX Vector doubleword*2
load

addi Rx,0,SI
lxvd2x XT,RA,Rx

VSX Vector doubleword
load and splat

addi Rx,0,SI
lxvdsx XT,RA,Rx

Notes:
1. RA is any GPR other than GPR 0.

The performance of the sequences in Figure 2 is
optimized only if RA is not GPR 0 because some
implementations may provide the improved perfor-
mance for these sequences by treating the Load as
if it were a D-form instruction, with the SI value from
the addi serving as the D value.

A future version of the architecture may remove this
restriction, and specify that performance for these
sequences is optimized even if RA is GPR 0.

Programming Note
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Programming Note

Even independent of the performance optimization described above, the techniques illustrated in Figure 1 and
Figure 2 generally perform better than other ways of achieving the effect of having a large displacement field for
D-form and DS-form fixed-point Load/Store instructions (Figure 1), and of having a displacement field for X-form and
XX1-form Vector and VSX Load/Store instructions (Figure 2).

The technique for the fixed-point Load/Store instructions is complicated by the fact that D-form and DS-form Loads
and Stores treat the D/DS value as signed.

For simplicity, most of this Note assumes that the fixed-point Load/Store instruction is D-form; the modifications for
DS-form fixed-point Load/Store instructions are straightforward.

Let the desired effective address to load from or store to be (RA) + DISP, where DISP is a signed 32-bit value.
  (RA) + DISP = (RA) +  DISP0:15  ||  DISP16:31 

=  (RA) + (DISP0:15  || 0x0000) + DISP16:31
where DISP0:15 is a signed 16-bit value.

If DISP0:15 is used as the SI value for the addis, the addis forms the sum
  (RA) + (DISP0:15 || 0x0000)
and places the result into Rx.

If DISP16:31 is used as the D value for the Load or Store and Rx is used as the base register for the Load or Store,
and DISP16 = 0, the Load or Store computes the EA to load from as
  (Rx) + DISP16:31 = (RA) + (DISP0:15 || 0x0000) + DISP16:31
                               = (RA) + DISP

However, because D-form Loads and Stores treat the D value as signed, if DISP16 = 1 the Load or Store computes
the EA as
  (Rx) + DISP16:31 = (RA) + (DISP0:15 || 0x0000) + DISP16:31 + 0xFFFF_FFFF_FFFF_0000 
                               = (RA) + (DISP0:15 || 0x0000) + DISP16:31 - 216 
                               = (RA) + DISP - 216

To compensate for this effective subtraction of 216, if DISP16 = 1 the SI value used for the addis must be 
DISP0:15 + 1.  Then the addis sets Rx to
  (RA) + ((DISP0:15 + 1) || 0x0000) = (RA) + (DISP0:15 || 0x0000) + 216

and the Load or Store computes the EA as
  (Rx) + DISP16:31 = (RA) + (DISP0:15 || 0x0000) + 216 + DISP16:31 - 216

= (RA) + DISP
as desired.

Thus the rules for using the technique illustrated in Figure 1 are as follows.
For the RA field of the addis, use the desired base register for the Load or Store.
For the D field of the Load or Store, use DISP16:31. 
(For DS-form Loads and Stores, for the DS field use DISP16:29; DISP30:31 are 0b00.)
For the SI field of the addis:
- if DISP16 = 0 use DISP0:15;
- if DISP16 = 1 use DISP0:15 + 1.

 

Chapter 2. Performance Considerations and Instruction Restart 755



Version 2.07 B
2.2 Instruction Restart   
In this section, “Load instruction” includes the Cache
Management and other instructions that are stated in
the instruction descriptions to be “treated as a Load”,
and similarly for “Store instruction”.

The following instructions are never restarted after hav-
ing accessed any portion of the storage operand
(unless the instruction causes a “Data Address Watch-
point match”, for which the corresponding rules are
given in Book III).

1. A Store instruction that causes an atomic access
and, for the Embedded environment, accesses
storage that is Guarded

2. A Load instructionthat causes an atomic access to
storage that is Guarded and, for the Server envi-
ronment, is also Caching Inhibited.

Any other Load or Store instruction may be partially
executed and then aborted after having accessed a
portion of the storage operand, and then re-executed
(i.e., restarted, by the processor or the operating sys-
tem). If an instruction is partially executed, the contents
of registers are preserved to the extent that the correct
result will be produced when the instruction is re-exe-
cuted. Additional restrictions on the partial execution of
instructions are described in Section 6.6 of Book III-S
and Section 7.7 of Book III-E.

 

  

In order to ensure that the contents of registers are
preserved to the extent that a partially executed
instruction can be re-executed correctly, the regis-
ters that are preserved must satisfy the following
conditions. For any given instruction, zero or more
of the conditions applies.

For a fixed-point Load instruction that is not a
multiple or string form, or for an eciwx instruc-
tion, if RT=RA or RT=RB then the contents of
register RT are not altered.
For an update form Load or Store instruction,
the contents of register RA are not altered.

Programming Note

There are many events that might cause a Load or
Store instruction to be restarted.  For example, a
hardware error may cause execution of the instruc-
tion to be aborted after part of the access has been
performed, and the recovery operation could then
cause the aborted instruction to be re-executed.

When an instruction is aborted after being partially
executed, the contents of the instruction pointer
indicate that the instruction has not been executed,
however, the contents of some registers may have
been altered and some bytes within the storage
operand may have been accessed.  The following
are examples of an instruction being partially exe-
cuted and altering the program state even though it
appears that the instruction has not been executed.

1. Load Multiple, Load String:  Some registers in
the range of registers to be loaded may have
been altered.

2. Any Store instruction, dcbz: Some bytes of the
storage operand may have been altered.

Programming Note
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Chapter 3.  Management of Shared Resources

The facilities described in this section provide the
means to control the use of resources that are shared
with other processors.

3.1 Program Priority Registers
The Program Priority Register (PPR) is a 64-bit register
that controls the program’s priority.  The PPR provides
access to the full 64-bit PPR, and the Program Priority
Register 32-bit (PPR32) provides access to the upper
32 bits of the PPR. The Embedded environment only
provides access to PPR32. The layouts of the PPR and
PPR32 are shown in Figure 3.

Bit(s) Description

11:13 Program Priority (PRI)
(PPR3243:45)

001   very low
010   low
011   medium low
100   medium
101   medium high

Programs can always set the PRI field to very
low, low, medium low, and medium priorities;
programs may be allowed to set the PRI field
to medium high priority during certain time
intervals. (See Section 4.3.6.) If the program
priority is medium high when the time interval
expires or if an attempt is made to set the pri-
ority to medium high when it is not allowed,
the PRI field is set to medium.

If other values are written to this field, the  PRI
field is not changed. (See Section 4.3.5 of
Book III-S for additional information.)

All other fields are reserved.

Figure 3. Program Priority Register

  

  

  

  

3.2 “or” Instruction

Setting the PPR
The or Rx,Rx,Rx (see Book I) instruction can be used
to set PPRPRI as shown in Figure . or. Rx,Rx,Rx does
not set PPRPRI.

PPR [Category: Server]:

/// PRI ///
0 11 14                           63

PPR32

/// PRI ///
32 43 46       63

The ability to access the low-order half of the PPR
(and thus the use of mfppr and mtppr) might be
phased out in a future version of the architecture.

By setting the PRI field, a programmer may be able
to improve system throughput by causing system
resources to be used more efficiently. 

E.g., if a program is waiting on a lock (see Section
B.2), it could set low priority, with the result that
more processor resources would be diverted to the
program that holds the lock. This diversion of
resources may enable the lock-holding program to
complete the operation under the lock more quickly,
and then relinquish the lock to the waiting program. 

or Rx,Rx,Rx can be used to modify the PRI field;
see Section 3.2.

When the system error handler is invoked, the PRI
field may be set to an undefined value.

Rx PPRPRI Priority

31 001 very low

1 010 low

6 011 medium low

2 100 medium

5 101 medium high

Programming Note

Programming Note

Programming Note
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Priority levels for or Rx,Rx,Rx

Programs can always set the PRI field to very low, low,
medium low, and medium priorities; programs may be
allowed to set the PRI field to medium high priority dur-
ing certain time intervals. (See Section 4.3.6 of Book
III-S.) If the program priority is medium high when the
time interval expires or if an attempt is made to set the
priority to medium high when it is not allowed, the PRI
field is set to medium.

The following forms of  or Rx,Rx,Rx provide hints about
usage of shared processor resources.

“or” Shared Resource Hints
or 27,27,27

This form of or provides a hint that performance
will probably be improved if shared resources ded-
icated to the executing processor are released for
use by other processors.

or 29,29,29

This form of or provides a hint that performance
will probably be improved if shared resources ded-
icated to the executing processor are released until
all outstanding storage accesses to Caching Inhib-
ited storage have been completed.

or 30,30,30

This form of or provides a hint that performance
will probably be improved if shared resources ded-
icated to the executing processor are released until
all outstanding storage accesses to cacheable
storage for which the data is not in the cache have
been completed.

Extended Mnemonics:

Additional extended mnemonics for the or hints:

  

Extended: Equivalent to:
yield or 27,27,27
mdoio or 29,29,29
mdoom or 30,30,30

Warning: Other forms of or Rx,Rx,Rx that are not
described in this section and in Section 4.3.3 may
also cause program priority to change. Use of
these forms should be avoided except when soft-
ware explicitly intends to alter program priority. If a
no-op is needed, the preferred no-op (ori 0,0,0)
should be used.

Programming Note
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Chapter 4.  Storage Control Instructions

4.1 Parameters Useful to Appli-
cation Programs 
It is suggested that the operating system provide a ser-
vice that allows an application program to obtain the fol-
lowing information.

1. The virtual page sizes
2. Coherence block size
3. Reservation granule size
4. An indication of the cache model implemented

(e.g., Harvard-style cache, combined cache)
5. Instruction cache size
6. Data cache size
7. Instruction cache block size
8. Data cache block size
9. Instruction cache associativity

10. Data cache associativity
11. Number of stream IDs supported for the stream

variant of dcbt
12. Factors for converting the Time Base to seconds
13. Maximum transaction level

If the caches are combined, the same value should be
given for an instruction cache attribute and the corre-
sponding data cache attribute. 

4.2 Data Stream Control Regis-
ter (DSCR) [Category: Stream]
The layout of the Data Stream Control Register (DSCR)
is shown in Figure 4 below.  

Figure 4.  Data Stream Control Register

Bit(s) Description

39 Software Transient Enable (SWTE)

0 SWTE is disabled.

1 Applies the transient attribute to soft-
ware-defined streams.

40 Hardware Transient Enable (HWTE)

0 HWTE is disabled.
1 Applies the transient attribute to hard-

ware-detected streams.

41 Store Transient Enable (STE)

0 STE is disabled.
1 Applies the transient attribute to store

streams.

42 Load Transient Enable (LTE)

0 LTE is disabled.
1 Applies the transient attribute to load

streams.

43 Software Unit count Enable (SWUE)

0 SWUE is disabled.
1 Applies the unit count to software-defined

streams.

44 Hardware Unit count Enable (HWUE)

0 HWUE is disabled.
1 Applies the unit count to hard-

ware-detected streams.

45:54 Unit Count (UNITCNT)

Number of units in data stream.

55:57 Depth Attainment Urgency (URG)

This field indicates how quickly the prefetch
depth should be reached for hard-
ware-detected streams.  Values and their
meanings are as follows.
     0   default
     1   not urgent
     2   least urgent
     3   less urgent
     4   medium
     5   urgent
     6   more urgent
     7   most urgent

58 Load Stream Disable (LSD)

0 No effect.
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1 Disables hardware detection and initiation
of load streams.

59 Stride-N Stream Enable (SNSE)

0 No effect.
1 Enables the hardware detection and initia-

tion of load and store streams that have a
stride greater than a single cache block.
Such load streams are detected only
when LSD is also zero.  Such store
streams are detected only when SSE is
also one.

60 Store Stream Enable (SSE)

0 No effect.
1 Enables hardware detection and initiation

of store streams.

61:63 Default Prefetch Depth (DPFD)

This field supplies a prefetch depth for hard-
ware-detected streams and for soft-
ware-defined streams for which a depth of
zero is specified or for which dcbt/dcbtst with
TH=1010 is not used in their description. Val-
ues and their meanings are as follows.
     0 default  (LPCRDPFD)
     1 none
     2 shallowest
     3 shallow
     4 medium
     5 deep
     6 deeper
     7 deepest

The contents of the DSCR affect how a processor han-
dles hardware-detected and software-defined data
streams.  The DSCR provides the only means by which
software can control or supply information for hard-
ware-detected data streams.  The DPFD, UNITCNT,
and transient fields may also be used instead of the
TH=01010 variant of dcbt for software-defined data
streams, especially when multiple streams have these
attributes in common.  See Section 4.3.2, “Data Cache
Instructions” on page 763, for information on streams
and how software may specify them. 

  

  

  

  

The URG, LSD, SNSE and SSE fields do not affect
the initiation of streams specified using the dcbt
and dcbtst instructions.

Note that even when SNSE is not set, hardware
may detect Stride-N streams in intervals when they
access elements that map to sequential cache
blocks.

Programming Note

In order for the DSCR to apply the transient
attribute to streams, at least two of the four enable
bits must be set: one to choose a type of access
(load or store), and one to choose a kind of
prefetching (software-defined or hard-
ware-detected).

The purpose of Depth Attainment Urgency is to
regulate the rate of prefetch generation from the
cycle at which the hardware first detects an incipi-
ent stream until the cycle when the prefetch Depth
is reached.  A more urgent setting will benefit appli-
cations that are dominated by short to medium
length streams, because otherwise prefetching
does not occur rapidly enough to benefit them.  In
contrast, applications that frequently cause unpro-
ductive prefetches due to stream mispredicts will
benefit from a less urgent setting.

Unlike the Depth, the Depth Attainment Urgency
applies only to hardware-detected streams.  Fur-
thermore, the DSCR provides the only point of con-
trol for this parameter.  Software-defined streams
are assumed not to have the correctness risk asso-
ciated with hardware streams, and therefore are set
to reach their depth relatively quickly.

In versions of the architecture that precede Version
2.07, mtspr specifying the DSCR caused all active
and nascent data streams to cease to exist.  In
those versions of the architecture, the DSCR was
used as an overall control mechanism to specify a
single global profile for all streams.  Beginning with
Version 2.07, the DSCR is intended to control and
accelerate the creation of new streams without dis-
turbing existing streams.  

Programming Note

Programming Note

Programming Note
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4.3 Cache Management Instructions 

The Cache Management instructions obey the sequen-
tial execution model except as described in Section 4.3.1.

In the instruction descriptions the statements “this instruc-
tion is treated as a Load” and “this instruction is treated
as a Store” mean that the instruction is treated as a Load
(Store) from (to) the addressed byte with respect to
address translation, the definition of program order on
page 735, storage protection, reference and change
recording<S>, and the storage access ordering described
in Section 1.7.1 and is treated as a read (write) from (to)
the addressed byte with respect to debug events unless
otherwise specified. (See Book III-E.)

 

Some Cache Management instructions contain a CT
field that is used to specify a cache level within a cache
hierarchy or a portion of a cache structure to which the
instruction is to be applied. The correspondence
between the CT value specified and the cache level is
shown below.

CT values not shown above may be used to specify
implementation-dependent cache levels or implemen-
tation-dependent portions of a cache structure.

Accesses that are caused by or associated with
Cache Management instructions that are “treated
as a Load” or “treated as a Store” are not subject to
the special ordering rules described for SAO stor-
age. These accesses are always performed in
accordance with the weakly consistent storage
model.

CT Field Value Cache Level
0 Primary Cache
2 Secondary Cache

Programming Note
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4.3.1 Instruction Cache Instructions

Instruction Cache Block Invalidate X-form 

icbi RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
instruction cache of any processors, the block is invali-
dated in those instruction caches.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and
the block is in the instruction cache of this processor,
the block is invalidated in that instruction cache.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Load (see Section 4.3),
except that reference and change recording<S> need
not be done.

Special Registers Altered:
None

  

  

Instruction Cache Block Touch X-form 

icbt CT, RA, RB 
 

Let the effective address (EA) be the sum (RA|0)+(RB).

The icbt instruction provides a hint that the program
will probably soon execute code from the block contain-
ing the byte addressed by EA, and that the block con-
taining the byte addressed by EA is to be loaded into
the cache specified by the CT field. (See Section 4.3 of
Book II.) If the CT field is set to a value not supported
by the implementation, no operation is performed.

The hint is ignored if the block is Caching Inhibited.

This instruction treated as a Load (see Section 4.3),
except that the system data storage error handler is not
invoked, and reference and change recording<S> need
not be done.

Special Registers Altered:
None

31 /// RA RB 982 /
0 6 11 16 21 31

Because the instruction is treated as a Load, the
effective address is translated using translation
resources that are used for data accesses, even
though the block being invalidated was copied into
the instruction cache based on translation
resources used for instruction fetches (see Book
III).

The invalidation of the specified block need not
have been performed with respect to the processor
executing the icbi instruction until a subsequent
isync instruction has been executed by that pro-
cessor. No other instruction or event has the corre-
sponding effect.

Programming Note
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31 / CT RA RB 22 /
0 6 7 11 16 21 31
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4.3.2 Data Cache Instructions 
The Data Cache instructions control various aspects of
the data cache.

TH field in the dcbt and dcbtst instructions

Described below are the TH field values for the dcbt
and dcbtst instructions. For all TH field values which
are not listed, the hint provided by the instruction is
undefined.

TH=0b00000

If TH=0b00000, the dcbt/dcbtst instruction provides a
hint that the program will probably soon access the
block containing the byte addressed by EA.

TH=0b00000 - 0b00111 
[Category: Cache Specification]

In addition to the hint specified above for the TH field
value of 0b00000, an additional hint is provided indicat-
ing that placement of the block in the cache specified
by the TH field might also improve performance. The
correspondence between each value of the TH field
and the cache to be specified is the same as the corre-
spondence between each value the CT field and the
cache to be specified as defined in Section 4.3. The
hints corresponding to values of the TH field not sup-
ported by the implementation are undefined.

TH=0b01000 - 0b01111 [Category: Stream]

The dcbt/dcbtst instructions provide hints regarding a
sequence of accesses to data elements, or indicate the
expected use thereof. Such a sequence is called a
“data stream”, and a dcbt/dcbtst instruction in which
TH is set to one of these values is said to be a “data
stream variant” of dcbt/dcbtst. In the remainder of this
section, “data stream” may be abbreviated to “stream”.

A data stream to which a program may perform Load
accesses is said to be a “load data stream”, and is
described using the data stream variants of the dcbt
instruction. A data stream to which a program may per-
form Store accesses is said to be a “store data stream”,
and is described using the data stream variants of the
dcbtst instruction.

When, and how often, effective addresses for a data
stream are translated is implementation-dependent.

Each data element is associated with a unit of storage,
which is the aligned 128-byte location in storage that
contains the first byte of the element. The data stream
variants may be used to specify the address of the
beginning of the data stream, the displacement (stride)
between the first byte of successive elements, and the
number of unique units of storage that are associated
with all of the data elements. If the stride is specified,
both the stride and the address of the first element are
specified at 4 byte granularity. If the stride is not speci-

fied, the address of the first element is the address of
the first unit. 

  

Each such data stream is associated, by software, with
a stream ID, which is a resource that the processor
uses to distinguish the data stream from other such
data streams. The number of stream IDs is an imple-
mentation-dependent value in the range 1:16. Stream
IDs are numbered sequentially starting from 0.

The encodings of the TH field and of the corresponding
EA values are as follows. In the EA layout diagrams,
fields shown as "/"s are reserved. These reserved fields
are treated in the same manner as the corresponding
case for instruction fields (see Section 1.3.3 of Book I).
If a reserved value is specified for a defined EA field, or
if a TH value is specified that is not explicitly defined
below, the hint provided by the instruction is undefined.

TH Description

01000 The dcbt/dcbtst instruction provides a hint
that describes certain attributes of a data
stream, and may indicate that the program will
probably soon access the stream.

The EA is interpreted as follows.

Bit(s) Description

0:56 EATRUNC

High-order 57 bits of the effective
address of the first element of the data
stream. (i.e., the effective address of
the first unit of the stream is
EATRUNC || 70)

57 Direction (D)

0 Subsequent elements have
increasing addresses.

1 Subsequent elements have
decreasing addresses.

The architecture does not provide a way to specify
the size of the data elements that compose a
stream. An implementation may assume some
fixed size for all data elements. As a result,
depending on the offset, stride, and size (and in
particular whether the elements are aligned), the
implementation may reduce the latency for access-
ing only a portion of some of the elements. A future
version of the architecture may enable the specifi-
cation of element size to avoid this limitation.

EATRUNC D UG / ID
0 57 59 60 63

Programming Note
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58 Unlimited/GO (UG)

0 No information is provided by the
UG field.

1 The number of elements in the
data stream is unlimited, the ele-
ments are adjacent to each other,
the program’s need for each ele-
ment of the stream is not likely to
be transient, and the program will
probably soon access the stream.

59 Reserved

60:63 Stream ID (ID) 

Stream ID to use for this data stream.

01010 The dcbt/dcbtst instruction provides a hint
that describes certain attributes of a data
stream, or indicates that the program will
probably soon access data streams that have
been described using data stream variants of
the dcbt/dcbtst instruction, or will probably no
longer access such data streams.

The EA is interpreted as follows. If GO=1 and
S≠0b00 the hint provided by the instruction is
undefined; the remainder of this instruction
description assumes that this combination is
not used.

Bit(s) Description

0:31 Reserved

32 GO

0 No information is provided by the
GO field.

1 For dcbt, the program will probably
soon access all nascent load and
store data streams that have been
completely described, and will
probably no longer access all other
nascent load and store data
streams. All other fields of the EA
are ignored. (“Nascent” and “com-
pletely described” are defined
below.) For dcbtst, this field value
holds no meaning and is treated as
though it were zero.

33:34 Stop (S)

00 No information is provided by the S
field.

01 Reserved
10 The program will probably no

longer access the data stream (if
any) associated with the specified

stream ID. (All other fields of the
EA except the ID field are ignored.)

11 For dcbt, the program will probably
no longer access the load and
store data streams associated with
all stream IDs. (All other fields of
the EA are ignored.) For dcbtst,
this field value holds no meaning,
and is treated as though it were
0b00.

35 Reserved

36:38 Depth (DEP)

The DEP field provides a relative esti-
mate of how many elements ahead of
the point of stream use the
latency-reducing actions should go.
This value reflects a comparison of the
rate of consumption of the elements of
the data stream and the latency to
bring an arbitrary element of the
stream into cache. The values are as
follows.

 

39:46 Reserved

47:56 UNITCNT

Number of units in data stream.

57 Transient (T)

If T=1, the program’s need for each ele-
ment of the data stream is likely to be
transient (i.e., the time interval during
which the program accesses the ele-
ment is likely to be short).

58 Unlimited (U)

If U=1, the number of units in the data
stream is unlimited (and the UNITCNT
field is ignored).

59 Reserved

60:63 Stream ID (ID)

Stream ID to use for this data stream
(GO=0 and S=0b00), or stream ID
associated with the data stream which
the program will probably no longer
access(S=0b10).

/// GO S / DEP // UNITCNT T U / ID

0 32 35 36 39 47 57 59 60   63

0 default = DSCRDPFD
1 none 
2 shallowest
3 shallow
4 medium
5 deep
6 deeper
7 deepest
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01011 The dcbt/dcbtst instruction provides a hint
that describes certain attributes of a data
stream.

The EA is interpreted as follows.

Bit(s) Description

0:31 Reserved

32:49 Stride

The displacement, in words, between
the first byte of successive elements in
the stream. The effective address of
the Nth element in the stream is 

(N-1)×STRIDE×4

greater than or less than the effective
address of the first element of the
stream, depending on the direction
specified for the stream. 

50 Reserved

51:55 Offset

The word-offset of the first element of
the stream in its unit (i.e., the effective
address of the first element of the
stream is (EATRUNC || OFFSET ||
0b00)).

56:59Reserved

60:63 Stream ID (ID)

Stream ID to use for this data stream.

  

  

If the specified stream ID value is greater than m -1,
where m is the number of stream IDs provided by the
implementation, and either (a) TH=0b01000 or
TH=0b01011, or (b) TH=0b01010 with GO=0 and
S≠0b11, no hint is provided by the instruction.

 The following terminology is used to describe the state
of a data stream. Except as described in the paragraph
after the next paragraph, the state of a data stream at a
given time is determined by the most recently provided
hint(s) for the stream.

A data stream for which only descriptive hints have
been provided (by dcbt/dcbtst instructions with
TH=0b01000 and UG=0, TH=0b01010 and GO=0
and S=0b00, and/or with TH=0b01011) is said to
be “nascent”. A nascent data stream for which all
relevant descriptive hints have been provided (by
the dcbt/dcbtst usages listed in the preceding
sentence) is considered to be “completely
described”. The order of descriptive hints with
respect to one another is unimportant.

A data stream for which a hint has been provided
(by a dcbt/dcbtst instruction with TH=0b01000
and UG=1 or dcbt with TH=0b01010 and GO=1)
that the program will probably soon access it is
said to be “active”.

A data stream that is either nascent or active is
considered to “exist”.

A data stream for which a hint has been provided
(e.g., by a dcbt instruction with TH=0b01010 and
S≠0b00) that the program will probably no longer
access it is considered no longer to exist.

The hint provided by a dcbt/dcbtst instruction with
TH=0b01000 and UG=1 implicitly includes a hint that
the program will probably no longer access the data
stream (if any) previously associated with the specified
stream ID. The hint provided by a dcbt/dcbtst instruc-
tion with TH=0b01000 and UG=0, or with TH=0b01010
and GO=0 and S=0b00, or with TH=0b01011 implicitly
includes a hint that the program will probably no longer
access the active data stream (if any) previously asso-
ciated with the specified stream ID.

If a data stream is specified without using a dcbt/
dcbtst instruction with TH=0b01010 and GO=0 and
S=0b00, then the number of elements in the stream is
unlimited, and the program’s need for each element of
the stream is not likely to be transient.   If a data stream
is specified without using a dcbt/dcbtst instruction with

To maximize the utility of the Depth control mecha-
nism, the architecture provides a hierarchy of three
ways to program it. In the Server environment, the
DPFD field in the LPCR is used by the provisory/
firmware to set a safe or appropriate default depth
for unaware operating systems and applications.
(The corresponding default in the Embedded envi-
ronment is implementation specific.) The DPFD
field in the DSCR may be initialized by the aware
OS and overwritten by an application via the
OS-provided service when per stream control is
unnecessary or unaffordable. The DEP field in the
EA specification when TH=0b01010 may be used
by the application to specify the depth on a
per-stream basis.

The number of elements ahead of the point of
stream use indicated by a given depth value may
differ across implementations, as may the latency
to bring a given element into the cache. To achieve
optimum performance, some experimentation with
different depth values may be necessary.

/// STRIDE OFFSET // ID
0 32 50 56 60       63

Programming Note

A program should use a dcbt/dcbtst instruction
with TH=0b01011 only when the stride is larger
than 128 bytes. Otherwise, consecutive units will
be accessed, so the additional stream information
has no benefit.

Programming Note
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TH=0b01011, then the stream will access consecutive
units of storage.

Interrupts (see Book III) cause all existing data streams
to cease to exist. In addition, depending on the imple-
mentation, certain conditions and events may cause an
existing data stream to cease to exist; for example, in
some implementations an existing data stream ceases
to exist when it comes to the end of a page.
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Programming Note

To obtain the best performance across the widest range
of implementations that support the data stream vari-
ants of dcbt/dcbtst, the programmer should assume
the following model when using those variants.

The processor’s response to a hint that the pro-
gram will probably soon access a given data
stream is to take actions that reduce the latency of
accesses to the first few elements of the stream.
(Such actions may include prefetching cache
blocks into levels of the storage hierarchy that are
“near” the processor.) Thereafter, as the program
accesses each successive element of the stream,
the processor takes latency-reducing actions for
additional elements of the stream, pacing these
actions with the program’s accesses (i.e., taking
the actions for only a limited number of elements
ahead of the element that the program is currently
accessing).

The processor’s response to a hint that the pro-
gram will probably no longer access a given data
stream, or to the cessation of existence of a data
stream, is to stop taking latency-reducing actions
for the stream.

A data stream having finite length ceases to exist
when the latency-reducing actions have been
taken for all elements of the stream.

If the program ceases to need a given data stream
before having accessed all elements of the stream
(always the case for streams having unlimited
length), performance may be improved if the pro-
gram then provides a hint that it will no longer
access the stream (e.g., by executing the appropri-
ate dcbt instruction with TH=0b01010 and
S≠0b00).

At each level of the storage hierarchy that is “near”
the processor, elements of a data stream that is
specified as transient are most likely to be
replaced. As a result, it may be desirable to stag-
ger addresses of streams (choose addresses that
map to different cache congruence classes) to
reduce the likelihood that an element of a transient
stream will be replaced prior to being accessed by
the program.

Processors that comply with versions of the archi-
tecture that do not support the TH field at all treat
TH = 0b01000, 0b01010, and 0b01011 as if TH =
0b00000.

A single set of stream IDs is shared between the
dcbt and dcbtst instructions.

On some implementations, data streams that are
not specified by software may be detected by the
processor. Such data streams are called “hard-
ware-detected data streams”. On some such
implementations, data stream resources
(resources that are used primarily to support data
streams) are shared between software-specified
data streams and hardware-detected data
streams. On these latter implementations, the pro-
gramming model includes the following.

- Software-specified data streams take prece-
dence over hardware-detected data streams
in use of data stream resources.

- The processor’s response to a hint that the
program will probably no longer access a
given data stream, or to the cessation of exist-
ence of a data stream, includes releasing the
associated data stream resources, so that
they can be used by hardware-detected data
streams.
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The latency-reducing actions taken in response to
a program's hints about access to a data stream,
including the depth and urgency parameters, may
vary based on its behavior and on the behavior of
other programs sharing platform resources, as well
as on the design of the platform resources they
use.  Without actually changing the stream specifi-
cation or DSCR parameters, the processor may
adjust its actions (e.g. slow down prefetches or be
more selective choosing them)  based on their
effectiveness and on the availability of storage
bandwidth.  In general, the goal of this variation is
to improve overall system performance and fair-
ness across the set of programs that share
resources.  There often will be a performance ben-
efit, however, from adjusting stream specifications
to the platform and co-resident programs to adjust
for these actions by the processor.

Programming Note
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Programming Note

This Programming Note describes several aspects of
using the data stream variants of the dcbt and dcbtst
instructions.

A non-transient data stream having unlimited
length and which will access consecutive units in
storage can be completely specified, including pro-
viding the hint that the program will probably soon
access it, using one dcbt instruction. The corre-
sponding specification for a data stream having
other attributes requires two or three dcbt/dcbtst
instructions to describe the stream and one addi-
tional dcbt instruction to start the stream. How-
ever, one dcbt instruction with TH=0b01010 and
GO=1 can apply to a set of the data streams
described in the preceding sentence, so the corre-
sponding specification for n such data streams
requires 2×n to 3×n dcbt/dcbtst instructions plus
one dcbt instruction. (There is no need to execute
a dcbt/dcbtst instruction with TH=0b01010 and
S=0b10 for a given stream ID before using the
stream ID for a new data stream; the implicit por-
tion of the hint provided by dcbt/dcbtst instruc-
tions that describe data streams suffices.)

If it is desired that the hint provided by a given
dcbt/dcbtst instruction be provided in program
order with respect to the hint provided by another
dcbt/dcbtst instruction, the two instructions must
be separated by an eieio<S>  or mbar<E> instruc-
tion. For example, if a dcbt instruction with
TH=0b01010 and GO=1 is intended to indicate
that the program will probably soon access
nascent data streams described (completely) by
preceding dcbt/dcbtst instructions, and is
intended not to indicate that the program will prob-
ably soon access nascent data streams described
(completely) by following dcbt/dcbtst instructions,
an eieio<S> or mbar<E> instruction must sepa-

rate the dcbt instruction with GO=1 from the pre-
ceding dcbt/dcbtst instructions, and another
eieio<S> or mbar<E> instruction must separate
that dcbt instruction from the following dcbt/
dcbtst instructions.

In practice, the second eieio<S> or mbar<E>
described above can sometimes be omitted. For
example, if the program consists of an outer loop
that contains the dcbt/dcbtst instructions and an
inner loop that contains the Load or Store instruc-
tions that access the data streams, the character-
istics of the inner loop and of the implementation’s
branch prediction mechanisms may make it highly
unlikely that hints corresponding to a given itera-
tion of the outer loop will be provided out of pro-
gram order with respect to hints corresponding to
the previous iteration of the outer loop. (Also, any
providing of hints out of program order affects only
performance, not program correctness.)

To mitigate the effects of interrupts on data
streams, it may be desirable to specify a given
“logical” data stream as a sequence of shorter,
component data streams. Similar considerations
apply to conditions and events that, depending on
the implementation, may cause an existing data
stream to cease to exist; for example, in some
implementations an existing data stream ceases to
exist when it comes to the end of a virtual page.

If it is desired to specify data streams without
regard to the number of stream IDs provided by the
implementation, stream IDs should be assigned to
data streams in order of decreasing stream impor-
tance (stream ID 0 to the most important stream,
stream ID 1 to the next most important stream,
etc.). This order ensures that the hints for the most
important data streams will be provided.

TH=0b10000

If TH=0b10000, the dcbt instruction provides a hint that
the program will probably soon load from the block con-
taining the byte addressed by EA, and that the pro-
gram’s need for the block will be transient (i.e., the time
interval during which the program accesses the block is
likely to be short).

  

TH=0b10001

If TH=0b10001, the dcbt instruction provides a hint that
the program will probably not access the block contain-
ing the byte addressed by EA for a relatively long
period of time.

The processor’s response to the hint that access to
the block will be transient is to prefetch data into the
cache hierarchy in a way that minimizes the dis-
placement of data that has not been identified as
transient.

Programming Note
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Data Cache Block Allocate  X-form 

dcba RA,RB
[Category: Embedded]

Let the effective address (EA) be the sum (RA|0)+(RB).

This instruction provides a hint that the program will
probably soon store into a portion of the block and the
contents of the rest of the block are not meaningful to
the program. The contents of the block are undefined
when the instruction completes. The hint is ignored if
the block is Caching Inhibited.

This instruction is treated as a Store (see Section 4.3)
except that the instruction is treated as a no-op if exe-
cution of the instruction would cause the system data
storage error handler to be invoked.

Special Registers Altered:
    None

Data Cache Block Touch X-form 

dcbt RA,RB,TH [Category: Server]
dcbt TH,RA,RB [Category: Embedded] 

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbt instruction provides a hint that describes a
block or data stream to which the program may perform
a Load access. The instruction is also used to indicate
imminent access or end of access to described load
and store data streams. A hint that the program will
probably soon load from a given storage location is
ignored if the location is Caching Inhibited or
Guarded<S>.

The only operation that is “caused” by the dcbt instruc-
tion is the providing of the hint. The actions (if any)
taken by the processor in response to the hint are not
considered to be “caused by” or “associated with” the
dcbt instruction (e.g., dcbt is considered not to cause
any data accesses). No means are provided by which
software can synchronize these actions with the execu-
tion of the instruction stream. For example, these
actions are not ordered by the memory barrier created
by a sync instruction.

The dcbt instruction may complete before the opera-
tion it causes has been performed.

The nature of the hint depends, in part, on the value of
the TH field, as specified at the beginning of this sec-
tion. If TH≠0b01010 and TH≠0b01011, this instruction
is treated as a Load (see Section 4.3), except that the
system data storage error handler is not invoked, and
reference and change recording<S> need not be done.

Special Registers Altered:
    None

Extended Mnemonics:

Extended mnemonics are provided for the Data Cache
Block Touch instruction so that it can be coded with the
TH value as the last operand for all categories, and so
that the transient hint can be specified without coding
the TH field explicitly. 

31 /// RA RB 758 /
0 6 11 16 21 31

31 TH RA RB 278 /
0 6 11 16 21 31

Extended: Equivalent to:
dcbtct RA,RB,TH dcbt for TH values of 0b00000 - 

0b00111; 
other TH values are invalid.

dcbtds RA,RB,TH dcbt for TH values of 0b00000 or 
0b01000 - 0b01111;

 other TH values are invalid.
dcbtt RA,RB dcbt for TH value of 0b10000
dcbna RA,RB dcbt for TH value of 0b10001
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Data Cache Block Touch for Store  X-form 

dcbtst RA,RB,TH [Category: Server]
dcbtst TH,RA,RB [Category: Embedded]  

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbtst instruction provides a hint that describes a
block or data stream to which the program may perform
a Store access, or indicates the expected use thereof.
A hint that the program will soon store to a given stor-
age location is ignored if the location is Caching Inhib-
ited or Guarded<S>.

The only operation that is “caused by” the dcbtst
instruction is the providing of the hint. The actions (if
any) taken by the processor in response to the hint are
not considered to be “caused by” or “associated with”
the dcbtst instruction (e.g., dcbtst is considered not to
cause any data accesses). No means are provided by
which software can synchronize these actions with the
execution of the instruction stream. For example, these
actions are not ordered by memory barriers.

The dcbtst instruction may complete before the opera-
tion it causes has been performed.

The nature of the hint depends, in part, on the value of
the TH field, as specified at the beginning of this sec-
tion. If TH≠0b01010 and TH≠0b01011, this instruction
is treated as a Store (see Section 4.3), except that the
system data storage error handler is not invoked, refer-
ence recording<S> need not be done, and change
recording<S> is not done.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics are provided for the Data Cache
Block Touch for Store instruction so that it can be coded
with the TH value as the last operand for all categories,
and so that the transient hint can be specified without
coding the TH field explicitly.

 

New programs should avoid using the dcbt and
dcbtst mnemonics; one of the extended mnemon-
ics should be used exclusively.

<S> If the dcbt mnemonic is used with only two
operands, the TH operand is assumed to be
0b00000.

Processors that comply with versions of the archi-
tecture that precede Version 2.01 do not necessar-
ily ignore the hint provided by dcbt and dcbtst if
the specified block is in storage that is Guarded
<S> and not Caching Inhibited.

See the Programming Notes at the beginning of
this section.

Programming Notes

Programming Note

31 TH RA RB 246 /
0 6 11 16 21 31

Extended: Equivalent to:

dcbtstct RA,RB,TH dcbtst for TH values of 0b00000 
or 0b00000 - 0b00111; 

    other TH values are invalid.

dcbtstds RA,RB,TH dcbtst for TH values of 0b00000 
or 0b01000 - 0b01111;

 other TH values are invalid.

dcbtstt RA,RB dcbtst for TH value of  0b10000.

See the Programming Notes at the beginning of
this section.

Programming Note
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 Data Cache Block set to Zero  X-form 

dcbz RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
n I block size (bytes)
m I log2(n)
ea I EA0:63-m || 

m0
MEM(ea, n) I n0x00

Let the effective address (EA) be the sum (RA|0)+(RB).

All bytes in the block containing the byte addressed by
EA are set to zero.

This instruction is treated as a Store (see Section 4.3).

Special Registers Altered:
None

 

31 /// RA RB 1014 /
0 6 11 16 21 31

dcbz does not cause the block to exist in the data
cache if the block is in storage that is Caching
Inhibited.

For storage that is neither Write Through Required
nor Caching Inhibited, dcbz provides an efficient
means of setting blocks of storage to zero. It can be
used to initialize large areas of such storage, in a
manner that is likely to consume less memory
bandwidth than an equivalent sequence of Store
instructions.

For storage that is either Write Through Required
or Caching Inhibited, dcbz is likely to take signifi-
cantly longer to execute than an equivalent
sequence of Store instructions. For example, on
some implementations dcbz for such storage may
cause the system alignment error handler to be
invoked; on such implementations the system
alignment error handler sets the specified block to
zero using Store instructions.

See Section 5.9.1 of Book III-S and Section 6.11.1
of Book III-E for additional information about dcbz.

Programming Note
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Data Cache Block Store  X-form 

dcbst RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
data cache of any processor and any locations in the
block are considered to be modified there, those loca-
tions are written to main storage, additional locations in
the block may be written to main storage, and the block
ceases to be considered to be modified in that data
cache.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and
the block is in the data cache of this processor and any
locations in the block are considered to be modified
there, those locations are written to main storage, addi-
tional locations in the block may be written to main stor-
age, and the block ceases to be considered to be
modified in that data cache.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Load (see Section 4.3),
except that reference and change recording<S> need
not be done, and it is treated as a write with respect to
debug events.

Special Registers Altered:
None

Data Cache Block Flush  X-form 

dcbf RA,RB,L

Let the effective address (EA) be the sum (RA|0)+(RB).

 L=0

If the block containing the byte addressed by EA is
in storage that is Memory Coherence Required
and a block containing the byte addressed by EA is
in the data cache of any processor and any loca-
tions in the block are considered to be modified
there, those locations are written to main storage
and additional locations in the block may be written
to main storage. The block is invalidated in the
data caches of all processors. 

If the block containing the byte addressed by EA is
in storage that is not Memory Coherence Required
and the block is in the data cache of this processor
and any locations in the block are considered to be
modified there, those locations are written to main
storage and additional locations in the block may
be written to main storage. The block is invalidated
in the data cache of this processor. 

L=1 (“dcbf local”) [Category: Server, Embed-
ded.Phased-In] 

The L=1 form of the dcbf instruction permits a pro-
gram to limit the scope of the “flush” operation to
the data cache of this processor. If the block con-
taining the byte addressed by EA is in the data
cache of this processor, it is removed from this
cache. The coherence of the block is maintained to
the extent required by the Memory Coherence
Required storage attribute. 

L = 3 (“dcbf local primary”) [Category: Server,
Embedded.Phased-In] 

The L=3 form of the dcbf instruction permits a pro-
gram to limit the scope of the “flush” operation to
the primary data cache of this processor. If the
block containing the byte addressed by EA is in the
primary data cache of this processor, it is removed
from this cache. The coherence of the block is
maintained to the extent required by the Memory
Coherence Required storage attribute. 

For the L operand, the value 2 is reserved. The results
of executing a dcbf instruction with L=2 are boundedly
undefined.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited. 

31 /// RA RB 54 /
0 6 11 16 21 31

31 /// L RA RB 86 /
0 6 9 11 16 21 31
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This instruction is treated as a Load (see Section 4.3),
except that reference and change recording<S> need
not be done, and it is treated as a write with respect to
debug events.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics are provided for the Data Cache
Block Flush instruction so that it can be coded with the
L value as part of the mnemonic rather than as a
numeric operand. These are shown as examples with
the instruction. See Appendix A. “Assembler Extended
Mnemonics” on page 827. The extended mnemonics
are shown below.

Except in the dcbf instruction description in this sec-
tion, references to “dcbf” in Books I-III imply L=0
unless otherwise stated or obvious from context;
“dcbfl” is used for L=1 and “dcbflp” is used for L=3. 

  

 

4.3.2.1 Obsolete Data Cache Instruc-
tions [Category: Vector]
The Data Stream Touch (dst), Data Stream Touch for
Store (dstst), and Data Stream Stop (dss) instructions
(primary opcode 31, extended opcodes 342, 374, and
822 respectively), which were proposed for addition to
the Power ISA and were implemented by some proces-
sors, must be treated as no-ops (rather than as illegal
instructions).

The treatment of these instructions is independent of
whether other Vector instructions are available (i.e., is
independent of the contents of MSRVEC<S> (see Book
III-S) or MSRSPV (see Book III-E).

 

4.3.3 “or” Instruction

“or” Cache Control Hint
or 26,26,26

This form of or provides a hint that stores caused
by preceding Store and dcbz instructions should
be performed with respect to other processors and
mechanisms as soon as is feasible. 

Extended Mnemonics:

Additional extended mnemonic for the or hint:

“miso” is short for “make it so.”

Extended: Equivalent to:
dcbf RA,RB dcbf RA,RB,0
dcbfl RA,RB dcbf RA,RB,1
dcbflp RA,RB dcbf RA,RB,3

dcbf serves as both a basic and an extended mne-
monic. The Assembler will recognize a dcbf mne-
monic with three operands as the basic form, and a
dcbf mnemonic with two operands as the extended
form. In the extended form the L operand is omitted
and assumed to be 0. 

dcbf with L=1 can be used to provide a hint that a
block in this processor’s data cache will not be
reused soon. 

dcbf with L=3 can be used to flush a block from the
processor’s primary data cache but reduce the
latency of a subsequent access. For example, the
block may be evicted from the primary data cache
but a copy retained in a lower level of the cache
hierarchy.

Programs which manage coherence in software
must use dcbf with L=0.

Programming Note

Programming Note

These instructions merely provided hints, and thus
were permitted to be treated as no-ops even on
processors that implemented them.

The treatment of these instructions is independent
of whether other Vector instructions are available
because, on processors that implemented the
instructions, the instructions were available even
when other Vector instructions were not.

The extended mnemonics for these instructions
were dstt, dststt, and dssall. 

Programming Note

Extended: Equivalent to:
miso or 26,26,26
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This form of the or instruction can be used to
reduce latency in producer-consumer applications
by requesting that modified data be made visible to
other processors quickly. In this example it is
assumed that the base register is GPR3. 

Producer:
addi r1,r0,0x1234
sth r1,0x1000(r3) # store data value 0x1234
lwsync            # order data store before
   flag store
addi r2,r0,0x0001
stb r2,0x1002(r3) # store nonzero flag byte
or r26,r26,r26    # miso

p_loop:
lbz r2,0x1002(r3) # load flag byte
andi. r2,r2,0x00FF
bne p_loop        # wait for consumer to clear
                  # flag

Consumer:
c_loop:
lbz r2,0x1002(r3) # load flag byte
andi. r2,r2,0x00FF
beq c_loop        # wait for producer to set
                  # flag to nonzero
lwsync            # order flag load before
                  # data load
lhz r1,0x1000(r3) # load data value
lwsync            # order data load before 
                  # flag store
addi r2,r0,0x0000
stb r2,0x1002(r3) # clear  flag byte
or r26,r26,r26    # miso

Warning: Other forms of or Rx,Rx,Rx that are not
described in this section and in Section 3.2 may
also cause program priority to change. Use of
these forms should be avoided except when soft-
ware explicitly intends to alter program priority. If a
no-op is needed, the preferred no-op (ori 0,0,0)
should be used.

Programming Note
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4.4 Synchronization Instructions

The synchronization instructions are used to ensure
that certain instructions have completed before other

instructions are initiated, or to control storage access
ordering, or to support debug operations.

4.4.1 Instruction Synchronize 
Instruction

Instruction Synchronize  XL-form 

isync 

Executing an isync instruction ensures that all instruc-
tions preceding the isync instruction have completed
before the isync instruction completes, and that no
subsequent instructions are initiated until after the
isync instruction completes. It also ensures that all
instruction cache block invalidations caused by icbi
instructions preceding the isync instruction have been
performed with respect to the processor executing the
isync instruction, and then causes any prefetched
instructions to be discarded.

Except as described in the preceding sentence, the
isync instruction may complete before storage
accesses associated with instructions preceding the
isync instruction have been performed.

This instruction is context synchronizing (see Book III).

Special Registers Altered:
None

4.4.2 Load and Reserve and Store 
Conditional Instructions
The Load And Reserve and Store Conditional instruc-
tions can be used to construct a sequence of instruc-
tions that appears to perform an atomic update
operation on an aligned storage location. See
Section 1.7.3, “Atomic Update” for additional informa-
tion about these instructions.

The Load And Reserve and Store Conditional instruc-
tions are fixed-point Storage Access instructions; see
Section 3.3.1, “Fixed-Point Storage Access Instruc-
tions”, in Book I.

The storage location specified by the Load And
Reserve and Store Conditional instructions must be in
storage that is Memory Coherence Required if the loca-
tion may be modified by another processor or mecha-
nism. If the specified location is in storage that is Write
Through Required or Caching Inhibited, the system
data storage error handler is invoked for the Server
environment and may be invoked for the Embedded
environment.

The Load and Reserve instructions include an Exclu-
sive Access hint (EH), which can be used to indicate
that the instruction sequence being executed is imple-
menting one of two types of algorithms:

Atomic Update (EH=0)
This hint indicates that the program is using a fetch and
operate (e.g., fetch and add) or some similar algorithm
and that all programs accessing the shared variable are
likely to use a similar operation to access the shared
variable for some time.

Exclusive Access (EH=1)
This hint indicates that the program is attempting to
acquire a lock and if it succeeds, will perform another
store to the lock variable (releasing the lock) before
another program attempts to modify the lock variable.

 

19 /// /// /// 150 /
0 6 11 16 21 31

The Memory Coherence Required attribute on
other processors and mechanisms ensures that
their stores to the reservation granule will cause the
reservation created by the Load And Reserve
instruction to be lost.

Programming Note
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Load Byte And Reserve Indexed  X-form 

lbarx RT,RA,RB,EH

if RA = 0 then b I 0
else           b I (RA)
EA I b +(RB)
RESERVE I 1
RESERVE_LENGTH I 1

RESERVE_ADDR I real_addr(EA)
RT I 560 || MEM(EA, 1)

Let the effective address (EA) be the sum (RA|0)+(RB).
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

This instruction creates a reservation for use by a
stbcx. instruction. A real address computed from the
EA as described in Section 1.7.3.1 is associated with
the reservation, and replaces any address previously
associated with the reservation. A length of 1 byte is
associated with the reservation, and replaces any
length previously associated with the reservation.

The value of EH provides a hint as to whether the pro-
gram will perform a subsequent store to the byte in
storage addressed by EA before some other processor
attempts to modify it.

0 Other programs might attempt to modify
the byte in storage addressed by EA
regardless of the result of the correspond-
ing stbcx. instruction.

1 Other programs will not attempt to modify
the byte in storage addressed by EA until
the program that has acquired the lock
performs a subsequent store releasing the
lock.

Special Registers Altered:
None

Because the Load And Reserve and Store Condi-
tional instructions have implementation dependen-
cies (e.g., the granularity at which reservations are
managed), they must be used with care. The oper-
ating system should provide system library pro-
grams that use these instructions to implement the
high-level synchronization functions (Test and Set,
Compare and Swap, locking, etc.; see Appendix B)
that are needed by application programs. Applica-
tion programs should use these library programs,
rather than use the Load And Reserve and Store
Conditional instructions directly.

EH = 1 should be used when the program is obtain-
ing a lock variable which it will subsequently
release before another program attempts to per-
form a store to it. When contention for a lock is sig-
nificant, using this hint may reduce the number of
times a cache block is transferred between proces-
sor caches.

EH = 0 should be used when all accesses to a
mutex variable are performed using an instruction
sequence with Load and Reserve followed by Store
Conditional (e.g., emulating atomic update primi-
tives such as “Fetch and Add;” see Appendix B).
The processor may use this hint to optimize the
cache to cache transfer of the block containing the
mutex variable, thus reducing the latency of per-
forming an operation such as ‘Fetch and Add’. 

Either value of the EH field is appropriate for a
Load and Reserve instruction that is intended to
establish a reservation for a subsequent waitrsv
and not a subsequent Store Conditional instruction.

Warning: On some processors that comply with
versions of the architecture that precede Version
2.00, executing a Load And Reserve instruction in
which EH = 1 will cause the illegal instruction error
handler to be invoked.

31 RT RA RB 52 EH
0 6 11 16 21 31

Programming Note

Programming Note

Engineering NoteProgramming NoteProgramming Note

Programming Note

lbarx serves as both a basic and an extended
mnemonic. The Assembler will recognize a lbarx
mnemonic with four operands as the basic form,
and a lbarx mnemonic with three operands as the
extended form. In the extended form the EH oper-
and is omitted and assumed to be 0.

Programming Note
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Load Halfword And Reserve Indexed  
X-form 

lharx RT,RA,RB,EH

if RA = 0 then b I 0
else           b I (RA)
EA I b +(RB)
RESERVE I 1
RESERVE_LENGTH I 2
RESERVE_ADDR I real_addr(EA)
RT I 480 || MEM(EA, 2)

Let the effective address (EA) be the sum (RA|0)+(RB).
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

This instruction creates a reservation for use by a
sthcx. instruction. A real address computed from the
EA as described in Section 1.7.3.1 is associated with
the reservation, and replaces any address previously
associated with the reservation. A length of 2 bytes is
associated with the reservation, and replaces any
length previously associated with the reservation.

The value of EH provides a hint as to whether the pro-
gram will perform a subsequent store to the halfword in
storage addressed by EA before some other processor
attempts to modify it.

0 Other programs might attempt to modify
the halfword in storage addressed by EA
regardless of the result of the correspond-
ing sthcx. instruction.

1 Other programs will not attempt to modify
the halfword in storage addressed by EA
until the program that has acquired the
lock performs a subsequent store releas-
ing the lock.

EA must be a multiple of 2. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
None

Load Word And Reserve Indexed  X-form 

lwarx RT,RA,RB,EH

if RA = 0 then b I 0
else           b I (RA)
EA I b +(RB)
RESERVE I 1
RESERVE_LENGTH I 4
RESERVE_ADDR I real_addr(EA)
RT I 320 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0)+(RB).
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

This instruction creates a reservation for use by a
stwcx. instruction. A real address computed from the
EA as described in Section 1.7.3.1 is associated with
the reservation, and replaces any address previously
associated with the reservation. A length of 4 bytes is
associated with the reservation, and replaces any
length previously associated with the reservation.

The value of EH provides a hint as to whether the pro-
gram will perform a subsequent store to the word in
storage addressed by EA before some other processor
attempts to modify it.

0 Other programs might attempt to modify
the word in storage addressed by EA
regardless of the result of the correspond-
ing stwcx. instruction.

1 Other programs will not attempt to modify
the word in storage addressed by EA until
the program that has acquired the lock
performs a subsequent store releasing the
lock.

EA must be a multiple of 4. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
None

31 RT RA RB 116 EH
0 6 11 16 21 31

lharx serves as both a basic and an extended
mnemonic. The Assembler will recognize a lharx
mnemonic with four operands as the basic form,
and a lharx mnemonic with three operands as the
extended form. In the extended form the EH oper-
and is omitted and assumed to be 0.

Programming Note

31 RT RA RB 20 EH
0 6 11 16 21 31

lwarx serves as both a basic and an extended
mnemonic. The Assembler will recognize a lwarx
mnemonic with four operands as the basic form,
and a lwarx mnemonic with three operands as the
extended form. In the extended form the EH oper-
and is omitted and assumed to be 0.

Programming Note
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Store Byte Conditional Indexed  X-form

stbcx. RS,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
if RESERVE then
  if RESERVE_LENGTH = 1 then
    if RESERVE_ADDR = real_addr(EA) then
      MEM(EA, 1) I (RS)56:63
      undefined_case  I 0
      store_performed I 1
    else
      if SCPM category supported then
        z I smallest real page size supported by 
            implementation
        if RESERVE_ADDR ÷ z = real_addr(EA) ÷ z then
          undefined_case  I 1
        else
          undefined_case  I 0
          store_performed I 0
      else
        undefined_case  I 1
  else 
    undefined_case I 1
else
  undefined_case  I 0
  store_performed I 0
if undefined_case then
  u1 I undefined 1-bit value
  if u1 then
    MEM(EA, 1) I (RS)56:63
  u2 I undefined 1-bit value
  CR0 I 0b00 || u2 || XERSO
else
  CR0 I 0b00 || store_performed || XERSO
RESERVE I 0

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists, the length associated with the
reservation is 1 byte, and the real storage location
specified by the stbcx. is the same as the real storage
location specified by the lbarx instruction that estab-
lished the reservation, (RS)56:63 are stored into the byte
in storage addressed by EA.

If a reservation exists, the length associated with the
reservation is 1 byte, and the real storage location
specified by the stbcx. is not the same as the real stor-
age location specified by the lbarx instruction that
established the reservation, the following applies.

If the Store Conditional Page Mobility category is
supported, the following applies. Let z denote an
aligned block of real storage whose size is the
smallest real page size supported by the imple-
mentation. If the real storage location specified by
the stbcx. is in the same z as the real storage
location specified by the lbarx instruction that
established the reservation, it is undefined whether

(RS)56:63 are stored into the byte in storage
addressed by EA. Otherwise, no store is per-
formed.
If the Store Conditional Page Mobility category is
not supported, it is undefined whether (RS)56:63
are stored into the byte in storage addressed by
EA.

If a reservation exists and the length associated with
the reservation is not 1 byte, it is undefined whether
(RS)56:63 are stored into the byte in storage addressed
by EA.

If a reservation does not exist, no store is performed.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except that if,
per the preceding description, it is undefined whether
the store is performed, the value of n is undefined (and
need not reflect whether the store was performed).

CR0LT GT EQ SO = 0b00 || n || XERSO

The reservation is cleared.

Special Registers Altered:
CR0

31 RS RA RB 694 1
0 6 11 16 21 31
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Store Halfword Conditional Indexed  
X-form 

sthcx. RS,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
if RESERVE then
  if RESERVE_LENGTH = 2 then
    if RESERVE_ADDR = real_addr(EA) then
      MEM(EA, 2) I (RS)48:63
      undefined_case  I 0
      store_performed I 1
    else
      if SCPM category supported then
        z I smallest real page size supported by 
            implementation
        if RESERVE_ADDR ÷ z = real_addr(EA) ÷ z then
          undefined_case  I 1
        else
          undefined_case  I 0
          store_performed I 0
      else
        undefined_case  I 1
  else 
    undefined_case I 1
else
  undefined_case  I 0
  store_performed I 0
if undefined_case then
  u1 I undefined 1-bit value
  if u1 then
    MEM(EA, 2) I (RS)48:63
  u2 I undefined 1-bit value
  CR0 I 0b00 || u2 || XERSO
else
  CR0 I 0b00 || store_performed || XERSO
RESERVE I 0

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists, the length associated with the
reservation is 2 bytes, and the real storage location
specified by the sthcx. is the same as the real storage
location specified by the lharx instruction that estab-
lished the reservation, (RS)48:63 are stored into the
halfword in storage addressed by EA.

If a reservation exists, the length associated with the
reservation is 2 bytes, and the real storage location
specified by the sthcx. is not the same as the real stor-
age location specified by the lharx instruction that
established the reservation, the following applies.

If the Store Conditional Page Mobility category is
supported, the following applies. Let z denote an
aligned block of real storage whose size is the
smallest real page size supported by the imple-
mentation. If the real storage location specified by
the sthcx. is in the same z as the real storage
location specified by the lharx instruction that

established the reservation, it is undefined whether
(RS)48:63 are stored into the halfword in storage
addressed by EA. Otherwise, no store is per-
formed.
If the Store Conditional Page Mobility category is
not supported, it is undefined whether (RS)48:63
are stored into the halfword in storage addressed
by EA.

If a reservation exists and the length associated with
the reservation is not 2 bytes, it is undefined whether
(RS)48:63 are stored into the halfword in storage
addressed by EA.

If a reservation does not exist, no store is performed.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except that if,
per the preceding description, it is undefined whether
the store is performed, the value of n is undefined (and
need not reflect whether the store was performed).

CR0LT GT EQ SO = 0b00 || n || XERSO

The reservation is cleared.

EA must be a multiple of 2. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
CR0

31 RS RA RB 726 1
0 6 11 16 21 31
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Store Word Conditional Indexed  X-form 

stwcx. RS,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
if RESERVE then
  if RESERVE_LENGTH = 4 then
    if RESERVE_ADDR = real_addr(EA) then
      MEM(EA, 4) I (RS)32:63
      undefined_case  I 0
      store_performed I 1
    else
      if SCPM category supported then
        z I smallest real page size supported by 
            implementation
        if RESERVE_ADDR ÷ z = real_addr(EA) ÷ z then
          undefined_case  I 1
        else
          undefined_case  I 0
          store_performed I 0
      else
        undefined_case  I 1
  else 
    undefined_case I 1
else
  undefined_case  I 0
  store_performed I 0
if undefined_case then
  u1 I undefined 1-bit value
  if u1 then
    MEM(EA, 4) I (RS)32:63
  u2 I undefined 1-bit value
  CR0 I 0b00 || u2 || XERSO
else
  CR0 I 0b00 || store_performed || XERSO
RESERVE I 0

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists, the length associated with the
reservation is 4 bytes, and the real storage location
specified by the stwcx. is the same as the real storage
location specified by the lwarx instruction that estab-
lished the reservation, (RS)32:63 are stored into the
word in storage addressed by EA.

If a reservation exists, the length associated with the
reservation is 4 bytes, and the real storage location
specified by the stwcx. is not the same as the real stor-
age location specified by the lwarx instruction that
established the reservation, the following applies.

If the Store Conditional Page Mobility category is
supported, the following applies. Let z denote an
aligned block of real storage whose size is the
smallest real page size supported by the imple-
mentation. If the real storage location specified by
the stwcx. is in the same z as the real storage
location specified by the lwarx instruction that
established the reservation, it is undefined whether

(RS)32:63 are stored into the word in storage
addressed by EA. Otherwise, no store is per-
formed.
If the Store Conditional Page Mobility category is
not supported, it is undefined whether (RS)32:63
are stored into the word in storage addressed by
EA.

If a reservation exists and the length associated with
the reservation is not 4 bytes, it is undefined whether
(RS)32:63 are stored into the word in storage addressed
by EA.

If a reservation does not exist, no store is performed.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except that if,
per the preceding description, it is undefined whether
the store is performed, the value of n is undefined (and
need not reflect whether the store was performed).

CR0LT GT EQ SO = 0b00 || n || XERSO

The reservation is cleared.

EA must be a multiple of 4. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
CR0

31 RS RA RB 150 1
0 6 11 16 21 31
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4.4.2.1 64-Bit Load and Reserve and Store Conditional Instructions [Category: 64-Bit]

Load Doubleword And Reserve Indexed
X-form 

ldarx RT,RA,RB,EH

if RA = 0 then b I 0
else           b I (RA)
EA I b +(RB)
RESERVE I 1
RESERVE_LENGTH I 8
RESERVE_ADDR I real_addr(EA)
RT I MEM(EA, 8)

Let the effective address (EA) be the sum (RA|0)+(RB).
The doubleword in storage addressed by EA is loaded
into RT.

This instruction creates a reservation for use by a
stdcx. instruction. A real address computed from the
EA as described in Section 1.7.3.1 is associated with
the reservation, and replaces any address previously
associated with the reservation. A length of 8 bytes is
associated with the reservation, and replaces any
length previously associated with the reservation.

The value of EH provides a hint as to whether the pro-
gram will perform a subsequent store to the doubleword
in storage addressed by EA before some other proces-
sor attempts to modify it.

0 Other programs might attempt to modify
the doubleword in storage addressed by
EA regardless of the result of the corre-
sponding stdcx. instruction.

1 Other programs will not attempt to modify
the doubleword in storage addressed by
EA until the program that has acquired the
lock performs a subsequent store releas-
ing the lock.

EA must be a multiple of 8. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
None

Store Doubleword Conditional Indexed  
X-form 

stdcx. RS,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
if RESERVE then
  if RESERVE_LENGTH = 8 then
    if RESERVE_ADDR = real_addr(EA) then
      MEM(EA, 8) I (RS)
      undefined_case  I 0
      store_performed I 1
    else
      if SCPM category supported then
        z I smallest real page size supported by 
            implementation
        if RESERVE_ADDR ÷ z = real_addr(EA) ÷ z then
          undefined_case  I 1
        else
          undefined_case  I 0
          store_performed I 0
      else
        undefined_case  I 1
  else 
    undefined_case I 1
else
  undefined_case  I 0
  store_performed I 0
if undefined_case then
  u1 I undefined 1-bit value
  if u1 then
    MEM(EA, 8) I (RS)
  u2 I undefined 1-bit value
  CR0 I 0b00 || u2 || XERSO
else
  CR0 I 0b00 || store_performed || XERSO
RESERVE I 0

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists, the length associated with the
reservation is 8 bytes, and the real storage location
specified by the stdcx. is the same as the real storage
location specified by the ldarx instruction that estab-
lished the reservation, (RS) is stored into the double-
word in storage addressed by EA.

If a reservation exists, the length associated with the
reservation is 8 bytes, and the real storage location
specified by the stdcx. is not the same as the real stor-
age location specified by the ldarx instruction that
established the reservation, the following applies.

 
If the Store Conditional Page Mobility category is
supported, the following applies. Let z denote an
aligned block of real storage whose size is the

31 RT RA RB 84 EH
0 6 11 16 21 31

ldarx serves as both a basic and an extended
mnemonic. The Assembler will recognize a ldarx
mnemonic with four operands as the basic form,
and a ldarx mnemonic with three operands as the
extended form.  In the extended form the EH oper-
and is omitted and assumed to be 0.

Programming Note

31 RS RA RB 214 1
0 6 11 16 21 31
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smallest real page size supported by the imple-
mentation. If the real storage location specified by
the stdcx. is in the same z as the real storage
location specified by the ldarx instruction that
established the reservation, it is undefined whether
(RS) is stored into the doubleword in storage
addressed by EA. Otherwise, no store is per-
formed. 
If the Store Conditional Page Mobility category is
not supported, it is undefined whether (RS) is
stored into the doubleword in storage addressed
by EA.

If a reservation exists and the length associated with
the reservation is not 8 bytes, it is undefined whether
(RS) is stored into the doubleword in storage
addressed by EA.

If a reservation does not exist, no store is performed.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except that if,
per the preceding description, it is undefined whether
the store is performed, the value of n is undefined (and
need not reflect whether the store was performed).

CR0LT GT EQ SO = 0b00 || n || XERSO

The reservation is cleared.

EA must be a multiple of 8. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
CR0
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4.4.2.2 128-bit Load and Reserve Store Conditional Instructions [Category: Load/
Store Quadword]

For lqarx, the quadword in storage addressed by EA is
loaded into an even-odd pair of GPRs as follows. In
Big-Endian mode, the even-numbered GPR is loaded
with the doubleword from storage addressed by EA and
the odd-numbered GPR is loaded with the doubleword
addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is loaded with the byte-reversed
doubleword from storage addressed by EA+8 and the
odd-numbered GPR is loaded with the byte-reversed
doubleword addressed by EA.

In the preferred form of the Load Quadword instruction
RA ≠ RTp+1 and RB ≠ RTp+1.

For stqcx., the contents of an even-odd pair of GPRs is
stored into the quadword in storage addressed by EA
as follows. In Big-Endian mode, the even-numbered
GPR is stored into the doubleword in storage
addressed by EA and the odd-numbered GPR is stored
into the doubleword addressed by EA+8. In Lit-
tle-Endian mode, the even-numbered GPR is stored
byte-reversed into the doubleword in storage
addressed by EA+8 and the odd-numbered GPR is
stored byte-reversed into the doubleword addressed by
EA.

Load Quadword And Reserve Indexed
X-form 

lqarx RTp,RA,RB,EH

if RA = 0 then b I 0
else           b I (RA)
EA I b +(RB)
RESERVE I 1
RESERVE_LENGTH I 16
RESERVE_ADDR I real_addr(EA)
RTp I MEM(EA, 16)

Let the effective address (EA) be the sum (RA|0)+(RB).
The quadword in storage addressed by EA is loaded
into RTp.

This instruction creates a reservation for use by a
stqcx. instruction. A real address computed from the
EA as described in Section 1.7.3.1 is associated with
the reservation, and replaces any address previously
associated with the reservation. A length of 16 bytes is
associated with the reservation, and replaces any
length previously associated with the reservation.

The value of EH provides a hint as to whether the pro-
gram will perform a subsequent store to the doubleword
in storage addressed by EA before some other proces-
sor attempts to modify it.

0 Other programs might attempt to modify
the doubleword in storage addressed by
EA regardless of the result of the corre-
sponding stqcx. instruction.

1 Other programs will not attempt to modify
the doubleword in storage addressed by
EA until the program that has acquired the
lock performs a subsequent store releas-
ing the lock.

EA must be a multiple of 16. If it is not, either the sys-
tem alignment error handler is invoked or the results
are boundedly undefined.

If RTp is odd, RTp=RA, or RTp=RB the instruction form
is invalid. If RTp=RA or RTp=RB, an attempt to execute
this instruction will invoke the system illegal instruction
error handler. (The RTp=RA case includes the case of
RTp=RA=0.)

Special Registers Altered:
None

31 RTp RA RB 276 EH
0 6 11 16 21 31

lqarx serves as both a basic and an extended
mnemonic. The Assembler will recognize a lqarx
mnemonic with four operands as the basic form,
and a lqarx mnemonic with three operands as the
extended form. In the extended form the EH oper-
and is omitted and assumed to be 0.

Programming Note
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Store Quadword Conditional Indexed  
X-form 

stqcx. RSp,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
if RESERVE then
  if RESERVE_LENGTH = 16 then
    if RESERVE_ADDR = real_addr(EA) then
      MEM(EA, 16) I (RSp)
      undefined_case  I 0
      store_performed I 1
    else
      if SCPM category supported then
        z I smallest real page size supported by 
            implementation
        if RESERVE_ADDR ÷ z = real_addr(EA) ÷ z then
          undefined_case  I 1
        else
          undefined_case  I 0
          store_performed I 0
      else
        undefined_case  I 1
  else 
    undefined_case I 1
else
  undefined_case  I 0
  store_performed I 0
if undefined_case then
  u1 I undefined 1-bit value
  if u1 then
    MEM(EA, 16) I (RSp)
  u2 I undefined 1-bit value
  CR0 I 0b00 || u2 || XERSO
else
  CR0 I 0b00 || store_performed || XERSO
RESERVE I 0

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists, the length associated with the
reservation is 16 bytes, and the real storage location
specified by the stqcx. is the same as the real storage
location specified by the lqarx instruction that estab-
lished the reservation, (RSp) is stored into the quad-
word in storage addressed by EA.

If a reservation exists, the length associated with the
reservation is 16 bytes, and the real storage location
specified by the stqcx. is not the same as the real stor-
age location specified by the lqarx instruction that
established the reservation, the following applies.

 If the Store Conditional Page Mobility category is
supported, the following applies. Let z denote an
aligned block of real storage whose size is the
smallest real page size supported by the imple-
mentation. If the real storage location specified by
the stqcx. is in the same z as the real storage
location specified by the lqarx instruction that

established the reservation, it is undefined whether
(RSp) is stored into the quadword in storage
addressed by EA. Otherwise, no store is per-
formed. 
If the Store Conditional Page Mobility category is
not supported, it is undefined whether (RSp) is
stored into the quadword in storage addressed by
EA.

If a reservation exists and the length associated with
the reservation is not 16 bytes, it is undefined whether
(RSp) is stored into the quadword in storage addressed
by EA.

If a reservation does not exist, no store is performed.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except that if,
per the preceding description, it is undefined whether
the store is performed, the value of n is undefined (and
need not reflect whether the store was performed).

CR0LT GT EQ SO = 0b00 || n || XERSO

The reservation is cleared.

EA must be a multiple of 16. If it is not, either the sys-
tem alignment error handler is invoked or the results
are boundedly undefined.

If RSp is odd, the instruction form is invalid.

Special Registers Altered:

CR0

31 RSp RA RB 182 1
0 6 11 16 21 31
Chapter 4. Storage Control Instructions 785



Version 2.07 B
4.4.3 Memory Barrier Instructions
The Memory Barrier instructions can be used to control
the order in which storage accesses are performed.
See Section 1.8, “Transactions [Category: Transac-
tional Memory]” for a description of how the Memory
Barrier instructions interact with transactions.  Addi-
tional information about these instructions and about
related aspects of storage management can be found
in Book III.

Extended mnemonics for Synchronize
Extended mnemonics are provided for the Synchronize
instruction so that it can be supported by assemblers
that recognize only the msync<E> mnemonic and so
that it can be coded with the L value as part of the mne-
monic rather than as a numeric operand. These are
shown as examples with the instruction. See Appendix
A. “Assembler Extended Mnemonics” on page 827.
The only reason for the msync<E> mnemonic is com-
patibility with Book E assembler code.

Synchronize  X-form 

sync L
sync L, E  [Category: Elemental Memory Barri-
ers]

if EMB category supported then EE I E
else EE I 0b0000
if EE ≠ 0b0000 then     
if EE = 0b1xxx then enforce_barrier(mbll)
if EE = 0bx1xx then enforce_barrier(mbls)
if EE = 0bxx1x then enforce_barrier(mbsl)
if EE = 0bxxx1 then enforce_barrier(mbss)

else switch(L)
 case(0): hwsync
 case(1): lwsync
 case(2): ptesync<S> or hwsync<E>

The sync instruction creates a memory barrier (see
Section 1.7.1). The set of storage accesses that is
ordered by the memory barrier depends on the con-
tents of the L field and on a 4-bit Effective E (EE) value
determined as follows.

For implementations that support the Elemental
Memoroy Barriers category, EE is equal to the con-
tents of the E field. 
For implementations that do not support the Ele-
mental Memory Barriers category, EE is 0b0000.

EE≠0b0000

The memory barrier provides an ordering function
for one or more distinct pairings of accesses to
storage that is Memory Coherence Required and
is neither Write Through Required nor Caching
Inhibited.  Each EE bit that is set to 1 selects a
pairing, as described below.

EE0=1 (mbll)
The “load load” memory barrier is provided.
Applicable pairs are all pairs ai,bj of such
accesses in which both ai and bj are accesses
caused by a Load instruction.

EE1=1 (mbls)
The “load store” memory barrier is provided.
Applicable  pairs are all pairs ai,bj of such
accesses in which ai is an access caused by a
Load instruction and bj is an access caused by
a Store or dcbz instruction.
EE2=1 (mbsl)
The “store load” memory barrier is provided.
Applicable pairs are all pairs ai,bj of such
accesses in which ai is an access caused by a
Store or dcbz instruction and bj is an access
caused by a Load instruction.
EE3=1 (mbss)
The “store store” memory barrier is provided.
Applicable pairs are all pairs ai,bj of such
accesses in which both ai and bj are accesses
caused by a Store or dcbz instruction.

EE=0b0000

L=0 (“heavyweight sync”)
The memory barrier provides an ordering
function for the storage accesses associated
wth all instructions that are executed by the
processor executing the sync instruction.  The
applicable pairs are all pairs ai,bj of storage
accesses in which bj is a data access, except
that if ai is the storage access caused by an
icbi instruction then bj may be performed with
respect to the processor executing the sync
instruction before ai is performed with respect
to that processor.

L=1 (“lightweight sync”)
The memory barrier provides an ordering
function for the storage accesses caused by
Load, Store, and dcbz instructions that are
executed by the processor executing the sync
instruction and for which the specified storage
location is in  storage that is Memory Coher-
ence Required and is neither Write Through
Required nor Caching Inhibited. The applica-
ble pairs are all pairs ai,bj of storage accesses
except those in which ai is an access caused

31 /// L / E ///
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by a Store or dcbz instruction and bj is an
access caused by a Load instruction.

L=2<S> (“ptesync”)
The set of storage accesses that is ordered by
the memory barrier is described in
Section 5.9.2 of Book III-S, as are additional
properties of the sync instruction with L=2.

The ordering done by the memory barrier is cumulative
(regardless of the EE and L values).

If L=0 (or L=2<S>), the sync instruction has the follow-
ing additional properties.

Executing the sync instruction ensures that all
instructions preceding the sync instruction have
completed before the sync instruction completes,
and that no subsequent instructions are initiated
until after the sync instruction completes.

The sync instruction is execution synchronizing
(see Book III). However, address translation and
reference and change recording<S> (see Book III)
associated with subsequent instructions may be
performed before the sync instruction completes.

The memory barrier provides the additional order-
ing function such that if a given instruction that is
the result of a store in set B is executed, all appli-
cable storage accesses in set A have been per-
formed with respect to the processor executing the
instruction to the extent required by the associated
memory coherence properties. The single excep-
tion is that any storage access in set A that is
caused by an icbi instruction executed by the pro-
cessor executing the sync instruction (P1) may not
have been performed with respect to P1 (see the
description of the icbi instruction on page 762).

The cumulative properties of the barrier apply to
the execution of the given instruction as they would
to a load that returned a value that was the result
of a store in set B. 

  

The value L=3 is reserved.

Figure 5 shows the valid combinations of EE and L val-
ues, as well as the resulting memory barrier for imple-
mentations that support the Elemental Memory
Barriers category and for implementations that do not.
If any other combination is used, the instruction form is
invalid. 

  

  

Section 1.9 contains a detailed description of
how to modify instructions such that a
well-defined result is obtained.

Programming Note

In Figure 5, combinations in which EE2=1 also
have L=0 (hwsync) to ensure compatibility with
implementations that do not support the Elemental
Memory Barriers category (including all implemen-
tations that comply with a version of the architec-
ture that precedes Version 2.07). (For
implementations that do not support the Elemental
Memory Barriers category, the only combinations
that can occur are those in the last three lines.)

Assemblers that support the E field of the instruc-
tion should apply Figure 5 using the supplied E
value as EE, and report uses of invalid combina-
tions of EE and L values as errors.

Programming Note

Assembler Note
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Figure 5. Valid combinations of EE and L values

The sync instruction may complete before storage
accesses associated with instructions preceding the
sync instruction have been performed.

See Section 6.11.3 of Book III-E for additional informa-
tion related to sync with L=0 for the Embedded envi-
ronment.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Synchronize: 

Except in the sync instruction description in this sec-
tion, references to “sync” in Books I-III imply L=0
unless otherwise stated or obvious from context; the
appropriate extended mnemonics are used when other
L values are intended.  Throughout Books I-III, refer-
ences to the L field imply EE=0b0000 unless otherwise
stated or obvious from context; the E field is mentioned

explicitly when other EE values are intended.  Some
programming examples and recommendations assume
a common programming model that does not include
the Elemental Memory Barriers category.  Improved
performance may be achieved through the use of ele-
mental memory barriers in many cases.

  

EE L Intended barrier for implementa-
tions that support the Elemental 

Memory Barriers category

Intended barrier for implementa-
tions that do not support the Ele-
mental Memory Barriers category

0001 1 mbss lwsync

0010 0 mbsl hwsync

0011 0 mbsl+mbss hwsync

0100 1 mbls lwsync

0101 1 mbls+mbss lwsync

0110 0 mbls+mbsl hwsync

0111 0 mbls+mbsl+mbss hwsync

1000 1 mbll lwsync

1001 1 mbll+mbss lwsync

1010 0 mbll+mbsl hwsync

1011 0 mbll+mbsl+mbss hwsync

1100 1 mbll+mbls lwsync

1101 1 mbll+mbls+mbss lwsync

1110 0 mbll+mbls+mbsl hwsync

1111 0 mbll+mbls+mbsl+mbss hwsync

0000 0 hwsync hwsync

0000 1 lwsync lwsync

0000 2 ptesync<S> or hwsync<E> ptesync<S> or hwsync<E>

Other combinations cause the instruction form to be invalid.

Extended: Equivalent to:
sync sync   0
msync<E> sync   0
lwsync sync   1
ptesync<S> sync   2

sync serves as both a basic and an extended mne-
monic. Assemblers that support the E field of the
instruction will recognize a sync  mnemonic with
two operands as the basic form, and a sync mne-
monic with one or no operands as extended forms.
In the one-operand extended form the E operand is
omitted and assumed to be 0b0000. In the no-oper-
and extended form the E and L operands are both
omitted and assumed to be 0b0000 and 0 respec-
tively. Assemblers that do not support the E field of
the instruction will recognize a sync mnemonic
with one operand as the basic form, and a sync
mnemonic with no operand as the extended form.
In the extended form the L operand is omitted and
assumed to be 0.
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The sync instruction can be used to ensure that all
stores into a data structure, caused by Store
instructions executed in a “critical section” of a pro-
gram, will be performed with respect to another
processor before the store that releases the lock is
performed with respect to that processor; see
Section B.2, “Lock Acquisition and Release, and
Related Techniques” on page 833.

 

The memory barrier created by a sync instruction
with L=1 does not order implicit storage accesses
or instruction fetches.  The memory barrier created
by a sync instruction with L=0 (or L=2) orders
implicit storage accesses and instruction fetches
associated with instructions preceding the sync
instruction but not those associated with instruc-
tions following the sync instruction.

In order to obtain the best performance across the
widest range of implementations, the programmer
should use the sync instruction with L=1, or the
eieio<S> or mbar<E> instruction, if any of these is
sufficient for his needs; otherwise he should use
sync with L=0. sync with L=2<S> should not be
used by application programs.

The functions provided by sync with L=1 are a
strict subset of those provided by sync with L=0.
(The functions provided by sync with L=2<S> are a
strict superset of those provided by sync with L=0;
see Book III.)

Programming Note
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Enforce In-order Execution of I/O  X-form 

eieio 
[Category: Server]

The eieio instruction creates a memory barrier (see
Section 1.7.1, “Storage Access Ordering”), which pro-
vides an ordering function for the storage accesses
caused by Load, Store, dcbz, eciwx, and ecowx
instructions executed by the processor executing the
eieio instruction. These storage accesses are divided
into the two sets listed below. The storage access
caused by an eciwx instruction is ordered as a load,
and the storage access caused by a dcbz or ecowx
instruction is ordered as a store.

1. Loads and stores to storage that is both Caching
Inhibited and Guarded, and stores to main storage
caused by stores to storage that is Write Through
Required.

The applicable pairs are all pairs ai,bj of such
accesses.

2. Stores to storage that is Memory Coherence
Required and is neither Write Through Required
nor Caching Inhibited.

The applicable pairs are all pairs ai,bj of such
accesses.

The operations caused by the stream variants of the
dcbt and dcbtst instructions (i.e., the providing of
hints) are ordered by eieio as a third set of operations,
and the operations caused by tlbie<S> and tlbsync
instructions (see Book III-S) are ordered by eieio as a
fourth set of operations. 

Each of the four sets of storage accesses or operations
is ordered independently of the other three sets. The
ordering done by eieio's memory barrier for the second
set is cumulative; the ordering done by eieio's memory
barrier for the other three sets is not cumulative.

The eieio instruction may complete before storage
accesses associated with instructions preceding the
eieio instruction have been performed. The eieio
instruction may complete before operations caused by
dcbt and dcbtst instructions preceding the eieio
instruction have been performed

Special Registers Altered:
None

Memory Barrier   X-form

mbar MO
[Category: Embedded]

When MO=0, the mbar instruction creates a cumulative
memory barrier (see Section 1.7.1, “Storage Access
Ordering”), which provides an ordering function for the
storage accesses executed by the processor executing
the mbar instruction. 

When MO≠0, an implementation may support the mbar
instruction ordering a particular subset of storage
accesses. An implementation may also support multi-
ple, non-zero values of MO that each specify a different
subset of storage accesses that are ordered by the
mbar instruction. Which subsets of storage accesses
that are ordered and which values of MO that specify
these subsets is implementation-dependent. 

The mbar instruction may complete before storage
accesses associated with instructions preceding the
mbar instruction have been performed. The mbar
instruction may complete before operations caused by
dcbt  and dcbtst instructions preceding the sync
instruction have been performed.

Special Registers Altered:
None

  

31 /// /// /// 854 /
0 6 11 16 21 31

31 MO /// /// 854 /
0 6 11 16 21 31

The eieio<S> and mbar<E> instructions are
intended for use in doing memory-mapped I/O).
Because loads, and separately stores, to storage
that is both Caching Inhibited and Guarded are per-
formed in program order (see Section 1.7.1, “Stor-
age Access Ordering” on page 742), eieio<S> or
mbar<E> is needed for such storage only when
loads must be ordered with respect to stores.

For the eieio<S> instruction, accesses in set 1, ai
and bj need not be the same kind of access or be to
storage having the same storage control attributes.
For example, ai can be a load to Caching Inhibited,
Guarded storage, and bj a store to Write Through
Required storage.

If stronger ordering is desired than that provided by
eieio<S> or mbar<E>, the sync instruction must
be used, with the appropriate value in the L field.

Programming Note
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  4.4.4 Wait Instruction

Wait X-form

wait WC
[Category: Wait.Phased-In]

wait
[Category: Wait.Phased-Out]

The wait instruction allows instruction fetching and exe-
cution to be suspended under certain conditions,
depending on the value of the WC field. A wait instruc-
tion without the WC field is treated as a wait instruction
with WC=0.

The defined values for WC are as follows.

0b00 Resume instruction fetching and execution
when an interrupt occurs.

0b01 Resume instruction fetching and execution
when an interrupt occurs or when a reserva-
tion made by the processor does not exist
(see Section 1.7.3). It is implementa-
tion-dependent whether this WC value is sup-
ported or wait with this WC value is treated as
a no-op.

0b10 Resume instruction fetching and execution
when an interrupt occurs or when an imple-
mentation-specific condition exists. It is imple-
mentation-dependent whether this WC value
is supported or is treated as reserved.

0b11 This WC value is treated as a no-op.

If WC=0, or if WC=1 and a reservation made by the
processor exists when the wait instruction is executed,
or if WC=2 and the associated implementation-specific
condition does not exist when the wait instruction is
executed, the following applies.

Instruction fetching and execution is suspended.
Once the wait instruction has completed, the NIA
will point to the next sequential instruction.
Instruction fetching and execution resumes when
any of the following conditions are met.

An interrupt occurs.
WC=1 and a reservation made by the proces-
sor does not exist.
WC=2 and the associated implementa-
tion-specific condition exists.

The functions provided by eieio<S> for its second
set are a strict subset of those provided by sync
with L=1.

Since eieio<S> and mbar<E>share the same
op-code, software designed for both Server and
Embedded environments must assume that only
the eieio<S> functionality applies since the func-
tions provided by eieio are a subset of those pro-
vided by mbar with MO=0.

Programming Note
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When the wait instruction is executed, if WC=1 and a
reservation made by the processor does not exist, or if
WC=2 and the associated implementation-specific con-
dition exists, the instruction is treated as a no-op.

  

Special Registers Altered: 
None

Extended Mnemonics:

Examples of extended mnemonics for Wait:

 

 

  

  

On implementations which do not support the wait
instruction with WC=0b10, the behavior for
non-support (treated as reserved) differs from the
non-support of the other non-zero WC values
(treated as no-ops). The possibility of boundedly
undefined behavior such as causing the system
illegal instruction error handler to be invoked is
meant to discourage the use of WC=0b10 in pro-
grams that are intended to be portable.

Only programs that are implementation-aware
should use WC=0b10.

Causing the system illegal instruction error handler
to be invoked if an attempt is made to execute wait
with WC=0b10 on an implementation that does not
support that form of wait facilitates the debugging
of software.

Extended: Equivalent to:
wait wait 0
waitrsv wait 1
waitimpl wait 2

The wait instruction with WC=0b00 can be used in
verification test cases to signal the end of a test
case. The encoding for the instruction is the same
in both Big-Endian and Little-Endian modes.

The wait instruction may be useful as the primary
instruction of an “idle process” or the completion of
processing for a cooperative processor. However,
overall system performance may be better served if
the wait instruction is used by applications only for
idle times that are expected to be short.

Programming Note
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Execution of a wait instruction indicates that no fur-
ther instruction fetching will occur until the condi-
tion(s) associated with the WC field value for the
instruction take place. The main purpose of the
wait instruction is to enable power savings. wait
frees computational resources which might be allo-
cated to another program or converted into power
savings.

If an interrupt causes resumption of instruction exe-
cution, the interrupt handler will return to the
instruction after the wait.

In previous versions of the architecture the wait
instruction was context synchronizing.

Engineering NoteProgramming NoteProgramming Note
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The wait instruction is not execution synchronizing
and does not cause a memory barrier. waitrsv
behavior relative to a preceding Load and Reserve
instruction or Store Conditional instruction has a
data dependency on the reservation. When execu-
tion proceeds past waitrsv as the result of another
processor storing to the reservation granule, a sub-
sequent load from the same storage location may
return stale data. It is also possible that execution
could proceed past the waitrsv for other reasons
such as the occurrence of an interrupt. There are
no architecturally defined means to determine what
terminated the wait. Moreover, even if software
were to attempt to determine what caused the wait
to terminate, by the time the check occurred, both
causes (interrupt and storage modification) might
be true. Software must be designed to deal with the
various causes of wait termination. In general, if
the program that performed wait does not see the
new value of the storage location for which the res-
ervation was held, it should re-establish the reser-
vation by repeating the Load and Reserve
instruction, and then perform another waitrsv.

The following code waits for a device to update a
memory location and assumes that r3 contains the
address of the word to be updated. This assumes
that software has already set this word to zero and
is waiting for the device to update the word to a
non-zero value.
loop:

lwarx r4,0,r3 # load and reserve
cmpwi r4,0 # exit if nonzero
bne- exit
waitrsv # wait for reservation loss
b loop

exit: ...

The b instruction results in re-execution of the
waitrsv if instruction execution had resumed for
some reason other than loss of the reservation
made by the processor. This branch instruction is
also necessary because the reservation might have
been lost for reasons other than the device updat-
ing the memory location addressed by r3. Also,
even if the device updated this memory location,
the lwarx and waitrsv instructions may need to be
re-executed until the lwarx returns the current data.

A wait instruction without the WC field is treated as
a wait instruction with WC=0b00 because older
processors that comply with Power ISA 2.06 do not
support the WC field.

Engineering NoteProgramming NoteProgramming Note
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Chapter 5.  Transactional Memory Facility [Category: 
Transactional Memory]

5.1 Transactional Memory Facil-
ity Overview
This chapter describes the registers and instructions
that make up the transactional memory (TM) facility.
Transactional memory is a shared-memory synchroni-
zation construct allowing an application to perform a
sequence of storage accesses that appear to occur
atomically with respect to other threads.

A set of instructions, special-purpose registers, and
state bits in the MSR (see Book III) are used to control
a transactional facility that is associated with each
hardware thread. A tbegin. instruction is used to ini-
tiate transactional execution, and a tend. instruction is
used to terminate transactional execution. Loads and
stores that occur between the tbegin. and tend.
instructions appear to occur atomically. An implementa-
tion may prematurely terminate transactional execution
for a variety of reasons, rolling back all transactional
storage updates that have been made by the thread
since the tbegin. was executed, and rolling back the
contents of a subset of the thread’s Book I registers to
their contents before the tbegin. was executed. In the
event of such premature termination, control is trans-
ferred to a software failure handler associated with the
transaction, which may then retry the transaction or
choose an alternate path depending on the cause of
transaction failure. A transaction can be explicitly
aborted via a set of conditional abort instructions and
an unconditional abort instruction, tabort.. A tsr.
instruction is used to suspend or resume transactional
execution, while allowing the transaction to remain
active. 

 

 

A tbegin. should always be followed immediately
by a beq as the first instruction of the failure han-
dler, that branches to the main body of the failure
handler.  The failure handler should always either
retry the transaction or use non-transactional code
to perform the same operation.  (The number of
retries should be limited to avoid the possibility of
an infinite loop.  The limit could be based on the
perceived permanence / transience of the failure.)
A failure handler policy which includes trying a dif-
ferent transaction before returning to the one that
failed may fail to make forward progress.

In code that may be executed transactionally, con-
ditional branches should hint in favor of successful
transactional execution where such a distinction
exists.  For example, the branch immediately fol-
lowing tbegin. should hint that the branch is very
likely not to be taken.  As another example, con-
sider a method of coding a failure handler that exe-
cutes the body of a transaction non-transactionally
by branching past the TM control instructions (e.g.
tsuspend.).  Branches that bypass the TM control
instructions should also hint that the branch is very
likely not to be taken.  These predictions will
improve the efficiency of transactional execution,
and may also help prevent the addition of spurious
accesses to the transactional footprint.

Programming Note
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Transactions performed using this facility are “strongly
atomic”, meaning that they appear atomic with respect
to both transactional and non-transactional accesses
performed by other threads. Transactions are isolated
from reads and writes performed by other threads; i.e.,
transactional reads and writes will not appear to be
interleaved with the reads and writes of other threads.

Nesting of transactions is supported using a form of
nesting called “flattened nesting,” in which transactions
that are initiated during transactional execution are sub-
sumed by the pre-existing transaction. Consequently,
the effects of a nested transaction do not become visi-
ble until the outer transaction commits, and if a nested
transaction fails, the entire set of transactions (outer as
well as nested) is rolled back, and control is transferred
to the outer transaction’s failure handler.  The memory
barriers created by tbegin. and tend. and the inte-
grated cumulative memory barrier that are described in
Section 1.8, “Transactions [Category: Transactional
Memory]” are only created for outer transactions and
not for any transactions nested within them.

References to Store instructions, and stores, include
dcbz and the storage accesses that it causes.

Rollback-Only Transactions
Rollback-Only Transactions (ROTs) differ from normal
transactions in that they are speculative but not atomic.
They are initated by a unique variant of tbegin.  They
may be nested with other ROTs or with normal transac-
tions.  When a normal transaction is nested within a
ROT, the behavior from the normal tbegin. until the end
of the outer transaction is characteristic of a normal
transaction.  Although subject to failure from storage
conflicts, the typical cause of ROT failure is via a
Tabort variant that is executed after the program
detects an error in its (software) speculation.  Except
where specifically differentiated or where differences
follow from specific differentiation, the following
description applies to ROTs as well as normal transac-
tions.

5.1.1 Definitions
Commit: A transaction is said to commit when it suc-
cessfully completes execution. When a transaction is
committed, its transactional accesses become irrevoca-
ble, and are made visible to other threads. A transac-
tion completes by either commiting or failing. 

Checkpointed registers: The set of registers that are
saved to the “checkpoint area” when a transaction is
initiated, and restored upon transaction failure, is a sub-
set of the architected register state, consisting of the
General Purpose Registers, Floating-Point Registers,
Vector Registers, Vector-Scalar Registers, and the fol-
lowing Special Registers and fields:  CR fields other
than CR0, LR, CTR, FPSCR, AMR, PPR, VRSAVE,
VSCR, DSCR, and TAR.  The checkpointed registers
include all problem state writable registers with the
exception of CR0,  EBBHR, EBBRR, BESCR, the Per-
formance Monitor registers, and the Transactional
Memory registers.  With the exception of updates of
CR0,  and the Transactional Memory registers, explicit
updates of registers that are not included in the set of
checkpointed registers are disallowed in Transactional
state (i.e., will cause the transaction to fail), but are per-
mitted in Suspended state.   Suspended state modifica-
tions of these registers will not be rolled back in the
event of transaction failure. (Modifications of Transac-
tional Memory registers are permitted in Non-transac-
tional state, and modifications of the TFHAR are also
permitted in Suspended state.  Other attempts to mod-
ify Transactional Memory registers will cause a TM Bad
Thing type Program interrupt.)

 

Transactional accesses: Data accesses that are
caused by an instruction that is executed when the
thread is in the Transactional state (see Section 5.2)
are said to be “transactional,” or to have been “per-
formed transactionally.” The set of accesses caused by
a committed normal transaction is performed as if it
were a single atomic access. That is, it is always per-
formed in its entirety with no visible fragmentation.  The
sets performed by normal transactions are thus serial-
ized: each happens in its entirety in some order, even

The architecture does not include a “fairness guar-
antee” or a “forward progress” guarantee for trans-
actions.  If two processors repeatedly conflict with
one another in an attempt to complete a transac-
tion, one of the two may always succeed while the
other may always fail.  If two processors repeatedly
conflict with one another in an attempt to complete
a transaction, both may always fail, depending on
the details of the transaction.  This is different from
the behavior of a typical locking routine, in which
one or the other of the competitors will generally
get the lock.

Programming Note

CR0, and the Transactional Memory registers
(TFHAR, TEXASR, TFIAR) are not saved, or
restored when the transaction fails, because they
are modified as a side effect of transaction failure
(so restoring them would lose information needed
by the failure handler). The Performance Monitor
registers, and the event-based branching registers
(BESCR, EBBHR, EBBRR) are not saved or
restored because saving and restoring them would
add significant implementation complexity and is
not needed by software. Also, these registers,
except EBBHR, can be modified asynchronously
by the processor, so restoring them when the trans-
action fails could cause loss of information.
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when that order is not specified in the program or
enforced between processors. Until a transaction com-
mits, its set of transactional accesses is provisional,
and will be discarded should the transaction fail.  The
set of transactional accesses is also referred to as the
“transactional footprint.”

Non-transactional accesses: Storage accesses per-
formed in the existing Power storage model are said to
be “non-transactional.” In contrast to transactional stor-
age accesses, there is no provision of atomicity across
multiple non-transactional accesses. Non-transactional
storage updates are not discarded in the event of a
transaction failure.

Outer transaction: A transaction that is initiated from
the Non-transactional state is said to be an outer trans-
action. A tbegin. instruction that initiates an outer
transaction is sometimes referred to as an “outer tbe-
gin..”  Similarly, a tend. instruction with A=0 that ends
an outer transaction is sometimes referred to as an
“outer tend..”

Nested Transaction: A transaction that is initiated
while already executing a transaction is said to be
“nested” within the pre-existing transaction. The set of
active nested transactions forms a stack growing from
the outer transaction.  A tend. with A=0 will remove the
most recently nested transaction from the stack.

Failure: A transaction failure is an exceptional condition
causing the transactional footprint to be discarded, the
checkpointed registers to be reverted to their pre-trans-
actional values, and the failure handler to get control.

Failure handler: A failure handler is a software compo-
nent responsible for handling transaction failure. On
transaction failure, hardware redirects control to the fail-
ure handler associated with the outer transaction.

Conflict: A transactional storage access is said to con-
flict with another transactional or non-transactional stor-
age access if the two accesses overlap--i.e. if there is
at least one byte that is referenced by both accesses--
and at least one of the accesses is a store.  If two trans-
actions make conflicting accesses, at least one of them
will fail.  If a transaction fails as a result of a conflict with
a store, the store may have been executed by another
processor or may have been executed in Suspended
state by the processor with the failing transaction. For a
ROT, no conflict is caused if the ROT performs a load
and another program performs a non-transactional
store to the same storage location. The granularity at
which conflict between storage accesses is detected is
implementation-dependent, and may vary between
accesses, but is never larger than a cache block.

A transactional storage access is said to conflict with a
tlbie if the storage location being accessed is in the
page the translation for which is being invalidated by
the tlbie.  For a ROT, no conflict is caused if the access
is a load.

A Suspended state cache control instruction is said to
cause a conflict if it would cause the destruction of a
transactional update or if it would make a transactional
update visible to another thread.

 

5.2 Transactional Memory Facil-
ity States
The transactional memory facility supports several
modes of operation, referred to in this document as the
“transaction state.” These states control the behavior of
storage accesses made during the transaction and the
handling of transaction failure. Changes to transaction
state affect all transactions currently using the transac-
tional facility on the affected thread: the outer transac-
tion as well as any nested transactions, should they
exist.

Non-transactional: The default, initial state of execu-
tion; no transaction is executing. The transactional facil-
ity is available for the initiation of a new transaction.

Transactional: This state is initiated by the execution
of a tbegin. instruction in the Non-transactional state.
Storage accesses (data accesses) caused by instruc-
tions executed in the Transactional state are performed
transactionally. Other storage accesses associated with
instructions executed in the Transactional state
(instruction fetches, implicit accesses) are performed
non-transactionally. In the event of transaction failure,
failure is recorded as defined in Section 5.3.2, and con-
trol is transferred to the failure handler as described in
Section 5.3.3.

Suspended:   The Suspended execution state is
explicitly entered with the execution of a tsuspend.

Warning: In descriptions of the transactional mem-
ory facility that precede V. 2.07B, the granularity at
which conflict between storage accesses is
detected was specified to be the cache block.  Pro-
grams that were based on these early descriptions
and depend on this granularity may need to be
revised so as not to depend on it.

A future version of the architecture may define
"transaction conflict granule", as the aligned unit of
storage having the property that the granularity at
which conflict between storage accesses is
detected is never larger than the transaction con-
flict granule.  The size of the transaction conflict
granule would be implementation-dependent and
would be added to the list of parameters useful to
application programs in Section 4.1 and the last
sentence of the first paragraph of the definition of
"conflict" would use "transaction conflict granule"
instead of "cache block".
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form of tsr. instruction during a transaction, the execu-
tion of a trechkpt. instruction from Non-transactional
state, or as a side-effect of an interrupt while in the
Transactional state. Storage accesses and accesses to
SPRs that are not part of the checkpointed registers
are performed non-transactionally; they will be per-
formed independently of the outcome of the transac-
tion. The initiation of a new transaction is prevented in
this state. In the event of transaction failure, failure
recording is performed as defined in Section 5.3.2, but
failure handling is usually deferred until transactional
execution is resumed (see Section 5.3.3  for details).

Until failure occurs, Load instructions that access stor-
age locations that were transactionally written by the
same thread will return the transactionally written data.
After failure is detected, but before failure handling is
performed, such loads may return either the transac-
tionally written data, or the current non-transactional
contents of the accessed location.  The tcheck instruc-
tion can be used to determine whether any previous
such loads may have returned non-transactional con-
tents.

Suspended state Store instructions that access storage
locations that have been accessed transactionally (due
to load or store) by the same thread cause the transac-
tion to fail.

 

 

Table 1 enumerates the set of Transactional Memory
instructions and events that can cause changes to the
transaction state. Transaction states are abbreviated N
(Non-transactional), T (Transactional), and S (Sus-
pended). (Interrupts, and the rfebb, rfid, hrfid, and
mtmsrd instructions, can also cause changes to the
transaction state; see Book III.)

 

The intent of the Suspended execution state is to
temporarily escape from transactional handling
when transactional semantics are undesirable.
Examples of such cases include storage updates
that should be retained in the event of transactional
failure, which is useful for debugging, interthread
communication, the access of Caching Inhibited
storage, and the handling of interrupts. In the event
of transaction failure during the Suspended execu-
tion state, failure handling is deferred until transac-
tional execution is resumed, allowing the block of
Suspended state code to complete its activities.

During Suspended state execution, accessing stor-
age locations that have been transactionally
accessed by the same thread prior to entering Sus-
pended state requires special care, because failure
may occur due to uncontrollable events such as
interactions with other threads or the operating sys-
tem. Up until a transaction fails, loads from transac-
tionally modified storage locations will return the
transactionally modified data. However once the
transaction fails, the loads may return either the
transactionally updated version of storage, or a
non-transactional version. Suspended state stores
to transactionally modified blocks cause the
thread’s transaction to fail.

Programming Note
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tbegin. in Suspended state merely updates CR0.
When tbegin. is followed by beq, this will result in a
transfer to the failure handler.  Nothing more severe
(e.g. an interrupt) is required.  The failure handler
for a transaction for which initiation may be
attempted in Suspended state should test CR0 to
determine whether tbegin. was executed in Sus-
pended state.  If so, it should attempt to emulate
the transaction non-transactionally.  (This case can
arise, for example, if a transaction enters Sus-
pended state and then calls a library routine that
independently attempts to use transactions.)

Notice that, although a failure handler runs in
Non-transactional state when reached because the
transaction has failed, it runs in Suspended state
for the case discussed in this Programmng Note.)
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Table 1: Transaction state transitions caused by TM 
instructions and transaction failure

5.2.1 The TDOOMED Bit
The status of an active transaction is summarized by a
transaction doomed bit (TDOOMED) that resides in an
implementation-dependent location. When 0, it indi-
cates that the active transaction is valid, meaning that it
remains possible for the transaction to commit success-
fully, if failure does not occur before committing. When
1 it indicates that transaction failure has already
occurred for the transaction. 

The TDOOMED bit is set to 0 upon the successful initi-
ation of an outer transaction by tbegin.. It is set to 1
when failure occurs or as a result of executing trech-
kpt..  When failure occurs, TDOOMED is set to 1
before any other effects of the transaction failure
(recording the failure in TEXASR, rollback of transac-
tional stores, over-writing of the transactionally
accessed locations by a conflicting store, etc.) are visi-
ble to software executing on the processor that exe-
cuted the transaction.  In Non-transactional state, the
value of TDOOMED is undefined.

5.3 Transaction Failure 

5.3.1 Causes of Transaction Fail-
ure
A transaction failure is said to be “externally-induced” if
the failure is caused by a thread other than the transac-
tional thread. Likewise, a transaction failure is said to
be “self-induced” if the failure is caused by the transac-
tional thread itself.

For self-induced failure as a result of attempting to exe-
cute an instruction that is forbidden in the Transactional
state, a Privileged Instruction type of Program Interrupt
takes precedence over transaction failure.  (For exam-
ple, an attempt to execute stdcix in Transactional state
and problem state will result in a Privileged Instruction
type of Program interrupt.)  Transaction failure takes
precedence over all other interrupt types.  The relevant
instructions are listed in the fourth bullet of the second
set of bullets below and the first bullet in the third set of
bullets below.

In general, a ROT will not fail in the following scenarios
when the failure is specified as a conflict on a transac-
tional access and the access is a load.

Transactions will fail for the following externally-induced
causes

Conflict with transactional access by another
thread
Conflict with non-transactional access by another
thread

                       
Instr/
Event

State

tbegin. tend. Abort caused 
by tabort. and 
conditional 
tabort. variants 

tsuspend. tresume. Failure treclaim. trechkpt.

N T N2 N2 N2 N2 Not appli-
cable

N6 S7

T T N, if outer trans-
action or A=1 
form; otherwise T

N3,4 S T N3,4 N3 S6

S S1 S6
S3 S2 T5 S3 N3 S6

Notes
1.  CR0 updated indicating transactional initiation was unsuccessful, due to a pre-existing transaction occupying the 

transactional facility.
2.  Execution of these operations does not affect transaction state, allowing for the instructions to be used in software 

modules called from Non-transactional, Transactional, and Suspended paths.
3.  If failure recording has not previously occurred, failure recording is performed as defined in Section 5.3.2. 
4.  Failure handling is performed as defined in Section 5.3.3.
5.  If failure has occurred during Suspended execution, failure handling will be performed sometime after the execu-

tion of tresume, and no later than the set of events listed in Section 5.3.3.  
6.  Generate TM Bad Thing type Program interrupt.
7.  If TEXASRFS=0, generate a TM Bad Thing type Program interrupt.
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In either of the previous two cases, if a successful
Store Conditional would have conflicted, but the
Store Conditional is not successful, it is implemen-
tation-dependent whether a conflict is detected
Conflict with a translation invalidation caused by a
tlbie performed by another thread

Transactions will fail for the following self-induced
causes

Termination caused by the execution of tabort.,
tabortdc., tabortdci., tabortwc., tabortwci. or
treclaim. instruction.
Transaction level overflow, defined as an attempt to
execute tbegin. when the transaction level is
already at its maximum value
Footprint overflow, defined as an attempt to per-
form a storage access in Transactional state which
exceeds the capacity for tracking transactional
accesses.
Execution of the following instructions while in the
Transactional state: doze, sleep, nap, rvwinkle,
icbi, dcbf, dcbi, dcbst, [h]rfid, rfebb, mtmsr[d],
mtsr, mtsrin, msgsnd, msgsndp, msgclr, msg-
clrp, slbie, slbia, slbmte, slbfee,  and tlbie[l].
(These instructions are considered to be disal-
lowed in Transactional state.)  The disallowed
instruction is not executed; failure handling occurs
before it has been executed.

  

Execution, while in Transactional state, of mtspr
specifying an SPR that is not part of the check-
pointed registers and is not a Transactional Mem-
ory SPR.  The mtspr is not executed; failure
handling occurs before it has been executed.
(Modification of XERFXCC and CRCR0 are allowed,
but the changes will not be rolled back in the event
of transaction failure.)
Conflict caused by a Suspended state store to a
storage location that was previously accessed
transactionally.   If the store would have been per-
formed by a successful Store Conditional instruc-
tion, but the Store Conditional instruction does not
succeed, it is implementation-dependent whether
a conflict is detected.
Conflict caused by a Suspended state tlbie that
specifies a translation that was previously  used
transactionally.  (This case will be recorded as a
translation invalidation conflict because it may be
hard to differentiate from a conflict caused by a
tlbie performed by another thread and because it
is highly likely to be a transient failure.)

For each of the following potential causes, the transac-
tion will fail if the absence of failure would compromise
transaction semantics; otherwise, whether the transac-
tion fails is undefined.

Execution of the following instructions while in the
Transactional state: eciwx, ecowx, lbzcix, ldcix,
lhzcix, lwzcix, stbcix, stdcix, sthcix, stwci.  The
disallowed instruction is not executed; failure han-
dling occurs before it has been executed. (These
instructions are considered to be disallowed in
Transactional state if they cause transaction failure
in Transactional state.)  Execution of these instruc-
tions in the Suspended state is allowed and does
not cause transaction failure.
Execution of the following instruction in the Trans-
actional state: wait.  The disallowed instruction is
not executed; failure handling occurs before it has
been executed. (This instruction is considered to
be disallowed  in a transaction if it causes transac-
tion failure.)
Execution of the following instruction in the Sus-
pended state: wait.  The disallowed instruction is
treated as a no-op; failure recording occurs. (This
instruction is considered to be disallowed  in a
transaction if it causes transaction failure.)
Access of a disallowed type while in the Transac-
tional state: Caching Inhibited, Write Through
Required, and Memory Coherence not Required
for data access; Caching Inhibited for instruction
fetch. The disallowed access is not performed;
failure handling occurs such that the instruction
that would cause (or be associated with, for
instruction fetch) the disallowed access type
appears not to have been executed. Accesses of
this type in the Suspended state are allowed and
do not cause transaction failure.
Instruction fetch from a storage location that was
previously written transactionally (reported as a
unique cause that includes both self-induced and
externally-induced instances)

dcbf, dcbi, or icbi specifying a block that was pre-
viously accessed transactionally, in either of the
following cases.

  

the instruction (dcbf, dcbi, or icbi) is exe-
cuted in Suspended state on the processor
executing the transaction (self-induced con-
flict)
the instruction is executed by another proces-
sor (externally-induced conflict)

dcbst specifying a block that was previously writ-
ten transactionally, in either of the following cases.

dcbst is executed in Suspended state on the
processor executing the transaction
(self-induced conflict)

Note that execution of a Power Saving instruc-
tion in Suspended state causes a TM Bad
Thing type Program interrupt.

Programming Note

Note that dcbf with L=3 should never compro-
mise transactional semantics, but it is still per-
mitted to cause transaction failure in
Suspended state and it is disallowed in Trans-
actional state.

Programming Note
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dcbst is executed by another processor
(externally-induced conflict)

Cache eviction of a block that was previously
accessed transactionally

Transactions may also fail due to implementation-spe-
cific characteristics of the transactional memory mech-
anism.

 

 

If an instruction or event does not cause transaction
failure, it behaves as defined in the architecture.

The set of failure causes and events are further classi-
fied as “precise” and “imprecise” failure causes. All
externally induced events are imprecise, and all
self-induced events are precise with the exception of
the following cases:

Self-induced conflicts caused by instruction fetch
Self-induced conflicts caused by footprint overflow
Self-induced conflicts in Suspended state
(because failure handling is deferred in Suspended
state).

When failure recording and handling occur (as defined
in Section 5.3.2 and 5.3.3) for a precise failure, they will
occur precisely according to the sequential execution
model, adhering to the following rules:

1. Effects of the failure occur such that all instructions
preceding the instruction causing the failure
appear to have completed with respect to the exe-
cuting thread.

2. The instruction causing the failure may appear not
to have begun execution (except for causing the
failure), or may have completed, depending on the
failure cause.

3. Architecturally, no subsequent instruction has
begun execution.

Failure handling for imprecise failure types is guaran-
teed to occur no later than the execution of tend. with
A=1 or TEXASRTL =1. Failure recording for imprecise

failure types is guaranteed to occur no later than failure
handling.  Any operation that can cause imprecise fail-
ure if performed in-order can also cause imprecise fail-
ure if performed out-of-order.

 

 

5.3.2 Recording of Transaction 
Failure
When transaction failure occurs, information about the
cause and circumstances of failure are recorded in
SPRs associated with the transactional facility. Failure
recording is performed a single time per transaction
that fails, controlled by the state of the TEXASR failure
summary (FS) bit; when 0, FS indicates that failure
recording has not already been performed, and is
therefore permissible.

The following RTL function specifies the actions taken
during the recording of transaction failure:

TMRecordFailure(FailureCause) 
#FailureCause is 32-bit cause 

code
if TEXASRFS = 0  
   if failure IA known then
      TFIAR I CIA
      TEXASR37 I 1
   else
      TFIAR I approximate instruction address
      TEXASR37 I 0
   TEXASR0:31 I FailureCause
   if MSRTS=0b01 then TEXASRSuspended I 1
   if environment = Embedded then 
     TEXASRPRIVILEGE I ¬MSRGS || MSRPR
     TFIARPRIVILEGE I ¬MSRGS || MSRPR
   else
     TEXASRPRIVILEGE I MSRHV || MSRPR
     TFIARPRIVILEGE I MSRHV || MSRPR
   TEXASRFS I 1
   TDOOMED I 1

Warning: Software should not depend for its cor-
rect execution on the behavior (whether or not the
relevant transaction fails) of the cases described in
the preceding set of bullets.  The behavior is likely
to vary from design to design.  Such a dependence
would impact the software’s portability without any
tangible advantage.

Because the atomic nature of a transaction implies
an apparent delay of its component accesses until
they can be performed in unison, the use of cache
control instructions to manage cache residency
and/or the performing of storage accesses may
have unexpected consequences.  Although they
may not cause transaction failure directly, their use
in a transaction is strongly discouraged.

Programming Note

Programming Note

Because instruction fetch from a transactionally
modified storage location may result in transaction
failure, and because conflict between storage
accesses may be detected at granularity as large
as a cache block, it is recommended that instruc-
tions and transactionally accessed data not be
co-located within a single cache block.

The architecture does not detect and cause trans-
action failure for translation invalidations to transac-
tionally accessed pages or segments, when the
translation invalidation is caused by instructions
other than tlbie (i.e., slbie, slbia, tlbiel, tlbia).
Consequently, software is responsible for terminat-
ing transactions in circumstances where such local
translation invalidations may affect a local transac-
tion. 

Programming Note

Programming Note
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When failure recording occurs, the TEXASR and TFIAR
SPRs are set indicating the source of failure. When
possible, TFIAR is set to the effective address of the
instruction that caused the failure, and TEXASR37 is
set to 1 indicating that the contents of TFIAR are exact.
When the instruction address is not known exactly, an
approximate value is placed in TFIAR and TEXASR37
is set to 0. TEXASR bits 0:31 are set indicating the
cause of the failure, and the TEXASRSuspended, TEX-
ASRPrivilege,  and TFIARPrivilege fields are set indicating
the machine state in which the failure was recorded.
TEXASRTL is unchanged. The TDOOMED bit is set to
1. 

 

5.3.3 Handling of Transaction Fail-
ure
Discarding of the transactional footprint may begin
immediately after detection of failure and, except in the
case of an abort in Suspended state, may continue until
the rest of failure handling is complete.  However, the
timing of the rest of  failure handling  is dependent on
the state of the transactional facility.  In the case of an
abort in Suspended state, the transactional footprint is
discarded immediately, despite that the rest of failure
handling is deferred.

In Transactional state, failure handling may occur
immediately, but an implementation is free to delay
handling until one of the following failure synchronizing
events occurs in Transactional state.

An abort caused by the execution of a tabort.,
tabortdc., tabortdci., tabortwc., or tabortwci.
instruction.
The execution of a treclaim. instruction.
An attempt, in Transactional state,  to execute a
disallowed instruction, perform an access of a dis-
allowed type, or execute an mtspr instruction that
specifies an SPR that is not part of the check-
pointed registers and is not a Transactional Mem-
ory SPR.
Nesting level overflow.
An attempt to transition from Transactional to Sus-
pended state caused by tsuspend. or by an inter-
rupt or event.
An attempt to commit a transaction, caused by the
execution of tend. with A = 1 or when TEXASRTL =
1.

When a failure synchronizing event occurs in Transac-
tional state, the processor waits until all preceding
Transactional and Suspended state loads have been
performed with respect to all processors and mecha-
nisms and all failures that have occurred up to that
point have been recorded.  Then failure handling
occurs if a failure has been recorded; otherwise, pro-
cessing of the failure synchronizing event continues.  If
failure is caused by the failure synchronizing event, fail-
ure handling occurs immediately.

When failure handling occurs, checkpointed registers
are reverted to their pre-transactional values, the trans-
actional footprint is discarded if it has not previously
been discarded, and any resources occupied by the
transaction are discarded. If the failure is not caused by
treclaim., the following things occur. CR0 is set to
0b101 || 0.  The transaction state is set to Non-transac-
tional, and control flow is redirected to the instruction
address stored in TFHAR. If the failure is caused by
treclaim., CR0 is not set to indicate failure and the
transaction’s failure handler is not invoked.

The following RTL function specifies the actions taken
during the handling of transaction failure:

TMHandleFailure()
   If the transactional footprint has not previ-
ously been discarded
       Discard transactional footprint
   Revert checkpointed registers to pre-transac-
tional values
   Discard all resources related to current trans-
action          
   MSRTS I 0b00                   #Non-transactional
   If failure was not caused by treclaim.,
     NIA I TFHAR
     CR0 I 0b101 || 0

Upon failure detected in Suspended state from causes
other than the execution of a treclaim. instruction, fail-
ure handling is deferred until the transaction is
resumed. Once resumed, failure handling will occur no
later than the set of failure synchronizing events listed
above.  Upon failure in Suspended state caused by tre-
claim., failure handling is immediate (but CR0 is not set
to indicate failure and the transaction’s failure handler is
not invoked).

 

TFIAR is intended for use in the debugging of
transactional programs by identifying the source of
transaction failure. Because TFIAR may not always
be set exactly, software should test TEXASR37
before use; if zero, the contents of TFIAR are an
approximation.

Programming Note

A Load instruction executed immediately after tre-
claim. or a conditional or unconditional Abort
instruction is guaranteed not to load a transactional
storage update.

Programming Note
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5.4 Transactional Memory Facil-
ity Registers
The architecture is augmented with three Special Pur-
pose Registers in support of transactional memory.
TFHAR stores the effective address of the software fail-
ure handler used in the event of transaction failure.
TFIAR is used to inform software of the exact location
of the transaction failure, when possible. TEXASR con-
tains a transaction level indicating the nesting depth of
an active transaction, as well as an indicator of the
cause of transaction failure and some machine state
when the transaction failed. These registers can be
written only when in Non-transactional state, and for
TFHAR, also when in Suspended state.

5.4.1 Transaction Failure Handler 
Address Register (TFHAR)
The Transaction Failure Handler Address Register is a
64-bit SPR that records the effective address of a soft-
ware failure handler used in the event of transaction
failure.  Bits 62:63 are reserved. 

Figure 6. Transaction Failure Handler Address
Register (TFHAR)

This register is written with the NIA for the tbegin. as a
side-effect of the execution of an outer tbegin. instruc-
tion (tbegin. executed in the Non-transactional state).  

5.4.2 Transaction EXception And 
Status Register (TEXASR)
The Transaction EXception And Status Register is a
64-bit register, containing a transaction level
(TEXASRTL) and status information for use by transac-
tion failure handlers. The identification of the cause and
persistence of transaction failure reported in bits 7:30
may rarely be inaccurate. Bits 0:31 are called the failure
cause in the instruction descriptions. 

Figure 7. Transaction EXception And Status
Register (TEXASR)

Figure 8. Transaction EXception And Status
Register Upper (TEXASRU)

Bit(s Description

0:6 Failure Code
The Failure Code is copied from the tabort. or
treclaim. source operand.  When set, TFIAR
is exact.

7 Failure Persistent
The failure is likely to recur on each execution
of the transaction.  This bit is set to 1 for
causes in bits 8:11,  copied from the tabort. or
treclaim. source operand when RA is non-
zero, and set to 0 for all other failure causes.

  

  

8 Disallowed
The instruction, SPR, or access type is not
permitted.  When set, TFIAR is exact. See
Section 5.3.1, “Causes of Transaction Failure”.

TFHA //
0                                                                                                                     62  63

TEXASR
0                                                                                                                     63

TEXASRU
0                                             31

The Failure Persistent bit may be viewed
as an eighth bit in the failure code in that
both fields are supplied by the least signif-
icant byte of RA and software may use all
eight to differentiate among the cases for
which it performs an abort or reclaim.
However, software is expected to organize
its cases so that bit 7 predicts the persis-
tence of the case.

Warning:  Software must not depend on
the value of the Failure Persistent bit for
correct execution.  The number of retries
for a transient failure should be counted,
and a limit set after which the program will
perform the operation non-transaction-
ally.  In the analysis of failures, consider-
ation should be given to the fact that
speculative execution can cause unex-
pected behavior.

The inaccuracy of the Failure Persistent
bit arises from two causes. First, a kind of
failure that is usually transient, such as
conflict with another thread, may in certain
unusual circumstances be persistent.
Second, if the cause of transaction failure
is identified incorrectly, the Failure Persis-
tent bit will inherit this inaccuracy -- i.e.,
will be set to 0 or 1 based on the identified
failure cause.

Programming Note

Programming Note
Chapter 5. Transactional Memory Facility [Category: Transactional Memo- 803



Version 2.07 B
  

9 Nesting Overflow
The maximum transaction level was
exceeded.  When set, TFIAR is exact.

10 Footprint Overflow
The tracking limit for transactional storage
accesses was exceeded.  When set, TFIAR is
an approximation.

  

11 Self-Induced Conflict
A self-induced conflict occurred in Suspended
state, due to one of the following: a store to a
storage location that was previously accessed
transactionally; a dcbf, dcbi, or icbi specify-
ing a block that was previously accessed
transactionally; a dcbst specifying a block that
was previously written transactionally; or a
tlbie that specifies a translation that was pre-
viously used transactionally.  When set,
TFIAR may be exact.

12 Non-Transactional Conflict
A conflict occurred with a non-transactional
access by another processor.  When set,
TFIAR is an approximation.

13 Transaction Conflict
A conflict occurred with another transaction.
When set, TFIAR may be exact.

14 Translation Invalidation Conflict
A conflict occurred with a TLB invalidation.
When set, TFIAR is an approximation.

15 Implementation-specific
An implementation-specific condition caused
the transaction to fail.  Such conditions are
transient and the value in the TFIAR may be
exact.

16 Instruction Fetch Conflict
An instruction fetch (by this or another thread)
was performed from a storage location that

was previously written transactionally.  Such
conditions are transient and the value in the
TFIAR may be exact.

17:30 Reserved for future failure causes

31 Abort
Termination was caused by the execution of a
tabort., tabortdc., tabortdci., tabortwc.,
tabortwci. or treclaim. instruction. When due
to tabort. or treclaim., bits in TEXASR0:7 are
user-supplied.  When set, TFIAR is exact.

32 Suspended
When set to 1, the failure was recorded in
Suspended state.  When set to 0, the failure
was recorded in Transactional state.

33 Reserved

34:35 Privilege
The thread was in this privilege state when the
failure was recorded.  For the Embedded envi-
ronment, this was the value  ¬MSRGS ||
MSRPR when the failure was recorded.  For
the Server environment, this was the value
MSRHV || MSRPR when the failure was
recorded.

36 Failure Summary (FS)
Set to 1 when a failure has been detected and
failure recording has been performed.

37 TFIAR Exact
Set to 1 when the value in the TFIAR is exact.
Otherwise the value in the TFIAR is approxi-
mate.

38 ROT
Set to 1 when a ROT is initiated.  Set to zero
when a non-ROT tbegin. is executed.

39 Reserved

40:51 Reserved

52:63 Transaction Level (TL)
Transaction level (nesting depth + 1) for the
active transaction, if any; otherwise 0 if the
most recently executed transaction com-
pleted successfully, or the transaction level at
which the most recently executed transaction
failed if the most recently executed transaction
did not complete successfully.

 

The transaction level in TEXASRTL contains an
unsigned integer indicating whether the current trans-
action is an outer transaction, or is nested, and if
nested, its depth. The maximum transaction level sup-

An instruction fetch to storage that is
Caching Inhibited, while nominally disal-
lowed, will be reported as Implementa-
tion-specific (bit 15).  This choice was
made because it seems like a relatively
unlikely programming error, and there is a
significant chance that data from an exter-
nal conflict (store by another thread) could
indirectly cause a wild branch to storage
that is Caching Inhibited.

Note that transactional footprint tracking
resources may be shared by multiple pro-
grams executing concurrently.  Depending
on the circumstances, this failure cause
may or may not be persistent.

Programming Note

Programming Note

A value of 1 corresponds to an outer transaction.  A
value greater than 1 corresponds to a nested trans-
action.

Programming Note
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ported by a given implementation is of the form 2t - 1.
The value of t corresponding to the smallest maximum
is 4; the value of t corresponding to the largest maxi-
mum is 12. This value is tied to the “Maximum transac-
tion level” parameter useful for application
programmers, as specified in Section 4.1. The
high-order 12-t bits of TEXASRTL are treated as
reserved.

Transaction failure information is contained in
TEXASR0:37. The fields of TEXASR are initialized upon
the successful initiation of a transaction from the
Non-transactional state, by setting TEXASRTL to 1,
indicating an outer transaction, and all other fields to 0.

When transaction failure is recorded, the failure sum-
mary bit TEXASRFS is set to 1, indicating that failure
has been detected for the active transaction and that
failure recording has been performed. TEXASR0:31 are
set indicating the source of the failure. Exactly one of
bits 8 through 31 will be set indicating the instruction or
event that caused failure. In the event of failure due to
the execution of a tabort., tabortdc., tabortdci.,
tabortwc., tabortwci. or treclaim. instruction,
TEXASR31 is set to 1, and, for tabort. and treclaim., a
software defined failure code is copied from a register
operand to TEXASR0:7. TEXASRSuspended indicates
whether the transaction was in the Suspended state at
the time that failure occurred.  The inverse of the value
of  MSRGS and the value of MSRPR for the Embedded
environment or the values of MSRHV and MSRPR for
the Server environment at the time that failure occurs
are copied to TEXASR34 and TEXASR35, respectively.
In some circumstances, the failure causing instruction
address in TFIAR may not be exact.  In such circum-
stances, TEXASR37 is set to 0 indicating that the con-
tents of TFIAR are not exact; otherwise TEXASR37 is
set to 1.

 

 

5.4.3 Transaction Failure Instruc-
tion Address Register (TFIAR)
The Transaction Failure Instruction Address Register is
a 64-bit SPR that is set to the exact effective address of
the instruction causing the failure, when possible.   Bits
62:63 contain the privilege state when the failure was
recorded.  For the Embedded environment, this was the
value  ¬MSRGS || MSRPR when the failure was
recorded.  For the Server environment, this was the
value MSRHV || MSRPR when the failure was recorded.

Figure 9. Transaction Failure Instruction Address
Register (TFIAR)

In certain cases, the exact address may not be avail-
able, and therefore TFIAR will be an approximation.  An
approximate value will point to an instruction near the
instruction that was executing at the time of the failure.
TFIAR accuracy is recorded in an Exact bit residing in
TEXASR37.

The transaction level contained in TEXASRTL
should be interpreted by software as follows:

When in the Transactional or Suspended state, this
field contains an unsigned integer representing the
transaction level of the active transaction, with 1
indicating an outer transaction, and a number
greater than 1 indicating a nested transaction. The
nesting depth of the active transaction is
TEXASRTL – 1.

When in the Non-transactional state, TEXASRTL
contains 0 if the last transaction committed suc-
cessfully, otherwise it contains the transaction level
at which the most recent transaction failed.

Programming Note

The Privilege bits in TEXASR represent the state of
the machine at the point when failure occurs. This
information may be used by problem state software
to determine whether an unexpected hypervisor or
operating system interaction was responsible for
transaction failure. This information may be useful
to operating systems or hypervisors when restoring
register state for failure handling after the transac-
tional facility was reclaimed, to determine which of
the operating system or the hypervisor has retained
the pre-transactional version of the checkpointed
registers.

TFIA Privilege
0                                                                                                 62      63

Programming Note
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5.5 Transactional Facility 
Instructions
Similar to the Floating-Point Status and Control Regis-
ter instructions, modifications of transaction state
caused by the execution of Transactional Memory
instructions or by failure handling synchronize the
effects of exception-causing floating-point instructions
executed by a given processor.  Executing a Transacti-
nal Memory instruction, or invocation of the failure han-
dler, ensures that all floating-point instructions
previously initiated by the given processor have com-
pleted before the transaction state is modified, and that
no subsequent floating-point instructions are initiated

by the given processor until the transaction state has
been modified.  In particular:

All exceptions that will be caused by the previously
initiated instructions are recorded in the FPSCR
before the transaction state is modified.
All invocations of the system floating-point enabled
exception error handler that will be caused by the
previously initiated instructions have occurred
before the transaction state is modified.
No subsequent floating-point instruction that alters
the settings of any FPSCR bits is initiated until the
transaction state has been modified.

(Floating-point Storage Access instructions are not
affected.)

Transaction Begin X-form

tbegin. R

ROT  I R
CR0  I 0 || MSRTS || 0

if MSRTS = 0b00 then               #Non-transactional
   TEXASR I 0x000000000 || 0b00 || ROT || 0b0 || 
0x000001

   TFHAR I CIA + 4
   TDOOMED I 0
   MSRTS I 0b10
   checkpoint area I (checkpointed registers)
   if not ROT and the transaction succeeds then
     enforce_barrier(mbll)
     enforce_barrier(mbls)
     enforce_barrier(mbsl)
     enforce_barrier(mbss)             
else if MSRTS = 0b10 then          #Transactional
   if TEXASRTL=TLmax then
      cause I 0x01400000   
      TMRecordFailure(cause)
      TMHandleFailure()
   else
      TEXASRTL I TEXASRTL + 1
      if (TEXASRROT=1) & (not ROT) 
                      & the transaction succeeds
         enforce_barrier(mbll)
         enforce_barrier(mbls)
         enforce_barrier(mbsl)
         enforce_barrier(mbss)             
         TEXASRROT I 0

The tbegin. instruction initiates execution of a transac-
tion, either an outer transaction or a nested transaction,
as described below.

An outer transaction is initiated when tbegin. is exe-
cuted in the Non-transactional state.  If R=0 and the
transaction is successful, a memory barrier is inserted
equivalent to that produced by a sync instruction with

E=0b1111. (See Section 4.4.3.) TEXASR and TFHAR
are initialized, and the TDOOMED bit is set to 0. A
nested transaction is initiated when tbegin. is executed
in the Transactional state unless the transaction level is
already at its maximum value, in which case failure
recording is performed with a failure cause of
0x01400000 and failure handling is performed. When
initiating a nested transaction, the transaction level held
in TEXASRTL is incremented by 1, and if TEXASRROT
=1 but R=0, and the transaction succeeds, a memory
barrier is inserted equivalent to that produced by a
sync instruction with E=0b1111 and TEXASRROT is
turned off. The effects of a nested transaction will not
be visible until the outer transaction commits, and in the
event of failure, the checkpointed registers are reverted
to the pre-transactional values of the outer transaction.
Initiation of a transaction is unsuccessful when in the
Suspended state. 

When successfully initiated, transactional execution
continues until the transaction is terminated using a
tend., tabort., tabortdc., tabortdci., tabortwc.,
tabortwci., or treclaim. instruction, suspended using a
tsr instruction, or failure occurs. Upon transaction fail-
ure while in the Transactional state, transaction failure
recording and failure handling are performed as defined
in Section 5.3. Upon transaction failure while in the
Suspended state, failure recording is performed as
defined in Section 5.3.2, but failure handling is usually
deferred.

31 A // R /// /// 654 1
0 6 7 10 11 16 21 31
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CR0 is set as follows.

Other than the setting of CR0, tbegin. in the Sus-
pended state is treated as a no-op.

The use of the A field is implementation specific.

Special Registers Altered:
CR0 TEXASR TFHAR TS

 

Transaction End X-form

tend. A

CR0  I 0b0 || MSRTS || 0

if MSRTS = 0b10 then           #Transactional
   if A = 1 | TEXASRTL = 1 then
      if (TDOOMED) then
         TMHandleFailure()
      else
         if not TEXASRROT
           insert integrated cumulative
           memory barrier
         Commit transaction
         TEXASRTL I 0

Discard all resources related to current 
transaction

MSRTS I 0b00          #Non-transactional
if not TEXASRROT

           enforce_barrier(mbll)
           enforce_barrier(mbls)
           enforce_barrier(mbsl)
           enforce_barrier(mbss)
   else TEXASRTL I TEXASRTL - 1  # nested

The A=0 variant of tend. supports nested transactions,
in which the transaction is committed only if the execu-
tion of tend. completes an outer transaction. Execution
of this variant by a nested transaction (TEXASRTL > 1)
causes TEXASRTL to be decremented by 1. The A=1
variant of tend. unconditionally completes the current
outer transaction and all nested transactions. 

When the tend. instruction completes an outer transac-
tion, transaction commit is predicated on the
TDOOMED bit. If TDOOMED is 1,  failure handling
occurs as defined in Section 5.3.3. If TDOOMED is 0,
the transaction is committed, and TEXASRTL is set to
0. In both cases, the transaction state is set to
Non-transactional.

When the tend. instruction commits a transaction, it
atomically commits its writes to storage.  If TEXASR-

ROT=0, the integrated cumulative memory barrier is
inserted prior to the creation of the aggregate store,
and a memory barrier is inserted equivalent to that pro-
duced by a sync instruction with E=0b1111 after the
aggregate store.  (See Section 4.4.3.)  If the transaction
has failed prior to the execution of tend., no storage
updates are performed and no memory barrier is
inserted.  In either case (success or failure), all
resources associated with the transaction are dis-
carded.

If the transaction succeeds, Condition Register field 0 is
set to 0 || MSRTS || 0.  If the transaction fails, CR0 is set
to 0b101 || 0.

CR0 Description

000 || 0 Transaction initiation successful, 
unnested (Transaction state of 
Non-transactional prior to tbegin.)

010 || 0 Transaction initiation successful, nested 
(Transaction state of Transactional 
prior to tbegin.)

001 || 0 Transaction initiation unsuccessful, 
(Transaction state of Suspended prior 
to tbegin.)

When a transaction is successfully initiated, and
failure subsequently occurs, control flow will be
redirected to the instruction following the tbegin.
instruction. When failure handling occurs, as
described in Section 5.3.3, CR0 is set to 0b101 || 0.
Consequently, instructions following tbegin. should
also expect this value as an indication of transac-
tion failure. Most applications will follow tbegin.
with a conditional branch predicated on CR02; code
at this target is responsible for handling the trans-
action failure.

Programming Note

31 A // / /// /// 686 1
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Other than the setting of CR0, tend. in Non-transac-
tional state is treated as a no-op.  If an attempt is made
to execute tend. in Suspended state, a TM Bad Thing
type Program interrupt occurs.

Special Registers Altered:
CR0 TEXASR TS

Extended Mnemonics
Examples of extended mnemonics for Transaction End.

Extended: Equivalent To:
tend.                        tend. 0
tendall.                    tend. 1

 

Transaction Abort X-form

tabort. RA

CR0 I  0 || MSRTS || 0

if MSRTS = 0b10 | MSRTS = 0b01 then
#Transactional, or Suspended

if RA = 0 then cause I0x00000001
else           cause I GPR(RA)56:63 || 0x000001  
if MSRTS= 0b01 & TEXASRFS = 0 then  #Suspended
   Discard the transactional footprint

   TMRecordFailure(cause)
   if MSRTS = 0b10 then                #Transactional

   TMHandleFailure()

The tabort. instruction sets condition register field 0 to
0 || MSRTS || 0.  When in the Transactional state or the
Suspended state the tabort. instruction causes trans-
action failure, resulting in the following:

Failure recording is performed as defined in Section
5.3.2. If RA is 0, the failure cause is set to 0x00000001,
otherwise it is set to GPR(RA)56:63 || 0x000001. 

If the transaction state is Transactional, failure handling
is performed as defined in Section 5.3.3 (this includes
discarding the transactional footprint).

If the transaction state is Suspended, the transactional
footprint is discarded (if not already discarded for a
pending failure), but failure handling is deferred.

Other than the setting of CR0, execution of tabort. in
the Non-transactional state is treated as a no-op.

Special Registers Altered:
CR0 TEXASR TFIAR TS

When an outer tend. or a tend. with A=1 is exe-
cuted in the Transactional state, the CR0 value
0b101 || 0 will never be visible to the instruction that
immediately follows tend., because in the event of
failure the failure handler will have been invoked
not later than the completion of the tend. instruc-
tion.

Programming Note

31 /// RA /// 910 1
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Transaction Abort Word Conditional
X-form

tabortwc. TO,RA,RB

a I EXTS((RA)32:63)
b I EXTS((RB)32:63)
abort I 0

CR0 I  0 || MSRTS || 0

if (a < b)  & TO0 then abort I 1
if (a > b)  & TO1 then abort I 1
if (a = b)  & TO2 then abort I 1
if (a u< b) & TO3 then abort I 1
if (a >u b) & TO4 then abort I 1

if abort & (MSRTS = 0b10 | MSRTS = 0b01) then
           #Transactional or Suspended
   cause I 0x00000001

if MSRTS= 0b01 & TEXASRFS = 0 then  #Suspended
   Discard transactional footprint

   TMRecordFailure(cause)
   if MSRTS = 0b10 then                #Transactional

   TMHandleFailure()

The tabortwc. instruction sets condition register field 0
to 0 || MSRTS || 0. The contents of register RA32:63 are
compared with the contents of register RB32:63. If any
bit in the TO field is set to 1 and its corresponding con-
dition is met by the result of the comparison, and the
transaction state is Transactional or Suspended, then
the tabortwc. instruction causes transaction failure,
resulting in the following:

Failure recording is performed as defined in Section
5.3.2, using the failure cause 0x00000001. 

If the transaction state is Transactional, failure handling
is performed as defined in Section 5.3.3 (this includes
discarding the transactional footprint).

If the transaction state is Suspended, the transactional
footprint is discarded (if not already discarded for a
pending failure), but failure handling is deferred.

Other than the setting of CR0, execution of tabortwc.
in the Non-transactional state is treated as a no-op.

Special Registers Altered:
CR0 TEXASR TFIAR TS

Transaction Abort Word Conditional 
Immediate X-form

tabortwci. TO,RA,SI

a I EXTS((RA)32:63)
abort I 0

CR0 I  0 || MSRTS || 0

if a < EXTS(SI)  & TO0 then abort I 1
if a > EXTS(SI)  & TO1 then abort I 1
if a = EXTS(SI)  & T02 then abort I 1
if a u< EXTS(SI) & TO3 then abort I 1
if a >u EXTS(SI) & TO4 then abort I 1

if abort & (MSRTS = 0b10 | MSRTS = 0b01) then   
            #Transactional or Suspended
   cause I 0x00000001

if MSRTS= 0b01 & TEXASRFS = 0 then  #Suspended
   Discard transactional footprint

   TMRecordFailure(cause)
   if MSRTS = 0b10 then                #Transactional

   TMHandleFailure()

The tabortwci. instruction sets condition register field 0
to 0 || MSRTS || 0. The contents of register RA32:63  are
compared with the sign-extended value of the SI field. If
any bit in the TO field is set to 1 and its corresponding
condition is met by the result of the comparison, and
the transaction state is Transactional or Suspended
then the tabortwci. instruction causes transaction fail-
ure, resulting in the following:

Failure recording is performed as defined in Section
5.3.2, using the failure cause 0x00000001. 

If the transaction state is Transactional, failure handling
is performed as defined in Section 5.3.3 (this includes
discarding the transactional footprint).

If the transaction state is Suspended, the transactional
footprint is discarded (if not already discarded for a
pending failure), but failure handling is deferred.

Other than the setting of CR0, execution of tabortwci.
in the Non-transactional state is treated as a no-op.

Special Registers Altered:
CR0 TEXASR TFIAR TS

Transaction Abort Doubleword 
Conditional X-form

tabortdc. TO,RA,RB

31 TO RA RB 782 1
0 6 11 16 21 31

31 TO RA SI 846 1
0 6 11 16 21 31

31 TO RA RB 814 1
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a I ( RA )
b I ( RB )
abort I 0

CR0 I  0 || MSRTS || 0

if (a < b)  & TO0 then abort I 1
if (a > b)  & TO1 then abort I 1
if (a = b)  & TO2 then abort I 1
if (a u< b) & TO3 then abort I 1
if (a >u b) & TO4 then abort I 1

if abort & (MSRTS = 0b10 | MSRTS = 0b01) then
           #Transactional or Suspended
   cause I 0x00000001

if MSRTS= 0b01 & TEXASRFS = 0 then  #Suspended
   Discard transactional footprint

   TMRecordFailure(cause)
   if MSRTS = 0b10 then                #Transactional

   TMHandleFailure()

The tabortdc. instruction sets condition register field 0
to 0 || MSRTS || 0. The contents of register RA are com-
pared with the contents of register RB. If any bit in the
TO field is set to 1 and its corresponding condition is
met by the result of the comparison, and the transac-
tion state is Transactional or Suspended, then the
tabortdc. instruction causes transaction failure, result-
ing in the following:

Failure recording is performed as defined in Section
5.3.2, using the failure cause 0x00000001. 

If the transaction state is Transactional, failure handling
is performed as defined in Section 5.3.3 (this includes
discarding the transactional footprint).

If the transaction state is Suspended, the transactional
footprint is discarded (if not already discarded for a
pending failure), but failure handling is deferred.

Other than the setting of CR0, execution of tabortdc. in
the Non-transactional state is treated as a no-op.

Special Registers Altered:
CR0 TEXASR TFIAR TS

Transaction Abort Doubleword 
Conditional Immediate X-form

tabortdci. TO,RA,  SI

a I (RA)
abort I 0

CR0 I  0 || MSRTS || 0

if a < EXTS(SI)  & TO0 then abort I 1
if a > EXTS(SI)  & TO1 then abort I 1
if a = EXTS(SI)  & T02 then abort I 1
if a u< EXTS(SI) & TO3 then abort I 1
if a >u EXTS(SI) & TO4 then abort I 1

if abort & (MSRTS = 0b10 | MSRTS = 0b01) then  
            #Transactional or Suspended
   cause I 0x00000001

if MSRTS= 0b01 & TEXASRFS = 0 then  #Suspended
   Discard transactional footprint

   TMRecordFailure(cause)
   if MSRTS = 0b10 then                #Transactional

   TMHandleFailure()

The tabortdci. instruction sets condition register field 0
to 0 || MSRTS || 0. The contents of register RA are com-
pared with the sign-extended value of the SI field. If any
bit in the TO field is set to 1 and its corresponding con-
dition is met by the result of the comparison, and the
transaction state is Transactional or Suspended then
the tabortdci. instruction causes transaction failure,
resulting in the following:

Failure recording is performed as defined in Section
5.3.2, using the failure cause 0x00000001. 

If the transaction state is Transactional, failure handling
is performed as defined in Section 5.3.3 (this includes
discarding the transactional footprint). 

If the transaction state is Suspended, the transactional
footprint is discarded (if not already discarded for a
pending failure), but failure handling is deferred.

Other than the setting of CR0, execution of tabortdci.
in the Non-transactional state is treated as a no-op.

Special Registers Altered:
CR0 TEXASR TFIAR TS

Transaction Suspend or Resume X-form

tsr. L

CR0 I  0 || MSRTS || 0
if L = 0 then
   if MSRTS = 0b10 then               #Transactional 
      MSRTS I 0b01                   #Suspended
else
   if MSRTS = 0b01                    #Suspended
      MSRTS I 0b10                   #Transactional
      

0 6 11 16 21 31

31 TO RA SI 878 1
0 6 11 16 21 31

31 /// L /// /// 750 1
0 6 10 11 16 21 31
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The tsr. instruction sets condition register field 0 to 0 ||
MSRTS || 0. Based on the value of the L field, two vari-
ants of tsr. are used to change the transaction state. 

If L = 0, and the transaction state is Transactional, the
transaction state is set to Suspended. 

If L = 1, and the transaction state is Suspended, the
transaction state is set to Transactional. 

Other than the setting of CR0, the execution of tsr. in
the Non-transactional state is treated as a no-op.

Special Registers Altered:
CR0 TS

 

Extended Mnemonics
Examples of extended mnemonics for Transaction Sus-
pend or Resume.

Extended: Equivalent To:
tsuspend.              tsr. 0
tresume.                tsr. 1

Transaction Check X-form

tcheck BF

if MSRTS = 0b10 | MSRTS = 0b01 then   #Transactional
                                     #or Suspended
  for each load caused by an instruction following
  the outer tbegin and preceding this tcheck
    if (Load instruction was executed in T state 
       with TEXASRROT=0 or accessing a location
       previously stored transactionally) |
       (Load instruction was executed in S state
        with TEXASRROT=0 and accessed a location
        previously accessed transactionally)|
       (Load instruction was executed in S state
        with TEXASRROT=1 and accessed a location
        previously stored transactionally)
    then wait until load has been performed with
    respect to all processors and mechanisms
CR field BF I  TDOOMED || MSRTS || 0

If the transaction state is Transactional or Suspended,
the tcheck instruction ensures that all loads that are
caused by instructions that follow the outer tbegin.
instruction and precede the tcheck instruction and sat-

isfy one of the following properties, have been per-
formed with respect to all processors and mechanisms.

The load is caused by an instruction that was exe-
cuted in Transactional state, either while TEXASR-

ROT=0 or accessing a location previously stored
transactionally.
The load is caused by an instruction that was exe-
cuted in Suspended state while TEXASRROT=0
and accesses a location that was accessed trans-
actionally.
The load is caused by an instruction that was exe-
cuted in Suspended state while TEXASRROT=1
and accesses a location that was stored transac-
tionally.

The tcheck instruction then copies the TDOOMED bit
into bit 0 of CR field BF, copies MSRTS to bits 1:2 of CR
field BF, and sets bit 3 of CR field BF to 0.

Other than the setting of CR field BF, execution of
tcheck in the Non-transactional state is treated as a
no-op.

Special Registers Altered:
CR field BF

When resuming a transaction that has encountered
failure while in the Suspended state, failure han-
dling is performed after the execution of tresume.
and no later than the next failure synchronizing
event.

31 BF // /// /// 718 /
0 6 9 11 16 21 31

Programming Note
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One use of the tcheck instruction in Suspended
state is to determine whether preceding loads from
transactionally modified locations have returned
the data the transaction stored.  (If the transaction
has failed, some of the loads may have returned a
more recent value that was stored by a conflicting
store, or may have returned the pre-transaction
contents of the location.).  It is important to use
tcheck. between any Suspended state loads that
might access transactionally modified locations and
subsequent computation using the Sus-
pended-state-loaded data.  Otherwise, corrupt data
could cause problems such as wild branches or
infinite loops.

Another use of tcheck in Suspended state is to
determine whether the contents of storage, as seen
in Suspended state, are consistent with the trans-
action succeeding -- e.g., whether no location that
has been accessed transactionally (stored transac-
tionally, for ROTs), and has been seen in Sus-
pended state, has been subject to a conflict thus
far.  (A location is seen in Suspended state either
by being loaded in Suspended state or by being
loaded in Transactional state and the value (or a
value derived therefrom) passed, in a register, into
Suspended state.)

A use of tcheck in Transactional state is to deter-
mine whether the transaction still has the potential
to succeed.

Note that tcheck provides an instantaneous check
on the integrity of a subset of the accesses per-
formed within a transaction. tcheck is not a failure
synchronizing mechanism.  Even if no accesses
follow the tcheck, there may still be latent failures
that haven’t been recorded, for example caused by
accesses that tcheck does not wait for, by external
conflicts that will happen in the future, or simply by
time of flight to the failure detection mechanism for
operations that have already been performed.

The tcheck instruction can return 1 in bit 0 of CR
field BF before the failure has been recorded in
TEXASR and TFIAR.

The tcheck instruction may cause pipeline syn-
chronization.  As a result, programs that use
tcheck excessively may perform poorly.

Programming Note

Programming Note

Programming Note
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Chapter 6.  Time Base 

6.1 Time Base Overview
The time base facilities include a Time Base and an
Alternate Time Base which is category: Alternate Time
Base. The Alternate Time Base is analogous to the
Time Base except that it may count at a different fre-
quency and is not writable.

6.2 Time Base
The Time Base (TB) is a 64-bit register (see Figure 10)
containing a 64-bit unsigned integer that is incremented
periodically as described below.

Figure 10. Time Base

The Time Base monotonically increments until its value
becomes 0xFFFF_FFFF_FFFF_FFFF (264 - 1); at the
next increment its value becomes
0x0000_0000_0000_0000. There is no interrupt or
other indication when this occurs.

The suggested frequency at which the time base incre-
ments is 512 MHz, however, variation from this rate is
allowed provided the following requirements are met.

- The contents of the Time Base differ by no
more than +/- four counts from what they
would be if they incremented at the required
frequency.

- Bit 63 of the Time Base is set to 1 between
30% and 70% of the time over any time inter-
val of at least 16 counts.

The Power ISA does not specify a relationship between
the frequency at which the Time Base is updated and
other frequencies, such as the CPU clock or bus clock.
The Time Base update frequency is not required to be
constant.  What is required, so that system software

can keep time of day and operate interval timers, is one
of the following.

The system provides an (implementation-depen-
dent) interrupt to software whenever the update
frequency of the Time Base changes, and a means
to determine what the current update frequency is.

The update frequency of the Time Base is under
the control of the system software.

  

TBU TBL
0 32                                                   63

Field Description
TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base

If the operating system  initializes the Time Base on
power-on to some reasonable value and the
update frequency  of the Time Base is constant, the
Time Base can be used as a source of values that
increase at a constant rate, such as for time stamps
in trace entries.

Even if the update frequency is not constant, val-
ues read from the Time Base are monotonically
increasing (except when the Time Base wraps from
264-1 to 0).  If a trace entry is recorded each time
the update frequency changes, the sequence of
Time Base values can be post-processed to
become actual time values.

Successive readings of the Time Base may return
identical values.

Programming Note
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6.2.1 Time Base Instructions

Move From Time Base  XFX-form 

mftb RT,TBR 
[Category: Phased-Out]

This instruction behaves as if it were an mfspr instruc-
tion; see the mfspr instruction description in
Section 3.3.17 of Book I.

Special Registers Altered:

None

Extended Mnemonics:

Extended mnemonics for Move From Time Base: 

  

 

 

31 RT tbr 371 /
0 6 11 21 31

Extended: Equivalent to:

mftb       Rx
mftb      Rx,268 
mfspr   Rx,268

mftbu     Rx
mftb      Rx,269
mfspr   Rx,269

New programs should use mfspr instead of mftb to
access the Time Base.

mftb serves as both a basic and an extended mne-
monic.  The Assembler will recognize an mftb
mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the
extended form.  In the extended form the TBR
operand is omitted and assumed to be 268 (the
value that corresponds to TB).

Programming Note

Programming Note

The mfspr instruction can be used to read the
Time Base on all processors that comply with Ver-
sion 2.01 of the architecture or  with any subse-
quent version.

It is believed that the mfspr instruction can be used
to read the Time Base on most processors that
comply with versions of the architecture that pre-
cede Version 2.01.  Processors for which mfspr
cannot be used to read the Time Base include the
following.

-          601
-          POWER3

(601 implements neither the Time Base nor mftb,
but depends on software using mftb to read the
Time Base, so that the attempt causes the Illegal
Instruction error handler to be invoked and thereby
permits the operating system to emulate the Time
Base.)

Programming Note
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Programming Note

Since the update frequency of the Time Base is imple-
mentation-dependent, the algorithm for converting the
current value in the Time Base to time of day is also
implementation-dependent.

As an example, assume that the Time Base increments
at the constant rate of 512 MHz. (Note, however, that
programs should allow for the possibility that some
implementations may not increment the least-signifi-
cant 4 bits of the Time Base at a constant rate.) What is
wanted is the pair of 32-bit values comprising a POSIX
standard clock:1  the number of whole seconds that
have passed since 00:00:00 January 1, 1970, UTC,
and the remaining fraction of a second expressed as a
number of nanoseconds.

Assume that:

The value 0 in the Time Base represents the start
time of the POSIX clock (if this is not true, a simple
64-bit subtraction will make it so).

The integer constant ticks_per_sec contains the
value 512,000,000, which is the number of times
the Time Base is updated each second.

The integer constant ns_adj contains the value

   × 232 / 2  =  4194304000

which is the number of nanoseconds per tick of the
Time Base, multiplied by 232 for use in mulhwu
(see below), and then divided by 2 in order to fit, as
an unsigned integer, into 32 bits.

When the processor is in 64-bit mode, The POSIX
clock can be computed with an instruction sequence
such as this:

mfspr Ry,268 # Ry = Time Base
lwz Rx,ticks_per_sec
divdu Rz,Ry,Rx # Rz = whole seconds
stw Rz,posix_sec

mulld Rz,Rz,Rx # Rz = quotient * divisor
sub Rz,Ry,Rz # Rz = excess ticks
lwz Rx,ns_adj
slwi Rz,Rz,1 # Rz = 2 * excess ticks
mulhwu Rz,Rz,Rx # mul by (ns/tick)/2 * 232

stw Rz,posix_ns# product[0:31] = excess ns

For the Embedded environment when the processor is
in 32-bit mode, it is not possible to read the Time Base
using a single instruction. Instead, two instructions
must be used, one of which reads TBL and the other of
which reads TBU.  Because of the possibility of a carry
from TBL to TBU occurring between the two reads, a
sequence such as the following must be used to read
the Time Base.
loop:

mfspr Rx,TBU # load from TBU
mfspr Ry,TB # load from TB
mfspr Rz,TBU # load from TBU
cmp cr0,0,Rx,Rz# check if ‘old’=’new’
bne loop #branch if carry occurred

Non-constant update frequency
In a system in which the update frequency of the Time
Base may change over time, it is not possible to convert
an isolated Time Base value into time of day.  Instead, a
Time Base value has meaning only with respect to the
current update frequency and the time of day that the
update frequency was last changed.  Each time the
update frequency changes, either the system software
is notified of the change via an interrupt (see Book III),
or the change was instigated by the system software
itself.  At each such change, the system software must
compute the current time of day using the old update
frequency, compute a new value of ticks_per_sec for
the new frequency, and save the time of day, Time Base
value, and tick rate.  Subsequent calls to compute Time
of Day use the current Time Base Value and the saved
value.

1. Described in POSIX Draft Standard P1003.4/D12, Draft Standard for Information Technology -- Portable Operating System Interface (POSIX) --
Part 1: System Application Program Interface (API) - Amendment 1: Real-time Extension [C Language].  Institute of Electrical and Electronics Engi-
neers, Inc., Feb. 1992.

1,000,000,000
512,000,000

--------------------------------------
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6.3 Alternate Time Base [Cate-
gory: Alternate Time Base]
The Alternate Time Base (ATB) is a 64-bit register (see
Figure 11) containing a 64-bit unsigned integer that is
incremented periodically. The frequency at which the
integer is updated is implementation-dependent.

Figure 11. Alternate Time Base

The ATBL register is an aliased name for the ATB.

The Alternate Time Base increments until its value
becomes 0xFFFF_FFFF_FFFF_FFFF (264 - 1). At the
next increment, its value becomes
0x0000_0000_0000_0000. There is no explicit indica-
tion (such as an interrupt; see Book III) that this has
occurred. 

The Alternate Time Base is accessible in both user and
supervisor mode. The counter can be read by execut-
ing a mfspr instruction specifying the ATB (or ATBL)
register, but cannot be written. A second SPR register
ATBU, is defined that accesses only the upper 32 bits
of the counter. Thus the upper 32 bits of the counter
may be read into a register by reading the ATBU regis-
ter.

The effect of entering a power-savings mode or of pro-
cessor frequency changes on counting in the Alternate
Time Base is implementation-dependent.

ATBU ATBL
0 32                                                   63
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Chapter 7.  Event-Based Branch Facility [Category: Server] 

7.1 Event-Based Branch Over-
view
The Event-Based Branch facility allows application pro-
grams to enable hardware to change the effective
address of the next instruction to be executed when
certain events occur to an effective address specified
by the program. 

The operation of the Event-Based Branch facility is
summarized as follows:

- The Event-Based Branch facility is available
only when the system software has made it
available. See Section 9.5 of Book III-S for
additional information. 

- When the Event-Based Branch facility is avail-
able, event-based branches are caused by
event-based exceptions. Event-based excep-
tions can be enabled to occur by setting bits in
the Event Control field of the BESCR. 

- When an event-based exception occurs, the
bit in the BESCR control field corresponding
to the event-based exception is set to 0 and
the bit in the Event Status field in the BESCR
corresponding to the event-based exception is
set to 1. 

- If the global enable bit in the BESCR is set to
1 when any of the bits in the status field are
set to 1 (i.e., when an event-based exception
exists), an event-based branch occurs.

- The event-based branch causes the global
enable bit to be set to 0, causes instruction
fetch and execution to continue at the effective
address contained in the EBBHR, and causes
the TS field of the BESCR to indicate the
transactional state of the processor when the
event-based branch occurred. If the processor
was in transactional state when the
event-based branch occurred, it is put into
suspended state. The EBBRR is set to the
effective address of the instruction that would
have attempted to execute next if no
event-based branch had occurred.

- The event-based branch handler performs the
necessary processing in response to the
event, and then executes an rfebb instruction
in order to resume execution at the instruction
that would have been executed next when the
event-based branch occurred. The rfebb
instruction also restores the processor to the
transactional state indicated by BESCRTS.
See the Programming Notes in Section 7.3 for
an example sequence of operations of the
event-based branch handler.

Additional information about the Event-Based Branch
facility is given in Section 3.4 of Book III-S.

  

  

Since system software controls the availability of
the Event-Based Branch facility (see Section 9.5 of
Book III-S), an interface must be provided that
enables applications to request access to the facil-
ity and determine when it is available.

In order to initialize the Event-Based Branch facility
for Performance Monitor event-based exceptions,
software performs the following operations.

- Software requests control of the
Event-Based Branch facility from the sys-
tem software.

- Software requests the system software to
initialize the Performance Monitor as
desired.

- Software sets the EBBHR to the effective
address of the event-based branch han-
dler.

- Software enables Performance Monitor
event-based exceptions by setting BES-
CRPME PMEO = 1 0, and also sets
MMCR0PMAE PMAO = 1 0. See
Section 9.4.4 of Book III-S for the descrip-
tion of MMCR0.

- Software sets the GE bit in the BESCR to
enable event-based branches.

Programming Note

Programming Note
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7.2 Event-Based Branch Regis-
ters

7.2.1 Branch Event Status and 
Control Register
The Branch Event Status and Control Register
(BESCR) is a 64-bit register that contains control and
status information about the Event-Based Branch facil-
ity.

Figure 12. Branch Event Status and Control
Register (BESCR)

Figure 13. Branch Event Status and Control
Register Upper (BESCRU)

System software controls whether or not event-based
branches occur regardless of the contents of the
BESCR. See Section 9.4.4 of Book III-S and
Section 6.2.11 of Book III-S.

The entire BESCR can be read or written using SPR
806. Individual bits of the BESCR can be set or reset
using two sets of additional SPR numbers.

- When mtspr indicates SPR 800 (Branch
Event Status and Control Set, or BESCRS),
the bits in  BESCR which correspond to “1”
bits in the source register are set to 1; all other
bits in the BESCR are unaffected. SPR 801
(BESCRSU) provides the same capability to
each of the upper 32 bits of the BESCR.

- When mtspr indicates SPR 802 (Branch
Event Status and Control Reset, or BESCRR),
the bits in  BESCR which correspond to “1”
bits in the source register are set to 0; all other
bits in the BESCR are unaffected. SPR 803
(BESCRRU) provides the same capability to
each of the upper 32 bits of the BESCR.

When mfspr indicates any of the above SPR numbers,
the current value of the register is returned.

  

0 Global Enable (GE)

0 Event-based branches are disabled
1 Event-based branches are enabled.

When an event-based branch occurs, GE is
set to 0 and is not altered by hardware until
rfebb 1 is executed or software sets GE=1
and another event-based branch occurs.

1:31 Event Control

1:30 Reserved
31 Performance Monitor Event-Based

Exception Enable (PME)
0 Performance Monitor event-based

exceptions are disabled.
1 Performance Monitor event-based

exceptions are enabled until a Per-
formance Monitor event-based
exception occurs, at which time:

- PME is set to 0
- PMEO is set to 1

See Chapter 9 of Book III-S for information
about Performance Monitor event-based
exceptions and about the effects of this bit on
the Performance Monitor.

32:33 Transactional State [Category:TM]
When an event-based branch occurs, hard-
ware sets this field to indicate the transac-
tional state of the processor when the
event-based branch occurred.
The values and their associated meanings are
as follows.

00 Non-transactional
01 Suspended
10 Transactional
11 Reserved

  

34:63 Event Status

34:62 Reserved

GE Event Control TS       Event Status
0 1 32 34                             63

GE Event Control
0 1                              31

Event-based branch handlers typically reset event
status bits upon entry, and enable event enable bits
after processing an event. Execution of rfebb  then
re-enables the GE bit so that additional
event-based branches can occur.

Event-based branch handlers should not
modify this field since its value is used by
the processor to determine the transac-
tional state of the processor after the
rfebb instruction is executed.

Programming Note

Programming Note
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63 Performance Monitor Event-Based
Exception Occurred (PMEO)
0 A Performance Monitor event-based

exception has not occurred since
the last time software set this bit to
0.

1 A Performance Monitor event-based
exception has  occurred since the
last time software set this bit to 0.

This bit is set to 1 by the hardware when a
Performance Monitor event-based exception
occurs. This bit can be set to 0 only by the
mtspr instruction.

See Chapter 9 of Book III-S for information
about Performance Monitor event-based
exceptions and about the effects of this bit on
the Performance Monitor.

  

7.2.2 Event-Based Branch Han-
dler Register
The Event-Based Branch Handler Register (EBBHR) is
a 64-bit register register that contains the 62 most sig-
nificant bits of the effective address of the instruction
that is executed next after an event-based branch
occurs. Bits 62:63 must be available to be read and
written by software.

Figure 14. Event-Based Branch Handler Register
(EBBHR)

  

7.2.3 Event-Based Branch Return 
Register
The  Event-Based Branch Return Register (EBBRR) is
a 64-bit register that contains the 62 most significant
bits of an instruction effective address as specified
below.

Figure 15. Event-Based Branch Return Register
(EBBRR)

When an event-based branch occurs, bits 0:61 of the
EBBRR are set to the effective address of the instruc-
tion that the processor would have attempted to exe-
cute next if no event-based branch had occurred. Bits
62:63 are reserved.

Software should set this bit to 0 after han-
dling an event-based branch due to a Per-
formance Monitor event-based exception.

Effective Address
0 62 63

Programming Note

The EBBHR can be used by software as a scratch-
pad register after entry into an event-based branch
handler, provided that its contents are restored
prior to executing rfebb 1. An example of such
usage is as follows, where SPRG3 is used to con-
tain a pointer to a storage area where context infor-
mation may be saved.
E:mtspr EBBHR, r1     // Save r1 in EBBHR
mfspr r1, SPRG3     // Move SPRG3 to r1
std r2, r1,offset1  // Store r2 
mfspr EBBHR,r2      // Copy original contents 
                    // of r1 to r2
std r2,offset2(r1)  // save original r1
..                  // Store rest of state

 ...                  // Process event
 ...                  // Restore all state except
                      // r1,r2
  r2 = &E             // Generate original value
                      // of EBBHR in r2
  mtspr EBBHR,r2      // Restore EBBHR
  ld r2 offset1(r1)   // restore r2
  ld r1 offset2(r1)   // restore r1
  rfebb 1             // Return from handler

Effective Address //
0 62  63

Programming Note
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7.3 Event-Based Branch Instruc-
tions

Return from Event-Based Branch
XL-form

rfebb S

BESCRGE I S
MSRTS I BESCRTS
NIA Iiea EBBRR0:61 || 0b00

BESCRGE is set to S. The processor is placed in the
transactional state indicated by BESCRTS. 

If there are no pending event-based exceptions, then
the next instruction is fetched from the address
EBBRR0:61 || 0b00 (when MSRSF=1) or 320 ||
EBBRR32:61 || 0b00 (when MSRSF=0). If one or more
pending event-based exceptions exist, an event-based
branch is generated; in this case the value placed into
EBBRR by the Event-Based Branch facility is the
address of the instruction that would have been exe-
cuted next had the event-based branch not occurred.

See Section 3.4 of Book III-S for additional information
about this instruction.

Special Registers Altered:

BESCR
MSR (See Book III-S)

Extended Mnemonics:

  

  

  

19 ///  ///  /// S 146 /
0 6 11 16 20 21 31

Extended: Equivalent to:
rfebb rfebb 1

rfebb serves as both a basic and an extended
mnemonic. The Assembler will recognize an rfebb
mnemonic with one operand as the basic form, and
an rfebb mnemonic with no operand as the
extended form. In the extended form, the S oper-
and is omitted and assumed to be 1.

If the BESCRTS has been modified by software
after an event-based branch occurs, an illegal
transaction state transition may occur. See Chapter
3.2.2 of Book III-S.

Programming Note

Programming Note

When an event-based branch occurs, the
event-based branch handler  executes the following
sequence of operations. This sequence of opera-
tions assumes that the handler has access to a
stack or other area in memory in which state infor-
mation from the main program can be stored.  Note
also that in this example, the handler entry point is
labeled “E,” r1 is used as a scratch register, and
only Performance Monitor events are enabled.
E:Save  state         // This is the entry pt
mfspr r1, BESCR     // Check event status
Process event

  r1 I 0x0000 0000 0000 0001
  mtspr BESCRR, r1
        //Reset PMEO event status bit
        //MMCR0PMAO must also be reset. 
        //(See Section 9.4.4 of Book III-S.)
  r1 I 0x0000 0001 0000 0000
  mtspr BESCRS, r1
        //Enable PME bit
        //MMCR0PMAE must also be enabled. 
        //(See Section 9.4.4 of Book III-S.)
Restore state
rfebb  1           // return & global enable

Programming Note
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Chapter 8.  Decorated Storage Facility [Category: Decorated 
Storage] 

The Decorated Storage facility provides Load, Store,
and Notify operations to storage that have additional
semantics other than the reading and writing of data
values to the addressed storage locations. A decoration
is specified that provides semantic information about
how the operation is to be performed. A decorated
device is a device that implements an address range of
storage, and applies decorations to operations per-
formed on the address range of storage.

A Decorated Storage instruction specifies the following
attributes:

The type of access, which is either a Decorated
Load, Decorated Store, or a Decorated Notify.
The EA in register RB, to which the operation is to
be performed.
The decoration in register RA, which further
defines what operation should be performed by the
decorated device.
The data itself, either data provided by the proces-
sor to the decorated device (in the case of a Deco-
rated Store), or the data provided by the decorated
device to be consumed by the processor (in the
case of a Decorated Load). Decorated Notify oper-
ations do not contain data.

The semantics of any Decorated Storage operation that
is Caching Inhibited are defined by the decorated
device depending on whether it is a Decorated Load,
Decorated Store, or Decorated Notify, and the value
supplied as a decoration. Such semantics may differ
from decorated device to decorated device similar to
how devices other than well-behaved memory may
treat Load and Store operations. The semantics of any
operation associated with a Decorated Storage opera-
tion that is not Caching Inhibited are the same as an
analogous Load or Store instruction of the same data
size.

The results of a Decorated Storage operation that is
Caching Inhibited to a device that does not support
decorations is boundedly undefined. The results of a
Load or Store operation that is Caching Inhibited to a
decorated device that requires a decoration is bound-
edly undefined.

For Decorated Load operations, a Load operation with
the specified decoration is performed to the EA and the
data provided by the decorated device is placed in the
target register.

For Decorated Store operations, a Store operation
using the data specified in the source register with the
specified decoration is performed to the EA.

Decorated Load instructions are treated as Load
instructions for address translation, access control,
debug events, storage attributes, alignment, and mem-
ory access ordering. Decorated Store instructions are
treated as Store instructions for address translation,
access control, debug events, storage attributes, align-
ment, and memory access ordering. A Decorated
Notify instruction is treated as a zero byte Store for
address translation, access control, debug events, stor-
age attributes, alignment, and memory access order-
ing.

 

Software should be acutely aware of how transac-
tions to a decorated device that implements Deco-
rated Storage will occur. Not only does this imply
knowing the particular decorated device’s seman-
tics, but also ensuring that the transactions are
appropriately issued by the processor. This
includes alignment, speculative accesses, and
ordering. In general, Caching Inhibited accesses
are required to be Guarded and properly aligned.

Programming Note
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8.1 Decorated Load Instructions

Load Byte with Decoration Indexed 
X-form 

lbdx RT,RA,RB

EA I (RB)
RT I 560 || MEM_DECORATED(EA,1,(RA))

Let the effective address (EA) be the contents of RB.
The byte in storage addressed by EA is loaded using
the decoration supplied by (RA) into RT56:63. RT0:55 are
set to 0.

Special Registers Altered:
None

Load Halfword with Decoration Indexed 
X-form 

lhdx RT,RA,RB

EA I (RB)
RT I 480 || MEM_DECORATED(EA,2,(RA))

Let the effective address (EA) be the contents of RB.
The halfword in storage addressed by EA is loaded
using the decoration supplied by (RA) into RT48:63.
RT0:47 are set to 0.

Special Registers Altered:
None

Load Word with Decoration Indexed 
X-form 

lwdx RT,RA,RB

EA I (RB)
RT I 320 || MEM_DECORATED(EA,4,(RA))

Let the effective address (EA) be the contents of RB.
The word in storage addressed by EA is loaded using
the decoration supplied by (RA) into RT32:63. RT0:31 are
set to 0.

Special Registers Altered:
None

Load Doubleword with Decoration 
Indexed X-form 

lddx RT,RA,RB [Co-requisite category: 64-Bit]

EA I (RB)
RT I MEM_DECORATED(EA,8,(RA))

Let the effective address (EA) be the contents of RB.
The doubleword in storage addressed by EA is loaded
using the decoration supplied by (RA) into RT.

Special Registers Altered:
None

Load Floating Doubleword with 
Decoration Indexed X-form 

lfddx FRT,RA,RB [Co-requisite category: FP]

EA I (RB)
FRT I MEM_DECORATED(EA,8,(RA))

Let the effective address (EA) be the contents of RB.
The doubleword in storage addressed by EA is loaded
using the decoration supplied by (RA) into FRT.

Special Registers Altered:
None

31 RT RA RB 515 /
0 6 11 16 21 31

31 RT RA RB 547 /
0 6 11 16 21 31

31 RT RA RB 579 /
0 6 11 16 21 31

31 RT RA RB 611 /
0 6 11 16 21 31

31 FRT RA RB 803 /
0 6 11 16 21 31
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8.2 Decorated Store Instructions

Store Byte with Decoration Indexed 
X-form 

stbdx RS,RA,RB

EA I (RB)
MEM_DECORATED(EA,1,(RA)) I (RS)56:63

Let the effective address (EA) be the contents of RB.
(RS)56:63 are stored to the byte in storage addressed by
EA using the decoration supplied by (RA).

Special Registers Altered:
None

Store Halfword with Decoration Indexed 
X-form 

sthdx RS,RA,RB

EA I (RB)
MEM_DECORATED(EA,2,(RA)) I (RS)48:63

Let the effective address (EA) be the contents of RB.
(RS)48:63 are stored to the halfword in storage
addressed by EA using the decoration supplied by
(RA).

Special Registers Altered:
None

Store Word with Decoration Indexed 
X-form 

stwdx RS,RA,RB

EA I (RB)
MEM_DECORATED(EA,4,(RA)) I (RS)32:63

Let the effective address (EA) be the contents of RB.
(RS)32:63 are stored to the word in storage addressed
by EA using the decoration supplied by (RA).

Special Registers Altered:
None

Store Doubleword with Decoration 
Indexed X-form 

stddx RS,RA,RB [Co-requisite category: 64-Bit]

EA I (RB)
MEM_DECORATED(EA,8,(RA)) I (RS)

Let the effective address (EA) be the contents of RB.
(RS) is stored to the doubleword in storage addressed
by EA using the decoration supplied by (RA).

Special Registers Altered:
None

Store Floating Doubleword with 
Decoration Indexed X-form 

stfddx FRS,RA,RB [Co-requisite category: FP]

EA I (RB)
MEM_DECORATED(EA,8,(RA)) I (FRS)

Let the effective address (EA) be the contents of RB.
(FRS) is stored to the doubleword in storage addressed
by EA using the decoration supplied by (RA).

Special Registers Altered:
None

31 RS RA RB 643 /
0 6 11 16 21 31

31 RS RA RB 675 /
0 6 11 16 21 31

31 RS RA RB 707 /
0 6 11 16 21 31

31 RS RA RB 739 /
0 6 11 16 21 31

31 FRS RA RB 931 /
0 6 11 16 21 31
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8.3 Decorated Notify Instructions

Decorated Storage Notify X-form 

dsn RA,RB

EA I (RB)
MEM_NOTIFY(EA,(RA))

Let the effective address (EA) be the contents of RB.
The decoration supplied by (RA) is sent to the address
in storage specified by EA.

Special Registers Altered:
None

31 /// RA RB 483 /
0 6 11 16 21 31
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Chapter 9.  External Control [Category: External Control] 

The External Control category of facilities and instruc-
tions permits a program to communicate with a spe-
cial-purpose device. Two instructions are provided,
both of which must be implemented if the facility is pro-
vided.

External Control In Word Indexed (eciwx), which
does the following:

- Computes an effective address (EA) like most
X-form instructions

- Validates the EA as would be done for a load
from that address

- Translates the EA to a real address
- Transmits the real address to the device
- Accepts a word of data from the device and

places it into a General Purpose Register

External Control Out Word Indexed (ecowx),
which does the following:

- Computes an effective address (EA) like most
X-form instructions

- Validates the EA as would be done for a store
to that address

- Translates the EA to a real address
- Transmits the real address and a word of data

from a General Purpose Register to the
device

Permission to execute these instructions and identifica-
tion of the target device are controlled by two fields,
called the E bit and the RID field respectively. If attempt
is made to execute either of these instructions when
E=0 the system data storage error handler is invoked.
The location of these fields is described in Book III.

The storage access caused by eciwx and ecowx is
performed as though the specified storage location is
Caching Inhibited and Guarded, and is neither Write
Through Required nor Memory Coherence Required.

Interpretation of the real address transmitted by eciwx
and ecowx and of the 32-bit value transmitted by
ecowx is up to the target device, and is not specified by
the Power ISA. See the System Architecture documen-
tation for a given Power ISA system for details on how
the External Control facility can be used with devices
on that system.

Example
An example of a device designed to be used with the
External Control facility might be a graphics adapter.
The ecowx instruction might be used to send the
device the translated real address of a buffer containing
graphics data, and the word transmitted from the Gen-
eral Purpose Register might be control information that
tells the adapter what operation to perform on the data
in the buffer.  The eciwx instruction might be used to
load status information from the adapter.

A device designed to be used with the External Control
facility may also recognize events that indicate that the
address translation being used by the processor has
changed.  In this case the operating system need not
“pin” the area of storage identified by an eciwx or
ecowx instruction (i.e., need not protect it from being
paged out).
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9.1 External Access Instructions

In the instruction descriptions the statements “this
instruction is treated as a Load” and “this instruction is

treated as a Store” have the same meanings as for the
Cache Management instructions; see Section 4.3.

External Control In Word Indexed  X-form  

eciwx RT,RA,RB
  

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
raddr I address translation of EA
send load word request for raddr to
   device identified by RID
RT I 320 || word from device

Let the effective address (EA) be the sum (RA|0)+(RB).

A load word request for the real address corresponding
to EA is sent to the device identified by RID, bypassing
the cache.  The word returned by the device is placed
into RT32:63.  RT0:31 are set to 0.

The E bit must be 1.  If it is not, the data storage error
handler is invoked.

EA must be a multiple of 4.  If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

This instruction is treated as a Load.

See Book III-S for additional information about this
instruction.

Special Registers Altered:
None

  

External Control Out Word Indexed
X-form

ecowx RS,RA,RB
  

if RA = 0 then b I 0

else           b I (RA)
EA I b + (RB)
raddr I address translation of EA
send store word request for raddr to
  device identified by RID
send (RS)32:63 to device

Let the effective address (EA) be the sum (RA|0)+(RB).

A store word request for the real address correspond-
ing to EA and the contents of RS32:63 are sent to the
device identified by RID, bypassing the cache.

The E bit must be 1.  If it is not, the data storage error
handler is invoked.

EA must be a multiple of 4.  If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

This instruction is treated as a Store, except that its
storage access is not performed in program order with
respect to accesses to other Caching Inhibited and
Guarded storage locations unless software explicitly
imposes that order.

See Book III-S for additional information about this
instruction.

Special Registers Altered:
None

31 RT RA RB 310 /
0 6 11 16 21 31

The eieio<S> or mbar<E> instruction can be used
to ensure that the storage accesses caused by
eciwx and ecowx are performed in program order
with respect to other Caching Inhibited and
Guarded storage accesses.

31 RS RA RB 438 /
0 6 11 16 21 31

Programming Note
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Appendix A.  Assembler Extended Mnemonics 

In order to make assembler language programs simpler
to write and easier to understand, a set of extended
mnemonics and symbols is provided for certain instruc-
tions. This appendix defines extended mnemonics and

symbols related to instructions defined in Book II.
Assemblers should provide the extended mnemonics
and symbols listed here, and may provide others.

A.1 Data Cache Block Touch [for 
Store] Mnemonics
The TH field in the Data Cache Block Touch and Data
Cache Block Touch for Store instructions control the
actions performed by the instructions. Extended mne-
monics are provided that represent the TH value in the
mnemonic rather than requiring it to be coded as a
numeric operand.

A.2 Data Cache Block Flush 
Mnemonics 
The L field in the Data Cache Block Flush instruction
controls the scope of the flush function performed by
the instruction. Extended mnemonics are provided that

represent the L value in the mnemonic rather than
requiring it to be coded as a numeric operand.

Note: dcbf serves as both a basic and an extended
mnemonic.  The Assembler will recognize a dcbf mne-
monic with three operands as the basic form, and a
dcbf mnemonic with two operands as the extended
form.  In the extended form the L operand is omitted
and assumed to be 0. 

A.3 Or Mnemonics
The three register fields in the or instruction can be
used to specify a hint indicating how the processor
should handle shared resources (see Section 3.2).
Extended mnemonics are supported that represent the
instruction field values in the mnemonic rather than
requiring them to be coded as numeric operands.

The three register fields in the or instruction can be
used to specify a hint indicating how the processor
should handle stores caused by previous Store or dcbz
instructions. An extended mnemonic is supported that
represents the operand values in the mnemonic rather
than requiring them to be coded as numeric  operands.

dcbtct RA,RB,TH (equivalent to: dcbt for TH val-
ues of 0b00000 - 0b00111); 

    other TH values are invalid.

dcbtds RA,RB,TH (equivalent to: dcbt for TH val-
ues of 0b00000 or 0b01000 
- 0b01111);

    other TH values are invalid.

dcbtt RA,RB (equivalent to: dcbt for TH 
value of 0b10000)

dcbna RA,RB (equivalent to: dcbt for TH 
value of 0b10001)

dcbtstct RA,RB,TH (equivalent to: dcbtst for TH 
values of 0b00000 or 
0b00000 - 0b00111); 

    other TH values are invalid.

dcbtstds RA,RB,TH (equivalent to: dcbtst for TH 
values of 0b00000 or 
0b01000 - 0b01111);

    other TH values are invalid.

dcbtstt RA,RB (equivalent to: dcbtst for TH 
value of  0b10000)

dcbf RA,RB (equivalent to: dcbf RA,RB,0)

dcbfl RA,RB (equivalent to: dcbf RA,RB,1)
dcbflp RA,RB (equivalent to: dcbf RA,RB,3)

yeild (equivalent to: or 27,27,27)

mdoio (equivalent to: or 29,29,29)
mdoom (equivalent to: or 30,30,30)

miso (equivalent to: or 26,26,26)
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A.4 Load and Reserve 
Mnemonics
The EH field in the Load and Reserve instructions pro-
vides a hint regarding the type of algorithm imple-
mented by the instruction sequence being executed.
Extended mnemonics are provided that allow the EH
value to be omitted and assumed to be 0b0.

Note: lbarx, lharx, lwarx, ldarx, and lqarx serve as
both basic and extended mnemonics. The Assembler
will recognize these mnemonics with four operands as
the basic form, and these mnemonics with three oper-
ands as the extended form. In the extended form the
EH operand is omitted and assumed to be 0. 

A.5 Synchronize Mnemonics
The L field in the Synchronize instruction controls the
scope of the synchronization function performed by the
instruction.  Extended mnemonics are provided that
represent the L value in the mnemonic rather than
requiring it to be coded as a numeric operand. Two
extended mnemonics are provided for the L=0 value in
order to support Assemblers that do not recognize the
sync mnemonic.

Note: sync serves as both a basic and an extended
mnemonic.  Assemblers that support the E field of the
instruction will recognize a sync  mnemonic with two
operands as the basic form, and a sync mnemonic with
one or no operands as extended forms. In the
one-operand extended form the E operand is omitted
and assumed to be 0b0000. In the no-operand
extended form the E and L operands are both omitted
and assumed to be 0b0000 and 0 respectively. Assem-
blers that do not support the E field of the instruciton
will recognize a sync mnemonic with one operand as
the basic form, and a sync mnemonic with no operand
as the extended form.  In the extended form the L oper-
and is omitted and assumed to be 0.

A.6 Wait Mnemonics
The WC field in the wait instruction determines the
condition that causes instruction execution to resume.
Extended mnemonics are provided that represent the

WC value in the mnemonic rather than requiring it to be
coded as a numeric operand.

Note: wait serves as both a basic and an extended
mnemonic. The Assembler will recognize a wait mne-
monic with one operand as the basic form, and a wait
mnemonic with no operands as the extended form. In
the extended form the WC operand is omitted and
assumed to be 0.

A.7 Transactional Memory 
Instruction Mnemics
The A field in the Transaction End instruction controls
whether the instruction ends only the current (possibly
nested) transaction or the entire set of nested transac-
tions. Extended mnemonics are provided that represent
the A value in the mnemonic rather than requiring it to
be coded as a numeric operand..

The L field in the Transaction Suspend or Resume
instruction determines how to change the transaction
state. Extended mnemonics are provided that repre-
sent the L value in the mnemonic rather than requiring
it to be coded as a numeric operand.

A.8 Move To/From Time Base 
Mnemonics
The tbr field in the Move From Time Base instruction
specifies whether the instruction reads the entire Time
Base or only the high-order half of the Time Base.

A.9 Return From Event-Based 
Branch Mnemonic
The S field in the Return from Event-Based Branch
instruction specifies the value to which the instruction
sets the GE field in the BESCR. Extended mnemonics

lbarx  RT,RA,RB (equivalent to: lbarx   RT,RA,RB,0)

lharx  RT,RA,RB (equivalent to: lharx   RT,RA,RB,0)

lwarx  RT,RA,RB (equivalent to: lwarx   RT,RA,RB,0)
ldarx  RT,RA,RB (equivalent to: ldarx   RT,RA,RB,0)

lqarx  RT,RA,RB (equivalent to: lqarx   RT,RA,RB,0)

sync (equivalent to:        sync     0)

msync<E> (equivalent to:        sync     0)
lwsync (equivalent to:        sync     1)

ptesync<S> (equivalent to:        sync     2)

wait (equivalent to: wait 0)

waitrsv (equivalent to: wait 1)

waitimpl (equivalent to: wait 2)

tend. (equivalent to: tend. 0)
tendall. (equivalent to: tend. 1)

tsuspend. (equivalent to: tsr. 0)

tresume. (equivalent to: tsr. 1)

mftb Rx (equivalent to: mftb Rx,268)
                   or: mfspr Rx,268

mftbu Rx (equivalent to: mftb Rx,269)
                   or: mfspr Rx,269
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are provided that represent the S value in the mne-
monic rather than requiring it to be coded as a numeric
operand.

Note: rfebb serves as both a basic and an extended
mnemonic. The Assembler will recognize this mne-
monic with one operand as the basic form, and this
mnemonic with no operands as the extended form. In
the extended form the S operand is omitted and
assumed to be 1. 

rfebb (equivalent to: rfebb 1)
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Appendix B.  Programming Examples for Sharing 
Storage 

This appendix gives examples of how dependencies
and the Synchronization instructions can be used to
control storage access ordering when storage is shared
between programs.

Many of the examples use extended mnemonics (e.g.,
bne, bne-, cmpw) that are defined in Appendix E of
Book I.

Many of the examples use the Load And Reserve and
Store Conditional instructions, in a sequence that
begins with a Load And Reserve instruction and ends
with a Store Conditional instruction (specifying the
same storage location as the Load Conditional) fol-
lowed by a Branch Conditional instruction that tests
whether the Store Conditional instruction succeeded.

In these examples it is assumed that contention for the
shared resource is low; the conditional branches are
optimized for this case by using “+” and “-” suffixes
appropriately.

The examples deal with words; they can be used for
doublewords by changing all word-specific mnemonics
to the corresponding doubleword-specific mnemonics
(e.g., lwarx to ldarx, cmpw to cmpd).

In this appendix it is assumed that all shared storage
locations are in storage that is Memory Coherence
Required, and that the storage locations specified by
Load And Reserve and Store Conditional instructions
are in storage that is neither Write Through Required
nor Caching Inhibited.

B.1 Atomic Update Primitives
This section gives examples of how the Load And
Reserve and Store Conditional instructions can be
used to emulate atomic read/modify/write operations.

An atomic read/modify/write operation reads a storage
location and writes its next value, which may be a func-
tion of its current value, all as a single atomic operation.
The examples shown provide the effect of an atomic
read/modify/write operation, but use several instruc-
tions rather than a single atomic instruction.

Fetch and No-op
The “Fetch and No-op” primitive atomically loads the
current value in a word in storage.

In this example it is assumed that the address of the
word to be loaded is in GPR 3 and the data loaded are
returned in GPR 4.

loop:
lwarx r4,0,r3 #load and reserve
stwcx. r4,0,r3 #store old value if

#  still reserved
bne- loop #loop if lost reservation

Note:

1. The stwcx., if it succeeds, stores to the target
location the same value that was loaded by the
preceding lwarx.  While the store is redundant with
respect to the value in the location, its success
ensures that the value loaded by the lwarx is still
the current value at the time the stwcx. is exe-
cuted.

Fetch and Store
The “Fetch and Store” primitive atomically loads and
replaces a word in storage.

In this example it is assumed that the address of the
word to be loaded and replaced is in GPR 3, the new
value is in GPR 4, and the old value is returned in GPR
5.

loop:
lwarx  r5,0,r3 #load and reserve
stwcx. r4,0,r3 #store new value if

#  still reserved
bne- loop loop if lost reservation
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Fetch and Add
The “Fetch and Add” primitive atomically increments a
word in storage.

In this example it is assumed that the address of the
word to be incremented is in GPR 3, the increment is in
GPR 4, and the old value is returned in GPR 5.

loop:
lwarx  r5,0,r3 #load and reserve
add r0,r4,r5#increment word
stwcx. r0,0,r3 #store new value if still res’ved
bne- loop #loop if lost reservation

Fetch and AND
The “Fetch and AND” primitive atomically ANDs a value
into a word in storage.

In this example it is assumed that the address of the
word to be ANDed is in GPR 3, the value to AND into it
is in GPR 4, and the old value is returned in GPR 5.

loop:
lwarx r5,0,r3 #load and reserve
and r0,r4,r5#AND word
stwcx. r0,0,r3 #store new value if still res’ved
bne- loop #loop if lost reservation

Note:

1. The sequence given above can be changed to per-
form another Boolean operation atomically on a
word in storage, simply by changing the and
instruction to the desired Boolean instruction (or,
xor, etc.).

Test and Set
This version of the “Test and Set” primitive atomically
loads a word from storage, sets the word in storage to a
nonzero value if the value loaded is zero, and sets the
EQ bit of CR Field 0 to indicate whether the value
loaded is zero.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the new value (nonzero)
is in GPR 4, and the old value is returned in GPR 5.

loop:
lwarx r5,0,r3 #load and reserve
cmpwi r5,0 #done if word not equal to 0
bne- exit
stwcx. r4,0,r3 #try to store non-0
bne- loop #loop if lost reservation

exit: ...

Compare and Swap
The “Compare and Swap” primitive atomically com-
pares a value in a register with a word in storage, if they
are equal stores the value from a second register into
the word in storage, if they are unequal loads the word
from storage into the first register, and sets the EQ bit
of CR Field 0 to indicate the result of the comparison.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the comparand is in GPR
4 and the old value is returned there, and the new value
is in GPR 5.

loop:
lwarx r6,0,r3 #load and reserve
cmpw r4,r6 #1st 2 operands equal?
bne- exit #skip if not
stwcx. r5,0,r3 #store new value if still res’ved
bne- loop #loop if lost reservation

exit:
mr r4,r6 #return value from storage

Notes:

1. The semantics given for “Compare and Swap”
above are based on those of the IBM System/370
Compare and Swap instruction.  Other architec-
tures may define a Compare and Swap instruction
differently.

2. “Compare and Swap” is shown primarily for peda-
gogical reasons.  It is useful on machines that lack
the better synchronization facilities provided by
lwarx and stwcx..  A major weakness of a Sys-
tem/370-style Compare and Swap instruction is
that, although the instruction itself is atomic, it
checks only that the old and current values of the
word being tested are equal, with the result that
programs that use such a Compare and Swap to
control a shared resource can err if the word has
been modified and the old value subsequently
restored.  The sequence shown above has the
same weakness.

3. In some applications the second bne- instruction
and/or the mr instruction can be omitted.  The
bne- is needed only if the application requires that
if the EQ bit of CR Field 0 on exit indicates “not
equal” then (r4) and (r6) are in fact not equal. The
mr is needed only if the application requires that if
the comparands are not equal then the word from
storage is loaded into the register with which it was
compared (rather than into a third register).  If
either or both of these instructions is omitted, the
resulting Compare and Swap does not obey Sys-
tem/370 semantics.
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B.2 Lock Acquisition and Release, and Related Techniques

This section gives examples of how dependencies and
the Synchronization instructions can be used to imple-

ment locks, import and export barriers, and similar con-
structs.

B.2.1 Lock Acquisition and Import 
Barriers
An “import barrier” is an instruction or sequence of
instructions that prevents storage accesses caused by
instructions following the barrier from being performed
before storage accesses that acquire a lock have been
performed.  An import barrier can be used to ensure
that a shared data structure protected by a lock is not
accessed until the lock has been acquired.  A sync
instruction can be used as an import barrier, but the
approaches shown below will generally yield better per-
formance because they order only the relevant storage
accesses.

B.2.1.1  Acquire Lock and Import 
Shared Storage
If lwarx and stwcx. instructions are used to obtain the
lock, an import barrier can be constructed by placing an
isync instruction immediately following the loop con-
taining the lwarx and stwcx..  The following example
uses the “Compare and Swap” primitive to acquire the
lock.

In this example it is assumed that the address of the
lock is in GPR 3, the value indicating that the lock is
free is in GPR 4, the value to which the lock should be
set is in GPR 5, the old value of the lock is returned in
GPR 6, and the address of the shared data structure is
in GPR 9.

loop:
lwarx r6,0,r3,1 #load lock and reserve
cmpw r4,r6   #skip ahead if
bne- wait   #  lock not free
stwcx. r5,0,r3   #try to set lock
bne- loop   #loop if lost reservation
isync   #import barrier
lwz r7,data1(r9)#load shared data
.
.

wait... #wait for lock to free

The hint provided with lwarx indicates that after the
program acquires the lock variable (i.e., stwcx. is suc-
cessful), it will release it (i.e., store to it) prior to another
program attempting to modify it.

The second bne- does not complete until CR0 has
been set by the stwcx..  The stwcx. does not set CR0
until it has completed (successfully or unsuccessfully).
The lock is acquired when the stwcx. completes suc-
cessfully.  Together, the second bne- and the subse-

quent isync create an import barrier that prevents the
load from “data1” from being performed until the branch
has been resolved not to be taken.

If the shared data structure is in storage that is neither
Write Through Required nor Caching Inhibited, an
lwsync instruction can be used instead of the isync
instruction.  If lwsync is used, the load from “data1”
may be performed before the stwcx..  But if the stwcx.
fails, the second branch is taken and the lwarx is
re-executed.  If the stwcx. succeeds, the value
returned by the load from “data1” is valid even if the
load is performed before the stwcx., because the
lwsync ensures that the load is performed after the
instance of the lwarx that created the reservation used
by the successful stwcx..

B.2.1.2 Obtain Pointer and Import 
Shared Storage
If lwarx and stwcx. instructions are used to obtain a
pointer into a shared data structure, an import barrier is
not needed if all the accesses to the shared data struc-
ture depend on the value obtained for the pointer.  The
following example uses the “Fetch and Add” primitive to
obtain and increment the pointer.

In this example it is assumed that the address of the
pointer is in GPR 3, the value to be added to the pointer
is in GPR 4, and the old value of the pointer is returned
in GPR 5.

loop:
lwarx r5,0,r3 #load pointer and reserve
add r0,r4,r5#increment the pointer
stwcx. r0,0,r3 #try to store new value
bne- loop #loop if lost reservation
lwz r7,data1(r5) #load shared data

The load from “data1” cannot be performed until the
pointer value has been loaded into GPR 5 by the lwarx.
The load from “data1” may be performed before the
stwcx..  But if the stwcx. fails, the branch is taken and
the value returned by the load from “data1” is dis-
carded.  If the stwcx. succeeds, the value returned by
the load from “data1” is valid even if the load is per-
formed before the stwcx., because the load uses the
pointer value returned by the instance of the lwarx that
created the reservation used by the successful stwcx..

An isync instruction could be placed between the bne-
and the subsequent lwz, but no isync is needed if all
accesses to the shared data structure depend on the
value returned by the lwarx.
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B.2.2 Lock Release and Export 
Barriers
An “export barrier” is an instruction or sequence of
instructions that prevents the store that releases a lock
from being performed before stores caused by instruc-
tions preceding the barrier have been performed.  An
export barrier can be used to ensure that all stores to a
shared data structure protected by a lock will be per-
formed with respect to any other processor before the
store that releases the lock is performed with respect to
that processor.

B.2.2.1 Export Shared Storage and 
Release Lock
A sync instruction can be used as an export barrier
independent of the storage control attributes (e.g.,
presence or absence of the Caching Inhibited attribute)
of the storage containing the shared data structure.
Because the lock must be in storage that is neither
Write Through Required nor Caching Inhibited, if the
shared data structure is in storage that is Write
Through Required or Caching Inhibited a sync instruc-
tion must be used as the export barrier.

In this example it is assumed that the shared data
structure is in storage that is Caching Inhibited, the
address of the lock is in GPR 3, the value indicating
that the lock is free is in GPR 4, and the address of the
shared data structure is in GPR 9.

stw r7,data1(r9)#store shared data (last)
sync #export barrier
stw r4,lock(r3)#release lock

The sync ensures that the store that releases the lock
will not be performed with respect to any other proces-
sor until all stores caused by instructions preceding the
sync have been performed with respect to that proces-
sor.  

B.2.2.2 Export Shared Storage and 
Release Lock using lwsync
If the shared data structure is in storage that is neither
Write Through Required nor Caching Inhibited, an
lwsync instruction can be used as the export barrier.
Using lwsync rather than sync will yield better perfor-
mance in most systems.

In this example it is assumed that the shared data
structure is in storage that is neither Write Through
Required nor Caching Inhibited, the address of the lock
is in GPR 3, the value indicating that the lock is free is
in GPR 4, and the address of the shared data structure
is in GPR 9.

stw r7,data1(r9)#store shared data (last)
lwsync #export barrier
stw r4,lock(r3)#release lock 

The lwsync ensures that the store that releases the
lock will not be performed with respect to any other pro-
cessor until all stores caused by instructions preceding
the lwsync have been performed with respect to that
processor.

 

B.2.3 Safe Fetch
If a load must be performed before a subsequent store
(e.g., the store that releases a lock protecting a shared
data structure), a technique similar to the following can
be used.

In this example it is assumed that the address of the
storage operand to be loaded is in GPR 3, the contents
of the storage operand are returned in GPR 4, and the
address of the storage operand to be stored is in GPR
5.

lwz r4,0(r3)#load shared data
cmpw r4,r4 #set CR0 to “equal”
bne- $-8 #branch never taken
stw r7,0(r5)#store other shared data

An alternative is to use a technique similar to that
described in Section B.2.1.2, by causing the stw to
depend on the value returned by the lwz and omitting
the cmpw and bne-. The dependency could be created
by ANDing the value returned by the lwz with zero and
then adding the result to the value to be stored by the
stw. If both storage operands are in storage that is nei-
ther Write Through Required nor Caching Inhibited,
another alternative is to replace the cmpw and bne-
with an lwsync instruction.
Power ISA™ - Book II834



Version 2.07 B
B.3 List Insertion
This section shows how the lwarx and stwcx.  instruc-
tions can be used to implement simple insertion into a
singly linked list.  (Complicated list insertion, in which
multiple values must be changed atomically, or in which
the correct order of insertion depends on the contents
of the elements, cannot be implemented in the manner
shown below and requires a more complicated strategy
such as using locks.)

The “next element pointer” from the list element after
which the new element is to be inserted, here called the
“parent element”, is stored into the new element, so
that the new element points to the next element in the
list; this store is performed unconditionally.  Then the
address of the new element is conditionally stored into
the parent element, thereby adding the new element to
the list.

In this example it is assumed that the address of the
parent element is in GPR 3, the address of the new ele-
ment is in GPR 4, and the next element pointer is at off-
set 0 from the start of the element.  It is also assumed
that the next element pointer of each list element is in a
reservation granule separate from that of the next ele-
ment pointer of all other list elements.

loop:
lwarx r2,0,r3 #get next pointer
stw r2,0(r4)#store in new element
lwsync or sync #order stw before stwcx
stwcx. r4,0,r3 #add new element to list
bne- loop #loop if stwcx. failed

In the preceding example, if two list elements have next
element pointers in the same reservation granule then,
in a multiprocessor, “livelock” can occur.  (Livelock is a
state in which processors interact in a way such that no
processor makes forward progress.)

If it is not possible to allocate list elements such that
each element’s next element pointer is in a different
reservation granule, then livelock can be avoided by
using the following, more complicated, sequence.

lwz r2,0(r3)#get next pointer
loop1:

mr r5,r2 #keep a copy
stw r2,0(r4)#store in new element
sync #order stw before stwcx. 

and before lwarx
loop2:

lwarx r2,0,r3 #get it again
cmpw r2,r5 #loop if changed (someone
bne- loop1 #  else progressed)
stwcx. r4,0,r3 #add new element to list
bne- loop2 #loop if failed

In the preceding example, livelock is avoided by the fact
that each processor re-executes the stw only if some
other processor has made forward progress.

B.4 Notes
The following notes apply to Section B.1 through Sec-
tion B.3.

1. To increase the likelihood that forward progress is
made, it is important that looping on lwarx/stwcx.
pairs be minimized. For example, in the “Test and
Set” sequence shown in Section B.1, this is
achieved by testing the old value before attempting
the store; were the order reversed, more stwcx.
instructions might be executed, and reservations
might more often be lost between the lwarx and
the stwcx.

2. The manner in which lwarx and stwcx. are com-
municated to other processors and mechanisms,
and between levels of the storage hierarchy within
a given processor, is implementation-dependent.
In some implementations performance may be
improved by minimizing looping on a lwarx instruc-
tion that fails to return a desired value. For exam-
ple, in the “Test and Set” sequence shown in
Section B.1, if the programmer wishes to stay in
the loop until the word loaded is zero, he could
change the “bne- exit” to “bne- loop”. However, in
some implementations better performance may be
obtained by using an ordinary Load instruction to
do the initial checking of the value, as follows.

loop:
 lwz r5,0(r3)#load the word
 cmpwi r5,0 #loop back if word
 bne- loop #  not equal to 0
 lwarx r5,0,r3 #try again, reserving
 cmpwi r5,0 #  (likely to succeed)
 bne- loop
 stwcx.r4,0,r3 #try to store non-0
 bne- loop #loop if lost reserv’n

3. In a multiprocessor, livelock is possible if there is a
Store instruction (or any other instruction that can
clear another processor’s reservation; see Section
1.7.3.1) between the lwarx and the stwcx. of a
lwarx/stwcx. loop and any byte of the storage
location specified by the Store is in the reservation
granule. For example, the first code sequence
shown in Section B.3 can cause livelock if two list
elements have next element pointers in the same
reservation granule.

B.5 Transactional Lock Elision 
[Category: Transactional Mem-
ory]
This section illustrates the use of the Transactional
Memory facility to implement transactional lock elision
(TLE), in which lock-based critical sections are specu-
latively executed as a transaction without first acquiring
a lock. This locking protocol is an alternative to the rou-
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tines described above, yielding increased concurrency
when the lock that guards a critical section is frequently
unnecessary.

B.5.1 Enter Critical Section
The following example shows the entry point to a criti-
cal section using transactional lock elision. The entry
code starts a transaction using the tbegin. instruction
and checks whether the transaction was aborted or not.
If not, it checks whether the lock is free or not. If the
lock is found to be free, the thread proceeds to execute
the critical section.

In this example it is assumed that the address of the
lock is in GPR 3, and the value indicating that the lock
is free is in GPR 4. The handling of cases of transaction
abort and busy lock are described in subsequent exam-
ples.

tle_entry:
   tbegin.            #Start TLE transaction
   beq- tle_abort     #Handle TLE transaction abort
   lwz r6,0(r3)       #Read lock
   cmpw r6,r4         #Check if lock is free
   bne- busy_lock     #If not, handle lock busy case

critical_section1:

B.5.2 Handling Busy Lock
In the event that the lock is already held, by either
another thread or the current thread, the transaction is
aborted using the tabort instruction, using a soft-
ware-defined code TLE_BUSY_LOCK indicating the
cause of the abort. The abort returns control to the beq
following tbegin. in the critical section entrance
sequence, allowing for an abort handler to react appro-
priately.

busy_lock:
   li r3, TLE_BUSY_LOCK
   tabort r3             #Abort TLE transaction

B.5.3 Handling TLE Abort
A TLE transaction may fail for one of a variety of
causes, persistent and transient. Persistent causes are
certain—or at least highly likely—to cause future
attempts to execute the same transaction to fail. How-
ever, for transient causes, it is possible that the failure
cause may not be re-encountered in a subsequent
attempt. Thus, persistent aborts are handled by taking
a non-transactional path that involves the actual acqui-
sition of the lock, while transient aborts retry the critical
section using TLE.

The following example illustrates the handling of aborts
in TLE. It is assumed that the address of the lock is in
GPR 3. The immediate value of the andis. instruction
selects the Failure Persistent bit in the upper half of
TEXASR to be tested.

tle_abort:
   mfspr r4, TEXASRU    # Read high-order half
                        # of TEXASR
   andis. r5,r4,0x0100  # determine whether failure
                        # is likely to be persistent
   bne tle_acquire_lock   #Persistent, acquire lock
                          #enter critical sec
   b tle_entry            #Transient, try TLE again

This example can be extended to keep track of the
number of transient aborts and fall back on the acquisi-
tion of the lock after the number of transient failures
reaches some threshold. It can also be extended to
handle reentrant locks. Acquisition of TLE locks is
described in a subsequent example.

B.5.4 TLE Exit Section Critical 
Path
The following example illustrates the instruction
sequence used to exit a TLE critical section. The CR0
value set by tend. indicates whether the current thread
was in a transaction. If so,  the exited critical section
was entered speculatively, and the transaction is
ended. If not, the execution takes a path to release the
lock.

Release of an acquired TLE lock is described in a sub-
sequent example.

tle_exit:
   tend.                   #End the current trans-
                           #action, if any
   bng- tle_release_lock   #Release lock, if was
                           #not in a transaction

B.5.5 Acquisition and Release of 
TLE Locks
The steps for acquiring and releasing a lock associated
with a TLE critical section are identical to those for
acquiring and releasing conventional locks that are not
elided, as described in Section B.2.1.1 and Section
B.2.2 respectively. 
Power ISA™ - Book II836



Version 2.07 B
  

A future version of the architecture will revise the
isync and lwsync instruction descriptions to make
them consistent with the use of these instructions,
as shown in Section B.2.1.1, to acquire a lock asso-
ciated with a TLE critical section.

Programming Note
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Chapter 1.  Introduction

1.1 Overview
Chapter 1 of Book I describes computation modes,
document conventions, a general systems overview,
instruction formats, and storage addressing. This chap-
ter augments that description as necessary for the
Power ISA Operating Environment Architecture.

1.2 Document Conventions
The notation and terminology used in Book I apply to
this Book also, with the following substitutions.

For “system alignment error handler” substitute
“Alignment interrupt”.

For “system data storage error handler” substitute
“Data Storage interrupt”, “Hypervisor Data Storage
interrupt”, or “Data Segment interrupt”, as appro-
priate.

For “system error handler” substitute “interrupt”.

For “system floating-point enabled exception error
handler” substitute “Floating-Point Enabled Excep-
tion type Program interrupt”.

For “system illegal instruction error handler” substi-
tute “Hypervisor Emulation Assistance interrupt”. 

For “system instruction storage error handler” sub-
stitute “Instruction Storage interrupt”, “Hypervisor
Instruction Storage interrupt”, or “Instruction Seg-
ment interrupt”, as appropriate.

For “system privileged instruction error handler”
substitute “Privileged Instruction type Program
interrupt”.

For “system service program” substitute “System
Call interrupt”.

For “system trap handler” substitute “Trap type
Program interrupt”. 

For “system facility unavailable error handler” sub-
stitute “Facility Unavailable interrupt” or “Hypervi-
sor Facility Unavailable interrupt.” 

1.2.1 Definitions and Notation
The definitions and notation given in Book I are aug-
mented by the following.

Threaded processor, single-threaded proces-
sor, thread

A threaded processor implements one or more
“threads”, where a thread corresponds to the Book
I/II concept of “processor”. That is, the definition of
“thread” is the same as the Book I definition of
“processor”, and “processor” as used in Books I
and II can be thought of as either a single-threaded
processor or as one thread of a multi-threaded pro-
cessor. Except where the meaning is clear in con-
text or the number of threads does not matter, the
only unqualified uses of “processor” in Book III-S
are in resource names (e.g. Processor Identifica-
tion Register); such uses should be regarded as
meaning “threaded processor”. The threads of a
multi-threaded processor typically share certain
resources, such as the hardware components that
execute certain kinds of instructions (e.g.,
Fixed-Point instructions), certain caches, the
address translation mechanism, and certain hyper-
visor resources.

real page
A unit of real storage that is aligned at a boundary
that is a multiple of its size. The real page size is
4KB.

context of a program
The state (e.g., privilege and relocation) in which
the program executes. The context is controlled by
the contents of certain System Registers, such as
the MSR and SDR1, of certain lookaside buffers,
such as the SLB and TLB, and of the Page Table.

exception
An error, unusual condition, or external signal, that
may set a status bit and may or may not cause an
interrupt, depending upon whether the correspond-
ing interrupt is enabled.
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interrupt 
The act of changing the machine state in response
to an exception, as described in Chapter
6. “Interrupts” on page 937.

trap interrupt 
An interrupt that results from execution of a Trap
instruction.

Additional exceptions to the sequential execution
model, beyond those described in Section 2.2 of
Book I and in the bullet defining “program order” in
Section 2.2 of Book II, are the following.

- A System Reset or Machine Check interrupt
may occur.  The determination of whether an
instruction is required by the sequential execu-
tion model is not affected by the potential
occurrence of a System Reset or Machine
Check interrupt.  (The determination is
affected by the potential occurrence of any
other kind of interrupt.)

- A context-altering instruction is executed
(Chapter 12. “Synchronization Requirements
for Context Alterations” on page 1011). The
context alteration need not take effect until the
required subsequent synchronizing operation
has occurred.

- A Reference and Change bit is updated by the
thread. The update need not be performed
with respect to that thread until the required
subsequent synchronizing operation has
occurred.

- A Branch instruction is executed and the
branch is taken. The update of the
Come-From Address Register<S> (see
Section 8.2 of Book III-S) need not occur until
a subsequent context synchronizing operation
has occurred.

“must”
If hypervisor software violates a rule that is stated
using the word “must” (e.g., “this field must be set
to 0”), and the rule pertains to the contents of a
hypervisor resource, to executing an instruction
that can be executed only in hypervisor state, or to
accessing storage in real addressing mode, the
results are undefined, and may include altering
resources belonging to other partitions, causing
the system to “hang”, etc.

hardware 
Any combination of hard-wired implementation,
emulation assist, or interrupt for software assis-
tance. In the last case, the interrupt may be to an
architected location or to an implementa-
tion-dependent location. Any use of emulation
assists or interrupts to implement the architecture
is implementation-dependent.

hypervisor privileged
A term used to describe an instruction or facility
that is available only when the thread is in hypervi-
sor state.

privileged state and supervisor mode
Used interchangeably to refer to a state in which
privileged facilities are available.

 problem state and user mode
Used interchangeably to refer to a state in which
privileged facilities are not available.

/, //, ///, ... denotes a field that is reserved in an
instruction, in a register, or in an architected stor-
age table.

?, ??, ???, ... denotes a field that is implementa-
tion-dependent in an instruction, in a register, or in
an architected storage table.

1.2.2 Reserved Fields
Book I's description of the handling of reserved bits in
System Registers, and of reserved values of defined
fields of System Registers, applies also to the SLB.
Book I's description of the handling of reserved values
of defined fields of System Registers applies also to
architected storage tables (e.g., the Page Table).

Some fields of certain architected storage tables may
be written to automatically by the hardware, e.g., Refer-
ence and Change bits in the Page Table. When the
hardware writes to such a table, the following rules are
obeyed.

Unless otherwise stated, no defined field other
than the one(s) specifically being updated are
modified.

Contents of reserved fields are either preserved or
written as zero.

  

1.3 General Systems Overview
The hardware contains the sequencing and processing
controls for instruction fetch, instruction execution, and
interrupt action. Most implementations also contain
data and instruction caches. Instructions that the pro-
cessing unit can execute fall into the following classes:

instructions executed in the Branch Facility
instructions executed in the Fixed-Point Facility
instructions executed in the Floating-Point Facility
instructions executed in the Vector Facility

Software should set reserved fields in the SLB and
in architected storage tables to zero, because
these fields may be assigned a meaning in some
future version of the architecture.

Programming Note
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Almost all instructions executed in the Branch Facility,
Fixed-Point Facility, Floating-Point Facility, and Vector
Facility are nonprivileged and are described in Book I.
Book II may describe additional nonprivileged instruc-
tions (e.g., Book II describes some nonprivileged
instructions for cache management). Instructions
related to the privileged state, control of hardware
resources, control of the storage hierarchy, and all
other privileged instructions are described here or are
implementation-dependent.

1.4 Exceptions
The following augments the exceptions defined in Book
I that can be caused directly by the execution of an
instruction:

the execution of a floating-point instruction when
MSRFP=0 (Floating-Point Unavailable interrupt)

an attempt to modify a hypervisor resource when
the thread is in privileged but non-hypervisor state
(see Chapter 2), or an attempt to execute a hyper-
visor-only instruction (e.g., tlbie) when the thread
is in privileged but non-hypervisor state

the execution of a traced instruction (Trace inter-
rupt)

the execution of a Vector instruction when the vec-
tor facility is unavailable  (Vector Unavailable inter-
rupt)

1.5 Synchronization
The synchronization described in this section refers to
the state of the thread that is performing the synchroni-
zation.

1.5.1 Context Synchronization
An instruction or event is context synchronizing if it sat-
isfies the requirements listed below. Such instructions
and events are collectively called context synchronizing
operations. The context synchronizing operations are
the isync instruction, the System Linkage instructions,
the mtmsr[d] instructions with L=0, and most interrupts
(see Section 6.4).

1. The operation causes instruction dispatching (the
issuance of instructions by the instruction fetching
mechanism to any instruction execution mecha-
nism) to be halted.

2. The operation is not initiated or, in the case of
isync, does not complete, until all instructions that
precede the operation have completed to a point at
which they have reported all exceptions they will
cause.

3. The operation ensures that the instructions that
precede the operation will complete execution in

the context (privilege, relocation, storage protec-
tion, etc.) in which they were initiated, except that
the operation has no effect on the context in which
the associated Reference and Change bit updates
are performed.

4. If the operation directly causes an interrupt (e.g.,
sc directly causes a System Call interrupt) or is an
interrupt, the operation is not initiated until no
exception exists having higher priority than the
exception associated with the interrupt (see Sec-
tion 6.8).

5. The operation ensures that the instructions that fol-
low the operation will be fetched and executed in
the context established by the operation. (This
requirement dictates that any prefetched instruc-
tions be discarded and that any effects and side
effects of executing them out-of-order also be dis-
carded, except as described in Section 5.5, “Per-
forming Operations Out-of-Order”.)

  

A context synchronizing operation is necessarily
execution synchronizing; see Section 1.5.2.

Unlike the Synchronize instruction, a context syn-
chronizing operation does not affect the order in
which storage accesses are performed.

Item 2 permits a choice only for isync (and sync
and ptesync; see Section 1.5.2) because all other
execution synchronizing operations also alter con-
text.

Programming Note
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1.5.2 Execution Synchronization
An instruction is execution synchronizing if it satisfies
items 2 and 3 of the definition of context synchroniza-
tion (see Section 1.5.1). sync and ptesync are treated
like isync with respect to item 2. The execution syn-
chronizing instructions are sync, ptesync, the
mtmsr[d] instructions with L=1, and all context syn-
chronizing instructions.

  

Unlike a context synchronizing operation, an execu-
tion synchronizing instruction does not ensure that
the instructions following that instruction will exe-
cute in the context established by that instruction.
This new context becomes effective sometime after
the execution synchronizing instruction completes
and before or at a subsequent context synchroniz-
ing operation.

Programming Note
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Chapter 2.  Logical Partitioning (LPAR) and Thread Control

2.1 Overview
The Logical Partitioning (LPAR) facility permits threads
and portions of real storage to be assigned to logical
collections called partitions, such that a program exe-
cuting on a thread in one partition cannot interfere with
any program executing on a thread in a different parti-
tion. This isolation can be provided for both problem
state and privileged non-hypervisor state programs, by
using a layer of trusted software, called a hypervisor
program (or simply a “hypervisor”), and the resources
provided by this facility to manage system resources.
(A hypervisor is a program that runs in hypervisor state;
see below.)

The number of partitions supported is implementa-
tion-dependent.

A thread is assigned to one partition at any given time.
A thread can be assigned to any given partition without
consideration of the physical configuration of the sys-
tem (e.g., shared registers, caches, organization of the
storage hierarchy), except that threads that share cer-
tain hypervisor resources may need to be assigned to
the same partition; see Section 2.7. The registers and
facilities used to control Logical Partitioning are listed
below and described in the following subsections.

Except in the following subsections, references to the
“operating system” in this document include the hyper-
visor unless otherwise stated or obvious from context.

2.2 Logical Partitioning Control Register (LPCR)

The layout of the Logical Partitioning Control Register
(LPCR) is shown in Figure 1 below.

Figure 1. Logical Partitioning Control Register

The contents of the LPCR control a number of aspects
of the operation of the thread with respect to a logical
partition. Below are shown the bit definitions for the
LPCR.

Bit Description

0:3 Virtualization Control (VC)

Controls the virtualization of partition memory.
This field contains three subfields, VPM, ISL,
and KBV.  Accesses that are initiated in hyper-
visor state (i.e., MSRHV PR=0b10) are per-
formed as if VC=0b0000.

0:1 Virtualized Partition Memory (VPM)

This field controls whether VPM mode is
enabled as specified below. (See Section
5.7.3.4 and Section 5.7.2, “Virtualized Par-
tition Memory (VPM) Mode” for additional
information on VPM mode.)

Bit Description

0 This bit controls whether VPM mode is
enabled when address translation is
disabled
0 - VPM mode disabled 
1 - VPM mode enabled 
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1 This bit controls whether VPM mode is
enabled when address translation is
enabled
0 - VPM mode disabled 
1 - VPM mode enabled 

2 Ignore SLB Large Page Specification
(ISL)

Controls whether ISL mode is enabled as
specified below.

0 - ISL mode disabled 
1 - ISL mode enabled 

When ISL mode is enabled and address
translation is enabled, address translation
is performed as if the contents of SLBL||LP
were 0b000. When address translation is
disabled, the setting of the ISL bit has no
effect. ISL mode has no effect on SLB,
TLB, and ERAT entry invalidations caused
by slbie, slbia, tlbia, tlbie, and slbie. 

3 Key-Based Virtualization (KBV)

Controls whether Key-Based Virtualization
is enabled as specified below.

0 - KBV is disabled 
1 - KBV is enabled 

When KBV is enabled, Virtual Page Class
Key Storage Protection exceptions that
occur on operand accesses when VPM1=0
cause Hypervisor Data Storage interrupts. 

   

4:8 Reserved

9:11 Default Prefetch Depth (DPFD)

The DPFD field is used as the default prefetch
depth for data stream prefetching when
DSCRDPFD=0; see page 764.

12:16 Virtual Real Mode Area Segment Descrip-
tor (VRMASD)

When address translation is disabled and
VPM0=1, the contents of this field specify the

L and LP fields of the segment descriptor that
apply for storage references to the virtualized
real mode area (VRMA). See Section 5.7.3.4
for additional information. The definitions and
allowed values of the L and LP fields are the
same as for the corresponding fields in the
segment descriptor. (See Section 5.7.7.) If
VPM0=0 or address translation is enabled, the
setting of the VRMASD has no effect.

 
Bit Description

0 Virtual Page Size Selector Bit 0 (L)
1:2 Reserved
3:4 Virtual Page Size Selector Bits 1:2 (LP)

  

17:33 Reserved

34:37 Real Mode Limit Selector (RMLS)

The RMLS field specifies the largest effective
address that can be used by partition software
when address translation is disabled. The
valid RMLS values are implementation-depen-
dent, and each value corresponds to a maxi-
mum effective address of 2m, where m has a
minimum value of 12 and a maximum value
equal to the number of bits in the real address
size supported by the implementation.

38 Interrupt Little-Endian (ILE)

The contents of the ILE bit are copied into
MSRLE by interrupts that set MSRHV to 0 (see
Section 6.5), to establish the Endian mode for
the interrupt handler.

39:40 Alternate Interrupt Location (AIL)

Controls the effective address offset of the
interrupt handler and the relocation mode in
which it begins execution for all interrupts
except Machine Check, System Reset, and
Hypervisor Maintenance.

 Key-Based Virtualization provides an effi-
cient means for the hypervisor to intercept
storage references, e.g. MMIO, that must
be emulated.  (The corresponding behav-
ior for instruction fetching is not desired.)
Virtual Page Class Key Storage Protection
exceptions not handled by the hypervisor
should be reflected to the operating sys-
tem at its Data Storage interrupt vector
with the hypervisor having set DSISR42.

Programming Note

Specifying that L||LP=0b000 in the
VRMASD field when VPM mode is
enabled has the same effect on address
translation when translation is disabled as
enabling ISL mode when translation is
enabled.

ISL mode is needed when translation is
enabled because translation uses the
SLB, and the contents of the SLB are
accessible to the operating system and
should not be modified by the hypervisor.
ISL mode is not needed when translation
is disabled since translation uses the
VRMASD, which is not visible to the oper-
ating system and is in complete control of
the hypervisor. 
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0 The interrupt is taken with MSRIR DR =
0b00 and no effective address offset.

1 Reserved
2 The interrupt is taken with MSRIR DR =

0b11 and an effective address offset of
0x0000_0000_0001_8000.

3 The interrupt is taken with MSRIR DR =
0b11 and an effective address offset of
0xC000_0000_0000_4000.

Interrupts that cause a transition from
MSRHV=0 to MSRHV=1, or that occur when
MSRIR=0 or MSRDR=0, are always taken as if
LPCRAIL=0.

  

41:44 Reserved

45 Online (ONL)

0 The PURR and SPURR do not increment.
1 The PURR and SPURR increment.

  

46 Reserved

47:51 Power-saving mode Exit Cause Enable
(PECE)

47 If PECE0 = 1 when a Power-Saving Mode
instruction is executed, Directed Privileged
Doorbell  exceptions are enabled to cause exit
from power-saving mode; otherwise Directed
Privileged Doorbell exceptions are disabled
from causing exit from power-saving mode.

48 If PECE1 = 1 when a Power-Saving Mode
instruction is executed, Directed Hypervisor
Doorbell  exceptions are enabled to cause exit
from power-saving mode; otherwise Directed
Hypervisor Doorbell exceptions are disabled
from causing exit from power-saving mode.

49 If PECE2 = 1 when a Power-Saving Mode
instruction is executed, External exceptions
are enabled to cause exit from power-saving

mode; otherwise External exceptions are dis-
abled from causing exit from power-saving
mode.

50 If PECE3 = 1 when a Power-Saving Mode
instruction is executed, Decrementer excep-
tions are enabled to cause exit from
power-saving mode; otherwise Decrementer
exceptions are disabled from causing exit from
power-saving mode. (In sleep and rvwinkle
power-saving levels, Decrementer exceptions
do not occur if the state of the Decrementer is
not maintained and updated as if the thread
was not in power-saving mode.)

51 If PECE4=1 when a Power-Saving Mode
instruction is executed, Machine Check,
Hypervisor Maintenance, and certain imple-
mentation-specific exceptions are enabled to
cause exit from power-saving mode; other-
wise Machine Check, Hypervisor Mainte-
nance, and the same implementation-specific
exceptions are disabled from causing exit from
power-saving mode.

It is implementation-specific whether the exceptions
enabled by the PECE field cause exit from sleep and
rvwinkle power-saving levels. See Section 6.5.1 and
Section 6.5.2 for additional information about exit from
power-saving mode.

52 Mediated External Exception Request
(MER)

0 A Mediated External exception is not
requested.

1 A Mediated External exception is
requested.

The exception effects of this bit are said to be
consistent with the contents of this bit if one of
the following statements is true.
-   LPCRMER = 1 and a Mediated External

exception exists.
-   LPCRMER = 0 and a Mediated External

exception does not exist.

A context synchronizing instruction or event
that is executed or occurs when LPCRMER = 0
ensures that the exception effects of
LPCRMER are consistent with the contents of
LPCRMER. Otherwise, when an instruction
changes the contents of LPCRMER, the excep-
tion effects of LPCRMER become consistent
with the new contents of LPCRMER reason-
ably soon after the change.

One of the purposes of the AIL field is to
provide relocation for interrupts that occur
while an application is running with
MSRHV PR=0b11 under a “bare metal”
operating system (i.e., an operating sys-
tem that runs in hypervisor state), such as
KVM.

Typically, the hypervisor sets the ONL bit
to 0 when the thread is not in a power sav-
ing mode, is not performing useful work,
and is available for use. The hypervisor
may take the state of the ONL bit into
account when making course-grain load
balancing and power management deci-
sions. 

Programming Note
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53 Reserved

54 Translation Control (TC)

0 The secondary Page Table search is
enabled. 

1 The secondary Page Table search is dis-
abled.

55:59 Reserved

60 Logical Partitioning Environment Selector
(LPES)

0 External interrupts set the HSRRs, set
MSRHV to 1, and leave MSRRI
unchanged.

1 External interrupts set the SRRs, set
MSRRI to 0, and leave MSRHV
unchanged.

  

  

61:62 Reserved

63 Hypervisor Decrementer Interrupt Condi-
tionally Enable (HDICE)

0 Hypervisor Decrementer interrupts are
disabled.

1 Hypervisor Decrementer interrupts are
enabled if permitted by MSREE, MSRHV,
and MSRPR; see Section 6.5.12 on
page 959.

See Section 6.5 on page 948 for a description of how
the setting of LPES affects the processing of interrupts.

2.3 Real Mode Offset Register 
(RMOR)
The layout of the Real Mode Offset Register (RMOR) is
shown in Figure 2 below.

Figure 2. Real Mode Offset Register

All other fields are reserved.

The supported RMO values are the non-negative multi-
ples of 2s, where 2s is the smallest implementa-
tion-dependent limit value representable by the
contents of the Real Mode Limit Selector field of the
LPCR.

The contents of the RMOR affect how some storage
accesses are performed as described in Section 5.7.3
on page 891 and Section 5.7.4 on page 895.

2.4 Hypervisor Real Mode Offset 
Register (HRMOR)
The layout of the Hypervisor Real Mode Offset Register
(HRMOR) is shown in Figure 3 below.

Figure 3. Hypervisor Real Mode Offset Register

All other fields are reserved.

The supported HRMO values are the non-negative
multiples of 2r, where r is an implementation-dependent
value and 12 ≤ r ≤ 26.

The contents of the HRMOR affect how some storage
accesses are performed as described in Section 5.7.3
on page 891 and Section 5.7.4 on page 895.

LPCRMER provides a means for the hyper-
visor to direct an external exception to a
partition independent of the partition's
MSREE setting. (When MSREE=0, it is
inappropriate for the hypervisor to deliver
the exception.) Using LPCRMER, the parti-
tion can be interrupted upon enabling
external interrupts. Without using
LPCRMER, the hypervisor must check the
state of MSREE whenever it gets control,
which will result in less timely delivery of
the exception to the partition.

LPES = 1 should be used by operating
systems not running under a hypervisor,
so that external interrupts are directed to
the SRRs rather than to the HSRRs.

In versions of the architecture that pre-
cede Version 2.07, LPES was a two-bit
field, in which the second bit controlled
significant aspects of storage accessing
and interrupt handling.

Programming Note
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// RMO
0 4                                                                                                               63

Bits Name Description
4:63 RMO Real Mode Offset

// HRMO
0 4                                                                                                              63

Bits Name Description
4:63 HRMO Real Mode Offset
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2.5 Logical Partition
Identification Register (LPIDR)
The layout of the Logical Partition Identification Regis-
ter (LPIDR) is shown in Figure 4 below.

Figure 4. Logical Partition Identification Register

The contents of the LPIDR identify the partition to
which the thread is assigned, affecting operations nec-
essary to manage the coherency of some translation
lookaside buffers. (See Section 5.10.1 and Chapter
12.) The number of LPIDR bits supported is implemen-
tation-dependent.

  

2.6 Processor Compatibility 
Register (PCR) [Category: Pro-
cessor Compatibility]
The layout of the Processor Compatibility Register
(PCR) is shown in Figure 5 below.

Figure 5. Processor Compatibility Register

High-order PCR bits are assigned to control the avail-
ability of certain categories. Low-order PCR bits are
assigned to control the availability of resources that are
new in a specified version of the Architecture. These
low-order bits, referred to as the version bits, can
change the set of resources provided by a category.
For example, since new function is added to VSX cate-
gory in V 2.07, the VSX, V 2.06, and V 2.05 bits can be
set to 0,1,0, respectively, to enable a version of the
VSX category that was available in V 2.06.

Each defined bit in the PCR controls whether certain
instructions, SPRs, and other related facilities are avail-
able in problem state. Except as specified elsewhere in
this section, the PCR has no effect on facilities when
the thread is not in problem state. Facilities that are
made unavailable by the PCR are treated as follows
when the thread is in problem state.

- Instructions are treated as illegal instructions,

- SPRs are treated as if they were not defined
for the implementation,

- The “reserved SPRs” (see Section 1.3.3 of
Book I) are treated as not defined for the
implementation,

- Fields in instructions are treated as if they
were 0s,

- bits in system registers read back 0s, and
mtspr operations have no effect on their val-
ues. 

- rfebb instructions have the same effect on bits
in system registers that they would if the bits
were available.

  

A PCR bit may also determine how an instruction field
value is interpreted or may define other behavior as
specified in the bit definitions below. 

The PCR has no effect on the setting of the MSR and
[H]SRR1 by interrupts, and by the [h]rfid and
mtmsr[d] instructions, except as specified elsewhere
in this section.

LPID
32                                                   63

Bits Name Description
32:63 LPID Logical Partition Identifier

On some implementations, software must prevent
the execution of a tlbie instruction with an LPID
operand value which matches the contents of
another thread’s LPIDR that is being modified or is
the same as the new value being written to the
LPIDR. This restriction can be met with less effort if
one partition identity is used only on threads on
which no tlbie instruction is ever executed. This
partition can be thought of as the transfer partition
used exclusively to move a thread from one parti-
tion to another.

Version bits

/// T
M ///

v2
.0

6

v2
.0

5

//

 0  1 2 3                                                           60  61  62   63

Programming Note

When a bit in a system register is made
unavailable by the PCR, mtspr  opera-
tions performed on the register in problem
state have no effect on the value of the bit
regardless of the privilege state in which
the register may subsequently be read.
When transactional memory is made
unavailable by the PCR, however, rfebb
instructions executed in problem state
have the same effect on MSRTS as they
would if transactional memory were avail-
able. This behavior is specified so that ille-
gal transaction state transitions resulting
from changes to BESCRTS made by privi-
leged code will cause TM Bad Thing type
Program interrupts when rfebb is exe-
cuted, thereby facilitating program debug.

Programming Note
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When facilities that have enable bits in the MSR, FSCR,
HFSCR, or MMCR0 are made unavailable by the value
in the PCR, they become unavailable in problem state
as specified above regardless of whether they are
enabled by the corresponding MSR, FSCR, HFSCR, or
MMCR0 bit; facility availability interrupts (e.g. [Hypervi-
sor] Facility Available, Vector Unavailable, etc.) do not
occur as a result of problem state accesses even if the
corresponding field in the MSR, [H]FSCR, or MMCR0
makes them unavailable in problem state.

  

The bit definitions for the PCR are shown below.

Bit Description

0:1 Reserved

2 Transactional Memory (TM) [Category:
Transactional Memory]

This bit controls the availability, in problem
state, of the instructions and facilities in the
Transactional Memory category as it was
defined in the latest version of the architecture
for which new problem state resources are
made available; if the Transactional Memory
category was not defined in that version of the
architecture, then Transactional Memory
instructions and facilities are unavailable.
0 The instructions and facilities in the Trans-

actional Memory category are available in
problem state.

1 The instructions and facilities in the Trans-
actional Memory category are unavail-
able in problem state.

  

3:60 Reserved

61 Version 2.06 (v2.06)

This bit controls the availability, in problem
state, of the following instructions, facilities,
and behaviors that were newly available in
problem state in the version of the architecture
subsequent to Version 2.06.
- icbt
- lq, stq lbarx, lharx, stbcx, sthcx
- lqarx, stqarx
- clrbhrb, mfbhrbe
- rfebb, bctar[l]
- All facilities in category TM
- The instructions in Table 1
- The reserved no-op instructions (see

Section 1.8.3 of Book I)
- The reserved SPRs (see Section 1.3.3 of

Book I)
- PPR32
- DSCR at SPR number 3
- SIER and MMCR2
- MMCR042:47, 51:55  and MMCRA0:63. 

  

Because the PCR does not prevent mtspr, [h]rfid,
and mtmsr[d] instructions from setting bits in sys-
tem registers that the PCR will make unavailable
after a transition to problem state, these instruc-
tions may cause interrupts in a variety of unex-
pected ways.  For example, consider an operating
system that sets SRR1 such that rfid returns to
problem state with MSR[TS] nonzero.  A TM Bad
Thing interrupt will result, despite that TM is made
unavailable by the PCR.

Similarly, the PCR does not prevent rfebb instruc-
tions from setting bits in system registers that the
PCR has made unavailable in problem state, and
thus changes to BESCRTS made by privileged
code have the potential to subsequently cause ille-
gal transaction state transitions when rfebb is exe-
cuted in problem state, resulting in the occurrence
of TM Bad Thing type Program interrupts.

Facilities that can be disabled in problem state by
the PCR that also have enable bits in either the
MSR or [H]FSCR include Transactional Memory,
the BHRB instructions, event-based branch instruc-
tions, TAR, DSCR at SPR 3, SIER, MMCR2,  the
event-based branch instructions, and certain Float-
ing-Point, Vector, and VSX instructions. When any
of these facilities are made unavailable in problem
state by the PCR, the corresponding [Hypervisor]
Facility Unavailable, Floating-Point Unavailable,
Vector, or VSX unavailable interrupts do not occur
when the facility is accessed in problem state.
Note, however, that the PCR does not affect privi-
leged accesses, and thus any  Hypervisor Facility
Unavailable, Floating-Point Unavailable, Vector
unavailable, or VSX unavailable interrupts that are
specified to occur as a result of privileged accesses
occur regardless of the PCR value.

Programming Note

Programming Note

Since facilities in the TM category were
not defined in Version 2.06, these facilities
are not available in problem state when
the v2.06 bit is set to 1 regardless of the
value of the TM bit.

The specified bits of MMCR0 and
MMCRA above cannot be changed by
mtspr instructions and mfspr instruc-
tions return 0s for these bits.

Programming Note

Programming Note
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- BESCR, EBBHR, and TAR
- The ability of the or   31,31,31 and or

5,5,5 instructions to change the value of
PPRPRI.

- The ability of mtspr instructions that
attempt to set PPRPRI to 001 or 101 to
change the value of PPRPRI.

0 The instructions, facilities, and behaviors
listed above are available in problem
state.

1 The listed instructions, facilities, and
behaviors listed above are unavailable in
problem state.
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Mnemonic Instruction Name Category
bcdadd. Decimal Add Modulo VSX
bcdsub. Decimal Subtract Modulo VSX
fmrgew Floating Merge Even Word VSX
fmrgow Floating Merge Odd Word VSX
lxsiwax Load VSX Scalar as Integer Word Algebraic Indexed VSX
lxsiwzx Load VSX Scalar as Integer Word and Zero Indexed VSX
lxsspx Load VSX Scalar Single-Precision Indexed VSX
mfvsrd Move From VSR Doubleword VSX
mfvsrwz Move From VSR Word and Zero VSX
mtvsrd Move To VSR Doubleword VSX
mtvsrwa Move To VSR Word Algebraic VSX
mtvsrwz Move To VSR Word and Zero VSX
stxsiwx Store VSX Scalar as Integer Word Indexed VSX
stxsspx Store VSX Scalar Single-Precision Indexed VSX
vaddcuq Vector Add & write Carry Unsigned Quadword V
vaddecuq Vector Add Extended & write Carry Unsigned Quadword V
vaddeuqm Vector Add Extended Unsigned Quadword Modulo V
vaddudm Vector Add Unsigned Doubleword Modulo V
vadduqm Vector Add Unsigned Quadword Modulo V
vbpermq Vector Bit Permute Quadword V
vcipher Vector AES Cipher V.AES
vcipherlast Vector AES Cipher Last V.AES
vclzb Vector Count Leading Zeros Byte V
vclzd Vector Count Leading Zeros Doubleword V
vclzh Vector Count Leading Zeros Halfword V
vclzw Vector Count Leading Zeros Word V
vcmpequd[.] Vector Compare Equal To Unsigned Doubleword V
vcmpgtsd[.] Vector Compare Greater Than Signed Doubleword V
vcmpgtud[.] Vector Compare Greater Than Unsigned Doubleword V
veqv Vector Logical Equivalence V
vgbbd Vector Gather Bits by Bytes by Doubleword V
vmaxsd Vector Maximum Signed Doubleword V
vmaxud Vector Maximum Unsigned Doubleword V
vminsd Vector Minimum Signed Doubleword V
vminud Vector Minimum Unsigned Doubleword V
vmrgew Vector Merge Even Word VSX
vmrgow Vector Merge Odd Word VSX
vmulesw Vector Multiply Even Signed Word V
vmuleuw Vector Multiply Even Unsigned Word V
vmulosw Vector Multiply Odd Signed Word V
vmulouw Vector Multiply Odd Unsigned Word V
vmuluwm Vector Multiply Unsigned Word Modulo V
vnand Vector Logical NAND V

Table 1: Category: VSX and Vector Instructions Controlled by the v2.06 Bit
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vncipher Vector AES Inverse Cipher V.AES
vncipherlast Vector AES Inverse Cipher Last V.AES
vorc Vector Logical OR with Complement V
vpermxor Vector Permute and Exclusive-OR V.RAID
vpksdss Vector Pack Signed Doubleword Signed Saturate V
vpksdus Vector Pack Signed Doubleword Unsigned Saturate V
vpkudum Vector Pack Unsigned Doubleword Unsigned Modulo V
vpkudus Vector Pack Unsigned Doubleword Unsigned Saturate V
vpmsumb Vector Polynomial Multiply-Sum Byte V
vpmsumd Vector Polynomial Multiply-Sum Doubleword V
vpmsumh Vector Polynomial Multiply-Sum Halfword V
vpmsumw Vector Polynomial Multiply-Sum Word V
vpopcntb Vector Population Count Byte V
vpopcntd Vector Population Count Doubleword V
vpopcnth Vector Population Count Halfword V
vpopcntw Vector Population Count Word V
vrld Vector Rotate Left Doubleword V
vsbox Vector AES S-Box V.AES
vshasigmad Vector SHA-512 Sigma Doubleword V.SHA2
vshasigmaw Vector SHA-256 Sigma Word V.SHA2
vsld Vector Shift Left Doubleword V
vsrad Vector Shift Right Algebraic Doubleword V
vsrd Vector Shift Right Doubleword V
vsubcuq Vector Subtract & write Carry Unsigned Quadword V
vsubecuq Vector Subtract Extended & write Carry Unsigned Quadword V
vsubeuqm Vector Subtract Extended Unsigned Quadword Modulo V
vsubudm Vector Subtract Unsigned Doubleword Modulo V
vsubuqm Vector Subtract Unsigned Quadword Modulo V
vupkhsw Vector Unpack High Signed Word V
vupklsw Vector Unpack Low Signed Word V
xsaddsp VSX Scalar Add Single-Precision VSX
xscvdpspn Scalar Convert Double-Precision to Single-Precision format Non-signalling VSX
xscvdpspn Scalar Convert Single-Precision to Double-Precision format Non-signalling VSX
xscvsxdsp VSX Scalar Convert Signed Fixed-Point Doubleword to Single-Precision VSX
xscvsxdsp VSX Scalar round and Convert Signed Fixed-Point Doubleword to 

Single-Precision format
VSX

xscvuxdsp VSX Scalar Convert Unsigned Fixed-Point Doubleword to Single-Precision VSX
xscvuxdsp VSX Scalar round and Convert Unsigned Fixed-Point Doubleword to 

Single-Precision format
VSX

xsdivsp VSX Scalar Divide Single-Precision VSX
xsmaddasp VSX Scalar Multiply-Add Type-A Single-Precision VSX
xsmaddmsp VSX Scalar Multiply-Add Type-M Single-Precision VSX
xsmsubasp VSX Scalar Multiply-Subtract Type-A Single-Precision VSX
xsmsubmsp VSX Scalar Multiply-Subtract Type-M Single-Precision VSX
xsmulsp VSX Scalar Multiply Single-Precision VSX

Mnemonic Instruction Name Category

Table 1: Category: VSX and Vector Instructions Controlled by the v2.06 Bit
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62 Version 2.05 (v2.05)

This bit controls the availability, in problem
state, of the following instructions, facilities,
and behaviors that were newly available in
problem state in the version of the architecture
subsequent to Version 2.05.
- AMR access using SPR 13
- addg6s
- bperm
- cdtbcd, cbcdtd
- dcffix[.]
- divde[o][.], divdeu[o][.], divwe[o][.],

divweu[o][.]
- isel
- lfiwzx [Category: Floating-Point:

Phased-In]
- fctidu[.], fctiduz[.], fctiwu[.], fctiwuz[.],

fcfids[.], fcfidu[.], fcfidus[.], ftdiv, ftsqrt
[Category: Floating-Point: Phased-In]

- ldbrx, stdbrx [Category: 64-bit]
- popcntw, popcntd
- All facilities in Category: VSX

0 The instructions, facilities, and behaviors
listed above are available in problem
state.

1 The instructions, facilities, and behaviors
listed above are unavailable in problem
state.

If this bit is set to 1, then the v2.06 bit must
also be set to 1.

63 Reserved

The initial state of the PCR is all 0s.

xsnmaddasp VSX Scalar Negative Multiply-Add Type-A Single-Precision VSX
xsnmaddmsp VSX Scalar Negative Multiply-Add Type-M Single-Precision VSX
xsnmsubasp VSX Scalar Negative Multiply-Subtract Type-A Single-Precision VSX
xsnmsubmsp VSX Scalar Negative Multiply-Subtract Type-M Single-Precision VSX
xsresp VSX Scalar Reciprocal Estimate Single-Precision VSX
xsrsp VSX Scalar Round to Single-Precision VSX
xsrsqrtesp VSX Scalar Reciprocal Square Root Estimate Single-Precision VSX
xssqrtsp VSX Scalar Square Root Single-Precision VSX
xssubsp VSX Scalar Subtract Single-Precision VSX
xxleqv VSX Logical Equivalence VSX
xxlnand VSX Logical NAND VSX
xxlorc VSX Logical OR with Complement VSX

Mnemonic Instruction Name Category

Table 1: Category: VSX and Vector Instructions Controlled by the v2.06 Bit
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2.7 Other Hypervisor Resources
In addition to the resources described above, all hyper-
visor privileged instructions as well as the following
resources are hypervisor resources, accessible to soft-
ware only when the thread is in hypervisor state except
as noted below.

All implementation-specific resources except for
privileged non-hypervisor implementation-specific
SPRs. (See Section 4.4.4 for the list of the imple-
mentation-specific SPRs that are allowed to be
privileged non-hypervisor SPRs.) Implementa-

tion-specific registers include registers (e.g., “HID”
registers) that control hardware functions or affect
the results of instruction execution. Examples
include resources that disable caches, disable
hardware error detection, set breakpoints, control
power management, or significantly affect perfor-
mance.

ME bit of the MSR

SPRs defined as hypervisor-privileged in Section
4.4.4. (Note: Although the Time Base, the PURR,
and the SPURR can be altered only by a hypervi-
sor program, the Time Base can be read by all pro-
grams and the PURR and SPURR can be read
when the thread is in privileged state.)

The contents of a hypervisor resource can be modified
by the execution of an instruction (e.g., mtspr) only in
hypervisor state (MSRHV PR = 0b10). An attempt to
modify the contents of a given hypervisor resource,
other than MSRME, in privileged but non-hypervisor
state (MSRHV PR = 0b00) causes a Privileged Instruc-
tion type Program interrupt. An attempt to modify
MSRME in privileged but non-hypervisor state is
ignored (i.e., the bit is not changed).

  

2.8 Sharing Hypervisor 
Resources
Shared SPRs are SPRs that arePerformance Monitor
accessible to multiple threads. Changes to shared
SPRs made by one thread are immediately readable
(using mfspr) by all other threads sharing the SPR. 

The LPIDR and DPDES must appear to software to be
shared among threads of a sub-processor (see Section
2.9). If the implementation does not support sub-pro-
cessors, the LPIDR and DPDES must be shared
among all threads of the multi-threaded processor. The
DHDES must be shared among threads of the
multi-threaded processor.

Certain additional hypervisor resources may be shared
among threads. Programs that modify these resources
must be aware of this sharing, and must allow for the
fact that changes to these resources may affect more
than one thread. 

The following additional resources may be shared
among threads.

RMOR (see Section 2.3)
HRMOR (see Section 2.4)

Because the PCR has no effect on privileged
instructions except as specified above, privileged
instructions that are available on newer implemen-
tations but not available on older implementations
will behave differently when the thread is in prob-
lem state. On older implementations, either an Ille-
gal Instruction type Program interrupt or a
Hypervisor Emulation Assistance interrupt will
occur because the instruction is undefined; on
newer implementations, a Privileged Instruction
type Program interrupt will occur because the
instruction is implemented. (On older implementa-
tions the interrupt will be an Illegal Instruction type
Program interrupt if the implementation complies
with a version of the architecture that precedes V.
2.05, or complies with V. 2.05 and does not support
the Hypervisor Emulation Assistance category, and
will be a Hypervisor Emulation Assistance interrupt
otherwise.)

In future versions of the architecture, in general the
lowest-order reserved bit of the PCR will be used to
control the availability of the instructions and
related resources that are new in that version of the
architecture; the name of the bit will correspond to
the previous version of the architecture (i.e., the
newest version in which the instructions and related
resources were not available).

In these future versions of the architecture, there
will be a requirement that if any bit of the low-order
defined bits is set to 1 then all higher-order bits of
the defined low-order bits must also be set to 1,
and the architecture version with which the imple-
mentation appears to comply, in problem state, will
be the version corresponding to the name of the
lowest-order 1 bit in the set of defined low-order
PCR bits, or the current architecture version if none
of these bits are 1. Also, in general the high-
est-order reserved bits will be used to control the
availability of sets of instructions and related
resources having the requirement that their avail-
ability be independent of versions of the architec-
ture.

Programming Note

Because the SPRs listed above are privileged for
writing, an attempt to modify the contents of any of
these SPRs in problem state (MSRPR=1) using
mtspr causes a Privileged Instruction type Pro-
gram exception, and similarly for MSRME.

Programming Note
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LPIDR (see Section 2.5)
PCR [Category: Processor Control] (see Section
2.6)
PVR (see Section 4.3.1)
RPR (see Section 4.3.7)
SDR1 (see Section 5.7.7.2)
AMOR (see Section 5.7.9.1)
HMEER (see Section 6.2.9)
Time Base (see Section 7.2)
Virtual Time Base (see Section 7.3)
Hypervisor Decrementer (see Section 7.5)
certain implementation-specific registers or imple-
mentation-specific fields in architected registers

The set of resources that are shared is implementa-
tion-dependent.

Threads that share any of the resources listed above,
with the exception of the PVR and the HRMOR, must
be in the same partition.

For each field of the LPCR, except the AIL, ONL,
HDICE, and MER fields, software must ensure that the
contents of the field are identical among all threads that
are in the same partition and are in a state such that
the contents of the field could have side effects. (E.g.,
software must ensure that the contents of LPCRLPES
are identical among all threads that are in the same
partition and are not in hypervisor state.) For the
HDICE field, software must ensure that the contents of
the field are identical among all threads that share the
Hypervisor Decrementer and are in a state such that
the contents of the field could have side effects.  There
are no identity requirements for the other fields listed in
the first sentence of this paragraph.

2.9 Sub-Processors
Hardware is allowed to sub-divide a multi-threaded pro-
cessor into “sub-processors” that appear to privileged
programs as multi-threaded processors with fewer
threads. Such a multi-threaded processor appears to
the hypervisor as a processor with a number of threads
equal to the sum of all sub-processor threads, and in
which the LPIDR for each sub-processor must appear
to be shared among all threads of that sub-processor. 

2.10 Thread Identification Regis-
ter (TIR) 
The TIR is a 64-bit read-only register that contains the
thread number, which is a binary number correspond-
ing to the thread. 

For implementations that do not support sub-proces-
sors, the thread number of a thread is unique among all
thread numbers of threads on the multi-threaded pro-
cessor. 

For implementations that support sub-processors, the
value of this register depends on whether it is read in
hypervisor or privileged, non-hypervisor state as fol-
lows.

- When this register is read in privileged,
non-hypervisor state, the thread number  is
unique among all thread numbers of threads
on the sub-processor.

- When this register is read in hypervisor state,
the thread number is unique among all thread
numbers of threads on the multi-threaded pro-
cessor.

Threads are numbered sequentially, with valid values
ranging from 0 to t-1, where t is the number of threads
implemented. A thread for which TIR = n is referred to
as “thread n.”

The layout of the TIR is shown below.

Figure 6. Thread Identification Register

Access to the TIR is privileged.

Since the thread number contained in this register is
different if it is read in hypervisor from when it is read in
privileged, non-hypervisor state in implementations that
support sub-processors, the following conventions are
used.

- The value returned in privileged, non-hypervi-
sor state is referred to as the “privileged
thread number.”

- The value returned in hypervisor state is
referred to as the “hypervisor thread number.”

2.11 Hypervisor Interrupt Lit-
tle-Endian (HILE) Bit
The Hypervisor Interrupt Little-Endian (HILE) bit is a bit
in an implementation-dependent register or similar
mechanism. The contents of the HILE bit are copied
into MSRLE by interrupts that set MSRHV to 1 (see Sec-
tion 6.5), to establish the Endian mode for the interrupt
handler. The HILE bit is set, by an implementa-
tion-dependent method, only during system initializa-
tion.

The contents of the HILE bit must be the same for all
threads under the control of a given instance of the
hypervisor; otherwise all results are undefined.

TIR
0                                                                                                               63
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Chapter 3.  Branch Facility

3.1 Branch Facility Overview
This chapter describes the details concerning the regis-
ters and the privileged instructions implemented in the
Branch Facility that are not covered in Book I.

3.2 Branch Facility Registers

3.2.1 Machine State Register
The Machine State Register (MSR) is a 64-bit register.
This register defines the state of the thread. On inter-
rupt, the MSR bits are altered in accordance with
Figure 51 on page 949. The MSR can also be modified
by the mtmsr[d], rfid, and hrfid instructions. It can be
read by the mfmsr instruction.

Figure 7. Machine State Register

Below are shown the bit definitions for the Machine
State Register.

Bit Description

0 Sixty-Four-Bit Mode (SF)

0 The thread is in 32-bit mode.
1 The thread is in 64-bit mode.

1:2 Reserved

 3 Hypervisor State (HV)

0 The thread is not in hypervisor state.
1 If MSRPR=0 the thread is in hypervisor

state; otherwise the thread is not in hyper-
visor state.

  

4 Reserved

5 Software must ensure that this bit contains 0;
otherwise the results of executing all instruc-
tions are boundedly undefined.

  

6:28 Reserved

29:30 Transaction State (TS) [Category: Transac-
tional Memory]

00 Non-transactional
01 Suspended
10 Transactional
11 Reserved

MSR
0                                                                                                                      63

The privilege state of the thread is deter-
mined by MSRHV and MSRPR, as follows.

HV PR

0 0 privileged
0 1 problem
1 0 hypervisor
1 1 problem

Hypervisor state is also a privileged state
(MSRPR = 0). All references to “privileged
state” in the Books include hypervisor
state unless otherwise stated or if it is
obvious from the context.

MSRHV can be set to 1 only by the Sys-
tem Call instruction and some interrupts. It
can be set to 0 only by rfid and hrfid.

It is possible to run an operating system in
an environment that lacks a hypervisor, by
always having MSRHV = 1 and using
MSRHV || MSRPR = 10 for the operating
system (effectively, the OS runs in hyper-
visor state) and MSRHV || MSRPR = 11 for
applications.

This bit is initialized to 0 by hardware at
system bringup.  The handling of this bit
by interrupts and by the rfid, hrfid, and
rfscv instructions is such that, unless soft-
ware deliberately sets the bit to 1, the bit
will continue to contain 0.

Programming Note

Programming Note
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Changes to MSR[TS] that are caused by
Transactional Memory instructions, and by
invocation of the transaction's failure handler,
take effect immediately (even though these
instructions and events are not context syn-
chronizing).

31 Transactional Memory Available (TM) [Cat-
egory: Transactional Memory]

0 The thread cannot execute any Transac-
tional Memory instructions or access any
Transactional Memory registers. 

1 The thread can execute Transactional
Memory instructions and access Transac-
tional Memory registers unless the Trans-
actional Memory facility has been made
unavailable by some other register.

32:37 Reserved

38 Vector Available (VEC) [Category: Vector]

0 The thread cannot execute any vector
instructions, including vector loads, stores,
and moves.

1 The thread can execute vector instruc-
tions unless they have been made
unavailable by some other register.

39 Reserved

40 VSX Available (VSX)

0 The thread cannot execute any VSX
instructions, including VSX loads, stores,
and moves.

1 The thread can execute VSX instructions
unless they have been made unavailable
by some other register.

  

41:47 Reserved

48 External Interrupt Enable (EE)

0 External, Decrementer, Performance
Monitor<S>, and Privileged Doorbell inter-
rupts are disabled.

1 External, Decrementer, Performance
Monitor<S>, and Privileged Doorbell inter-
rupts are enabled.

This bit also affects whether Hypervisor Dec-
rementer, Hypervisor Maintenance, and
Directed Hypervisor Doorbell interrupts are
enabled; see Section 6.5.12 on page 959,
Section 6.5.19 on page 963, and
Section 6.5.20 on page 964.

49 Problem State (PR)

0 The thread is in privileged state.
1 The thread is in problem state.

  

50 Floating-Point Available (FP)
[Category: Floating-Point]

0 The thread cannot execute any float-
ing-point instructions, including float-
ing-point loads, stores, and moves.

1 The thread can execute floating-point
instructions unless they have been made
unavailable by some other register.

51 Machine Check Interrupt Enable (ME)

0 Machine Check interrupts are disabled.
1 Machine Check interrupts are enabled.

This bit is a hypervisor resource; see Chapter
2., “Logical Partitioning (LPAR) and Thread
Control”, on page 845.

  

52 Floating-Point Exception Mode 0 (FE0)
[Category: Floating-Point]

See below.

53 Single-Step Trace Enable (SE)
[Category: Trace]

0 The thread executes instructions normally.
1 The thread generates a Single-Step type

Trace interrupt after successfully complet-
ing the execution of the next instruction,
unless that instruction is an hrfid, rfid or a
Power-Saving Mode instruction, all of
which are never traced. Successful com-
pletion means that the instruction caused
no other interrupt and, if the thread is in
Transactional state <TM>, is not one of
the instructions that is forbidden in Trans-
actional state (e.g., dcbf; see
Section 5.3.1 of Book II).

54 Branch Trace Enable (BE)
[Category: Trace]

0 The thread executes branch instructions
normally. 

1 The thread generates a Branch type Trace
interrupt after completing the execution of
a branch instruction, whether or not the
branch is taken.

An application binary interface defined to
support Category: Vector-Scalar
operations should also specify a
requirement that MSR.FP and MSR.VEC  be
set to 1 whenever MSR.VSX is set to 1.

Programming Note

Any instruction that sets MSRPR to 1 also
sets MSREE, MSRIR, and MSRDR to 1.

The only instructions that can alter
MSRME are rfid and hrfid.

Programming Note

Programming Note
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Branch tracing need not be supported on all
implementations that support the Trace cate-
gory. If the function is not implemented, this bit
is treated as reserved.

55 Floating-Point Exception Mode 1 (FE1)
[Category: Floating-Point]

See below.

56:57 Reserved

58 Instruction Relocate (IR)

0 Instruction address translation is disabled.
1 Instruction address translation is enabled.

  

59 Data Relocate (DR)

0 Data address translation is disabled.
Effective Address Overflow (EAO) (see
Book I) does not occur.

1 Data address translation is enabled. EAO
causes a Data Storage interrupt.

60 Reserved

61 Performance Monitor Mark (PMM) 

This bit is used by software in conjunction with
the Performance Monitor, as described in
Chapter 9.

  

62 Recoverable Interrupt (RI)

0 Interrupt is not recoverable.
1 Interrupt is recoverable.

Additional information about the use of this bit
is given in Sections 6.4.3, “Interrupt Process-
ing” on page 945, 6.5.1, “System Reset Inter-
rupt” on page 950, and 6.5.2, “Machine Check
Interrupt” on page 951.

63 Little-Endian Mode (LE)

See the Programming Note in the defini-
tion of MSRPR.

See the Programming Note in the defini-
tion of MSRPR.

Programming Note

Programming Note

Software can use this bit as a pro-
cess-specific marker which, in conjunction
with MMCR0FCM0 FCM1 (see
Section 9.4.4) and MMCR2 (see
Section 9.4.6), permits events to be
counted on a process-specific basis. (The
bit is saved by interrupts and restored by
rfid.)

Common uses of the PMM bit include the
following.

All counters count events for a few
selected processes.  This use
requires the following bit settings.
- MSRPMM=1 for the selected pro-

cesses, MSRPMM=0 for all other
processes

- MMCR0FCM0=1
- MMCR0FCM1=0
- MMCR2 = 0x0000

All counters count events for all but a
few selected processes.  This use
requires the following bit settings.
- MSRPMM=1 for the selected pro-

cesses, MSRPMM=0 for all other
processes

- MMCR0FCM0=0
- MMCR0FCM1=1
- MMCR2 = 0x0000

Notice that for both of these uses a mark
value of 1 identifies the “few” processes
and a mark value of 0 identifies the
remaining “many” processes. Because the
PMM bit is set to 0 when an interrupt
occurs (see Figure 51 on page 949), inter-
rupt handlers are treated as one of the
“many”. If it is desired to treat interrupt
handlers as one of the “few”, the mark
value convention just described would be
reversed.

If only a specific counter n is to be frozen,
MMCR0FCM0 FCM1 is set to 0b00, and
MMCR2FCnM0 and MMCR2FCnM1 instead
of MMCR0FCM0 and MMCR0FCM1 are set
to the values described above.

Programming Note
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0 The thread is in Big-Endian mode.
1 The thread is in Little-Endian mode.

 

The Floating-Point Exception Mode bits FE0 and FE1
are interpreted as shown below. For further details see
Book I.

3.2.2 State Transitions Associated 
with the Transactional Memory 
Facility [Category: Transactional 
Memory]
Updates to MSRTS and MSRTM caused by rfebb, rfid,
hrfid, or mtmsrd occur as described in Table 2. The
value written, and whether or not the instruction causes
an interrupt, are dependent on the current values of
MSRTS and MSRTM, and the values being written to
these fields. When the setting of MSRTS causes an ille-
gal state transition, a TM Bad Thing type Program inter-
rupt is generated.

 

Table 2 shows all the Transaction State transitions that
can be requested by rfebb, rfid, hrfid, and mtmsrd.
The table covers behavior when TM is enabled by the
PCR.  For causes of the TM Bad Thing type Program
interrupt when TM is disabled by the PCR, see Section
6.5.9. In the table, the contents of MSRTS and MSRTM
are abbreviated in the form AB, where A represents
MSRTS (N, T or S) and B represents MSRTM (0 or 1).
“x” in the “B” position means that the entry covers both
MSRTM values, with the same value applying in all col-
umns of a given row for a given instance of the transi-
tion. (E.g., the first row means that the transition from
N0 to N0 is allowed and results in N0, and that the tran-
sition from N0 to N1 is allowed and results in N1.)
“Input MSRTSMSRTM”  in the second column refers to
the MSRTS and MSRTM values supplied by BESCR for
rfebb (just the TS value), SRR1 for rfid, HSRR1 for
hrfid, or register RS for mtmsrd.

 

The only instructions that can alter MSRLE
are rfid and hrfid.

FE0 FE1 Mode
0 0 Ignore Exceptions
0 1 Imprecise Nonrecoverable
1 0 Imprecise Recoverable
1 1 Precise

The transition rules are the same for mtmsrd as for
the rfid-type instructions because if a transition
were illegal for mtmsrd but allowed for rfid, or vice
versa, software could use the instruction for which
the transition is allowed to achieve the effect of the
other instruction. 

Programming Note

Programming Note
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Table 2: Transaction state transitions that can be 
requested by rfebb, rfid, hrfid, and mtmsrd.

Current 
MSRTSMSRTM 

Input 
MSRTSMSRTM

Resulting 
MSRTS MSRTM

Comments

N0 Nx Nx

May occur in the context of a Transactional Memory type of Facil-
ity Unavailable interrupt handler, enabling/disabling transactions 
for user-level applications.

All others - Illegal1 N0

T0 N/A Unreachable state

S0 N02 S0

Operating system code that is not TM aware may attempt to set 
TS and TM to zero, thinking they’re reserved bits.  Change is sup-
pressed.

T1 T1
May occur at an rfid returning to an application whose transaction 
was suspended on interrupt.

Sx Sx
This case may occur for an rfid returning to an application whose 
suspended transaction was interrupted.

All others - Illegal1 S0

N1 Nx Nx
After a treclaim, the OS dispatches Nx program.

All others -IIllegal1 N0

T1 all N1 Disallowed instructions in Transactional state

S1 T1 T1 May occur after trechkpt. when returning to an application.

Sx Sx

All others - Illegal1 S0

Notes:
1.Generate TM Bad Thing type Program interrupt.  “All others" includes all attempts to set MSRTS to 0b11 

(reserved value).
2.Instruction completes, change to MSRTM suppressed, except when attempted by rfebb, in which case the result 

is a TM Bad Thing type Program interrupt.
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For [h]rfid, and mtmsrd, the attempted transition
from S0 to N0 is suppressed in order that interrupt
handlers that are "unaware" of transactional mem-
ory, and load an MSR value that has not been
updated to take account of transactional memory,
will continue to  work correctly.  (If the interrupt
occurs when a transaction is running or sus-
pended, the interrupt will set MSR[TS || TM] to S0.
If the interrupt handler attempts to load an MSR
value that has not  been updated to take account of
transactional memory, that MSR  value will have TS
|| TM = N0.  It is desirable that the interrupt  handler
remain in state S0, so that it can return normally to
the interrupted transaction.)

The problem solved by suppressing this transition
does not apply to rfebb, so for rfebb an attempt to
transition from S0 to N0 is not suppressed, and
instead causes a TM Bad Thing type Program
interrupt.

Programming Note
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3.3 Branch Facility Instructions

3.3.1 System Linkage Instructions
These instructions provide the means by which a pro-
gram can call upon the system to perform a service,
and by which the system can return from performing a
service or from processing an interrupt.

The System Call instruction is described in Book I, but
only at the level required by an application programmer.
A complete description of this instruction appears
below.

System Call SC-form

sc LEV

SRR0 Iiea CIA + 4
SRR133:36 42:47 I 0
SRR10:32 37:41 48:63 I MSR0:32 37:41 48:63
MSR I new_value (see below)
NIA I 0x0000_0000_0000_0C00

The effective address of the instruction following the
System Call instruction is placed into SRR0. Bits 0:32,
37:41, and 48:63 of the MSR are placed into the corre-
sponding bits of SRR1, and bits 33:36 and 42:47 of
SRR1 are set to zero.

Then a System Call interrupt is generated. The inter-
rupt causes the MSR to be set as described in
Section 6.5, “Interrupt Definitions” on page 948. The
setting of the MSR is affected by the contents of the
LEV field. LEV values greater than 1 are reserved. Bits
0:5 of the LEV field (instruction bits 20:25) are treated
as a reserved field.

The interrupt causes the next instruction to be fetched
from effective address 0x0000_0000_0000_0C00.

This instruction is context synchronizing.

Special Registers Altered:
SRR0 SRR1 MSR

  

17 /// /// // LEV // 1 /
0 6 11 16 20 27 30 31

If LEV=1 the hypervisor is invoked. This is the only
way that executing an instruction can cause hyper-
visor state to be entered.

Because this instruction is not privileged, it is possi-
ble for application software to invoke the hypervi-
sor. However, such invocation should be
considered a programming error.

Programming Note

sc serves as both a basic and an extended mne-
monic. The Assembler will recognize an sc mne-
monic with one operand as the basic form, and an
sc mnemonic with no operand as the extended
form. In the extended form the LEV operand is
omitted and assumed to be 0.

Programming Note
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Return From Interrupt Doubleword
XL-form

rfid

 
MSR51 I (MSR3 & SRR151) | ((¬MSR3) & MSR51)
MSR3 I MSR3 & SRR13 
if (MSR29:31 ¬= 0b010 | SRR129:31 ¬= 0b000) then 
   MSR29:31 I SRR129:31
MSR48 I SRR148 | SRR149 
MSR58 I SRR158 | SRR149
MSR59 I SRR159 | SRR149
MSR0:2 4:28 32 37:41 49:50 52:57 60:63ISRR10:2 4:28 32 37:41 49:50 52:57 
60:63
NIA Iiea SRR00:61 || 0b00

If MSR3=1 then bits 3 and 51 of SRR1 are placed into
the corresponding bits of the MSR. If bits 29 through 31
of the MSR are not equal to 0b010  or bits 29 through
31 of SRR1 are not equal to 0b000, then the value of
bits 29 through 31 of SRR1 is placed into bits 29
through 31 of the MSR.  The result of ORing bits 48
and 49 of SRR1 is placed into MSR48. The result of
ORing bits 58 and 49 of SRR1 is placed into MSR58.
The result of ORing bits 59 and 49 of SRR1 is placed
into MSR59. Bits 0:2, 4:28, 32, 37:41, 49:50, 52:57, and
60:63 of SRR1 are placed into the corresponding bits of
the MSR.

If the instruction attempts to cause an illegal transac-
tion state transition (see Table 2, “Transaction state
transitions that can be requested by rfebb, rfid, hrfid,
and mtmsrd.,” on page 861), or when TM is disabled by
the PCR, a transition to Problem state with an active
transaction, a TM Bad Thing type Program interrupt is
generated (unless a higher-priority exception is pend-
ing). If this interrupt is generated, the value placed into
SRR0 by the interrupt processing mechanism (see
Section 6.4.3) is the address of the rfid instruction.
Otherwise, if  the new MSR value does not enable any
pending exceptions, then the next instruction is fetched,
under control of the new MSR value, from the address
SRR00:61 || 0b00 (when SF=1 in the new MSR value)
or 320 || SRR032:61 || 0b00 (when SF=0 in the new MSR
value). If the new MSR value enables one or more
pending exceptions, the interrupt associated with the
highest priority pending exception is generated; in this
case the value placed into SRR0 or HSRR0 by the
interrupt processing mechanism (see Section 6.4.3) is
the address of the instruction that would have been
executed next had the interrupt not occurred.

This instruction is privileged and context synchronizing.

Special Registers Altered:
MSR

  

19 ///  ///  /// 18 /
0 6 11 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. 

Programming Note
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Hypervisor Return From Interrupt 
Doubleword XL-form

hrfid 

 

if (MSR29:31 ¬= 0b010 | HSRR129:31 ¬= 0b000) then 
   MSR29:31 I HSRR129:31
MSR48 I HSRR148 | HSRR149
MSR58 I HSRR158 | HSRR149
MSR59 I HSRR159 | HSRR149
MSR0:28 32 37:41 49:57 60:63 I HSRR10:28 32 37:41 49:57 60:63
NIA Iiea HSRR00:61 || 0b00

 If bits 29 through 31 of the MSR are not equal to 0b010
or bits 29 through 31 of HSRR1 are not equal to 0b000,
then the value of bits 29 through 31 of HSRR1 is placed
into bits 29 through 31 of the MSR. The result of ORing
bits 48 and 49 of HSRR1 is placed into MSR48. The
result of ORing bits 58 and 49 of HSRR1 is placed into
MSR58. The result of ORing bits 59 and 49 of HSRR1 is
placed into MSR59. Bits 0:28, 32, 37:41, 49:57, and
60:63 of HSRR1 are placed into the corresponding bits
of the MSR.

If the instruction attempts to cause an illegal transac-
tion state transition (see Table 2, “Transaction state
transitions that can be requested by rfebb, rfid, hrfid,
and mtmsrd.,” on page 861), or when TM is disabled by
the PCR, a transition to Problem state with an active
transaction, a TM Bad Thing type Program interrupt is
generated (unless a higher-priority exception is pend-
ing). If this interrupt is generated, the value placed into
SRR0 by the interrupt processing mechanism (see
Section 6.4.3) is the address of the hrfid instruction.
Otherwise, if the new MSR value does not enable any
pending exceptions, then the next instruction is fetched,
under control of the new MSR value, from the address
HSRR00:61 || 0b00 (when SF=1 in the new MSR value)
or 320 || HSRR032:61 || 0b00 (when SF=0 in the new
MSR value). If the new MSR value enables one or more
pending exceptions, the interrupt associated with the
highest priority pending exception is generated; in this
case the value placed into SRR0 or HSRR0 by the
interrupt processing mechanism (see Section 6.4.3) is
the address of the instruction that would have been
executed next had the interrupt not occurred.

This instruction is hypervisor privileged and context
synchronizing.

Special Registers Altered:
MSR

 

19 /// /// /// 274 /
0 6 11 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1.

Programming Note
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3.3.2 Power-Saving Mode Instructions
The Power-Saving Mode instructions provide a means
by which the hypervisor can put the thread into
power-saving mode. When the thread is in power-sav-
ing mode it does not execute instructions, and it may
consume less power than it would consume when it is
not in power-saving mode.

There are four levels of power-savings, called doze,
nap, sleep, and rvwinkle. For each level in this list, the
power consumed is less than or equal to the power
consumed in the preceding level, and the time required
for the thread to exit from the level and for software then
to resume normal operation is greater than or equal to
the corresponding time for the preceding level. Doze
power-saving level requires a minimum amount of such
time, while the other levels may require more time.
Resources other than those listed in the instruction
descriptions that are maintained in each level other
than doze, and the actions required by the hypervisor in
order for software to resume normal operation after the

thread exits from power-saving mode, are implementa-
tion-specific.

Read-only resources (including the HILE bit) are main-
tained in all power-saving levels. Descriptions of
resource state loss in the Power-Saving Mode instruc-
tion descriptions do not apply to read-only resources.

 

The hypervisor determines which power-saving
level to enter based on how responsive the system
needs to be. If the hypervisor decides that some
loss of state is acceptable, it can use the nap
instruction rather than the doze instruction, and
when the thread exits from power-saving mode the
hypervisor can quickly determine whether any
resources need to be restored.

Programming Note
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Doze   XL-form

doze

The thread is placed into doze power-saving level.

When the thread is in doze power-saving level, the
state of all thread resources is maintained as if the
thread was not in power-saving mode.

When the interrupt that causes exit from doze
power-saving level occurs, resource state is as
described in the preceding paragraph, except that if the
exception that caused the exit is a System Reset,
Machine Check, or Hypervisor Maintenance exception,
resource state that would be lost if the exception
occurred when the thread was not in power-saving
mode may be lost.

An attempt to execute this instruction in Suspended
state will result in a TM Bad Thing type Program inter-
rupt.  <TM>

This instruction is hypervisor privileged and context
synchronizing.

Special Registers Altered:
None

Nap XL-form

nap

The thread is placed into nap power-saving level. 

When the thread is in nap power-saving level, the state
of the Decrementer and all hypervisor resources is
maintained as if the thread was not in power-saving
mode, and sufficient information is maintained to allow
the hypervisor to resume execution.

When the interrupt that causes exit from nap
power-saving level occurs, resource state is as
described in the preceding paragraph, except that if the
exception that caused the exit is a System Reset,
Machine Check, or Hypervisor Maintenance exception,
resource state that would be lost if the exception
occurred when the thread was not in power-saving
mode may be lost.

An attempt to execute this instruction in Suspended
state will result in a TM Bad Thing type Program inter-
rupt.  <TM>

This instruction is hypervisor privileged and context
synchronizing.

Special Registers Altered:
None

 

19 /// /// /// 402 /
0 6 11 16 21 31

19 /// /// /// 434 /
0 6 11 16 21 31

If the state of the Decrementer were not maintained
and updated as if the thread was not in power-sav-
ing mode, Decrementer exceptions would not reli-
ably cause exit from nap power-saving level even if
Decrementer exceptions were enabled to cause
exit.

Programming Note
Chapter 3. Branch Facility 867



Version 2.07 B
Sleep  XL-form

sleep

The thread is placed into sleep power-saving level. 

When the thread is in sleep power-saving level, the
state of all resources may be lost except for the
HRMOR.

When the interrupt that causes exit from sleep
power-saving level occurs, resource state is as
described in the preceding paragraph, except that if the
exception that caused the exit is a System Reset,
Machine Check, or Hypervisor Maintenance exception,
resource state that would be lost if the   exception
occurred when the thread was not in power-saving
mode may be lost.

An attempt to execute this instruction in Suspended
state will result in a TM Bad Thing type Program inter-
rupt.  <TM>

This instruction is hypervisor privileged and context
synchronizing.

Special Registers Altered:
None

 

 

Rip Van Winkle  XL-form

rvwinkle

The thread is placed into rvwinkle power-saving level.

When the thread is in rvwinkle power-saving level, the
state of all resources may be lost except for the
HRMOR.

When the interrupt that causes exit from rvwinkle
power-saving level occurs, resource state is as
described in the preceding paragraph, except that if the
exception that caused the exit is a System Reset,
Machine Check, or Hypervisor Maintenance exception,
resource state that would be lost if the   exception
occurred when the thread was not in power-saving
mode may be lost.

An attempt to execute this instruction in Suspended
state will result in a TM Bad Thing type Program inter-
rupt.  <TM>

This instruction is hypervisor privileged and context
synchronizing.

Special Registers Altered:
None

 

 

19 /// /// /// 466 /
0 6 11 16 21 31

If the state of the Decrementer is not maintained
and updated, in sleep or rvwinkle power-saving
level, as if the thread was not in power-saving
mode, Decrementer exceptions will not reliably
cause exit from power-saving mode even if Decre-
menter exceptions are enabled to cause exit. 

See the Notes that appear in the rvwinkle instruc-
tion description.

Programming Note

Note

19 /// /// /// 498 /
0 6 11 16 21 31

In the short story by Washington Irving, Rip Van
Winkle is a man who fell asleep on a green knoll
and awoke twenty years later.

See the Notes that appear in the sleep instruction
description.

Programming Note
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3.3.2.1 Entering and Exiting Power-Saving Mode

In order to enter power-saving mode, the hypervisor
must use the instruction sequence shown below.
Before executing this sequence, the hypervisor must
ensure that LPCRMER contains the value 0, the
LPCRPECE contains the desired value if doze or nap
power-saving level is to be entered, MSRSF, MSRHV,
and MSRME contain the value 1, and all other bits of the
MSR contain the value 0 except for MSRRI, which may
contain either 0 or 1. Depending on the implementation
and on the power-saving mode being entered, it may
also be necessary for the hypervisor to save the state
of certain resources before entering the sequence. The
sequence must be exactly as shown, with no interven-
ing instructions, except that any GPR may be used as
Rx and as Ry, and any value may be used for
“save_area” provided the resulting effective address is
double-word aligned and corresponds to a valid real
address.

std  Rx,save_area(Ry)   /* last store neces-*/
                           /* sary to save state*/

ptesync                 /* order load after*/
                           /* last store      */

ld   Rx,save_area(Ry)   /* reload from last */
                           /* store location, */
                           /* for synchro-    */
                           /* nization        */
loop:

cmp   Rx,Rx             /* create dependency */
bne   loop     
nap/doze/sleep/rvwinkle /* enter power- */

                           /* saving mode    */
b  $                       /* branch to self */

After the thread has entered power-saving mode as
specified above, various exceptions may cause exit
from power-saving mode. The exceptions include, Sys-
tem Reset, Machine Check, Decrementer, External,
Hypevisor Maintenance, and implementation-specific
exceptions. Upon exit from power-saving mode, if the
exception was a Machine Check exception, then a
Machine Check interrupt occurs; otherwise a System
Reset interrupt occurs, and the contents of SRR1 indi-
cate the type of exception that caused exit from
power-saving mode. See Section 6.5.1 for additional
information. 

 

 

The ptesync instruction (see Book III-S, Section
5.9.2) in the preceding sequence, in conjunction
with the ld instruction and the loop, ensure that all
storage accesses associated with instructions pre-
ceding the ptesync instruction, and all Reference,
and Change bit updates associated with additional
address translations that were performed, by the
thread executing the ptesync instruction, before
the ptesync instruction is executed, have been
performed with respect to all threads and mecha-
nisms, to the extent required by the associated
Memory Coherence Required attributes, before the
thread enters power-saving mode. The b instruc-
tion (branch to self) is not executed since the pre-
ceding Power-Saving Mode instruction puts the
thread in a power-saving mode in which instruc-
tions are not executed. Even though it is not exe-
cuted, requiring it to be present simplifies
implementation and testing because it reduces the
synchronization needed between execution of the
instruction stream and entry into power-saving
mode. 

If the Performance Monitor is in use when the
thread enters power-saving mode, the Performance
Monitor data obtainable when the thread exits from
power-saving mode may be incomplete or other-
wise misleading.

Software is not required to set the RI bit to any par-
ticular value prior to entering power-saving mode
because the setting of SRR162 upon exit from
power-saving mode is independent of the value of
the RI bit upon entry into power-saving mode.

Programming Note
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3.4 Event-Based Branch Facility and Instruction

The Event-Based Branch facility is described in Chap-
ter 7 of Book II, but only at the level required by the
application program. 

Event-based branches and event-based exceptions
can only occur in problem state and when event-based
branches and exceptions have been enabled in the
FSCR and HFSCR. If an event-based exception exists
when MSRPR=0, the corresponding event-based
branch does not occur until MSRPR=1, FSCREBB=1,
HFSCREBB=1, MMCR0EBE=1, and BESCRGE=1. 

If the rfebb instruction attempts to cause a transition to
Transactional or Suspended state when PCRTM=1 or
an illegal transaction state transition (see Section
3.2.2), a TM Bad Thing type Program interrupt is gener-
ated (unless a higher-priority exception is pending). If
this interrupt is generated, the value placed into SRR0
by the interrupt processing mechanism is the address
of the rfebb instruction.)
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Chapter 4.  Fixed-Point Facility

4.1 Fixed-Point Facility Over-
view
This chapter describes the details concerning the regis-
ters and the privileged instructions implemented in the
Fixed-Point Facility that are not covered in Book I. 

4.2 Special Purpose Registers
Special Purpose Registers (SPRs) are read and written
using the mfspr (page 885) and mtspr (page 884)
instructions. Most SPRs are defined in other chapters
of this book; see the index to locate those definitions.

4.3 Fixed-Point Facility Regis-
ters

4.3.1 Processor Version Register
The Processor Version Register (PVR) is a 32-bit
read-only register that contains a value identifying the
version and revision level of the implementation. The
contents of the PVR can be copied to a GPR by the
mfspr instruction. Read access to the PVR is privi-
leged; write access is not provided.

Figure 8. Processor Version Register

The PVR distinguishes between implementations that
differ in attributes that may affect software. It contains
two fields.

Version A 16-bit number that identifies the version
of the implementation. Different version
numbers indicate major differences
between implementations, such as which
categories are supported.

Revision A 16-bit number that distinguishes between
implementations of the version. Different
revision numbers indicate minor differences

between implementations having the same
version number, such as clock rate and
Engineering Change level.

Version numbers are assigned by the Power ISA pro-
cess. Revision numbers are assigned by an implemen-
tation-defined process. 

4.3.2 Chip Information Register
The Chip Information Register (CIR) is a 32-bit 
read-only register that contains a value identifying the 
manufacturer and other characteristics of the chip on 
which the processor is implemented. The contents of 
the CIR can be copied to a GPR by the mfspr instruc-
tion. Read access to the CIR is privileged; write access 
is not provided.

Bit Description

32:35 Manufacturer ID (ID) A four-bit field that iden-
tifies the manufacturer of the chip.

36:63 Implementation-dependent.

Figure 9. Chip Information Register

4.3.3 Processor Identification 
Register
The Processor Identification Register (PIR) is a 32-bit
register that contains a value that can be used to distin-
guish the thread from other threads in the system. The
contents of the PIR can be copied to a GPR by the

 Version Revision
32 48       63

ID ???
32 36        63

If two processors have identical designs, their PVR 
values will match.  They will be differentiated by 
data in the CPU node of the device tree.

Programming Note
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mfspr instruction. Read access to the PIR is privileged;
write access is not provided.

Figure 10. Processor Identification Register

The means by which the PIR is initialized are imple-
mentation-dependent.

The PIR is a hypervisor resource; see Chapter 2.

4.3.4 Control Register
The Control Register (CTRL) is a 32-bit register as
shown below. 

Figure 11. Control Register

The field definitions for the CTRL are shown below.

Bit(s) Description

32:47 Reserved

48:55 Thread State (TS)

Problem State Access
Reserved

Privileged accesses 
Bits 0:7 of this field are read-only bits that indi-
cate the state of CTRLRUN for threads with
privileged thread numbers 0 through 7,
respectively; bits corresponding to privileged
thread numbers higher than the maximum
privileged thread number supported are set to
0s.

Hypervisor accesses 
Bits 0:7 of this field are read-only bits that indi-
cate the state of CTRLRUN for threads with
hypervisor thread numbers 0 through 7,
respectively; bits corresponding to hypervisor
thread numbers higher than the maximum
hypervisor thread number supported are set
to 0s.

56:62 Reserved

63 RUN

This bit controls an external I/O pin. This sig-
nal may be used for the following:

driving the RUN Light on a system
operator panel
Direct External exception routing
Performance Monitor Counter incre-
menting (see Chapter 9)

The RUN bit can be used by the operating
system to indicate when the thread is doing
useful work.

Write access to the CTRL is privileged. Reads can be
performed in privileged or problem state.

4.3.5 Program Priority Register
Privileged programs may set a wider range of program
priorities in the PRI field of PPR and PPR32 than may
be set by problem state programs (see Chapter 3 of
Book II). Problem state programs may only set values
in the range of 0b001 to 0b100 unless the Problem

PROCID
32    63

Bits Name Description
32:63 PROCID Thread ID

/// TS /// RUN
32 48 56   63
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State Priority Boost register (see Section 4.3.6) allows
the value 0b101. Privileged programs may set values in
the range of 0b001 to 0b110. Hypervisor software may
also set 0b111. For all priorities except 0b101, if a pro-
gram attempts to set a value that is not allowed for its
privilege level, the PRI field remains unchanged. If a
problem state program attempts to set its priority value
to 0b101 when this priority value is not allowed for
problem state programs, the priority is set to 0b100.
The values and their corresponding meanings are as
follows.

Bit(s) Description

11:13 Program Priority (PRI)

001   very low
010   low
011   medium low
100   medium
101   medium high
110   high
111   very high

4.3.6 Problem State Priority Boost 
Register
The Problem State Priority Boost (PSPB) register is a
32-bit register that controls whether problem state pro-
grams have access to program priority medium high.
(See Section 3.1 of Book II.)

Figure 12. Problem State Priority Boost Register

A problem state program is able to set the program pri-
ority to medium high only when the PSPB of the thread
contains a non-zero value.

The maximum value to which the PSPB can be set
must be a power of 2 minus 1. Bits that are not required
to represent this maximum value must return 0s when
read regardless of what was written to them.

When the  PSPB is set to a value less than its maxi-
mum value but greater than 0, its contents decrease
monotonically at the same rate as the SPURR until its
contents minus the amount it is to be decreased are 0
or less when a problem state program is executing on
the thread  at a priority of medium high.When the con-
tents of the PSPB minus the amount it is to be
decreased are 0 or less, its contents are replaced by 0.

When the PSPB is set to its maximum value or 0, its
contents do not change until it is set to a different value.

Whenever the priority of a thread is medium high and
either of the following conditions exist, hardware
changes the priority to medium:

- the PSPB counts down to 0, or

- PSPB=0 and the privilege state of the thread
is changed to problem state (MSRPR=1).

4.3.7 Relative Priority Register
The Relative Priority Register (RPR) is a 64-bit register
that allows the hypervisor to control the relative priori-
ties corresponding to each valid value of PPRPRI.

Figure 13. Relative Priority Register

Each RPn field is defined as follows.

Bits Meaning

0:1 Reserved

2:7 Relative priority of priority level n: Specifies
the relative priority that corresponds to the pri-
ority corresponding to PPRPRI=n, where a
value of 0 indicates the lowest relative priority
and a value of 0b111111 indicates the highest
relative priority.

4.3.8 Software-use SPRs
Software-use SPRs are 64-bit registers provided for
use by software.

Figure 14. Software-use SPRs

SPRG0, SPRG1, and SPRG2 are privileged registers.
SPRG3 is a privileged register except that the contents
may be copied to a GPR in Problem state when
accessed using the mfspr instruction.

PSPB
32    63

/ RP1 RP2 RP3 RP4 RP5 RP6 RP7
0 8 16 24 32 40 48 56

The hypervisor must ensure that the values of the
RPn fields increase monotonically for each n and
are of different enough magnitudes to ensure that
each priority level provides a meaningful difference
in priority.

SPRG0

SPRG1

SPRG2
SPRG3

0        63
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HSPRG0 and HSPRG1 are 64-bit registers provided for
use by hypervisor programs.

Figure 15. SPRs for use by hypervisor programs

Neither the contents of the SPRGs, nor accessing
them using mtspr or mfspr, has a side effect on
the operation of the thread. One or more of the reg-
isters is likely to be needed by non-hypervisor inter-
rupt handler programs (e.g., as scratch registers
and/or pointers to per thread save areas).

Operating systems must ensure that no sensitive
data are left in SPRG3 when a problem state pro-
gram is dispatched, and operating systems for
secure systems must ensure that SPRG3 cannot
be used to implement a “covert channel” between
problem state programs. These requirements can
be satisfied by clearing SPRG3 before passing
control to a program that will run in problem state.

HSPRG0
HSPRG1

0           63

Neither the contents of the HSPRGs, nor accessing
them using mtspr or mfspr, has a side effect on
the operation of the thread. One or more of the reg-
isters is likely to be needed by hypervisor interrupt
handler programs (e.g., as scratch registers and/or
pointers to per thread save areas). 

Programming Note
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4.4 Fixed-Point Facility Instructions

4.4.1 Fixed-Point Load and Store Caching Inhibited Instructions
The storage accesses caused by the instructions
described in this section are performed as though the
specified storage location is Caching Inhibited and
Guarded. The instructions can be executed only in
hypervisor state.  Software must ensure that the speci-
fied storage location is not in the caches.  If the speci-
fied storage location is in a cache, the results are
undefined.

The Fixed-Point Load and Store Caching Inhibited
instructions must be executed only when MSRDR=0.
The storage location specified by the instructions must
not be in storage specified by the Hypervisor Real
Mode Storage Control facility to be treated as

non-Guarded.  If either of these conditions is violated,
the result is a Data Storage interrupt.

The Fixed-Point Load and Store Caching Inhibited
instructions are fixed-point Storage Access instruc-
tions; see Section 3.3.1 of Book I.

The instructions described in this section can be
used to permit a control register on an I/O device to
be accessed without permitting the corresponding
storage location to be copied into the caches.

Programming Note
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Load Byte and Zero Caching Inhibited 
Indexed X-form

lbzcix RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I 560 || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The byte in storage addressed by EA is
loaded into RT56:63. RT0:55 are set to 0.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Load Halfword and Zero Caching Inhibited 
Indexed X-form

lhzcix RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I 480 || MEM(EA, 2)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The halfword in storage addressed by
EA is loaded into RT48:63. RT0:47 are set to 0.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Load Word and Zero Caching Inhibited 
Indexed X-form

lwzcix RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The word in storage addressed by EA is
loaded into RT32:63. RT0:31 are set to 0.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Load Doubleword Caching Inhibited 
Indexed  X-form

ldcix RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The doubleword in storage addressed by
EA is loaded into RT.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

31 RT RA RB 853 /
0 6 11 16 21 31

31 RT RA RB 821 /
0 6 11 16 21 31

31 RT RA RB 789 /
0 6 11 16 21 31

31 RT RA RB 885 /
0 6 11 16 21 31
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Store Byte Caching Inhibited Indexed
  X-form

stbcix RS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 1) I (RS)56:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)56:63 are stored into the byte in stor-
age addressed by EA.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Store Halfword Caching Inhibited Indexed
  X-form

sthcix RS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 2) I (RS)48:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)48:63 are stored into the halfword in
storage addressed by EA.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Store Word Caching Inhibited Indexed
  X-form

stwcix RS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 4) I (RS)32:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)32:63 are stored into the word in stor-
age addressed by EA.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Store Doubleword Caching Inhibited 
Indexed  X-form

stdcix RS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 8) I (RS)

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS) is stored into the doubleword in
storage addressed by EA.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

31 RS RA RB 981 /
0 6 11 16 21 31

31 RS RA RB 949 /
0 6 11 16 21 31

31 RS RA RB 917 /
0 6 11 16 21 31

31 RS RA RB 1013 /
0 6 11 16 21 31
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4.4.2 OR Instruction
or Rx,Rx,Rx can be used to set PPRPRI (see Section
4.3.5) as shown in Figure 16. For all priorities except
medium high, PPRPRI remains unchanged if the privi-
lege state of the thread executing the instruction is
lower than the privilege indicated in the figure. For pri-
ority medium high, PPRPRI is set to medium if the
thread executing the instruction is in problem state and
medium high priority is not allowed for problem state
programs. (The encodings available to problem state
programs, as well as encodings for additional shared
resource hints not shown here, are described in Chap-
ter 3 of Book II.)

Figure 16. Priority levels for or Rx,Rx,Rx

Rx
PPRPRI Priority Privi-

leged

31 001 very low no

1 010 low no

6 011 medium low no

2 100 medium no

5 101 medium high no/yes1

3 110 high yes

7 111 very high hypv
1This value is privileged unless the Problem State Pri-

ority Boost register allows the priority value 0b101 
(See Section 4.3.6.)
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4.4.3 Transactional Memory 
Instructions [Category: Transac-
tional Memory]
Privileged software that makes the Transactional Mem-
ory Facility available to applications takes on the
responsibility of managing the facility’s resources and
the application’s transactional state during interrupt
handling, service calls, task switches, and its own use
of TM.  In addition to the existing instructions like rfid
and problem state TM instructions that play a role in
this management, treclaim and trechkpt. may be
used, as described below.  See Section 3.2.2 for addi-
tional information about managing the TM facility and
associated state transitions.

Transaction Reclaim X-form

treclaim. RA

CR0 I  0 || MSRTS || 0

if MSRTS = 0b10 | MSRTS = 0b01 then  
      #Transactional or Suspended
      if RA = 0 then cause <- 0x00000001
      else          cause <- GPR(RA)56:63 || 0x000001   
      if TEXASRFS = 0 then
        Discard transactional footprint
      TMRecordFailure(cause)

   Revert checkpointed registers to pre-transac-
tional values

   Discard all resources related to current 
transaction

MSRTS <- 0b00                  #Non-transactional

The treclaim. instruction frees the transactional facility
for use by a new transaction. It sets condition register
field 0 to 0 || MSRTS || 0. If the transactional facility is in
the Transactional state or Suspended state, failure
recording is performed as defined in Section 5.3.2 of
Book II. If RA is 0, the failure cause is set to
0x00000001, otherwise it is set to GPR(RA)56:63 ||
0x000001. The checkpointed registers are reverted to
their pre-transactional values, and all resources related
to the current transaction are discarded, including the
transactional footprint (if it wasn’t already discarded for
a pending failure).

The transaction state is set to Non-transactional.

If an attempt is made to execute treclaim. in Non-trans-
actional state, a TM Bad Thing type Program interrupt
will be generated.

This instruction is privileged.

Special Registers Altered:
CR0TEXASR TFIAR TS

 

31 /// RA /// 942 1
0 6 11 16 21 31

The treclaim. instruction can be used by an inter-
rupt handler to deallocate the current thread’s
transactional resources in preparation for subse-
quent use of the facility by a new transaction.  (An
abort is not appropriate for this use, because (a)
the interrupt handler is in Suspended state and an
abort in Suspended state leaves the thread in Sus-
pended state, and (b) an abort in Suspended state
does not restore the checkpointed registers to their
pre-transaction values.)  After treclaim. is exe-
cuted, when the interrupted program is next dis-
patched it should be resumed by first using
trechkpt. to restore the pre-transactional register
values into the checkpoint area. Failure handling for
that program will occur when the program next
attempts to execute an instruction in the Transac-
tional state, which will cause the failure handler to
be invoked because TDOOMED will be 1.  (This will
be immediate if the program was in the Transac-
tional state when the interrupt occurred, or will be
after tresume. is executed if the program was in
the Suspended state when the interrupt occurred.)

Programming Note
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Transaction Recheckpoint X-form

trechkpt.

CR0 I  0 || MSRTS || 0

MSRTS I 0b01
TDOOMED I 1
checkpoint area I(checkpointed registers) 

The trechkpt. instruction copies the current (pre-trans-
actional, saved and restored by the operating system)
register state to the checkpoint area. It sets condition
register field 0 to 0 || MSRTS || 0. The current values of
the checkpointed registers are loaded into the check-
point area.  TDOOMED is set to 0b1.  

The transaction state is set to Suspended.

If an attempt is made to execute this instruction in
Transactional or Suspended state or when TEXAS-
RFS=0, a TM Bad Thing type Program interrupt will be
generated.

This instruction is privileged.

Special Registers Altered:
CR0 TS

4.4.4 Move To/From System Reg-
ister Instructions
The Move To Special Purpose Register and Move From
Special Purpose Register instructions are described in
Book I, but only at the level available to an application
programmer. For example, no mention is made there of
registers that can be accessed only in privileged state.
The descriptions of these instructions given below
extend the descriptions given in Book I, but do not list
Special Purpose Registers that are implementa-
tion-dependent. In the descriptions of these instructions
given below, the “defined” SPR numbers are the SPR
numbers shown in the figure for the instruction and the
implementation-specific SPR numbers that are imple-
mented, and similarly for “defined” registers.

SPR numbers that are not shown in Figure 17 and are
in the ranges shown below are reserved for implemen-
tation-specific uses.

848 - 863
880 - 895
976 - 991

1008 - 1023

Implementation-specific registers must be privileged.
SPR numbers for implementation-specific SPRs should
be registered in advance with the Power ISA  archi-
tects.

Extended mnemonics
Extended mnemonics are provided for the mtspr and
mfspr instructions so that they can be coded with the
SPR name as part of the mnemonic rather than as a
numeric operand. See Appendix A, “Assembler
Extended Mnemonics” on page 1017.

31 /// /// /// 1006 1
0 6 11 16 21 31
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Figure 17. SPR encodings  (Sheet 1 of 3)

decimal
SPR1

Register Name
Privileged Length

(bits)
Cat2

spr5:9 spr0:4 mtspr mfspr
1 00000 00001 XER no no 64 B
3 00000 00011 DSCR no no 64 STM
8 00000 01000 LR no no 64 B
9 00000 01001 CTR no no 64 B
13 00000 01101 AMR no5 no 64 S
17 00000 10001 DSCR yes yes 64 STM
18 00000 10010 DSISR yes yes 32 S
19 00000 10011 DAR yes yes 64 S
22 00000 10110 DEC yes yes 32 B
25 00000 11001 SDR1 hypv3 hypv3 64 S
26 00000 11010 SRR0 yes yes 64 B
27 00000 11011 SRR1 yes yes 64 B
28 00000 11100 CFAR  yes yes 64 S
29 00000 11101 AMR yes5 yes 64 S
61 00001 11101 IAMR yes8 yes 64 S

128 00100 00000 TFHAR no no 64 TM
129 00100 00001 TFIAR no no 64 TM
130 00100 00010 TEXASR no no 64 TM
131 00100 00011 TEXASRU no no 32 TM
136 00100 01000 CTRL - no 32 S
152 00100 11000 CTRL  yes - 32 S
153 00100 11001 FSCR yes yes 64 S
157 00100 11101 UAMOR yes6 yes 64 S
159 00100 11111 PSPB yes yes 32 S
176 00101 10000 DPDES hypv3 yes 64 S
177 00101 10001 DHDES hypv3 hypv3 64 S
180 00101 10100 DAWR0 hypv3 hypv3 64 S
186 00101 11010 RPR hypv3 hypv3 64 S
187 00101 11011 CIABR hypv3 hypv3 64 S
188 00101 11100 DAWRX0 hypv3 hypv3 32 S
190 00101 11110 HFSCR hypv3 hypv3 64 S
256 01000 00000 VRSAVE no no 32 B
259 01000 00011 SPRG3 - no 64 B
268 01000 01100 TB - no 64 B
269 01000 01101 TBU - no 32 B

272-275 01000 100xx SPRG[0-3] yes yes 64 B
282 01000 11010 EAR hypv3 hypv3 32 EC
283 01000 11011 CIR - yes 32 S
284 01000 11100 TBL hypv3 - 32 B
285 01000 11101 TBU hypv3 - 32 B
286 01000 11110 TBU40 hypv - 64 S
287 01000 11111 PVR - yes 32 B
304 01001 10000 HSPRG0 hypv3 hypv3 64 S
305 01001 10001 HSPRG1 hypv3 hypv3 64 S
306 01001 10010 HDSISR hypv3 hypv3 32 S
307 01001 10011 HDAR hypv3 hypv3 64 S
308 01001 10100 SPURR hypv3 yes 64 S
309 01001 10101 PURR hypv3 yes 64 S
310 01001 10110 HDEC hypv3 hypv3 32 S
312 01001 11000 RMOR hypv3 hypv3 64 S
313 01001 11001 HRMOR hypv3 hypv3 64 S
314 01001 11010 HSRR0 hypv3 hypv3 64 S
315 01001 11011 HSRR1 hypv3 hypv3 64 S
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318 01001 11110 LPCR hypv3 hypv3 64 S
319 01001 11111 LPIDR hypv3 hypv3 32 S
336 01010 10000 HMER hypv3,4 hypv3 64 S
337 01010 10001 HMEER hypv3 hypv3 64 S
338 01010 10010 PCR hypv3 hypv3 64 S
339 01010 10011 HEIR hypv3 hypv3 32 S
349 01010 11101 AMOR hypv3 hypv3 64 S
446 01101 11110 TIR - yes 64 S
768 11000 00000 SIER - no7 64 S
769 11000 00001 MMCR2 no7 no7 64 S
770 11000 00010 MMCRA no7 no7 64 S
771 11000 00011 PMC1 no7 no7 32 S
772 11000 00100 PMC2 no7 no7 32 S
773 11000 00101 PMC3 no7 no7 32 S
774 11000 00110 PMC4 no7 no7 32 S
775 11000 00111 PMC5 no7 no7 32 S
776 11000 01000 PMC6 no7 no7 32 S
779 11000 01011 MMCR0 no7 no7 64 S
780 11000 01100 SIAR - no7 64 S
781 11000 01101 SDAR - no7 64 S
782 11000 01110 MMCR1 - no7 64 S
784 11000 10000 SIER yes yes 64 S
785 11000 10001 MMCR2 yes yes 64 S
786 11000 10010 MMCRA yes yes 64 S
787 11000 10011 PMC1 yes yes 32 S
788 11000 10100 PMC2 yes yes 32 S
789 11000 10101 PMC3 yes yes 32 S
790 11000 10110 PMC4 yes yes 32 S
791 11000 10111 PMC5 yes yes 32 S
792 11000 11000 PMC6 yes yes 32 S
795 11000 11011 MMCR0 yes yes 64 S
796 11000 11100 SIAR yes yes 64 S
797 11000 11101 SDAR yes yes 64 S
798 11000 11110 MMCR1 yes yes 64 S
800 11001 00000 BESCRS no no 64 S
801 11001 00001 BESCRSU no no 32 S
802 11001 00010 BESCRR no no 64 S
803 11001 00011 BESCRRU no no 32 S
804 11001 00100 EBBHR no no 64 S
805 11001 00101 EBBRR no no 64 S
806 11001 00110 BESCR no no 64 S
808 11001 01000 reserved9 no no na B
809 11001 01001 reserved9 no no na B
810 11001 01010 reserved9 no no na B
811 11001 01011 reserved9 no no na B
815 11001 01111 TAR no no 64 S

Figure 17. SPR encodings  (Sheet 2 of 3)

decimal
SPR1

Register Name
Privileged Length

(bits)
Cat2

spr5:9 spr0:4 mtspr mfspr
Power ISA™ - Book III-S882



Version 2.07 B
848 11010 10000 IC hypv3 yes 64 S
849 11010 10001 VTB hypv3 yes 64 S
896 11100 00000 PPR no no 64 S
898 11100 00010 PPR32 no no 32 B

1023 11111 11111 PIR - yes 32 S
- This register is not defined for this instruction.
1 Note that the order of the two 5-bit halves of the SPR number is reversed.
2 See Section 1.3.5 of Book I.
3 This register is a hypervisor resource, and can be accessed by this instruction only in hypervisor 

state (see Chapter 2).
4 This register cannot be directly written. Instead, bits in the register corresponding to 0 bits in (RS) 

can be cleared using mtspr SPR,RS.
 
5 The value specified in register RS may be masked by the contents of the [U]AMOR before being 

placed into the AMR; see the mtspr instruction description.
6 The value specified in register RS may be ANDed with the contents of the AMOR before being 

placed into the UAMOR; see the mtspr instruction description.
7 MMCR0PMCC controls the availability of this SPR, and its contents depend on the privilege state in 

which it is accessed. See Section 9.4.4 for details.
8 The value specified in Register RS may be masked by the contents of the AMOR before being 

placed into the IAMR; see the mtspr instruction description.
9 Accesses to these SPRs are noops; see Section 1.3.3, “Reserved Fields, Reserved Values, and 

Reserved SPRs” in Book I.
SPR numbers 777-778, 783, 793-794, and 799 are reserved for the Performance Monitor. All other
SPR numbers that are not shown above and are not implementation-specific are reserved.

Figure 17. SPR encodings  (Sheet 3 of 3)

decimal
SPR1

Register Name
Privileged Length

(bits)
Cat2

spr5:9 spr0:4 mtspr mfspr
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Move To Special Purpose Register
XFX-form

mtspr SPR,RS 

n I spr5:9 || spr0:4
switch (n)
  case(13): if MSRHV PR = 0b10 then
              SPR(13) I (RS)
            else
              if MSRHV PR = 0b00 then
                 SPR(13) I ((RS) & AMOR) |
                           ((SPR(13)) & ¬AMOR)
              else 
                 SPR(13) I ((RS) & UAM OR) |
                            ((SPR(13)) & ¬UAMOR)
  case(29,61):if MSRHV PR = 0b10 then
              SPR(n) I (RS)
            else 
               SPR(n) I ((RS) & AMOR) |
                           ((SPR(n)) & ¬AMOR)
  case (157): if MSRHV PR = 0b10 then 
                SPR(157) I (RS)
              else 
                SPR(157) I (RS) & AMOR
  case (336):SPR(336) I (SPR(336)) & (RS)
  case (808, 809, 810, 811):
  default: if length(SPR(n)) = 64 then
             SPR(n) I (RS)
           else
             SPR(n) I (RS)32:63

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 17.  If the SPR field con-
tains a value from 808 through 811, the instruction
specifies a reserved SPR, and is treated as a no-op;
see Section 1.3.3, “Reserved Fields, Reserved Values,
and Reserved SPRs” in Book I.  Otherwise, the con-
tents of register RS are placed into the designated Spe-
cial Purpose Register, except as described in the next
four paragraphs. For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of RS are placed
into the SPR.

When the designated SPR is the Authority Mask Regis-
ter (AMR), (using SPR 13 or SPR 29), or the desig-
nated SPR is the Instruction Authority Mask Register
(IAMR), and MSRHV PR=0b00, the contents of bit posi-
tions of register RS corresponding to 1 bits in the
Authority Mask Override Register (AMOR) are placed
into the corresponding bits of the AMR or IAMR,
respectively; the other AMR or IAMR bits are not modi-
fied.

When the designated SPR is the AMR, using SPR 13,
and MSRPR=1, the contents of bit positions of register
RS corresponding to 1 bits in the User Authority Mask
Override Register (UAMOR) are placed into the corre-

sponding bits of the AMR; the other AMR bits are not
modified.

When the designated SPR is the UAMOR and
MSRHV PR=0b00, the contents of register RS are
ANDed with the contents of the AMOR and the result is
placed into the UAMOR.

When the designated SPR is the Hypervisor Mainte-
nance Exception Register (HMER), the contents of reg-
ister RS are ANDed with the contents of the HMER and
the result is placed into the HMER.

For this instruction, SPRs TBL and TBU are treated as
separate 32-bit registers; setting one leaves the other
unaltered.

spr0=1 if and only if writing the register is privileged.
Execution of this instruction specifying an SPR number
with spr0=1 causes a Privileged Instruction type Pro-
gram interrupt when MSRPR=1 and, if the SPR is a
hypervisor resource (see Figure 17), when
MSRHV PR=0b00.

Execution of this instruction specifying an SPR number
that is not defined for the implementation, including
SPR numbers that are shown in Figure 17 but are in a
category that is not supported by the implementation,
causes one of the following.

if spr0=0: 

- if MSRPR=1: Hypervisor Emulation Assistance
interrupt

- if MSRPR=0: Hypervisor Emulation Assistance
interrupt for SPR 0 and no operation (i.e., the
instruction is treated as a no-op) for all other
SPRs

if spr0=1:
- if MSRPR=1: Privileged Instruction type Pro-

gram interrupt

- if MSRPR=0: no operation (i.e., the instruction
is treated as a no-op)

If an attempt is made to execute mtspr specifying a TM
SPR in other than Non-transactional state, with the
exception of TFAR in suspended state, a TM Bad Thing
type Program interrupt is generated.

Special Registers Altered:
See Figure 17

  

31 RS spr 467 /
0 6 11 21 31

For a discussion of software synchronization
requirements when altering certain Special Pur-
pose Registers, see Chapter 12. “Synchronization
Requirements for Context Alterations” on
page 1011.

Programming Note
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Move From Special Purpose Register 
XFX-form

mfspr RT,SPR 

n I spr5:9 || spr0:4
switch (n)
  case(129): 
    if (MSRHV PR = 0b10)|(TFIARHV PR=MSRHV PR) | 
     ((MSRHV PR = 0b00) & (TFIARHV PR= 0b01))then
       RT I SPR(n)
    else
       RT I 0
  case(808, 809, 810, 811):
  default:
    if length(SPR(n)) = 64 then
      RT I SPR(n)
    else
      RT I 320 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 17.  If the designated Spe-
cial Purpose Register is the TFIAR and TFIAR indi-
cates the failure was recorded in a state more
privileged than the current state, register RT is set to
zero.<tm> If the SPR field contains a value from 808
through 811, the instruction specifies a reserved SPR,
and is treated as a no-op; see Section 1.3.3, “Reserved
Fields, Reserved Values, and Reserved SPRs” in Book
I.  Otherwise, the contents of the designated Special
Purpose Register are placed into register RT. For Spe-
cial Purpose Registers that are 32 bits long, the
low-order 32 bits of RT receive the contents of the Spe-
cial Purpose Register and the high-order 32 bits of RT
are set to zero.
 

spr0=1 if and only if reading the register is privileged.
Execution of this instruction specifying an SPR number
with spr0=1 causes a Privileged Instruction type Pro-
gram interrupt when MSRPR=1 and, if the SPR is a
hypervisor resource (see Figure 17), when
MSRHV PR=0b00. 

Execution of this instruction specifying an SPR number
that is not defined for the implementation, including
SPR numbers that are shown in Figure 17 but are in a
category that is not supported by the implementation,
causes one of the following. 

if spr0=0: 

- if MSRPR=1: Hypervisor Emulation Assistance
interrupt

- if MSRPR=0: Hypervisor Emulation Assistance
interrupt for SPRs 0, 4, 5, and 6 and no opera-
tion (i.e., the instruction is treated as a no-op)
for all other SPRs

if spr0=1:
- if MSRPR=1: Privileged Instruction type Pro-

gram interrupt

- if MSRPR=0: no operation (i.e., the instruction
is treated as a no-op)

Special Registers Altered:
None

  

31 RT spr 339 /
0 6 11 21 31

Note that when a problem state transaction’s failure
is recorded in hypervisor state and there is a sub-
sequent need for a context switch in privileged,
non-hypervisor state, an attempt to save TFIAR will
result in zeros being saved.  This is harmless
because if the original application ever tries to read
the TFIAR, it would read zeros anyway, since the
failure took place in hypervisor state.

Programming Note

See the Notes that appear with mtspr.

Note
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Move To Machine State Register X-form

mtmsr RS,L

if L = 0 then
   MSR48 I (RS)48 | (RS)49
   MSR58 I (RS)58 | (RS)49
   MSR59 I (RS)59 | (RS)49
   MSR32:47 49:50 52:57 60:62 I(RS)32:47 49:50 52:57 60:62
else
   MSR48 62 I (RS)48 62

The MSR is set based on the contents of register RS
and of the L field.

L=0:

The result of ORing bits 48 and 49 of register RS is
placed into MSR48. The result of ORing bits 58 and
49 of register RS is placed into MSR58. The result
of ORing bits 59 and 49 of register RS is placed
into MSR59. Bits 32:47, 49:50, 52:57, and 60:62 of
register RS are placed into the corresponding bits
of the MSR.

L=1:

Bits 48 and 62 of register RS are placed into the
corresponding bits of the MSR. The remaining bits
of the MSR are unchanged.

This instruction is privileged.

If L=0 this instruction is context synchronizing. If L=1
this instruction is execution synchronizing; in addition,
the alterations of the EE and RI bits take effect as soon
as the instruction completes.

Special Registers Altered:
MSR

Except in the mtmsr instruction description in this sec-
tion, references to “mtmsr” in this document imply
either L value unless otherwise stated or obvious from
context (e.g., a reference to an mtmsr instruction that
modifies an MSR bit other than the EE or RI bit implies
L=0).

 

  

  

  

  

31 RS ///  L /// 146 /
0 6 11 15 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. 

This instruction does not alter MSRME or MSRLE.
(This instruction does not alter MSRHV because it
does not alter any of the high-order 32 bits of the
MSR.)

If the only MSR bits to be altered are MSREE RI, to
obtain the best performance L=1 should be used.

Programming Note

If MSREE=0 and an External, Decrementer, or Per-
formance Monitor exception is pending, executing
an mtmsrd instruction that sets MSREE to 1 will
cause the interrupt to occur before the next instruc-
tion is executed, if no higher priority exception
exists (see Section 6.8, “Interrupt Priorities” on
page 968). Similarly, if a Hypervisor Decrementer
interrupt is pending, execution of the instruction by
the hypervisor causes a Hypervisor Decrementer
interrupt to occur if HDICE=1. 

For a discussion of software synchronization
requirements when altering certain MSR bits, see
Chapter 12.

mtmsr serves as both a basic and an extended
mnemonic. The Assembler will recognize an
mtmsr mnemonic with two operands as the basic
form, and an mtmsr mnemonic with one operand
as the extended form. In the extended form the L
operand is omitted and assumed to be 0.

There is no need for an analogous version of the
mfmsr instruction, because the existing instruction
copies the entire contents of the MSR to the
selected GPR.

Programming Note
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Move To Machine State Register
Doubleword X-form

mtmsrd RS,L 

if L = 0 then

 
if (MSR29:31 ¬= 0b010 | RS29:31 ¬= 0b000) then 
   MSR29:31 I RS29:31

   MSR48 I (RS)48 | (RS)49 
   MSR58 I (RS)58 | (RS)49
   MSR59 I (RS)59 | (RS)49
   MSR0:2 4:28 32:47 49:50 52:57 60:62 
       I (RS)0:2 4 6:28 32:47 49:50 52:57 60:62
else
   MSR48 62 I (RS)48 62

The MSR is set based on the contents of register RS
and of the L field.

L=0:

  If bits 29 through 31 of the MSR are not equal to
0b010  or bits 29 through 31 of RS are not equal to
0b000, then the value of bits 29 through 31 of RS
is placed into bits 29 through 31 of the MSR.The
result of ORing bits 48 and 49 of register RS is
placed into MSR48. The result of ORing bits 58 and
49 of register RS is placed into MSR58. The result
of ORing bits 59 and 49 of register RS is placed
into MSR59. Bits 0:2, 4:28, 32:47, 49:50, 52:57,
and 60:62 of register RS are placed into the corre-
sponding bits of the MSR.

L=1:

Bits 48 and 62 of register RS are placed into the
corresponding bits of the MSR. The remaining bits
of the MSR are unchanged.

If the instruction attempts to cause an illegal transac-
tion state transition (see Table 2, “Transaction state
transitions that can be requested by rfebb, rfid, hrfid,
and mtmsrd.,” on page 861), or when TM is disabled by
the PCR, a transition to Problem state with an active
transaction, a TM Bad Thing type Program interrupt is
generated (unless a higher-priority exception is pend-
ing). If this interrupt is generated, the value placed into
SRR0 by the interrupt processing mechanism (see
Section 6.4.3) is the address of the mtmsrd instruction.

This instruction is privileged.

If L=0 this instruction is context synchronizing. If L=1
this instruction is execution synchronizing; in addition,
the alterations of the EE and RI bits take effect as soon
as the instruction completes.

Special Registers Altered:
MSR

Except in the mtmsrd instruction description in this
section, references to “mtmsrd” in this document imply
either L value unless otherwise stated or obvious from
context (e.g., a reference to an mtmsrd instruction that
modifies an MSR bit other than the EE or RI bit implies
L=0).

  

  

  

31 RS  /// L /// 178 /
0 6 11 15 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. 

This instruction does not alter MSRLE, MSRME or
MSRHV.

If the only MSR bits to be altered are MSREE RI, to
obtain the best performance L=1 should be used.

If MSREE=0 and an External, Decrementer, or Per-
formance Monitor exception is pending, executing
an mtmsrd instruction that sets MSREE to 1 will
cause the interrupt to occur before the next instruc-
tion is executed, if no higher priority exception
exists (see Section 6.8, “Interrupt Priorities” on
page 968). Similarly, if a Hypervisor Decrementer
interrupt is pending, execution of the instruction by
the hypervisor causes a Hypervisor Decrementer
interrupt to occur if HDICE=1. 

For a discussion of software synchronization
requirements when altering certain MSR bits, see
Chapter 12.

mtmsrd serves as both a basic and an extended
mnemonic. The Assembler will recognize an mtm-
srd mnemonic with two operands as the basic
form, and an mtmsrd mnemonic with one operand
as the extended form. In the extended form the L
operand is omitted and assumed to be 0.

Programming Note
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Move From Machine State Register 
X-form 

mfmsr RT 

RT I MSR

The contents of the MSR are placed into register RT. 

This instruction is privileged.

Special Registers Altered:
None 

31 RT ///  /// 83 /
0 6 11 16 21 31
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Chapter 5.  Storage Control

5.1 Overview
A program references storage using the effective
address computed by the hardware when it executes a
Load, Store, Branch, or Cache Management instruc-
tion, or when it fetches the next sequential instruction.
The effective address is translated to a real address
according to procedures described in Section 5.7.3, in
Section 5.7.5 and in the following sections. The real
address is what is presented to the storage subsystem.

For a complete discussion of storage addressing and
effective address calculation, see Section 1.10 of Book
I.

5.2 Storage Exceptions 
A storage exception results when the sequential execu-
tion model requires that a storage access be performed
but the access is not permitted (e.g., is not permitted by
the storage protection mechanism), the access cannot
be performed because the effective address cannot be
translated to a real address, or the access matches
some tracking mechanism criteria (e.g., Data Address
Watchpoint). 

In certain cases a storage exception may result in the
“restart” of (re-execution of at least part of) a Load or
Store instruction. See Section 2.2 of Book II, and Sec-
tion 6.6 in this Book.

5.3 Instruction Fetch 
Instructions are fetched under control of MSRIR.

MSRIR=0

The effective address of the instruction is inter-
preted as described in Section 5.7.3.

MSRIR=1

The effective address of the instruction is trans-
lated by the Address Translation mechanism
described beginning in Section 5.7.5.

5.3.1 Implicit Branch
Explicitly altering certain MSR bits (using mtmsr[d]), or
explicitly altering SLB entries, Page Table Entries, or
certain System Registers (including the HRMOR, and
possibly other implementation-dependent registers),
may have the side effect of changing the addresses,
effective or real, from which the current instruction
stream is being fetched. This side effect is called an
implicit branch. For example, an mtmsrd instruction
that changes the value of MSRSF may change the
effective addresses from which the current instruction
stream is being fetched. The MSR bits and System
Registers (excluding implementation-dependent regis-
ters) for which alteration can cause an implicit branch
are indicated as such in Chapter 12. “Synchronization
Requirements for Context Alterations” on page 1011.
Implicit branches are not supported by the Power ISA.
If an implicit branch occurs, the results are boundedly
undefined.

5.3.2 Address Wrapping Com-
bined with Changing MSR Bit SF
If the current instruction is at effective address 232 - 4
and is an mtmsrd instruction that changes the contents
of MSRSF, the effective address of the next sequential
instruction is undefined.

  

5.4 Data Access
Data accesses are controlled by MSRDR.

MSRDR=0

The effective address of the data is interpreted as
described in Section 5.7.3.

In the case described in the preceding paragraph, if
an interrupt occurs before the next sequential
instruction is executed, the contents of SRR0, or
HSRR0, as appropriate to the interrupt, are unde-
fined.
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MSRDR=1

The effective address of the data is translated by
the Address Translation mechanism described in
Section 5.7.5.

5.5 Performing Operations 
Out-of-Order
An operation is said to be performed “in-order” if, at the
time that it is performed, it is known to be required by
the sequential execution model. An operation is said to
be performed “out-of-order” if, at the time that it is per-
formed, it is not known to be required by the sequential
execution model.

Operations are performed out-of-order on the expecta-
tion that the results will be needed by an instruction that
will be required by the sequential execution model.
Whether the results are really needed is contingent on
everything that might divert the control flow away from
the instruction, such as Branch, Trap, System Call, and
Return From Interrupt instructions, and interrupts, and
on everything that might change the context in which
the instruction is executed.

Typically, operations are performed out-of-order when
resources are available that would otherwise be idle, so
the operation incurs little or no cost. If subsequent
events such as branches or interrupts indicate that the
operation would not have been performed in the
sequential execution model, any results of the opera-
tion are abandoned (except as described below).

In the remainder of this section, including its subsec-
tions, “Load instruction” includes the Cache Manage-
ment and other instructions that are stated in the
instruction descriptions to be “treated as a Load”, and
similarly for “Store instruction”.

A data access that is performed out-of-order may corre-
spond to an arbitrary Load or Store instruction (e.g., a
Load or Store instruction that is not in the instruction
stream being executed). Similarly, an instruction fetch
that is performed out-of-order may be for an arbitrary
instruction (e.g., the aligned word at an arbitrary loca-
tion in instruction storage).

Most operations can be performed out-of-order, as long
as the machine appears to follow the sequential execu-
tion model. Certain out-of-order operations are
restricted, as follows.

Stores
Stores are not performed out-of-order (even if the
Store instructions that caused them were executed
out-of-order). 

Accessing Guarded Storage
The restrictions for this case are given in Section
5.8.1.1.

The only permitted side effects of performing an opera-
tion out-of-order are the following.

A Machine Check or Checkstop that could be
caused by in-order execution may occur
out-of-order.

Reference and Change bits may be set as
described in Section 5.7.8.

Non-Guarded storage locations that could be
fetched into a cache by in-order fetching or execu-
tion of an arbitrary instruction may be fetched
out-of-order into that cache.

5.6 Invalid Real Address
A storage access (including an access that is per-
formed out-of-order; see Section 5.5) may cause a
Machine Check if the accessed storage location con-
tains an uncorrectable error or does not exist.

In the case that the accessed storage location does not
exist, the Checkstop state may be entered. See
Section 6.5.2 on page 951.

  

In configurations supporting multiple partitions,
hypervisor software must ensure that a storage
access by a program in one partition will not cause
a Checkstop or other system-wide event that could
affect the integrity of other partitions (see Chapter
2). For example, such an event could occur if a real
address placed in a Page Table Entry or made
accessible to a partition using the Offset Real
Mode Address mechanism (see Section 5.7.3.2)
does not exist.
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5.7 Storage Addressing

Storage Control Overview
Real address space size is 2m bytes, m≤60; see
Note 1.

Real page size is 212 bytes (4 KB).

Effective address space size is 264 bytes.

An effective address is translated to a virtual
address via the Segment Lookaside Buffer (SLB).
- Virtual address space size is 2n bytes,

65≤n≤78; see Note 2.
- Segment size is 2s bytes, s=28 or 40.
- 2n-40 ≤ number of virtual segments ≤ 2n-28;

see Note 2.
- Virtual page size is 2p bytes, where 12≤p, and

2p is no larger than either the size of the big-
gest segment or the real address space; a
size of 4 KB, 64 KB, and an implementa-
tion-dependent number of other sizes are sup-
ported; see Note 3. The Page Table specifies
the virtual page size. The SLB specifies the
base virtual page size, which is the smallest
virtual page size that the segment can con-
tain. The base virtual page size is 2b bytes.

- Segments contain pages of a single size, a
mixture of 4 KB and 64 KB pages, or a mixture
of page sizes that include implementa-
tion-dependent page sizes.

A virtual address is translated to a real address via
the Page Table.

Notes:

1. The value of m is implementation-dependent (sub-
ject to the maximum given above). When used to
address storage, the high-order 60-m bits of the
“60-bit” real address must be zeros.

2. The value of n is implementation-dependent (sub-
ject to the range given above). In references to
78-bit virtual addresses elsewhere in this Book, the
high-order 78-n bits of the “78-bit” virtual address
are assumed to be zeros.

3. The supported values of p for the larger virtual
page sizes are implementation-dependent (subject
to the limitations given above).

5.7.1 32-Bit Mode
The computation of the 64-bit effective address is inde-
pendent of whether the thread is in 32-bit mode or
64-bit mode. In 32-bit mode (MSRSF=0), the high-order
32 bits of the 64-bit effective address are treated as
zeros for the purpose of addressing storage. This
applies to both data accesses and instruction fetches. It

applies independent of whether address translation is
enabled or disabled. This truncation of the effective
address is the only respect in which storage accesses
in 32-bit mode differ from those in 64-bit mode.

  

5.7.2 Virtualized Partition Mem-
ory (VPM) Mode
VPM mode enables the hypervisor to reassign all or
part of a partition’s memory transparently so that the
reassignment is not visible to the partition. When this is
done, the partition’s memory is said to be “virtualized.”
The VPM field in the LPCR enables VPM mode sepa-
rately when address translation is enabled and when
translation is disabled.

If the thread is not in hypervisor state, and either
address translation is enabled and VPM1=1, or address
translation is disabled and VPM0=1, conditions that
would have caused a Data Storage or an Instruction
Storage interrupt if the affected memory were not virtu-
alized instead cause a Hypervisor Data Storage or a
Hypervisor Instruction Storage interrupt respectively.
Because the Hypervisor Data Storage and Hypervisor
Instruction Storage interrupts always put the thread in
hypervisor state, they permit the hypervisor to handle
the condition if appropriate (e.g., to restore the contents
of a page that was reassigned), and to reflect it to the
operating system’s Data Storage or Instruction Storage
interrupt handler otherwise.

When address translation is enabled, VPM mode has
no effect on address translation. When address transla-
tion is disabled, addressing is controlled as specified in
Section 5.7.3.

5.7.3 Real And Virtual Real 
Addressing Modes
When a storage access is an instruction fetch per-
formed when instruction address translation is dis-
abled, or if the access is a data access and data
address translation is disabled, it is said to be per-

Treating the high-order 32 bits of the effective
address as zeros effectively truncates the 64-bit
effective address to a 32-bit effective address such
as would have been generated on a 32-bit imple-
mentation of the Power ISA. Thus, for example, the
ESID in 32-bit mode is the high-order four bits of
this truncated effective address; the ESID thus lies
in the range 0-15. When address translation is
enabled, these four bits would select a Segment
Register on a 32-bit implementation of the Power
ISA. The SLB entries that translate these 16 ESIDs
can be used to emulate these Segment Registers.
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formed in “real addressing mode” if VPM0=0 and the
thread is not in hypervisor state. If the thread is in
hypervisor state, the access is said to be performed in
“hypervisor real addressing mode” regardless of the
value of VPM0. If the thread is not in hypervisor state
and VPM0=1, the access is said to be performed in “vir-
tual real addressing mode.” Storage accesses in real,
hypervisor real, and virtual real addressing modes are
performed in a manner that depends on the contents of
MSRHV, VPM, VRMASD, HRMOR, RMLS, RMOR (see
Chapter 2), bit 0 of the effective address (EA0), and the
state of the Real Mode Storage Control Facility as
described below. Bits 1:3 of the effective address are
ignored.

MSRHV=1

If EA0=0, the Hypervisor Offset Real Mode
Address mechanism, described in Section 5.7.3.1,
controls the access.

If EA0=1, bits 4:63 of the effective address are
used as the real address for the access.

MSRHV=0

If VPM0=0, the Offset Real Mode Address mecha-
nism, described in Section 5.7.3.2, controls the
access.

If VPM0=1, the Virtual Real Mode Addressing
mechanism, described in Section 5.7.3.4, controls
the access. 

5.7.3.1 Hypervisor Offset Real Mode 
Address
If MSRHV = 1 and EA0 = 0, the access is controlled by
the contents of the Hypervisor Real Mode Offset Regis-
ter, as follows.

Hypervisor Real Mode Offset Register (HRMOR)

Bits 4:63 of the effective address for the access
are ORed with the 60-bit offset represented by the
contents of the HRMOR, and the 60-bit result is
used as the real address for the access. The sup-
ported offset values are all values of the form i×2r,
where 0 ≤ i < 2j, and j and r are implementa-
tion-dependent values having the properties that
12 ≤ r ≤ 26 (i.e., the minimum offset granularity is 4
KB and the maximum offset granularity is 64 MB)
and j+r = m, where the real address size supported
by the implementation is m bits.

  

5.7.3.2 Offset Real Mode Address
If VPM0=0 and MSRHV=0, the access is controlled by
the contents of the Real Mode Limit Selector and Real
Mode Offset Register, as specified below, and the set
of storage locations accessible by code is referred to
as the Real Mode Area (RMA).

Real Mode Limit Selector (RMLS)

If bits 4:63 of the effective address for the access
are greater than or equal to the value (limit) repre-
sented by the contents of the LPCRRMLS, the
access causes a storage exception (see
Section 5.7.9.3). In this comparison, if m<60, bits
4:63-m of the effective address may be ignored
(i.e., treated as if they were zeros), where the real
address size supported by the implementation is m
bits. The supported limit values are of the form 2j,
where 12 ≤ j ≤ 60.   Subject to the preceding sen-
tence, the number and values of the limits sup-
ported are implementation-dependent.

Real Mode Offset Register (RMOR)

If the access is permitted by the LPCRRMLS, bits
4:63 of the effective address for the access are
ORed with the 60-bit offset represented by the con-
tents of the RMOR, and the low-order m bits of the
60-bit result are used as the real address for the
access. The supported offset values are all values
of the form i×2s, where 0 ≤ i < 2k, and k and s are
implementation-dependent values having the prop-
erties that 2s is the minimum limit value supported
by the implementation (i.e., the minimum value rep-
resentable by the contents of the LPCRRMLS) and
k+s = m.

  

EA4:63-r should equal 60-r0. If this condition is satis-
fied, ORing the effective address with the offset
produces a result that is equivalent to adding the
effective address and the offset.

If m<60, EA4:63-m and HRMOR4:63-m must be
zeros.

The offset specified by the RMOR should be a non-
zero multiple of the limit specified by the RMLS. If
these registers are set thus, ORing the effective
address with the offset produces a result that is
equivalent to adding the effective address and the
offset. (The offset must not be zero, because real
page 0 contains the fixed interrupt vectors and real
pages 1 and 2 may be used for implementa-
tion-specific purposes; see Section 5.7.4, “Address
Ranges Having Defined Uses” on page 895.)
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5.7.3.3 Storage Control Attributes for 
Accesses in Real and Hypervisor Real 
Addressing Modes
Storage accesses in hypervisor real addressing mode
are performed as though all of storage had the follow-
ing storage control attributes, except as modified by the
Hypervisor Real Mode Storage Control facility (see
Section 5.7.3.3.1). (The storage control attributes are
defined in Book II.)

not Write Through Required
not Caching Inhibited, for instruction fetches
not Caching Inhibited, for data accesses except
those caused by the Load/Store Caching Inhibited
instructions; Caching Inhibited, for data accesses
caused by the Load/Store Caching Inhibited
instructions
Memory Coherence Required, for data accesses
Guarded
not SAO

Storage accesses in real addressing mode are per-
formed as though all of storage had the following stor-
age control attributes. (Such accesses use the Offset
Real Mode Address mechanism.)

not Write Through Required
not Caching Inhibited
Memory Coherence Required, for data accesses
not Guarded
not SAO

Additionally, storage accesses in real or hypervisor real
addressing modes are performed as though all storage
was not No-execute.

  

5.7.3.3.1 Hypervisor Real Mode Storage Control

The Hypervisor Real Mode Storage Control facility pro-
vides a means of specifying portions of real storage
that are treated as non-Guarded in hypervisor real
addressing mode (MSRHV PR=0b10, and MSRIR=0 or
MSRDR=0, as appropriate for the type of access). The
remaining portions are treated as Guarded in hypervi-
sor real addressing mode. The means is a hypervisor
resource (see Chapter 2), and may also be sys-
tem-specific.

Implementations may use either, or both, of two tech-
niques to specify portions of real storage that are

treated as non-Guarded in hypervisor real addressing
mode. For the first technique, the facility provides for
the specification, at coarse granularity, of the boundary
between non-Guarded and Guarded real storage. Any
storage location below the specified boundary is
treated as non-Guarded in hypervisor real addressing
mode, and any storage location at or above the bound-
ary is treated as Guarded in hypervisor real addressing
mode. For the second technique, the facility divides real
storage into history blocks, in implementation-specific
sizes.  The history for instruction fetches is tracked sep-
arately from that for data accesses.  If there is no
instruction fetch history for a block and it is the target of
an instruction fetch, the access is performed as though
the block is Guarded, but the block is treated as
non-Guarded for subsequent instruction fetches on a
best effort basis, limited by the amount of history that
the facility can maintain.  If there is no data access his-
tory for a block and it is accessed using a Load/Store
Caching Inhibited instruction, the access is performed
as though the block is Guarded, and the block is treated
as Guarded for subsequent accesses on a best effort
basis, limited by the amount of history that the facility
can maintain. If there is no data access history for a
block and it is accessed using any other Load or Store
instruction, the access is performed as though the
block is Guarded, but the block is treated as
non-Guarded for subsequent accesses on a best effort
basis, limited by the amount of history that the facility
can maintain.

The storage location specified by a Load/Store Caching
Inhibited instruction must not be in storage that is spec-
ified by the Hypervisor Real Mode Storage Control
facility to be treated as non-Guarded. If the second
technique is used, the storage location specified by any
other Load or Store instruction must not be in storage
that is  specified by the Hypervisor Real Mode Storage
Control facility to be treated as Guarded.  (For the sec-
ond technique, "specified by the Hypervisor Real Mode
Storage Control facility" means "specified in a history
block".)  For the second technique, the history can be
erased using an slbia instruction; see Section 5.9.3.1.

Because storage accesses in real addressing
mode and hypervisor real addressing mode do not
use the SLB or the Page Table, accesses in these
modes bypass all checking and recording of infor-
mation contained therein (e.g., storage protection
checks that use information contained therein are
not performed, and reference and change informa-
tion is not recorded). 
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The facility does not apply to implicit accesses to the
Page Table performed during address translation or in
recording reference and change information. These
accesses are performed as described in Section
5.7.3.5.

  

5.7.3.4 Virtual Real Mode Addressing 
Mechanism
If VPM0=1, MSRHV=0, and MSRDR=0 or MSRIR=0 as
appropriate for the type of access, the access is said to
be made in virtual real addressing mode and is con-
trolled by the mechanism specified below. The set of
storage locations accessible by code is referred to as
the Virtualized Real Mode Area (VRMA).

In virtual real addressing mode, address translation,
storage protection, and reference and change record-
ing are handled as follows.

Address translation and storage protection are
handled as if address translation were enabled,
except that translation of effective addresses to vir-
tual addresses use the SLBE values in Figure 18
instead of the entry in the SLB corresponding to
the ESID. In this translation, bits 0:23 of the effec-
tive address are ignored (i.e., treated as if they
were 0s), bits 24:63-m may be ignored if m < 40,

and the Virtual Page Class Key Protection mecha-
nism does not apply.

  

Reference and change recording are handled as if
address translation were enabled.

Figure 18. SLBE for VRMA

 

  

 

There are two cautions about mixing different types
of accesses (i.e.Load/Store Caching Inhibited
instructions vs. any  other Load or Store instruction
vs. instruction fetches).  The first, as indicated
above, is to avoid confusing the history mecha-
nism, and the granularity for concern is a history
block.  For this caution, instruction fetches are irrel-
evant because they have their own history mecha-
nism and are always intended to be non-guarded.  

The second caution is to avoid storage paradoxes
that result from a Caching Inhibited access to a
location that is held in a cache.  The nature of this
caution and its solution are described in
Section 5.8.2.2, “Altering the Storage Control Bits”.
The minimum granularity for concern is the history
block, but may be larger, depending on extant
translations to the storage in question.  Since the
consistency of instruction storage is managed by
software and hypervisor real mode instruction
fetches are always not Caching Inhibited, instruc-
tion fetches are also irrelevant to this caution.

The preceding capability can be used to improve
the performance of hypervisor software that runs in
hypervisor real addressing mode, by causing
accesses to instructions and data that occupy
well-behaved storage to be treated as
non-Guarded. 
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The Virtual Page Class Key Protection mecha-
nism does not apply because the authority
mask that an OS has set for application pro-
grams executing with address translation
enabled may not be the same as the authority
mask required by the OS when address trans-
lation is disabled, such as when first entering
an interrupt handler.

 Field  Value
ESID 360

V 1
B 0b01 - 1 TB

VSID 0b00 || 0x0_01FF_FFFF

Ks 0
Kp undefined

N 0

L VRMASDL

C 0

LP VRMASDLP

The C bit in Figure 18 is set to 0 because the imple-
mentation-dependent lookaside information associ-
ated with the VRMA is expected to be long-lived.
See Section 5.9.3.1.

The 1 TB VSID 0x0_01FF_FFFF should not be
used by the operating system for purposes other
than mapping the VRMA when address translation
is enabled. 

Software should specify PTEB = 0b01 for all Page
Table Entries that map the VRMA in order to be
consistent with the values in Figure 18.
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5.7.3.5 Storage Control Attributes for 
Implicit Storage Accesses
Implicit accesses to the Page Table during address
translation and in recording reference and change infor-
mation are performed as though the storage occupied
by the Page Table had the following storage control
attributes.

not Write Through Required
not Caching Inhibited
Memory Coherence Required
not Guarded
not SAO

The definition of “performed” given in Book II applies
also to these implicit accesses; accesses for perform-
ing address translation are considered to be loads in
this respect, and accesses for recording reference and
change information are considered to be stores. These
implicit accesses are ordered by the ptesync instruc-
tion as described in Section 5.9.2.

5.7.4 Address Ranges Having 
Defined Uses
The address ranges described below have uses that
are defined by the architecture.

Fixed interrupt vectors

Except for the first 256 bytes, which are reserved
for software use, the real page beginning at real
address 0x0000_0000_0000_0000 is either used
for interrupt vectors or reserved for future interrupt
vectors.

Implementation-specific use

The two contiguous real pages beginning at real
address 0x0000_0000_0000_1000 are reserved
for implementation-specific purposes.

Offset Real Mode interrupt vectors

The real pages beginning at the real address spec-
ified by the HRMOR and RMOR are used similarly
to the page for the fixed interrupt vectors.

Relocated interrupt vectors

Depending on the values of MSRIR DR and
LPCRAIL and on whether the specific interrupt will
cause MSRHV to change, either the virtual page
containing  the byte addressed by effective
address 0x0000_0000_0001_8000 or the virtual
page containing the byte addressed by effective
address 0xC000_0000_0000_4000 may be used
similarly to the page for the fixed interrupt vectors.
(See Section 2.2.)

Page Table

A contiguous sequence of real pages beginning at
the real address specified by SDR1 contains the
Page Table.

5.7.5 Address Translation Over-
view
The effective address (EA) is the address generated by
the hardware for an instruction fetch or for a data
access. If address translation is enabled, this address
is passed to the Address Translation mechanism, which
attempts to convert the address to a real address which
is then used to access storage.

The first step in address translation is to convert the
effective address to a virtual address (VA), as
described in Section 5.7.6. The second step, conver-
sion of the virtual address to a real address (RA), is
described in Section 5.7.7.

If the effective address cannot be translated, a storage
exception (see Section 5.2) occurs.

Figure 19 gives an overview of the address translation
process.

All accesses to the RMA are considered not
Guarded. The G bit of the associated Page Table
Entry determines whether an access to the VRMA
is Guarded. Therefore, if an instruction is fetched
from the VRMA, a Hypervisor Instruction Storage
interrupt will result if G=1 in the associated Page
Table Entry.

The RMA is considered non-SAO storage. How-
ever, any page in the VRMA is treated as SAO stor-
age if WIMG = 0b1110 in the associated Page
Table Entry.

Programming Note
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Figure 19. Address translation overview

5.7.6 Virtual Address Generation
Conversion of a 64-bit effective address to a virtual
address is done by searching the Segment Lookaside
Buffer (SLB) as shown in Figure 20. 
 

Figure 20. Translation of 64-bit effective address to
78 bit virtual address

5.7.6.1  Segment Lookaside Buffer 
(SLB)
The Segment Lookaside Buffer (SLB) specifies the
mapping between Effective Segment IDs (ESIDs) and
Virtual Segment IDs (VSIDs). The number of SLB
entries is implementation-dependent, except that all
implementations provide at least 32 entries.

The contents of the SLB are managed by software,
using the instructions described in Section 5.9.3.1. See
Chapter 12. “Synchronization Requirements for Con-
text Alterations” on page 1011 for the rules that soft-
ware must follow when updating the SLB.

SLB Entry
Each SLB entry (SLBE, sometimes referred to as a
“segment descriptor”) maps one ESID to one VSID.
Figure 21 shows the layout of an SLB entry

Real Address

Lookup in
Page Table

Lookup in SLB

Effective Address

Virtual Address

Virtual Page Number (VPN)

64-bit Effective Address

ESID Page Byte

64-s s-p p

0     63-s 64-s 63-p 64-p    63

SLBE0

SLBEn

ESID V VSID KsKpNLC  LP

0            35  37 39      88 89     93  95 96

Segment Lookaside 
Buffer (SLB)

VSID Page Byte

s-p p

≈ ≈ ≈ ≈ ≈ ≈≈≈

B

78-s

VSID0:77-s

78-bit Virtual Address
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.  

All other fields are reserved. B0 (SLBE37) is treated as
a reserved field.

Figure 21. SLB Entry 

Instructions cannot be executed from a No-execute
(N=1) segment.

Segments may contain a mixture of pages sizes. The L
and LP bits specify the base virtual page size for the
segment. The SLBL||LP encodings are those shown in
Figure 22. The base virtual page size (also referred to
as the “base page size”) is the smallest virtual page
size for the segment. The base virtual page size is 2b

bytes. The actual virtual page size (also referred to as
the “actual page size” or “virtual page size”) is specified
by PTEL LP.  

Figure 22. Page Size Encodings

For each SLB entry, software must ensure the following
requirements are satisfied.

- L||LP contains a value supported by the imple-
mentation. 

- The base virtual page size selected by the L
and LP fields does not exceed the segment
size selected by the B field.

- If s=40, the following bits of the SLB entry con-
tain 0s.
- ESID24:35
- VSID38:49

The bits in the above two items are ignored by
the hardware.

The Class field of the SLBE is used in conjunction with
the slbie and slbia instructions (see Section 5.9.3.1).
“Class” refers to a grouping of SLB entries and imple-
mentation-specific lookaside information so that only
entries in a certain group need be invalidated and oth-
ers might be preserved. The Class value assigned to
an implementation-specific lookaside entry derived
from an SLB entry must match the Class value of that
SLB entry. The Class value assigned to an implementa-
tion-specific lookaside entry that is not derived from an
SLB entry (such as real mode address “translations”) is
0.

Software must ensure that the SLB contains at most
one entry that translates a given effective address, and
that if the SLB contains an entry that translates a given
effective address, then any previously existing transla-
tion of that effective address has been invalidated. An
attempt to create an SLB entry that violates this
requirement may cause a Machine Check.

  

5.7.6.2 SLB Search
When the hardware searches the SLB, all entries are
tested for a match with the EA. For a match to exist, the
following conditions must be satisfied for indicated
fields in the SLBE.

V=1
ESID0:63-s=EA0:63-s, where the value of s is speci-
fied by the B field in the SLBE being tested

If no match is found, the search fails. If one match is
found, the search succeeds. If more than one match is
found, one of the matching entries is used as if it were
the only matching entry, or a Machine Check occurs.

If the SLB search succeeds, the virtual address (VA) is
formed from the EA and the matching SLB entry fields
as follows.

ESID V B VSID KsKpNLC / LP
0 36 37 39 89 94 95 96

Bit(s)  Name Description
0:35 ESID Effective Segment ID
36 V Entry valid (V=1) or invalid (V=0)

37:38 B Segment Size Selector
0b00 - 256 MB (s=28)
0b01 - 1 TB (s=40)
0b10 - reserved
0b11 - reserved

39:88 VSID Virtual Segment ID
89 Ks Supervisor (privileged) state stor-

age key (see Section 5.7.9.2)
90 Kp Problem state storage key (See 

Section 5.7.9.2.)
91 N No-execute segment if N=1
92 L Virtual page size selector bit 0
93 C Class

95:96 LP Virtual page size selector bits 1:2 

encoding base page size
0b000 4 KB

0b101 64 KB

additional
 values1

2b bytes, where b > 12 and b may differ 
among encoding values

1 The “additional values” are implementation-depen-
dent, as are the corresponding base virtual page 
sizes. Any values that are not supported by a given 
implementation are reserved in that implementa-
tion.

It is permissible for software to replace the contents
of a valid SLB entry without invalidating the transla-
tion specified by that entry provided the specified
restrictions are followed. See Chapter 12 Note 11.

Programming Note
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 VA=VSID0:77-s || EA64-s:63

The Virtual Page Number (VPN) is bits 0:77-p of the
virtual address. The value of p is the actual virtual page
size specified by the PTE used to translate the virtual
address (see Section 5.7.7.1). If SLBEN = 1, the N
(No-execute) value used for the storage access is 1. 

If the SLB search fails, a segment fault occurs. This is
an Instruction Segment exception or a Data Segment
exception, depending on whether the effective address
is for an instruction fetch or for a data access.

5.7.7 Virtual to Real Translation
Conversion of a 78-bit virtual address to a real address
is done by searching the Page Table as shown in
Figure 23.
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Figure 23. Translation of 78-bit virtual address to 60-bit real address

Virtual Page Number (VPN) Byte

                                 78-p    77

78-bit Virtual Address

// xxx.......xx000.00 ///

0  4    1718           45         59  63

78-p p44 13 5

0           2728     38

Decode to Mask

0            27

39
28

28

28

0000000
28 71114

PTE0 PTE7PTEG 0

PTEG n

60-bit Real Address of Page Table Entry Group (PTEG)

2

16 bytes

128 bytes

HTABORG HTABSIZE

   Hash Function
(see Section 5.7.7.3)

AND

OR

AVA          ARPNHSW V key R C WIMG NL

p

 

60-p

Page Table Entry (PTE)  16 bytes

pp  / pp

  Byte

 

0 1 2 44 52 5556 57

LP

61 62 63

(ARPN||LP)0:59-p

B

54

Page Table

60-bit Real Address

0 457 616263

key

*

* If the Server.Relaxed Page Table Alignment category
is supported, low order HTABORG bits are not 
necessarily zero; the OR block to the left is replaced
with a full adder, and the carry out is added to bits 
HTABORG4:17 to form RA0:13 of the PTEG.

77-b
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5.7.7.1 Page Table
The Hashed Page Table (HTAB) is a variable-sized data
structure that specifies the mapping between virtual
page numbers and real page numbers, where the real
page number of a real page is bits 0:47 of the address
of the first byte in the real page. The HTAB’s size can
be any size 2n bytes where 18≤n≤46. The HTAB must
be located in storage having the storage control
attributes that are used for implicit accesses to it (see
Section 5.7.3.5). The starting address must be a multi-
ple of its size unless the implementation supports the
Server.Relaxed Page Table Alignment category, in
which case its starting address is a multiple of 218

bytes (see Section 5.7.7.4).

The HTAB contains Page Table Entry Groups (PTEGs).
A PTEG contains 8 Page Table Entries (PTEs) of 16
bytes each; each PTEG is thus 128 bytes long. PTEGs
are entry points for searches of the Page Table.

See Section 5.10 for the rules that software must follow
when updating the Page Table.

  

Page Table Entry 
Each Page Table Entry (PTE) maps one VPN to one
RPN. Figure 24 shows the layout of a PTE. This layout
is independent of the Endian mode of the thread.

All other fields are reserved.

Figure 24. Page Table Entry

  

If b≤23, the Abbreviated Virtual Address (AVA) field
contains bits 0:54 of the VA. Otherwise bits 0:77-b of
the AVA field contain bits 0:77-b of the VA, and bits
78-b:54 of the AVA field must be zero.

  

On implementations that support a virtual address size
of only n bits, n<78, bits 0:77-n of the AVA field must be
zeros.

A virtual page is mapped to a sequence of 2p-12 contig-
uous real pages such that the low-order p-12 bits of the
real page number of the first real page in the sequence
are 0s.

PTEL LP specify both a base virtual page size (hence-
forth referred to as the “base page size”) and an actual
virtual page size (henceforth referred to as the “actual
page size” or “virtual page size”). The actual page size
is the size of the virtual page mapped by the PTE. The
base page size is the smallest actual page size that a
segment can contain. See Section 5.7.6.

If PTEL=0, the base virtual page size and actual virtual
page size are 4KB, and ARPN concatenated with LP
(ARPN||LP) contains the page number of the real page
that maps the virtual page described by the entry.

If PTEL=1, the base page size and actual page size are
specified by PTELP. In this case, the contents of PTELP
have the format shown in Figure 25. Bits labelled “r” are

The Page Table must be treated as a hypervisor
resource (see Chapter 2), and therefore must be
placed in real storage to which only the hypervisor
has write access. Moreover, the contents of the
Page Table must be such that non-hypervisor soft-
ware cannot modify storage that contains hypervi-
sor programs or data. 

0 57 61 62 63

B AVA SW L H V
pp  / key ARPN LP key R C WIMG N pp
0 1 2 4 44 52 55 56 57 61 62 63

Dword Bit(s) Name Description
0 0:1 B Segment Size 

0b00 - 256 MB
0b01 - 1 TB
0b10 - reserved
0b11 - reserved

2:56 AVA Abbreviated Virtual Address
57:60 SW Available for software use
61 L Virtual page size

0b0 - 4 KB
0b1 - greater than 4KB

  (large page)
62 H Hash function identifier
63 V Entry valid (V=1) or invalid 

(V=0)

Programming Note

1 0 pp Page Protection bit 0
 2:3 key KEY bits 0:1
 4:43 ARPN Abbreviated Real Page

Number
44:51 LP Large page size selector

 52:54 key KEY bits 2:4
 55 R Reference bit
 56 C Change bit
 57:60 WIMG Storage control bits
 61 N No-execute page if N=1
 62:63 pp Page Protection bits 1:2

The H bit in the Page Table entry should not be set
to one unless the secondary Page Table search
has been enabled.

The AVA field omits the low-order 23 bits of the VA.
These bits are not needed in the PTE, because the
low-order b of these bits are part of the byte offset
into the virtual page and, if b<23, the high-order
23-b of these bits are always used in selecting the
PTEGs to be searched (see Section 5.7.7.3).

Dword Bit(s) Name Description

Programming Note

Programming Note
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bits of the real page number. Bits labelled “z” specify
the base page size and actual page size.   The values
of the “z” bits used to specify each size are implemen-
tation-dependent. The values of the “z” bits used to
specify each size, along with all possible values of “r”
bits in the LP field, must result in LP values distinct from
other LP values for other sizes. Actual page sizes 4KB
and 64KB are always supported; other actual page
sizes are implementation-dependent. If PTEL=1, the
actual page size must be greater than 4 KB. Which
combinations of different base page size and actual
page size are supported is implementation-dependent,
except that the combination of a base page size of 4 KB
with an actual page size of 64 KB is always supported.

Figure 25. Format of PTELP when PTEL=1

There are at least 2 formats of PTELP that specify a
64 KB page. One format is used with SLBEL||LP =
0b000 and one format is used with SLBEL||LP = 0b101.

The actual page size selected by the LP field must not
exceed the segment size selected by the B field. Forms
of PTELP not supported by a given implementation are
treated as reserved values for that implementation.

The concatenation of the ARPN field and bits labeled
“r” in the LP field contain the high-order bits of the real
page number of the real page that maps the first 4KB of
the virtual page described by the entry.

The low-order p-12 bits of the real page number con-
tained in the ARPN and LP fields must be 0s and are
ignored by the hardware.

 

 

 

Instructions cannot be executed from a No-execute
(N=1) page.

Page Table Size
The number of entries in the Page Table directly affects
performance because it influences the hit ratio in the
Page Table and thus the rate of page faults. If the table
is too small, it is possible that not all the virtual pages
that actually have real pages assigned can be mapped
via the Page Table. This can happen if too many hash
collisions occur and there are more than 16 entries for
the same primary/secondary pair of PTEGs (when the
secondary Page Table search is enabled) or more than
8 entries for the same primary PTEG (when the sec-
ondary Page Table search is disabled). 

While this situation cannot be guaranteed not to occur
for any size Page Table, making the Page Table larger
than the minimum size (see Section 5.7.7.2) will reduce
the frequency of occurrence of such collisions.

  

5.7.7.2 Storage Description
Register 1
Storage Description Register 1 (SDR1) is shown in
Figure 26.

All other fields are reserved.

Figure 26. SDR1

SDR1 is a hypervisor resource; see Chapter 2.

The HTABORG field in SDR1 contains the high-order
42 bits of the 60-bit real address of the Page Table. The
Page Table is thus constrained to lie on a 218 byte (256
KB) boundary at a minimum. At least 11 bits from the
hash function (see Figure 23) are used to index into the
Page Table. The minimum size Page Table is 256 KB
(211 PTEGs of 128 bytes each).

PTE LP actual page size
r r r r _ r r r z ≥8 KB
r r r r _ r r z z ≥16 KB
r r r r _ r z z z ≥32 KB
r r r r _z z z z ≥64 KB
r r r z _z z z z ≥128 KB
r r z z _z z z z ≥256 KB
r z z z _z z z z ≥512 KB
z z z z _z z z z ≥1 MB

The actual page size specified by a given PTELP
format is at least 212+(8-c), where c is the number of
r bits in the format.

Implementations often have implementa-
tion-dependent lookaside buffers (e.g. TLBs and
ERATs) used to cache translations of recently used
storage addresses. Mapping virtual storage to
large pages may increase the effectiveness of such
lookaside buffers, improving performance, because
it is possible for such buffers to translate a larger
range of addresses, reducing the frequency that
the Page Table must be searched to translate an
address.

Programming Note

Programming Note

If large pages are not used, it is recommended that
the number of PTEGs in the Page Table be at least
half the number of real pages to be accessed. For
example, if the amount of real storage to be
accessed is 231 bytes (2 GB), then we have
231-12=219 real pages. The minimum recom-
mended Page Table size would be 218 PTEGs, or
225 bytes (32 MB).

// HTABORG /// HTABSIZE
0 4 46 59                63

Bits Name Description
4:45 HTABORG Real address of Page Table
59:63 HTABSIZE Encoded size of Page Table

Programming Note
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The Page Table can be any size 2n bytes where
18≤n≤46. As the table size is increased, more bits are
used from the hash to index into the table and the value
in HTABORG must have more of its low-order bits
equal to 0 unless the implementation supports the
Server.Relaxed Page Table Alignment category; see
Section 5.7.7.4. 

The HTABSIZE field in SDR1 contains an integer giving
the number of bits (in addition to the minimum of 11
bits) from the hash that are used in the Page Table
index. This number must not exceed 28. HTABSIZE is
used to generate a mask of the form 0b00...011...1,
which is a string of 28 - HTABSIZE 0-bits followed by a
string of HTABSIZE 1-bits. The 1-bits determine which
additional bits (beyond the minimum of 11) from the
hash are used in the index (see Figure 23). The num-
ber of low-order 0 bits in HTABORG must be greater
than or equal to the value in HTABSIZE.

On implementations that support a real address size of
only m bits, m<60, bits 0:59-m of the HTABORG field
are treated as reserved bits, and software must set
them to zeros.

  

Example:

Suppose that the Page Table is 16,384 (214) 128-byte
PTEGs, for a total size of 221 bytes (2 MB). A 14-bit
index is required. Eleven bits are provided from the
hash to start with, so 3 additional bits from the hash
must be selected. Thus the value in HTABSIZE must be
3 and the value in HTABORG must have its low-order 3
bits (bits 43:45 of SDR1) equal to 0. This means that
the Page Table must begin on a 23+11+7 = 221 = 2 MB
boundary.

5.7.7.3 Page Table Search
When the hardware searches the Page Table, the
accesses are performed as described in
Section 5.7.3.5.

An outline of the HTAB search process is shown in
Figure 23. If the implementation supports the
Server.Relaxed Page Table Alignment category see
Section 5.7.7.4. Up to two hash functions are used to

locate a PTE that may translate the given virtual
address.

1. A 39-bit hash value is computed from the VA. The
value of s is the value specified in the SLBE that
was used to generate the virtual address; the value
of b is equal to log2(base page size specified in the
SLBE that was used to translate the address).Pri-
mary Hash:

If s=28, the hash value is computed by Exclusive
ORing VA11:49 with (11+b0||VA50:77-b)

If s=40, the hash value is computed by Exclusive
ORing    the following three quantities: (VA24:37
||250), (0||VA0:37), and (b-10||VA38:77-b)

The 60-bit real address of a PTEG is formed by
concatenating the following values:

Bits 4:17 of SDR1 (the high-order 14 bits of
HTABORG).
Bits 0:27 of the 39-bit hash value ANDed with
the mask generated from bits 59:63 of SDR1
(HTABSIZE) and then ORed with bits 18:45 of
SDR1 (the low-order 28 bits of HTABORG).
Bits 28:38 of the 39-bit hash value.
Seven 0-bits.

This operation identifies a particular PTEG, called
the “primary PTEG”, whose eight PTEs will be
tested.

2. Secondary Hash:

If the secondary Page Table search is enabled
(LPCRTC=0), perform the secondary hash function
as follows; otherwise do not perform step 2 and
proceed to step 3 below. 

If s=28, the hash value is computed by taking the
ones complement of the Exclusive OR of VA11:49
with (11+b0||VA50:77-b)

If s=40, the hash value is computed by taking the
ones complement of the Exclusive OR of the fol-
lowing three quantities: (VA24:37 ||250), (0||VA0:37),
and     (b-10||VA38:77-b)

The 60-bit real address of a PTEG is formed by
concatenating the following values:

Bits 4:17 of SDR1 (the high-order 14 bits of
HTABORG).
Bits 0:27 of the 39-bit hash value ANDed with
the mask generated from bits 59:63 of SDR1
(HTABSIZE) and then ORed with bits 18:45 of
SDR1 (the low-order 28 bits of HTABORG).
Bits 28:38 of the 39-bit hash value.
Seven 0-bits.

This operation identifies the “secondary PTEG”.

3. As many as 8 PTEs in the primary PTEG and, if
the secondary Page Table search is enabled, 8
PTEs in the secondary PTEG are tested to deter-
mine if any translate the given virtual address. Let
q = minimum(54, 77-b). For a match to exist, the

Let n equal the virtual address size (in bits) sup-
ported by the implementation. If n<67, software
should set the HTABSIZE field to a value that does
not exceed n-39. Because the high-order 78-n bits
of the VSID are assumed to be zeros, the hash
value used in the Page Table search will have the
high-order 67-n bits either all 0s (primary hash; see
Section 5.7.7.3) or all 1s (secondary hash). If
HTABSIZE > n-39, some of these hash value bits
will be used to index into the Page Table, with the
result that certain PTEGs will not be searched.

Programming Note
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following conditions must be satisfied, where SLBE
is the SLBE used to form the virtual address.

PTEH=0 for the primary PTEG, 1 for the sec-
ondary PTEG
PTEV=1
PTEB=SLBEB
PTEAVA[0:q]=VA0:q
if b = 12 then
  (PTEL = 0) | (PTELP specifies the 4KB base 
  page size)
else
  (PTEL = 1) & (PTELP specifies the base page
  size specified by SLBEL||LP)

If no match is found, the search fails. If one match
is found, the search succeeds. If more than one
match is found, one of the matching entries is used
as if it were the only matching entry, or a Machine
Check occurs.

If the Page Table search succeeds, the real address
(RA) is formed by concatenating bits 0:59-p of ARPN||LP
from the matching PTE with bits 64-p:63 of the effective
address (the byte offset), where the p value is the log2
(actual page size specified by PTEL LP).

RA=(ARPN || LP)0:59-p || EA64-p:63

  

The N (No-execute)  value used for the storage access
is the result of ORing the N bit from the matching PTE
with the N bit from the SLB entry that was used to
translate the effective address.

If PTEL = 0, the actual page size (and base page
size) are 4 KB. Otherwise the actual page size and
base page size are specified by PTELP.

Since hardware searches the Page Table using a
value of b equal to log2 (base page size specified in
the SLBE that was used to translate the address)
regardless of the actual page size, the hardware
page table search will identify different PTEs for
VAs in different 2b-byte blocks of the virtual page if
the actual page size is larger than the base page
size. Therefore, there may need to be a valid PTE
corresponding to each 2b-byte block of the virtual
page that is referenced. For an actual page size
that is larger than 223 (8 MB), the PTEAVA will differ
among some or all of these PTEs. Depending on
the Page Table size, some or all of these PTEs may
be in the same PTEG. Any such PTEs that are in
the same PTEG will differ in the value of PTEH or
PTEAVA or both. 

All PTEs for the same virtual page should have the
same values in the Page Protection, KEY, ARPN,
WIMG, and N fields. A set of values from any one
of the PTEs that maps the virtual page may be
used for an access in the virtual page since looka-
side buffer information may be used to translate the
virtual address.

To avoid creating multiple matching PTEs, software
should not create PTEs for each of two different vir-
tual pages that overlap in the virtual address
space. If the virtual page sizes differ, two virtual
pages overlap if the values of virtual address bits
0:77-p for both virtual pages are the same, where
2p is the actual virtual page size of the larger page. 

Programming Note
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If the Page Table search fails, a page fault occurs. This
is a [Hypervisor] Instruction Storage exception or a
[Hypervisor] Data Storage exception, depending on
whether the effective address is for an instruction fetch
or for a data access.  The N value used for the storage
access is the N bit from the SLB entry that was used to
translate the effective address.

  

Translation Lookaside Buffer
Conceptually, the Page Table is searched by the
address relocation hardware to translate every refer-
ence. For performance reasons, the hardware usually
keeps a Translation Lookaside Buffer (TLB) that holds
PTEs that have recently been used. Even though multi-
ple PTEs may be needed for a virtual page whose size
is larger than the base page size, one TLB entry
derived from a single PTE may be used to translate all
of the virtual addresses in the entire virtual page. The
TLB is searched prior to searching the Page Table. As a
consequence, when software makes changes to the
Page Table it must perform the appropriate TLB invali-
date operations to maintain the consistency of the TLB
with the Page Table (see Section 5.10).

In the TLB search, the match criteria include virtual
address bits 0:(77-q) where q is an implementa-
tion-dependent integer such that b ≤ q ≤ p. As a result
of a Page Table search, multiple matching TLB entries
are not created for the same virtual page, except that

multiple matching TLB entries may be created if the
Page Table contains PTEs that map different-sized vir-
tual pages that overlap in the virtual address space. (If
the virtual page sizes differ, two virtual pages overlap if
the values of virtual address bits 0:77-p for both virtual
pages are the same, where 2p is the actual virtual page
size of the larger page.) If a TLB search finds multiple
matching TLB entries created from such PTEs, one of
the matching TLB entries is used as if it were the only
matching entry, or a Machine Check occurs.

As a result of a Page Table search in a Page Table that
does not contain different-sized virtual pages that over-
lap, it is implementation-dependent whether multiple
non-matching TLB entries are created for the same vir-
tual page. However, in this case if multiple TLB entries
are created for a given virtual page, at most one match-
ing TLB entry is created for any given virtual address in
that virtual page, and q for that TLB entry is less than p.

An implementation may associate each of its TLB
entries with the partition for which the TLB entry was
created, so that the entries can be retained while other
partitions are executing. In this case, when a valid TLB
entry is created, the LPID value from LPIDR is written
into the TLB entry.

  

5.7.7.4 Relaxed Page Table Align-
ment [Category: Server.Relaxed Page 
Table Alignment]
The Page Table can be aligned on any 218 byte (256
KB) boundary regardless of the HTAB size. 

Section 5.7.7.2 describes the Storage Description Reg-
ister, which includes the HTABORG field. That descrip-
tion generally applies except for the following
difference. As the Page Table size is increased beyond
256 KB, the value in HTABORG need not have more of
its low-order bits equal to 0. Instead, (HTABORG || 180)
is the real address of the start of the Page Table
regardless of the Page Table size. 

A Page Table search is performed as described in Sec-
tion 5.7.7.3 except the 60-bit real address of a PTEG
for both the primary and, if the secondary Page Table

Because a segment may contain pages of different
sizes, the Page Table search uses the segment's
base page size (which is the same for all virtual
pages in the segment).

The value of b used when searching the Page
Table to identify the PTEGs to be checked for a
match is log2(segment's base page size).
A PTE (in the selected PTEGs) satisfies the
Page Table search only if the base page size
specified in the PTE is equal to the segment's
base page size.

The matching PTE supplies the actual page size,
2p; this value of p is used in forming the real
address.

A virtual page of 2p bytes in a segment with a base
page size of 2b bytes may be mapped by as many
as 2(p-b) PTEs.

To obtain the best performance, Page Table Entries
should be allocated beginning with the first empty
entry in the primary PTEG, or with the first empty
entry in the secondary PTEG if the primary PTEG
is full and the secondary Page Table search is
enabled (LPCRTC=0).

Programming Note

Programming Note

1. Page Table Entries may or may not be cached
in a TLB.

2. It is possible that the hardware implements
more than one TLB, such as one for data and
one for instructions. In this case the size and
shape of the TLBs may differ, as may the val-
ues contained therein.

3. Use the tlbie or tlbia instruction to ensure that
the TLB no longer contains a mapping for a
particular virtual page.

Programming Notes
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search is enabled, the secondary hash is formed by
concatenating the following values:

Bits 0:27 of the 39-bit appropriate primary or
secondary hash value ANDed with the mask
generated from bits 59:63 of SDR1 (HTAB-
SIZE) and then added to the value of bits 4:45
of SDR1 (HTABORG). This part of the real
address differs from Section 5.7.7.2.
Bits 28:38 of the 39-bit hash value.
Seven 0-bits.

An outline of the PTEG real address computation is
shown in Figure 23.

5.7.8 Reference and Change 
Recording
If address translation is enabled, Reference (R) and
Change (C) bits are updated in any one of what could
be multiple Page Table Entries that map the virtual
page that is being accessed. If the storage operand of a
Load or Store instruction crosses a virtual page bound-
ary, the accesses to the components of the operand in
each page are treated as separate and independent
accesses to each of the pages for the purpose of set-
ting the Reference and Change bits.

Reference and Change bits are set by the hardware as
described below. Setting the bits need not be atomic
with respect to performing the access that caused the
bits to be updated. An attempt to access storage may
cause one or more of the bits to be set (as described
below) even if the access is not performed. The bits are
updated in the Page Table Entry if the new value would
otherwise be different from the old value for the virtual
page, as determined by examining either the Page
Table Entry or any lookaside information for the virtual
page (e.g., TLB) maintained by the hardware.

Reference Bit

The Reference bit is set to 1 if the corresponding
access (load, store, or instruction fetch) is required
by the sequential execution model and is per-
formed. Otherwise the Reference bit may be set to
1 if the corresponding access is attempted, either
in-order or out-of-order, even if the attempt causes
an exception, except that the Reference bit is not
set to 1 for the access caused by an indexed Move
Assist instruction for which the XER specifies a
length of zero.

Change Bit

The Change bit is set to 1 if a Store instruction is
executed and the store is performed. Otherwise in
general the Change bit may be set to 1 if a Store
instruction is executed and the store is permitted

by the storage protection mechanism and, if the
Store instruction is executed out-of-order, the
instruction would be required by the sequential
execution model in the absence of the following
kinds of interrupts:

system-caused interrupts (see Section 6.4 on
page 944)
Floating-Point Enabled Exception type Pro-
gram interrupts when the thread is in an
Imprecise mode.

The only exception to the preceding statement is
that the Change bit is not set to 1 if the instruction
is a Store String Indexed instruction for which the
XER specifies a length of zero.

 

A virtual page in a segment with a smaller base
page size may be mapped by multiple PTEs. For
each access of a virtual page, hardware may
search the Page Table to update the R and C bits. If
lookaside buffer information for the virtual page
already indicates that all such bits to be set have
already been set in a PTE that maps the virtual
page, hardware need not make an update. Con-
sider the following sequence of events: 

1. A virtual page is mapped by 2 PTEs A and B
and the R and C bits in both PTEs are 0.

2.A Load instruction accesses the virtual page and 
the R bit is updated in PTE A.

3.A Load instruction accesses the virtual page and 
the R bit is updated in PTE B.

4.A Store instruction accesses the virtual page 
and the C bit is updated in PTE B.

5.The virtual page is paged out. Software must 
examine both PTE A and B to get the state of
the R and C bits for the virtual page.

Furthermore, if in event 2, PTE A was not found, a
Data Storage interrupt or Hypervisor Data Storage
interrupt may occur. Subsequently, if in event 3 or
4, PTE B was not found, a Data Storage interrupt or
Hypervisor Data Storage interrupt may occur.

Programming Note
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When the hardware updates the Reference and
Change bits in the Page Table Entry, the accesses are
performed as described in Section 5.7.3.5, “Storage
Control Attributes for Implicit Storage Accesses” on
page 895. The accesses may be performed using oper-
ations equivalent to a store to a byte, halfword, word, or
doubleword, and are not necessarily performed as an
atomic read/modify/write of the affected bytes.

These Reference and Change bit updates are not nec-
essarily immediately visible to software. Executing a
sync instruction ensures that all Reference and
Change bit updates associated with address transla-
tions that were performed, by the thread executing the
sync instruction, before the sync instruction is exe-
cuted will be performed with respect to that thread
before the sync instruction’s memory barrier is created.
There are additional requirements for synchronizing
Reference and Change bit updates in multi-threaded
systems; see Section 5.10, “Page Table Update Syn-
chronization Requirements” on page 934.

  

If software refers to a Page Table Entry when
MSRDR=1, the Reference and Change bits in the asso-
ciated Page Table Entry are set as for ordinary loads
and stores. See Section 5.10 for the rules software
must follow when updating Reference and Change bits.

Figure 27 on page 907 summarizes the rules for setting
the Reference and Change bits. The table applies to
each atomic storage reference. It should be read from
the top down; the first line matching a given situation
applies. For example, if stwcx. fails due to both a stor-
age protection violation and the lack of a reservation,
the Change bit is not altered.

In the figure, the “Load-type” instructions are the Load
instructions described in Books I, II, and III-S, eciwx,
and the Cache Management instructions that are
treated as Loads. The “Store-type” instructions are the
Store instructions described in Books I, II, and III-S,
ecowx, and the Cache Management instructions that
are treated as Stores. The “ordinary” Load and Store
instructions are those described in Books I, II, and III-S.
“set” means “set to 1”.

Even though the execution of a Store instruction
causes the Change bit to be set to 1, the store
might not be performed or might be only partially
performed in cases such as the following.

A Store Conditional instruction (stwcx. or
stdcx.) is executed, but no store is performed.

The Store instruction causes a Data Storage
exception (for which setting the Change bit is
not prohibited).

The Store instruction causes an Alignment
exception.

The Page Table Entry that translates the virtual
address of the storage operand is altered such
that the new contents of the Page Table Entry
preclude performing the store (e.g., the PTE is
made invalid, or the PP bits are changed).

For example, when executing a Store instruc-
tion, the thread may search the Page Table for
the purpose of setting the Change bit and then
re-execute the instruction. When reexecuting
the instruction, the thread may search the
Page Table a second time. If the Page Table
Entry has meanwhile been altered,  by a pro-
gram executing on another thread, the second
search may obtain the new contents, which
may preclude the store.

A system-caused interrupt occurs before the
store has been performed.

Programming Note

Because the sync instruction is execution synchro-
nizing, the set of Reference and Change bit
updates that are performed with respect to the
thread executing the sync instruction before the
memory barrier is created includes all Reference
and Change bit updates associated with instruc-
tions preceding the sync instruction.

Programming Note
Power ISA™ - Book III-S906



Version 2.07 B
  

Figure 27. Setting the Reference and Change bits

Status of Access R C
Indexed Move Assist insn w 0 len in XER No No
Storage protection violation Acc1 No
Out-of-order I-fetch or Load-type Inst’n 

(including transactional Load-type 
inst’n or dcbtst)

Acc No

Out-of-order Store-type inst’n, including 
transactional Store-type inst’n, exclud-
ing dcbtst

 

   Would be required by the sequential  
     execution model in the absence of  
     system-caused or imprecise  
     interrupts3, or transaction failure Acc Acc1 2

   All other cases Acc No
In-order Load-type or Store-type insn,  
  access not performed4  
     Load-type insn Acc No
     Store-type insn Acc Acc2

Other in-order access  
   I-fetch Yes No
   Ordinary Load, eciwx Yes No
   Other ordinary Store, ecowx, dcbz Yes Yes
   icbi, icbt, dcbt, dcbtst, dcbst, dcbf[l] Acc No

“Acc” means that it is acceptable to set the bit.
1 It is preferable not to set the bit.
2 If C is set, R is also set unless it is already set.
3 For Floating-Point Enabled Exception type Pro-

gram interrupts, “imprecise” refers to the exception 
mode controlled by MSRFE0 FE1.

4 This case does not apply to the Touch instructions, 
because they do not cause a storage access.
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5.7.9 Storage Protection
The storage protection mechanism provides a means
for selectively granting instruction fetch access, grant-
ing read access, granting write access, and prohibiting
access to areas of storage based on a number of con-
trol criteria.

The operation of the storage protection mechanism
depends on the contents of one or more of the follow-
ing.

- MSR bits HV, IR, DR, PR

- the key bits in the associated SLB entry

- the page protection bits and key bits in the
associated PTE

- the AMR, IAMR, AMOR, and UAMOR

- LPCR bit VPM0

The storage protection mechanism consists of the Vir-
tual Page Class Key Protection mechanism, described
in Section 5.7.9.1, and the Basic Storage Protection
mechanism, described in Section 5.7.9.2 and Section
5.7.9.3.

When address translation is enabled for an access, the
access is permitted if and only if the access is permit-
ted by both the Virtual Page Class Key Protection
mechanism and the Basic Storage Protection mecha-
nism. When address translation is disabled for an
access, the access is permitted if and only if the access
is permitted by the Basic Storage Protection mecha-
nism. If an instruction fetch is not permitted, an Instruc-
tion Storage exception or a Hypervisor Instruction
Storage exception is generated. If a data access is not
permitted, a Data Storage exception or a Hypervisor
Data Storage exception is generated.

A protection domain is a maximal range of effective
addresses for which variables related to storage protec-
tion can be independently specified (including by
default, as in real and hypervisor real addressing
modes), or a maximal range of addresses, effective or
virtual, for which variables related to storage protection
cannot be specified. Examples include: a segment, a
virtual page (including for a virtualized Real Mode
Area), the Real Mode Area (regardless of whether the
RMA is virtualized), the effective address range 0:260-1
in hypervisor real addressing mode, and a maximal
range of effective or virtual addresses that cannot be
mapped to real addresses. A protection boundary is a
boundary between protection domains.

5.7.9.1 Virtual Page Class Key Protec-
tion
The Virtual Page Class Key Protection mechanism pro-
vides the means to assign virtual pages to one of 32
classes, and to modify data access permissions for
each class by modifying the Authority Mask Register

(AMR), shown in Figure 28, and to modify instruction
access permissions for each class by modifying the
Instruction Authority Mask Register (IAMR) shown in
Figure 29.

  

Authority Mask Register

Figure 28. Authority Mask Register (AMR)

The access mask for each class defines the access
permissions that apply to loads and stores for which the
virtual address is translated using a Page Table Entry
that contains a KEY field value equal to the class num-
ber. The access permissions associated with each
class are defined as follows, where AMR2n and
AMR2n+1 refer to the first and second bits of the access
mask corresponding to class number n.

- A store is permitted if AMR2n=0b0; otherwise
the store is not permitted.

- A load is permitted if AMR2n+1=0b0; otherwise
the load is not permitted.

The AMR can be accessed using either SPR 13 or
SPR 29. Access to the AMR using SPR 29 is privi-
leged.

  

If address translation is disabled for a given access,
the access is not affected by the Virtual Page Class
Key Protection mechanism even if the access is
made in virtual real addressing mode.

Key0 Key1 Key2        . . . Key29 Key30 Key31
0 2 4 6 58 60 62

Bits Name Description
0:1 Key0 Access mask for class number 0
2:3 Key1 Access mask for class number 1
… … …
2n:2n+1 Keyn Access mask for class number n
… … …
62:63 Key31 Access mask for class number 31

Because the AMR is part of the program context (if
address translation is enabled), and because it is
desirable for most application programmers not to
have to understand the software synchronization
requirements for context alterations (or the
nuances of address translation and storage protec-
tion), operating systems should provide a system
library program that application programs can use
to modify the AMR.

Programming Note

Programming Note
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Instruction Authority Mask Register

Figure 29. Instruction Authority Mask Register
(IAMR)

The access mask for each class defines the access
permissions that apply to instruction fetches for which
the virtual address is translated using a Page Table
Entry that contains a KEY field value equal to the class
number. The access permission associated with each
class is defined as follows, where IAMR2n+1 refers to
the bit of the access mask corresponding to class num-
ber n.

- An instruction fetch is permitted if
IAMR2n+1=0b0; otherwise the instruction fetch
is not permitted.

Access to the IAMR is privileged.

The Authority Mask Override Register (AMOR) and the
User Authority Mask Override Register (UAMOR),
shown in Figure 30 and Figure 31 respectively, can be
used to restrict modifications (mtspr) of the AMR. Also,
the AMOR can be used to restrict modifications of the
UAMOR and IAMR. Access to both the AMOR and
UAMOR is privileged. The AMOR is a hypervisor
resource.

Figure 30. Authority Mask Override Register
(AMOR)

Figure 31. User Authority Mask Override Register
(UAMOR)

The bits of the AMOR and UAMOR are in 1-1 corre-
spondence with the bits of the AMR (i.e., [U]AMORi
corresponds to AMRi). The AMOR affects modifications
of the AMR and UAMOR in privileged but non hypervi-

sor state; the UAMOR affects modifications of the AMR
in problem state.

Similarly, the odd bits of the AMOR are in 1-1 corre-
spondence with the odd bits of the IAMR (i.e.,
AMOR2j+1 corresponds to IAMR2j+1). The AMOR
affects modifications of the IAMR in privileged but non
hypervisor state; the IAMR cannot be accessed in
problem state.

When mtspr specifying the AMR (using either
SPR 13 or SPR 29) or the IAMR is executed in
privileged but non-hypervisor state, the AMOR is
used as a mask that controls which bits of the
resulting AMR or IAMR contents come from regis-
ter RS and which AMR or IAMR bits are not modi-
fied.
Similarly, when mtspr specifying the AMR (using
SPR 13) is executed in problem state, the UAMOR
is used as a mask that controls which bits of the
resulting AMR contents come from register RS and
which AMR bits are not modified.
When mtspr specifying the UAMOR is executed in
privileged but non-hypervisor state, the AMOR is
ANDed with the contents of register RS and the
result is placed into the UAMOR; the AMOR
thereby controls which bits of the resulting UAMOR
contents come from register RS and which
UAMOR bits are set to zero.

A complete description of these effects can be found in 
the description of the mtspr instruction on page 1053.

Software must ensure that both bits of each even/odd
bit pair of the AMOR contain the same value. — i.e., the
contents of register RS for mtspr specifying the AMOR
must be such that (RS)2n = (RS)2n+1 for every n in the
range 0:31 — and likewise for the UAMOR. If this
requirement is violated for the UAMOR the results of
accessing the UAMOR (including implicitly by the hard-
ware as described in the second item of the preceding
list) are boundedly undefined; if the requirement is vio-
lated for the AMOR the results of accessing the AMOR
(including implicitly by the hardware as described in the
first and third items of the list) are undefined.

K
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0

K
ey

1

K
ey

2        . . .

K
ey

29

K
ey

30

K
ey

31

        1         3         5                              57        59        61        63

Bits Name Description
0 Resv’d.
1 Key0 Access mask for class number 0
2 Resv’d
3 Key1 Access mask for class number 1
… … …
2n Resv’d
2n+1 Keyn Access mask for class number n
… … …
62 Resv’d.
63 Key31 Access mask for class number 31

AMOR
0                                                                                                                     63

UAMOR
0                                                                                                                     63
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The preceding requirement permits designs to
implement the AMOR and/or UAMOR as 32-bit reg-
isters — specifically, to implement only the
even-numbered bits (or only the odd-numbered
bits) of the register — in a manner such that the
reduction, from the architecturally-required 64 bits
to 32 bits, is not visible to (correct) software. This
implementation technique saves space in the hard-
ware. (A design that uses this technique does the
appropriate “fan in/out” when the register is
accessed, to provide the appearance, to (correct)
software, of supporting all 64 bits of the register.)

Permitting designs to implement the [U]AMOR as
32-bit registers by virtue of the software require-
ment specified above, rather than by defining the
[U]AMOR as 32-bit registers, permits the architec-
ture to be extended in the future to support control-
ling modification of the “read access” AMR bits (the
odd-numbered bits) independently from the “write
access” AMR bits (the even-numbered bits), if that
proves desirable. If this independent control does
prove desirable, the only architecture change would
be to eliminate the software requirement.

When modifying the AMOR and/or UAMOR, the
hypervisor should ensure that the two registers are
consistent with one another before giving control to
a non-hypervisor program. In particular, the hyper-
visor should ensure that if AMORi=0 then
UAMORi=0, for all i in the range 0:63. (Having
AMORi=0 and UAMORi=1 would permit problem
state programs, but not the operating system, to
modify AMR bit i.)

Programming Note

Programming Note
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Programming Note

The Virtual Page Class Key Protection mechanism replaces the Data Address Compare mechanism that was defined
in versions of the architecture that precede Version 2.04 (e.g., the two facilities use some of the same resources, as
described below). However, the Virtual Page Class Key Protection mechanism can be used to emulate the Data
Address Compare mechanism. Moreover, programs that use the Data Address Compare mechanism can be modi-
fied in a manner such that they will work correctly both on implementations that comply with versions of the architec-
ture that precede Version 2.04 (and hence implement the Data Address Compare mechanism) and on
implementations that comply with Version 2.04 of the architecture or with any subsequent version (and hence instead
implement the Virtual Page Class Key Protection mechanism). The technique takes advantage of the facts that the
SPR number for privileged access to the AMR (29) is the same as the SPR number for the Data Address Compare
mechanism's ACCR (Address Compare Control Register), that KEY4 occupies the same bit in the PTE as the Data
Address Compare mechanism's AC (Address Compare) bit, and that the definition of ACCR62:63 is very similar to the
definition of each even-odd pair of AMR bits. The technique is as follows, where PTE1 refers to doubleword 1 of the
PTE.

- Set bits 2:3 and 62:63 of SPR 29 (which is
either the ACCR or the AMR) to x, where x is
the desired 2-bit value for controlling Data
Address Compare matches, and set bits 0:1 to
0s.

- Set PTE154 (which is either the AC bit or
KEY4) to the same value that the AC bit would
be set to, and set PTE12:3 (which are either
RPN bits, that correspond to a real address
size larger than the size supported by any
implementation that supports the Data
Address Compare mechanism, or KEY0:1)
and PTE152:53 (which are either reserved bits
or KEY2:3) to 0s.

- Use PTEKEY values 0 and 1 only for purposes
of emulating the Data Address Compare
mechanism, except that PTEKEY value 0 may

also be used for any virtual pages for which it
is desired that the Virtual Page Class Key Pro-
tection mechanism permit all accesses. Do
not use PTEKEY =31.

- When a Hypervisor Data Storage interrupt
occurs, if HDSISR42=1 then ignore the inter-
rupt for Cache Management instructions other
than dcbz. (These instructions can cause a
virtual page class key protection violation but
cannot cause a Data Address Compare
match.) Otherwise forward the interrupt to the
operating system, which will treat the interrupt
as if a Data Address Compare match had
occurred. (Note: Cases for which it is unde-
fined whether a Data Address Compare
match occurs do not necessarily cause a vir-
tual page class key protection violation.)

(Because privileged software can access the AMR using either SPR 13 or SPR 29, it might seem that, when SPR 13
was added to the architecture (in Version 2.06), SPR 29 should have been removed. SPR 29 is retained for two rea-
sons: first, to avoid requiring privileged software to change to use the newer SPR number; and second, to retain the
ability to emulate the Data Address Compare mechanism as described above.)
Chapter 5. Storage Control 911



Version 2.07 B
    

5.7.9.2 Basic Storage Protection, 
Address Translation Enabled
When address translation is enabled, the Basic Storage
Protection mechanism is controlled by the following.

MSRPR, which distinguishes between supervisor
(privileged) state and problem state

An example of the use of the AMOR (and UAMOR)
is to support lightweight partitions, here called
“adjunct” partitions, that provide services (e.g.,
device drivers) to “client” partitions. The adjunct
partition would be managed by the hypervisor. It
would run in problem state with MSRHV PR=0b11,
thereby restricting the resources it can modify
(MSRPR=1) and causing its interrupts to go to the
hypervisor (MSRHV=1), and it would share a Page
Table with the client partition it serves. Typically,
each of the two partitions would have data storage
that the other partition must not be able to access.
The hypervisor can use the AMOR, UAMOR, AMR,
and PTE KEY field to provide the required protec-
tion. (The adjunct partition’s lightness of weight
derives from not requiring an operating system,
and especially from not requiring a full partition
context switch (SLB flush, TLB flush, SDR1
change, etc.) when the client partition invokes the
services of the adjunct partition.)

For example, suppose each of the two partitions
must not be able to access any of the other parti-
tion's data storage. The hypervisor could use KEY
value j for all data virtual pages that only the
adjunct partition must be able to access. Before
dispatching the client partition for the first time, the
hypervisor would initialize the three registers as fol-
lows.
AMR: all 0s except bits 2j and 2j+1, which would

contain 1s
UAMOR: all 0s
AMOR: all 1s except bits 2j and 2j+1, which would

contain 0s

Before dispatching the adjunct partition, the hyper-
visor would set UAMOR to all 0s, and would set the
AMR to all 1s except bits 2j and 2j+1, which would
be set to 0s. (Because the adjunct partition would
run in problem state, there is no need for the hyper-
visor to modify the AMOR, and the adjunct partition
cannot modify the UAMOR.) In addition, the hyper-
visor would prevent the client partition from modify-
ing or deleting PTEs that contain translations used
by the adjunct partition.

(It may be desirable to avoid using KEY values 0, 1,
and 31 for storage that only the adjunct partition
can access, because these KEY values may be
needed by the client partition to emulate the Data
Address Compare mechanism, as described
above. Also, old software, that was written for an
implementation that complies with a version of the
architecture that precedes Version 2.04 (the ver-
sion in which virtual page class keys were added),
effectively uses KEY 0 for all virtual pages.) 

Programming Note

Initialization of the UAMOR to all 0s, by the hypervi-
sor before dispatching a partition for the first time,
as described in the preceding Programming Note,
permits operating systems (in partitions that run in
a compatibility mode corresponding to Version 2.06
of the architecture or a subsequent version) to
migrate gradually to supporting problem state
access to the AMR — specifically, to avoid having
to be changed immediately to modify the UAMOR
and to save the AMR contents when an interrupt
occurs from problem state. Relatedly, having the
UAMOR contain all 0s while an application program
is running protects old application programs that
are “AMR-unaware”. In the absence of program-
ming errors, such application programs would not
attempt to read or modify the AMR. However, hav-
ing the UAMOR contain all 0s protects such pro-
grams against modifying the AMR inadvertently. 

Permitting an “AMR-unaware” application program
to modify the AMR (inadvertently) is potentially
harmful for the obvious reasons. (The program
might set to 1 an AMR bit corresponding to
accesses that are necessary in order for the pro-
gram to work correctly.) Moreover, even for an oper-
ating system that includes support for problem
state modification of the AMR, having the UAMOR
contain all 0s allows the operating system to avoid
saving and restoring the AMR for “AMR-unaware”
application programs. Such an operating system
would provide a system service program that
allows an application program to declare itself to be
“AMR-aware” — i.e., potentially to need to modify
the AMR. When an application program invokes
this service, the operating system would set the
UAMOR to the non-zero value appropriate to the
access authorities (load and/or store, for one or
more key values) that the application program is
allowed to modify, and thereafter would save and
restore the AMR (and preserve the UAMOR) for
this application program. (Having the UAMOR con-
tain all 0s does not prevent an “AMR-unaware” pro-
gram from reading the AMR, but inadvertent
reading of the AMR is likely to be much less harm-
ful than inadvertently modifying it.)

(For partitions that run in a compatibility mode cor-
responding to a version of the architecture that pre-
cedes Version 2.06, the PCR provides sufficient
protection to application programs.)

Programming Note
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Ks and Kp, the supervisor (privileged) state and
problem state storage key bits in the SLB entry
used to translate the effective address
PP, page protection bits 0:2 in the Page Table
Entry used to translate the effective address
For instruction fetches only:
- the N (No-execute) value used for the access

(see Sections 5.7.6.1 and 5.7.7.3)
- PTEG, the G (Guarded) bit in the Page Table

Entry used to translate the effective address

Using the above values, the following rules are applied.

1. For an instruction fetch, the access is not permitted
if the N value is 1 or if PTEG=1.

2. For any access except an instruction fetch that is
not permitted by rule 1, a “Key” value is computed
using the following formula:

Key I (Kp & MSRPR) | (Ks & ¬MSRPR)

Using the computed Key, Figure 32 is applied. An
instruction fetch is permitted for any entry in the
figure except “no access”. A load is permitted for
any entry except “no access”. A store is permitted
only for entries with “read/write”. 

Figure 32. PP bit protection states, address 
translation enabled

5.7.9.3 Basic Storage Protection, 
Address Translation Disabled 
When address translation is disabled, the Basic Stor-
age Protection mechanism is controlled by the following
(see Chapter 2 and Section 5.7.3, “Real And Virtual
Real Addressing Modes”).

MSRHV, which (when MSRPR=0) distinguishes
between hypervisor state and privileged but
non-hypervisor state
VPM0, which distinguishes between real address-
ing mode and virtual real addressing mode
RMLS, which specifies the real mode limit value

Using the above values, the following rules are applied.

1. If MSRHV=0 and VPM0=1, access authority is
determined as described in Section 5.7.3.4.

2. If MSRHV=1 or VPM0=0, Figure 33 is applied. The
access is permitted for any entry in the figure
except “no access”. 

Figure 33. Protection states, address translation 
disabled

  

Key PP Access Authority

0 000 read/write

0 001 read/write

0 010 read/write

0 011 read only

0 110 read only

1 000 no access

1 001 read only

1 010 read/write

1 011 read only

1 110 no access

All PP encodings not shown above are reserved. The
results of using reserved PP encodings are bound-
edly undefined.

HV Access Authority
0 read/write or no access1

1 read/write
1 If the effective address for the access is less than 

the value specified by the RMLS, the access 
authority is read/write; otherwise the access is not 
permitted.

The comparison described in note 1 in Figure 33
ignores bits 0:3 of the effective address and may
ignore bits 4:63-m; see Section 5.7.3.

Programming Note
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5.8 Storage Control Attributes

This section describes aspects of the storage control
attributes that are relevant only to privileged software
programmers. The rest of the description of storage
control attributes may be found in Section 1.6 of Book II
and subsections.

5.8.1 Guarded Storage
Storage is said to be “well-behaved” if the correspond-
ing real storage exists and is not defective, and if the
effects of a single access to it are indistinguishable
from the effects of multiple identical accesses to it. Data
and instructions can be fetched out-of-order from
well-behaved storage without causing undesired side
effects.

Storage is said to be Guarded if any of the following
conditions is satisfied.

MSR bit IR or DR is 1 for instruction fetches or data
accesses respectively, and the G bit is 1 in the rel-
evant Page Table Entry.

MSR bit IR or DR is 0 for instruction fetches or data
accesses respectively, MSRHV=1, and the storage
is outside the range(s) specified by the Hypervisor
Real Mode Storage Control facility (see
Section 5.7.3.3.1).

In general, storage that is not well-behaved should be
Guarded. Because such storage may represent a con-
trol register on an I/O device or may include locations
that do not exist, an out-of-order access to such stor-
age may cause an I/O device to perform unintended
operations or may result in a Machine Check.

The following rules apply to in-order execution of Load
and Store instructions for which the first byte of the
storage operand is in storage that is both Caching
Inhibited and Guarded.

Load or Store instruction that causes an atomic
access

If any portion of the storage operand has been
accessed and an External, Decrementer, Hypervi-
sor Decrementer, Performance Monitor, or Impre-
cise mode Floating-Point Enabled exception is
pending, the instruction completes before the inter-
rupt occurs.

Load or Store instruction that causes an Alignment
exception, or that causes a [Hypervisor] Data Stor-
age exception for reasons other than Data Address
Watchpoint match.

The portion of the storage operand that is in Cach-
ing Inhibited and Guarded storage is not accessed.

(The corresponding rules for instructions that
cause a Data Address Watchpoint match are given
in Section 8.4.)

5.8.1.1 Out-of-Order Accesses to 
Guarded Storage
In general, Guarded storage is not accessed
out-of-order. The only exceptions to this rule are the fol-
lowing. 

Load Instruction

If a copy of any byte of the storage operand is in a
cache then that byte may be accessed in the cache or
in main storage.

Instruction Fetch

If MSRHV IR=0b10 then an instruction may be fetched if
any of the following conditions are met.

1. The instruction is in a cache. In this case it may be
fetched from the cache or from main storage.

2. The instruction is in a real page from which an
instruction has previously been fetched, except
that if that previous fetch was based on condition 1
then the previously fetched instruction must have
been in the instruction cache.

3. The instruction is in the same real page as an
instruction that is required by the sequential execu-
tion model, or is in the real page immediately fol-
lowing such a page.

  

5.8.2 Storage Control Bits
When address translation is enabled, each storage
access is performed under the control of the Page
Table Entry used to translate the effective address.
Each Page Table Entry contains storage control bits
that specify the presence or absence of the corre-

Software should ensure that only well-behaved
storage is copied into a cache, either by accessing
as Caching Inhibited (and Guarded) all storage that
may not be well-behaved, or by accessing such
storage as not Caching Inhibited (but Guarded) and
referring only to cache blocks that are
well-behaved.

If a real page contains instructions that will be exe-
cuted when MSRIR=0 and MSRHV=1, software
should ensure that this real page and the next real
page contain only well-behaved storage (or that the
Hypervisor Real Mode Storage Control facility
specifies that this real page is not Guarded).

Programming Note
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sponding storage control for all accesses translated by
the entry as shown in Figure 34.

 

Figure 34. Storage control bits

When address translation is enabled, instructions are
not fetched from storage for which the G bit in the Page
Table Entry is set to 1; see Section 5.7.9. 

When address translation is disabled, the storage con-
trol attributes are implicit; see Section 5.7.3.3.

In Sections 5.8.2.1 and 5.8.2.2, “access” includes
accesses that are performed out-of-order, and refer-
ences to W, I, M, and G bits include the values of those
bits that are implied when address translation is dis-
abled.

  

5.8.2.1 Storage Control Bit Restrictions
All combinations of W, I, M, and G values are permitted
except those for which both W and I are 1 and
M||G ≠ 0b10. 

The combination WIMG = 0b1110 is used to identify
the Strong Access Ordering (SAO) storage attribute

(see Section 1.7.1, “Storage Access Ordering”, in Book
II). Because this attribute is not intended for general
purpose programming, it is provided only for a single
combination of the attributes normally identified using
the WIMG bits. That combination would normally be
indicated by WIMG = 0b0010. 

References to Caching Inhibited storage (or storage
with I=1) elsewhere in the Power ISA have no applica-
tion to SAO storage or its WIMG encoding, despite the
encoding using I=1. Conversely, references to storage
that is not Caching Inhibited (or storage with I=0) apply
to SAO storage or its WIMG encoding. References to
Write Through Required storage (or storage with W=1)
elsewhere in the Power ISA have no application to SAO
storage or its WIMG encoding, despite the fact that the
encoding uses W=1. Conversely, references to storage
that is not Write Through Required (or storage with
W=0) apply to SAO storage or its WIMG encoding.

If a given real page is accessed concurrently as SAO
storage and as non-SAO storage, the result may be
characteristic of the weakly consistent model.

  

At any given time, the value of the W bit must be the
same for all accesses to a given real page. 

At any given time, the value of the I bit must be the
same for all accesses to a given real page. 

5.8.2.2 Altering the Storage Control 
Bits
When changing the value of the W bit for a given real
page from 0 to 1, software must ensure that no thread
modifies any location in the page until after all copies of
locations in the page that are considered to be modified
in the data caches have been copied to main storage
using dcbst or dcbf[l].

When changing the value of the I bit for a given real
page from 0 to 1, software must set the I bit to 1 and
then flush all copies of locations in the page from the
caches using dcbf[l] and icbi before permitting any
other accesses to the page.  Note that similar cache
management is required before using the Fixed-Point
Load and Store Caching Inhibited instructions to

Bit Storage Control Attribute

    W1,3 0 - not Write Through Required
1 - Write Through Required

    I3 0 - not Caching Inhibited
1 - Caching Inhibited

    M2 0 - not Memory Coherence Required
1 - Memory Coherence Required

    G 0 - not Guarded
1 - Guarded

1 Support for the 1 value of the W bit is optional. 
Implementations that do not support the 1 value 
treat the bit as reserved and assume its value to 
be 0.

2 [Category: Memory Coherence] Support for the 0 
value of the M bit is optional, implementations that 
do not support the 0 value assume the value of the 
bit to be 1, and may either preserve the value of 
the bit or write it as 1.

3 [Category: SAO] The combination WIMG = 
0b1110 has behavior unrelated to the meanings of 
the individual bits. See see Section 5.8.2.1, “Stor-
age Control Bit Restrictions” for additional informa-
tion.

In a system consisting of only a single-threaded
processor which has caches, correct coherent exe-
cution does not require storage to be accessed as
Memory Coherence Required, and accessing stor-
age as not Memory Coherence Required may give
better performance.

Programming Note

If an application program requests both the Write
Through Required and the Caching Inhibited
attributes for a given storage location, the operating
system should set the I bit to 1 and the W bit to 0.
For implementations that support the SAO cate-
gory, the operating system should provide a means
by which application programs can request SAO
storage, in order to avoid confusion with the pre-
ceding guideline (since SAO is encoded using
WI=0b11).

Programming Note
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access storage that has formerly been cached.  (See
Section 4.4.1 on page 875.)

  

  

When changing the value of the M bit for a given real
page, software must ensure that all data caches are
consistent with main storage. The actions required to
do this are system-dependent.

  

Additional requirements for changing the storage con-
trol bits in the Page Table are given in Section 5.10.

The storage control bit alterations described above
are examples of cases in which the directives for
application of statements about the W and I bits to
SAO given in the third paragraph of the preceding
subsection must be applied. A transition from the
typical WIMG=0b0010 for ordinary storage to
WIMG=0b1110 for SAO storage does not require
the flush described above because both WIMG
combinations indicate storage that is not Caching
Inhibited. 

It is recommended that dcbf be used, rather than
dcbfl, when changing the value of the I or W bit
from 0 to 1. (dcbfl would have to be executed on all
threads for which the contents of the data cache
may be inconsistent with the new value of the bit,
whereas, if the M bit for the page is 1, dcbf need be
executed on only one thread in the system.) 

For example, when changing the M bit in some
directory-based systems, software may be required
to execute dcbf[l] on each thread to flush all stor-
age locations accessed with the old M value before
permitting the locations to be accessed with the
new M value.

Programming Note

Programming Note

Programming Note
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5.9 Storage Control Instructions

5.9.1 Cache Management Instructions
This section describes aspects of cache management
that are relevant only to privileged software program-
mers.

For a dcbz instruction that causes the target block to
be newly established in the data cache without being
fetched from main storage, the hardware need not ver-
ify that the associated real address is valid. The exist-
ence of a data cache block that is associated with an
invalid real address (see Section 5.6) can cause a

delayed Machine Check interrupt or a delayed Check-
stop.

Each implementation provides an efficient means by
which software can ensure that all blocks that are con-
sidered to be modified in the data cache have been
copied to main storage before the thread enters any
power conserving mode in which data cache contents
are not maintained.

5.9.2 Synchronize Instruction 
The Synchronize instruction is described in
Section 4.4.3 of Book II, but only at the level required
by an application programmer. This section describes
properties of the instruction that are relevant only to
operating system and hypervisor software program-
mers. 

When L=0, the sync instruction also provides an order-
ing function for the operations caused by the Message
Send instruction and previous Stores.  The stores must
be performed with respect to the thread receiving the
message prior to any access caused by or associated
with any instruction executed after the corresponding
interrupt occurs.

When L=1, the sync instruction provides an ordering
function for the operations caused by the Message
Send instruction and previous Stores for which the
specified storage location is in storage that is Memory
Coherence Required and is neither Write Through
Required nor Caching Inhibited.  The stores must be
performed with respect to the thread receiving the mes-
sage prior to any access caused by or associated with
any instruction executed after the corresponding inter-
rupt occurs.

Another variant of the Synchronize instruction is
described below. It is designated the Page Table Entry
Synchronize instruction, and is specified by the
extended mnemonic ptesync (equivalent to sync with
L=2).

The ptesync instruction has all of the properties of
sync with L=0 and also the following additional proper-
ties.

The memory barrier created by the ptesync
instruction provides an ordering function for the
storage accesses associated with all instructions
that are executed by the thread executing the pte-
sync instruction and, as elements of set A, for all
Reference and Change bit updates associated
with additional address translations that were per-

formed, by the thread executing the ptesync
instruction, before the ptesync instruction is exe-
cuted. The applicable pairs are all pairs ai,bj in
which bj is a data access and ai is not an instruc-
tion fetch.

The ptesync instruction causes all Reference and
Change bit updates associated with address trans-
lations that were performed, by the thread execut-
ing the ptesync instruction, before the ptesync
instruction is executed, to be performed with
respect to that thread before the ptesync instruc-
tion’s memory barrier is created.

The ptesync instruction provides an ordering func-
tion for all stores to the Page Table caused by
Store instructions preceding the ptesync instruc-
tion with respect to searches of the Page Table that
are performed, by the thread executing the pte-
sync instruction, after the ptesync instruction
completes. Executing a ptesync instruction
ensures that all such stores will be performed, with
respect to the thread executing the ptesync
instruction, before any implicit accesses to the
affected Page Table Entries, by such Page Table
searches, are performed with respect to that
thread.

In conjunction with the tlbie and tlbsync instruc-
tions, the ptesync instruction provides an ordering
function for TLB invalidations and related storage
accesses on other threads as described in the tlb-
sync instruction description on page 933.
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5.9.3 Lookaside Buffer
Management
All implementations have a Segment Lookaside Buffer
(SLB). For performance reasons, most implementa-
tions also have implementation-specific lookaside infor-
mation that is used in address translation. This
lookaside information may be: a Translation Lookaside
Buffer (TLB) which is a cache of recently used Page
Table Entries (PTEs); a cache of recently used transla-
tions of effective addresses to real addresses; etc.; or
any combination of these. Lookaside information,
including the SLB, is managed using the instructions
described in the subsections of this section.

Lookaside information derived from PTEs is not neces-
sarily kept consistent with the Page Table. When soft-
ware alters the contents of a PTE, in general it must
also invalidate all corresponding implementation-spe-
cific lookaside information; exceptions to this rule are
described in Section 5.10.1.2.

The effects of the slbie, slbia, and TLB Management
instructions on address translations, as specified in
Sections 5.9.3.1 and 5.9.3.3  for the SLB and TLB
respectively, apply to all implementation-specific looka-
side information that is used in address translation.
Unless otherwise stated or obvious from context, refer-
ences to SLB entry invalidation and TLB entry invalida-
tion elsewhere in the Books apply also to all
implementation-specific lookaside information that is
derived from SLB entries and PTEs respectively.

The tlbia instruction is optional. However, all implemen-
tations provide a means by which software can invali-
date all implementation-specific lookaside information
that is derived from PTEs.

Implementation-specific lookaside information that con-
tains translations of effective addresses to real
addresses may include “translations” that apply in real
addressing mode. Because such “translations” are

affected by the contents of the LPCR, RMOR, and
HRMOR, when software alters the contents of these
registers it must also invalidate the corresponding
implementation-specific lookaside information. Soft-
ware can invalidate all such lookaside information by
using the slbia instruction with IH=0b000. However,
performance is likely to be better if other, appropriate,
IH values are used to limit the amount of lookaside
information that invalidated.

All implementations that have such lookaside informa-
tion provide a means by which software can invalidate
all such lookaside information.

For simplicity, elsewhere in the Books it is assumed that
the TLB exists.

  

  

5.9.3.1  SLB Management Instructions
  

For instructions following a ptesync instruc-
tion, the memory barrier need not order implicit
storage accesses for purposes of address
translation and reference and change  record-
ing.

The functions performed by the ptesync
instruction may take a significant amount of
time to complete, so this form of the instruction
should be used only if the functions listed
above are needed. Otherwise sync with L=0
should be used (or sync with L=1, or eieio, if
appropriate).

Section 5.10, “Page Table Update Synchroni-
zation Requirements” on page 934 gives
examples of uses of ptesync.

Programming Note

Because the instructions used to manage imple-
mentation-specific lookaside information that is
derived from PTEs may be changed in a future ver-
sion of the architecture, it is recommended that
software “encapsulate” uses of the TLB Manage-
ment instructions into subroutines.

The function of all the instructions described in
Sections 5.9.3.1 - 5.9.3.3 is independent of
whether address translation is enabled or disabled.

For a discussion of software synchronization
requirements when invalidating SLB and TLB
entries, see Chapter 12.

Accesses to a given SLB entry caused by the
instructions described in this section obey the
sequential execution model with respect to the con-
tents of the entry and with respect to data depen-
dencies on those contents. That is, if an instruction
sequence contains two or more of these instruc-
tions, when the sequence has completed, the final
contents of the SLB entry and of General Purpose
Registers is as if the instructions had been exe-
cuted in program order.

However, software synchronization is required in
order to ensure that any alterations of the entry
take effect correctly with respect to address transla-
tion; see Chapter 12.

Programming Note

Programming Note

Programming Note
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 SLB Invalidate Entry X-form

slbie RB 

ea0:35 I (RB)0:35
if, for SLB entry that translates 
  or most recently translated ea,
    entry_class = (RB)36 and
    entry_seg_size = size specified in (RB)37:38
then for SLB entry (if any) that translates ea
  SLBEV I 0
  all other fields of SLBE I undefined
else 
   s I log_base_2(entry_seg_size)
   esid I (RB)0:63-s 
   u I undefined 1-bit value
   if u then

  if an SLB entry translates esid
      SLBEV I 0
        all other fields of SLBE I undefined

Let the Effective Address (EA) be any EA for which
EA0:35 = (RB)0:35. Let the class be (RB)36.  Let the seg-
ment size be equal to the segment size specified in
(RB)37:38; the allowed values of (RB)37:38, and the cor-
respondence between the values and the segment
size, are the same as for the B field in the SLBE (see
Figure 21 on page 897).

The class value and segment size must be the same as
the class value and segment size in the SLB entry that
translates the EA, or the values that were in the SLB
entry that most recently translated the EA if the transla-
tion is no longer in the SLB; if these values are not the
same, it is implementation-dependent whether the SLB
entry (or implementation-dependent translation infor-
mation) that translates the EA is invalidated, and the
next paragraph need not apply.

If the SLB contains only a single entry that translates
the EA, then that is the only SLB entry that is invali-
dated, except that it is implementation-dependent
whether an implementation-specific lookaside entry for
a real mode address “translation” is invalidated. If the
SLB contains more than one such entry, then zero or
more such entries are invalidated, and similarly for any
implementation-specific lookaside information used in
address translation; additionally, a machine check may
occur.

SLB entries are invalidated by setting the V bit in the
entry to 0, and the remaining fields of the entry are set
to undefined values.

The hardware ignores the contents of RB listed below
and software must set them to 0s.

- (RB)37
- (RB)39
- (RB)40:63
- If s = 40, (RB)24:35

Changes to the segment mappings in the presence
of active transactions may compromise transac-
tional semantics if the transaction has accessed a
segment that is assigned a new VSID. Conse-
quently, when modifying segment mappings, it is
the responsibility of the OS or hypervisor to ensure
that any transaction that may have touched the
modified segment is terminated, using a tabort. or
treclaim. instruction.

Programming Note

31 ///  /// RB 434 / 
0 6 11 16 21 31
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If this instruction is executed in 32-bit mode, (RB)0:31
must be zeros.

This instruction is privileged.

Special Registers Altered:
None

  

  

 

SLB Invalidate All X-form

slbia IH

for each SLB entry except SLB entry 0
SLBEV I 0
all other fields of SLBE I undefined

For all SLB entries except SLB entry 0, the V bit in the
entry is set to 0, making the entry invalid, and the
remaining fields of the entry are set to undefined val-
ues. SLB entry 0 is not altered.

On implementations that have implementation-specific
lookaside information for effective to real address trans-
lations, the IH field provides a hint that can be used to
invalidate entries selectively in such lookaside informa-
tion. The defined values for IH are as follows.

0b000 All such implementation-specific lookaside
information is invalidated. (This value is not a
hint.) 

0b001 Preserve such implementation-specific looka-
side information having a Class value of 0. 

0b010 Preserve such implementation-specific looka-
side information created when MSRIR/DR=0. 

0b110 Preserve such implementation-specific looka-
side information created when MSRHV=1, 
MSRPR=0, and MSRIR/DR=0. 

All other IH values are reserved. If the IH field contains
a reserved value, the hint provided by the IH field is
undefined.

Implementation specific lookaside information for which
preservation is not requested is invalidated. Implemen-
tation specific lookaside information for which preserva-
tion is requested may be invalidated. 

When IH=0b000, execution of this instruction has the
side effect of clearing the storage access history asso-
ciated with the Hypervisor Real Mode Storage Control
facility. See Section 5.7.3.3.1, “Hypervisor Real Mode
Storage Control” for more details.

This instruction is privileged.

Special Registers Altered:
None

  

slbie does not affect SLBs on other threads.

The reason the class value specified by slbie must
be the same as the Class value that is or was in the
relevant SLB entry is that the hardware may use
these values to optimize invalidation of implemen-
tation-specific lookaside information used in
address translation. If the value specified by slbie
differs from the value that is or was in the relevant
SLB entry, these optimizations may produce incor-
rect results. (An example of implementation-spe-
cific address translation lookaside information is
the set of recently used translations of effective
addresses to real addresses that some implemen-
tations maintain in an Effective to Real Address
Translation (ERAT) lookaside buffer.)

When switching tasks in certain cases, it may be
advantageous to preserve some implementa-
tion-specific lookaside entries while invalidating
others. The IH=0b001 invalidation hint of the slbia
instruction can be used for this purpose if SLB
class values are appropriately assigned, i.e., a
class value of 0 gives the hint that the entry should
be preserved and a class value of 1 indicates the
entry must be invalidated. Also, it is advantageous
to assign a class value of 1 to entries that need to
be invalidated via an slbie instruction while pre-
serving implementation-specific lookaside entries
that are not derived from an SLB entry since such
entries are assigned a class value of 0.

The Move To Segment Register instructions (see
Section 5.9.3.2.1) create SLB entries in which the
Class value is 0.

The B value in register RB may be needed for inval-
idating ERAT entries corresponding to the transla-
tion being invalidated.

Programming Note

Programming Note

Programming Note

31 // IH /// /// 498 /
0 6 8 11 16 21 31

slbia does not affect SLBs on other threads.

Programming Note
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SLB Move To Entry X-form

slbmte RS,RB 

The SLB entry specified by bits 52:63 of register RB is
loaded from register RS and from the remainder of reg-
ister RB. The contents of these registers are inter-
preted as shown in Figure 35.

RS

RB

RS0:1 B
RS2:51 VSID
RS52 Ks
RS53 Kp
RS54 N
RS55 L
RS56 C
RS57 must be 0b0
RS58:59 LP
RS60:63 must be 0b0000
RB0:35 ESID
RB36 V
RB37:51 must be 0b000 || 0x000
RB52:63 index, which selects the SLB entry

Figure 35. GPR contents for slbmte

On implementations that support a virtual address size
of only n bits, n<78, (RS)2:79-n must be zeros.

(RS)57 and (RS)60:63 are ignored by the hardware.

High-order bits of (RB)52:63 that correspond to SLB
entries beyond the size of the SLB provided by the
implementation must be zeros.

The hardware ignores the contents of RB37:51.

If this instruction is executed in 32-bit mode, (RB)0:31
must be zeros (i.e., the ESID must be in the range 0:15).

This instruction cannot be used to invalidate the trans-
lation contained in an SLB entry.

This instruction is privileged.

Special Registers Altered:
None 

If slbia is executed when instruction address trans-
lation is enabled, software can ensure that attempt-
ing to fetch the instruction following the slbia does
not cause an Instruction Segment interrupt by plac-
ing the slbia and the subsequent instruction in the
effective segment mapped by SLB entry 0. (The
preceding assumes that no other interrupts occur
between executing the slbia and executing the
subsequent instruction.)

If it is desired to invalidate the entire SLB and all
associated implementation-specific lookaside infor-
mation, the following sequence can be used. The
sequence assumes that address translation is dis-
abled.
   li     r0,0
   slbmte r0,r0    # clear SLBE 0
   slbia  0b000    # invalidate all other
                   # SLBEs, and all ERATEs

The defined values for IH are as follows.

0b000 All ERAT entries are invalidated. (This
value is not a hint.) This value should be
used by the hypervisor when relocating
itself (i.e., when modifying the HRMOR) or
when reconfiguring real storage.

0b001 Preserve ERAT entries with a Class value
of 0. This value should be used by an
operating system when switching tasks in
certain cases; for example, if SLBEC=0 is
used for SLB translations shared between
the tasks.

0b010 Preserve ERAT entries created when 
MSRIR/DR=0. This value should generally 
be used by an operating system when 
switching tasks.

0b110 Preserve ERAT entries created when 
MSRHV=1 and MSRIR/DR=0. This value 
should be used by the hypervisor when 
switching partitions.

slbia serves as both a basic and an extended mne-
monic. The Assembler will recognize an slbia mne-
monic with one operand as the basic form, and an
slbia mnemonic with no operand as the extended
form. In the extended form the IH operand is omit-
ted and assumed to be 0.

Programming Note

Programming Note

Programming Note

31 RS /// RB 402 / 
0 6 11 16 21 31

B VSID KsKpNLC 0 LP 0s
0 2 52 57 58 60               63

ESID V 0s index
0 36 37 52                     63
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  SLB Move From Entry VSID X-form

slbmfev RT,RB 

If the SLB entry specified by bits 52:63 of register RB is
valid (V=1), the contents of the B, VSID, Ks, Kp, N, L, C,
and LP fields of the entry are placed into register RT.
The contents of these registers are interpreted as
shown in Figure 36.

RT

RB

RT0:1 B
RT2:51 VSID
RT52 Ks
RT53 Kp
RT54 N
RT55 L
RT56 C
RT57 set to 0b0
RT58:59 LP
RT60:63 set to 0b0000

RB0:51 must be 0x0_0000_0000_0000
RB52:63 index, which selects the SLB entry

Figure 36. GPR contents for slbmfev

On implementations that support a virtual address size
of only n bits, n<78, RT2:79-n are set to zeros.

If the SLB entry specified by bits 52:63 of register RB is
invalid (V=0), the contents of register RT are set to 0.

High-order bits of (RB)52:63 that correspond to SLB
entries beyond the size of the SLB provided by the
implementation must be zeros.

The hardware ignores the contents of RB0:51.

This instruction is privileged.

Special Registers Altered:
None

The reason slbmte cannot be used to invalidate an
SLB entry is that it does not necessarily affect
implementation-specific address translation looka-
side information. slbie (or slbia) must be used for
this purpose.

Programming Note

31  RT /// RB 851 /
0 6 11 16 21 31

B VSID KsKpNLC 0 LP 0s
0 2 52 57 58 60              63

0s index
0 52                          63
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SLB Move From Entry ESID X-form

slbmfee RT,RB 

If the SLB entry specified by bits 52:63 of register RB is
valid (V=1), the contents of the ESID and V fields of the
entry are placed into register RT. The contents of these
registers are interpreted as shown in Figure 37.

RT 

RB

RT0:35 ESID
RT36 V
RT37:63 set to 0b000 || 0x00_0000
RB0:51 must be 0x0_0000_0000_0000
RB52:63 index, which selects the SLB entry

Figure 37. GPR contents for slbmfee

If the SLB entry specified by bits 52:63 of register RB is
invalid (V=0), the contents of register RT are set to 0.

High-order bits of (RB)52:63 that correspond to SLB
entries beyond the size of the SLB provided by the
implementation must be zeros.

The hardware ignores the contents of RB0:51.

This instruction is privileged.

Special Registers Altered:
None

SLB Find Entry ESID X-form

slbfee. RT,RB 

The SLB is searched for an entry that matches the
effective address specified by register RB. The search
is performed as if it were being performed for purposes
of address translation. That is, in order for a given entry
to satisfy the search, the entry must be valid (V=1), and
(RB)0:63-s must equal SLBE[ESID0:63-s] (where 2s is
the segment size selected by the B field in the entry).If
exactly one matching entry is found, the contents of the
B, VSID, Ks, Kp, N, L, C, and LP fields of the entry are
placed into register RT. If no matching entry is found,
register RT is set to 0. If more than one matching entry
is found, either one of the matching entries is used, as
if it were the only matching entry, or a Machine Check
occurs. If a Machine Check occurs, register RT, and CR
Field 0 are set to undefined values, and the description
below of how this register and this field is set does not
apply.

The contents of registers RT and RB are interpreted as
shown in Figure 38.

RT

RB

RT0:1 B
RT2:51 VSID
RT52 Ks
RT53 Kp
RT54 N
RT55 L
RT56 C
RT57 set to 0b0
RT58:59 LP
RT60:63 set to 0b0000
RB0:35 ESID
RB36:39 must be 0b0000
RB40:63 must be 0x000000

Figure 38. GPR contents for slbfee.

If s > 28, RT80-s:51 are set to zeros. On implementa-
tions that support a virtual address size of only n bits, n
< 78, RT2:79-n are set to zeros.

CR Field 0 is set as follows. j is a 1-bit value that is
equal to 0b1 if a matching entry was found. Otherwise, j
is 0b0.

CR0LT GT EQ SO = 0b00 || j || XERSO

31 RT /// RB 915 /
0 6 11 16 21 31

ESID V 0s
0 36 37                                           63

0s index
0 52                          63

31  RT /// RB 979 1
0 6 11 16 21 31

B VSID KsKpNLC 0 LP 0s
0 2 52 57 58 60               63

ESID 0000 0s
0 36                                40                                               63
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The hardware ignores the contents of RB36:38 40:63.

If this instruction is executed in 32-bit mode, (RB)0:31
must be zeros (i.e., the ESID must be in the range
0-15).

This instruction is privileged.

Special Registers Altered:
CR0 
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5.9.3.2 Bridge to SLB Architecture [Category:Server.Phased-Out]

The facility described in this section can be used to
ease the transition to the current Power ISA soft-
ware-managed Segment Lookaside Buffer (SLB) archi-
tecture, from the Segment Register architecture
provided by 32-bit PowerPC implementations. A com-
plete description of the Segment Register architecture
may be found in “Segmented Address Translation,
32-Bit Implementations,” Section 4.5, Book III of Ver-
sion 1.10 of the PowerPC architecture, referenced in
the introduction to this architecture.

The facility permits the operating system to continue to
use the 32-bit PowerPC implementation’s Segment
Register Manipulation instructions.

5.9.3.2.1 Segment Register
Manipulation Instructions

The instructions described in this section -- mtsr,
mtsrin, mfsr, and mfsrin -- allow software to associate
effective segments 0 through 15 with any of virtual seg-
ments 0 through 227-1. SLB entries 0:15 serve as vir-
tual Segment Registers, with SLB entry i used to
emulate Segment Register i. The mtsr and mtsrin
instructions move 32 bits from a selected GPR to a
selected SLB entry. The mfsr and mfsrin instructions
move 32 bits from a selected SLB entry to a selected
GPR.

The contents of the GPRs used by the instructions
described in this section are shown in Figure 39. Fields
shown as zeros must be zero for the Move To Segment
Register instructions. Fields shown as hyphens are
ignored. Fields shown as periods are ignored by the
Move To Segment Register instructions and set to zero
by the Move From Segment Register instructions.
Fields shown as colons are ignored by the Move To
Segment Register instructions and set to undefined val-
ues by the Move From Segment Register instructions.

RS/RT

RB

Figure 39. GPR contents for mtsr, mtsrin, mfsr, and 
 mfsrin

  

  

: : : . KsKpN 0 VSID23:49
0 32 33 36 37                     63

- - - ESID  - - -
0 32 36                          63

The “Segment Register” format used by the instruc-
tions described in this section corresponds to the
low-order 32 bits of RS and RT shown in the figure.
This format is essentially the same as that for the
Segment Registers of 32-bit PowerPC implementa-
tions. The only differences are the following.

Bit 36 corresponds to a reserved bit in Seg-
ment Registers. Software must supply 0 for the
bit because it corresponds to the L bit in SLB
entries, and large pages are not supported for
SLB entries created by the Move To Segment
Register instructions.

VSID bits 23:25 correspond to reserved bits in
Segment Registers. Software can use these
extra VSID bits to create VSIDs that are larger
than those supported by the Segment Register
Manipulation instructions of 32-bit PowerPC
implementations.

Bit 32 of RS and RT corresponds to the T
(direct-store) bit of early 32-bit PowerPC implemen-
tations. No corresponding bit exists in SLB entries.

The Programming Note in the introduction to Sec-
tion 5.9.3.1 applies also to the Segment Register
Manipulation instructions described in this section,
and to any combination of the instructions
described in the two sections, except as specified
below for mfsr and mfsrin.

The requirement that the SLB contain at most one
entry that translates a given effective address (see
Section 5.7.6.1) applies to SLB entries created by
mtsr and mtsrin. This requirement is satisfied nat-
urally if only mtsr and mtsrin are used to create
SLB entries for a given ESID, because for these
instructions the association between SLB entries
and ESID values is fixed (SLB entry i is used for
ESID i). However, care must be taken if slbmte is
also used to create SLB entries for the ESID,
because for slbmte the association between SLB
entries and ESID values is specified by software.

Programming Note

Programming Note
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Move To Segment Register X-form

mtsr SR,RS

The SLB entry specified by SR is loaded from register
RS, as follows.

MSRSF must be 0 when this instruction is executed;
otherwise the results are boundedly undefined.

This instruction is privileged.

Special Registers Altered:
None

Move To Segment Register Indirect 
X-form

mtsrin RS,RB

The SLB entry specified by (RB)32:35 is loaded from
register RS, as follows.

MSRSF must be 0 when this instruction is executed;
otherwise the results are boundedly undefined.

This instruction is privileged.

Special Registers Altered:
None

31 RS / SR /// 210 /
0 6 11 12 16 21 31

SLBE 
Bit(s)

Set to SLB Field(s)

0:31 0x0000_0000 ESID0:31
32:35 SR ESID32:35
36 0b1 V
37:38 0b00 B
39:61 0b000||0x0_0000  VSID0:22
62:88 (RS)37:63 VSID23:49
89:91 (RS)33:35 KsKpN
92 (RS)36 L ((RS)36 must be 0b0)
93 0b0 C
94 0b0 reserved
95:96 0b00 LP

31 RS /// RB 242 / 
0 6 11 16 21 31

SLBE 
Bit(s)

Set to SLB Field(s)

0:31 0x0000_0000 ESID0:31
32:35 (RB)32:35 ESID32:35
36 0b1  V
37:38 0b00 B
39:61 0b000||0x0_0000  VSID0:22
62:88 (RS)37:63 VSID23:49
89:91 (RS)33:35 KsKpN
92 (RS)36 L ((RS)36 must be 0b0)
93 0b0 C
94 0b0 reserved
95:96 0b00 LP
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Move From Segment Register  X-form

mfsr RT,SR

The contents of the low-order 27 bits of the VSID field
and the contents of the Ks, Kp, N, and L fields of the
SLB entry specified by SR are placed into register RT
as follows.

RT32 is set to 0. The contents of RT0:31 are undefined.

MSRSF must be 0 when this instruction is executed;
otherwise the results are boundedly undefined.

This instruction must be used only to read an SLB entry
that was, or could have been, created by mtsr or
mtsrin and has not subsequently been invalidated (i.e.,
an SLB entry in which ESID<16, V=1, VSID<227, L=0,
and C=0). If the SLB entry is invalid (V=0), RT33:63 are
set to 0. Otherwise the contents of register RT are
undefined.

This instruction is privileged.

Special Registers Altered:
None

Move From Segment Register Indirect
X-form

mfsrin RT,RB

The contents of the low-order 27 bits of the VSID field
and the contents of the Ks, Kp, N, and L fields of the
SLB entry specified by (RB)32:35 are placed into regis-
ter RT as follows.

RT32 is set to 0. The contents of RT0:31 are undefined.

MSRSF must be 0 when this instruction is executed;
otherwise the results are boundedly undefined.

This instruction must be used only to read an SLB entry
that was, or could have been, created by mtsr or
mtsrin and has not subsequently been invalidated (i.e.,
an SLB entry in which ESID<16, V=1, VSID<227, L=0,
and C=0). If the SLB entry is invalid (V=0), RT33:63 are
set to 0. Otherwise the contents of register RT are
undefined.

This instruction is privileged.

Special Registers Altered:
None

31 RT / SR /// 595 /
0 6 11 12 16 21 31

SLBE Bit(s) Copied to SLB Field(s)
62:88 RT37:63 VSID23:49
89:91 RT33:35 KsKpN
92 RT36 L (SLBEL must be 0b0)

31 RT /// RB 659 /
0 6 11 16 21 31

SLBE Bit(s) Copied to SLB Field(s)
62:88 RT37:63 VSID23:49
89:91 RT33:35 KsKpN
92 RT36 L (SLBEL must be 0b0)
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5.9.3.3 TLB Management Instructions

 

TLB Invalidate Entry  X-form

tlbie RB,RS

L I (RB)63
if L = 0
  then
    base_pg_size = 4K
    actual_pg_size =
       page size specified in (RB)56:58
    i = 51
  else
    base_pg_size =
       base page size specified in (RB)44:51
    actual_pg_size =
       actual page size specified in (RB)44:51
    i = max(min(43,63-b),63-p)
b I log_base_2(base_pg_size)
p I log_base_2(actual_pg_size)
sg_size I segment size specified in (RB)54:55
for each thread
  for each TLB entry
    if (entry_VA14:i+14 = (RB)0:i) &
       (entry_sg_size = sg_size) &
       (entry_base_pg_size = base_pg_size) &
       (entry_actual_pg_size = actual_pg_size) &
       ( ( TLBEs contain LPID &
           (TLBELPID = (RS)32:63) ) |
         ( TLBEs do not contain LPID &
           (LPIDRLPID = (RS)32:63) ) )
    then
      if ((L = 0)|(b ≥ 20))
        then
          TLB entry I invalid
        else
          if (entry_VA58:77-b = (RB)56:75-b)

            then
              TLB entry I invalid

The operation performed by this instruction is based on
the contents of registers RS and RB. The contents of
these registers are shown below, where L is (RB)63.

RS:

RB if L=0:

RB if L=1:

RS32:63 contains an LPID value. The supported
(RS)32:63 values are the same as the LPID values sup-
ported in LPIDR. RS0:31 must contain zeros and are
ignored by the hardware.

If the base page size specified by the PTE that was
used to create the TLB entry to be invalidated is 4 KB,
the L field in register RB must contain 0.

If the L field in RB contains 0, the base page size is 4
KB and RB56:58 (AP - Actual Page size field) must be
set to the SLBEL||LP encoding for the page size corre-
sponding to the actual page size specified by the PTE
that was used to create the TLB entry to be invalidated.
Thus, b is equal to 12 and p is equal to log2 (actual
page size specified by (RB)56:58). The Abbreviated Vir-
tual Address (AVA) field in register RB must contain bits
14:65 of the virtual address translated by the TLB entry
to be invalidated. Variable i is equal to 51.

If the L field in RB contains 1, the following rules apply.
The base page size and actual page size are spec-
ified in the LP field in register RB, where the rela-
tionship between (RB)44:51 (LP - Large Page size
selector field) and the base page size and actual
page size is the same as the relationship between
PTELP and the base page size and actual page
size, except for the “r” bits (see Section 5.7.7.1 on
page 900 and Figure 25 on page 901). Thus, b is
equal to log2 (base page size specified by
(RB)44:51) and p is equal to log2 (actual page size
specified by (RB)44:51). Specifically, (RB)44+c:51
must be equal to the contents of bits c:7 of the LP
field of the PTE that was used to create the TLB
entry to be invalidated, where c is the maximum of
0 and (20-p).
Variable i is the larger of (63-p) and the value that
is the smaller of 43 and (63-b). (RB)0:i must con-

Changes to the page table in the presence of active
transactions may compromise transactional
semantics if a page accessed by a translation is
remapped within the lifetime of the transaction.
Through the use of a tlbie instruction to the
unmapped page, an operating system or hypervi-
sor can ensure that any transaction that has
touched the affected page is terminated.

Changes to local translation lookaside buffers,
through the tlbia and tlbiel instructions have no
effect on transactions. Consequently, if these
instructions are used to invalidate TLB entries after
the unmapping of a page, it is the responsibility of
the OS or hypervisor to ensure that any transaction
that may have touched the modified page is termi-
nated, using a tabort. or treclaim instruction.

31 RS /// RB 306 /
0 6 11 16 21 31

Programming Note

0s LPID
0 32                                                    63

AVA 0s B AP 0s L
0 52 54 56 59 63

AVA LP 0s B  AVAL L
0 44 52 54 56 63
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tain bits 14:(i+14) of the virtual address translated
by the TLB to be invalidated. If b>20, RB64-b:43
may contain any value and are ignored by the
hardware.
If b<20, (RB)56:75-b must contain bits 58:77-b of
the virtual address translated by the TLB to be
invalidated, and other bits in (RB)56:62 may contain
any value and are ignored by the hardware. 
If b≥20, (RB)56:62 (AVAL - Abbreviated Virtual
Address, Lower) may contain any value and are
ignored by the hardware. 

Let the segment size be equal to the segment size
specified in (RB)54:55 (B field). The contents of RB54:55
must be the same as the contents of the B field of the
PTE that was used to create the TLB entry to be invali-
dated.

RB52:53 and RB59:62 (when (RB)63 = 0) must contain
zeros and are ignored by the hardware.

All TLB entries on all threads that have all of the follow-
ing properties are made invalid.

The entry translates a virtual address for which all
the following are true. 

VA14:14+i is equal to (RB)0:i.
L=0 or b≥20 or, if L=1 and b<20,
VA58:77-b is equal to (RB)56:75-b. 

The segment size of the entry is the same as the
segment size specified in (RB)54:55.
Either of the following is true:

The L field in RB is 0, the base page size of
the entry is 4 KB, and the actual page size of
the entry matches the actual page size speci-
fied in (RB)56:58.
The L field in RB is 1, the base page size of
the entry matches the base page size speci-
fied in (RB)44:51, and the actual page size of
the entry matches the actual page size speci-
fied in (RB)44:51.

Either of the following is true:
The implementation’s TLB entries contain
LPID values and TLBELPID = (RS)32:63.
The implementation’s TLB entries do not con-
tain LPID values, and LPIDRLPID = (RS)32:63.
The LPIDR used for this comparison is in the
same thread as the TLB entry being tested.

If the implementation’s TLB entries contain LPID val-
ues, additional TLB entries may also be made invalid if
those TLB entries contain an LPID that matches
(RS)32:63. If the implementation’s TLB entries do not
contain LPID values, additional TLB entries may also
be made invalid on any thread that is in the partition
specified by (RS)32:63. 

MSRSF must be 1 when this instruction is executed;
otherwise the results are undefined.

If the value specified in RS32:63, RB54:55, RB56:58
(when RB63=0), or RB44:51 (when RB63=1) is not sup-
ported by the implementation, the instruction is treated
as if the instruction form were invalid.

The operation performed by this instruction is ordered
by the eieio (or sync or ptesync) instruction with
respect to a subsequent tlbsync instruction executed
by the thread executing the tlbie instruction. The opera-
tions caused by tlbie and tlbsync are ordered by eieio
as a fourth set of operations, which is independent of
the other three sets that eieio orders. 

This instruction is hypervisor privileged.

See Section 5.10, “Page Table Update Synchronization
Requirements” for a description of other requirements
associated with the use of this instruction.

Special Registers Altered:
None

  

  

For tlbie[l] instructions in which (RB)63=0, the AP
value in RB is provided to make it easier for the
hardware to locate address translations, in looka-
side buffers, corresponding to the address transla-
tion being invalidated.

For tlbie[l] instructions the AP specification is not
binary compatible with versions of the architecture
that precede Version 2.06. As an example, for an
actual page size of 64 KB AP=0b101, whereas
software written for an implementation that com-
plies with a version of the architecture that pre-
cedes V. 2.06 would have AP=100 since AP was a
1 bit value followed by 0s in RB57:58. If binary com-
patibility is important, for a 64 KB page software
can use AP=0b101 on these earlier implementa-
tions since these implementations were required to
ignore RB57:58.

For tlbie[l] instructions the AVA and AVAL fields in
RB contain different VA bits from those in PTEAVA.

Programming Note

Programming Note
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TLB Invalidate Entry Local  X-form

tlbiel RB 

IS I (RB)52:53
switch(IS)
  case (0b00):
    L I (RB)63
    if L = 0
      then
        base_pg_size = 4K
        actual_pg_size =
                    page size specified in (RB)56:58
        i = 51
      else
        base_pg_size =
               base page size specified in (RB)44:51
        actual_pg_size =
             actual page size specified in (RB)44:51
        i = max(min(43,63-b),63-p)
    b I log_base_2(base_pg_size)
    p I log_base_2(actual_pg_size)
    sg_size I segment size specified in (RB)54:55
    for each TLB entry
      if (entry_VA14:i+14 = (RB)0:i) &
         (entry_sg_size = segment_size) &
         (entry_base_pg_size = base_pg_size) &
         (entry_actual_pg_size = actual_pg_size) &
         (TLBEs do not contain LPID |
         (TLBEs contain LPID & (TLBELPID=LPIDRLPID)))
        then
          if ((L = 0)|(b ≥ 20))
            then
              TLB entry I invalid
            else
              if (entry_VA58:77-b = (RB)56:75-b)
                then
                  TLB entry I invalid
  case (0b10):
    i I implementation-dependent number, 40≤i≤51
    for each TLB entry in set (RB)i:51
      if (TLBEs do not contain LPID |
         (TLBEs contain LPID & (TLBELPID=LPIDRLPID)))
        then TLB entry I invalid
  case (0b11):
    i I implementation-dependent number, 40≤i≤51
    if MSRHV then
      TLBEs in set (RB)i:51 I invalid
    else
      for each TLB entry in set (RB)i:51
        if (TLBEs do not contain LPID |
         (TLBEs contain LPID & (TLBELPID=LPIDRLPID)))
          then TLB entry I invalid

The operation performed by this instruction is based on
the contents of register RB. The contents of RB are
shown below, where IS is (RB)52:53 and L is (RB)63.

IS=0b00 and L=0:

IS=0b00 and L=1:

IS=0b10 or 0b11:

The Invalidation Selector (IS) field in RB has three
defined values (0b00, 0b10, and 0b11). The IS value of
0b01 is reserved and is treated in the same manner as
the corresponding case for instruction fields (see
Section 1.3.3, “Reserved Fields, Reserved Values, and
Reserved SPRs” on page 5 in Book I).

 

IS field in RB contains 0b00

If the base page size specified by the PTE that was
used to create the TLB entry to be invalidated is 4
KB, the L field in register RB must contain 0.

If the L field in RB contains 0, the base page size is
4 KB and RB56:58 (AP - Actual Page size field)
must be set to the SLBEL||LP encoding for the page
size corresponding to the actual page size speci-
fied by the PTE that was used to create the TLB
entry to be invalidated. Thus, b is equal to 12 and p
is equal to log2 (actual page size specified by
(RB)56:58). The Abbreviated Virtual Address (AVA)
field in register RB must contain bits 14:65 of the
virtual address translated by the TLB entry to be
invalidated. Variable i is equal to 51.

If the L field in RB contains 1, the following rules
apply.

The base page size and actual page size are
specified in the LP field in register RB, where
the relationship between (RB)44:51 (LP - Large
Page size selector field) and the base page
size and actual page size is the same as the
relationship between PTELP and the base
page size and actual page size, except for the
“r” bits (see Section 5.7.7.1 on page 900 and
Figure 25 on page 901). Thus, b is equal to
log2 (base page size specified by (RB)44:51)
and p is equal to log2 (actual page size speci-
fied by (RB)44:51). Specifically,     (RB)44+c:51
must be equal to the contents of bits c:7 of the
LP field of the PTE that was used to create the
TLB entry to be invalidated, where c is the
maximum of 0 and (20-p).
Variable i is the larger of (63-p) and the value
that is the smaller of 43 and (63-b). (RB)0:i
must contain bits 14:(i+14) of the virtual
address translated by the TLB to be invali-
dated. If b>20, RB64-b:43 may contain any
value and are ignored by the hardware.

31 /// /// RB 274 /
0 6 11 16 21 31

AVA IS B AP 0s L
0 52 54 56 59 63

AVA LP IS B  AVAL L
0 44 52 54 56 63

0s SET IS 0s
0 40 52 54 63

Engineering Note
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If b<20, (RB)56:75-b must contain bits 58:77-b
of the virtual address translated by the TLB to
be invalidated, and other bits in (RB)56:62 may
contain any value and are ignored by the
hardware.
If b≥20, (RB)56:62 (AVAL - Abbreviated Virtual
Address, Lower) may contain any value and
are ignored by the hardware. 

Let the segment size be equal to the segment size
specified in (RB)54:55 (B field). The contents of
RB54:55 must be the same as the contents of the B
field of the PTE that was used to create the TLB
entry to be invalidated.

Let the segment size be equal to the segment size
specified in (RB)54:55 (B field). The contents of
RB54:55 must be the same as the contents of PTEB
used to create the TLB entry to be invalidated.

All TLB entries that have all of the following proper-
ties are made invalid on the thread executing the
tlbiel instruction.

The entry translates a virtual address for
which all the following are true. 

VA14:14+i is equal to (RB)0:i.
L=0 or b≥20 or, if L=1 and b<20,
VA58:77-b is equal to (RB)56:75-b. 

The segment size of the entry is the same as
the segment size specified in (RB)54:55.
Either of the following is true:

The L field in RB is 0, the base page
size of the entry is 4 KB, and the actual
page size of the entry matches the
actual page size specified in (RB)56:58.
The L field in RB is 1, the base page
size of the entry matches the base
page size specified in (RB)44:51, and
the actual page size of the entry
matches the actual page size specified
in (RB)44:51.

Either of the following is true:
The implementation’s TLB entries do
not contain LPID values.
The implementation’s TLB entries con-
tain LPID values and TLBELPID =
LPIDRLPID.

IS field in RB contains 0b10 or 0b11

(RB)i:51 (bits i-40:11 of the SET field in (RB)) spec-
ify a set of TLB entries, where i is an implementa-
tion-dependent value in the range 40:51. Each
entry in the set is invalidated if any of the following
conditions are met for the entry.

The implementation’s TLB entries do not con-
tain an LPID value.
The IS field in RB contains 0b10 or MSRHV=0,
the implementation’s TLB entries contain an
LPID value, and TLBELPID = LPIDRLPID.
The IS field in RB contains 0b11 and
MSRHV=1.

How the TLB is divided into the 252-i sets is imple-
mentation-dependent. The relationship of virtual

addresses to these sets is also implementa-
tion-dependent. However, if, in an implementation,
there can be multiple TLB entries for the same vir-
tual address and same partition, then all these
entries must be in a single set.

If the IS field in RB contains 0b10 or 0b11, it is
implementation-dependent whether implementa-
tion-specific lookaside information that contains
translations of effective addresses to real
addresses is invalidated.

RB0:39 (when (RB)52:53 = 0b10 or 0b11), RB59:62(when
(RB)52:53 = 0b00 and (RB)63=0), and RB54:63 (when
(RB)52:53 = 0b10 or 0b11) must contain 0s and are
ignored by the hardware. When i>40 and (RB)52:53 =
0b10 or 0b11, RB40:i-1 may contain any value and are
ignored by the hardware.

Only TLB entries on the thread executing the tlbiel
instruction are affected.

MSRSF must be 1 when this instruction is executed;
otherwise the results are boundedly undefined.

If the value specified in RB54:55, RB56:58 (when
RB52:53=0b00 and (RB)63 is 0), or RB44:51 (when
RB52:53=0b00 and (RB)63 is 1) is not supported by the
implementation, the instruction is treated as if the
instruction form were invalid.

This instruction is privileged.

See Section 5.10, “Page Table Update Synchronization
Requirements” on page 934 for a description of other
requirements associated with the use of this instruction.

Special Registers Altered:
None
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  TLB Invalidate All X-form

tlbia 

all TLB entries I invalid

All TLB entries are made invalid on the thread execut-
ing the tlbia instruction.

This instruction is hypervisor privileged.

This instruction is optional, and need not be imple-
mented.

Special Registers Altered:
None

  

The primary use of this instruction by hypervisor
software is to invalidate TLB entries prior to reas-
signing a thread to a new logical partition.

For IS = 0b10 or 0b11, it is implementation-depen-
dent whether ERAT entries are invalidated. If the
tlbiel instruction is being executed due to a parti-
tion swap, an slbia instruction can be used to inval-
idate the pertinent ERAT entries. If the tlbiel
instruction is being executed to invalidate TLB
entries with parity or ECC errors, the fact that the
corresponding ERAT entries are not invalidated is
immaterial. If the tlbiel instruction is being exe-
cuted to invalidate multiple matching TLB entries,
the fact that the corresponding ERAT entries are
not invalidated is immaterial for implementations
that never create multiple matching ERAT entries.

The primary use of this instruction by operating
system software is to invalidate TLB entries that
were created by the hypervisor using an implemen-
tation-specific hypervisor-managed TLB facility, if
such a facility is provided.

tlbiel may be executed on a given thread even if
the sequence tlbie - eieio - tlbsync - ptesync is
concurrently being executed on another thread.

See also the Programming Notes with the descrip-
tion of the tlbie instruction.

Programming Note

31 /// /// /// 370 /
0 6 11 16 21 31

tlbia does not affect TLBs on other threads.

Programming Note
Power ISA™ - Book III-S932



Version 2.07 B
TLB Synchronize  X-form

tlbsync 

The tlbsync instruction provides an ordering function
for the effects of all tlbie instructions executed by the
thread executing the tlbsync instruction, with respect
to the memory barrier created by a subsequent pte-
sync instruction executed by the same thread. Execut-
ing a tlbsync instruction ensures that all of the
following will occur.

All TLB invalidations caused by tlbie instructions
preceding the tlbsync instruction will have com-
pleted on any other thread before any data
accesses caused by instructions following the pte-
sync instruction are performed with respect to that
thread.

All storage accesses by other threads for which the
address was translated using the translations
being invalidated, and all Reference and Change
bit updates associated with address translations
that were performed by other threads using the
translations being invalidated, will have been per-
formed with respect to the thread executing the
ptesync instruction, to the extent required by the
associated Memory Coherence Required
attributes, before the ptesync instruction’s mem-
ory barrier is created.

The operation performed by this instruction is ordered
by the eieio (or sync or ptesync) instruction with
respect to preceding tlbie instructions executed by the
thread executing the tlbsync instruction. The opera-
tions caused by tlbie and tlbsync are ordered by eieio
as a fourth set of operations, which is independent of
the other three sets that eieio orders.

The tlbsync instruction may complete before opera-
tions caused by tlbie instructions preceding the tlb-
sync instruction have been performed.

This instruction is hypervisor privileged.

See Section 5.10 for a description of other require-
ments associated with the use of this instruction.

Special Registers Altered:
None

  

31 /// /// /// 566 /
0 6 11 16 21 31

tlbsync should not be used to synchronize the
completion of tlbiel.

Programming Note
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5.10 Page Table Update Synchronization Requirements

This section describes rules that software must follow
when updating the Page Table, and includes suggested
sequences of operations for some representative
cases.

In the sequences of operations shown in the following
subsections, the Page Table Entry is assumed to be for
a virtual page for which the base page size is equal to
the actual page size. If these page sizes are different,
multiple tlbie instructions are needed, one for each
PTE corresponding to the virtual page.

In the sequences of operations shown in the following
subsections, any alteration of a Page Table Entry (PTE)
that corresponds to a single line in the sequence is
assumed to be done using a Store instruction for which
the access is atomic. Appropriate modifications must
be made to these sequences if this assumption is not
satisfied (e.g., if a store doubleword operation is done
using two Store Word instructions).

Stores are not performed out-of-order, as described in
Section 5.5, “Performing Operations Out-of-Order” on
page 890. Moreover, address translations associated
with instructions preceding the corresponding Store
instructions are not performed again after the stores
have been performed. (These address translations
must have been performed before the store was deter-
mined to be required by the sequential execution
model, because they might have caused an exception.)
As a result, an update to a PTE need not be preceded
by a context synchronizing operation.

All of the sequences require a context synchronizing
operation after the sequence if the new contents of the
PTE are to be used for address translations associated
with subsequent instructions.

As noted in the description of the Synchronize instruc-
tion in Section 4.4.3 of Book II, address translation
associated with instructions which occur in program
order subsequent to the Synchronize (and this includes
the ptesync variant) may be performed prior to the
completion of the Synchronize. To ensure that these
instructions and data which may have been specula-
tively fetched are discarded, a context synchronizing
operation is required.

  

Page Table Entries must not be changed in a manner
that causes an implicit branch.

5.10.1 Page Table Updates
TLBs are non-coherent caches of the HTAB. TLB
entries must be invalidated explicitly with one of the
TLB Invalidate instructions.

Unsynchronized lookups in the HTAB continue
even while it is being modified. Any thread, including
a thread on which software is modifying the HTAB, may
look in the HTAB at any time in an attempt to translate a
virtual address. When modifying a PTE, software must
ensure that the PTE’s V bit is 0 if the PTE is inconsis-
tent (e.g., if the RPN field is not correct for the current
AVA field).

Updates of Reference and Change bits by the hard-
ware are not synchronized with the accesses that
cause the updates. When modifying doubleword 1 of
a PTE, software must take care to avoid overwriting a
hardware update of these bits and to avoid having the
value written by a Store instruction overwritten by a
hardware update. 

Software must execute tlbie and tlbsync instructions
only as part of the following sequence, and must
ensure that no other thread will execute a “conflicting
instruction” while the instructions in the sequence are
executing on the given thread.  In addition to achieving
the required system synchronization, the sequence will
cause transactions that include accesses to the
affected page(s) to fail.

tlbie instruction(s) specifying the same LPID oper-
and value
eieio 
tlbsync 
ptesync 

Let L be the LPID value specified by the above tlbie
instruction(s). The “conflicting instructions” in this case
are the following.

a tlbie instruction that specifies an LPID value that
matches the value L
a tlbsync instruction that is part of a
tlbie-eieio-tlbsync-ptesync sequence in which
the tlbie instruction(s) specify an LPID value that
matches the value L
an mtspr instruction that modifies the LPIDR, if the
modification has either of the following properties.

- The old LPID value (i.e., the contents of the
LPIDR just before the mtspr instruction is
executed) is the value L

- The new LPID value (i.e., the value specified
by the mtspr instruction) is the value L

Other instructions (excluding mtspr instructions that
modify the LPIDR as described above, and excluding

In many cases this context synchronization will
occur naturally; for example, if the sequence is exe-
cuted within an interrupt handler the rfid or hrfid
instruction that returns from the interrupt handler
may provide the required context synchronization. 

Programming Note
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tlbie instructions except as shown) may be interleaved
with the instruction sequence shown above, but the
instructions in the sequence must appear in the order
shown. On systems consisting of only a sin-
gle-threaded processor, the eieio and tlbsync instruc-
tions can be omitted.

 

Before permitting an mtspr instruction that modifies the
LPIDR to be executed on a given thread, software must
ensure that no other thread will execute a “conflicting
instruction” until after the mtspr instruction followed by
a context synchronizing instruction have been executed
on the given thread (a context synchronizing event can
be used instead of the context synchronizing instruc-
tion; see Chapter 12).

The “conflicting instructions” in this case are the follow-
ing.

a tlbie instruction specifying an LPID operand
value that matches either the old or the new
LPIDRLPID value
a tlbsync instruction that is part of a
tlbie-eieio-tlbsync-ptesync sequence in which
the tlbie instruction(s) specify an LPID value that
matches either the old or the new LPIDRLPID value

  

The sequences of operations shown in the following
subsections assume a multi-threaded environment. In
an environment consisting of only a single-threaded
processor, the tlbsync must be omitted, and the eieio
that separates the tlbie from the tlbsync can be omit-
ted. In a multi-threaded environment, when tlbiel is
used instead of tlbie in a Page Table update, the syn-
chronization requirements are the same as when tlbie
is used in an environment consisting of only a sin-
gle-threaded processor.

  

5.10.1.1 Adding a Page Table Entry
This is the simplest Page Table case. The V bit of the
old entry is assumed to be 0. The following sequence
can be used to create a PTE, maintain a consistent
state, and ensure that a subsequent reference to the
virtual address translated by the new entry will use the
correct real address and associated attributes

PTEARPN,LP,AC,R,C,WIMG,N,PP I new values
eieio /* order 1st update before 2nd */
PTEB,AVA,SW,L,H,V I new values (V=1)
ptesync /* order updates before next

The eieio instruction prevents the reordering of the
preceding  tlbie instructions with respect to the
subsequent tlbsync instruction. The tlbsync
instruction and the subsequent ptesync instruction
together ensure that all storage accesses for which
the address was translated using the translations
being invalidated (by the tlbie instructions), and all
Reference and Change bit updates associated with
address translations that were performed using the
translations being invalidated, will be performed
with respect to any thread or mechanism, to the
extent required by the associated Memory Coher-
ence Required attributes, before any data accesses
caused by instructions following the ptesync
instruction are performed with respect to that
thread or mechanism.

For Page Table update sequences that mark the
PTE invalid (see Section 5.10.1.2, “Modifying a
Page Table Entry”), Reference and Change  bit
updates can continue to be performed in the invalid
PTE until the ptesync at the end of the tlbie/eieio/
tlbsync/ptesync sequence has completed. Any
access to the PTE, by software, that should be per-
formed after all such implicit PTE updates have
completed, such as reading the final values of the
Reference and Change  bits or modifying PTE
bytes that contain those bits, must be placed after
this ptesync.

Programming Note

The restrictions specified above regarding modify-
ing the LPIDR apply even on systems consisting of
only a single-threaded processor, and even if the
new LPID value is equal to the old LPID value.

For all of the sequences shown in the following
subsections, if it is necessary to communicate com-
pletion of the sequence to software running on
another thread, the ptesync instruction at the end
of the sequence should be followed by a Store
instruction that stores a chosen value to some cho-
sen storage location X. The memory barrier cre-
ated by the ptesync instruction ensures that if a
Load instruction executed by another thread
returns the chosen value from location X, the
sequence’s stores to the Page Table have been
performed with respect to that other thread. The
Load instruction that returns the chosen value
should be followed by a context synchronizing
instruction in order to ensure that all instructions
following the context synchronizing instruction will
be fetched and executed using the values stored by
the sequence (or values stored subsequently).
(These instructions may have been fetched or exe-
cuted out-of-order using the old contents of the
PTE.)

This Note assumes that the Page Table and loca-
tion X are in storage that is Memory Coherence
Required.

Programming Note

Programming Note
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   Page Table search and before
   next data access              */

5.10.1.2 Modifying a Page Table Entry

General Case
If a valid entry is to be modified and the translation
instantiated by the entry being modified is to be invali-
dated, the following sequence can be used to modify
the PTE, maintain a consistent state, ensure that the
translation instantiated by the old entry is no longer
available, and ensure that a subsequent reference to
the virtual address translated by the new entry will use
the correct real address and associated attributes. (The
sequence is equivalent to deleting the PTE and then
adding a new one; see Sections 5.10.1.1 and 5.10.1.3.)

PTEV I 0 /* (other fields don’t matter)*/
ptesync /* order update before tlbie and

      before next Page Table search */
tlbie(old_B,old_VA14:77-b,old_L,old_LP,old_AP, 

old_LPID)
/*invalidate old translation*/

eieio /* order tlbie before tlbsync     */
tlbsync /* order tlbie before ptesync     */
ptesync /* order tlbie, tlbsync and 1st

      update before 2nd update      */
PTEARPN,LP,AC,R,C,WIMG,N,PP I new values
eieio /* order 2nd update before 3rd */
PTEB,AVA,SW,L,H,V I new values (V=1)
ptesync /* order 2nd and 3rd updates before

      next Page Table search and
      before next data access      */

Resetting the Reference Bit
If the only change being made to a valid entry is to set
the Reference bit to 0, a simpler sequence suffices
because the Reference bit need not be maintained
exactly.

oldR I PTER /* get old R                      */
if oldR = 1 then
  PTER I 0 /* store byte (R=0, other bits

      unchanged)                */
  tlbie(B,VA14:77-b,L,LP,AP,LPID) /* invalidate

                   entry     */
  eieio /* order tlbie before tlbsync           */
  tlbsync /* order tlbie before ptesync           */
  ptesync /* order tlbie, tlbsync, and update

      before next Page Table search
      and before next data access          */

Modifying the SW field
If the only change being made to a valid entry is to
modify the SW field, the following sequence suffices,
because the SW field is not used by the hardware and
doubleword 0 of the PTE is not modified by the hard-
ware.

loop: ldarx r1 I PTE_dwd_0 /* load dwd 0 of PTE */
r157:60 I new SW value /* replace SW, in r1 */
stdcx. PTE_dwd_0 I r1 /* store dwd 0 of PTE 

if still reserved (new SW value, other
fields unchanged) */

bne- loop    /* loop if lost reservation */

A lbarx/stbcx., lharx/sthcx., or lwarx/stwcx. pair
(specifying the low-order byte, halfword, or word
respectively of doubleword 0 of the PTE) can be used
instead of the ldarx /stdcx. pair shown above.

Modifying the Virtual Address
If the virtual address translated by a valid PTE is to be
modified and the new virtual address hashes to the
same PTEG (or the same two PTEGs if the secondary
Page Table search is enabled) as does the old virtual
address, the following sequence can be used to modify
the PTE, maintain a consistent state, ensure that the
translation instantiated by the old entry is no longer
available, and ensure that a subsequent reference to
the virtual address translated by the new entry will use
the correct real address and associated attributes.

PTEAVA,SW,L,H,V I new values (V=1)
ptesync /* order update before tlbie and

      before next Page Table search        */
tlbie(old_B,old_VA14:77-b,old_L,old_LP,old_AP,

old_LPID) /*invalidate old translation*/
eieio /* order tlbie before tlbsync           */
tlbsync /* order tlbie before ptesync           */
ptesync /* order tlbie, tlbsync, and update

      before next data access              */

5.10.1.3  Deleting a Page Table Entry
The following sequence can be used to ensure that the
translation instantiated by an existing entry is no longer
available.

PTEV I 0 /* (other fields don’t matter)          */
ptesync /* order update before tlbie and

   before next Page Table search  */
tlbie(old_B,old_VA14:77-b,old_L,old_LP,old_AP,

old_LPID)  /*invalidate old translation*/
eieio /* order tlbie before tlbsync           */
tlbsync /* order tlbie before ptesync           */
ptesync /* order tlbie, tlbsync, and update

      before next data access              */
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Chapter 6.  Interrupts

6.1 Overview
The Power ISA provides an interrupt mechanism to
allow the thread to change state as a result of external
signals, errors, or unusual conditions arising in the exe-
cution of instructions.

System Reset and Machine Check interrupts are not
ordered. All other interrupts are ordered such that only
one interrupt is reported, and when it is processed
(taken) no program state is lost. Since Save/Restore
Registers SRR0 and SRR1 are serially reusable
resources used by most interrupts, program state may
be lost when an unordered interrupt is taken.

6.2 Interrupt Registers

6.2.1 Machine Status Save/
Restore Registers
When various interrupts occur, the state of the machine
is saved in the Machine Status Save/Restore registers
(SRR0 and SRR1). Section 6.5 describes which regis-
ters are altered by each interrupt.

Figure 40. Save/Restore Registers

SRR1 bits may be treated as reserved in a given imple-
mentation if they correspond to MSR bits that are
reserved or are treated as reserved in that implementa-
tion and, for SRR1 bits in the range 33:36, 42:43, and
45:47, they are specified as being set either to 0 or to
an undefined value for all interrupts that set SRR1
(including implementation-dependent setting, e.g. by
the Machine Check interrupt or by implementation-spe-
cific interrupts). SRR144 cannot be treated as reserved,
regardless of how it is set by interrupts, because it is
used by software, as described in a Programming Note

near the end of Section 6.5.9, “Program Interrupt” on
page 957.

6.2.2 Hypervisor Machine Status 
Save/Restore Registers
When various interrupts occur, the state of the machine
is saved in the Hypervisor Machine Status Save/
Restore registers (HSRR0 and HSRR1). Section 6.5
describes which registers are altered by each interrupt. 

Figure 41. Hypervisor Save/Restore Registers 

HSRR1 bits may be treated as reserved in a given
implementation if they correspond to MSR bits that are
reserved or are treated as reserved in that implementa-
tion and, for HSRR1 bits in the range 33:36 and 42:47,
they are specified as being set either to 0 or to an unde-
fined value for all interrupts that set HSRR1 (including
implementation-dependent setting, e.g. by implementa-
tion-specific interrupts).

The HSRR0 and HSRR1 are hypervisor resources; see
Chapter 2.

  

6.2.3 Data Address Register 
The Data Address Register (DAR) is a 64-bit register
that is set by the Machine Check, Data Storage, Data
Segment, and Alignment interrupts; see Sections 6.5.2,
6.5.3, 6.5.4, and 6.5.8. In general, when one of these
interrupts occurs the DAR is set to an effective address
associated with the storage access that caused the

SRR0 //
0 62 63

SRR1
0                                                                                                                      63

HSRR0 //
0 62 63

HSRR1
0                                                                                                                     63

Execution of some instructions, and fetching
instructions when MSRIR=1, may have the side
effect of modifying HSRR0 and HSRR1; see Sec-
tion 6.4.4.

Programming Note
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interrupt, with the high-order 32 bits of the DAR set to 0
if the interrupt occurs in 32-bit mode.

Figure 42. Data Address Register

6.2.4 Hypervisor Data Address 
Register
The Hypervisor Data Address Register (HDAR) is a
64-bit register that is set by the Hypervisor Data Stor-
age Interrupt; see Section 6.5.16. In general, when this
interrupt occurs, the HDAR is set to an effective
address associated with the storage access that
caused the interrupt, with the high-order 32 bits of the
HDAR set to 0 if the interrupt occurs in 32-bit mode.

Figure 43. Hypervisor Data Address Register

6.2.5 Data Storage Interrupt
Status Register
The Data Storage Interrupt Status Register (DSISR) is
a 32-bit register that is set by the Machine Check, Data
Storage, Data Segment, and Alignment interrupts; see
Sections 6.5.2, 6.5.3, 6.5.4, and 6.5.8. 

  

Figure 44. Data Storage Interrupt Status Register

DSISR bits may be treated as reserved in a given
implementation if they are specified as being set either
to 0 or to an undefined value for all interrupts that set
the DSISR.

 

6.2.6 Hypervisor Data Storage 
Interrupt Status Register
The Hypervisor Data Storage Interrupt Status Register
(HDSISR) is a 32-bit register that is set by the Hypervi-
sor Data Storage interrupt. In general, when one of
these interrupts occurs the HDSISR is set to indicate
the cause of the interrupt. 

Figure 45. Hypervisor Data Storage Interrupt
Status Register

6.2.7 Hypervisor Emulation 
Instruction Register
The Hypervisor Emulation Instruction Register (HEIR)
is a 32-bit register that is set by the Hypervisor Emula-
tion Assistance interrupt; see Section 6.5.18. The
image of the instruction that caused the interrupt is
loaded into the register. 

Figure 46. Hypervisor Emulation Instruction
Register

6.2.8 Hypervisor Maintenance 
Exception Register
Each bit in the Hypervisor Maintenance Exception Reg-
ister (HMER) is associated with one or more causes of
the Hypervisor Maintenance exception, and is set when
the associated exception(s) occur. If the corresponding
bit in the Hypervisor Maintenance Exception Enable
Register (HMEER) is set, a Hypervisor Maintenance
Interrupt (HMI) may occur. If the thread is in a
power-saving mode when the interrupt would have
occurred, the thread will exit the power-saving mode;
see Section 6.5.19 and Section 3.3.2.

Figure 47. Hypervisor Maintenance Exception
Register

The contents of the HMER are as follows:
0 Set to 1 for a Malfunction Alert.
1 Set to 1 when performance is degraded for

thermal reasons.
2 Set to 1 when thread recovery is invoked.
Others Implementation-specific.

When the mtspr instruction is executed with the HMER
as the encoded Special Purpose Register, the contents
of register RS are ANDed with the contents of the
HMER and the result is placed into the HMER.

The exception bits in the HMER are sticky; that is, once
set to 1 they remain set to 1 until they are set to 0 by an
mthmer instruction.

  

DAR
0                                                                                                                     63

HDAR
0                                                                                                                     63

DSISR
32                                                       63

HDSISR
32                                                       63

HEIR
31                                                       63

HMER
0                                                                                                                     63

An access to the HMER is likely to be very slow.
Software should access it sparingly.

Programming Note
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6.2.9 Hypervisor Maintenance 
Exception Enable Register
The Hypervisor Maintenance Exception Enable Regis-
ter (HMEER) is a 64-bit register in which each bit
enables the corresponding exception in the HMER to
cause the Hypervisor Maintenance interrupt, potentially
causing exit from power-saving mode; see Section
6.5.19 and Section 3.3.2.

Figure 48. Hypervisor Maintenance Exception
Enable Register

6.2.10 Facility Status and Control 
Register
The Facility Status and Control Register (FSCR)  con-
trols the availability of various facilities in problem state
and indicates the cause of a Facility Unavailable inter-
rupt.

When the FSCR makes a facility unavailable,
attempted usage of the facility in problem state is
treated as follows:

- Execution of an instruction causes a Facility
Unavailable interrupt. 

- Access of an SPR using mfspr/mtspr causes
a Facility Unavailable interrupt

- rfebb, rfid, hrfid and mtmsr[d] instructions
have the same effect on bits in system regis-
ters as they would if the bits were available.

  

The MSR can also make the Transactional Memory
facility unavailable in any privilege state,  and MMCR0
can make various components of the Performance
Monitor unavailable when accessed in problem state.
An access to one of these facilities when it is unavail-
able causes a Facility Unavailable interrupt. 

When the PCR makes a facility unavailable in problem
state, the facility is treated as not implemented in prob-
lem state; any Facility Unavailable interrupt that would
occur if the facility were not made unavailble by the
PCR does not occur.

When a Facility Unavailable interrupt occurs, the
unavailable facility that was accessed is indicated in the
most-significant byte of the FSCR. 

Figure 49. Facility Status and Control Register

The contents of the FSCR are specified below.

Value Meaning

0:7 Interruption Cause (IC)

When a Facility Unavailable interrupt occurs,
the IC field contains a binary number indicat-
ing the facility for which access was
attempted. The values and their meanings are
specified below.

02 Access to the DSCR at SPR 3
03 Access to a Performance Monitor SPR in

group A or B when MMCR0PMCC is set to
a value for which the access results in a
Facility Unavailable interrupt. (See the
definition of MMCR0PMCC in Section
9.4.4.)

04 Execution of a BHRB Instruction
05 Access to a Transactional Memory SPR or

execution of a Transactional Memory
Instruction

06 Reserved
07 Access to an Event-Based Branch SPR or

execution of an Event-Based Branch
instruction

08 Access to the Target Address Register

All other values are reserved.

8:63 Facility Enable (FE)

The FE field controls the availability of various
facilities in problem state as specified below. 

8:54 Reserved

55 Target Address Register (TAR)

0 The TAR and bctar instruction are not
available in problem state.

1 The TAR and bctar instruction are avail-
able in problem state unless made
unavailable by another register.

56 Event-Based Branch Facility (EBB)

0 The Event-Based Branch facility SPRs
and instructions are not available in prob-
lem state, and event-based exceptions
and branches do not occur.

1 The Event-Based Branch facility SPRs
and instructions (see Chapter 7 of Book II)
are available in problem state unless
made unavailable by another register, and

HMEER
0                                                                                                                     63

The FSCR does not prevent rfebb instructions from
attempting to set bits in System Registers that the
FSCR makes unavailable. Thus changes to BES-
CRTS made by the operating system have the
potential to  result in an illegal transaction state
transition when rfebb is subsequently executed in
problem state, resulting in the occurrence of a TM
Bad Thing type Program interrupt.

Programming Note

IC Facility Control
0 8                                                                                    63
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event-based exceptions and  branches
are allowed to occur if enabled by other
registers.

57:60 Reserved

  

61 Data Stream Control Register at SPR 3
(DSCR)

0 SPR 3 is not available in problem state.
1 SPR 3 is available in problem state

unless made unavailable by another regis-
ter.

62:63 Reserved

  

6.2.11 Hypervisor Facility Status 
and Control Register
The Hypervisor Facility Status and Control Register
(HFSCR)  controls the available of various facilities in
problem and privileged non-hypervisor states, and indi-
cates the cause of a Hypervisor Facility Unavailable
interrupt.

When the HFSCR makes a facility unavailable,
attempted usage of the facility in problem or privileged
non-hypervisor states is treated as follows:

- Execution of an instruction causes a Hypervi-
sor Facility Unavailable interrupt. 

- Access of an SPR using mfspr/mtspr  causes
a Hypervisor Facility Unavailable interrupt

- rfebb, rfid, hrfid and mtmsr[d] instructions
have the same effect on bits in system regis-
ters as they would if the bits were available.

  

When the PCR makes a facility unavailable in problem
state, the facility is treated as not implemented in prob-
lem state; any Hypervisor Facility Unavailable interrupt
that would occur if the facility were not made unavailble
by the PCR does not occur as a result of problem state
access. See Section 2.6 for additional information.)

When a Hypervisor Facility Unavailable interrupt
occurs, the facility that was accessed is indicated in the
most-significant byte of the HFSCR. 

Figure 50. Hypervisor Facility Status and Control
Register

The contents of the HFSCR are specified below.

Value Meaning

0:7 Interruption Cause (IC)

When a Hypervisor Facility Unavailable inter-
rupt occurs, the IC field contains a binary
number indicating the access that was
attempted. The values and their meanings are
specified below.
00 Access to a Floating Point register or exe-

cution of a Floating Point instruction
01 Access to a Vector or VSX register or exe-

cution of a Vector or VSX instruction
02 Access to the DSCR at SPRs 3 or 17
03 Read or write access of a Performance

Monitor SPR in group A, or read access of
a Performance Monitor SPR in group B.
(See Section 9.4.1 for a definition of
groups A and B.)

04 Execution of a BHRB Instruction

HFSCR58:60 are used to control the availability of
Transactional Memory, the Performance Monitor,
and the BHRB in problem and privileged
non-hypervisor states. FSCR58:60 are reserved
since the availability of Transactional Memory is
controlled by the MSR, and the availability of the
Performance Monitor and BHRB is controlled by
MMCR0.

When an OS has set the FSCR such that a facility
is unavailable, the OS should either emulate the
facility when it is accessed or provide an applica-
tion interface that requires the application to
request use of the facility before it accesses the
facility.

Programming Note

Programming Note

Because the HFSCR does not prevent mtspr,
[h]rfid, and mtmsr[d] instructions from setting bits
in system registers that the HFSCR will make
unavailable  after a transition to a lower privilege
state, these instructions may cause interrupts in a
variety of unexpected ways.  For example, consider
a hypervisor that sets HSRR1 such that hrfid
returns to a lower privilege state with MSR[TS]
nonzero.  A TM Bad Thing type Program interrupt
will result, despite that TM is made unavailable by
the HFSCR.

Similarly, the HFSCR does not prevent rfebb
instructions from attempting to set bits in System
Registers that the HFSCR makes unavailable.
Thus changes to BESCRTS made by the hypervisor
have the potential to result in an illegal transaction
state transition when rfebb is subsequently exe-
cuted in problem or privileged state, resulting in the
occurrence of a TM Bad Thing type Program inter-
rupt.

IC Facility Control
0 8                                                                                    63

Programming Note
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05 Access to a Transactional Memory SPR or
execution of a Transactional Memory
instruction

06 Reserved
07 Access to an Event-Based Branch SPR or

execution of an Event-Based Branch
instruction

08 Access to the Target Address Register

All other values are reserved.

8:63 Facility Enable (FE)

The FE field controls the availability of various
facilities in problem and privileged non-hyper-
visor states as specified below.

8:54 Reserved

55 Target Address Register (TAR)

0 The TAR and bctar instruction are not
available in problem and privileged
non-hypervisor state.

1 The TAR and bctar instruction are avail-
able in problem and privileged states
unless made unavailable by another regis-
ter.

56 Event-Based Branch Facility (EBB)

0 The Event-Based Branch facility SPRs
and instructions are not available in prob-
lem and privileged non-hypervisor states,
and event-based exceptions and
branches do not occur.

1 The Event-Based Branch facility SPRs
and instructions are available in problem
and privileged states unless made
unavailable by another register, and
event-based exceptions and branches are
allowed to occur if enabled by other bits.

57 Reserved

58 Transactional Memory Facility (TM)

0 The Transactional Memory Facility SPRs
and instructions are not available in prob-
lem and privileged non-hypervisor states.

1 The Transactional Memory Facility SPRs
and instructions are available in problem
and privileged states unless made
unavailable by another register.

59 BHRB Instructions (BHRB)

0 The BHRB instructions (clrbhrb, mfb-
hrbe) are not available in problem and
privileged non-hypervisor states.

1 The BHRB instructions (clrbhrb, mfb-
hrbe) are  available in problem and privi-
leged states unless made unavailable by
another register.

60 Performance Monitor Facility SPRs (PM)

0 Read and write operations of Performance
Monitor SPRs in group A and read opera-
tions of Performance Monitor SPRs in
group B are not available in problem and
privileged non-hypervisor states; read and
write operations to privileged Performance
Monitor registers (SPRs 784-792,
795-798) are not available in privileged
non-hypervisor state. (See Section 9.4.1
for a definition of groups A and B.)

1 Read and write operations of Performance
Monitor SPRs in group A and read opera-
tions of Performance Monitor SPRs in
group B are  available in problem and priv-
ileged states unless made unavailable by
another register; read and write opera-
tions to privileged Performance Monitor
registers (SPRs 784-792, 795-798) are
available in privileged state.

61 Data Stream Control Register (DSCR)

0 SPR 3 is not available in problem or privi-
leged non-hypervisor states and SPR 17
is not available in privileged non-hypervi-
sor state.

1 SPR 3 is available in problem and privi-
leged states and SPR 17 is available in
privileged state unless made unavailable
by another register.

62 Vector and VSX Facilities (VECVSX)

0 The facilities whose availability is con-
trolled by either MSRVEC or MSRVSX are
not available in problem and privileged
non-hypervisor states.

1 The facilities whose availability is con-
troled by either MSRVEC or MSRVSX are
available in problem and privileged states
unless made unavailable by another regis-
ter.

63 Floating Point Facility (FP)

0 The facilities whose availability is con-
trolled by MSRFP are not available in prob-
lem and privileged non-hypervisor states.

1 The facilities whose availability is con-
trolled by MSRFP are available in problem
and privileged states unless made
unavailable by another register.
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The FSCR can be used to determine whether a
particular facility is being used by an application,
and the HFSCR can be used to determine whether
a particular facility is being used by either an appli-
cation or by an operating system. This is done by
disabling the facility initially, and enabling it in the
interrupt handler upon first usage. The information
about the usage of a particular facility can be used
to determine whether that facility’s  state must be
saved and restored when changing program con-
text.

Programming Note
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The following tables summarize the interrupts that occur as a result of accessing the non-privileged Performance
Monitor registers in problem state when MMCR0PMCC, PCR, and HFSCR are set to various values. (Accesses to
privileged Performance Monitor SPRs (SPRs 784-792, 795-798) in problem state result in Privileged Instruction Type
Program interrupts.)

  

mfspr mtspr

PMCC PMCC

SPR # 00 01 10 11 00 01 10 11

G
ro

u
p

 A

MMCR23 769 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

MMCRA 770 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

PMC1 771 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

PMC2 772 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

PMC3 773 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

PMC4 774 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

PMC5 775 HU4 FU, HU4 HU4 FU, HU4 HE,HU4 FU, HU4 HU4 FU, HU4

PMC6 776 HU4 FU, HU4 HU4 FU, HU4 HE,HU4 FU, HU4 HU4 FU, HU4

MMCR0 779 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

G
ro

u
p

 B

SIER3 768 HU4 FU, HU4 HU4 HU4 See 2. See 2. See 2. See 2.

SIAR 780 HU4 FU, HU4 HU4 HU4 See 2. See 2. See 2. See 2.

SDAR 781 HU4 FU, HU4 HU4 HU4 See 2. See 2. See 2. See 2.

MMCR1 782 HU4 FU, HU4 FU, HU4 FU, HU4 See 2. See 2. See 2. See 2.

Notes:

1. Terminology:
FU: Facility Unavailable interrupt
HE: Hypervisor Emulation Assistance interrupt
HU: Hypervisor Facility Unavailable interrupt

2. This SPR is read-only, and cannot be written in any privilege state. (See the mtspr instruction descrip-
tion in Section 4.4.4 for additional information.) FU or HU interrupts do not occur regardless of the
value of MMCR0PMCC or HFSCRPM.

3. When the PCR indicates a version of the architecture prior to V 2.07, this SPR is treated as not imple-
mented in problem state; no FU or HU interrupts occur regardless of the value of MMCR0PMCC or
HFSCRPM.

4. An HU interrupt occurs if HFSCRPM=0 when this SPR is accessed in either problem state or privileged
non-hypervisor state. 

When an MSR bit makes a facility unavailable, the
facility is made unavailable in all privilege states.
Examples of this include the Floating Point, Vector,
and VSX facilities. The FSCR and HFSCR affect
the availability of facilities only in privilege states
that are lower than the privilege of the register
(FSCR or HFSCR).

Programming Note
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6.3 Interrupt Synchronization
When an interrupt occurs, SRR0 or HSRR0 is set to
point to an instruction such that all preceding instruc-
tions have completed execution, no subsequent
instruction has begun execution, and the instruction
addressed by SRR0 or HSRR0 may or may not have
completed execution, depending on the interrupt type.

With the exception of System Reset and Machine
Check interrupts, all interrupts are context synchroniz-
ing as defined in Section 1.5.1. System Reset and
Machine Check interrupts are context synchronizing if
they are recoverable (i.e., if bit 62 of SRR1 is set to 1 by
the interrupt). If a System Reset or Machine Check
interrupt is not recoverable (i.e., if bit 62 of SRR1 is set
to 0 by the interrupt), it acts like a context synchronizing
operation with respect to subsequent instructions. That
is, a non-recoverable System Reset or Machine Check
interrupt need not satisfy items 1 through 3 of Section
1.5.1, but does satisfy items 4 and 5.

6.4 Interrupt Classes
Interrupts are classified by whether they are directly
caused by the execution of an instruction or are caused
by some other system exception. Those that are “sys-
tem-caused” are:

System Reset
Machine Check
External
Decrementer
Directed Privileged Doorbell
Hypervisor Decrementer
Hypervisor Maintenance
Directed Hypervisor Doorbell
Performance Monitor

External, Decrementer, Hypervisor Decrementer,
Directed Privileged Doorbell, Directed Hypervisor
Doorbell, and Hypervisor Maintenance interrupts are
maskable interrupts. Therefore, software may delay the
generation of these interrupts. System Reset and
Machine Check interrupts are not maskable.

“Instruction-caused” interrupts are further divided into
two classes, precise and imprecise.

6.4.1 Precise Interrupt
Except for the Imprecise Mode Floating-Point Enabled
Exception type Program interrupt, all instruc-
tion-caused interrupts are precise.

When the fetching or execution of an instruction causes
a precise interrupt, the following conditions exist at the
interrupt point.

1. SRR0 addresses either the instruction causing the
exception or the immediately following instruction.

Which instruction is addressed can be determined
from the interrupt type and status bits.

2. An interrupt is generated such that all instructions
preceding the instruction causing the exception
appear to have completed with respect to the exe-
cuting thread. 

3. The instruction causing the exception may appear
not to have begun execution (except for causing
the exception), may have been partially executed,
or may have completed, depending on the interrupt
type.

4. Architecturally, no subsequent instruction has
begun execution.

6.4.2 Imprecise Interrupt
This architecture defines one imprecise interrupt, the
Imprecise Mode Floating-Point Enabled Exception type
Program interrupt.

When an Imprecise Mode Floating-Point Enabled
Exception type Program interrupt occurs, the following
conditions exist at the interrupt point.

1. SRR0 addresses either the instruction causing the
exception or some instruction following that
instruction; see Section 6.5.9, “Program Interrupt”
on page 957.

2. An interrupt is generated such that all instructions
preceding the instruction addressed by SRR0
appear to have completed with respect to the exe-
cuting thread.

3. The instruction addressed by SRR0 may appear
not to have begun execution (except, in some
cases, for causing the interrupt to occur), may
have been partially executed, or may have com-
pleted; see Section 6.5.9.

4. No instruction following the instruction addressed
by SRR0 appears to have begun execution.

All Floating-Point Enabled Exception type Program
interrupts are maskable using the MSR bits FE0 and
FE1. Although these interrupts are maskable, they dif-
fer significantly from the other maskable interrupts in
that the masking of these interrupts is usually con-
trolled by the application program, whereas the mask-
ing of all other maskable interrupts is controlled by
either the operating system or the hypervisor.
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6.4.3 Interrupt Processing
Associated with each kind of interrupt is an interrupt
vector, which contains the initial sequence of instruc-
tions that is executed when the corresponding interrupt
occurs.

Interrupt processing consists of saving a small part of
the thread’s state in certain registers, identifying the
cause of the interrupt in other registers, and continuing
execution at the corresponding interrupt vector location.
When an exception exists that will cause an interrupt to
be generated and it has been determined that the inter-
rupt will occur, the following actions are performed. The
handling of Machine Check interrupts (see
Section 6.5.2) differs from the description given below
in several respects.

1. SRR0 or HSRR0 is loaded with an instruction
address that depends on the type of interrupt; see
the specific interrupt description for details.

2. Bits 33:36 and 42:47 of SRR1 or HSRR1 are
loaded with information specific to the interrupt
type.

3. Bits 0:32, 37:41, and 48:63 of SRR1 or HSRR1 are
loaded with a copy of the corresponding bits of the
MSR.

4. The MSR is set as shown in Figure 51 on
page 949. In particular, MSR bits IR and DR are
set  as specified by LPCRAIL (see Section 2.2),
and MSR bit SF is set to 1, selecting 64-bit mode.
The new values take effect beginning with the first
instruction executed following the interrupt.

5. Instruction fetch and execution resumes, using the
new MSR value, at the effective address specific to
the interrupt type. These effective addresses are
shown in Figure 52 on page 950.  An offset may be
applied to get the effective addresses, as specified
by LPCRAIL (see Section 2.2).

Interrupts do not clear reservations obtained with lbarx,
lharx, lwarx, ldarx, or lqarx.

  

In general, when an interrupt occurs, the following
instructions should be executed by the operating
system before dispatching a “new” program.

stbcx., sthcx., stwcx., stdcx., or stqcx. to
clear the reservation if one is outstanding, to
ensure that a lbarx, lharx, lwarx, ldarx, or
lqarx in the interrupted program is not paired
with a stbcx., sthcx., stwcx., stdcx., or
stqcx. on the “new” program.

sync, to ensure that all storage accesses
caused by the interrupted program will be per-
formed with respect to another thread before
the program is resumed on that other thread.

isync or rfid, to ensure that the instructions in
the “new” program execute in the “new” con-
text.

treclaim, to ensure that any previous use of
the transactional facility is terminated.

Programming Note
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For instruction-caused interrupts, in some cases it may
be desirable for the operating system to emulate the
instruction that caused the interrupt, while in other
cases it may be desirable for the operating system not
to emulate the instruction. The following list, while not
complete, illustrates criteria by which decisions regard-
ing emulation should be made. The list applies to gen-
eral execution environments; it does not necessarily
apply to special environments such as program debug-
ging, bring-up, etc.

In general, the instruction should be emulated if:

- The interrupt is caused by a condition for
which the instruction description (including
related material such as the introduction to the
section describing the instruction) implies that
the instruction works correctly. Example:
Alignment interrupt caused by lmw for which
the storage operand is not aligned, or by dcbz
for which the storage operand is in storage
that is Write Through Required or Caching
Inhibited.

- The instruction is an illegal instruction that
should appear, to the program executing it, as
if it were supported by the implementation.
Example: A Hypervisor Emulation Assistance
interrupt is caused by an instruction that has
been phased out of the architecture but is still
used by some programs that the operating
system supports, or by an instruction that is in
a category that the implementation does not

support but is used by some programs that the
operating system supports.

If the instruction is a Storage Access instruction, the
emulation must satisfy the atomicity requirements
described in Section 1.4 of Book II.

In general, the instruction should not be emulated if:

- The purpose of the instruction is to cause an
interrupt. Example: System Call interrupt
caused by sc.

- The interrupt is caused by a condition that is
stated, in the instruction description, poten-
tially to cause the interrupt. Example: Align-
ment interrupt caused by lwarx for which the
storage operand is not aligned.

- The program is attempting to perform a func-
tion that it should not be permitted to perform.
Example: Data Storage interrupt caused by
lwz for which the storage operand is in stor-
age that the program should not be permitted
to access. (If the function is one that the pro-
gram should be permitted to perform, the con-
ditions that caused the interrupt should be
corrected and the program re-dispatched such
that the instruction will be re-executed. Exam-
ple: Data Storage interrupt caused by lwz for
which the storage operand is in storage that
the program should be permitted to access
but for which there currently is no PTE that
satisfies the Page Table search.)

  

If a program modifies an instruction that it or
another program will subsequently execute and the
execution of the instruction causes an interrupt, the
state of storage and the content of some registers
may appear to be inconsistent to the interrupt han-
dler program.  For example, this could be the result
of one program executing an instruction that
causes a Hypervisor Emulation Assistance inter-
rupt just before another instance of the same pro-
gram stores an Add Immediate instruction in that
storage location.  To the interrupt handler code, it
would appear that a hardware generated the inter-
rupt as the result of executing a valid instruction.

Programming Note
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6.4.4 Implicit alteration of HSRR0 
and HSRR1
Executing some of the more complex instructions may
have the side effect of altering the contents of HSRR0
and HSRR1. The instructions listed below are guaran-
teed not to have this side effect. Any omission of
instruction suffixes is significant; e.g., add is listed but
add. is excluded. 

 

1. Branch instructions

b[l][a], bc[l][a], bclr[l], bcctr[l]

2. Fixed-Point Load and Store Instructions

lbz, lbzx, lhz, lhzx, lwz, lwzx, ld<64>, ldx<64>,
stb, stbx, sth, sthx, stw, stwx, std<64>,
stdx<64>

Execution of these instructions is guaranteed not
to have the side effect of altering HSRR0 and
HSRR1 only if the storage operand is aligned and
MSRDR=0.

3. Arithmetic instructions

addi, addis, add, subf, neg

4. Compare instructions

cmpi, cmp, cmpli, cmpl

5. Logical and Extend Sign instructions

ori, oris, xori, xoris, and, or, xor, nand, nor, eqv,
andc, orc, extsb, extsh, extsw

6. Rotate and Shift instructions

rldicl<64>, rldicr<64>, rldic<64>, rlwinm,
rldcl<64>, rldcr<64>, rlwnm, rldimi<64>, rlwimi,
sld<64>, slw, srd<64>, srw 

7. Other instructions

isync

rfid, hrfid

mtspr, mfspr, mtmsrd, mfmsr

  

 

Similarly, fetching instructions may have the side effect
of altering the contents of HSRR0 and HSRR1 unless
MSRIR=0.

In order to handle Machine Check and System
Reset interrupts correctly, the operating system
should manage MSRRI as follows.

In the Machine Check and System Reset inter-
rupt handlers, interpret SRR1 bit 62 (where
MSRRI is placed) as:
- 0: interrupt is not recoverable
- 1: interrupt is recoverable

In each interrupt handler, when enough state
has been saved that a Machine Check or Sys-
tem Reset interrupt can be recovered from, set
MSRRI to 1.

In each interrupt handler, do the following (in
order) just before returning.

1. Set MSRRI to 0.
2. Set SRR0 and SRR1 to the values to be

used by rfid.  The new value of SRR1
should have bit 62 set to 1 (which will hap-
pen naturally if SRR1 is restored to the
value saved there by the interrupt,
because the interrupt handler will not be
executing this sequence unless the inter-
rupt is recoverable).

3. Execute rfid.

For interrupts that set the SRRs other than
Machine Check or System Reset, MSRRI can be
managed similarly when these interrupts occur
within interrupt handlers for other interrupts that set
the SRRs. 

This Note does not apply to interrupts that set the
HSRRs because these interrupts put the thread
into hypervisor state, and either do not occur or can
be prevented from occurring within interrupt han-
dlers for other interrupts that set the HSRRs.

Programming Note

Instructions excluded from the list include the fol-
lowing.

instructions that set or use XERCA
instructions that set XEROV or XERSO
andi., andis., and fixed-point instructions with
Rc=1 (Fixed-point instructions with Rc=1 can
be replaced by the corresponding instruction
with Rc=0 followed by a Compare instruction.)
all floating-point instructions
mftb

These instructions, and the other excluded instruc-
tions, may be implemented with the assistance of
the Hypervisor Emulation Assistance interrupt, or
of implementation-specific interrupts that modify
HSRR0 and HSRR1. The included instructions are
guaranteed not to be implemented thus. (The
included instructions are sufficiently simple as to be
unlikely to need such assistance. Moreover, they
are likely to be needed in interrupt handlers before
HSRR0 and HSRR1 have been saved or after
HSRR0 and HSRR1 have been restored.)

Programming Note
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6.5 Interrupt Definitions
Figure 51 shows all the types of interrupts and the val-
ues assigned to the MSR for each. Figure 52 shows the
effective address of the interrupt vector for each inter-
rupt type. (Section 5.7.4 on page 895 summarizes all
architecturally defined uses of effective addresses,
including those implied by Figure 52.)

 

Interrupt Type MSR Bit
 IR DR FE0 FE1 EE RI ME HV

System Reset  0  0  0  0  0  0  p  1
Machine Check  0  0  0  0  0  0  0  1
Data Storage  r  r  0  0  0  0  -  -
Data Segment  r  r  0  0  0  0  -  -
Instruction Storage  r  r  0  0  0  0  -  -
Instruction Segment  r  r  0  0  0  0  -  -
External  r  r  0  0  0  h  -  e
Alignment  r  r  0  0  0  0  -  -
Program  r  r  0  0  0  0  -  -
FP Unavailable3  r  r  0  0  0  0  -  -
Decrementer  r  r  0  0  0  0  -  -
Directed Privileged Doorbell Interrupt  r  r  0  0  0  0  -  -
Hypervisor Decrementer  r  r  0  0  0  -  -  1
System Call  r  r  0  0  0  0  -  s
Trace  r  r  0  0  0  0  -  -
Hypervisor Data Storage  0  0  0  0  0  -  -  1
Hypervisor Instr. Storage.  0  0  0  0  0  -  -  1
Hypv Emulation Assistance  r  r  0  0  0  -  -  1
Hypervisor Maintenance  0  0  0  0  0  -  -  1
Directed Hypervisor Doorbell Interrupt  r  r  0  0  0  -  -  1
Performance Monitor  r  r  0  0  0  0  -  -
Vector Unavailable1  r  r  0  0  0  0  -  -
VSX Unavailable2  r  r  0  0  0  0  -  -
Facility Unavailable  r  r  0  0  0  0  -  -
Hypervisor Facility Unavailable  r  r  0  0  0  -  -  1
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Figure 51. MSR setting due to interrupt

0 bit is set to 0
1 bit is set to 1
- bit is not altered
r if LPCRAIL=2 or 3, MSRIR DR = 0b11, and the interrupt does not cause a transition

from MSRHV=0 to MSRHV=1, set to 1; otherwise set to 0 
p if the interrupt occurred while the thread was in power-saving mode, set to 1; other-

wise not altered
e if LPES=0, set to 1; otherwise not altered
h if LPES=1, set to 0; otherwise not altered
s if LEV=1, set to 1; otherwise not altered

Settings for Other Bits

Bits BE, FP, PR, SE, TM5, VEC1, VSX2, PMM, and bit 5 are set to 0.

If the interrupt results in HV being equal to 1, the LE bit is copied from the HILE bit; other-
wise the LE bit is copied from the LPCRILE bit.

The SF bit is set to 1.

If the TS field contained 0b10 (Transactional) when the interrupt occurred, the TS field is set
to 0b01 (Suspended);  otherwise the TS field is not altered.

Reserved bits are set as if written as 0.
1 Category: Vector
2 Category: Vector Scalar Emulation
3 Category: Floating-Point
4 Category: Transactional Memory

Interrupt Type MSR Bit
 IR DR FE0 FE1 EE RI ME HV
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Figure 52. Effective address of interrupt vector by 
interrupt type

  

6.5.1 System Reset Interrupt
If a System Reset exception causes an interrupt that is
not context synchronizing or causes the loss of a
Machine Check exception or a Direct External excep-
tion, or if the state of the thread has been corrupted, the
interrupt is not recoverable.

When the thread is in any power-saving level, a System
Reset interrupt occurs when a System Reset exception
exists. When the thread is in doze or nap power-saving
levels, a System Reset interrupt occurs when any of the
following exceptions exists provided that the exception
is enabled to cause exit from power saving mode (see
Section 2.2, “Logical Partitioning Control Register
(LPCR)”). When the thread is in sleep or rvwinkle
power-saving level, it is implementation-specific
whether the following exceptions, when enabled, cause
exit, or whether only a system-reset causes exit.

External

Decrementer

Directed Privileged Doorbell 

Directed Hypervisor Doorbell 

Hypervisor Maintenance

Implementation-specific

SRR1 indicates the exception that caused exit from
power-saving mode as specified below.

The following registers are set:

SRR0 If the interrupt did not occur when the
thread was in power-saving mode, set to
the effective address of the instruction that
the thread would have attempted to execute
next if no interrupt conditions were present;
otherwise, set to an undefined value.

SRR1
33 Implementation-dependent.

34:36 Set to 0.
42:45 If the interrupt did not occur when the

thread was in power-saving mode, set to an
implementation-specific value. If the inter-
rupt occurred when the thread was in
power-saving mode, set to indicate the

exception that caused exit from power-sav-

Effective 
Address1

 
Interrupt Type

 00..0000_0100  System Reset
 00..0000_0200  Machine Check
 00..0000_0300  Data Storage
 00..0000_0380  Data Segment
 00..0000_0400  Instruction Storage
 00..0000_0480  Instruction Segment
 00..0000_0500  External
 00..0000_0600  Alignment
 00..0000_0700  Program
 00..0000_0800  Floating-Point Unavailable5

 00..0000_0900  Decrementer
 00..0000_0980  Hypervisor Decrementer  
 00..0000_0A00  Directed Privileged Doorbell
 00..0000_0B00  Reserved
 00..0000_0C00  System Call
 00..0000_0D00  Trace
 00..0000_0E00  Hypervisor Data Storage
 00..0000_0E20  Hypervisor Instruction Storage
 00..0000_0E40  Hypervisor Emulation Assistance
 00..0000_0E60  Hypervisor Maintenance
 00..0000_0E80  Directed Hypervisor Doorbell
 00..0000_0EA0  Reserved
 00..0000_0EC0  Reserved
 00..0000_0EE0  Reserved for implementa-

tion-dependent interrupt for per-
formance monitoring

 00..0000_0F00  Performance Monitor
 00..0000_0F20  Vector Unavailable3

 00..0000_0F40  VSX Unavailable4

 00..0000_0F60  Facility Unavailable
 00..0000_0F80  Hypervisor Facility Unavailable
     . . .   . . . 
 00..0000_0FFF  Reserved
1 The values in the Effective Address column are     

interpreted as follows.
00...0000_0nnn means
0x0000_0000_0000_0nnn unless the values
of LPCRAIL and MSRHV IR DR cause the appli-
cation of an effective address offset.  See the
description of LPCRAIL in Section 2.2 for more
details.

2 Effective addresses 0x0000_0000_0000_0000     
through 0x0000_0000_0000_00FF are used by     
software and will not be assigned as interrupt     
vectors.

3 Category: Vector.
4 Category: Vector Scalar Extension
5 Category: Floating Point 

When address translation is disabled, use of any of
the effective addresses that are shown as reserved
in Figure 52 risks incompatibility with future imple-
mentations.
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ing mode as shown below:

If multiple exceptions that cause exit from
power-saving mode exist, the exception
reported is the exception corresponding to
the interrupt that would have occurred if the
same exceptions existed and the thread
was not in power-saving mode. 

46:47 Set to indicate whether the interrupt
occurred when the thread was in
power-saving mode and, if so, the extent
to which resource state was maintained
while the thread was in power-saving
mode, as follows:

 

62 If the interrupt did not occur while the
thread was in power-saving mode, loaded
from bit 62 of the MSR if the thread is in a
recoverable state; otherwise set to 0. If the
interrupt occurred while the thread was in
power-saving mode, set to 1 if the thread is
in a recoverable state; otherwise set to 0.

Others Loaded from the MSR.

MSR See Figure 51 on page 949.

In addition, if the interrupt occurs when the thread is in
power-saving mode and is caused by an exception
other than a System Reset exception, all other regis-
ters, except HSRR0 and HSRR1, that would be set by
the corresponding interrupt if the exception occurred
when the thread was not in power-saving mode are set
by the System Reset interrupt, and are set to the values
to which they would be set if the exception occurred
when the thread was not in power-saving mode. 

Execution resumes at effective address
0x0000_0000_0000_0100.

The means for software to distinguish between
power-on Reset and other types of System Reset are
implementation-dependent.

6.5.2 Machine Check Interrupt
The causes of Machine Check interrupts are implemen-
tation-dependent.  For example, a Machine Check

SRR142:45 Exception
0000 Reserved

0001 Reserved

0010 Implementation specific

0011 Directed Hypvsr Doorbell
0100 System Reset

0101 Directed Privlgd Doorbell

0110 Decrementer
0111 Reserved

1000 External

1001 Reserved
1010 Hypervisor Maintenance

1011 Reserved

1100 Implementation specific
1101 Reserved

1110 Implementation specific

1111 Reserved

00 The interrupt did not occur when
the thread was in power-saving
mode.

01 The interrupt occurred when the
thread was in power-saving mode.
The state of all resources was
maintained as if the thread was not
in power-saving mode.

10 The interrupt occurred when the
thread was in power-saving mode.
The state of some resources was
not maintained, but the state of all
hypervisor resources was main-
tained as if the thread was not in
power-saving mode and the state
of all other resources is such that
the hypervisor can resume execu-
tion.

11 The interrupt occurred when the
thread was in power-saving mode.
The state of some resources was
not maintained, and the state of
some hypervisor  resources was
not maintained or the state of some
resources is such that the hypervi-
sor cannot resume execution.

Although the resources that are main-
tained in power-saving mode (except in
doze power-saving level) are imple-
mentation-dependent, the hypervisor
can avoid implementation-depen-
dence in the portion of the System
Reset and Machine Check interrupt
handlers that recover from having been
in power-saving mode by using the
contents of SRR146:47, to determine
what state to restore. (To avoid imple-
mentation-dependence in the portion
of the hypervisor that enters
power-saving mode, the hypervisor
must use the specification of the four
instructions to determine what state to
save.)
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interrupt may be caused by a reference to a storage
location that contains an uncorrectable error or does
not exist (see Section 5.6), or by an error in the storage
subsystem.

When the thread is not in power-saving mode, Machine
Check interrupts are enabled when MSRME=1; if
MSRME=0 and a Machine Check exception occurs, the
thread enters the Checkstop state. When the thread is
in doze or nap power-saving levels, Machine Check
interrupts are treated as enabled when LPCR51=1 and
cannot occur when LPCR51=0. When the thread is in
sleep or rvwinkle power-saving level, it is implementa-
tion-specific whether  Machine Check interrupts are
treated as enabled under the same conditions as in
doze and nap power-saving level or if they cannot
occur. If a Machine Check exception occurs while the
thread is in power-saving mode and the Machine Check
exception is not enabled to cause exit from power-sav-
ing mode, the result is implementation specific

The Checkstop state may also be entered if an access
is attempted to a storage location that does not exist
(see Section 5.6), or if an implementation-dependant
hardware error occurs that prevents continued opera-
tion.

Disabled Machine Check (Checkstop State)

When a thread is in Checkstop state, instruction pro-
cessing is suspended and generally cannot be
restarted without resetting the thread. Some implemen-
tations may preserve some or all of the internal state of
the thread when entering Checkstop state, so that the
state can be analyzed as an aid in problem determina-
tion.

Enabled Machine Check

If a Machine Check exception causes an interrupt that
is not context synchronizing or causes the loss of a
Direct External exception, or if the state of the thread
has been corrupted, the interrupt is not recoverable.

In some systems, the operating system may attempt to
identify and log the cause of the Machine Check.

The following registers are set:

SRR0 If the interrupt did not occur while the
thread was in power-saving mode, set on a
"best effort" basis to the effective address
of some instruction that was executing or
was about to be executed when the
Machine Check exception occurred; other-
wise set to an undefined value.

 

SRR1
46:47 Set to indicate whether the interrupt

occurred when the thread was in
power-saving mode and, if so, the extent to
which resource state was maintained while
the thread was in power-saving mode, as
follows.

Since the hypervisor can save the
address of the instruction following the
Power-Saving Mode instruction if
needed, there is no need for the thread
to preserve it and store it into SRR0.
Therefore, for ease of implementation,
the contents of SRR0 upon exit from
power-saving mode are specified to be
undefined.

00 The interrupt did not occur when
the thread was in power-saving
mode.

01 The interrupt occurred when the
thread was in power-saving mode.
The state of all resources was
maintained as if the thread was not
in power-saving mode.

10 The interrupt occurred when the
thread was in power-saving mode.
The state of some resources was
not maintained, but the state of all
hypervisor resources was main-
tained as if the thread was not in
power-saving mode and the state
of all other resources is such that
the hypervisor can resume execu-
tion.

11 The interrupt occurred when the
thread was in power-saving mode.
The state of some resources was
not maintained, and the state of
some hypervisor resources was
not maintained or the state of some
resources is such that the hypervi-
sor cannot resume execution.

Programming Note
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62 If the interrupt did not occur while the
thread was in power-saving mode, loaded
from bit 62 of the MSR if the thread is in a
recoverable state; otherwise set to 0. If the
interrupt occurred while the thread was in
power-saving mode, set to 1 if the thread is
in a recoverable state; otherwise set to 0.

Others Set to an implementation-dependent value.

MSR See Figure 51.

DSISR Set to an implementation-dependent value.

DAR Set to an implementation-dependent value.

Execution resumes at effective address
0x0000_0000_0000_0200.

A Machine Check interrupt caused by the existence of
multiple SLB entries or TLB entries (or similar entries in
implementation-specific translation caches) which
translate a given effective or virtual address (see Sec-
tions 5.7.6.2 and 5.7.7.3.) must occur while still in the
context of the partition that caused it. The interrupt
must be presented in a way that permits continuing
execution, with damage limited to the causing partition.
Treating the exception as instruction-caused will
achieve these requirements.

  

6.5.3 Data Storage Interrupt
A Data Storage interrupt occurs when no higher priority
exception exists, the value of the expression

(MSRHV PR = 0b10)|(¬VPM0 & ¬MSRDR) 

                                 | (¬VPM1 & MSRDR)

is 1, and a data access cannot be performed for any of
the following reasons. 

Data address translation is enabled (MSRDR=1)
and the virtual address of any byte of the storage
location specified by a Load, Store, icbi, dcbz,
dcbst, dcbf[l], eciwx, or ecowx instruction cannot
be translated to a real address.
The effective address specified by a lq, stq, lbarx,
lharx, lwarx, ldarx, lqarx, stbcx., sthcx., stwcx.,
stdcx., or stqcx. instruction refers to storage that
is Write Through Required or Caching Inhibited.
The access violates Basic Storage Protection.
The access violates Virtual Page Class Key Stor-
age Protection and LPCRKBV=0.
A Data Address Watchpoint match occurs.
Execution of an eciwx or ecowx instruction is dis-
allowed because EARE=0.
An attempt is made to execute a Fixed-Point Load
or Store Caching Inhibited instruction with
MSRDR=1 or specifying a storage location that is
specified by the Hypervisor Real Mode Storage
Control facility to be treated as non-Guarded.

If a stbcx., sthcx., stwcx., stdcx., or stqcx. would not
perform its store in the absence of a Data Storage inter-
rupt, and either (a) the specified effective address
refers to storage that is Write Through Required or
Caching Inhibited, or (b) a non-conditional Store to the
specified effective address would cause a Data Storage
interrupt, it is implementation-dependent whether a
Data Storage interrupt occurs.

If the XER specifies a length of zero for an indexed
Move Assist instruction, a Data Storage interrupt does
not occur. 

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51.

DSISR
32 Set to 0.
33 Set to 1 if MSRDR=1 and the translation for

an attempted access is not found in the
Page Table; otherwise set to 0..

34:35 Set to 0.
36 Set to 1 if the access is not permitted by

Figure 32 or 33, as appropriate; otherwise
set to 0.

37 Set to 1 if the access is due to a lq, stq,
lbarx, lharx, lwarx, ldarx, lqarx, stbcx.,
sthcx., stwcx., stdcx., or stqcx. instruc-

Although the resources that are main-
tained in power-saving mode (except
in the doze power-saving level) are
implementation-dependent, the hyper-
visor can avoid implementation-depen-
dence in the portion of the System
Reset and Machine Check interrupt
handlers that recover from having
been in power-saving mode by using
the contents of SRR146:47, to deter-
mine what state to restore. (To avoid
implementation-dependence in the
portion of the hypervisor that enters
power-saving mode, the hypervisor
must use the specification of the four
instructions to determine what state to
save.)

If a Machine Check interrupt is caused by an error
in the storage subsystem, the storage subsystem
may return incorrect data, which may be placed
into registers.  This corruption of register contents
may occur even if the interrupt is recoverable.

Programming Note
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tion that addresses storage that is Write
Through Required or Caching Inhibited;
otherwise set to 0.

38 Set to 1 for a Store, dcbz, or ecowx
instruction; otherwise set to 0.

39:40 Set to 0.
41 Set to 1 if a Data Address Watchpoint

match occurs; otherwise set to 0.
42 Set to 1 if the access is not permitted by vir-

tual page class key protection; otherwise
set to 0.

43 Set to 1 if execution of an eciwx or ecowx
instruction is attempted when EARE=0; oth-
erwise set to 0.

44:61 Set to 0.
62 Set to 1 if an attempt is made to execute a

Fixed-Point Load or Store Caching Inhibited
instruction with MSRDR=1 or specifying a
storage location that is specified by the
Hypervisor Real Mode Storage Control
facility to be treated as non-Guarded.

63 Set to 0.

DAR Set to the effective address of a storage
element as described in the following list.
The list should be read from the top down;
the DAR is set as described by the first item
that corresponds to an exception that is
reported in the DSISR. For example, if a
Load Word instruction causes a storage
protection violation and a Data Address
Watchpoint match (and both are reported in
the DSISR), the DAR is set to the effective
address of a byte in the first aligned double-
word for which access was attempted in the
page that caused the exception.

a Data Storage exception occurs for
reasons other than a Data Address
Watchpoint match or, for eciwx and
ecowx, EARE=0
- a byte in the block that caused the

exception, for a Cache Manage-
ment instruction

- a byte in the first aligned quad-
word for which access was
attempted in the page that caused
the exception, for a quadword
Load or Store instruction (i.e., a
Load or Store instruction for which
the storage operand is a quad-
word; “first” refers to address
order: see Section 6.7)

- a byte in the first aligned double-
word for which access was
attempted in the page that caused
the exception, for a non-quadword
Load or Store instruction or an
eciwx or ecowx instruction

undefined, for a Data Address Watch-
point match, or if eciwx or ecowx is
executed when EARE=0

For the cases in which the DAR is specified
above to be set to a defined value, if the
interrupt occurs in 32-bit mode the
high-order 32 bits of the DAR are set to 0.

If multiple Data Storage exceptions occur for a given
effective address, any one or more of the bits corre-
sponding to these exceptions may be set to 1 in the
DSISR.  However, if one or more DSI-causing excep-
tions occur together with a Virtualized Page Class Key
Storage Protection exception that occurs when
LPCRKBV=1 and Virtualized Partition Memory is dis-
abled by VPM1=0, an HDSI results, and all of the
exceptions are reported in the HDSISR.

Execution resumes at effective address
0x0000_0000_0000_0300,  possibly offset as specified
in Figure 52.

6.5.4  Data Segment Interrupt
A Data Segment interrupt occurs when no higher prior-
ity exception exists and a data access cannot be per-
formed because data address translation is enabled
and the effective address of any byte of the storage
location specified by a Load, Store, icbi, dcbz, dcbst,
dcbf[l], eciwx, or ecowx instruction cannot be trans-
lated to a virtual address.

If a stbcx., sthcx., stwcx., stdcx., or stqcx. would not
perform its store in the absence of a Data Segment
interrupt and a non-conditional Store to the specified
effective address would cause a Data Segment inter-
rupt, it is implementation-dependent whether a Data
Segment interrupt occurs.

If the XER specifies a length of zero for an indexed
Move Assist instruction, a Data Segment interrupt does
not occur.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51.

DSISR Set to an undefined value.

DAR Set to the effective address of a storage
element as described in the following list.

a byte in the block that caused the
exception, for a Cache Management
instruction
a byte in the first aligned quadword for
which access was attempted in the
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segment that caused the exception, for
a quadword Load or Store instruction
(i.e., a Load or Store instruction for
which the storage operand is a quad-
word; “first” refers to address order:
see Section 6.7)
a byte in the first aligned doubleword
for which access was attempted in the
segment that caused the exception, for
a non-quadword Load or Store instruc-
tion or an eciwx or ecowx instruction

If the interrupt occurs in 32-bit mode the
high-order 32 bits of the DAR are set to 0.

Execution resumes at effective address
0x0000_0000_0000_0380,  possibly offset as specified
in Figure 52.

  

6.5.5 Instruction Storage Interrupt
An Instruction Storage interrupt occurs when no higher
priority exception exists, the value of the expression

(MSRHV PR = 0b10)|(¬VPM0 & ¬MSRIR) 

                                 | (¬VPM1 & MSRIR)

is 1, and the next instruction to be executed cannot be
fetched for any of the following reasons.

Instruction address translation is enabled and the
virtual address cannot be translated to a real
address.
The fetch access violates storage protection.

The following registers are set:

SRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were
present (if the interrupt occurs on attempting
to fetch a branch target, SRR0 is set to the
branch target address).

SRR1
33 Set to 1 if MSRIR=1 and the translation for

an attempted access is not found in the
Page Table; otherwise set to 0.

34 Set to 0.
35 Set to 1 if the access is to No-execute or

Guarded storage; otherwise set to 0.
36 Set to 1 if the access is not permitted by

Figure 32 or 33, as appropriate; otherwise
set to 0.

 

42 Set to 1 if the access is not permitted by vir-
tual page class key protection; otherwise
set to 0.

43:47 Set to 0.
 
Others Loaded from the MSR.

MSR See Figure 51.

If multiple Instruction Storage exceptions occur due to
attempting to fetch a single instruction, any one or more
of the bits corresponding to these exceptions may be
set to 1 in SRR1.

Execution resumes at effective address
0x0000_0000_0000_0400,  possibly offset as specified
in Figure 52.

6.5.6 Instruction Segment
Interrupt
An Instruction Segment interrupt occurs when no
higher priority exception exists and the next instruction
to be executed cannot be fetched because instruction
address translation is enabled and the effective
address cannot be translated to a virtual address.

The following registers are set:

SRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were
present (if the interrupt occurs on attempting
to fetch a branch target, SRR0 is set to the
branch target address).

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

Execution resumes at effective address
0x0000_0000_0000_0480,  possibly offset as specified
in Figure 52.

  

6.5.7 External Interrupt
An External interrupt is classified as being either a
Direct External interrupt or a Mediated External inter-
rupt. Throughout this Book, usage of the phrase “Exter-
nal interrupt’, without further classification, refers to
both a Direct External interrupt and a Mediated Exter-
nal interrupt.

A Data Segment interrupt occurs if MSRDR=1 and
the translation of the effective address of any byte
of the specified storage location is not found in the
SLB (or in any implementation-specific address
translation lookaside information).

Programming Note

An Instruction Segment interrupt occurs if
MSRIR=1 and the translation of the effective
address of the next instruction to be executed is not
found in the SLB (or in any implementation-specific
address translation lookaside information).
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6.5.7.1 Direct External Interrupt
A Direct External interrupt occurs when no higher prior-
ity exception exists, a Direct External exception exists,
and the value of the expression 

MSREE | (¬(LPES) & (¬(MSRHV) | MSRPR))

is one. The occurrence of the interrupt does not cause
the exception to cease to exist.

When LPES=0, the following registers are set:

HSRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were
present.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

When LPES=1, the following registers are set:

SRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were
present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

Execution resumes at effective address
0x0000_0000_0000_0500,  possibly offset as specified
in Figure 52.

 

 

6.5.7.2 Mediated External Interrupt
A Mediated External interrupt occurs when no higher
priority exception exists, a Mediated External exception
exists (see the definition of LPCRMER in Section 2.2),
and the value of the expression 

MSREE & (¬(MSRHV) | MSRPR)

is one. The occurrence of the interrupt does not cause
the exception to cease to exist.

When LPES=0, the following registers are set:

HSRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were
present.

HSRR1
33:36 Set to 0.
42 Set to 1.
43:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

When LPES=1, the following registers are set:

SRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were
present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

Execution resumes at effective address
0x0000_0000_0000_0500,  possibly offset as specified
in Figure 52.

6.5.8 Alignment Interrupt
Many causes of Alignment interrupt involve storage
operand alignment. Storage operand alignment is
defined in Section 1.10.1 of Book I.

An Alignment interrupt occurs when no higher priority
exception exists and an attempt is made to execute an
instruction in a manner that is required, by the instruc-
tion description, to cause an Alignment interrupt. These
cases are as follows.

A Load/Store Multiple instruction that is executed
in Little-Endian mode
A Move Assist instruction that is executed in Lit-
tle-Endian mode, unless the string length is zero
A lharx, lwarx, ldarx, lqarx, sthcx., stwcx.,
stdcx., stqcx., eciwx, or ecowx that has an
unaligned storage operand, unless execution of
the instruction yields boundedly undefined results

An Alignment interrupt may occur when no higher prior-
ity exception exists and a data access cannot be per-
formed for any of the following reasons.

The storage operand of lfdp, lfdpx, stfdp, or
stfdpx is unaligned.
The storage operand of lq or stq is unaligned.
The storage operand of a Floating-Point Storage
Access or VSX Storage Access instruction other

Because the value of MSREE is always 1 when the
thread is in problem state, the simpler expression

MSREE |  ¬(LPES | MSRHV)

is equivalent to the expression given above.

The Direct External exception has the same mean-
ing as the External exception in versions of the
architecture prior to Version 2.05.

Programming Note
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than lfdp, lfdpx, stfdp, or stfdpx is not
word-aligned.
The storage operand of a Load/Store Multiple
Word instruction is not word-aligned and the
thread is in Big-Endian mode.
The storage operand of a Load/Store Multiple Dou-
bleword instruction is not doubleword-aligned and
the thread is in Big-Endian mode.
The storage operand of a Load/Store Multiple,
lfdp, lfdpx, stfdp, stfdpx, or dcbz instruction is in
storage that is Write Through Required or Caching
Inhibited.
The storage operand of a Move Assist instruction
is in storage that is Write Through Required or
Caching Inhibited and has length greater than
zero.
The storage operand of a Load or Store instruction
is unaligned and is in storage that is Write Through
Required or Caching Inhibited.
The storage operand of a Storage Access instruc-
tion crosses a segment boundary, or crosses a
boundary between virtual pages that have different
storage control attributes.

 

The following registers are set:

SRR0 Set to the effective address of the instruction
that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51.

DSISR Set to an undefined value.

DAR Set to the effective address computed by
the instruction, except that if the interrupt
occurs in 32-bit mode the high-order 32 bits
of the DAR are set to 0.

For an X-form Load or Store, it is acceptable for the
thread to set the DSISR to the same value that would
have resulted if the corresponding D- or DS-form
instruction had caused the interrupt. Similarly, for a D-
or DS-form Load or Store, it is acceptable for the thread
to set the DSISR to the value that would have resulted
for the corresponding X-form instruction. For example,
an unaligned lwax (that crosses a protection boundary)
would normally, following the description above, cause
the DSISR to be set to binary:

   000000000000 00 0 01 0 0101 ttttt ?????

where “ttttt” denotes the RT field, and “?????” denotes
an undefined 5-bit value. However, it is acceptable if it
causes the DSISR to be set as for lwa, which is

   000000000000 10 0 00 0 1101 ttttt ?????

If there is no corresponding alternative form instruction
(e.g., for lwaux), the value described above is set in the
DSISR.

The instruction pairs that may use the same DSISR
value are.

Execution resumes at effective address
0x0000_0000_0000_0600,  possibly offset as specified
in Figure 52.

  

6.5.9 Program Interrupt
A Program interrupt occurs when no higher priority
exception exists and one of the following exceptions
arises during execution of an instruction:

Floating-Point Enabled Exception

A Floating-Point Enabled Exception type Program
interrupt is generated when the value of the
expression

(MSRFE0 | MSRFE1) & FPSCRFEX

is 1. FPSCRFEX is set to 1 by the execution of a
floating-point instruction that causes an enabled
exception, including the case of a Move To FPSCR
instruction that causes an exception bit and the
corresponding enable bit both to be 1.

TM Bad Thing [Category: Transactional Mem-
ory]

A TM Bad Thing type Program interrupt is gener-
ated when any of the following occurs.

An rfebb, rfid, hrfid, or mtmsrd instruction
attempts to cause an illegal state transition
(see Section 3.2.2).  
An rfid, hrfid, or mtmsrd instruction attempts
to cause a transition to Problem state with an
active transaction (Transactional or Sus-

lhz/lhzx lhzu/lhzux lha/lhax lhau/lhaux
lwz/lwzx lwzu/lwzux lwa/lwax
ld/ldx ldu/ldux
lsth/sthx sthu/sthux stw/stwx stwu/stwux
std/stdx stdu/stdux
lfs/lfsx lfsu/lfsux lfd/lfdx lfdu/lfdux
stfs/stfsx stfsu/stfsux stfd/stfdx stfdu/stfdux

If an Alignment interrupt occurs for a case in the
second bulleted list above, the Alignment interrupt
handler should emulate the instruction. The emula-
tion must satisfy the atomicity requirements
described in Section 1.4 of Book II.

If an Alignment interrupt occurs for a case in the
first bulleted list above, the Alignment interrupt han-
dler must not attempt to emulate the instruction, but
instead should treat the instruction as a program-
ming error. 
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pended state) when TM is disabled by the
PCR (PCRTM=1 or PCRv2.06=1).
An rfebb instruction in Problem state attempts
to cause a transition to Transactional or Sus-
pended state when PCRTM=1 (i.e., a latent
non-zero TS value was in the BESCR).
An attempt is made to execute trechkpt. in
Transactional or Suspended state or when
TEXASRFS=0.
An attempt is made to execute tend. in Sus-
pended state.
An attempt is made to execute treclaim. in
Non-transactional state.
An attempt is made to execute an mtspr
instruction targeting a TM register in other
than Non-transactional state, with the excep-
tion of TFHAR in Suspended state.
An attempt is made to execute a power saving
instruction in Suspended state.

Privileged Instruction

The following applies if the instruction is executed
when MSRPR = 1.

A Privileged Instruction type Program interrupt
is generated when execution is attempted of a
privileged instruction, or of an mtspr or mfspr
instruction with an SPR field that contains a
value having spr0=1.

The following applies if the instruction is executed
when MSRHV PR = 0b00.

A Privileged Instruction type Program interrupt
is generated when execution is attempted of
an mtspr or mfspr instruction with an SPR
field that designates an SPR that is accessible
by the instruction only when the thread is in
hypervisor state, or when execution of a
hypervisor-privileged instruction is attempted.

  

Trap

A Trap type Program interrupt is generated when
any of the conditions specified in a Trap instruction
is met.

The following registers are set:

SRR0 For all Program interrupts except a Float-
ing-Point Enabled Exception type Program
interrupt, set to the effective address of the
instruction that caused the corresponding
exception.

For a Floating-Point Enabled Exception type
Program interrupt, set as described in the fol-
lowing list.
- If MSRFE0 FE1 = 0b00, FPSCRFEX = 1,

and an instruction is executed that
changes MSRFE0 FE1 to a nonzero value,
set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

  

- If MSRFE0 FE = 0b11, set to the effective
address of the instruction that caused the
Floating-Point Enabled Exception. 

- If MSRFE0 FE = 0b01 or 0b10, set to the
effective address of the first instruction
that caused a Floating-Point Enabled
Exception since the most recent time
FPSCRFEX was changed from 1 to 0 or of
some subsequent instruction.

  

SRR1
33:36 Set to 0.
42 Set to 1 for a TM Bad Thing type Program

interrupt; otherwise set to 0.
43 Set to 1 for a Floating-Point Enabled

Exception type Program interrupt; other-
wise set to 0.

44 Set to 0.
45 Set to 1 for a Privileged Instruction type

Program interrupt; otherwise set to 0.
46 Set to 1 for a Trap type Program interrupt;

otherwise set to 0.
47 Set to 0 if SRR0 contains the address of

the instruction causing the exception and
there is only one such instruction; other-
wise set to 1.

These are the only cases in which a Privi-
leged Instruction type Program interrupt
can be generated when MSRPR=0. They
can be distinguished from other causes of
Privileged Instruction type Program inter-
rupts by examining SRR149 (the bit in
which MSRPR was saved by the interrupt).

Programming Note

Recall that all instructions that can alter
MSRFE0 FE1 are context synchronizing,
and therefore are not initiated until all
preceding instructions have reported all
exceptions they will cause.

If SRR0 is set to the effective address
of a subsequent instruction, that
instruction will not be beyond the first
such instruction at which synchroniza-
tion of floating-point instructions
occurs. (Recall that such synchroniza-
tion is caused by Floating-Point Status
and Control Register instructions, as
well as by execution synchronizing
instructions and events.)
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Others Loaded from the MSR.

Exactly one of bits 42, 43, 45, and 46 is set to 1.

MSR See Figure 51 on page 949.

Execution resumes at effective address
0x0000_0000_0000_0700,  possibly offset as specified
in Figure 52.

  

6.5.10 Floating-Point Unavailable 
Interrupt
A Floating-Point Unavailable interrupt occurs when no
higher priority exception exists, an attempt is made to
execute a floating-point instruction (including float-
ing-point loads, stores, and moves), and MSRFP=0.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

Execution resumes at effective address
0x0000_0000_0000_0800,  possibly offset as specified
in Figure 52.

6.5.11 Decrementer Interrupt
A Decrementer interrupt occurs when no higher priority
exception exists, a Decrementer exception exists, and
MSREE=1. 

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

Execution resumes at effective address
0x0000_0000_0000_0900,  possibly offset as specified
in Figure 52.

6.5.12 Hypervisor Decrementer 
Interrupt
A Hypervisor Decrementer interrupt occurs when no
higher priority exception exists, a Hypervisor Decre-
menter exception exists, and the value of the following
expression is 1.

(MSREE | ¬(MSRHV) | MSRPR) & HDICE 

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

SRR147 can be set to 1 only if the
exception is a Floating-Point Enabled
Exception and either MSRFE0 FE1 =
0b01 or 0b10 or MSRFE0 FE1 has just
been changed from 0b00 to a nonzero
value. (SRR147 is always set to 1 in the
last case.)

In versions of the architecture that precede V. 2.05,
the conditions that now cause a Hypervisor Emula-
tion Assistance interrupt instead caused an “Illegal
Instruction type Program interrupt”. This was a Pro-
gram interrupt for which registers (SRR0, SRR1,
and the MSR) were set as described above for the
Privileged Instruction type Program interrupt,
except that SRR144 was set to 1 and SRR145 was
set to 0. Thus operating systems have code to han-
dle these conditions, at the Program interrupt vec-
tor location. For this reason, if a Hypervisor
Emulation Assistance interrupt occurs, when the
thread is not in hypervisor state, for an instruction
that the hypervisor does not emulate, the hypervi-
sor should pass control to the operating system at
the operating system's Program interrupt vector
location, with all registers (SRR0, SRR1, MSR,
GPRs, etc.) set as if the instruction had caused a
Privileged Instruction type Program interrupt,
except with SRR144:45 set to 0b10. (The Hypervi-
sor Emulation Assistance interrupt was added to
the architecture in V. 2.05, and the Illegal Instruc-
tion type Program interrupt was removed from the
architecture in V. 2.06. In V. 2.05 the Hypervisor
Emulation Assistance interrupt was optional: imple-
mentations that supported it generated it as
described in V. 2.06, and never generated an Illegal
Instruction type Program interrupt; implementations
that did not support it generated an Illegal Instruc-
tion type Program interrupt as described above.) 
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Execution resumes at effective address
0x0000_0000_0000_0980,  possibly offset as specified
in Figure 52.

  

6.5.13 Directed Privileged Door-
bell Interrupt
A Directed Privileged Doorbell interrupt occurs when
no higher priority exception exists, a Directed Privi-
leged Doorbell exception is present, and MSREE=1.
Directed Privileged Doorbell exceptions are generated
when Directed Privileged Doorbell messages (see
Chapter 11) are received and accepted by the thread.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

Execution resumes at effective address
0x0000_0000_0000_0A00,  possibly offset as specified
in Figure 52.

6.5.14 System Call Interrupt
A System Call interrupt occurs when a System Call
instruction is executed.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion following the System Call instruction.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

Execution resumes at effective address
0x0000_0000_0000_0C00,  possibly offset as specified
in Figure 52.

  

6.5.15 Trace Interrupt [Category: 
Trace]
A Trace interrupt occurs when no higher priority excep-
tion exists and any instruction except rfid, hrfid, or a
Power-Saving Mode instruction is successfully com-
pleted, provided any of the following is true:

- the instruction is mtmsr[d]  and  MSRSE=1
when the instruction was initiated,

- the instruction is not mtmsr[d]  and
MSRSE=1,

- the instruction is a Branch instruction and
MSRBE=1, or

- a CIABR match occurs.

Successful completion means that the instruction
caused no other interrupt and, if the thread is in Trans-
actional state <TM>, did not cause the transaction to
fail in such a way that the instruction did not complete.
(See Section 5.3.1 of Book II).  Thus a Trace interrupt
never occurs for a System Call instruction, or for a Trap
instruction that traps, or for a dcbf that is executed in
Transactional state. The instruction that causes a Trace
interrupt is called the “traced instruction”.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

SRR1
33 Set to 1.
34 Set to 0.
35 Set to 1 if the the Trace interrupt is not the

result of a CIABR match and the traced
instruction is a Load instruction or is speci-
fied to be treated as a Load instruction; oth-
erwise set to 0.

36 Set to 1 if the the Trace interrupt is not the
result of a CIABR match and the traced
instruction is a Store instruction or is speci-
fied to be treated as a Store instruction;
otherwise set to 0.

43 Set to 1 if the traced instruction is the result
of a CIABR match.

44:47 Set to 0.
Others Loaded from the MSR.

  

Because the value of MSREE is always 1 when the
thread is in problem state, the simpler expression

(MSREE | ¬(MSRHV)) & HDICE 

is equivalent to the expression given above.

Programming Note

An attempt to execute an sc instruction with LEV=1
in problem state should be treated as a program-
ming error.

Bit 33 is set to 1 for historical reasons.
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SIAR For all Trace interrupts other than a Trace
interrupt caused by a CIABR match, set to
the effective address of the traced instruc-
tion.

SDAR For all Trace interrupts other than a Trace
interrupt caused by a CIABR match, set to
the effective address of the storage oper-
and (if any) of the traced instruction; other-
wise undefined.

If the state of the Performance Monitor is such that the
Performance Monitor may be altering the SIAR and
SDAR (i.e., if MMCR0PMAE=1), the contents of the
SIAR and SDAR are undefined for the Trace interrupt
and may change even when no Trace interrupt occurs.

MSR See Figure 51 on page 949.

Execution resumes at effective address
0x0000_0000_0000_00D0,  possibly offset as specified
in Figure 52. For a Trace  interrupt resulting from execu-
tion of an instruction that modifies the value of MSRIR
or MSRDR, the Trace interrupt vector location is based
on the modified values.  

  

6.5.16 Hypervisor Data Storage 
Interrupt
A Hypervisor Data Storage interrupt occurs when no
higher priority exception exists, the thread is not in
hypervisor state, and either (a) VPM1=0, LPCRKBV=1,
and a Virtual Storage Page Class Key Protection
exception exists or (b) the value of the expression

(VPM0 & ¬MSRDR) | (VPM1 & MSRDR)

is 1, and a data access cannot be performed for any of
the following reasons.  

Data address translation is enabled (MSRDR=1)
and the virtual address of any byte of the storage
location specified by a Load, Store, icbi, dcbz,
dcbst, dcbf[l], eciwx, or ecowx instruction cannot
be translated to a real address.
Data address translation is disabled (MSRDR=0),
and the virtual address of any byte of the storage
location specified by a Load, Store, icbi, dcbz,
dcbst, dcbf[l], eciwx, or ecowx instruction cannot
be translated to a real address by means of the vir-
tual real addressing mechanism.
The effective address specified by a lq, stq, lbarx,
lharx, lwarx, ldarx, lqarx, stbcx., sthcx., stwcx.,
stdcx., or stqcx. instruction refers to storage that
is Write Through Required or Caching Inhibited.
The access violates storage protection.
A Data Address Watchpoint match occurs.
Execution of an eciwx or ecowx instruction is dis-
allowed because EARE=0.

If a stbcx., sthcx., stwcx., stdcx., or stqcx. would not
perform its store in the absence of a Hypervisor Data
Storage interrupt, and either (a) the specified effective
address refers to storage that is Write Through
Required or Caching Inhibited, or (b) a non-conditional
Store to the specified effective address would cause a
Hypervisor Data Storage interrupt, it is implementa-
tion-dependent whether a Hypervisor Data Storage
interrupt occurs.

If the XER specifies a length of zero for an indexed
Move Assist instruction, a Hypervisor Data Storage
interrupt does not occur.

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51.

HDSISR
32 Set to 0.
33 Set to 1 if the value of the expression

(MSRDR) | (¬MSRDR & VPM0)
is 1 and the translation for an attempted
access is not found in the Page Table; oth-
erwise set to 0.

34:35 Set to 0.
36 Set to 1 if the access is not permitted by

Figure 32 or 33, as appropriate; otherwise
set to 0.

37 Set to 1 if the access is due to a lq, stq,
lbarx, lharx, lwarx, ldarx, lqarx, stbcx.,
sthcx., stwcx., stdcx., or stqcx. instruc-
tion that addresses storage that is Write

The following instructions are not traced.

rfid 
hrfid 
sc, and Trap instructions that trap
Power-Saving Mode instructions
other instructions that cause interrupts (other
than Trace interrupts)
the first instructions of any interrupt handler
instructions that are emulated by software
instructions, executed in Transactional state,
that are disallowed in Transactional state
instructions, executed in Transactional state,
that cause types of accesses that are disal-
lowed in Transactional state
mtspr, executed in Transactional state, speci-
fying an SPR that is not part of the Transac-
tional Memory checkpointed registers
tbegin. executed at maximum nesting depth

In general, interrupt handlers can achieve the effect
of tracing these instructions.

Programming Note
Chapter 6. Interrupts 961



Version 2.07 B
Through Required or Caching Inhibited;
otherwise set to 0.

38 Set to 1 for a Store, dcbz, or ecowx
instruction; otherwise set to 0.

39:40 Set to 0.
41 Set to 1 if a Data Address Watchpoint

match occurs; otherwise set to 0.
42 Set to 1 if the access is not permitted by vir-

tual page class key protection; otherwise
set to 0.

43 Set to 1 if execution of an eciwx or ecowx
instruction is attempted when EARE=0; oth-
erwise set to 0.

44:63 Set to 0.

HDAR Set to the effective address of a storage
element, as described in the following list.
The list should be read from the top down;
the HDAR is set as described by the first
item that corresponds to an exception that
is reported in the HDSISR. For example, if
a Load Word instruction causes a storage
protection violation and a Data Address
Watchpoint match (and both are reported in
the HDSISR), the HDAR is set to the effec-
tive address of a byte in the first aligned
doubleword for which access was
attempted in the page that caused the
exception.

a Hypervisor Data Storage exception
occurs for reasons other than a Data
Address Watchpoint match or, for
eciwx and ecowx, EARE=0
- a byte in the block that caused the

exception, for a Cache Manage-
ment instruction

- a byte in the first aligned quad-
word for which access was
attempted in the page that caused
the exception, for a quadword
Load or Store instruction (i.e., a
Load or Store instruction for which
the storage operand is a quad-
word; “first” refers to address
order: see Section 6.7)

- a byte in the first aligned double-
word for which access was
attempted in the page that caused
the exception, for a non-quadword
Load or Store instruction or an
eciwx or ecowx instruction

undefined, for a Data Address Watch-
point match, or if eciwx or ecowx is
executed when EARE=0

For the cases in which the HDAR is speci-
fied above to be set to a defined value, if
the interrupt occurs in 32-bit mode the
high-order 32 bits of the HDAR are set to 0.

If multiple Hypervisor Data Storage exceptions occur
for a given effective address, any one or more of the
bits corresponding to these exceptions may be set to 1
in the HDSISR.  If the HDSISR reports other exceptions
together with a Virtualized Page Class Key Storage
Protection exception that occurs when LPCRKBV=1 and
Virtualized Partition Memory is disabled by VPM1=0,
the other exceptions are actually DSIs.

 

Execution resumes at effective address
0x0000_0000_0000_0E00,  possibly offset as specified
in Figure 52.

6.5.17 Hypervisor Instruction 
Storage Interrupt
A Hypervisor Instruction Storage interrupt occurs when
the thread is not in hypervisor state, no higher priority
exception exists, the value of the expression

(VPM0 & ¬MSRIR) | (VPM1 & MSRIR)

is 1, and the next instruction to be executed cannot be
fetched for any of the following reasons.

Instruction address translation is enabled
(MSRIR=1) and the virtual address cannot be
translated to a real address.
Instruction address translation is disabled
(MSRIR=0), and the virtual address cannot be
translated to a real address by means of the virtual
real addressing mechanism.
The fetch access violates storage protection.

The following registers are set:

HSRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were
present (if the interrupt occurs on attempting
to fetch a branch target, HSRR0 is set to the
branch target address).

HSRR1
33 Set to 1 if the value of the expression

A Virtual Page Class Key Storage Protection
exception that occurs with LPCRKBV=1 and Virtual-
ized Partition Memory disabled by VPM1=0 identi-
fies an access that must be emulated by the
hypervisor.  When it is reported together with other
exceptions in the HDSISR, the hypervisor should
service the Virtual Page Class Key Storage Protec-
tion exception first.  This is in part because the
operating system may be using some PTE fields for
non-architected purposes, which could in turn
cause spurious exceptions to be reported.
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(MSRIR) | (¬MSRIR & VPM0) is 1 and the
translation for an attempted access is not
found in the Page Table; otherwise set to 0.

34 Set to 0.
35 Set to 1 if the access is to No-execute or

Guarded storage; otherwise set to 0.
36 Set to 1 if the access is not permitted by

Figure 32 or 33, as appropriate; otherwise
set to 0.

 
42 Set to 1 if the access is not permitted by vir-

tual page class key protection; otherwise
set to 0.

43:47 Set to 0.

Others Loaded from the MSR.

MSR See Figure 51.

If multiple Hypervisor Instruction Storage exceptions
occur due to attempting to fetch a single instruction,
any one or more of the bits corresponding to these
exceptions may be set to 1 in HSRR1.

Execution resumes at effective address
0x0000_0000_0000_0E10,  possibly offset as specified
in Figure 52.

6.5.18 Hypervisor Emulation 
Assistance Interrupt
A Hypervisor Emulation Assistance interrupt is gener-
ated when execution is attempted of an illegal instruc-
tion, or of a reserved instruction or an instruction that is
not provided by the implementation. It is also generated
under the following conditions. 

an mtspr or mfspr instruction is executed when
MSRPR=1 if the instruction specifies an SPR with
spr0=0 that is not provided by the implementation
an mtspr or mfspr instruction is executed when
MSRPR=0 if the instruction specifies SPR 0
an mfspr instruction is executed when MSRPR=0 if
the instruction specifies SPR 4, 5, or 6

A Hypervisor Emulation Assistance interrupt may be
generated when execution is attempted of any of the
following kinds of instruction.

an instruction that is in invalid form
an lswx instruction for which RA or RB is in the
range of registers to be loaded

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

HEIR Set to a copy of the instruction that caused
the interrupt

Execution resumes at effective address
0x0000_0000_0000_0E40,  possibly offset as specified
in Figure 52.

  

6.5.19 Hypervisor Maintenance 
Interrupt
A Hypervisor Maintenance interrupt occurs when no
higher priority exception exists, a Hypervisor Mainte-
nance exception exists (a bit in the HMER is set to
one), the exception is enabled in the HMEER, and the
value of the following expression is 1.

(MSREE | ¬(MSRHV) | MSRPR )

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949. 

HMER See Section 6.2.8 on page 938.

The exception bits in the HMER are sticky; that is, once
set to 1 they remain set to 1 until they are set to 0 by an
mthmer instruction.

Execution resumes at effective address
0x0000_0000_0000_0E60.

  

If a Hypervisor Emulation Assistance interrupt
occurs, when the thread is not in hypervisor state,
for an instruction that the hypervisor does not emu-
late, the hypervisor should pass control to the oper-
ating system as if the instruction had caused an
"Illegal Instruction type Program interrupt", as
described in a Programming Note near the end of
Section 6.5.9, “Program Interrupt” on page 957.

Because the value of MSREE is always 1 when the
thread is in problem state, the simpler expression

(MSREE | ¬(MSRHV))  

is equivalent to the expression given above.

Programming Note
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6.5.20 Directed Hypervisor Door-
bell Interrupt
A Directed Hypervisor Doorbell interrupt occurs when
no higher priority exception exists, a Directed Hypervi-
sor Doorbell exception is present, and the value of the
following expression is 1.

(MSREE | ¬(MSRHV) | MSRPR )

Directed Hypervisor Doorbell exceptions are generated
when Directed Hypervisor Doorbell messages (see
Chapter 11) are received and accepted by the thread.

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

Execution resumes at effective address
0x0000_0000_0000_0E80,  possibly offset as specified
in Figure 52.

  

6.5.21 Performance Monitor
Interrupt 
A Performance Monitor interrupt occurs when no higher
priority exception exists, a Performance Monitor excep-
tion exists, event-based branches are disabled, and
MSREE=1.

If multiple Performance Monitor exceptions occur
before the first causes a Performance Monitor interrupt,
the interrupt reflects the most recent Performance Mon-

itor exception and the preceding Performance Monitor
exceptions are lost.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that would have been attempted to be
execute next if no interrupt conditions were
present.

SRR1
33:36 and 42:47

Reserved.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

Execution resumes at effective address
0x0000_0000_0000_0F00,  possibly offset as specified
in Figure 52.

6.5.22 Vector Unavailable Inter-
rupt [Category: Vector]
A Vector Unavailable interrupt occurs when no higher
priority exception exists, an attempt is made to execute
a Vector instruction (including Vector loads, stores, and
moves), and MSRVEC=0.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

Execution resumes at effective address
0x0000_0000_0000_0F20,  possibly offset as specified
in Figure 52.

6.5.23 VSX Unavailable Interrupt 
[Category: VSX]
A VSX Unavailable interrupt occurs when no higher pri-
ority exception exists, an attempt is made to execute a
VSX instruction (including VSX loads, stores, and
moves), and MSRVSX=0.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

If an implementation uses the HMER to record that
a readable resource, such as the Time Base, has
been corrupted, then, because the HMI is disabled
in the hypervisor state, it is necessary for the hyper-
visor to check HMER after reading that resource to
be sure an error has not occurred.

Because the value of MSREE is always 1 when the
thread is in problem state, the simpler expression

(MSREE | ¬(MSRHV))  

is equivalent to the expression given above.
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Execution resumes at effective address
0x0000_0000_0000_0F40,  possibly offset as specified
in Figure 52.

6.5.24 Facility Unavailable Inter-
rupt
A Facility Unavailable interrupt occurs when no higher
priority exception exists, and one of the following
occurs.

- a facility is accessed in problem state when it
has been made unavailable by the FSCR

- a Performance Monitor register is accessed or
a clrbhrb or mfbhrbe instruction is executed
in problem state when it has been made
unavailable by MMCR0.

- the Transactional Memory Facility is accessed
in any privilege state when it has been made
unavailable by MSRTM.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

FSCR
0:7 See Section 6.2.10 on page 939.
Others Not changed.

Execution resumes at effective address
0x0000_0000_0000_0F60,  possibly offset as specified
in Figure 52.

 

6.5.25 Hypervisor Facility Unavail-
able Interrupt
A Hypervisor Facility Unavailable interrupt occurs when
no higher priority exception exists, and one of the fol-
lowing occurs.

- a facility is accessed in problem or privileged
non-hypervisor states when it has been made
unavailable by the HFSCR.

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 51 on page 949.

HFSCR
0:7 See Section 6.2.11 on page 940.
Others Not changed.

Execution resumes at effective address
0x0000_0000_0000_0F80,  possibly offset as specified
in Figure 52.

For the case of an outer tbegin., the interrupt han-
dler should either return to the tbegin. with MSRTM
= 1 (allowing the program to use transactions), or
treat the attempt to initiate an outer transaction as a
program error.
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6.6 Partially Executed
Instructions
If a Data Storage, Data Segment, Alignment, sys-
tem-caused, or imprecise exception occurs while a
Load or Store instruction is executing, the instruction
may be aborted. In such cases the instruction is not
completed, but may have been partially executed in the
following respects.

Some of the bytes of the storage operand may
have been accessed, except that if access to a
given byte of the storage operand would violate
storage protection, that byte is neither copied to a
register by a Load instruction nor modified by a
Store instruction. Also, the rules for storage
accesses given in Section 5.8.1, “Guarded Stor-
age” and in Section 2.2 of Book II are obeyed.

Some registers may have been altered as
described in the Book II section cited above.

Reference and Change bits may have been
updated as described in Section 5.7.8.

For a stbcx., sthcx., stwcx., stdcx., or stqcx.
instruction that is executed in-order, CR0 may have
been set to an undefined value and the reservation
may have been cleared.

The architecture does not support continuation of an
aborted instruction but intends that the aborted instruc-
tion be re-executed if appropriate.

  

An exception may result in the partial execution of a
Load or Store instruction.  For example, if the Page
Table Entry that translates the address of the stor-
age operand is altered, by a program running on
another thread, such that the new contents of the
Page Table Entry preclude performing the access,
the alteration could cause the Load or Store
instruction to be aborted after having been partially
executed.

As stated in the Book II section cited above, if an
instruction is partially executed the contents of reg-
isters are preserved to the extent that the instruc-
tion can be re-executed correctly. The consequent
preservation is described in the following list. For
any given instruction, zero, one, or two items in the
list apply.

For a fixed-point Load instruction that is not a
multiple or string form, or for an eciwx instruc-
tion, if RT=RA or RT=RB then the contents of
register RT are not altered.

For an lq instruction, if RT+1 = RA then the
contents of register RT+1 are not altered.

For an update form Load or Store instruction,
the contents of register RA are not altered.
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6.7 Exception Ordering
Since multiple exceptions can exist at the same time
and the architecture does not provide for reporting
more than one interrupt at a time, the generation of
more than one interrupt is prohibited. Some exceptions,
such as the Mediated External exception, persist and
can be deferred. However, other exceptions would be
lost if they were not recognized and handled when they
occur. For example, if an External interrupt was gener-
ated when a Data Storage exception existed, the Data
Storage exception would be lost. If the Data Storage
exception was caused by a Store Multiple instruction for
which the storage operand crosses a virtual page
boundary and the exception was a result of attempting
to access the second virtual page, the store could have
modified locations in the first virtual page even though it
appeared that the Store Multiple instruction was never
executed.

For the above reasons, all exceptions are prioritized
with respect to other exceptions that may exist at the
same instant to prevent the loss of any exception that is
not persistent. Some exceptions cannot exist at the
same instant as some others.

Data Storage, Hypervisor Data Storage, Data Seg-
ment, and Alignment exceptions and transaction failure
due to attempted access of a disallowed type while in
Transactional state occur as if the storage operand
were accessed one byte at a time in order of increasing
effective address (with the obvious caveat if the oper-
and includes both the maximum effective address and
effective address 0).  (The required ordering of excep-
tions on components of non-atomic accesses does not
extend to the performing of the component accesses in
the event of an exception.  For example, if byte n
causes a data storage exception, it is not necessarily
true that the access to byte n-1 has been performed.)

6.7.1 Unordered Exceptions
The exceptions listed here are unordered, meaning that
they may occur at any time regardless of the state of
the interrupt processing mechanism. These exceptions
are recognized and processed when presented.

1. System Reset
2. Machine Check

6.7.2 Ordered Exceptions
The exceptions listed here are ordered with respect to
the state of the interrupt processing mechanism. With
one exception, in the following list the hypervisor forms
of the Data Storage and Instruction Storage exceptions
can be substituted for the non-hypervisor forms since
the hypervisor forms cannot be caused by the same
instruction and have the same ordering.  The exception

is that Virtual Page Class Key Storage Protection
exceptions that occur when LPCRKBV=1 and Virtual-
ized Partition Memory is disabled by VPM1=0 cause
only a Hypervisor Data Storage exception (and never a
Data Storage exception).

System-Caused or Imprecise

1. Program
    - Imprecise Mode Floating-Point Enabled Exception

2. Hypervisor Maintenance
3. External, [Hypervisor] Decrementer, Performance

Monitor, Directed Privileged Doorbell, Directed
Hypervisor Doorbell
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Instruction-Caused and Precise

1. Instruction Segment
2. [Hypervisor] Instruction Storage
3.a Hypervisor Emulation Assistance
3.b Program
      - Privileged Instruction
4. Function-Dependent
    4.a Fixed-Point and Branch
       1 Hypervisor Facility Unavailable
       2 Facility Unavailable        
       3a     Program
                 - Trap
                 - TM Bad Thing
       3b     System Call
       3c.1  Data Storage for the case of Fixed-Point
                   Load or Store Caching Inhibited instructions
                 with MSRDR=1
       3c.2  all other Data Storage, Hypervisor Data 
                 Storage, [Hypervisor] Data Segment, or
                 Alignment
        4       Trace
    4.b Floating-Point
       1 Hypervisor Facility Unavailable
       2 FP Unavailable
       3a     Program
                  - Precise Mode Floating-Pt Enabled Excep’n
       3b     [Hypervisor] Data Storage, [Hypervisor] Data
                  Segment, or Alignment
        4       Trace
    4.c Vector
       1 Hypervisor Facility Unavailable
       2       Vector Unavailable
       3a     [Hypervisor] Data Storage, [Hypervisor] Data
                  Segment, or Alignment
       4       Trace
    4.d VSX
       1 Hypervisor Facility Unavailable
       2       VSX Unavailable
       3a     Program
                  - Precise Mode Floating-Pt Enabled Excep’n
       3b     [Hypervisor] Data Storage, [Hypervisor] Data
                  Segment, or Alignment  

       4       Trace
    4.e Other Instructions
       1       Hypervisor Facility Unavailable
       2       Facility Unavailable
       3a     [Hypervisor] Data Storage, [Hypervisor] Data
                  Segment, or Alignment
       4       Trace

For implementations that execute multiple instructions
in parallel using pipeline or superscalar techniques, or
combinations of these, it can be difficult to understand
the ordering of exceptions.To understand this ordering
it is useful to consider a model in which each instruction
is fetched, then decoded, then executed, all before the
next instruction is fetched. In this model, the exceptions
a single instruction would generate are in the order
shown in the list of instruction-caused exceptions.

Exceptions with different numbers have different order-
ing. Exceptions with the same numbering but different
lettering are mutually exclusive and cannot be caused
by the same  instruction. The External, [Hypervisor]
Decrementer, Performance Monitor, Directed Privileged
Doorbell, and Directed Hypervisor Doorbell interrupts
have equal ordering. Similarly, where Data Storage,
Data Segment, and Alignment exceptions are listed in
the same item they have equal ordering.

Even on threads that are capable of executing several
instructions simultaneously, or out of order,  instruc-
tion-caused interrupts (precise and imprecise) occur in
program order.

6.8 Interrupt Priorities
This section describes the relationship of nonmaskable,
maskable, precise, and imprecise interrupts. In the fol-
lowing descriptions, the interrupt mechanism waiting for
all possible exceptions to be reported includes only
exceptions caused by previously initiated instructions
(e.g., it does not include waiting for the Decrementer to
step through zero).  The exceptions are listed in order
of highest to lowest priority. The phrase "corresponding
interrupt" means the interrupt having the same name
as the exception unless the thread is in power-saving
mode, in which case the phrase means the System
Reset interrupt.

Unless otherwise stated or obvious from context, it is
assumed below that one of the following conditions is
satisfied.

  The thread is not in power-saving mode and the
interrupt, unless it is the Machine Check inter-
rupt, is not disabled. (For the Machine Check
interrupt no assumption is made regarding
enablement.)

  The thread is in power-saving mode and the
exception is enabled to cause exit from the
mode.

With one exception, in the following list the hypervisor
forms of the Data Storage and Instruction Storage
exceptions can be substituted for the non-hypervisor
forms since the hypervisor forms cannot be caused by
the same instruction and have the same priority.  The
exception is that exceptions caused by Virtual Page
Class Key Storage Protection exceptions that occur
when LPCRKBV=1 and Virtualized Partition Memory is
disabled by VPM1=0 cause only a Hypervisor Data
Storage exception (and never a Data Storage excep-
tion).

1. System Reset

System Reset exception has the highest priority of
all exceptions. If this exception exists, the interrupt
mechanism ignores all other exceptions and gen-
erates a System Reset interrupt.
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Once the System Reset interrupt is generated, no
nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

2. Machine Check

Machine Check exception is the second highest
priority exception. If this exception exists and a
System Reset exception does not exist, the inter-
rupt mechanism ignores all other exceptions and
generates a Machine Check interrupt.

Once the Machine Check interrupt is generated,
no nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

3. Instruction-Caused and Precise

This exception is the third highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all possible Imprecise excep-
tions to be reported. It then generates the appro-
priate ordered interrupt if no higher priority
exception exists when the interrupt is to be gener-
ated.  Within this category a particular instruction
may present more than a single exception.  When
this occurs, those exceptions are ordered in prior-
ity as indicated in the following lists. Where [Hyper-
visor] Data Storage, Data Segment, and Alignment
exceptions are listed in the same item they have
equal priority (i.e., the hardware may generate any
one of the three interrupts for which an exception
exists).  For instructions that are forbidden in
Transactional state, transaction failure takes prior-
ity over all interrupts except Privileged Instruction
type Program Interrupts.  For data accesses that
are forbidden in Transactional state, transaction
failure has the same priority as the group of “other”
[Hypervisor] Data Storage, Data Segment, and
Alignment exceptions.  (See Section 5.3.1 of Book
II ).

 A. Fixed-Point Loads and Stores
a.These exceptions are mutually exclusive

and have the same priority:
Hypervisor Emulation Assistance
Program - Privileged Instruction

b. Hypervisor Facility Unavailable
c. Facility Unavailable 
d.Data Storage for the case of Fixed-Point

Load or Store Caching Inhibited instructions
with MSRDR=1

e. all other Data Storage, Hypervisor Data
Storage, [Hypervisor] Data Segment, or
Alignment

f. Trace

 B. Floating-Point Loads and Stores
a.Hypervisor Emulation Assistance
b. Hypervisor Facility Unavailable
c. Floating-Point Unavailable

d. [Hypervisor] Data Storage, [Hypervisor]
Data Segment, or Alignment

e Trace

 C. Vector Loads and Stores
a.Hypervisor Emulation Assistance
b. Hypervisor Facility Unavailable
c. Vector Unavailable
d. [Hypervisor] Data Storage, [Hypervisor]

Data Segment, or Alignment
e. Trace

D. VSX Loads and Stores
a.Hypervisor Emulation Assistance
b. Hypervisor Facility Unavailable
c. VSX Unavailable
d. [Hypervisor] Data Storage, [Hypervisor]

Data Segment, or Alignment
e.Trace

E. Other Floating-Point Instructions
a.Hypervisor Emulation Assistance
b. Hypervisor Facility Unavailable
c. Floating-Point Unavailable
d.Program - Precise Mode Floating-Point

Enabled Exception
e. Trace

F. Other Vector Instructions
a.Hypervisor Emulation Assistance
b. Hypervisor Facility Unavailable
c. Vector Unavailable
d.Trace

G. Other VSX Instructions
a.Hypervisor Emulation Assistance
b. Hypervisor Facility Unavailable
c. VSX Unavailable
d.Program - Precise Mode Floating-Point

Enabled Exception
e. Trace

 H. TM instruction, mt/fspr specifying TM SPR
a.Program - Privileged Instruction (only for

treclaim., trechkpt.., and mtspr)
b Hypervisor Facility Unavailable
c Facility Unavailable
d Program - TM Bad Thing (only for treclaim.,

trechkpt., and mtspr)
e Trace

 I. rfid, hrfid, rfebb and mtmsr[d]
a.Program - Privileged Instruction for all

except rfebb
b.Hypervisor Facility Unavailable (rfebb only)
c.  Facility Unavailable (rfebb only)
d Program - TM Bad Thing for all except

mtmsr.
e.Program - Floating-Point Enabled Exception

for all except rfebb
f. Trace, for mtmsr[d] and rfebb only

J. Other Instructions
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  a.These exceptions are mutually exclusive
 and have the same priority:

Program - Trap
System Call
Program - Privileged Instruction
Hypervisor Emulation Assistance

b. Hypervisor Facility Unavailable
c. Facility Unavailable 
d.Trace

K.  [Hypervisor] Instruction Storage and
        Instruction Segment

These exceptions have the lowest priority in
this category. They are recognized only when
all instructions prior to the instruction causing
one of these exceptions appear to have com-
pleted and that instruction is the next instruc-
tion to be executed. The two exceptions are
mutually exclusive.

The priority of these exceptions is specified for
completeness and to ensure that they are not
given more favorable treatment. It is accept-
able for an implementation to treat these
exceptions as though they had a lower priority.

4. Program - Imprecise Mode Floating-Point Enabled
Exception

This exception is the fourth highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if no
higher priority exception exists when the interrupt
is to be generated.

5. Hypervisor Maintenance

This exception is the fifth highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if no
higher priority exception exists when the interrupt
is to be generated.

If a Hypervisor Maintenance exception exists and
each attempt to execute an instruction when the
Hypervisor Maintenance interrupt is enabled
causes an exception (see the Programming Note
below), the Hypervisor Maintenance interrupt is
not delayed indefinitely.

6. Direct External, Mediated External, and [Hypervi-
sor] Decrementer, Performance Monitor, Directed
Privileged Doorbell, Directed Hypervisor Doorbell

These exceptions are the lowest priority excep-
tions. All have equal priority (i.e., the hardware
may generate any one of the corresponding inter-
rupts for which an exception exists). When one of
these exceptions is created, the interrupt process-
ing mechanism waits for all other possible excep-
tions to be reported. It then generates the

corresponding interrupt if no higher priority excep-
tion exists when the interrupt is to be generated.

If a Hypervisor Decrementer exception exists and
each attempt to execute an instruction when the
Hypervisor Decrementer interrupt is enabled
causes an exception (see the Programming Note
below), the Hypervisor Decrementer interrupt is
not delayed indefinitely.

If LPES=1 and a Direct External exception exists
and each attempt to execute an instruction when
this interrupt is enabled causes an exception (see
the Programming Note below), the Direct External
interrupt is not delayed indefinitely.

  

6.9 Relationship of Event-Based 
Branches to Interrupts
Event-based exceptions have a priority lower than all
exceptions that cause interrupts. When an event-based
exception is created, the Event-Based Branch facility
waits for all other possible exceptions that would cause
interrupts to be reported. It then generates the
event-based branch if no exception that would cause
an interrupt exists when the event-based branch is to
be generated.

An incorrect or malicious operating system
could corrupt the first instruction in the inter-
rupt vector location for an instruction-caused
interrupt such that the attempt to execute the
instruction causes the same exception that
caused the interrupt (a looping interrupt; e.g.,
Trap instruction and Program interrupt). Simi-
larly, the first instruction of the interrupt vector
for one instruction-caused interrupt could
cause a different instruction-caused interrupt,
and the first instruction of the interrupt vector
for the second instruction-caused interrupt
could cause the first instruction-caused inter-
rupt (e.g., Program interrupt and Floating-Point
Unavailable interrupt). Similarly, if the Real
Mode Area is virtualized and there is no PTE
for the page containing the interrupt vectors,
every attempt to execute the first instruction of
the OS's Instruction Storage interrupt handler
would cause a Hypervisor Instruction Storage
interrupt; if the Hypervisor Instruction Storage
interrupt handler returns to the OS's Instruc-
tion Storage interrupt handler without the rele-
vant PTE having been created, another
Hypervisor Instruction Storage interrupt would
occur immediately. The looping caused by
these and similar cases is terminated by the
occurrence of a System Reset or Hypervisor
Decrementer interrupt.

Programming Note
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Chapter 7.  Timer Facilities

7.1 Overview
The Time Base, Decrementer, Hypervisor Decre-
menter, Processor Utilization of Resources, and
Scaled Processor Utilization of Resources registers
provide timing functions for the system. The remainder
of this section describes these registers and related
facilities.

7.2 Time Base (TB)
The Time Base (TB) is a 64-bit register (see Figure 53)
containing a 64-bit unsigned integer that is incremented
periodically.

Figure 53. Time Base

The Time Base is a hypervisor resource; see Chapter
2.

The SPRs TBU40, TBU, and TBL provide access to the
fields of the Time Base shown in Figure 53. When a
mtspr instruction is executed specifying one of these
SPRs, the associated field of the Time Base is altered
and the remaining bits of the Time Base are not
affected.

See Chapter 6 of Book II for infromation about the
update frequency of the Time Base.

The Time Base is implemented such that:

1. Loading a GPR from the Time Base has no effect
on the accuracy of the Time Base.

2. Copying the contents of a GPR to the Time Base
replaces the contents of the Time Base with the
contents of the GPR.

The Power ISA does not specify a relationship between
the frequency at which the Time Base is updated and
other frequencies, such as the CPU clock or bus clock
in a Power ISA system. The Time Base update fre-
quency is not required to be constant. What is required,
so that system software can keep time of day and oper-
ate interval timers, is one of the following.

The system provides an (implementation-depen-
dent) interrupt to software whenever the update
frequency of the Time Base changes, and a means
to determine what the current update frequency is.

The update frequency of the Time Base is under
the control of the system software.

Implementations must provide a means for either pre-
venting the Time Base from incrementing or preventing
it from being read in problem state (MSRPR=1).  If the
means is under software control, it must be accessible
only in hypervisor state (MSRHV PR = 0b10).  There
must be a method for getting all Time Bases in the sys-
tem to start incrementing with values that are identical
or almost identical. 

0            39

TBU40 ///
TBU TBL

0 32                                          63

Field Description
TBU40 Upper 40 bits of Time Base
TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base
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7.2.1 Writing the Time Base
Writing the Time Base is privileged, and can be done
only in hypervisor state. Reading the Time Base is not
privileged; it is discussed in Chapter 6 of Book II.

It is not possible to write the entire 64-bit Time Base
using a single instruction. The mttbl and mttbu
extended mnemonics write the lower and upper halves
of the Time Base (TBL and TBU), respectively, preserv-
ing the other half. These are extended mnemonics for
the mtspr instruction; see Appendix A, “Assembler
Extended Mnemonics” on page 1017.

The Time Base can be written by a sequence such as:

lwz Rx,upper # load 64-bit value for
lwz Ry,lower # TB into Rx and Ry
li Rz,0
mttbl Rz  # set TBL to 0
mttbu Rx  # set TBU
mttbl Ry  # set TBL

Provided that no interrupts occur while the last three
instructions are being executed, loading 0 into TBL pre-
vents the possibility of a carry from TBL to TBU while
the Time Base is being initialized.

The preferred method of changing the Time Base uti-
lizes the TBU40 facility. The following code sequence
demonstrates the process. Assume the upper 40 bits of

Rx contain the desired value upper 40 bits of the Time
Base.

mftb Ry # Read 64-bit Time Base value
clrldi Ry,Ry,40 # lower 24 bits of old TB
mttbu40 Rx # write upper 40 bits of TB
mftb Rz # read TB value again
clrldi Rz,Rz,40 # lower 24 bits of new TB
cmpld Rz,Ry # compare new and old lwr 24
bge done # no carry out of low 24 bits
addis Rx,Rx,0x0100

#increment upper 40 bits
mttbu40 Rx # update to adjust for carry

  

7.3 Virtual Time Base
The Virtual Time Base (VTB) is a 64-bit incrementing
counter.

Figure 54.  Virtual Time Base

Virtual Time Base increments at the same rate as the
Time Base until its value becomes
0xFFFF_FFFF_FFFF_FFFF (264 - 1); at the next incre-
ment its value becomes 0x0000_0000_0000_0000.
There is no interrupt or other indication when this
occurs.

The operation of the Virtual Time Base has the follow-
ing additional properties.

1. Loading a GPR from the Virtual Time Base has no
effect on the accuracy of the Virtual Time Base.

2. Copying the contents of a GPR to the Virtual Time
Base replaces the contents of the Virtual Time
Base with the contents of the GPR.

  

If software initializes the Time Base on power-on to
some reasonable value and the update frequency
of the Time Base is constant, the Time Base can
be used as a source of values that increase at a
constant rate, such as for time stamps in trace
entries.

Even if the update frequency is not constant, val-
ues read from the Time Base are monotonically
increasing (except when the Time Base wraps from
264-1 to 0).  If a trace entry is recorded each time
the update frequency changes, the sequence of
Time Base values can be post-processed to
become actual time values.

Successive readings of the Time Base may return
identical values.

If Time Base bits 60:63 are used as part of a ran-
dom number generator, software must account for
the fact that these bits are set to 0x0 only when bit
59 changes state regardless of whether or not they
incremented to 0xF since they were previously set
to 0x0.

See the description of the Time Base in Chapter 6
of Book II for ways to compute time of day in POSIX
format from the Time Base.

Programming Note

The instructions for writing the Time Base are
mode-independent. Thus code written to set the
Time Base will work correctly in either 64-bit or
32-bit mode.

VTB
0 63

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Virtual Time Base input frequency will also
change. Software must be aware of this in order to
set interval timers.

Programming Note

Programming Note
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7.4 Decrementer
The Decrementer (DEC) is a 32-bit decrementing
counter that provides a mechanism for causing a Dec-
rementer interrupt after a programmable delay. The
contents of the Decrementer are treated as a signed
integer.

Figure 55. Decrementer

The Decrementer counts down until its value becomes
0x0000_0000; at the next decrement its value becomes
0xFFFF_FFFF.

The Decrementer is driven at the same frequency as
the Time Base. 

When the contents of DEC32 change from 0 to 1, a
Decrementer exception will come into existence within
a reasonable period of time. When the contents of
DEC32 change from 1 to 0, the existing Decrementer
exception, if any, will cease to exist within a reasonable
period of time, but not later than the completion of the
next context synchronizing instruction or event.

The preceding paragraph applies regardless of whether
the change in the contents of DEC32 is the result of
decrementation of the Decrementer by the hardware or
of modification of the Decrementer caused by execu-
tion of an mtspr instruction.

The operation of the Decrementer has the following
additional properties.

1. Loading a GPR from the Decrementer has no
effect on the accuracy of the Time Base.

2. Copying the contents of a GPR to the Decrementer
replaces the contents of the Decrementer with the
contents of the GPR.

  

7.4.1 Writing and Reading the 
Decrementer
The contents of the Decrementer can be read or written
using the mfspr and mtspr instructions, both of which
are privileged when they refer to the Decrementer.
Using an extended mnemonic (see Appendix A,
“Assembler Extended Mnemonics” on page 1017), the
Decrementer can be written from GPR Rx using:

mtdec  Rx

The Decrementer can be read into GPR Rx using:

mfdec  Rx

Copying the Decrementer to a GPR has no effect on
the Decrementer contents or on the interrupt mecha-
nism.

7.5 Hypervisor Decrementer
The Hypervisor Decrementer (HDEC) is a 32-bit decre-
menting counter that provides a mechanism for causing
a Hypervisor Decrementer interrupt after a programma-
ble delay. The contents of the Hypervisor Decrementer
are treated as a signed integer.

Figure 56. Hypervisor Decrementer

The Hypervisor Decrementer is a hypervisor resource;
see Chapter 2.

The Hypervisor Decrementer counts down until its
value becomes 0x0000_0000; at the next decrement its
value becomes 0xFFFF_FFFF.

The Hypervisor Decrementer is driven at the same fre-
quency as the Time Base. 

When the contents of HDEC32 change from 0 to 1 and
the thread is not in a power-saving mode, a Hypervisor
Decrementer exception will come into existence within
a reasonable period of time. When a Hypervisor Decre-

In configurations in which the hypervisor allows
multiple partitions to time-share a processor, the
Virtual Time Base can be managed by the hypervi-
sor such that it appears to each partition as if it
counts only during the times that the partition is
executing.

In order to do this, the hypervisor saves the value of
the Virtual Time Base as part of the program con-
text when removing a partition from the processor,
and restores it to its previous value when initiating
the partition again on the same or another proces-
sor. 

DEC
32                                                    63

Programming Note

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Decrementer input frequency will also change.
Software must be aware of this in order to set inter-
val timers.

If Decrementer bits 60:63 are used as part of a ran-
dom number generator, software must account for
the fact that these bits are set to 0xF only when bit
59 changes state regardless of whether or not they
decremented to 0x0 since they were previously set
to 0xF.

HDEC
32                                                    63

Programming Note
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menter interrupt occurs, the existing Hypervisor Decre-
menter exception will cease to exist within a reasonable
period of time, but not later than the completion of the
next context synchronizing instruction or event. Even if
multiple HDEC32 transitions from 0 to 1 occur before a
Hypervisor Decrementer interrupt occurs, at most one
Hypervisor Decrementer exception exists.

The preceding paragraph applies regardless of whether
the change in the contents of HDEC32 is the result of
decrementation of the Hypervisor Decrementer by the
hardware or of modification of the Hypervisor Decre-
menter caused by execution of an mtspr instruction.

The operation of the Hypervisor Decrementer has the
following additional properties. 

1. Loading a GPR from the Hypervisor Decrementer
has no effect on the accuracy of the Hypervisor
Decrementer.

2. Copying the contents of a GPR to the Hypervisor
Decrementer replaces the contents of the Hypervi-
sor Decrementer with the contents of the GPR.

  

 

7.6 Processor Utilization of 
Resources Register (PURR)
The Processor Utilization of Resources Register
(PURR) is a 64-bit counter, the contents of which pro-

vide an estimate of the resources used by the thread.
The contents of the PURR are treated as a 64-bit
unsigned integer.

Figure 57. Processor Utilization of Resources
Register

The PURR is a hypervisor resource; see Chapter 2.

The contents of the PURR increase monotonically,
unless altered by software, until the sum of the contents
plus the amount by which it is to be increased exceed
0xFFFF_FFFF_FFFF_FFFF (264 - 1) at which point the
contents are replaced by that sum modulo 264.  There
is no interrupt or other indication when this occurs.

The rate at which the value represented by the contents
of the PURR increases is an estimate of the portion of
resources used by the thread per unit time with respect
to other threads that share those resources monitored
by the PURR.  When the thread is idle, the rate at
which the PURR value increases is implementation
dependent.

Let the difference between the value represented by
the contents of the Time Base at times Ta and Tb be
Tab. Let the difference between the value represented
by the contents of the PURR at time Ta and Tb be the
value Pab. The ratio of Pab/Tab is an estimate of the per-
centage of shared resources used by the thread during
the interval Tab.  For the set {S} of threads that share
the resources monitored by the PURR, the sum of the
usage estimates for all the threads in the set is 1.0.

The definition of the set of threads S, the shared
resources corresponding to the set S, and specifics of
the algorithm for incrementing the PURR are imple-
mentation-specific.

The PURR is implemented such that:

1. Loading a GPR from the PURR has no effect on
the accuracy of the PURR.

2. Copying the contents of a GPR to the PURR
replaces the contents of the PURR with the con-
tents of the GPR.

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Hypervisor Decrementer update frequency will
also change. Software must be aware of this in
order to set interval timers.

If Hypervisor Decrementer bits 60:63 are used as
part of a random number generator, software must
account for the fact that these bits are set to 0xF
only when bit 59 changes state regardless of
whether or not they decremented to 0x0 since they
were previously set to 0xF.

A Hypervisor Decrementer exception is not created
if the thread is in a power-saving mode when
HDEC32 changes from 0 to 1 because having a
Hypervisor Decrementer interrupt occur almost
immediately after exiting the power-saving mode in
this case is deemed unnecessary. The hypervisor
already has control, and if a timed exit from the
power-saving mode is necessary and possible, the
hypervisor can use the Decrementer to exit the
power-saving mode at the appropriate time.   For
sleep and rvwinkle power-saving levels, the state of
the  Hypervisor Decrementer and Decrementer is
not necessarily maintained and updated.

Programming Note

Programming Note

PURR
0                                                                                                                     63
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7.7 Scaled Processor Utilization 
of Resources Register (SPURR)
The Scaled Processor Utilization of Resources Regis-
ter (SPURR) is a 64-bit counter, the contents of which
provide an estimate of the resources used by the
thread.  The contents of the SPURR are treated as a
64-bit unsigned integer.

Figure 58. Scaled Processor Utilization of
Resources Register

The SPURR is a hypervisor resource; see Section 2.7.

The contents of the SPURR increase monotonically,
unless altered by software, until the sum of the contents
plus the amount by which it is to be increased exceed
0xFFFF_FFFF_FFFF_FFFF (264 - 1) at which point the
contents are replaced by that sum modulo 264.  There
is no interrupt or other indication when this occurs.

The rate at which the value represented by the contents
of the SPURR increases is an estimate of the portion of
resources used by the thread with respect to other
threads that share those resources monitored by the
SPURR, and relative to the computational capacity pro-
vided by those resources.  The computational capacity
provided by the shared resources may vary as a func-
tion of the frequency of the oscillator which drives the
resources or as a result of deliberate delays in process-
ing that are created to reduce power consumption.
When the thread is idle, the rate at which the SPURR
value increases is implementation dependent.

Let the difference between the value represented by
the contents of the Time Base at times Ta and Tb be
Tab. Let the ratio of the effective and nominal frequen-
cies of the oscillator driving instruction execution  fe/fn
be fr.  Let the ratio of delay cycles created by power
reduction circuitry and total cycles cd/ct be cr.  Let the

difference between the value represented by the con-
tents of the SPURR at time Ta and Tb be the value Sab.
The ratio of Sab/(Tab x fr x (1 - cr)) is an estimate of the
percentage of shared resource capacity used by the
thread during the interval Tab.  For the set {S} of threads
that share the resources monitored by the SPURR, the
sum of the usage estimates for all the threads in the set
is 1.0.

The definition of the set of threads S, the shared
resources corresponding to the set S, and specifics of
the algorithm for incrementing the SPURR are imple-
mentation-specific.

The SPURR is implemented such that:

1. Loading a GPR from the SPURR has no effect on
the accuracy of the SPURR.

2. Copying the contents of a GPR to the SPURR
replaces the contents of the SPURR with the con-
tents of the GPR.

  

7.8 Instruction Counter
The Instruction Counter (IC) is a 64-bit incrementing
counter that counts the number of instructions that the
thread has completed (according to the sequential exe-
cution model; see Section 2.2 of Book I).

Figure 59. Instruction Counter

Estimates computed as described above may be
useful for purposes related to resource utilization,
including utilization-based system management
and planning.

Because the rate at which the PURR accumulates
resource usage estimates is dependent on the fre-
quency at which the Time Base is incremented,
and the frequency of the oscillator that drives
instruction execution may vary independently from
that of the Time Base, the interpretation of the con-
tents of the PURR may be inaccurate as a mea-
surement of capacity consumption for accounting
purposes.  The SPURR should be used for
accounting purposes.

SPURR
0                                                                                                                     63

Programming Note

Estimates computed as described above may be
useful for purposes of resource use accounting,
program dispatching, etc.

IC
0 63

Programming Note
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Chapter 8.  Debug Facilities 

8.1 Overview
Implementations provide debug facilities to enable
hardware and software debug functions, such as con-
trol flow tracing, data address watchpoints, and pro-
gram single-stepping. The debug facilities described in
this section consist of the Come-From Address Regis-
ter (see Section 8.2), Completed Instruction Address
Breakpoint Register (see Section 8.3), and the Data
Address Watchpoint Register (DAWRn) and Data
Address Watchpoint Register Extension (DAWRXn)
(see Section 8.4).  The interrupt associated with the
Data Address Breakpoint registers is described in Sec-
tion 6.5.3.  The interrupt associated with the Completed
Instruction Address Breakpoint Register is described in
Section 6.5.15. The Trace facility, which can be used for
single-stepping as well as for control flow tracing, is
described in Section 6.5.15.

The mfspr and mtspr instructions (see Section 4.4.4)
provide access to the registers of the debug facilities.

In addition to the facilities mentioned above, implemen-
tations typically provide debug facilities, modes, and
access mechanisms that are implementation-specific.
For example, implementations typically provide facilities
for instruction address tracing, and also access to cer-
tain debug facilities via a dedicated interface such as
the IEEE 1149.1 Test Access Port (JTAG).

8.2 Come-From Address Regis-
ter
The Come-From Address Register (CFAR) is a 64-bit
register. When an rfebb, rfid,  instruction is executed,
the register is set to the effective address of the instruc-
tion. When a Branch instruction is executed and the
branch is taken, the register is set to the effective
address of an instruction in the instruction cache block
containing the Branch instruction, except that if the
Branch instruction is a B-form Branch (i.e., bc, bca,
bcl, or bcla) for which the target address is in the
instruction cache block containing the Branch instruc-
tion or is in the previous or next cache block, the regis-
ter is not necessarily set.  For Branch instructions, the

setting need not occur until a subsequent context syn-
chronizing operation has occurred. 

Figure 60. Come-From Address Register

The contents of the CFAR can be read and written
using the mfspr and mtspr instructions. Acccess to the
CFAR is privileged.

  

8.3 Completed Instruction 
Address Breakpoint [Category: 
Trace]
The Completed Instruction Address Breakpoint mecha-
nism provides a means of detecting an instruction com-
pletion at a specific instruction address. The address
comparison is done on an effective address (EA).

The Completed Instruction Address Breakpoint mecha-
nism is controlled by the Completed Instruction

CFAR //
0 62 63

This register can be used for purposes of debug-
ging software. For example, often a software bug
results in the program executing a portion of the
code that it should not have reached or causing an
unexpected interrupt. In the former case, a break-
point can be placed in the portion of the code that
was erroneously reached and the program reexe-
cuted. In either case, the interrupt handler can save
the contents of the CFAR (before executing the first
instruction that would modify the register), and then
make the saved contents available for a debugger
to use in determining the control flow path by which
the exception was reached.

In order to preserve the CFAR's contents for each
partition and to prevent it from being used to imple-
ment a "covert channel" between partitions, the
hypervisor should initialize/save/restore the CFAR
when switching partitions on a given thread.

Programming Note
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Address Breakpoint Register (CIABR), shown in
Figure 62.

Figure 61. Completed Instruction Address
Breakpoint Register

A Completed Instruction Address Breakpoint match
occurs upon instruction completion if all of the following
conditions are satisfied. 

the completed instruction address is equal to
CIEA0:61 || 0b00.
the thread run level matches that specified in RLM.

In 32-bit mode the high-order 32 bits of the EA are
treated as zeros for the purpose of detecting a match.

A Completed Instruction Address Breakpoint match
causes a Trace exception provided that no higher prior-
ity interrupt occurs from the completion of the instruc-
tion (see Section 6.5.15).

8.4 Data Address Watchpoint
The Data Address Watchpoint mechanism provides a
means of detecting load and store accesses to a range
of addresses starting at a designated doubleword. The
address comparison is done on an effective address
(EA).

The Data Address Watchpoint mechanism is controlled
by a single set of SPRs, numbered with n=0: the Data
Address Watchpoint Register (DAWRn), shown in
Figure 62, and the Data Address Watchpoint Register
Extension (DAWRXn), shown in Figure 63.

Figure 62. Data Address Watchpoint Register

All other fields are reserved.

Figure 63. Data Address Watchpoint Register
Extension

The supported PRIVM values are 0b000, 0b001,
0b010, 0b011, 0b100, and 0b111. If the PRIVM field
does not contain one of the supported values, then
whether a match occurs for a given storage access is
undefined. Elsewhere in this section it is assumed that
the PRIVM field contains one of the supported values.

  

A Data Address Watchpoint match occurs for a Load or
Store instruction if, for any byte accessed, all of the fol-
lowing conditions are satisfied. 

the access is 
- a quadword access and located in the range

(DEAW0:59 || 0) ≤ (EA0:59 || 0) ≤ 
((DEAW0:59 || 0) + (550 || MRD0:4))  such that
(EA0:60 AND (551 || 60)) = 
  (DEAW0:60 AND (551 || 60)).

- not a quadword access and located in the
range DEAW0:60 ≤ EA0:60 ≤ 
(DEAW0:60 + (550 || MRD0:5)) such that

CIEA PRIV
0 62        63

Bit(s) Name Description
0:61 CIEA Completed Instruction Effective 

Address
62:63 PRIV Privilege

00: Disable matching
01: Match in problem state
10: Match in privileged (non-hypervi-

sor) state
11: Match in hypervisor state

DEAW ///
0 61        63

Bit(s) Name Description
0:60 DEAW Data Effective Address Watchpoint

/// MRD /// HRAMMC DW DR WT WTI PRIVM
32 48 54 56 57 58 59 60 61        63

Bit(s) Name Description
48:53 MRD Match Range in Doublewords 

biased by -1. (0b000000 = 1 DW, 
0b111111 = 64 DW)

56 HRAMMC Hypervisor Real Addressing Mode 
Match Control

0: DEAW0 and EA0 are used dur-
ing matching in hypervisor real 
addressing mode

1: DEAW0 and EA0 are ignored 
during matching in hypervisor 
real addressing mode

57 DW Data Write
58 DR Data Read
59 WT Watchpoint Translation
60 WTI Watchpoint Translation Ignore
61:63 PRIVM Privilege Mask
61 HYP Hypervisor state
62 PNH Privileged but Non-Hypervisor 

state
63 PRO Problem state

PRIVM value 0b000 causes matches not to occur
regardless of the contents of other DAWRn and
DAWRXn fields. PRIVM values 0b101 and 0b110
are not supported because a storage location that
is shared between the hypervisor and non-hypervi-
sor software is unlikely to be accessed using the
same EA by both the hypervisor and the
non-hypervisor software. (PRIVM value 0b111 is
supported primarily for reasons of software com-
patibility with respect to emulation of the DABR
facility as described in a subsequent Programming
Note.)

Programming Note
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(EA0:60 AND (551 || 60)) =  
  (DEAW0:60 AND (551 || 60)).

(MSRDR = DAWRXnWT) | DAWRXnWTI
the thread is in
- hypervisor state and DAWRXnHYP = 1, or
- privileged but non-hypervisor state and

DAWRXnPNH = 1, or
- problem state and DAWRXnPR = 1
the instruction is a Store and DAWRXnDW = 1, or
the instruction is a Load and DAWRXnDR = 1.

In 32-bit mode the high-order 32 bits of the EA are
treated as zeros for the purpose of detecting a match.

If the above conditions are satisfied, a match also
occurs for eciwx and ecowx. For the purpose of deter-
mining whether a match occurs, eciwx is treated as a
Load, and ecowx is treated as a Store.

If the above conditions are satisfied, it is undefined
whether a match occurs in the following cases.

The instruction is Store Conditional but the store is
not performed
The instruction is dcbz. (For the purpose of deter-
mining whether a match occurs, dcbz is treated as
a Store.)

The Cache Management instructions other than dcbz
never cause a match.

A Data Address Watchpoint match causes a Data Stor-
age exception or a Hypervisor Data Storage exception
(see Section 6.5.3, “Data Storage Interrupt” on
page 953 and Section 6.5.16, “Hypervisor Data Stor-
age Interrupt” on page 961). If a match occurs, some or
all of the bytes of the storage operand may have been
accessed; however, if a Store or ecowx instruction
causes the match, the storage operand is not modified
if the instruction is one of the following:

any Store instruction that causes an atomic access
ecowx

 

  

The Data Address Watchpoint mechanism does
not apply to instruction fetches.

Implementations that comply with versions of the
architecture that precede Version 2.02 do not pro-
vide the DABRX (now replaced by DAWRXn).  For-
ward compatibility for software that was written for
such implementations (and uses the Data Address
Breakpoint facility) can be obtained by setting
DAWRXn60:63 to 0b0111.

Programming Note

Programming Note
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Chapter 9.  Performance Monitor Facility 

9.1 Overview
The Performance Monitor facility provides a means of
collecting information about program and system per-
formance.

9.2 Performance Monitor Opera-
tion
The Performance Monitor facility includes the following
features.

an MSR bit

- PMM (Performance Monitor Mark), which can
be used to select one or more programs for
monitoring

registers

- PMC1 - PMC6 (Performance Monitor
Counters 1 - 6), which count events

- MMCR0, MMCR1, MMCR2, and MMCRA
(Monitor Mode Control Registers 0, 1, 2, and
A), which control the Performance Monitor
facility

- SIAR, SDAR, and SIER (Sampled Instruction
Address Register, Sampled Data Address
Register, and Sampled Instruction Event Reg-
ister), which contain the address of the “sam-
pled instruction” and of the “sampled data,”
and additional information about the “sampled
instruction” (see Section 9.4.8 - Section
9.4.10). 

the Performance Monitor interrupt and Perfor-
mance Monitor event-based branch, which can be
caused by monitored conditions and events.

 

Many aspects of the operation of the Performance
Monitor are summarized by the following hierarchy,
which is described starting at the lowest level.

A “counter negative condition” exists when the
value in a PMC is negative (i.e., when bit 0 of the
PMC is 1).  A “Time Base transition event” occurs

when a selected bit of the Time Base changes
from 0 to 1 (the bit is selected by a field in
MMCR0).  The term “condition or event” is used as
an abbreviation for “counter negative condition or
Time Base transition event”.  A condition or event
can be caused implicitly by the hardware (e.g.,
incrementing a PMC) or explicitly by software
(mtspr).

 A condition or event is enabled if the correspond-
ing “Enable” bit (i.e., PMC1CE, PMCjCE, or TBEE)
in MMCR0 is 1.  The occurrence of an enabled
condition or event can have side effects within the
Performance Monitor, such as causing the PMCs
to cease counting.

An enabled condition or event causes a Perfor-
mance Monitor alert if Performance Monitor alerts
are enabled by the corresponding “Enable” bit in
MMCR0. Another cause of a Performance Monitor
alert is the threshold event counter reaching its
maximum value (see Section 9.4.3). A single Per-
formance Monitor alert may reflect multiple
enabled conditions and events.

When a Performance Monitor alert occurs,
MMCR0PMAO is set to 1 and the writing of BHRB
entries, if in process, is suspended.

When the contents of MMCR0PMAO change from 0
to 1, a Performance Monitor exception will come
into existence within a reasonable period of time.
When the contents of MMCR0PMAO change from 1
to 0, the existing Performance Monitor exception, if
any, will cease to exist within a reasonable period
of time, but not later than the completion of the
next context synchronizing instruction or event.

A Performance Monitor exception causes one of
the following.

- If MSREE = 1 and MMCR0EBE = 0, a Perfor-
mance Monitor interrupt occurs.

- If MSRPR = 1, MMCR0EBE = 1, a Performance
Monitor event-based exception occurs if  BES-
CRPME=1, provided that event-based excep-
tions are enabled by FSCREBB and
HFSCREBB. When a Performance Monitor
event-based exception occurs, an
Chapter 9. Performance Monitor Facility 983
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event-based branch is generated if BES-
CRGE=1.

  

The Performance Monitor also controls when BHRB
entries are written, the instruction filters that are used
when writing BHRB entries, and the availability of the
BHRB in problem state. It also controls whether Perfor-
mance Monitor exceptions cause Performance Monitor
event-based exceptions or Performance Monitor inter-
rupts. See Section 9.4.4.

9.3 Probe No-op Instruction
A probe no-op is an and 0,0,0 instruction. This form of
and has special meaning to the Performance Monitor
when random sampling is being performed; See
Section 9.4.2.1.

  

9.4 Performance Monitor Facility 
Registers
The Performance Monitor registers count events, con-
trol the operation of the Performance Monitor, and pro-
vide associated information.

 

The elapsed time between the execution of an instruc-
tion and the time at which events due to that instruction
have been reflected in Performance Monitor registers is
not defined.  No means are provided by which software
can ensure that all events due to preceding instructions
have been reflected in Performance Monitor registers.
Similarly, if the events being monitored may be caused
by operations that are performed out-of-order, no
means are provided by which software can prevent
such events due to subsequent instructions from being
reflected in Performance Monitor registers.  Thus the

contents obtained by reading a Performance Monitor
register may not be precise: it may fail to reflect some
events due to instructions that precede the mfspr and
may reflect some events due to instructions that follow
the mfspr.  This lack of precision applies regardless of
whether the state of the thread is such that the register
is subject to change by the hardware at the time the
mfspr is executed.  Similarly, if an mtspr instruction is
executed that changes the contents of the Time Base,
the change is not guaranteed to have taken effect with
respect to causing Time Base transition events until
after a subsequent context synchronizing instruction
has been executed.

If an mtspr instruction is executed that changes the
value of a Performance Monitor register other than
SIAR, SDAR, and SIER, the change is not guaranteed
to have taken effect until after a subsequent context
synchronizing instruction has been executed (see
Chapter 12. “Synchronization Requirements for Con-
text Alterations” on page 1011).

  

9.4.1 Performance Monitor SPR 
Numbers
The Performance Monitor registers have two sets of
SPR numbers, one set that is non-privileged and
another set that is privileged. 

For the purpose of explanation elsewhere in the archi-
tecture, the  non-privileged registers are divided into
two groups as defined below.

A: The non-privileged read/write Performance
Monitor registers (i.e., the PMCs, MMCR0,
MMCR2, and MMCRA at SPR numbers 771-776,
779, 769, and 770, respectively)
B: The  non-privileged read-only Performance
Monitor registers (i.e., SIER, SIAR, SDAR, and
MMCR1 at SPR numbers 768, 780, 781, and 782,
respectively).

The SPRs in group B are treated as not implemented
registers for write (mtspr) operations. See the mtspr
instruction description in Section 4.4.4 for additional
information.

When the PCR makes a register in either group A or B
unavailable in problem state, that SPR is not included in
group A or B. 

The Performance Monitor can be effectively dis-
abled (i.e., put into a state in which Performance
Monitor SPRs are not altered and Performance
Monitor exceptions do not occur) by setting
MMCR0 to 0x0000_0000_8000_0000.

Software can insert probe no-op instructions at var-
ious points in a program and configure the Perfor-
mance Monitor such that the instruction is eligible
for sampling. See Section 9.4.2.1.

Because of this special meaning of and 0,0,0, this
form of and should not be used for other purposes.
Using it for other purposes may distort measure-
ments made by the Performance Monitor. If a no-op
is needed for other purposes, the preferred no-op
(ori 0,0,0) should be used. 

Programming Note

Programming Note

Depending on the events being monitored, the con-
tents of Performance Monitor registers may be
affected by aspects of the runtime environment
(e.g., cache contents) that are not directly attribut-
able to the programs being monitored.

Programming Note
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9.4.2 Performance Monitor 
Counters
The six Performance Monitor Counters, PMC1 through
PMC6, are 32-bit registers that count events.

Figure 64. Performance Monitor Counter registers

PMC1 - PMC4 are referred to as “programmable”
counters since the events that can be counted can be
specified by the program. The events that are counted
by each counter are specified in MMCR1.  

PMC5 and PMC6 are not programmable and can be
specified as being part of the Performance Monitor
Facility or not part of it. PMC5  counts instructions com-
pleted, and PMC6 counts cycles. The PMCC field in
MMCR0 controls whether or not PMCs 5-6 are part of
the Performance Monitor Facility, and the result of
accessing these counters when they are not part of the
Performance Monitor Facility. 

  

  

9.4.2.1 Event Counting and Sampling
The PMCs are enabled to count unless they are “fro-
zen” by one or more of the “freeze counters” fields in
MMCR0 or MMCR2.

Each of PMC’s 1-4 can be configured, using MMCR1,
to count “continuous” events (events that can occur at
any time), or to count “randomly sampled” events (or
“sampled” events) that are associated with the execu-
tion of randomly sampled instructions.

Continuous events always cause the counters to count
(unless counters are frozen). These events are speci-
fied for each counter by using encodes F0-FF in the
PMCn Selector fields in MMCR1.  

Randomly sampled events can cause the counters to
count only when random sampling has been enabled
by setting MMCR0SE=1. The types of instructions that
are sampled are specified in MMCRASM and
MMCRAES. Randomly sampled events are specified for
each counter by using encodes E0-EF in the PMCn
Selector fields in MMCR1.

Older versions of Performance Monitor facilities
used diffefrent sets of SPR numbers from those
shown in Section 4.4.4. (All 32-bit PowerPC imple-
mentations used a different set.

PMC1

PMC2

PMC3
PMC4

PMC5

PMC6
32                                                    63

PMC5 and PMC6 are defined to facilitate calculat-
ing basic performance metrics such as cycles per
instruction (CPI).

Software can use a PMC to “pace” the collection of
Performance Monitor data.  For example, if it is
desired to collect event counts every n cycles, soft-
ware can specify that a particular PMC count
cycles, and set that PMC to 0x8000_0000 - n.  The
events of interest would be counted in other PMCs.
The counter negative condition that will occur after
n cycles can, with the appropriate setting of MMCR
bits, cause counter values to become frozen, cause
a Performance Monitor exception to occur, etc.

Programming Note

Programming Note

Programming Note
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9.4.3 Threshold Event Counter
The threshold event counter and associated controls
are in MMCRA (see Section 9.4.7). When Performance
Monitor alerts are enabled (MMCR0PMAE=1), this
counter begins incrementing from value 0 upon each
occurrence of the event specified in the Threshold
Event Counter Event (TECE) field after the event speci-
fied by the Threshold Start Event (TS) field occurs. The
counter stops incrementing when the event specified in
the  Threshold End Event (TE) field occurs. The
counter subsequently freezes until the event specified
in the TS field is again recognized, at which point it
restarts incrementing from value 0 as explained above.
If the counter reaches its maximum value or a Perfor-
mance Monitor alert occurs, incrementing stops. After
the Performance Monitor alert occurs, the contents of
the threshold event counter are not altered by the hard-
ware until software sets MMCR0PMAE to 1.  

  

The threshold event counter value is represented as a
3-bit integral power of 4, multiplied by a 7-bit integer.
The exponent is contained in MMCRATECX, and the
multiplier is contained in MMCRATECM. For a given
counter exponent, e, and multiplier, m, the number rep-
resented is as follows:

N = 4e × m

This counter format allows the counter to represent a
range of 0 through approximately 2 million counts with
many fewer bits than would be required by a binary
counter. 

To represent a given counter value, hardware uses as e
the smallest 3-bit integer for which a 7-bit integer exists
such that the given counter value can be expressed
using this format. 

  

The value in the counter is the exact number of events
that occur for values from 0 through the maximum mul-
tiplier value (127), within 4 events of the exact value for
values from 128 - 508 (or 127×4), within 16 events of
the exact value for values from 512 - 2032 (or 127×42),
and so on. This represents an event count accuracy of
approximately 3%, which is expected to be sufficient for
most situations in which a count of events between a
start and end event is required.

  

A typical sequence of operations that enables use
the PMCs is as follows.

Freeze the counters by setting MMCR0FC=1.
Set control fields in MMCR0 and MMCR2 that
control counting in various privilege states and
other modes, and that enable counter negative
conditions.
Initialize the events to be counted by PMCs 1-4
using the PMCn Selector fields in MMCR1.
Specify the BHRB filtering mode, threshold
event Counter events, and whether or not ran-
dom sampling is enabled in the corresponding
fields in MMCRA.
Initialize the PMCs to the values desired. For
example, in order to configure a counter to
cause a counter negative condition after n
counts, that counter would be initialized to

232-n.
Set MMCR0FC to 0 to disable freezing the
counters, and set  MMCR0PMAE to 1 if a Per-
formance Monitor alert (and the corresponding
Performance Monitor interrupt) is desired
when an enabled condition or event occurs.
(See Section 9.2 for the definition of enabled
condition or event.)

When the Performance Monitor alert occurs, the
program would typically read the values of the
counters as well as the contents of SIAR, SDAR,
SIER as needed in order to extract the information
that was being monitored. 

See Sections 9.4.4 - 9.4.10 for information regard-
ing MMCRs, SIAR, SDAR, and SIER, and some
additional usage examples.

Programming Note

Because hardware can modify the contents of the
threshold event counter when random sampling is
enabled (MMCRASE=1) and MMCR0PMAE=1 at any
time, any value written to the threshold event
counter under this condition may be immediately
overwritten by hardware.

Software can obtain the number N from the con-
tents of the threshold event counter by shifting the
multiplier left twice times the value contained in the
exponent.

When using the threshold event counter, software
typically specifies a “threshold counter exceeded n”
event in MMCR1. This enables a PMC to count the
number of times the counter exceeded a specified
threshold value during the time Performance Moni-
tor alerts were enabled.

Programming Note

Programming Note
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Power ISA™ - Book III-S986



Version 2.07 B
9.4.4 Monitor Mode Control 
Register 0
Monitor Mode Control Register 0 (MMCR0) is a 64-bit
register as shown below.

Figure 65. Monitor Mode Control Register 0

MMCR0 is used to control multiple functions of the Per-
formance Monitor. Some fields of MMCR0 are altered
by the hardware when various events occur.

The following notation is used in the definitions below.
“PMCs” refers to PMCs 1 - n and  “PMCj” refers to
PMCj, where 2 ≤ j ≤ n. n=4 when MMCR0PMCC=0b11
and n=6 otherwise.

When MMCR0PMCC is set to 0b10 or 0b11, providing
problem state programs read/write access to MMCR0,
only FC, PMAE, PMAO can be accessed. All other bits
are not changed when mtspr is executed in problem
state, and all other bits return 0s when mfspr is exe-
cuted in problem state.

  

The bit definitions of MMCR0 are as follows.

Bit(s) Description

0:31 Reserved

32 Freeze Counters (FC)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented.

The hardware sets this bit to 1 when an
enabled condition or event occurs and
MMCR0FCECE=1.

33 Freeze Counters and BHRB in Privileged
State (FCS)

0 The PMCs are incremented (if permitted
by other MMCR bits), and entries are writ-
ten into the BHRB (if permitted by the
BHRB Instruction Filtering Mode field in
MMCRA).

1 The PMCs are not incremented, and
entries are not written into the BHRB, if
MSRHV PR=0b00.

34 Conditionally Freeze Counters and BHRB
in Problem State (FCP)

If the value of bit 51 (FCPC) is 0, this field has
the following meaning.

0 The PMCs are incremented (if permitted
by other MMCR bits) and entries are writ-
ten into the BHRB (if permitted by the
BHRB Instruction Filtering Mode field in
MMCRA).

1 The PMCs are not incremented, and
entries are not written into the BHRB, if
MSRPR=1.

If the value of bit 51 (FCPC) is 1, this field has
the following meaning.

0 The PMCs are not incremented, and
entries are not written into the BHRB, if
MSRHV PR=0b01.

1 The PMCs are not incremented, and
entries are not written into the BHRB, if
MSRHV PR=0b11.

  

35 Freeze Counters while Mark = 1 (FCM1)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPMM=1.

36 Freeze Counters while Mark = 0 (FCM0)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPMM=0.

37 Performance Monitor Alert Enable (PMAE)

0 Performance Monitor alerts are disabled
and BHRB entries are not written.

1 Performance Monitor alerts are enabled,
and BHRB entries are written (if enabled
by other bits) until a Performance Monitor
alert occurs, at which time:

MMCR0PMAE is set to 0
MMCR0PMAO is set to 1

MMCR0
0                                                                                                                     63

When PMCC=0b10 or 0b11, problem state pro-
grams have write access to MMCR0 in order to
enable event-based branch routines to reset the FC
bit after it has been set to 1 as a result of an
enabled condition or event (FCECE=1). During
event processing, the event-based branch handler
would write the desired initial values to the PMCs
and reset the FC bit to 0. PMAO and PMAE can
also be set to their appropriate values during the
same write operation before returning.

Programming Note

In order to freeze counters in problem
state regardless of MSRHV, MMCR0FCPC
must be set to 0 and MMCR0FCP must be
set to 1.

Programming Note
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38 Freeze Counters on Enabled Condition or
Event (FCECE)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are incremented (if permitted
by other MMCR bits)    until an enabled
condition or event occurs when
MMCR0TRIGGER=0, at which time:

MMCR0FC is set to 1

If the enabled condition or event occurs when
MMCR0TRIGGER=1, the FCECE bit is treated
as if it were 0.

39:40 Time Base Selector (TBSEL)

This field selects the Time Base bit that can
cause a Time Base transition event (the event
occurs when the selected bit changes from 0
to 1).

00  Time Base bit 63 is selected.
01  Time Base bit 55 is selected.
10  Time Base bit 51 is selected.
11  Time Base bit 47 is selected.

  

41 Time Base Event Enable (TBEE)

0 Time Base transition events are disabled.
1 Time Base transition events are enabled.

  

42 BHRB Available (BHRBA)
This field controls whether the BHRB instruc-
tions are available in problem state. If an
attempt is made to execute a BHRB instruc-
tion in problem state when the BHRB instruc-
tions are not available, a Facility Unavailable
interrupt will occur.

0 clrbhrb and mfbhrbe are not available in
problem state.

1 clrbhrb and mfbhrbe are available in
problem state unless they have been
made unavailable by some other register.

43 Performance Monitor Event-Based Branch
Enable (EBE)
This field controls whether Performance Moni-
tor event-based branches and Performance
Monitor event-based exceptions are enabled. 

When Performance Monitor event-based
branches and exceptions are disabled, no
Performance Monitor event-based branches
or exceptions occur regardless of the state of
BESCRPME.

Software can set this bit and
MMCR0PMAO to 0 to prevent Performance
Monitor exceptions.

Software can set this bit to 1 and then poll
the bit to determine whether an enabled
condition or event has occurred. This is
especially useful for software that runs
with MSREE=0.

In earlier versions of the architecture that
lacked the concept of Performance Moni-
tor alerts, this bit was called Performance
Monitor Exception Enable (PMXE).

Programming Note

Time Base transition events can be used
to collect information about activity, as
revealed by event counts in PMCs and by
addresses in SIAR and SDAR, at periodic
intervals.

In multi-threaded systems in which the
Time Base registers are synchronized
among the threads, Time Base transition
events can be used to correlate the Per-
formance Monitor data obtained by the
several threads.  For this use, software
must specify the same TBSEL value for all
the threads in the system.

Because the frequency of the Time Base
is implementation-dependent, software
should invoke a system service program
to obtain the frequency before choosing a
value for TBSEL.

When PMC3 is configured to count the
occurrence of Time Base transition
events, the events are counted regardless
of the value of MMCR0TBEE. (See Section
9.4.5.) The occurrence of a Time Base
transition causes a Performance Monitor
alert only if MMCR0TBEE=1.

Programming Note

Programming Note
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0 Performance Monitor event-based
branches and exceptions are disabled.

1 Performance Monitor event-based
branches and exceptions are enabled.

   

44:45 PMC Control (PMCC)

This field controls whether or not PMCs 5 - 6
are included in the Performance Monitor, and
the accessibility of groups  A and B (see Sec-
tion 9.4.1) of non-privileged SPRs in problem
state as described below. 

I   

   

00 PMCs 5 - 6 are included in the Perfor-
mance Monitor. 
Groups A and B are read-only in problem
state. If an attempt is made to write to an
SPR in group A in problem state, a Hyper-
visor Emulation Assistance interrupt will
occur.

01 PMCs 5 - 6 are included in the Perfor-
mance Monitor. 
Group A is not allowed to be read or writ-
ten in problem state, and group B is not
allowed to be read in problem state. If an
attempt is made, in problem state, to read
or write to an SPR in group A, or to read
from an SPR in group B, a Facility
Unavailable interrupt will occur.

10 PMCs 5 - 6 are included in the Perfor-
mance Monitor. 
Group A is  allowed to be read and written
in problem state, and group B except for
MMCR1 (SPR 782) is  allowed to be read
in problem state. If an attempt is made to
read MMCR1 in problem state, a Facility
Unavailable interrupt will occur.

11 PMCs 5  - 6 are not included in the Perfor-
mance Monitor. See Section 9.4.2 for
details.
Group A except for PMCs 5-6 (SPRs
775,776) is  allowed to be read and written
in problem state, and group B except for
MMCR1 (SPR 782) is  allowed to be read
in problem state.
If an attempt is made, in problem state, to
read or write to PMCs 5-6 (SPRs
775,776), or to read from MMCR1, a Facil-
ity Unavailable interrupt will occur.

When an SPR is made available by the
PMCC field, it is available only if it has not
been made unavailable by the HFSCR (see
Section 6.2.11).

In order to enable a problem state applica-
tions to use the event-based Branch facil-
ity for Performance Monitor events,
privileged software initializes MMCR1 to
specify the events to be counted, and sets
MMCR2, and MMCRA to specify addi-
tional sampling controls. MMCR0 should
be initialized with PMCC set to 0b10 or
ob11 (to give problem state access to var-
ious Performance Monitor registers),
PMAE and PMAO set to 0s (disabling Per-
formance Monitor alerts), and EBE set to
1 (enabling Performance Monitor
event-based branches and exceptions to
occur). If the Event-Based Branch facility
has not been enabled in the FSCR and
HFSCR, it must be enabled in these regis-
ters as well.

The above operations by the operating
system enable the application  to control
Performance Monitor event-based branch-
ing by means of BESCRPME (to enable or
disable Performance Monitor event-based
branching) and MMCR0PMAE (to enable or
disable Performance  Monitor alerts).

The PMCC field does not affect the
behavior of the privileged Performance
Monitor registers (SPRs 784-792,
795-798); accesses to these SPRs in
problem state result in Privileged Instruc-
tion type Program interrupts.

The PMCC field also does not affect the
behavior of write operations to group B;
write operations to SPRs in group B are
treated as not supported regardless of
privilege state. See the mtspr instruction
description in Section 4.4.4 for additional
information on accessing SPRs that are
not supported.

Programming Note

Programming Note

When the PCR makes SPRs unavailable
in problem state, they are treated as not
implemented, and they are not included in
groups A or B regardless of the value of
PMCC. Thus when the PCR indicates a
version of the architecture prior to V. 2.07
(i.e., PCRv2.06=1), the PMCC field does
not affect SPRs MMCR2 or SIER, which
are newly-defined in V. 2.07; these SPRs
are treated as unimplemented registers.
Accesses to them in problem state result
in Hypervisor Emulation Assistance inter-
rupts regardless of the value of PMCC,
and Facility Unavailable interrupts do not
occur for them. See Section 2.6 for addi-
tional information.

Programming Note
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46 Freeze Counters in Transactional State
(FCTS)

0 PMCs are incremented (if permitted by
other MMCR bits).

1 PMCs are not incremented when the
thread is in Transactional state.

47 Freeze Counters in Non-Transactional
State (FCNTS)

0 PMCs are incremented (if permitted by
other MMCR bits).

1 PMCs are not incremented when the
thread is in Non-transactional state.

48 PMC1 Condition Enable (PMC1CE)

This bit controls whether counter negative
conditions due to a negative value in PMC1
are enabled.

0 Counter negative conditions for PMC1 are
disabled.

1 Counter negative conditions for PMC1 are
enabled.

49 PMCj Condition Enable (PMCjCE)

This bit controls whether counter negative
conditions due to a negative value in any
PMCj (i.e., in any PMC except PMC1) are
enabled.

0 Counter negative conditions for all PMCjs
are disabled.

1 Counter negative conditions for all PMCjs
are enabled.

50 Trigger (TRIGGER)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 PMC1 is incremented (if permitted by
other MMCR bits).  The PMCjs are not
incremented until PMC1 is negative or an
enabled condition or event occurs, at
which time:

the PMCjs resume incrementing (if
permitted by other MMCR bits)
MMCR0TRIGGER is set to 0

See the description of the FCECE bit, above,
regarding the interaction between TRIGGER
and FCECE.

In order to give problem state programs
the same level of access to the Perfor-
mance Monitor registers as was specified
in Power ISA V 2.06, PMCC  must be set
to 0b00  (restricting access to read-only)
and the PCR should indicate Version 2.06
(restricting access to the set of Perfor-
mance Monitor SPRs and SPR bits that
were defined in V 2.06).

When PMCC=0b00 and a write operation
to a Performance Monitor register in group
A or B is attempted in problem state, a
Hypervisor Emulation Assistance interrupt
occurs in order to maintain compatibility
with V 2.06. For other values of PMCC,
write or read operations to group A and
read operations from group B that are not
allowed result in Facility Unavailable inter-
rupts. Facility Unavailable interrupts pro-
vide the operating system with more
information about the type of disallowed
access that was attempted than the
Hypervisor Emulation Assistance interrupt
provides. See Section 6.2.10 for additional
information. 

In order to prevent applications from
accessing Performance Monitor registers,
PMCC is set to 0b01.

In order to allow applications limited con-
trol over the Performance Monitor, PMCC
is set to 0b10 or 0b11.  These values are
also used when Performance Monitor
event-based branches are enabled.

Programming Note

Programming Note
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51 Freeze Counters and BHRB in Problem
State Condition (FCPC)

This bit controls the meaning of bit 34 (FCP).
See the definition of bit 34 for details.

  

52 Performance Monitor Alert Qualifier
(PMAQ)

This bit provides additional implementation-dependent
information about the cause of the Perfor-
mance Monitor alert. When a Performance
Monitor alert occurs, this bit is set to 0 if no
additional information is available.53:54
Reserved

55 Control Counters 5 - 6 with Run Latch
(CC5-6RUN)
When MMCR0PMCC = b11, the setting of this
bit has no effect; otherwise it is defined as fol-
lows.

0 PMCs 5 and 6 are incremented if
CTRLRUN=1 (if permitted by other MMCR
bits).

1 PMCs 5 and 6 are incremented regardless
of the value of CTRLRUN (if permitted by
other MMCR bits).

56 Performance Monitor Alert Occurred
(PMAO)

0 A Performance Monitor alert has not
occurred since the last time software set
this bit to 0.

1 A Performance Monitor alert has occurred
since the last time software set this bit to
0.

This bit is set to 1 by the hardware when a
Performance Monitor alert occurs. This bit can
be set to 0 only by the mtspr instruction.

  

57 Freeze Counters in Suspended State
(FCSS)

0 PMCs are incremented (if permitted by
other MMCR bits).

1 PMCs are not incremented when the
thread is in Suspended state.

58 Freeze Counters 1-4 (FC1-4)

0 PMC1 - PMC4 are incremented (if permit-
ted by other MMCR bits).

1 PMC1 - PMC4 are not incremented.

59 Freeze Counters 5-6 (FC5-6)

0 PMC5 - PMC6 are incremented (if permit-
ted by other MMCR bits).

1 PMC5 - PMC6 are not incremented.

60:61 Reserved

62 Freeze Counters 1-4 in Wait State
(FC1-4WAIT)

0 PMCs 1-4 are incremented (if permitted
by other MMCR bits).

1 PMCs 1-4, except for PMCs counting
events that are not controlled by this bit,
are not incremented if CTRLRUN=0.

Uses of TRIGGER include the following.

Resume counting in the PMCjs when
PMC1 becomes negative, without
causing a Performance Monitor inter-
rupt.  Then freeze all PMCs (and
optionally cause a Performance Mon-
itor interrupt) when a PMCj becomes
negative.  The PMCjs then reflect the
events that occurred between the
time PMC1 became negative and the
time a PMCj becomes negative.  This
use requires the following MMCR0 bit
settings.

- TRIGGER=1
- PMC1CE=0
- PMCjCE=1
- TBEE=0
- FCECE=1
- PMAE=1 (if a Performance Moni-

tor interrupt is desired)

Resume counting in the PMCjs when
PMC1 becomes negative, and cause
a Performance Monitor interrupt with-
out freezing any PMCs.  The PMCjs
then reflect the events that occurred
between the time PMC1 became
negative and the time the interrupt
handler reads them. This use
requires the following MMCR0 bit set-
tings.

- TRIGGER=1
- PMC1CE=1
- TBEE=0
- FCECE=0
- PMAE=1

In order to enable the FCP bit to freeze
counters in problem state regardless of
MSRHV, MMCR0FCPC  must be set to 0.

Programming Note

Programming Note

Software can set this bit to 1 and set
PMAE to 0 to simulate the occurrence of a
Performance Monitor alert.

Software should set this bit to 0 after han-
dling the Performance Monitor alert.

Programming Note
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63 Freeze Counters and BHRB in Hypervisor
State (FCH)

0 The PMCs are incremented (if permitted
by other MMCR bits) and BHRB entries
are written (if permitted by the BHRB
Instruction Filtering Mode field in
MMCRA).

1 The PMCs are not incremented and
BHRB entries are not written if
MSRHV PR=0b10.

9.4.5 Monitor Mode Control 
Register 1
Monitor Mode Control Register 1 (MMCR1) is a 64-bit
register as shown below.

Figure 66. Monitor Mode Control Register 1

MMCR1 enables software to specify the events that are
counted by the PMCs. 

In the following descriptions, events due to randomly
sampled instructions occur only if random sampling is
enabled (MMCRASE=1); all other events occur when-
ever the event specification is met regardless of the
value of MMCRASE.

Various events defined below refer to “threshold A”
through “threshold H”. The table below specifies the
number of threshold event counter events correspond-
ing to each of these thresholds. 

The bit definitions of MMCR1 are as follows.  Imple-
mentation-dependent MMCR1 bits that are not sup-
ported  are treated as reserved.

Bit(s) Description

0:31 Problem state access (SPR 782)
Reserved

Privileged access (SPR 782 or 798)
Implementation-dependent

32:39 PMC1 Selector (PMC1SEL)
The value of PMC1SEL specifies the event to
be counted by PMC1 as defined below. 
All values in the range of E0 - FF that are not
specified below are reserved.

Hex          Event

00 Disable events. (No events occur.)
01-BF Implementation-dependent
C0-DF Reserved

The following events can occur only when ran-
dom sampling is enabled (MMCRASE=1). The
sampling modes corresponding to each event
are listed in parentheses. (The sampling mode
is specified in MMCRASM.)
E0 The thread has dispatched a randomly

sampled instruction. (RIS)
E2 The thread has completed a randomly

sampled Branch instruction for which the
branch was taken. (RIS, RBS)

E4 The thread has failed to locate a randomly
sampled instruction in the primary instruc-
tion cache. (RIS)

E6 The threshold event counter has
exceeded the number of events corre-
sponding to threshold A (see Table 3).
(RIS, RLS, RBS)

E8 The threshold event counter has
exceeded the number of events corre-
sponding to threshold E (see Table 3).
(RIS, RLS, RBS)

EA The thread filled a block in a data cache
with data that were accessed by a ran-
domly sampled Load instruction. (RIS,
RLS)

EC The threshold event counter has reached
its maximum value when random sam-
pling is enabled. (RIS, RLS, RBS)

The following events can occur regardless of
whether random sampling is enabled. 

F0 A cycle has occurred. This event is not
controlled by MMCR0FC1-4WAIT.

F2 A cycle has occurred in which the thread
completed one or more instructions.

F4 The thread has completed a Float-
ing-Point, Vector Floating-Point, or VSX

When PMC 1 is counting cycles, it is not
controlled by this bit. See the description
of the F0 event in Section 9.4.5.

MMCR1
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Threshold Events

A 4096

B 32

C 64

D 128

E 256

F 512

G 1024

H 2048

Table 3: Event Counts for thesholds A-H

Programming Note
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Floating-Point  instruction other than a
Load or Store instruction to the point at
which it has reported all exceptions it will
cause.

F6 The thread has failed to locate an ERAT
entry during instruction address transla-
tion. 

F8 A cycle has occurred during which all pre-
viously initiated instructions have com-
pleted and no instructions are available for
initiation.

FA A cycle has occurred during which the
RUN bit of the CTRL register for one or
more threads of the multi-threaded pro-
cessor was set to 1.

40:47 PMC2 Selector (PMC2SEL)
The value of PMC2SEL specifies the event to
be counted by PMC2 as defined below. 
All values in the range of E0 - FF that are not
specified below are reserved.

Hex          Event

00 Disable events. (No events occur.)
01-BF Implementation-dependent
C0-DF Reserved

The following events can occur only when ran-
dom sampling is enabled (MMCRASE=1). The
sampling modes corresponding to each event
are listed in parentheses. (The sampling mode
is specified in MMCRASM.)
E0 The thread has obtained the data for a

randomly sampled Load instruction from
storage that did not reside in any cache.
(RIS, RLS)

E2 The thread has failed to locate the data for
a randomly sampled Load instruction in
the primary data cache. (RIS, RLS)

E4 The thread filled a block in the primary
data cache with data that were accessed
by a randomly sampled Load instruction
and obtained from a location other than
the secondary or tertiary cache. (RIS,
RLS)

E6 The threshold event counter has
exceeded the number of events corre-
sponding to threshold B (see Table 3).
(RIS, RLS, RBS)

E6 The threshold event counter has
exceeded the number of events corre-
sponding to threshold F (see Table 3).
(RIS, RLS, RBS)

The following events can occur regardless of
whether random sampling is enabled. 
 
F0 The thread has completed a Store instruc-

tion to the point at which it has reported all
the exceptions it will cause.

F2 The thread has dispatched an  instruction.
F4 A cycle has occurred during which the

RUN  bit of the thread’s CTRL register
contained 1.

F6 The thread has failed to locate an ERAT
entry during data address translation, and
a new ERAT entry corresponding to the
data effective address has been written.

F8 An external interrupt for the thread has
occurred.

FA The thread has completed a Branch
instruction for which the branch was
taken.

FC The thread has failed to locate an instruc-
tion in the primary cache.

FE The thread has filled a block in the primary
data cache with data that were accessed
by a Load instruction and obtained from a
location other than the secondary cache.

48:55 PMC3Selector (PMC3SEL)
The value of PMC3SEL specifies the event to
be counted by PMC3 as defined below. 
All values in the range of E0 - FF that are not
specified below are reserved.

Hex          Event

00 Disable events. (No events occur.)
01-BF Implementation-dependent
C0-DF Reserved

The following events can occur only when ran-
dom sampling is enabled (MMCRASE=1). The
sampling modes corresponding to each event
are listed in parentheses. (The sampling mode
is specified in MMCRASM.)
E2 The thread has completed a randomly

sampled Store  instruction to the point at
which it has reported all exceptions it will
cause. (RIS,RLS)

E4 The thread has mispredicted either
whether or not the branch would  be
taken, or if taken, the target address of a
randomly sampled Branch instruction.
(RIS, RBS)

E6 The thread has failed to locate an ERAT
entry during data address translation for a
randomly sampled instruction. (RIS,RLS)

E8 The threshold event counter has
exceeded the number of events corre-
sponding to threshold C (see Table 3).
(RIS, RLS, RBS)

EA The threshold event counter has
exceeded the number of events corre-
sponding to threshold G (see Table 3).
(RIS, RLS, RBS)

The following events can occur regardless of
whether random sampling is enabled. 
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F0 The thread has attempted to store data in
the primary data cache but no block corre-
sponding to the real address existed.

F2 The thread has dispatched an instruction.
F4 The thread has completed an instruction

when the RUN bit of the CTRL register for
all threads on the multi-threaded proces-
sor contained 1. 

F6 The thread has filled a block in the primary
data cache with data that were accessed
by a Load instruction.

F8 A Time Base transition event has occurred
for the thread. This event is counted
regardless of whether or not Time Base
transition events are enabled by
MMCR0TBEE.

FA The thread has loaded an instruction from
a higher level cache than the tertiary
cache.

FC The thread was unable to translate a data
virtual address using the TLB.

FE The thread has filled a block in the primary
data cache with data that were accessed
by a Load instruction and obtained from a
location other than the secondary or ter-
tiary cache.

56:63 PMC4 Selector (PMC4SEL)
The value of PMC4SEL specifies the event to
be counted by PMC4 as defined below. 
All values in the range of E0 - FF that are not
specified below are reserved.

Hex          Event

00 Disable events. (No events occur.)
01-BF Implementation-dependent
C0-DF Reserved

The following events can occur only when ran-
dom sampling is enabled (MMCRASE=1). The
sampling modes corresponding to each event
are listed in parentheses. (The sampling mode
is specified in MMCRASM.)
E0 The thread has completed a randomly

sampled instruction. (RIS, RLS, RBS)
E4 The thread was unable to translate a data

virtual address using the TLB. (RIS,RLS)
E6 The thread has loaded a randomly sam-

pled instruction from a higher level cache
than the tertiary cache. (RIS)

E8 The thread has filled a block in the primary
data cache with data that were accessed
by a randomly sampled Load instruction
and obtained from a location other than
the secondary cache. (RIS, RLS)

EA The threshold event counter has
exceeded the number of events corre-
sponding to threshold D (see Table 3).
(RIS, RLS, RBS)

EC The threshold event counter has
exceeded the number of events corre-

sponding to threshold H (see Table 3).
(RIS, RLS, RBS)

The following events can occur regardless of
whether random sampling is enabled. 
 
F0 The thread has attempted to load data

from the primary data cache but no block
corresponding to the real address existed.

F2 A cycle has occurred during which the
thread has dispatched one or more
instructions.

F4 A cycle has occurred during which the
PURR was incremented when the RUN bit
of the thread’s CTRL register contained 1.

F6 The thread has mispredicted either
whether or not the branch would  be
taken, or if taken, the target address of a
Branch instruction. 

F8 The thread has discarded prefetched
instructions.

FA The thread has completed an instruction
when the RUN bit of the thread’s CTRL
register contained 1. 

FC The thread was unable to translate an
instruction virtual address using the TLB,
and a new TLB entry corresponding to the
instruction virtual address has been writ-
ten.

FE The thread has obtained the data for a
Load instruction from storage that did not
reside in any cache.

  

9.4.6 Monitor Mode Control 
Register 2
Monitor Mode Control Register 2 (MMCR2) is a 64-bit
register that contains 9-bit control fields for controlling
the operation of PMC1 - PMC6 as shown below.

Figure 67. Monitor Mode Control Register 2

When MMCR0PMCC = 0b11, fields C1 - C4 control the
operation of PMC1 - PMC4, respectively and fields C5
and C6 are ignored by the hardware; otherwise, fields

In versions of the architecture that pre-
cede Version 2.02 the PMC Selector
Fields were six bits long, and were split
between MMCR0 and MMCR1.  PMC1-8
were all programmable. 

If more programmable PMCs are imple-
mented in the future, additional MMCRs
may be defined to cover the additional
selectors.

C1 C2 C3 C4 C5 C6 Res’d.
0          8 9          17 18       26 27       35 36       44 45       53 54       63

Compatibility Note
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C1 - C6 control the operation of PMC1 - PMC6, respec-
tively.  The bit definitions of each Cn field are as follows,
where n = 1,...6.

When MMCR0PMCC is set to 0b10 or 0b11, providing
problem state programs read/write access to MMCR2,
only the FCnP0 bits can be accessed. All other bits are
not changed when mtspr is executed in problem state,
and all other bits return 0s when mfspr is executed in
problem state.

Bit Description

0 Freeze Counter n in Privileged State
(FCnS)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if
MSRHV PR=0b00.

1 Freeze Counter n in Problem State if
MSRHV=0 (FCnP0)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if
MSRHV PR=0b01.

  

2 Freeze Counter n in Problem State if
MSRHV=1 (FCnP1)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if
MSRHV PR=0b11.

3 Freeze Counter n while Mark = 1 (FCnM1)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if MSRPMM=1.

4 Freeze Counter n while Mark = 0 (FCnM0)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if MSRPMM=0.

5 Freeze Counter n in Wait State (FCnWAIT)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if CTRLRUN=0.

  

6 Freeze Counter n in Hypervisor State
(FCnH)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if
MSRHV PR=0b10.

Bits 54:63 of MMCR2 are reserved.

9.4.7 Monitor Mode Control 
Register A
Monitor Mode Control Register A (MMCRA) is a 64-bit
register as shown below.

Figure 68. Monitor Mode Control Register A

MMCRA gives privileged programs the ability to control
the sampling process, BHRB filtering, and threshold
events.   

When  MMCR0PMCC is set to 0b10 or 0b11, providing
problem state programs read/write access to MMCRA,
the Threshold Event Counter Exponent (TECX) and
Threshold Event Counter Multiplier (TECM) fields are
read-only, and all other fields return 0s, when mfspr is
executed in problem state; all fields are not changed
when mtspr is executed in problem state.

  

The bit definitions of MMCRA are as follows.

Bit(s) Description

0:31 Problem state access (SPR 770)
Reserved

Privileged access (SPR 770 or 786)
Implementation-dependent

32:33 BHRB Instruction Filtering Mode  (IFM)
This field controls the filter criterion used by
the hardware when recording Branch instruc-
tions in the BHRB. See Section 9.5.

Problem state programs need access to
this field in order to enable them to individ-
ually enable counters when analyzing
sections of code. All the other fields will
typically be initialized by the operating
system.

Programming Note

The operating system is expected to set
CTRLRUN to 0 when the thread is in a
“wait state”, i.e., when there is no process
ready to run.

MMCRA
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Read/write access is provided to MMCRA in prob-
lem state (SPR  770) when MMCR0PMCC = 0b10 or
0b11 even though no fields can be modified by
mtspr because future versions of the architecture
may allow various fields of MMCRA to be modified
in problem state.

Programming Note

Programming Note
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00 No filtering
01 Do not record any Branch instructions

unless the LK field is set to 1.
10 Do not record I-Form instructions. For

B-Form and XL-Form instructions for
which the BO field indicates “Branch
always,” do not record the instruction if it is
B-Form and do not record the instruction
address but record only the branch target
address if it is XL-Form.

11 Filter and enter BHRB entries as for mode
10, but for B-Form and XL-Form instruc-
tions for which BO0=1 or for which the “a”
bit in the BO field is set to 1, do not record
the instruction if it is B-Form and do not
record the instruction address but record
only the branch target address if it is
XL-Form.

  

34:36 Threshold Event Counter Exponent
(TECX)

This field species the exponent of the thresh-
old event counter value. See Section 9.4.3 for
additional information. The maximum expo-
nent supported is at least 5.

37 Reserved

38:44 Threshold Event Counter Multiplier (TECM)

This field species the multiplier of the thresh-
old event counter value. See Section 9.4.3 for
additional information.

  

45:47 Threshold Event Counter Event (TECE)

This field specifies the event, if any, that is
counted by the threshold event counter. The
values and meanings are follows.

Value     Event

000 Disable counting.
001 A cycle has occurred.
010 An instruction has completed.
011 Reserved

All other values are implementation-depen-
dent.

48:51 Threshold Start Event  (TS)

This field specifies the event that causes the
threshold event counter to start counting
occurrences of the event specified in the
Threshold Event Counter Event (TECE) field.
The events only occur if MMCRASE=1 (ran-
dom sampling enabled) and one of the sam-
pling modes listed in parenthesis is in effect.
(The sampling mode that is currently in effect
is specified in MMCRASM.)
0000 Reserved.
0001 The thread has randomly sampled an

instruction  while it is being decoded.
(RIS)

0010 The thread has dispatched a randomly
sampled instruction. (RIS)

0011 A randomly sampled instruction has
been sent to a facility (e.g. Branch,
Fixed Point, etc.) (RIS, RLS, RBS)

0100 The thread has completed a randomly
sampled instruction to the point at which
it has reported all exceptions it will
cause. (RIS, RLS, RBS)

0101 The thread has completed a randomly
sampled instruction. (RIS, RLS, RBS)

The filters provided by the 10 and 11 val-
ues of the IFM field can be restated in
terms of the operation performed as fol-
lows:

10 Do not record the instruction
address of any unconditional
Branch instruction; record only
the target address of  XL-form
unconditional Branch instruc-
tions.

11 Filter as for encoding 10, but for
conditional Branch instructions
that provide a hint or that do not
depend on the value of CRBI, do
not record the instruction if it is
B-Form and record only the tar-
get address if it is XL-Form.

Programming Note

When MMCR0PMCC = 0b10 or 0b11, pro-
viding problem-state programs read-write
access to MMCRA, problem state pro-
grams are able to read only the TECX and
TECM fields (and are not able to write any
fields). The values of these fields are
needed during the processing of an
event-based branch that occurs due to a
counter negative condition for a PMC that
was counting “threshold counter
exceeded n” events (e.g. MMCR1PMC1SEL
= 0xE8). Reading these fields enables the
application to determine the amount by
which the threshold was exceeded. Appli-
cations are not given access to other
fields, and these other fields must initial-
ized by the operating system.

Programming Note
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0110 The thread has failed to locate data for a
randomly sampled Load instruction in
the primary data cache. (RIS, RLS)

0111 The thread has filled a block in the pri-
mary data cache with data that were
accessed by a randomly sampled Load
instruction. (RIS, RLS)

The definition of the following values depends
on whether the access to MMCRA is in prob-
lem state or in privileged state.

Problem state access (SPR 770)
1000 - 1111 - Reserved

Privileged access (SPR 770 or 786)
1000 - 1111 - Implementation-dependent

52:55 Threshold End Event  (TE)

This field specifies the event that causes the
threshold event counter to stop counting
occurrences of the event specified in the
Threshold Event Counter Event (TECE) field.
The events only occur if MMCRASE=1 (ran-
dom sampling enabled) and one of the sam-
pling modes listed in parenthesis is in effect.
(The sampling mode that is currently in effect
is specified in MMCRASM.)
0000 Reserved
0001 The thread has randomly sampled an

instruction  while it is being decoded.
(RIS)

0010 The thread has dispatched a randomly
sampled instruction. (RIS)

0011 A randomly sampled instruction has
been sent to a facility (e.g. Branch,
Fixed Point, etc.) (RIS, RLS, RBS)

0100 The thread has completed a randomly
sampled instruction to the point at which
it has reported all exceptions that it will
cause. (RIS, RLS, RBS)

0101 The thread has completed a randomly
sampled instruction. (RIS, RLS, RBS)

0110 The thread has failed to locate data for a
randomly sampled Load instruction in
the primary data cache. (RIS, RLS)

0111 The thread has filled a block in the pri-
mary data cache with data that were
accessed by a randomly sampled Load
instruction. (RIS, RLS)

The definition of the following values depends
on whether the access to MMCRA is in prob-
lem state or in privileged state.

Problem state access (SPR 770)
1000 - 1111 - Reserved

Privileged access (SPR 770 or 786)
1000 - 1111 - Implementation-dependent

56 Reserved

57:59 Eligibility for Random Sampling  (ES)
When random sampling is enabled
(MMCRASE=1) and the SM field indicates ran-
dom instruction sampling (RIS), the encodings
of this field specify the instructions that are eli-
gible to be sampled as follows.

000 All instructions
001 All Load and Store instructions
010 All probe no-op instructions
011 Reserved

The definition of the following values depends
on whether the access to MMCRA is in prob-
lem state or in privileged state.

Problem state access (SPR 770)
100 - 111 - Reserved

Privileged access (SPR 770 or 786)
100 - 111 - Implementation-dependent

When random sampling is enabled
(MMCRASE=1) and the SM field indicates ran-
dom Load/Store Facility sampling (RLS), the
encodings of this field specify the instructions
that are eligible to be sampled as follows.
000 Instructions for which the thread has

attempted to load data from the data
cache but no block corresponding to the
real address existed.

001 Reserved
010 Reserved
011 Reserved

The definition of the following values depends
on whether the access to MMCRA is in prob-
lem state or in privileged state.

Problem state access (SPR 770)
100 - 111 - Reserved

Privileged access (SPR 770 or 786)
100 - 111 - Implementation-dependent

When random sampling is enabled
(MMCRASE=1) and the SM field indicates ran-
dom Branch Facility sampling (RBS), the
encodings of this field specify the instructions
that are eligible to be sampled as follows.
000 Instructions for which the thread has

either mispredicted whether or not the
branch would  be taken, or if taken, the
target address of a Branch instruction.

001 Instructions for which the thread has
mispredicted whether or not the branch
of a Branch instruction would be taken
because the contents of the Condition
Register differed from the predicted con-
tents.

010 Instructions for which the thread has
mispredicted the target address of a
Branch instruction.
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011 All Branch instructions for which the
branch was taken.

The definition of the following values depends
on whether the access to MMCRA is in prob-
lem state or in privileged state.

Problem state access (SPR 770)
100 - 111 - Reserved

Privileged access (SPR 770 or 786)
100 - 111 - Implementation-dependent

60 Reserved

61:62 Random Sampling Mode (SM)

00 Random Instruction Sampling (RIS) -
Instructions that meet the criterion speci-
fied in the ES field for random instruction
sampling are eligible to be sampled.

01 Random Load/Store Facility Sampling
(RLS) - Instructions that meet the criterion
specified in the ES field for random Load/
Store Facility sampling are eligible for
sampling.

10 Random Branch Facility Sampling
(RBS) - Instructions that meet the criterion
specified in the ES field for random
Branch Facility sampling are eligible for
sampling.

11 Reserved

63 Random Sampling Enable (SE)

0 Random sampling is disabled.
1 Random sampling is enabled. 

See Section 9.4.2.1 for information about ran-
dom sampling.

9.4.8 Sampled Instruction 
Address Register
The Sampled Instruction Address Register (SIAR) is a
64-bit register.

Figure 69. Sampled Instruction Address Register

When a Performance Monitor alert occurs because of
an event caused by execution of a randomly sampled
instruction, the SIAR contains the effective address of
the instruction if SIERSIARV = 1 and contains an unde-
fined value if  SIERSIARV = 0.

When a Performance Monitor alert occurs because of
an event other than an event caused by execution of a
randomly sampled instruction, the SIAR contains the
effective address of an instruction that was being exe-

cuted, possibly out-of-order, at or around the time that
the Performance Monitor alert occurred.

The instruction located at the effective address con-
tained in the SIAR is called the “sampled instruction”.

The contents of SIAR may be altered by the hardware if
and only if MMCR0PMAE=1.  Thus after the Perfor-
mance Monitor alert occurs, the contents of SIAR are
not altered by the hardware until software sets
MMCR0PMAE to 1.  After software sets MMCR0PMAE to
1, the contents of SIAR are undefined until the next
Performance Monitor alert occurs.

  

9.4.9 Sampled Data Address Reg-
ister
The Sampled Data Address Register (SDAR) is a 64-bit
register.

Figure 70. Sampled Data Address Register

When a Performance Monitor alert occurs because of
an event caused by execution of a randomly sampled
instruction, the SDAR contains the effective address of
the storage operand of the instruction if SIERSDARV = 1
and contains an undefined value if  SIERSDARV = 0.

When a Performance Monitor alert occurs because of
an event other than an event caused by execution of a
randomly sampled instruction, the SDAR contains the
effective address of the storage operand of an instruc-
tion that was being executed, possibly out-of-order, at
or around the time that the Performance Monitor alert
occurred. This storage operand may or may not be the
storage operand (if any) of the sampled instruction.

The data located at the effective address contained in
the SDAR are called the “sampled data.”

The contents of SDAR may be altered by the hardware
if and only if MMCR0PMAE=1. Thus after the Perfor-
mance Monitor alert occurs, the contents of SDAR are
not altered by the hardware until software sets
MMCR0PMAE to 1. After software sets MMCR0PMAE to
1, the contents of SDAR are undefined until the next
Performance Monitor alert occurs.

SIAR
0                                                                                                                     63

When the Performance Monitor  alert   occurs, 
SIERAMPPR SAMPHV indicates the value of
MSRHV PR that was in effect when the sampled
instruction was being executed. (The contents of
these SIER bits are visible only in privileged state.)

SDAR
0                                                                                                                     63

Programming Note
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9.4.10 Sampled Instruction Event 
Register
The Sampled Instruction Event Register (SIER) is a
64-bit register. 

Figure 71. Sampled Instruction Event Register

When random sampling is enabled and a Performance
Monitor alert occurs because of an event caused by
execution of a randomly sampled instruction, the SDAR
contains information about the sampled instruction.
The contents of all fields are valid unless otherwise
indicated.

  

When random sampling is disabled or when a Perfor-
mance Monitor alert occurs because of an event that
was not caused by execution of a randomly sampled
instruction, the contents of the SIER are undefined. 

The contents of SIER may be altered by the hardware if
and only if MMCR0PMAE=1. Thus after the Performance
Monitor alert occurs, the contents of SIER are not
altered by the hardware until software sets
MMCR0PMAE to 1. After software sets MMCR0PMAE to
1, the contents of SIER are undefined until the next
Performance Monitor alert occurs.

The bit definitions of the SIER are as follows.

0:37 The definition of these bits depends on
whether the access to SIER is in problem
state or in privileged state.

Problem state access (SPR 768)
Reserved

Privileged access (SPR 768 or 784)
Implementation-dependent

38:40 The definition of these bits depends on
whether the access to SIER is in problem
state or in privileged state.

Problem state access (SPR 768)
Reserved

Privileged access (SPR 768 or 784)
38 Sampled MSRPR (SAMPPR)

Value of MSRPR when the Performance
Monitor alert occurred.

39 Sampled MSRHV (SAMPHV)
Value of MSRHV when the Performance
Monitor alert occurred.

40 Reserved

41 SIAR Valid (SIARV)

Set to 1 when the contents of the SIAR are
valid (i.e., they contain the effective address of
the sampled instruction); otherwise set to 0.

42 SDAR Valid (SDARV)

Set to 1 when the contents of the SDAR are
valid (i.e., they contain the effective address of
the sampled instruction); otherwise set to 0.

43 Threshold Exceeded (TE)

Set to 1 by the hardware if the contents of the
threshold event counter exceeded the maxi-
mum value when the Performance Monitor
alert occurred; otherwise set to 0 by the hard-
ware.

44 Slew Down

Set to 1 by the hardware if the processor clock
was lower than nominal when the Perfor-
mance Monitor alert occurred; otherwise set
to 0 by the hardware.

45 Slew Up

Set to 1 by the hardware if the processor clock
was higher than nominal when the Perfor-
mance Monitor alert occurred; otherwise set
to 0 by the hardware.

46:48 Sampled Instruction Type (SITYPE)
This field indicates the sampled instruction
type. The values and their meanings are as
follows.

000 The hardware is unable to indicate the
sampled instruction type

001 Load Instruction
010 Store instruction
011 Branch Instruction
100 Floating-Point Instruction other than a

Load or Store instruction
101 Fixed-Point Instruction other than a

Load or Store instruction
110 Condition Register or System Call

instruction
111 Reserved

49:51 Sampled Instruction Cache Information
(SICACHE)

This field provides cache-related information
about the sampled instruction.
000 The hardware is unable to provide any

cache-related information for the sam-
pled insttuction.

001 The thread obtained the instruction in
the primary instruction cache.

SIER
0                                                                                                                     63

A Performance Monitor alert occurs because of an
event caused by execution of a randomly sampled
instruction if random sampling Is enabled and a
counter negative condition exists in a PMC that was
counting events based on randomly sampled
instructions.

Programming Note
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010 The thread obtained the instruction in
the secondary cache.

011 The thread obtained the instruction in
the tertiary cache.

100 The thread failed to obtain the instruc-
tion in the primary, secondary, or tertiary
cache

101 Reserved
110 Reserved
111 Reserved

52 Sampled Instruction Taken Branch
(SITAKBR)

Set to 1 if the SITYPE field indicates a Branch
instruction and the branch was taken; other-
wise set to 0.

53 Sampled Instruction Mispredicted Branch
(SIMISPRED)

Set to 1 if the SITYPE field indicates a Branch
instruction and the thread has mispredicted
either whether or not the branch would  be
taken, or if taken, the target address;  other-
wise set to 0.

54:55 Sampled Branch Instruction Misprediction
Information (SIMISPREDI)

If SIMISPRED=1, this field indicates how the
thread mispredicted the outcome of a Branch
instruction; otherwise this field is set to 0s.
00 The instruction was not a mispredicted

Branch instruction.
01 The thread mispredicted whether or not

the branch would be taken because the
contents of the Condition Register dif-
fered from the predicted contents.

10 The thread mispredicted the target
address of the instruction.

11 Reserved

56 Sampled Instruction  Data ERAT Miss (SID-
ERAT)

When the SITYPE field indicates a Load or
Store instruction, this field is set to 1 if the
thread has failed to locate an ERAT entry dur-
ing data address translation for the sampled
instruction and otherwise is set to 0.

When the SITYPE field does not indicate a
Load or Store instruction, the contents of this
field are undefined.

57:59 Sampled Instruction Data Address Transla-
tion Information (SIDAXLATE)

This field contains information about data
address translation for the sampled instruc-
tion. If multiple data address translations were
performed, the information pertains to the last
translation. The values and their meanings are
as follows.

000 The instruction did not require data
address translation.

001 The thread translated the data virtual
address using the TLB.

010 A PTEG required for data address trans-
lation for the instruction was obtained
from the secondary cache.

011 A PTEG required for data address trans-
lation for the instruction was obtained
from the tertiary cache.

100 A PTEG required for data address trans-
lation for the instruction was obtained
from storage that did not reside in any
cache. 

101 A PTEG required for data address trans-
lation for the instruction was obtained
from a cache on a different
multi-threaded processor that resides on
the same chip as the thread.

110 A PTEG required for data address trans-
lation for the instruction was obtained
from a cache on a different chip from the
thread.

111 Reserved

60:62 Sampled Instruction Data Storage Access
Information (SIDSAI)

This field contains information about data stor-
age accesses made by the sampled instruc-
tion. The values and their meanings are as
follows.
000 The instruction did not require data

address translation.
001 The instruction was a Read for which

the thread obtained the referenced data
from the primary data cache.

010 The instruction was a Read for which
the thread obtained the referenced data
from the secondary cache.

011 The instruction was a Read for which
the thread obtained the referenced data-
from the tertiary cache.

100 The instruction was a Read for which
the thread obtained the referenced data-
from storage that did not reside in any
cache. 

101 The instruction was a Read for which
the thread obtained the referenced data
from a cache on a different
multi-threaded processor that resides on
the same chip as the thread.

110 The instruction was a Read for which
the thread obtained the referenced data
from a cache on a different chip from the
thread.

111 The instruction was a Store for which
the data were placed into a location
other than the primary data cache.
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63 Sampled Instruction Completed (SICMPL)

Set to 1 if the sampled instruction has com-
pleted;  otherwise set to 0.

9.5 Branch History Rolling 
Buffer
The Branch History Rolling Buffer (BHRB) is described
in Section 2.4 of Book I but only at the level required by
application programmers. Additional aspects of the
BHRB are described here.

In order to enable problem state programs to use the
BHRB, MMCR0BHRBA must be set to 1 to enable exe-
cution of clrbhrb and mfbhrbe instructions in problem
state. Additionally, MMCR0PMCC must be set to 0b10 or
0b11 to allow problem state programs to read and write
the necessary Performance Monitor registers. (See
Section 9.4.4.)

If Performance Monitor event-based branching is
desired, MMCR0EBE must also be set to 1 to enable
Performance Monitor event-based branches. 

  

The BHRB is written by the hardware if and only if Per-
formance Monitor alerts are enabled by setting
MMCR0PMAE to 1.  After MMCR0PMAE has been set to
1 and a Performance Monitor alert occurs,
MMCR0PMAE is set to 0 and the BHRB is not altered by
hardware until software sets MMCR0PMAE to 1 again.

When MMCR0PMAE=1, mfbhrbe instructions return 0s
to the target register.

  

BHRB Entries
When the BHRB is written by hardware, only those
Branch instructions that meet the filtering criterion
specified by MMCRAIFM and for which the branch was
taken are included. 

9.6 Interaction With Other Facili-
ties
If tracing is active (MSRSE=1 or MSRBE=1), the con-
tents of SIAR and SDAR as used by the Performance
Monitor facility are undefined and may change even
when MMCR0PMAE=0.

  

Enabling Performance Monitor event-based
branching eliminates the need for the problem state
program to poll MMCR0PMAO in order to determine
when a Performance Monitor alert occurs.

mfbhrbe instructions return 0s when
MMCR0PMAE=1 in order to prevent software from
reading the BHRB while it is being written by hard-
ware. 

Programming Note

Programming Note

A potential combined use of the Trace and Perfor-
mance Monitor facilities is to trace the control flow
of a program and simultaneously count events for
that program.

Programming Note
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Chapter 10.  External Control [Category: External Control]

The External Control facility permits a program to com-
municate with a special-purpose device.  The facility
consists of a Special Purpose Register, called EAR,
and two instructions, called External Control In Word
Indexed (eciwx) and External Control Out Word
Indexed (ecowx).

This facility must provide a means of synchronizing the
devices with the hardware to prevent the use of an
address by the device when the translation that pro-
duced that address is being invalidated.

10.1 External Access Register
This 32-bit Special Purpose Register controls access to
the External Control facility and, for external control
operations that are permitted, identifies the target
device.

All other fields are reserved.

Figure 72. External Access Register

The External Access Register (EAR) is a hypervisor
resource; see Chapter 2.

The high-order bits of the RID field that correspond to
bits of the Resource ID beyond the width of the
Resource ID supported by the implementation are
treated as reserved bits.

  

10.2 External Access Instruc-
tions
The External Access instructions, External Control In
Word Indexed (eciwx) and External Control Out Word
Indexed (ecowx), are described in Book II. Additional
information about them is given below.

If attempt is made to execute either of these instruc-
tions when EARE=0, a Data Storage interrupt occurs
with bit 43 of the DSISR set to 1.

The instructions are supported whenever MSRDR=1. If
either instruction is executed when MSRDR=0 (real
addressing mode), the results are boundedly unde-
fined.

E /// RID
32 33 58   63

Bit(s) Name Description
32 E Enable bit
58:63 RID Resource ID

The hypervisor can use the EAR to control which
programs are allowed to execute External Access
instructions, when they are allowed to do so, and
which devices they are allowed to communicate
with using these instructions.

Programming Note
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Chapter 11.  Processor Control  

11.1 Overview
The Processor Control facility provides a mechanism
for the hypervisor to send messages to other threads
that are on the same multi-threaded processor. Privi-
leged non-hypervisor programs are able to send mes-
sages to other threads on the same multi-threaded
processor; however if the processor is configured into
sub-processors, privileged non-hypervisor programs
can only send messages to other threads on the same
sub-processor.

11.2 Programming Model
Both hypervisor-level and privileged-level messages
can be sent. Hypervisor-level messages are sent using
the msgsnd instruction and cause hypervisor-level
exceptions when accepted. Privileged-level messages
are sent using the msgsndp instruction and cause
privileged-level exceptions when accepted. For both
instructions, the message type is specified in a General
Purpose Register. 

11.2.1 Message Type
The message type is specified by the contents of bits
32:36 in the RB operand of the msgsnd or msgsndp
instruction as follows.

Message type for msgsnd

(RB)32:36Description

5 Directed Hypervisor Doorbell Interrupt
(DH_DBELL)
A Directed Hypervisor Doorbell exception is
generated on a thread only after it has filtered
and determined that it should accept the mes-
sage, and the thread is on the same
multi-threaded processor as the thread exe-
cuting the msgsnd instruction.

All other values of (RB)32:36 are reserved; if the instruc-
tion is executed with this field set to a reserved value,
the instruction is treated as a no-op.

Message type for msgsndp

(RB)32:36Description

5 Directed Privileged Doorbell Interrupt
(DP_DBELL)
A Directed Privileged Doorbell exception is
generated on a thread only after it has filtered
and determined that it should accept the mes-
sage, and the following are satisfied:

- for processors not partitioned into
sub-processors, the thread is on the
same multi-threaded processor as the
thread executing the msgsndp instruc-
tion;

- for processors partitioned into sub-pro-
cessors, the thread is on the same sub-
processor as the thread executing the
msgsndp instruction.

All other values of (RB)32:36 are reserved; if the instruc-
tion is executed with this field set to a reserved value,
the instruction is treated as a no-op.

11.2.2 Doorbell Message Payload 
and Filtering
The message payload is specified by the contents of
bits 37:63 in the RB operand of the msgsnd or msg-
sndp instruction.

Bits Description

37 Reserved

38:56 Reserved

57:63 TIR Tag (TIRTAG)
For msgsndp instructions, the recipient of the
message compares this field during the filter-
ing process with its privileged thread number.
For msgsnd instructions, the recipient of the
message compares this field during the filter-
ing process with its hypervisor thread number.
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Filtering
The examination of the message payload for the pur-
pose of determining if the message is to be accepted is
referred to as filtering. 

If a Directed Hypervisor Doorbell message is received
by a thread, the message is accepted and the corre-
sponding exception is generated only if the TIRTAG
field of the message payload is equal to the hypervisor
thread number of the recipient.

If a Directed Privileged Doorbell message is received
by a thread, the message is accepted and the corre-
sponding exception is generated if and only if the
TIRTAG field of the message payload is equal to the
privileged thread number of the recipient.

If the message is to be accepted, the exception speci-
fied by the message type field is generated, otherwise
the message is ignored. When the exception is gener-
ated, the corresponding interrupt occurs when no
higher priority exception exists and the interrupt is
enabled (MSREE=1 for the Directed Privileged Doorbell
interrupt and MSREE=1 or MSRHV=0 for the Directed
Hypervisor Doorbell interrupt).

A Directed Privileged Doorbell exception remains until
the corresponding interrupt occurs, or the exception is
cleared by execution of a mtspr(DPDES) or msgclrp
instruction.

A Directed Hypervisor Doorbell exception remains until
the corresponding interrupt occurs, or the exception is
cleared by execution of a mtspr(DHDES) or msgclr
instruction.

If a doorbell exception is present and the corresponding
interrupt is pended because MSREE=0, additional door-
bell exceptions are ignored until the exception is
cleared.

11.3 Processor Control Regis-
ters

11.3.1 Directed Privileged Door-
bell Exception State
The layout of the Directed Privileged Doorbell Excep-
tion State (DPDES) register is shown in Figure 73.

Figure 73. Directed Privileged Doorbell Exception
State Register

The DPDES register is a 64-bit register. For t < T,
where T is the number of threads on the sub-processor
(or on the multi-threaded processor if sub-processors
are not supported), bit 63-t corresponds to the thread
with privileged thread number t. 

When the contents of DPDES63-t change from 0 to 1, a
Directed Privileged Doorbell exception will come into
existence on privileged thread number t within a rea-
sonable period of time. When the contents of
DPDES63-t change from 1 to 0, the existing Directed
Privileged Doorbell exception, if any, on privileged
thread number t, will cease to exist within a reasonable
period of time, but not later than the completion of the
next context synchronizing instruction or event on privi-
leged thread number t.

The preceding paragraph applies regardless of whether
the change in the contents of DPDES63-t is the result a
msgsndp or msgclrp instruction or of modification of
the DPDES register caused by execution of an mtspr
instruction.

Bits 0:63-T of the DPDES are reserved. 

11.3.2 Directed Hypervisor Door-
bell Exception State
The layout of the Directed Hypervisor Doorbell Excep-
tion State (DPDES) register is shown in Figure 74.

Figure 74. Directed Hypervisor Doorbell Exception
State Register

The DHDES register is a 64-bit register. For t < T,
where T is the number of threads on the multi-threaded
processor, bit 63-t corresponds to the thread with
hypervisor thread number t. 

When the contents of DHDES63-t change from 0 to 1, a
Directed Hypervisor Doorbell exception will come into
existence on hypervisor thread number t within a rea-

If msgsndp is executed with TIRTAG set
to a value greater than the highest privi-
leged thread number on the sub-proces-
sor (or on the processor if sub-processors
are not supported), then this instruction
behaves as a no-op because the filtering
process (see below) prevents the receiv-
ing thread from accepting it. Similarly, if
msgsnd is executed with TIRTAG set to a
value greater than the highest hypervisor
thread number on the processor, then the
instruction also behaves as a no-op.

Programming Note

DPDES
0                                                                                                               63

DHDES
0                                                                                                               63
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sonable period of time. When the contents of
DHDES63-t change from 1 to 0, the existing Directed
Hypervisor Doorbell exception, if any, on hypervisor
thread number t, will cease to exist within a reasonable
period of time, but not later than the completion of the
next context synchronizing instruction or event on
hypervisor thread number t.

The preceding paragraph applies regardless of whether
the change in the contents of DHDES63-t is the result a
msgsnd or msgclr instruction or of modification of the
DHDES register caused by execution of an mtspr
instruction.

Bits 0:63-T of the DHDES are reserved. 
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11.4 Processor Control Instructions

msgsnd, msgsndp, msgclr, and msgclrp instructions
are provided for sending and clearing messages. msg-

sndp and msgclrp are privileged instructions, msgsnd
and msgclr are hypervisor privileged instructions.

Message Send X-form

msgsnd  RB 

msgtype I (RB)32:36
payload I (RB)37:63
t I (RB)57:63
if msgtype = 5 and
   t ≤  maximum hypervisor thread number
       on processor
  then

 DHDES63-t I 1
    send_msg(msgtype, payload, t)

msgsnd sends a message to other threads. 

Let msgtype be (RB)32:36, let message payload be
(RB)37:63, and let t be the hypervisor thread number
indicated in (RB)57:63. If msgtype = 5 and t is less than
or equal to the maximum hypervisor thread number on
the multi-threaded processor, then send the Directed
Hypervisor Doorbell message  to thread t on the same
multi-threaded processor, and set DHDES63-t to 1.

The actions taken on receipt of a message are defined
in Section 11.2.2.

This instruction is hypervisor privileged.

Special Registers Altered: 
DHDES

 

Message Clear X-form

msgclr RB 

msgtype I (RB)32:36
IF(msgtype = 5)
  then

 t I hypervisor thread number of executing
      thread
 DHDES63-t I 0

msgclr clears a message that was previously accepted
by the thread executing the msgclr.

Let msgtype be (RB)32:36, and let t be the hypervisor
thread number of the thread executing the msgclr. If
msgtype = 5, then clear any exception that exists for
this message type by setting DHDES63-t to 0.

 

The types of messages that can be cleared are defined
in Section 11.2.1.

This instruction is hypervisor privileged.

Special Registers Altered: 
DHDES

 

31 /// /// RB 206 /
0 6 11 16 21 31

If msgsnd is used to notify the receiver that
updates have been made to storage, a sync should
be placed between the stores and the msgsnd.
See  Section 5.9.2.

Programming Note

31 /// /// RB 238 /
0 6 11 16 21 31

If msgclr is executed when MSREE=0, and
Directed Hypervisor Doorbell interrupts are subse-
quently enabled by an instruction other than
mtmsr[d] with L=1, or by a recoverable interrupt,
that sets MSREE to 1 or MSRHV to 0, the fact that
these instructions and events are context synchro-
nizing ensures that the exception, if any, that was
cleared by msgclr will not cause an interrupt after
Directed Hypervisor Doorbell interrupts are
enabled (see Section 11.3.2).  (MSRHV is neces-
sarily 1 when msgclr is executed, because the
instruction is hypervisor privileged.) 

msgclr is typically executed only when MSREE=0.
If msgclr is executed when MSREE=1 and a
Directed Hypervisor Doorbell interrupt is about to
occur, the interrupt may or may not occur. 

Programming Note

Programming Note
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 Message Send Privileged X-form

msgsndp  RB 

msgtype I (RB)32:36
payload I (RB)37:63
t I (RB)57:63
if msgtype = 5 and
   t ≤  maximum privileged thread number
       on processor or sub-processor
  then

 DPDES63-t I 1
    send_msg(msgtype, payload, t)

msgsndp sends a message to other threads. 

Let msgtype be (RB)32:36, let message payload be
(RB)37:63, and let t be the privileged thread number
indicated in (RB)57:63. If msgtype = 5 and t is less than
or equal to the maximum privileged thread number on
the multi-threaded processor (or on the sub-processor
if sub-processors are supported), then send the
Directed Privileged Doorbell message  to thread t on
the same multi-threaded processor (or sub-processor if
sub-processors are supported), and set DPDES63-t to
1.

The actions taken on receipt of a message are defined
in Section 11.2.2.

This instruction is privileged.

Special Registers Altered: 
DPDES

 

Message Clear Privileged X-form

msgclrp RB 

msgtype I (RB)32:36
if (msgtype = 5)
  then

 t I privileged thread number of executing
     thread
 DPDES63-t I 0

msgclrp clears a message that was previously
accepted by the thread executing the msgclrp.

Let msgtype be (RB)32:36, and let t be the privileged
thread number of the thread executing the msgclrp. If
msgtype = 5, then clear any exception that exists for
this message type by setting DPDES63-t to 0; otherwise
do not modify DPDES or clear any exceptions for this
message.

This instruction is privileged.

Special Registers Altered: 
DPDES

 

31 /// /// RB 142 /
0 6 11 16 21 31

If msgsndp is used to notify the receiver that
updates have been made to storage, a sync should
be placed between the stores and the msgsnd.
See  Section 5.9.2.

Programming Note

31 /// /// RB 174 /
0 6 11 16 21 31

If msgclrp is executed when MSREE=0, and
Directed Privileged Doorbell interrupts are subse-
quently enabled by an instruction other than
mtmsr[d] with L=1, or by a recoverable interrupt,
that sets MSREE to 1, the fact that these instruc-
tions and events are context synchronizing ensures
that the exception, if any, that was cleared by msg-
clrp will not cause an interrupt after Directed Privi-
leged Doorbell interrupts are enabled (see
Section 11.3.1).

msgclrp is typically issued only when MSREE=0. If
msgclrp is executed when MSREE=1 when a
Directed Privileged Doorbell interrupt is about to
occur, the corresponding interrupt may or may not
occur. 

Programming Note

Programming Note
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Chapter 12.  Synchronization Requirements for Context 
Alterations

Changing the contents of certain System Registers, the
contents of SLB entries, or the contents of other system
resources that control the context in which a program
executes can have the side effect of altering the context
in which data addresses and instruction addresses are
interpreted, and in which instructions are executed and
data accesses are performed. For example, changing
MSRIR from 0 to 1 has the side effect of enabling trans-
lation of instruction addresses. These side effects need
not occur in program order, and therefore may require
explicit synchronization by software. (Program order is
defined in Book II.)

An instruction that alters the context in which data
addresses or instruction addresses are interpreted, or
in which instructions are executed or data accesses are
performed, is called a context-altering instruction. This
chapter covers all the context-altering instructions. The
software synchronization required for them is shown in
Table 4 (for data access) and Table 5 (for instruction
fetch and execution).

The notation “CSI” in the tables means any context syn-
chronizing instruction (e.g., sc, isync, or rfid).  A con-
text synchronizing interrupt (i.e., any interrupt except
non-recoverable System Reset or non-recoverable
Machine Check) can be used instead of a context syn-
chronizing instruction.  If it is, phrases like “the synchro-
nizing instruction”, below, should be interpreted as
meaning the instruction at which the interrupt occurs.  If
no software synchronization is required before (after) a
context-altering instruction, “the synchronizing instruc-
tion before (after) the context-altering instruction”
should be interpreted as meaning the context-altering
instruction itself.

The synchronizing instruction before the context-alter-
ing instruction ensures that all instructions up to and
including that synchronizing instruction are fetched and
executed in the context that existed before the alter-
ation.  The synchronizing instruction after the con-
text-altering instruction ensures that all instructions
after that synchronizing instruction are fetched and exe-
cuted in the context established by the alteration.
Instructions after the first synchronizing instruction, up
to and including the second synchronizing instruction,
may be fetched or executed in either context.

If a sequence of instructions contains context-altering
instructions and contains no instructions that are
affected by any of the context alterations, no software
synchronization is required within the sequence.

  

No software synchronization is required before or after
a context-altering instruction that is also context syn-
chronizing or when altering the MSR in most cases
(see the tables). No software synchronization is
required before most of the other alterations shown in
Table 5, because all instructions preceding the con-
text-altering instruction are fetched and decoded before
the context-altering instruction is executed (the hard-
ware must determine whether any of these preceding
instructions are context synchronizing).

Unless otherwise stated, the material in this chapter
assumes a single-threaded environment.

Sometimes advantage can be taken of the fact that
certain events, such as interrupts, and certain
instructions that occur naturally in the program,
such as the rfid that returns from an interrupt han-
dler, provide the required synchronization.

Programming Note
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Instruction or  
Event

Required  
Before  

Required     
After     

Notes

event-based branch 
and rfebb

none none 21

interrupt none none
rfid none none
hrfid none none
sc none none
Trap none none
mtmsrd    (SF) none none
mtmsrd    (TS) none none
mtmsrd    (TM) none none
mtmsr[d] (PR) none none
mtmsr[d] (DR) none none
mtsr[in] CSI CSI
mtspr (SDR1) ptesync CSI 3,4
mtspr (AMR) CSI CSI 15
mtspr (EAR) CSI CSI
mtspr (RMOR) CSI CSI 13, 19
mtspr (HRMOR) CSI CSI 13,19
mtspr (LPCR) CSI CSI 13
mtspr (DAWRn) CSI CSI
mtspr (DAWRXn) CSI CSI
slbie CSI CSI
slbia CSI CSI
slbmte CSI CSI 11
tlbie CSI CSI 5,7
tlbiel CSI ptesync 5
tlbia CSI CSI 5
Store(PTE) none {ptesync, 

CSI}
6,7

transaction failure 
and all TM 
instructions 
except tcheck

none none 21

Table 4: Synchronization requirements for data access

Instruction or 
Event

Required    
Before

Required 
After

Notes

event-based branch 
and rfebb

none        none 21

interrupt none        none
rfid none        none
hrfid none        none
sc none        none
Trap none        none
mtmsrd    (SF) none        none 8
mtmsrd    (TS) none        none
mtmsrd    (TM) none        none
mtmsr[d] (EE) none        none 1
mtmsr[d] (PR) none        none 9
mtmsr[d] (FP) none        none
mtmsr[d](FE0,FE1) none        none
mtmsr[d] (SE, BE) none        none
mtmsr[d] (IR) none        none 9
mtmsr[d] (RI) none        none
mtsr[in] none CSI 9
mtspr (CIABR) none CSI
mtspr (DEC) none        none 10
mtspr (SDR1) ptesync CSI 3,4,19
mtspr (CTRL) none        none
mtspr (HDEC) none        none 10
mtspr (IAMR) none        CSI
mtspr (RMOR) none        CSI 14,19
mtspr (HRMOR) none        CSI 9,13,19
mtspr (LPCR) none        CSI 13, 14
mtspr (LPIDR) CSI         CSI 7,12,16,19
mtspr (PCR) none CSI 19
mtspr (TEXASR) none none
mtspr (TFHAR) none none
mtspr (DPDES) none CSI 19
mtspr (DHDES) none CSI 19
mtspr (BESCR) none CSI 18,20
mtspr (FSCR) none CSI
mtspr (HFSCR) none CSI
mtspr (Perf. Mon.) none CSI 17,20
slbie none        CSI
slbia none        CSI
slbmte none        CSI 9,11
tlbie none        CSI 5,7
tlbiel none        CSI 5
tlbia none        CSI 5
Store(PTE) none        {ptesync, 

CSI}
6,7,9

transaction failure 
and all TM 
instructions 
except tcheck

none none 21

Table 5: Synchronization requirements for instruction 
fetch and/or execution
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Notes:
1. The effect of changing the EE bit is immediate,

even if the mtmsr[d] instruction is not context syn-
chronizing (i.e., even if L=1).

If an mtmsr[d] instruction sets the EE bit to 0,
neither an External interrupt, a Decrementer
interrupt nor a Performance Monitor interrupt
occurs after the mtmsr[d] is executed.
If an mtmsr[d] instruction changes the EE bit
from 0 to 1 when an External, Decrementer,
Performance Monitor or higher priority excep-
tion exists, the corresponding interrupt occurs
immediately after the mtmsr[d] is executed,
and before the next instruction is executed in
the program that set EE to 1.
If a hypervisor executes the mtmsr[d] instruc-
tion that sets the EE bit to 0, a Hypervisor
Decrementer interrupt does not occur after
mtmsr[d] is executed as long as the thread
remains in hypervisor state.
If the hypervisor executes an mtmsr[d]
instruction that changes the EE bit from 0 to 1
when a Hypervisor Decrementer or higher pri-
ority exception exists, the corresponding inter-
rupt occurs immediately after the mtmsr[d]
instruction is executed, and before the next
instruction is executed, provided HDICE is 1.

2. Synchronization requirements for this instruction
are implementation-dependent.

3. SDR1 must not be altered when MSRDR=1 or
MSRIR=1; if it is, the results are undefined.

4. A ptesync instruction is required before the mtspr
instruction because (a) SDR1 identifies the Page
Table and thereby the location of Reference and
Change bits, and (b) on some implementations,
use of SDR1 to update Reference and Change bits
may be independent of translating the virtual
address. (For example, an implementation might
identify the PTE in which to update the Reference
and Change bits in terms of its offset in the Page
Table, instead of its real address, and then add the
Page Table address from SDR1 to the offset to
determine the real address at which to update the
bits.) To ensure that Reference and Change bits
are updated in the correct Page Table, SDR1 must
not be altered until all Reference and Change bit
updates associated with address translations that
were performed, by the thread executing the mtspr
instruction, before the mtspr instruction is exe-
cuted have been performed with respect to that
thread. A ptesync instruction guarantees this syn-
chronization of Reference and Change bit updates,
while neither a context synchronizing operation nor
the instruction fetching mechanism does so.

5. For data accesses, the context synchronizing
instruction before the tlbie, tlbiel, or tlbia instruc-
tion ensures that all preceding instructions that

access data storage have completed to a point at
which they have reported all exceptions they will
cause.

The context synchronizing instruction after the
tlbie, tlbiel, or tlbia instruction ensures that stor-
age accesses associated with instructions follow-
ing the context synchronizing instruction will not
use the TLB entry(s) being invalidated.

(If it is necessary to order storage accesses asso-
ciated with preceding instructions, or Reference
and Change bit updates associated with preceding
address translations, with respect to subsequent
data accesses, a ptesync instruction must also be
used, either before or after the tlbie, tlbiel, or tlbia
instruction. These effects of the ptesync instruc-
tion are described in the last paragraph of Note 8.)

6. The notation “{ptesync,CSI}” denotes an instruc-
tion sequence. Other instructions may be inter-
leaved with this sequence, but these instructions
must appear in the order shown.

No software synchronization is required before the
Store instruction because (a) stores are not per-
formed out-of-order and (b) address translations
associated with instructions preceding the Store
instruction are not performed again after the store
has been performed (see Section 5.5). These
properties ensure that all address translations
associated with instructions preceding the Store
instruction will be performed using the old contents
of the PTE.

The ptesync instruction after the Store instruction
ensures that all searches of the Page Table that
are performed after the ptesync instruction com-
pletes will use the value stored (or a value stored
subsequently).  The context synchronizing instruc-
tion after the ptesync instruction ensures that any
address translations associated with instructions
following the context synchronizing instruction that
were performed using the old contents of the PTE
will be discarded, with the result that these
address translations will be performed again and, if
there is no corresponding entry in any implementa-
tion-specific address translation lookaside informa-
tion, will use the value stored (or a value stored
subsequently).

The ptesync instruction also ensures that all stor-
age accesses associated with instructions preced-
ing the ptesync instruction, and all Reference and
Change bit updates associated with additional
address translations that were performed, by the
thread executing the ptesync instruction, before
the ptesync instruction is executed, will be per-
formed with respect to any thread or mechanism,
to the extent required by the associated Memory
Coherence Required attributes, before any data
accesses caused by instructions following the pte-
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sync instruction are performed with respect to that
thread or mechanism.

7. There are additional software synchronization
requirements for this instruction in multi-threaded
environments (e.g., it may be necessary to invali-
date one or more TLB entries on all threads in the
system and to be able to determine that the invali-
dations have completed and that all side effects of
the invalidations have taken effect).

Section 5.10 gives examples of using tlbie, Store,
and related instructions to maintain the Page
Table, in both multi-threaded environments and
environments consisting of only a single-threaded
processor.

  

8. The alteration must not cause an implicit branch in
effective address space. Thus, when changing
MSRSF from 1 to 0, the mtmsrd instruction must
have an effective address that is less than 232 - 4.
Furthermore, when changing MSRSF from 0 to 1,
the mtmsrd instruction must not be at effective
address 232 - 4 (see Section 5.3.2 on page 889).

9. The alteration must not cause an implicit branch in
real address space.  Thus the real address of the
context-altering instruction and of each subse-
quent instruction, up to and including the next con-
text synchronizing instruction, must be
independent of whether the alteration has taken
effect.

  

10. The elapsed time between the contents of the Dec-
rementer or Hypervisor Decrementer becoming
negative and the signaling of the corresponding
exception is not defined.

11. If an slbmte instruction alters the mapping, or
associated attributes, of a currently mapped ESID,
the slbmte must be preceded by an slbie (or
slbia) instruction that invalidates the existing trans-
lation.  This applies even if the corresponding entry
is no longer in the SLB (the translation may still be
in implementation-specific address translation
lookaside information).  No software synchroniza-
tion is needed between the slbie and the slbmte,
regardless of whether the index of the SLB entry (if
any) containing the current translation is the same
as the SLB index specified by the slbmte.

No slbie (or slbia) is needed if the slbmte instruc-
tion replaces a valid SLB entry with a mapping of a

In a multi-threaded system, if software locking
is used to help ensure that the requirements
described in Section 5.10 are satisfied, the
lwsync instruction near the end of the lock
acquisition sequence (see Section B.2.1.1 of
Book II) may naturally provide the context syn-
chronization that is required before the alter-
ation.

Programming Note

If it is desired to set MSRIR to 1 early in an operat-
ing system interrupt handler, advantage can some-
times be taken of the fact that EA0:3 are ignored
when forming the real address when address trans-
lation is disabled and MSRHV = 0. For example, if
address translation resources are set such that
effective address 0xn000_0000_0000_0000 maps
to real address 0x000_0000_0000_0000 when
address translation is enabled, where n is an arbi-
trary 4-bit value, the following code sequence, in
real page 0, can be used early in the interrupt han-
dler.

la rx,target
li ry,0xn000
sldi ry,ry,48
or rx,rx,ry # set high-order

            nibble of target
  addr to 0xn

mtctr rx
bcctr # branch to targ

targ: mfmsr rx
orir x,rx,0x0020
mtmsrd rx # set MSR[IR] to 1

The mtmsrd does not cause an implicit branch in
real address space because the real address of the
next sequential instruction is independent of
MSRIR. Using mtmsrd, rather than rfid (or similar
context synchronizing instruction that alters the
control flow), may yield better performance on
some implementations.

(Variations on the technique are possible. For
example, the target instruction of the bcctr can be
in arbitrary real page P, where P is a 48-bit value,
provided that effective address 0xn || P || 0x000
maps to real address P || 0x000 when address
translation is enabled.)

Programming Note
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different ESID (e.g., to satisfy an SLB miss).  How-
ever, the slbie is needed later if and when the
translation that was contained in the replaced SLB
entry is to be invalidated.

12. The context synchronizing instruction before the
mtspr instruction ensures that the LPIDR is not
altered out-of-order. (Out-of-order alteration of the
LPIDR could permit the requirements described in
Section 5.10.1 to be violated. For the same rea-
son, such a context synchronizing instruction may
be needed even if the new LPID value is equal to
the old LPID value.)

See also Chapter 2. “Logical Partitioning (LPAR)
and Thread Control” on page 845 regarding mov-
ing a thread from one partition to another.

13. When the RMOR or HRMOR is modified, or the
VC, VRMASD, or RMLS fields of the LPCR are
modified, software must invalidate all implementa-
tion-specific lookaside information used in address
translation that depends on the old contents of
these registers or fields (i.e., the contents immedi-
ately before the modification). The slbia instruction
can be used to invalidate all such implementa-
tion-specific lookaside information.

14. A context synchronizing instruction or event that is
executed or occurs when LPCRMER = 1 does not
necessarily ensure that the exception effects of
LPCRMER are consistent with the contents of
LPCRMER. See Section 2.2.

15. This line applies regardless of which SPR number
(13 or 29) is used for the AMR.

16. LPIDR must not be altered when MSRDR=1 or
MSRIR=1; if it is, the results are undefined.

17. This line applies to the following Performance Mon-
itor SPRs: PMC1-6, MMCR0, MMCR1, MMCR2,
and MMCRA.

18. This line applies to all SPR numbers that access
the BESCR (800-803, 806).

19. There are additional software synchronization
requirements when an mtspr instruction modifies
this SPR in a multi-threaded environment. See
Section 2.8.

20. As an alternative to a CSI, the execution of an
rfebb instruction or the occurrence of an
event-based branch is sufficient to provide the nec-
essary synchronization.

21. These instructions and events, with the exception
of nested tbegin. nested tend., TM instructions
that except or are described to be treated as
noops, Transaction Abort Conditional instructions
that do not abort, and events and rfebb instruc-
tions for which the event did not take place in
Transactional state, will change MSRTS.  No soft-
ware synchronization is required.
Chapter 12. Synchronization Requirements for Context Alterations 1015
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Appendix A.  Assembler Extended Mnemonics

In order to make assembler language programs simpler
to write and easier to understand, a set of extended
mnemonics and symbols is provided for certain instruc-

tions.  This appendix defines extended mnemonics and
symbols related to instructions defined in Book III.

Assemblers should provide the extended mnemonics
and symbols listed here, and may provide others.

A.1 Move To/From Special Purpose Register Mnemonics

This section defines extended mnemonics for the
mtspr and mfspr instructions, including the Special
Purpose Registers (SPRs) defined in Book I and cer-
tain privileged SPRs, and for the Move From Time Base
instruction defined in Book II.

The mtspr and mfspr instructions specify an SPR as a
numeric operand; extended mnemonics are provided
that represent the SPR in the mnemonic rather than
requiring it to be coded as an operand.  Similar
extended mnemonics are provided for the Move From
Time Base instruction, which specifies the portion of
the Time Base as a numeric operand.

Note: mftb serves as both a basic and an extended
mnemonic. The Assembler will recognize an mftb mne-
monic with two operands as the basic form, and an
mftb mnemonic with one operand as the extended
form. In the extended form the TBR operand is omitted
and assumed to be 268 (the value that corresponds to
TB).
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Table 6: Extended mnemonics for moving to/from an SPR

Special Purpose Register
Move To SPR Move From SPR1

Extended Equivalent to Extended Equivalent to

XER mtxer Rx mtspr 1,Rx mfxer Rx mfspr Rx,1

LR mtlr  Rx mtspr 8,Rx mflr  Rx mfspr Rx,8

CR mtctr Rx mtspr 9,Rx mfctr Rx mfspr Rx,9

AMR mtamr Rx mtspr 13,Rx mfamr Rx mfspr Rx,13

DSCR mtdscr Rx mtspr 17,Rx mfdscr Rx mfspr Rx,17

DSISR mtdsisr Rx mtspr 18,Rx mfdsisr Rx mfspr Rx,18

DAR mtdar Rx mtspr 19,Rx mfdar Rx mfspr Rx,19

DEC mtdec Rx mtspr 22,Rx mfdec Rx mfspr Rx,22

SDR mtsdr1 Rx mtspr 25,Rx mfsdr1 Rx mfspr Rx,25

SRR0 mtsrr0 Rx mtspr 26,Rx mfsrr0 Rx mfspr Rx,26

SRR1 mtsrr1 Rx mtspr 27,Rx mfsrr1 Rx mfspr Rx,27

CFAR mtcfar Rx mtspr 28,Rx mfcfar Rx mfspr Rx,28

AMR mtamr Rx mtspr 29,Rx mfamr Rx mfspr Rx,29

IAMR mtiamr Rx mtspr 61,Rx mfiamr Rx mfspr Rx,61

TFHAR mttfhar Rx mtspr 128,Rx mftfhar Rx mfspr Rx,128

TFIAR mttfiar Rx mtspr 129,Rx mftfiar Rx mfspr Rx,129

TEXASR mttexasr Rx mtspr 130,Rx mftexasr Rx mfspr Rx,130

TEXASRU mttexasru Rx mtspr 131,Rx mftexasru Rx mfspr Rx,131

CTRL mtctrl Rx mtspr 152,Rx mfctrl Rx mfspr Rx,136

FSCR mtfscr Rx mtspr 153,Rx mffscr Rx mfspr Rx,153

UAMOR mtuamor Rx mtspr 157,Rx mfuamor Rx mfspr Rx,157

PSPB mtpspb Rx mtspr 159,Rx mfpspb Rx mfspr Rx,159

DPDES mtdpdes Rx mtspr 176,Rx mfdpdes Rx mfspr Rx,176

DHDES mtdhdes Rx mtspr 177,Rx mfdhdes Rx mfspr Rx,177

DAWR0 mtdawr0 Rx mtspr 180,Rx mfdawr0 Rx mfspr Rx,180

RPR mtrpr Rx mtspr 186,Rx mfrpr Rx mfspr Rx,186

CIABR mtciabr Rx mtspr 187,Rx mfciabr Rx mfspr Rx,187

DAWRX0 mtdawrx0 Rx mtspr 188,Rx mfdawrx0 Rx mfspr Rx,188

HFSCR mthfscr Rx mtspr 190,Rx mfhfscr Rx mfspr Rx,190

VRSAVE mtvrsave Rx mtspr 256,Rx mfvrsave Rx mfspr Rx,256

SPRG0 - SPRG3 mtsprgn Rx mtspr 272+n,Rx mfsprgn Rx mfsprg Rx,272+n

EAR mtear Rx mtspr 282,Rx mfear Rx mfspr Rx,282

CIR - - mfcir Rx mfspr Rx,283

TBL mttbl Rx mtspr 284,Rx mftb Rx mftb Rx,2681

mfspr Rx,268

TBU mttbu Rx mtspr 285,Rx mftbu Rx mftb Rx,2691

mfspr Rx,269

TBU40 mttbu40 Rx mtspr 286,Rx - -

PVR - - mfpvr Rx mfspr Rx,287

HSPRG0 mthsprg0 Rx mtspr 304,Rx mfhsprg0 Rx mfspr Rx,304
1 The mftb instruction is Category: Phased-Out. Assemblers targeting Version 2.03 or later of the architecture 

should generate an mfspr instruction for the mftb and mftbu extended mnemonics; see the corresponding 
Assembler Note in the mftb instruction description (see Section 6.2.1 of Book II).
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HSPRG1 mthsprg1 Rx mtspr 305,Rx mfhsprg1 Rx mfspr Rx,305

HDISR mthdisr Rx mtspr 306,Rx mfhdisr Rx mfspr Rx,306

HDAR mthdar Rx mtspr 307,Rx mfhdar Rx mfspr Rx,307

SPURR mtspurr Rx mtspr 308,Rx mfspurr Rx mfspr Rx,308

PURR mtpurr Rx mtspr 309,Rx mfpurr Rx mfspr Rx,309

HDEC mthdec Rx mtspr 310,Rx mfhdec Rx mfspr Rx,310

RMOR mtrmor Rx mtspr 312,Rx mfrmor Rx mfspr Rx,312

HRMOR mthrmor Rx mtspr 313,Rx mfhrmor Rx mfspr Rx,313

HSRR0 mthsrr0 Rx mtspr 314,Rx mfhsrr0 Rx mfspr Rx,314

HSRR1 mthsrr1 Rx mtspr 315,Rx mfhsrr1 Rx mfspr Rx,315

LPCR mtlpcr Rx mtspr 318,Rx mflpcr Rx mfspr Rx,318

LPIDR mtlpidr Rx mtspr 319,Rx mflpidr Rx mfspr Rx,319

HMER mthmer Rx mtspr 336,Rx mfhmer Rx mfspr Rx,336

HMEER mthmeer Rx mtspr 337,Rx mfhmeer Rx mfspr Rx,337

PCR mtpcr Rx mtspr 338,Rx mfpcr Rx mfspr Rx,338

HEIR mtheir Rx mtspr 339,Rx mfheir Rx mfspr Rx,339

AMOR mtamor Rx mtspr 349,Rx mfamor Rx mfspr Rx,349

TIR - - mftir Rx mfspr Rx,446

MMCR2 mtmmcr2 Rx mtspr 769,Rx mfummcr2 Rx mfspr Rx,769

SIER mtsier Rx mtspr 784,Rx mfsier Rx mfspr Rx,768

MMCRA mtmmcra Rx mtspr 786,Rx mfmmcra Rx mfspr Rx,770

PMC1 mtpmc1 Rx mtspr 787,Rx mfpmc1 Rx mfspr Rx,771

PMC2 mtpmc2 Rx mtspr 788,Rx mfpmc2 Rx mfspr Rx,772

PMC3 mtpmc3 Rx mtspr 789,Rx mfpmc3 Rx mfspr Rx,773

PMC4 mtpmc4 Rx mtspr 790,Rx mfpmc4 Rx mfspr Rx,774

PMC5 mtpmc5 Rx mtspr 791,Rx mfpmc5 Rx mfspr Rx,775

PMC6 mtpmc6 Rx mtspr 792,Rx mfpmc6 Rx mfspr Rx,776

MMCR0 mtmmcr0 Rx mtspr 795,Rx mfmmcr0 Rx mfspr Rx,779

SIAR mtsiar Rx mtspr 796 mfmfsiar Rx mfspr Rx,780

SDAR mtsdar Rx mtspr 797 mfmmcr2 Rx mfspr Rx,781

MMCR1 mtmmcr1 Rx mtspr 798,Rx mfmmcr1 Rx mfspr Rx,782

BESCRS mtbescrs Rx mtspr 801,Rx mfbescrs Rx mfspr Rx,801

BESCRU mtbescru Rx mtspr 802,Rx mfbescru Rx mfspr Rx,802

BESCRR mtbescrr Rx mtspr 803,Rx mfbescrr Rx mfspr Rx,803

BESCRRU mtbescrru Rx mtspr 804,Rx mfbescrru Rx mfspr Rx,804

EBBHR mtebbhr Rx mtspr 805,Rx mfebbhr Rx mfspr Rx,805

EBBRR mtebbrr Rx mtspr 806,Rx mfebbrr Rx mfspr Rx,806

TAR mtmmcr1 Rx mtspr 815,Rx mfmmcr1 Rx mfspr Rx,815

IC mtic Rx mtspr 848, Rx mfic Rx mfspr Rx, 848

VTB mtvtb Rx mtspr 849, Rx mfvtb Rx mfspr Rx, 849

PPR mtppr Rx mtspr 896, Rx mfppr Rx mfspr Rx, 896

PPR32 mtppr32 Rx mtspr 898, Rx mfppr32 Rx mfspr Rx, 898

PIR - - mfpir Rx mfspr Rx,1023

Table 6: Extended mnemonics for moving to/from an SPR

1 The mftb instruction is Category: Phased-Out. Assemblers targeting Version 2.03 or later of the architecture 
should generate an mfspr instruction for the mftb and mftbu extended mnemonics; see the corresponding 
Assembler Note in the mftb instruction description (see Section 6.2.1 of Book II).
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Chapter 1.  Introduction

1.1 Overview
Chapter 1 of Book I describes computation modes,
document conventions, a general systems overview,
instruction formats, and storage addressing. This chap-
ter augments that description as necessary for the
Power ISA Operating Environment Architecture.

1.2 32-Bit Implementations
Though the specifications in this document assume a
64-bit implementation, 32-bit implementations are per-
mitted as described in    Appendix C, “Guidelines for
64-bit Implementations in 32-bit Mode and 32-bit Imple-
mentations” on page 1249.

1.3 Document Conventions
The notation and terminology used in Book I apply to
this Book also, with the following substitutions.

For “system alignment error handler” substitute
“Alignment interrupt”.

For “system auxiliary processor enabled exception
error handler” substitute “Auxiliary Processor
Enabled Exception type Program interrupt”,

For “system data storage error handler” substitute
“Data Storage interrupt” or Data TLB Error inter-
rupt” as appropriate.

For “system error handler” substitute “interrupt”.

For “system floating-point enabled exception error
handler” substitute “Floating-Point Enabled Excep-
tion type Program interrupt”.

For “system illegal instruction error handler” substi-
tute “Illegal Instruction exception type Program
interrupt” or “Unimplemented Operation exception
type Program interrupt”, as appropriate.

For “system instruction storage error handler” sub-
stitute “Instruction Storage interrupt” or “Instruction
TLB Error”, as appropriate.

For “system privileged instruction error handler”
substitute “Privileged Instruction exception type
Program interrupt”.

For “system service program” substitute “System
Call interrupt”.

For “system trap handler” substitute “Trap type
Program interrupt”. 

1.3.1 Definitions and Notation
The definitions and notation given in Books I and II are
augmented by the following.

Threaded processor, single-threaded processor,
thread

A threaded processor implements one or more
“threads”, where a thread corresponds to the Book
I/II concept of “processor”. That is, the definition of
“thread” is the same as the Book I definition of
“processor”, and “processor” as used in Books I
and II can be thought of as either a single-threaded
processor or as one thread of a multi-threaded pro-
cessor. The only unqualified uses of “processor” in
Book III are in resource names (e.g. Processor
Identification Register); such uses should be
regarded as meaning “threaded processor”. The
threads of a multi-threaded processor typically
share certain resources, such as the hardware
components that execute certain kinds of instruc-
tions (e.g., Fixed-Point instructions), certain
caches, the address translation mechanism, and
certain hypervisor resources.

Thread enabled, thread disabled

A thread can be enabled or disabled. When
enabled, the thread can prefetch and execute
instructions; when disabled, prefetched instruc-
tions are discarded, and the thread cannot
prefetch or execute instructions.

Performed

An explicit modification, by a thread T1, of a
shared SPR (using mtspr) or an entry in a shared
TLB (using tlbwe), is performed with respect to
thread T2 when a read of the shared SPR or TLB
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entry (using mfspr or tlbre respectively) by T2 will
return the result of the modification (or of a subse-
quent modification). For T2, the effects of such a
modification having been performed with respect
to T2 are the same as if the mtspr or tlbwe were in
T2’s instruction stream at the point at which the
modification was performed with respect to T2. T1
and T2 may be any threads that share the SPR or
TLB with one another, and may be the same
thread.

real page

A unit of real storage that is aligned at a boundary
that is a multiple of its size. The real page size may
range from 1KB to 1TB [MAV=1.0] or to 2TB
[MAV=2.0].

[MAV=x.x]

Instructions and facilities are considered part of all
MMU architecture versions unless otherwise
marked. If a facility or section is marked with a spe-
cific MMU Architecture version x.x, that facility or
all material in that section and its subsections are
considered part of the specific MMU architecture
version.

“must”

If the Embedded.Hypervisor category is not sup-
ported and privileged software violates a rule that
is stated using the word “must”, the results are
undefined. If the Embedded.Hypervisor category is
supported, the following applies. 

If hypervisor software violates a rule that is
stated using the word “must” (e.g., “this field
must be set to 0”), and the rule pertains to the
contents of a hypervisor resource, to execut-
ing an instruction that can be executed only in
hypervisor state, or to accessing storage
using a TLB entry with a TGS value of 0, the
results are undefined, and may include alter-
ing resources belonging to other partitions,
causing the system to “hang”, etc.
If supervisor software violates the require-
ments for storage control bit values or their
alteration, the result of accessing the associ-
ated storage is undefined.
In other cases of violation of a rule that is
stated using the word "must", the results are
boundedly undefined unless otherwise stated.

  

context of a program

The state (e.g., privilege and relocation) in which
the program executes. The context is controlled by
the contents of certain System Registers, such as
the MSR, of certain lookaside buffers, such as the
TLB, and of other resources.

exception

An error, unusual condition, or external signal, that
may set a status bit and may or may not cause an
interrupt, depending upon whether the correspond-
ing interrupt is enabled.

interrupt

The act of changing the machine state in response
to an exception, as described in Chapter
7. “Interrupts and Exceptions” on page 1145.

trap interrupt

An interrupt that results from execution of a Trap
instruction.

Additional exceptions to the sequential execution
model, beyond those described in the section enti-
tled “Instruction Fetching” in Book I, are the follow-
ing.

- A reset or Machine Check interrupt may occur.
The determination of whether an instruction is
required by the sequential execution model is
not affected by the potential occurrence of a
reset or Machine Check interrupt.  (The deter-
mination is affected by the potential occur-
rence of any other kind of interrupt.)

- A context-altering instruction is executed
(Chapter 12. “Synchronization Requirements
for Context Alterations” on page 1235). The
context alteration need not take effect until the
required subsequent synchronizing operation
has occurred.

hardware

Contrary to the general principle of partition
isolation, the result of accessing storage
associated with violations of the require-
ments for storage control bit values and their
alteration is specified as “undefined”. This is
the only case where a guest operating sys-
tem can cause “undefined” results. Embed-
ded architecture does this as a hardware
simplification because of the limited amount
of code involved with storage control bits and
because operating systems used in the
Embedded environment can be tested and
then controlled.

Programming Note
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Any combination of hard-wired implementation,
emulation assist, or interrupt for software assis-
tance. In the last case, the interrupt may be to an
architected location or to an implementa-
tion-dependent location. Any use of emulation
assists or interrupts to implement the architecture
is implementation-dependent.

hypervisor privileged (or hypervisor-privileged)

If category E.HV is implemented, this term
describes an instruction, register, or facility that is
available only when the thread is in hypervisor
state. Otherwise, this term describes an instruc-
tion, register, or facility that is available only when
the thread is in supervisor state.

privileged state and supervisor state

Used interchangeably to refer to a state in which
privileged facilities are available.

guest state

A state used to run software under control of a
hypervisor program in which hypervisor-privileged
facilities are not available.

guest supervisor state

A state which is in both the guest state and the
supervisor state.

problem state and user mode

Used interchangeably to refer to a state in which
privileged facilities are not available.

volatile
Bits in a register or array (e.g., TLB) are consid-
ered volatile if they may change even if not explic-
itly modified by software.

directed

In a hypervised system, the attribute of an interrupt
that execution occurs in the guest supervisor or
hypervisor state as described in Section 2.3.1,
“Directed Interrupts”.

/, //, ///, ... denotes a field that is reserved in an
instruction, in a register, or in an architected stor-
age table.

?, ??, ???, ... denotes a field that is implementa-
tion-dependent in an instruction, in a register, or in
an architected storage table.

1.3.2 Reserved Fields
Some fields of certain architected registers may be
written to automatically by the hardware, e.g.,
Reserved bits in System Registers. When the hardware
writes to such a register, the following rules are obeyed.

Unless otherwise stated, no defined field other
than the one(s) specifically being updated are
modified.

Contents of reserved fields are either preserved or
written as zero.

The reader should be aware that reading and writing of
some of these registers (e.g., the MSR) can occur as a
side effect of processing an interrupt and of returning
from an interrupt, as well as when requested explicitly
by the appropriate instruction (e.g., mtmsr instruction).

1.4 General Systems Overview
The hardware contains the sequencing and processing
controls for instruction fetch, instruction execution, and
interrupt action. Most implementations also contain
data and instruction caches. Instructions fall into the fol-
lowing classes:

instructions executed in the Branch Facility
instructions executed in the Fixed-Point Facility
instructions executed in the Floating-Point Facility
instructions executed in the Vector Facility
instructions executed in an Auxiliary Processor
other instructions

Almost all instructions executed in the Branch Facility,
Fixed-Point Facility, Floating-Point Facility, and Vector
Facility are nonprivileged and are described in Book I.
Book I may describe additional nonprivileged instruc-
tions (e.g., Book II describes some nonprivileged
instructions for cache management). Instructions exe-
cuted in an Auxiliary Processor are implementa-
tion-dependent. Instructions related to the supervisor
mode, control of hardware resources, control of the
storage hierarchy, and all other privileged instructions
are described here or are implementation-dependent.

1.5 Exceptions
The following augments the exceptions defined in Book
I that can be caused directly by the execution of an
instruction:

the execution of a floating-point instruction when
MSRFP=0 (Floating-Point Unavailable interrupt)

execution of an instruction that causes a debug
event (Debug interrupt).

the execution of an auxiliary processor instruction
when the auxiliary processor is unavailable (Auxil-
iary Processor Unavailable interrupt)

the execution of a Vector, SPE, or Embedded
Floating-Point instruction when MSRSPV=0 (SPE/
Embedded Floating-Point/Vector Unavailable inter-
rupt)
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1.6  Synchronization
The synchronization described in this section refers to
the state of the thread that is performing the synchroni-
zation.

1.6.1 Context Synchronization
An instruction or event is context synchronizing if it sat-
isfies the requirements listed below. Such instructions
and events are collectively called context synchronizing
operations. The context synchronizing operations
include the dnh instruction, the isync instruction, the
System Linkage instructions, and most interrupts (see
Section 7.1). Also, the combination of disabling and
enabling a thread is context-synchronizing for the
thread being enabled (See Section 3).

1. The operation causes instruction dispatching (the
issuance of instructions by the instruction fetching
mechanism to any instruction execution mecha-
nism) to be halted.

2. The operation is not initiated or, in the case of dnh,
isync  does not complete, until all instructions that
precede the operation have completed to a point at
which they have reported all exceptions they will
cause.

3. The operation ensures that the instructions that
precede the operation will complete execution in
the context (privilege, relocation, storage protec-
tion, etc.) in which they were initiated.

4. If the operation directly causes an interrupt (e.g.,
sc directly causes a System Call interrupt) or is an
interrupt, the operation is not initiated until no
exception exists having higher priority than the
exception associated with the interrupt (see
Section 7.9, “Exception Priorities” on page 1190).

5. The operation ensures that the instructions that fol-
low the operation will be fetched and executed in
the context established by the operation. (This
requirement dictates that any prefetched instruc-
tions be discarded and that any effects and side
effects of executing them out-of-order also be dis-
carded, except as described in Section 6.5, “Per-
forming Operations Out-of-Order”.)

The operation ensures that all explicit modifica-
tions of shared SPRs (mtspr) and shared TLBs
(tlbwe), caused by instructions that precede the
operation, have been performed with respect to all
other threads that share the SPR or TLB.

  

  

1.6.2 Execution Synchronization
An instruction is execution synchronizing if it satisfies
items 2 and 3 of the definition of context synchroniza-
tion (see Section 1.6.1). sync is treated like isync with
respect to item 2. The execution synchronizing instruc-
tions are sync, mtmsr and all context synchronizing
instructions.

  

The context established by a context synchronizing
instruction includes modifications to certain
resources that were performed with respect to the
context synchronizing thread before the operation
was initiated. The resources in this case include
shared SPRs that contain program context such as
LPIDR as well as TLBs shared by other threads.

A context synchronizing operation is necessarily
execution synchronizing; see Section 1.6.2.

Unlike the Synchronize instruction, a context syn-
chronizing operation does not affect the order in
which storage accesses are performed.

Item 2 permits a choice only for isync (and sync;
see Section 1.6.2) because all other execution syn-
chronizing operations also alter context.

Unlike a context synchronizing operation, an execu-
tion synchronizing instruction does not ensure that
the instructions following that instruction will exe-
cute in the context established by that instruction.
This new context becomes effective sometime after
the execution synchronizing instruction completes
and before or at a subsequent context synchroniz-
ing operation.

Programming Note
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Chapter 2.  Logical Partitioning [Category: 
Embedded.Hypervisor]

2.1 Overview
The Embedded.Hypervisor category permits threads
and portions of real storage to be assigned to logical
collections called partitions, such that a program exe-
cuting in one partition cannot interfere with any pro-
gram executing in a different partition. This isolation
can be provided for both problem state and privileged
state programs, by using a layer of trusted software,
called a hypervisor program (or simply a “hypervisor”),
and the resources provided by this facility to manage
system resources. The collection of software that runs
in a given partition and its associated resources is
called a guest. The guest normally includes an operat-
ing system (or other system software) running in privi-
leged state and its associated processes running in the
problem state under the management of the hypervisor.
The thread is in the guest state when a guest is execut-
ing and is in the hypervisor state when the hypervisor is
executing. The thread is executing in the guest state
when MSRGS=1.

The number of partitions supported is implementa-
tion-dependent.

A thread is assigned to one partition at any given time.
A thread can be assigned to any given partition without
consideration of the physical configuration of the sys-
tem (e.g. shared registers, caches, organization of the
storage hierarchy), except that threads that share cer-
tain hypervisor resources may need to be assigned to
the same partition. Additionally, certain resources may
be utilized by the guest at the discretion of the hypervi-
sor. Such usage may cause interference between parti-
tions and the hypervisor should allocate those
resources accordingly. The primary registers and facili-
ties used to control Logical Partitioning are listed below
and described in the following subsections. Other facili-
ties associated with Logical Partitioning are described
within the appropriate sections within this Book.

An instruction that is hypervisor privileged must be exe-
cute in the hypervisor state (MSRGS PR = 0b00). If an
attempt is made to execute a hypervisor-privileged
instruction in the guest supervisor state (MSRGS PR =

0b10), an Embedded Hypervisor Privilege exception
occurs. A register that is hypervisor privileged may only
be accessed in the hypervisor state (MSRGS PR =
0b00). If a hypervisor-privileged register is accessed in
the guest supervisor state (MSRGS PR = 0b10), an
Embedded Hypervisor Privilege exception occurs.

When MSRGS PR = 0b01 or MSRGS PR = 0b11, the
thread is in problem (user) state. The resources
(instructions and registers) that are available are gener-
ally the same when MSRPR = 0b1 regardless of the
state of MSRGS, however when MSRGS PR = 0b11
some interrupts are directed to the guest supervisor
state. When MSRGS PR = 0b01 interrupts are always
directed to the hypervisor (see Section 2.3.1, “Directed
Interrupts”).

Category Embedded.Hypervisor changes the operating
system programming model to allow for easier virtual-
ization, while retaining a default backward compatible
mode in which an operating system written for hard-
ware not implementing this category will still operate as
before without using the Logical Partitioning facilities.

Category Embedded.Hypervisor requires that Cate-
gory: Embedded.Processor Control is also supported.

2.2 Registers
Registers specific to Logical Partitioning and hypervisor
control are defined in this section. Other registers
which are hypervisor privileged or have hypervisor-only
fields appear and are described in other sections in this
Book.

2.2.1 Register Mapping
To facilitate better performance for operating systems
executing in the guest supervisor state, some Special
Purpose Register (SPR) accesses are redirected to
analogous guest-state SPRs. An SPR is said to be
mapped if this redirection takes place when executing
in guest supervisor state. These guest-state SPRs sep-
arate performance critical state of the hypervisor and
the operating system executing in guest supervisor
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state. The mapping of these register accesses allows
the same programming model to be used for an operat-
ing system running in the guest supervisor state or in
the hypervisor state.

For example, when a mtspr SRR0,r5 instruction is exe-
cuted in guest supervisor state, the access to SRR0 is
mapped to GSRR0. This produces the same operation
as executing mtspr GSRR0,r5

. 

SPR accesses that are mapped in guest supervisor
state are listed in Table 1.

2.2.2 Logical Partition Identifica-
tion Register (LPIDR)
The Logical Partition Identification Register (LPIDR)
contains the Logical Partition ID (LPID) currently in use
for the thread. The format of the LPIDR is shown in
Figure 1 below. 

Figure 1. Logical Partition Identification Register

The LPIDR is part of the virtual address. During
address translation, its content is compared to the
TLPID field in the TLB entry to determine a matching
TLB entry.

The LPIDR is hypervisor privileged.

The 12 least significant bits of LPIDR contain the LPID
value. All 12 bits do not need to be implemented. Unim-
plemented bits should read as zero. The number of
implemented bits is reported in MMUCFGLPIDSIZE

2.3 Interrupts and Exceptions

2.3.1 Directed Interrupts
Category Embedded.Hypervisor introduces new inter-
rupt semantics. Interrupts are directed to either the
guest state or the hypervisor state. The state to which
interrupts are directed determines which SPRs are
used to form the vector address, which save/restore
registers are used to capture the thread state at the
time of the interrupt, and which registers are used to
post exception status. 

If IVORs [Category: Embedded.Phased-Out] are
supported, interrupts directed to the guest state
use the Guest Interrupt Vector Prefix Register
(GIVPR) to determine the high-order 48 bits of the
vector address and use Guest Interrupt Vector
Registers (GIVORs) to provide the low-order 16
bits (of which the last 4 bits are 0). 
If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, interrupts directed
to the guest state use the Guest Interrupt Vector
Prefix Register (GIVPR) to determine the
high-order 52 bits of the vector address and use
the 12-bit exception vector offsets (described in
Section 7.2.15) to provide the low-order 12 bits (of
which the last 5 bits are 0).
If IVORs [Category: Embedded.Phased-Out] are
supported, interrupts directed to the Embedded
hypervisor state use the IVPR for the upper 48 bits
of the address and the IVORs for the lower 16 bits
of the address. 
If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, interrupts directed
to the Embedded hypervisor state use one of the
following for the interrupt vector address.

If the Machine Check Interrupt Vector Prefix
Register (see Section 7.2.18.4) is supported
and the interrupt is a Machine Check,
MCIVPR provides the high-order 52 bits of the
vector address and the 12-bit exception vector
offsets (described in Section 7.2.15) provides
the low-order 12 bits (of which the last 5 bits
are 0).
Otherwise, IVPR provides the high-order 52
bits of the vector address and the 12-bit
exception vector offsets (described in Section

Since accesses to the mapped SPRs are automati-
cally  mapped to the appropriate guest-accessible
SPR, guest  supervisor  software should use the
original SPRs for accessing these registers  (i.e.,
SRR0, not GSRR0).  This facilitates using the
same code in  hypervisor or guest state.

SPR Accessed
SPR 

Mapped to
Type of Access

DEC GDEC mtspr, mfspr

DECAR GDECAR mtspr

TCR GTCR mtspr, mfspr

TSR GTSR mtspr, mfspr

SRR0 GSRR0 mtspr, mfspr

SRR1 GSRR1 mtspr, mfspr

EPR GEPR mfspr

ESR GESR mtspr, mfspr

DEAR GDEAR mtspr, mfspr

PIR GPIR mfspr

SPRG0 GSPRG0 mtspr, mfspr

SPRG1 GSPRG1 mtspr, mfspr

SPRG2 GSPRG2 mtspr, mfspr

SPRG3 GSPRG3 mtspr, mfspr
1 If an implementation permits problem state read 

access to SPRG3, the problem state read access 
is remapped to GSPRG3.

Table 1: Mapped SPRs

LPIDR
32 63
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7.2.15) provides the low-order 12 bits (of
which the last 5 bits are 0).

Interrupts that are directed to the guest state use
GSRR0/GSRR1 registers to save the context at inter-
rupt time. Interrupts directed to the Embedded hypervi-
sor state use SRR0/SRR1, with the exception of Guest
Processor Doorbell interrupts which use GSRR0/
GSRR1.

All interrupts are directed to the hypervisor except
when the processor is already in guest state
(MSRGS=1) and:

The interrupt is a system call and the LEVEL field
is 0.

The interrupt is a Data TLB Error, Instruction TLB
Error, Data Storage Interrupt, Instruction Storage
Interrupt, or External Input Interrupt and the corre-
sponding bit in the EPCR to direct these interrupts
to guest state is a 1 and the interrupt is not caused
by either a Virtualization Fault or a TLB Ineligible
Exception.

2.3.2 Hypervisor Service Inter-
rupts
Two interrupts exist as mechanisms for the hypervisor
to provide services to the guest.

The Embedded Hypervisor Privilege Interrupt occurs
when guest supervisor state attempts execution of a
hypervisor-privileged instruction or attempts to access
a hypervisor-privileged resource. This can be used by
the hypervisor to provide virtualization services for the
guest. The Embedded Hypervisor Privilege Interrupt is
described in Section 7.6.31, “Embedded Hypervisor
Privilege Interrupt [Category: Embedded.Hypervisor]”.
An Embedded Hypervisor Privilege Interrupt will also
occur if a ehpriv instruction is executed regardless of
the thread state.

The Embedded Hypervisor System Call Interrupt
occurs when an sc instruction is executed and LEV=1.
The sc instruction is described in Section 4.3.1, “Sys-
tem Linkage Instructions”.

2.4 Instruction Mapping
When executing in the guest supervisor state
(MSRGS PR = 0b10), execution of an rfi instruction is
mapped to rfgi and the rfgi instruction is executed in
place of the rfi. The mapping of these instructions
allows the same programming model to be used for an
operating system running in the guest supervisor state
or in the hypervisor state.
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Version 2.07 B
Power ISA™ - Book III-E1030



Version 2.07 B
Chapter 3.  Thread Control [Category: Embedded 
Multi-Threading]

3.1 Overview
The Thread Control facility permits the hypervisor to
control and monitor the execution, priority, and other
aspects of threads.

3.2 Thread Identification Regis-
ter (TIR)
The layout of the TIR is shown in below.

Figure 2. Thread Identification Register

The TIR is a 64-bit read-only register that can be used
to distinguish the thread from other threads on a
multi-threaded processor. Threads are numbered
sequentially, with valid values ranging from 0 to t-1,
where t is the number of threads implemented. A
thread for which TIR = n is referred to as “thread n.”

The TIR is hypervisor privileged.

3.3 Thread Enable Register 
(TEN)
The layout of the TEN is shown in below.

Figure 3. Thread Enable Register

The TEN is a 64-bit register. For t < T, where T is the
number of threads supported by the implementation, bit
63-t corresponds to thread t. When TEN63-t is 0, thread
t is disabled. When TEN63-t is 1, thread t is enabled.

Software is permitted to write any value to bits 0:63-T; a
subsequent reading of these bits always returns 0. 

The TEN can be accessed using two SPR numbers.

- When SPR 438 (Thread Enable Set, or TENS)
is written, threads for which the corresponding
bit in TENS is 1 are enabled; threads for which
the corresponding bit in TENS is 0 are unaf-
fected.

- When SPR 439 (Thread Enable Clear, or
TENC) is written, threads for which the corre-
sponding bit in TENC is 1 are disabled;
threads for which the corresponding bit in
TENC is 0 are unaffected. 

When each SPR is read, the current value of the TEN
is returned.

The TEN is hypervisor privileged.

  

3.4 Thread Enable Status Regis-
ter (TENSR)
The layout of the TENSR is shown in below.

Figure 4. Thread Enable Status Register

The TENSR is a 64-bit read-only register. Bit 63-t of the
TENSR corresponds to thread t. The contents of the
TENSR are equal to the contents of the TEN, except
that when TEN63-t changes from 1 to 0, TENSR63-t
does not change from 1 to 0 until thread t is disabled.

The TENSR is hypervisor privileged.

TIR
0                                                                                                               63

TEN
0                                                                                                               63

Software can determine the number of threads
supported by the implementation by setting each
progressively higher-order bit to 1, and testing
whether a subsequent read returns a 1. Because
this operation enables the thread, software should
ensure that an acceptable instruction sequence is
located at the thread’s starting effective address.
(See Section 8.3, “Thread State after Reset”.)

TENSR
0                                                                                                               63

Programming Note
Chapter 3. Thread Control [Category: Embedded Multi-Threading] 1031



Version 2.07 B
3.5 Disabling and Enabling 
Threads
The combination of disabling and enabling a thread is
context-synchronizing for the thread being enabled.
Steps 1-3 of context synchronization (see Section
1.6.1) occur as a result of the thread being disabled,
and updates to SPRs and shared TLBs caused by pre-
ceding instructions executed by the thread occur. When
all updates to these shared SPRs and shared TLBs
have been performed with respect to all other threads
on a multi-threaded processor, the TENSR bit corre-
sponding to the disabled thread is set to 0.

Asynchronous interrupts that occur after the thread is
disabled are pended until the thread is enabled. 

When a thread is enabled by setting the TEN bit corre-
sponding to the thread to 1, the thread begins execu-
tion at the next instruction to be executed when it was
disabled or at the effective address specified by the
INIA [Category: Embedded Multi-threading.Thread
Management] if the INIA corresponding to the thread
was written while the thread was disabled.

  

  

3.6 Sharing of Multi-Threaded 
Processor Resources
The PVR and TEN must be shared among all threads
of a multi-threaded processor. Various other resources
are allowed to be shared among threads. Programs
that modify shared resources must be aware of such
sharing, and must allow for the fact that changes to
these resources may affect more than one thread. 

Resources that may be shared are grouped into the fol-
lowing five groups of related resources. If any of the
resources in a group are shared among threads, all of
the resources in the group must be shared.

ATB, ATBL, ATBU [Category: ATB]
IVORs [Category: Phased-Out]
IVPR
TB, TBL, TBU
MMUCFG, MMUCSR0, TLB, TLBnCFG,
TLBnCFG2, TLBnEPT,   [Category: Embed-
ded.Hypervisor.LRAT]: LRAT, LRATCFG,
LRATCFG2

If the implementation requires all threads to be in the
same partition, the following additional groups of
resources may be shared. If any of the resources in a
group are shared among threads, all of the resources in
the group must be shared.

DAC1, DAC2, IAC1, IAC2, IAC3
EHCSR [Category: Embedded.Hypervisor]
GIVORs [Category: Phased-Out]
GIVPR [Category: Embedded.Hypervisor]
LPIDR [Category: Embedded.Hypervisor]

Certain implementation-dependent registers, instruc-
tion and Data Caches, and implementation-dependent
look-aside information may also be shared.

The set of resources that is shared is implementa-
tion-dependent.

The architecture provides no method to make a
thread's updates to shared storage visible to other
threads before it is disabled. Similarly, the architec-
ture provides no method to make updates to
shared storage made while a thread is disabled vis-
ible to a thread when it is subsequently enabled. 

When thread T1 disables other threads, Tn, it sets
the TEN bits corresponding to Tn to 0s. In order to
ensure that all updates to shared SPRs and shared
TLBs caused by instructions being performed by
threads Tn have been performed with respect to all
threads on a multi-threaded processor, thread T1
reads the TENSR until all the bits corresponding to
the disabled threads, Tn, are 0s.

Programming Note

Programming Note
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  3.7 Thread Management Facility 
[Category: Embedded Multi-
threading.Thread Management]
The thread management facility enables software to
control features related to threads. The capabilities pro-
vided allow software, for a disabled thread, to specify
the address of the instruction to be executed when the
thread is enabled. Other implementation-dependent
capabilities may also be provided.

3.7.1 Initialize Next Instruction 
Address Registers
The Initialize Next Instruction Address (INIAn, where n
= 0..63) registers are 64-bit write-only registers that can
be used to specify the effective address of the instruc-
tion to be executed when a currently-disabled thread is
enabled. INIAn corresponds to thread n. 

Figure 5. Initialize Next Instruction Address
Register

Bit 63 is always 0. Bit 62 is part of the Instruction
Address if Category: VLE is supported; otherwise bit 62
is always 0.

When the INIA is written in 32-bit mode, bits 0:31 are
set to 0s.

The initial value of all INIAs is
x0xFFFF_FFFF_FFFF_FFFC.

When software executing in thread T1 writes a new
value in an SPR (mtspr) that is shared with other
threads, or explicitly writes to an entry in a shared
TLB (tlbwe), either of the following sequences of
operations can be performed in order to ensure that
the write operation has been performed with
respect to other threads.

Sequence 1
Disable all other threads (see Section 3.5)
Write to the shared SPR (mtspr) or to the
shared TLB (tlbwe)
Perform a context synchronizing operation
Enable the previously-disabled threads

In the above sequence, the context synchronizing
operation ensures that the write operation has
been performed with respect to all other threads
that share the SPR or TLB; the enabling of other
threads ensures that subsequent instructions of the
enabled threads use the new SPR or TLB value
since enabling a thread is a context synchronizing
operation. 

Sequence 2
All threads are put in hypervisor state and
begin polling a storage flag
The thread updating the SPR or TLB does the
following:

Writes to the SPR (mtspr) or the TLB
(tlbwe)

Sets a storage flag indicating the write
operation was done

Performs a context synchronizing opera-
tion

When other threads see the updated storage
flag, they perform context synchronizing oper-
ations.

In the above sequence, the context synchronizing
operation by the thread that writes to the SPR or
TLB ensures that the write operation has been per-
formed with respect to all other threads that share
the SPR or TLB; the context synchronizing opera-
tion by the other threads ensure that subsequent
instructions for these threads use the updated
value.

Programming Note

 Instruction Address 0
0 62 63
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3.7.2 Thread Management Instruc-
tions

Move To Thread Management Register 
 XFX-form

mttmr TMR,RS

n I tmr5:9 || tmr0:4
TMR(n) I (RS)

The TMR field denotes a Thread Management Regis-
ter, encoded as shown in the table below. The contents
of register RS are placed into the designated Thread
Management Register.

Figure 6. Thread Management Register Numbers

All values of the TMR field not shown in Figure 6 are
implementation-specific.

An implementation only provides INIA registers corre-
sponding to its implemented threads. Execution of this
instruction specifying a TMR number that is not defined
for the implementation causes an Illegal Instruction
type Program interrupt if MSRGS PR=0b00.

This instruction is hypervisor privileged.

Special Registers Altered:
See above

31 RS tmr 494 /
0 6 11 21 31

decimal
TMR1 Register

Name      tmr5:9  tmr0:4
320 01010 00000 INIA0
... ................... ...

383 10111 11111 INIA63
1 Note that the order of the two 5-bit halves 

of the SPR number is reversed.
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Chapter 4.  Branch Facility

4.1 Branch Facility Overview
This chapter describes the details concerning the regis-
ters and the privileged instructions implemented in the
Branch Facility that are not covered in Book I.

4.2 Branch Facility Registers

4.2.1 Machine State Register 
The MSR (MSR) is a 32-bit register. MSR bits are num-
bered 32 (most-significant bit) to 63 (least-significant
bit). This register defines the state of the thread. The
MSR can also be modified by the mtmsr, rfi, rfci, rfdi
[Category: Embedded.Enhanced Debug], rfmci, rfgi
[Category: Embedded.Hypervisor], wrtee and wrteei
instructions and interrupts. It can be read by the mfmsr
instruction.

Figure 7. Machine State Register

Below are shown the bit definitions for the Machine
State Register.

Bit Description

32 Computation Mode (CM)

0 The thread runs in 32-bit mode.
1 The thread runs in 64-bit mode.

33 Reserved

34 Implementation-dependent

35 Guest State (GS)

[Category: Embedded.Hypervisor]
0 The thread is in hypervisor state if MSRPR

= 0.
1 The thread is in guest state.

MSRGS cannot be changed unless thread
is in the hypervisor state.

  

36 Implementation-dependent

37 User Cache Locking Enable (UCLE)
[Category: Embedded Cache Locking.User
Mode]

0 Cache Locking instructions are privileged.
1 Cache Locking instructions can be exe-

cuted in user mode (MSRPR=1).

If Category: Embedded Cache Locking.User
Mode is not supported, this bit is treated as
reserved.

38 SP/Embedded Floating-Point/Vector Avail-
able (SPV)

[Category: Signal Processing]:
0 The thread cannot execute any SP

instructions except for the brinc instruc-
tion.

1 The thread can execute all SP instruc-
tions.

 
[Category: Vector]:
0 The thread cannot execute any Vector

instruction.
1 The thread can execute Vector instruc-

tions.

39 Reserved

MSR
32                                                       63

In a virtualized implementation, MSRGS
will be 1.

Virtualized Implementation Note
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40 VSX Available (VSX)

0 The thread cannot execute any VSX
instructions, including VSX loads, stores,
and moves.

1 The thread can execute VSX instructions.

  

41:45 Reserved

46 Critical Enable (CE)

0 Critical Input, Watchdog Timer, Guest Pro-
cessor Doorbell Critical <E.HV>, and Pro-
cessor Doorbell Critical interrupts are
disabled.

1 Critical Input, Watchdog Timer, Guest Pro-
cessor Doorbell Critical <E.HV>, and Pro-
cessor Doorbell Critical interrupts are
enabled.

[Category: Embedded.Hypervisor]
Critical level interrupts with the exception of
Guest Processor Doorbell Critical are
enabled regardless of the state of MSRCE
when MSRGS = 1.

47 Reserved 

48 External Enable (EE)

0 External Input, Decrementer, Fixed-Inter-
val Timer, Processor Doorbell, Guest Pro-
cessor Doorbell <E.HV> and Embedded
Performance Monitor <E.PM> interrupts
are disabled.

1 External Input, Decrementer, Fixed-Inter-
val Timer, Processor Doorbell, Guest Pro-
cessor Doorbell <E.HV>, and Embedded
Performance Monitor <E.PM> interrupts
are enabled.

[Category: Embedded.Hypervisor]
When an interrupt that is maskable by
MSREE is directed to the hypervisor state,
the interrupt is enabled if MSREE=1 or
MSRGS=1 except for Guest Processor
Doorbell which is enabled if MSREE=1 and
MSRGS=1. When an interrupt that is
maskable by MSREE is directed to the
guest supervisor state, the interrupt is
enabled if MSREE=1 and MSRGS=1. Also,
see the EXTGS bit in Section 4.2.3.

49 Problem State (PR)

0 The thread is in privileged state (supervi-
sor state).

1 The thread is in problem state (user
mode).

MSRPR also affects storage access control,
as described in Section 6.7.6

50 Floating-Point Available (FP)
[Category: Floating-Point]

0 The thread cannot execute any float-
ing-point instructions, including float-
ing-point loads, stores and moves.

1 The thread can execute floating-point
instructions.

51 Machine Check Enable (ME)

0 Machine Check interrupts are disabled.
1 Machine Check interrupts are enabled.

[Category: Embedded.Hypervisor]
Machine Check interrupts with the excep-
tion of Guest Processor Doorbell Machine
Check are enabled regardless of the state
of MSRME when MSRGS = 1.

52 Floating-Point Exception Mode 0 (FE0)
[Category: Floating-Point]

 (See below)

53 Implementation-dependent

54 Debug Interrupt Enable (DE)

0 Debug interrupts are disabled
1 Debug interrupts are enabled if

DBCR0IDM=1

  

55 Floating-Point Exception Mode 1 (FE1)
[Category: Floating-Point]

 (See below)

56 Reserved

57 Reserved

58 Instruction Address Space (IS)

0 The thread directs all instruction fetches to
address space 0 (TS=0 in the relevant
TLB entry).

1 The thread directs all instruction fetches to
address space 1 (TS=1 in the relevant
TLB entry).

59 Data Address Space (DS)

An application binary interface defined to
support Category: Vector-Scalar
operations should also specify a
requirement that MSR.FP and MSR.VEC  be
set to 1 whenever MSR.VSX is set to 1.

Programming Note

In a virtualized implementation, when
MSRDE=1, the registers SPRG9, DSRR0,
and DSRR1 are volatile.

Virtualized Implementation Note
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0 The thread directs all data storage
accesses to address space 0 (TS=0 in the
relevant TLB entry).

1 The thread directs all data storage
accesses to address space 1 (TS=1 in the
relevant TLB entry).

60 Implementation-dependent

61 Performance Monitor Mark (PMM)
[Category: Embedded.Performance Monitor]

0 Disable statistics gathering on marked
processes.

1 Enable statistics gathering on marked pro-
cesses

See Appendix D for additional information.

62 Reserved 

63 Reserved 

The Floating-Point Exception Mode bits FE0 and FE1
are interpreted as shown below. For further details see
Book I.

See Section 8.3 for the initial state of the MSR.

[Category:Embedded.Hypervisor]
Some bits in the MSR can only be changed when the
thread is in hypervisor state or the MSRP register has
been configured to allow changes in the guest supervi-
sor state. See Section 4.2.2, “Machine State Register
Protect Register (MSRP)”.

 

4.2.2 Machine State Register Pro-
tect Register (MSRP)
The Machine State Register Protect Register (MSRP)
controls whether certain bits in the Machine State Reg-
ister (MSR) can be modified in guest supervisor state.
In addition, the MSRP impacts the behavior of cache
locking and Performance Monitor instructions in guest
state, as described below. The format of the MSRP is
shown in Figure 8 below. 

Figure 8. Machine State Register Protect Register

The MSRP is used to prevent guest supervisor state
program from modifying the UCLE, DE, or PMM bits in
the MSR. The MSRP bits UCLEP, DEP, and PMMP
control whether the guest can change the correspond-
ing MSR bits UCLE, DE, and PMM, respectively. When
the MSRP bit associated with a corresponding MSR bit
is 0, any operation in guest privileged state is allowed
to modify that MSR bit, whether from an instruction that
modifies the MSR, or from an interrupt which is taken in
the guest supervisor state. When the MSRP bit associ-
ated with a corresponding MSR bit is 1 no operation in
guest privileged state is allowed to modify that MSR bit
(i.e., it remains unchanged), whether from an instruc-
tion that modifies the MSR, or from an interrupt from
the guest state which is taken in the guest supervisor
state.

These bits are interpreted as follows:

Bit Definition

32:36 Reserved

37 User Cache Lock Enable Protect (UCLEP)
[Category: ECL]

0 MSRUCLE can be modified in guest super-
visor state.

1 MSRUCLE cannot be modified in guest
supervisor state and guest state cache
locking using dcbtls, dcbtstls, dcblc,
dcblq., icbtls, icblq., and icblc is
affected as descrbed later in this section.".

38:53 Reserved

54 Debug Enable Protect (DEP)

0 MSRDE can be modified in guest supervi-
sor state.

1 MSRDE cannot be modified in guest
supervisor state.

  

55:60 Reserved

61 Performance Monitor Mark Protect (PMMP)
[Category: E.PM]

0 MSRPMM can be modified in guest super-
visor state.

1 MSRPMM cannot be modified in guest
supervisor state and guest state accesses
to Performance Monitor Registers using
mfpmr and mtpmr are affected as
described later in this section.

62:63 Reserved

The MSRP is hypervisor privileged.

FE0 FE1 Mode
0 0 Ignore Exceptions
0 1 Imprecise Nonrecoverable
1 0 Imprecise Recoverable
1 1 Precise

A Machine State Register bit that is reserved may
be altered by rfi/rfci/rfmci/rfdi [Category:Embed-
ded.Enhanced Debug]/rfgi [Category:Embed-
ded.Hypervisor].

MSRP
32 63

Programming Note

It is the responsibility of the hypervisor to
ensure that DBCR0EDM is consistent with
usage of DEP.

Virtualized Implementation Note
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A context synchronizing operation must be performed
following a change to MSRP to ensure that its changes
are visible in the current context.

The behavior of cache locking instructions (dcbtls,
dcbtstls, dcblc, dcblq., icbtls, icblq., icblc) in guest
privileged state is dependent on the setting of MSRPU-

CLEP. When MSRPUCLEP = 0, cache locking instructions
are permitted to execute normally in the guest privi-
leged state. When MSRPUCLEP = 1, cache locking
instructions are not permitted to execute in the guest
privileged state and cause an Embedded Hypervisor
Privilege exception. [Category: ECL]

The behavior of Performance Monitor instructions
(mtpmr, mfpmr) is dependent on the setting of
MSRPPMMP. When MSRPPMMP = 0, Performance
Monitor instructions are permitted to execute normally
in the guest state. When MSRPPMMP = 1, Performance
Monitor instructions are not permitted to execute
normally in the guest state. Execution of a mfpmr
instruction which specifies a user Performance Monitor
register produces a value of 0 in the destination GPR.
In the guest supervisor state (MSRPR = 0 and MSRGS
= 1), execution of any mtpmr instruction or execution of
a mfpmr instruction which specifies a privileged
Performance Monitor Register produces an Embedded
Hypervisor Privilege exception. [Category: E.PM]

 

4.2.3 Embedded Processor Con-
trol Register (EPCR)
The Embedded Processor Control Register (EPCR)
provides general controls for both privileged and hyper-
visor privileged facilities. The format of the EPCR is
shown in Figure 1 below. 

Figure 9. Embedded Processor Control Register

These bits are interpreted as follows:

Bit Definition

32 External Input Interrupt Directed to Guest
State (EXTGS)
[Category: Embedded.Hypervisor]
Controls whether an External Input Interrupt is
taken in the guest supervisor state or the
hypervisor state.

0 External Input Interrupts are directed to
the hypervisor state. External Input Inter-
rupts pend until MSRGS=1 or MSREE=1.

1 External Inputs interrupts are directed to
the guest supervisor state. External Input
interrupts pend until MSRGS=1 and
MSREE=1.

33 Data TLB Error Interrupt Directed to Guest
State (DTLBGS)
[Category: Embedded.Hypervisor]
Controls whether a Data TLB Error Interrupt
that occurs in the guest state is taken in the
guest supervisor state or the hypervisor state.

0 Data TLB Error Interrupts that occur in the
guest state are directed to the hypervisor
state.

1 Data TLB Error Interrupts that occur in the
guest state are directed to the guest
supervisor state.

34 Instruction TLB Error Interrupt Directed to
Guest State (ITLBGS)
[Category: Embedded.Hypervisor]
Controls whether an Instruction TLB Error
Interrupt that occurs in the guest state is taken
in the guest supervisor state or the hypervisor
state.

0 Instruction TLB Error Interrupts that occur
in the guest state are directed to the
hypervisor state.

1 Instruction TLB Error Interrupts that occur
in the guest state are directed to the guest
supervisor state.

35 Data Storage Interrupt Directed to Guest
State (DSIGS)
[Category: Embedded.Hypervisor]
Controls whether a Data Storage Interrupt that
occurs in the guest state is taken in the guest
supervisor state or the hypervisor state,
except for an interrupt caused by a TLB Ineli-
gible exception <E.PT>.

0 Data Storage Interrupts that occur in the
guest state are directed to the hypervisor
state.

1 Data Storage Interrupts that occur in the
guest state are directed to the guest
supervisor state except that a Data Stor-
age Interrupt due to a TLB Ineligible
exception <E.PT> is directed to the hyper-
visor state, regardless of the existence of
other exceptions that cause a Data Stor-
age interrupt.

36 Instruction Storage Interrupt Directed to
Guest State (ISIGS)
[Category: Embedded.Hypervisor]
Controls whether an Instruction Storage Inter-
rupt that occurs in the guest state is taken in
the guest supervisor state or the hypervisor

Setting the MSRP to 0 at initialization allows guest
state access to MSRUCLE,DE,PMM and the associ-
ated cache locking and Performance Monitor facili-
ties.

EPCR
32 63

Programming Note
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state, except for an interrupt caused by a TLB
Ineligible exception <E.PT>.

0 Instruction Storage Interrupts that occur in
the guest supervisor state are directed to
the hypervisor state.

1 Instruction Storage Interrupts that occur in
the guest state are directed to the guest
supervisor state.

37 Disable Embedded Hypervisor Debug
(DUVD)
[Category: Embedded.Hypervisor]
Controls whether Debug Events occur in the
hypervisor state.

0 Debug events can occur in the hypervisor
state.

1 Debug events, except for the Uncondi-
tional Debug Event, are suppressed in the
hypervisor state. It is implementa-
tion-dependent whether the Uncondi-
tional Debug Event is suppressed.

38 Interrupt Computation Mode (ICM)
[Category: 64-bit]
If category E.HV is implemented, this bit con-
trols the computational mode of the thread
when an interrupt occurs that is directed to the
hypervisor state. At interrupt time, EPCRICM is
copied into MSRCM if the interrupt is directed
to the hypervisor state.

If category E.HV is not implemented, then this
bit controls the computational mode of the
thread when any interrupt occurs. At interrupt
time, EPCRICM is copied into MSRCM.

0 Interrupts will execute in 32-bit mode.
1 Interrupts will execute in 64-bit mode.

39 Guest Interrupt Computation Mode (GICM)
[Category: Embedded.Hypervisor]
[Corequisite Category: 64-bit]
Controls the computational mode of the
thread when an interrupt occurs that is
directed to the guest supervisor state. At inter-
rupt time, EPCRGICM is copied into MSRCM if
the interrupt is directed to the guest supervi-
sor state

0 Interrupts will execute in 32-bit mode.
1 Interrupts will execute in 64-bit mode.

40 Disable Guest TLB Management Instruc-
tions (DGTMI)
[Category: Embedded.Hypervisor]
Controls whether guest supervisor state can
execute any TLB management instructions.

0 tlbsrx. and tlbwe (for a Logical to Real
Address translation hit) are allowed to
execute normally when MSRGS,PR =
0b10.

1 tlbsrx. and tlbwe always cause an
Embedded Hypervisor Privilege Interrupt
when MSRGS,PR = 0b10.

41 Disable MAS Interrupt Updates for Hyper-
visor (DMIUH)
[Category: Embedded.Hypervisor]
Controls whether MAS registers are updated
by hardware when a Data or Instruction TLB
Error Interrupt or a Data or Instruction Storage
Interrupt is taken in the hypervisor.

0 MAS registers are set as described in
Table 11 on page 1116 when a Data or
Instruction TLB Error Interrupt or a Data or
Instruction Storage Interrupt is taken in
the hypervisor.

1 MAS registers updates as described in
Table 11 are disabled and MAS registers
are left unchanged when a Data or
Instruction TLB Error Interrupt or a Data or
Instruction Storage Interrupt is taken in
the hypervisor.

42 Performance Monitor Interrupt Directed to
Guest State (PMGS)
[Category: Embedded.Hypervisor]
[Corequisite Category: Embedded.Perfor-
mance Monitor]
Controls whether a Performance Monitor
Interrupt that occurs in the guest state is taken
in the guest supervisor state or the hypervisor
state.

0 Performance Monitor Interrupts that occur
in the guest state are directed to the
hypervisor state.

1 Performance Monitor Interrupts that occur
in the guest state are directed to the guest
supervisor state.

43:63 Reserved

This register is hypervisor privileged.
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4.3 Branch Facility Instructions

4.3.1 System Linkage Instructions
These instructions provide the means by which a pro-
gram can call upon the system to perform a service,

and by which the system can return from performing a
service or from processing an interrupt.

The System Call instruction is described in Book I, but
only at the level required by an application programmer.
A complete description of this instruction appears
below.

System Call SC-form 

sc

sc LEV
[Category:Embedded.Hypervisor]

if LEV = 0 then
 

if MSRGS = 1 then
GSRR0 Iiea CIA + 4
GSRR1 I MSR
if IVORs supported then

NIA I GIVPR0:47 || GIVOR848:59 || 0b0000
else

NIA I GIVPR0:51||0x0120
MSR I new_value (see below)

else
SRR0 Iiea CIA + 4
SRR1 I MSR
if IVORs supported then

NIA I IVPR0:47 || IVOR848:59 || 0b0000
else

NIA I IVPR0:51||0x0120
MSR I new_value (see below)

else if LEV = 1 then
SRR0 Iiea CIA + 4
SRR1 I MSR
if IVORs supported then

NIA I IVPR0:47 || IVOR4048:59 || 0b0000
else

NIA I IVPR0:51||0x300
MSR I new_value (see below)

If category E.HV is not implemented, the System Call
instruction behaves as if MSRGS = 0 and LEV = 0.

If MSRGS = 0 or if LEV = 1, the effective address of the
instruction following the System Call instruction is
placed into SRR0 and the contents of the MSR are
copied into SRR1. Otherwise, the effective address of
the instruction following the System Call instruction is
placed into GSRR0 and the contents of the MSR are
copied into GSRR1.

If LEV=0, a System Call interrupt is generated. If
LEV=1, an Embedded Hypervisor System Call interrupt

is generated. The interrupt causes the MSR to be set
as described in Section 7.6.10 and Section 7.6.30. 

If LEV=0 and the thread is in guest state, the interrupt
causes the next instruction to be fetched from the effec-
tive address based on one of the following.

GIVPR0:47||GIVOR848:59||0b0000 if IVORs [Cate-
gory: Embedded.Phased-Out] are supported.
GIVPR0:51||0x120 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

If LEV=0 and the thread is in hypervisor state, the inter-
rupt causes the next instruction to be fetched from the
effective address based on one of the following.

IVPR0:47||IVOR848:59||0b0000 if IVORs [Category:
Embedded.Phased-Out] are supported.
IVPR0:51||0x120 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

If LEV=1, the interrupt causes the next instruction to be
fetched from the effective address based on one of the
following.

IVPR0:47||IVOR4048:59||0b0000 if IVORs [Cate-
gory: Embedded.Phased-Out] are supported.
IVPR0:51||0x300 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

This instruction is context synchronizing.

Special Registers Altered:
SRR0 GSRR0 SRR1 GSRR1 MSR
 

17 /// /// /// /// // 1 /
0 6 11 16 20 27 30 31

17 /// /// /// LEV // 1 /
0 6 11 16 20 27 30 31

sc serves as both a basic and an extended mne-
monic. The Assembler will recognize an sc mne-
monic with one operand as the basic form, and an
sc mnemonic with no operand as the extended
form. In the extended form, the LEV operand is
omitted and assumed to be 0.

Programming Note
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Return From Interrupt XL-form

rfi 

MSR I SRR1
NIA Iiea SRR00:61 || 0b00

The rfi instruction is used to return from a base class
interrupt, or as a means of simultaneously establishing
a new context and synchronizing on that new context.

The contents of SRR1 are placed into the MSR. If the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched, under control
of the new MSR value, from the address
SRR00:61||0b00. (Note: VLE behavior may be different;
see Book VLE.) If the new MSR value enables one or
more pending exceptions, the interrupt associated with
the highest priority pending exception is generated; in
this case the value placed into the applicable save/
restore register 0 by the interrupt processing mecha-
nism (see Section 7.6 on page 1161) is the address of
the instruction that would have been executed next had
the interrupt not occurred (i.e., the address in SRR0 at
the time of the execution of the rfi).

This instruction is privileged and context synchronizing.

[Category:Embedded.Hypervisor]
When rfi is executed in guest state, the instruction is
mapped to rfgi and rfgi is executed instead.

Special Registers Altered:
MSR

Return From Critical Interrupt XL-form

rfci 

MSR I CSRR1
NIA Iiea CSRR00:61 || 0b00

The rfci instruction is used to return from a critical
class interrupt, or as a means of establishing a new
context and synchronizing on that new context simulta-
neously. 

The contents of CSRR1 are placed into the MSR. If the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched, under control
of the new MSR value, from the address
CSRR00:61||0b00. (Note: VLE behavior may be differ-
ent; see Book VLE.) If the new MSR value enables one
or more pending exceptions, the interrupt associated
with the highest priority pending exception is gener-
ated; in this case the value placed into SRR0 or
CSRR0 by the interrupt processing mechanism (see
Section 7.6 on page 1161) is the address of the instruc-
tion that would have been executed next had the inter-
rupt not occurred (i.e., the address in CSRR0 at the
time of the execution of the rfci).

This instruction is hypervisor privileged and context
synchronizing.

Special Registers Altered:
MSR

19 /// /// /// 50 /
0 6 11 16 21 31

19 /// /// /// 51 /
0 6 11 16 21 31
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Return From Debug Interrupt X-form

rfdi
[Category: Embedded.Enhanced Debug]

MSR I DSRR1
NIA Iiea DSRR00:61 || 0b00

The rfdi instruction is used to return from a Debug
interrupt, or as a means of establishing a new context
and synchronizing on that new context simultaneously. 

The contents of DSRR1 are placed into the MSR. If the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched, under control
of the new MSR value, from the address
DSRR00:61||0b00. (Note: VLE behavior may be differ-
ent; see Book VLE.) If the new MSR value enables one
or more pending exceptions, the interrupt associated
with the highest priority pending exception is gener-
ated; in this case the value placed into SRR0, CSRR0,
or DSRR0 by the interrupt processing mechanism is
the address of the instruction that would have been
executed next had the interrupt not occurred (i.e., the
address in DSRR0 at the time of the execution of the
rfdi).

This instruction is hypervisor privileged and context
synchronizing.

Special Registers Altered: 
MSR

Return From Machine Check Interrupt
XL-form

rfmci 

MSR I MCSRR1
NIA Iiea MCSRR00:61 || 0b00

The rfmci instruction is used to return from a Machine
Check class interrupt, or as a means of establishing a
new context and synchronizing on that new context
simultaneously. 

The contents of MCSRR1 are placed into the MSR. If
the new MSR value does not enable any pending
exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address
MCSRR00:61||0b00. (Note: VLE behavior may be differ-
ent; see Book VLE.) If the new MSR value enables one
or more pending exceptions, the interrupt associated
with the highest priority pending exception is gener-
ated; in this case the value placed into SRR0, CSRR0,
MCSRR0, or DSRR0 [Category: Embedded.Enhanced
Debug] by the interrupt processing mechanism (see
Section 7.6 on page 1161) is the address of the instruc-
tion that would have been executed next had the inter-
rupt not occurred (i.e., the address in MCSRR0 at the
time of the execution of the rfmci).

This instruction is hypervisor privileged and context
synchronizing.

Special Registers Altered:
MSR

19 /// /// /// 39 /
0 6 11 16 21 31

19 /// /// /// 38 /
0 6 11 16 21 31
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Return From Guest Interrupt XL-form

rfgi [Category:Embedded.Hypervisor]

newmsr I GSRR1
if MSRGS = 1 then

newmsrGS,WE I MSRGS
prots I MSRPUCLEP,DEP,PMMP
newmsr I prots & MSR | ~prots & newmsr

MSR I newmsr
NIA Iiea GSRR00:61 || 0b00

The rfgi instruction is used to return from a guest state
base class interrupt, or as a means of simultaneously
establishing a new context and synchronizing on that
new context.

The contents of Guest Save/Restore Register 1 are
placed into the MSR. If the rfgi is executed in the guest
supervisor state (MSRGS PR = 0b10), the bit MSRGS is
not modified and the bits MSRUCLE DE PMM are modi-
fied only if the associated bits in the Machine State
Register Protect (MSRP) Register are set to 0. If the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched, under control
of the new MSR value, from the address
GSRR00:61||0b00. (Note: VLE behavior may be differ-
ent; see Book VLE.) If the new MSR value enables one
or more pending exceptions, the interrupt associated
with the highest priority pending exception is gener-
ated; in this case the value placed into the associated
save/restore register 0 by the interrupt processing
mechanism is the address of the instruction that would
have been executed next had the interrupt not occurred
(i.e., the address in GSRR0 at the time of the execution
of the rfgi).

This instruction is privileged and context synchronizing.

Special Registers Altered:
MSR

Embedded Hypervisor Privilege XL-form

ehpriv OC [Category: Embedded.Hypervisor]

The ehpriv instruction generates an Embedded Hyper-
visor Privilege Exception resulting in an Embedded
Hypervisor Privilege Interrupt.

The OC field may be used by hypervisor software to
provide a facility for emulated virtual instructions.

Special Registers Altered:
None

 

 

19 /// /// /// 102 /
0 6 11 16 21 31

31 OC 270 /
0 6 21 31

The ehpriv instruction is analogous to a guaran-
teed illegal instruction encoding in that it guaran-
tees that an Embedded Hypervisor Privilege
exception is generated. The instruction is useful for
programs that need to communicate information to
the hypervisor software, particularly as a means for
implementing breakpoint operations in a hypervisor
managed debugger.

ehpriv serves as both a basic and an extended
mnemonic. The Assembler will recognize an
ehpriv mnemonic with one operand as the basic
form, and an ehpriv mnemonic with no operand as
the extended form. In the extended form, the OC
operand is omitted and assumed to be 0.

Programming Note
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Chapter 5.  Fixed-Point Facility

5.1 Fixed-Point Facility Over-
view
This chapter describes the details concerning the regis-
ters and the privileged instructions implemented in the
Fixed-Point Facility that are not covered in Book I.  

5.2 Special Purpose Registers
Special Purpose Registers (SPRs) are read and written
using the mfspr (page 1054) and mtspr (page 1053)
instructions. Most SPRs are defined in other chapters
of this book; see the index to locate those definitions.

5.3 Fixed-Point Facility Regis-
ters

5.3.1 Processor Version Register
The Processor Version Register (PVR) is a 32-bit
read-only register that contains a value identifying the
version and revision level of the hardware.  The con-
tents of the PVR can be copied to a GPR by the mfspr
instruction.  Read access to the PVR is privileged; write
access is not provided.

Figure 10. Processor Version Register

The PVR distinguishes between implementations that
differ in attributes that may affect software.  It contains
two fields.

Version A 16-bit number that identifies the version
of the implementation.  Different version
numbers indicate major differences
between implementations, such as which
optional facilities and instructions are sup-
ported.

Revision A 16-bit number that distinguishes between
implementations of the version.  Different

revision numbers indicate minor differences
between implementations having the same
version number, such as clock rate and
Engineering Change level.

Version numbers are assigned by the Power ISA Archi-
tecture process. Revision numbers are assigned by an 
implementation-defined process. 

5.3.2 Chip Information Register
The Chip Information Register (CIR) is a 32-bit 
read-only register that contains a value identifying the 
manufacturer and other characteristics of the chip on 
which the processor is implemented. The contents of 
the CIR can be copied to a GPR by the mfspr instruc-
tion. Read access to the CIR is privileged; write access 
is not provided.

Figure 11. Chip Information Register

Bit Description

32:35 Manufacturer ID (ID) A four-bit field that iden-
tifies the manufacturer of the chip.

36:63 Implementation-dependent.

5.3.3 Processor Identification 
Register
The Processor Identification Register (PIR) is a 32-bit
register that contains a value that can be used to distin-
guish the thread from other threads in the system. The
contents of the PIR can be read using mfspr and writ-
ten using mtspr. Read access to the PIR is privileged;
write access, if provided, is hypervisor privileged.

 Version Revision
32 48       63

ID ???
32 36        63

If two processors have identical designs, their PVR 
values will match.  They will be differentiated by 
data in the CPU node of the device tree.

Programming Note
Chapter 5. Fixed-Point Facility 1045



Version 2.07 B
[Category:Embedded.Hypervisor]
Read accesses to the PIR in guest supervisor state are
mapped to the GPIR.

Figure 12. Processor Identification Register

The means by which the PIR is initialized are imple-
mentation-dependent.

  

5.3.4 Guest Processor Identifica-
tion Register [Category:Embed-
ded.Hypervisor]
The Guest Processor Identification Register (GPIR) is a
32-bit register that contains a value that can be used to
distinguish the thread from other threads in the system.
The contents of the GPIR can be read using mfspr and
written using mtspr. Read access to the GPIR is privi-
leged; write access, if provided, is hypervisor privi-
leged.

Figure 13. Guest Processor Identification Register

The means by which the GPIR is initialized are imple-
mentation-dependent.

 

5.3.5 Program Priority Register 
32-bit
Privileged programs may set a wider range of program
priorities in the PRI field of PPR32 than may be set by

problem state programs (see Section 3.1 of Book II).
Problem state programs may only set values in the
range of 0b010 to 0b100. Privileged programs may set
values in the range of 0b001 to 0b110. Hypervisor soft-
ware may also set 0b111. If a program attempts to set a
value that is not available to it, the PRI field remains
unchanged. The values and their corresponding mean-
ings are as follows.

001   very low
010   low
011   medium low
100   medium
101   medium high
110   high
111   very high

5.3.6 Software-use SPRs
Software-use SPRs are 64-bit registers provided for
use by software.

Figure 14. Special Purpose Registers

 

SPRG0 through SPRG2

These 64-bit registers can be accessed only in
supervisor mode.

[Category:Embedded.Hypervisor]
Access to these registers in guest supervisor state
is mapped to GSPRG0 through GSPRG2. 

SPRG3

This 64-bit register can be read in supervisor mode
and can be written only in supervisor mode. It is

PROCID
32                                                    63

Bits Name Description
32:63 PIR Thread ID

The PIR can be used to identify the thread globally
among all threads in a system that contains multi-
ple threads. This facilitates more efficient usage of
the Processor Control facility (see Section 11).

PROCID
32                                                    63

Bits Name Description
32:63 GPIR Thread ID

mfspr RT,PIR should be used to read GPIR in
guest supervisor state. See Section 2.2.1, “Regis-
ter Mapping”. 

Programming Note

Programming Note

SPRG0

SPRG1
SPRG2

SPRG3

SPRG4
SPRG5

SPRG6

SPRG7
SPRG8

SPRG9 [Category: Embedded.Enhanced Debug]

GSPRG0 [Category:Embedded.Hypervisor]
GSPRG1 [Category:Embedded.Hypervisor]

GSPRG2 [Category:Embedded.Hypervisor]

GSPRG3 [Category:Embedded.Hypervisor]
0                                                            63

USPRG0 was made a 32-bit register and renamed
to VRSAVE; see Sections 3.2.3 and 6.3.3 of Book I.

Programming Note
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implementation-dependent whether or not this reg-
ister can be read in user mode.

[Category:Embedded.Hypervisor]
Access to this register in guest state is mapped to
GSPRG3. 

SPRG4 through SPRG7

These 64-bit registers can be written only in super-
visor mode. These registers can be read in super-
visor and user modes.

SPRG8 through SPRG9

These 64-bit registers can be accessed only in
supervisor mode.

 

GSPRG0 through GSPRG2

[Category:Embedded.Hypervisor]
These 64-bit registers can be accessed only in
supervisor mode.

GSPRG3

[Category:Embedded.Hypervisor]
This 64-bit register can be read in supervisor mode
and can be written only in supervisor mode. If an
implementation permits problem state read access
to SPRG3, the problem state read access is
remapped to GSPRG3.

SPRGi or GSPRGi can be read using mfspr and writ-
ten using mtspr.

 

The intended use for SPRG9 is for internal debug
exception handling.

mfspr RT,SPRGi should be used to read GSPRGi
in guest state. mtspr SPRGi,RS should be used to
write GSPRGi in guest state. See Section 2.2.1,
“Register Mapping”.

Programming Note
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5.3.7 External Process ID Regis-
ters [Category: Embedded.Exter-
nal PID]
The External Process ID Registers provide capabilities
for loading and storing General Purpose Registers and
performing cache management operations using a sup-
plied context other than the context normally used by
the programming model.

Two SPRs describe the context for loading and storing
using external contexts. The External Process ID Load
Context (EPLC) Register provides the context for Exter-
nal Process ID Load instructions, and the External Pro-
cess ID Store Context (EPSC) Register provides the
context for External Process ID Store instructions. Each
of these registers contains a PR (privilege) bit, an AS
(address space) bit, a Process ID, a GS (guest state)
bit <E.HV>, and an LPID <E.HV>. Changes to the
EPLC or the EPSC Register require that a context syn-
chronizing operation be performed prior to using any
External Process ID instructions that use these regis-
ters.

External Process ID instructions that use the context
provided by the EPLC register include lbepx, lhepx,
lwepx, ldepx, dcbtep, dcbfep, dcbstep, icbiep,
lfdepx, evlddepx, lvepx, and lvepxl and those that
use the context provided by the EPSC register include
stbepx, sthepx, stwepx, stdepx, dcbzep, stfdepx,
evstddepx, stvepx, stvepxl, and dcbtstep. Instruction
definitions appear in Section 5.4.3.

System software configures the EPLC register to reflect
the Process ID, AS, PR, GS <E.HV>, and LPID <E.HV>
state from the context that it wishes to perform loads
from and configures the EPSC register to reflect the
Process ID, AS, PR, GS <E.HV>, and LPID <E.HV>
state from the context it wishes to perform stores to.
Software then issues External Process ID instructions
to manipulate data as required.

When the an External Process ID Load instruction is
executed, it uses the context information in the EPLC
Register instead of the normal context with respect to
address translation and storage access control.
EPLCEPR is used in place of MSRPR, EPLCEAS is used
in place of MSRDS, EPLCEPID is used in place of PID,
EPLCEGS. is used in place of MSRGS <E.HV>, and
EPLCELPID. is used in place of LPIDR <E.HV>. Simi-
larly, when the an External Process ID Store instruction
is executed, it uses the context information in the EPSC
Register instead of the normal context with respect to
address translation and storage access control.
EPSCEPR is used in place of MSRPR, EPSCEAS is used
in place of MSRDS, EPSCEPID is used in place of PID,
EPSCEGS. is used in place of MSRGS <E.HV>, and
EPSCELPID. is used in place of LPIDR <E.HV>. Trans-
lation occurs using the new substituted values. 

If the TLB lookup is successful, the storage access
control mechanism grants or denies the access using
context information from EPLCEPR or EPSCEPR for
loads and stores respectively. If access is not granted,
a Data Storage interrupt occurs, and the ESREPID bit is
set to 1. If the operation was a Store, the ESRST bit is
also set to 1.

5.3.7.1 External Process ID Load Con-
text (EPLC) Register
The EPLC register contains fields to provide the con-
text for External Process ID Load instructions. 

Figure 15. External Process ID Load Context
Register

These bits are interpreted as follows:

Bit Definition

32 External Load Context PR Bit (EPR)
Used in place of MSRPR by the storage
access control mechanism when an External
Process ID Load  instruction is executed.

0 Supervisor mode
1 User mode

33 External Load Context AS Bit (EAS)
Used in place of MSRDS for translation when
an External Process ID Load instruction is
executed, and, if this Load instruction causes
a Data TLB Error interrupt, loaded into MAS
registers in place of MSRDS.

0 Address space 0
1 Address space 1

34 External Load Context GS Bit (EGS)

[Category: Embedded.Hypervisor]
Used in place of MSRGS for translation when
an External Process ID Load instruction is
executed.

0 Hypervisor state
1 Guest state

 

35 Reserved

36:47 External Load Context LPID Value (ELPID)
[Category:Embedded.Hypervisor]
Used in place of LPIDR register for translation

EPLC
32 63

When a mtspr instruction is executed that
targets EPLC, the EGS and ELPID fields
are only modified if the thread is in hyper-
visor state.

Programming Note
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when an External Process ID Load instruction
is executed.

 

48:49 Reserved

50:63 External Load Context Process ID Value
(EPID)
Used in place of the Process ID register value
for translation when an external Process ID
Load instruction is executed, and, if this Load
instruction causes a Data TLB Error interrupt,
loaded into MAS registers in place of PID con-
tents.

5.3.7.2 External Process ID Store Con-
text (EPSC) Register
The EPSC register contains fields to provide the con-
text for External Process ID Store instructions. The field
encoding is the same as the EPLC Register. 

Figure 16. External Process ID Store Context
Register

These bits are interpreted as follows:

Bits Definition

32 External Store Context PR Bit (EPR)
Used in place of MSRPR by the storage
access control mechanism when an External
Process ID Store instruction is executed.

0 Supervisor mode
1 User mode

33 External Store Context AS Bit (EAS)
Used in place of MSRDS for translation when
an External Process ID Store instruction is
executed, and, if this Store instruction causes
a Data TLB Error interrupt, loaded into MAS
registers in place of MSRDS.

0 Address space 0
1 Address space 1

34 External Store Context GS Bit (EGS)

[Category: Embedded.Hypervisor]
Used in place of MSRGS for translation when
an External Process ID Store instruction is
executed.

0 Hypervisor state
1 Guest state

  

35 Reserved

36:47 External Store Context LPID Value (ELPID)
[Category:Embedded.Hypervisor]
Used in place of LPIDR register for translation
when an External Process ID Store instruction
is executed.

  

48:49 Reserved

50:63 External Store Context Process ID Value
(EPID)
Used in place of the Process ID register value
for translation when an external PID Store
instruction is executed, and, if this Store
instruction causes a Data TLB Error interrupt,
loaded into MAS registers in place of PID con-
tents.

When a mtspr instruction is executed that
targets EPLC, the EGS and ELPID fields
are only modified if the thread is in hyper-
visor state.

EPSC
32                                                    63

Programming Note
When a mtspr instruction is executed that
targets EPSC, the EGS and ELPID fields
are only modified if the thread is in hyper-
visor state.

When a mtspr instruction is executed that
targets EPSC, the EGS and ELPID fields
are only modified if the thread is in hyper-
visor state.

Programming Note
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5.4 Fixed-Point Facility Instructions

5.4.1 Move To/From System Register Instructions
The Move To Special Purpose Register and Move From
Special Purpose Register instructions are described in
Book I, but only at the level available to an application
programmer. For example, no mention is made there of
registers that can be accessed only in supervisor
mode. The descriptions of these instructions given
below extend the descriptions given in Book I, but do
not list Special Purpose Registers that are implementa-
tion-dependent. In the descriptions of these instructions
given below, the “defined” SPR numbers are the SPR
numbers shown in Table 17 and the implementa-

tion-specific SPR numbers that are implemented, and
similarly for “defined” registers.

Extended mnemonics
Extended mnemonics are provided for the mtspr and
mfspr instructions so that they can be coded with the
SPR name as part of the mnemonic rather than as a
numeric operand; see Appendix B.

decimal
SPR1 Register 

Name
Privileged Length

(bits)
Cat2

spr5:9  spr0:4 mtspr mfspr
1 00000 00001 XER no no 64 B
3 00000    00011 DSCR no no 64 STM
8 00000 01000 LR no no 64 B
9 00000 01001 CTR no no 64 B
17 00000 10001 DSCR yes yes 64 STM
22 00000 10110 DEC yes9 yes9 32 B
26 00000 11010 SRR0 yes9 yes9 64 B
27 00000 11011 SRR1 yes9 yes9 64 B
48 00001 10000 PID yes yes 32 E
53 00001 10101 GDECAR hypv3 no 32 E.HV
54 00001 10110 DECAR hypv8 - 32 E
55 00001 10111 MCIVPR hypv8 hypv8 64 E
56 00001 11000 LPER hypv8 hypv8 64 E.HV; E.PT
57 00001 11001 LPERU hypv8 hypv8 32 E.HV; E.PT
58 00001 11010 CSRR0 hypv8 hypv8 64 E
59 00001 11011 CSRR1 hypv8 hypv8 32 E
60 00001 11100 GTSRWR hypv3 no 32 E.HV
61 00001 11101 DEAR yes9 yes9 64 E
62 00001 11110 ESR yes9 yes9 32 E
63 00001 11111 IVPR hypv8 hypv8 64 E

256 01000 00000 VRSAVE no no 32 B
259 01000 00011 SPRG3 - no 64 B

260-263 01000 001xx SPRG[4-7] - no 64 E
268 01000 01100 TB - no 64 B
269 01000 01101 TBU - no 325 B

272-275 01000 100xx SPRG[0-3] yes9 yes9 64 B
276-279 01000 101xx SPRG[4-7] yes yes 64 E

282 01000 11010 EAR hypv4 hypv4 32 EC
284 01000 11100 TBL hypv4 - 32 B
283 01000 11011 CIR - hypv4 32 E
285 01000 11101 TBU hypv4 - 32 B
286 01000 11110 PIR hypv8 yes9 32 E
287 01000 11111 PVR - yes 32 B
304 01001 10000 DBSR hypv5,8 hypv8 32 E
306 01001 10010 DBSRWR hypv3 - 32 E.HV
307 01001 10011 EPCR hypv3 hypv3 32 E.HV,(E;64)
308 01001 10100 DBCR0 hypv8 hypv8 32 E
309 01001 10101 DBCR1 hypv8 hypv8 32 E
310 01001 10110 DBCR2 hypv8 hypv8 32 E

Figure 17. SPR Numbers  (Sheet 1 of 4)
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311 01001 10111 MSRP hypv3 hypv3 32 E.HV
312 01001 11000 IAC1 hypv8 hypv8 64 E
313 01001 11001 IAC2 hypv8 hypv8 64 E
314 01001 11010 IAC3 hypv8 hypv8 64 E
315 01001 11011 IAC4 hypv8 hypv8 64 E
316 01001 11100 DAC1 hypv8 hypv8 64 E
317 01001 11101 DAC2 hypv8 hypv8 64 E
336 01010 10000 TSR yes9 yes9 32 E
338 01010 10010 LPIDR hypv3 hypv3 32 E.HV
339 01010 10011 MAS5 hypv3 hypv3 32 E.HV
340 01010 10100 TCR yes9 yes9 32 E
341 01010 10101 MAS8 hypv3 hypv3 32 E.HV
342 01010 10110 LRATCFG - hypv3 32 E.HV.LRAT
343 01010 10111 LRATPS - hypv3 32 E.HV.LRAT

344-347 01010 110xx TLB[0-3]PS - hypv3 32 E.HV
348 01010 11100 MAS5||MAS6 hypv3 hypv3 64 E.HV; 64
349 01010 11101 MAS8||MAS1 hypv3 hypv3 64 E.HV; 64
350 01010 11110 EPTCFG hypv8 hypv8 32 E.PT

368-371 01011 100xx GSPRG0-3 yes yes 64 E.HV
372 01011 10100 MAS7||MAS3 yes yes 64 E; 64
373 01011 10101 MAS0||MAS1 yes yes 64 E; 64
374 01011 10110 GDEC yes yes 32 E.HV
375 01011 10111 GTCR yes yes 32 E.HV
376 01011 11000 GTSR yes yes 32 E.HV
378 01011 11010 GSRR0 yes yes 64 E.HV
379 01011 11011 GSRR1 yes yes 32 E.HV
380 01011 11100 GEPR yes yes 32 E.HV;EXP
381 01011 11101 GDEAR yes yes 64 E.HV
382 01011 11110 GPIR hypv3 yes 32 E.HV
383 01011 11111 GESR yes yes 32 E.HV

400-415 01100 1xxxx IVOR0-15 hypv8 hypv8 32 E
432-435 01101 100xx IVOR38-41 hypv8 hypv8 32 E.HV

436 01101 10100 IVOR42 hypv8 hypv8 32 E.HV.LRAT
437 01101 10101 TENSR - hypv8 64 E.MT
438 01101 10110 TENS hypv8 hypv8 64 E.MT
439 01101 10111 TENC hypv8 hypv8 64 E.MT

440-441 01101 1100x GIVOR2-3 hypv3 yes 32 E.HV
442 01101 11010 GIVOR4 hypv3 yes 32 E.HV
443 01101 11011 GIVOR8 hypv3 yes 32 E.HV
444 01101 11100 GIVOR13 hypv3 yes 32 E.HV
445 01101 11101 GIVOR14 hypv3 yes 32 E.HV
446 01101 11110 TIR - hypv9 64 E.MT
447 01101 11111 GIVPR hypv3 yes 64 E.HV
474 11010 01110 GIVOR10 hypv3 yes 32 E.HV
475 11011 01110 GIVOR11 hypv3 yes 32 E.HV
476 11100 01110 GIVOR12 hypv3 yes 32 E.HV
512 10000 00000 SPEFSCR no no 32 SP
526 10000 01110 ATB/ATBL - no 64 ATB
527 10000 01111 ATBU - no 32 ATB
528 10000 10000 IVOR32 hypv8 hypv8 32 SP
529 10000 10001 IVOR33 hypv8 hypv8 32 SP
530 10000 10010 IVOR34 hypv8 hypv8 32 SP
531 10000 10011 IVOR35 hypv8 hypv8 32 E.PM
532 10000 10100 IVOR36 hypv8 hypv8 32 E.PC
533 10000 10101 IVOR37 hypv8 hypv8 32 E.PC

decimal
SPR1 Register 

Name
Privileged Length

(bits)
Cat2

spr5:9  spr0:4 mtspr mfspr

Figure 17. SPR Numbers  (Sheet 2 of 4)
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570 10001 11010 MCSRR0 hypv8 hypv8 64 E
571 10001 11011 MCSRR1 hypv8 hypv8 32 E
572 10001 11100 MCSR hypv8 hypv8 64 E
574 10001 11110 DSRR0 yes yes 64 E.ED
575 10001 11111 DSRR1 yes yes 32 E.ED
604 10010 11100 SPRG8 hypv8 hypv8 64 E
605 10010 11101 SPRG9 yes yes 64 E.ED
624 10011 10000 MAS0 yes yes 32 E
625 10011 10001 MAS1 yes yes 32 E
626 10011 10010 MAS2 yes yes 64 E
627 10011 10011 MAS3 yes yes 32 E
628 10011 10100 MAS4 yes yes 32 E
630 10011 10110 MAS6 yes yes 32 E
631 10011 10111 MAS2U yes yes 32 E

688-691 10101 100xx TLB[0-3]CFG - hypv8 32 E
702 10101 11110 EPR - yes9 32 EXP
808 11001 01000 reserved10 no no na B
809 11001 01001 reserved10 no no na B
810 11001 01010 reserved10 no no na B
811 11001 01011 reserved10 no no na B
898 11100 00010 PPR32 no no 32 B
924 11100 11100 DCDBTRL -5 hypv8 32 E.CD
925 11100 11101 DCDBTRH -5 hypv8 32 E.CD
926 11100 11110 ICDBTRL -6 hypv8 32 E.CD
927 11100 11111 ICDBTRH -6 hypv8 32 E.CD
944 11101 10000 MAS7 yes yes 32 E
947 11101 10011 EPLC yes yes 32 E.PD
948 11101 10100 EPSC yes yes 32 E.PD
979 11110 10011 ICDBDR -6 hypv8 32 E.CD

1012 11111 10100 MMUCSR0 hypv8 hypv8 32 E
1015 11111 10111 MMUCFG - hypv8 32 E

- This register is not defined for this instruction.
1 Note that the order of the two 5-bit halves of the SPR number is reversed.
2 See Section 1.3.5 of Book I. If multiple categories are listed separated by a semi-

colon, all the listed categories must be implemented in order for the other col-
umns of the line to apply. A comma separates two alternatives, and takes
precedence over a semicolon; e.g., the EPCR (E.HV,E;64) must be implemented if
either (a) category E.HV is implemented or (b) the implementation is Embedded
and supports the 64-bit category.

3 This register is a hypervisor resource, and can be accessed by this instruction only
in hypervisor state (see Chapter 2 of Book III-E).

4 If the Embedded.Hypervisor category is supported, this register is a hypervisor
resource, and can be accessed by this instruction only in hypervisor state (see
Chapter 2 of Book III-E). Otherwise, the register is privileged.

5 The register can be written by the dcread instruction.
6 The register can be written by the icread instruction.
7 The register is Category: Phased-in.
8 If the Embedded.Hypervisor category is supported, this register is a hypervisor

resource, and can be accessed by this instruction only in hypervisor state (see
Chapter 2 of Book III-E). Otherwise, the register is privileged for Embedded.

9 If the Embedded.Hypervisor category is supported, this register is a hypervisor
resource and can be accessed by this instruction only in hypervisor state, and
guest references to the register are redirected to the corresponding guest register
(see Chapter 2 of Book III-E). Otherwise the register is privileged.

10 Accesses to these SPRs are noops; see Section 1.3.3, “Reserved Fields,
Reserved Values, and Reserved SPRs” in Book I.

decimal
SPR1 Register 

Name
Privileged Length

(bits)
Cat2

spr5:9  spr0:4 mtspr mfspr

Figure 17. SPR Numbers  (Sheet 3 of 4)
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Move To Special Purpose Register
XFX-form

mtspr SPR,RS 

n I spr5:9 || spr0:4
switch (n)
  case(808, 809, 810, 811):
  default:
    if length(SPR(n)) = 64 then
      SPR(n) I (RS)
    else
      SPR(n) I (RS)32:63

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 17.  If the SPR field con-
tains a value from 808 through 811, the instruction
specifies a reserved SPR, and is treated as a no-op;
see Section 1.3.3, “Reserved Fields, Reserved Values,
and Reserved SPRs” in Book I.  Otherwise, the con-
tents of register RS are placed into the designated Spe-
cial Purpose Register. For Special Purpose Registers
that are 32 bits long, the low-order 32 bits of RS are
placed into the SPR.

For this instruction, SPRs TBL and TBU are treated as
separate 32-bit registers; setting one leaves the other
unaltered.

spr0=1 if and only if writing the register is privileged.
Execution of this instruction specifying a defined and
privileged register when MSRPR=1 causes a Privileged
Instruction type Program interrupt.

Execution of this instruction specifying an SPR number
that is not defined for the implementation causes either
an Illegal Instruction type Program interrupt or one of
the following.

if spr0=0: boundedly undefined results
if spr0=1:

- if MSRPR=1: Privileged Instruction type Pro-
gram interrupt; if MSRPR=0: boundedly unde-
fined results

If the SPR number is set to a value that is shown in
Figure 17 but corresponds to an optional Special Pur-
pose Register that is not provided by the implementa-
tion, the effect of executing this instruction is the same
as if the SPR number were reserved.

Special Registers Altered:
See Figure 17

  

 

All SPR numbers that are not shown above and are not implementation-specific are 
reserved.

decimal
SPR1 Register 

Name
Privileged Length

(bits)
Cat2

spr5:9  spr0:4 mtspr mfspr

Figure 17. SPR Numbers  (Sheet 4 of 4)

31 RS spr 467 /
0 6 11 21 31

For the mtspr and mfspr instructions, the SPR
number coded in assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit
halves that are reversed in the instruction, with the
high-order 5 bits appearing in bits 16:20 of the
instruction and the low-order 5 bits in bits 11:15.

For a discussion of software synchronization
requirements when altering certain Special Pur-
pose Registers, see Chapter 12. “Synchronization
Requirements for Context Alterations” on
page 1235.

Compiler and Assembler Note

Programming Note
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Move From Special Purpose Register  
XFX-form

mfspr RT,SPR 

n I spr5:9 || spr0:4
switch (n)
  case(808, 809, 810, 811): 
  default:
    if length(SPR(n)) = 64 then
      RT I SPR(n)
    else
      RT I 320 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 17.  If the SPR field con-
tains a value from 808 through 811, the instruction
specifies a reserved SPR, and is treated as a no-op;
see Section 1.3.3, “Reserved Fields, Reserved Values,
and Reserved SPRs” in Book I.  Otherwise, the con-
tents of the designated Special Purpose Register are
placed into register RT. For Special Purpose Registers
that are 32 bits long, the low-order 32 bits of RT receive
the contents of the Special Purpose Register and the
high-order 32 bits of RT are set to zero.

spr0=1 if and only if reading the register is privileged.
Execution of this instruction specifying a defined and
privileged register when MSRPR=1 causes a Privileged
Instruction type Program interrupt.

Execution of this instruction specifying an SPR number
that is not defined for the implementation causes either
an Illegal Instruction type Program interrupt or one of
the following.

if spr0=0: boundedly undefined results
if spr0=1:

- if MSRPR=1: Privileged Instruction type Pro-
gram interrupt

- if MSRPR=0: boundedly undefined results

If the SPR field contains a value that is shown in
Figure 17 but corresponds to an optional Special Pur-
pose Register that is not provided by the implementa-
tion, the effect of executing this instruction is the same
as if the SPR number were reserved.

Special Registers Altered:
None

  

Move To Device Control Register
XFX-form

mtdcr DCRN,RS
[Category: Embedded.Device Control] 

DCRN I dcr5:9 || dcr0:4
DCR(DCRN) I (RS)

Let DCRN denote a Device Control Register. (The sup-
ported Device Control Registers are implementa-
tion-dependent.)

The contents of register RS are placed into the desig-
nated Device Control Register. For 32-bit Device Con-
trol Registers, the contents of bits 32:63 of (RS) are
placed into the Device Control Register. 

This instruction is privileged. 

Special Registers Altered:
Implementation-dependent.

Move To Device Control Register Indexed 
X-form

mtdcrx RA,RS
[Category: Embedded.Device Control]

DCRN I (RA)
DCR(DCRN) I (RS)

Let the contents of register RA denote a Device Control
Register. (The supported Device Control Registers
supported are implementation-dependent.)

The contents of register RS are placed into the desig-
nated Device Control Register. For 32-bit Device Con-
trol Registers, the contents of RS32:63 are placed into
the Device Control Register. 

The specification of Device Control Registers using
mtdcrx, mtdcrux (see Book I), and mtdcr is imple-
mentation-dependent. For example, mtdcr 105,r2 and
mtdcrux r1,r2 (where register r1 contains the value 105)
may not produce identical results on an implementa-
tion.

This instruction is privileged. 

Special Registers Altered:
Implementation-dependent.

31 RT spr 339 /
0 6 11 21 31

See the Notes that appear with mtspr.

Note

31 RS dcr 451 /
0 6 11 21 31

31 RS RA  /// 387 /
0 6 11 16 21 31
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Move From Device Control Register  
XFX-form

mfdcr RT,DCRN
[Category: Embedded.Device Control]

DCRN I dcr5:9 || dcr0:4
RT I DCR(DCRN)

Let DCRN denote a Device Control Register. (The sup-
ported Device Control Registers are implementa-
tion-dependent.)

The contents of the designated Device Control Register
are placed into register RT. For 32-bit Device Control
Registers, the contents of the Device Control Register
are placed into bits 32:63 of RT. Bits 0:31 of RT are set
to 0.

This instruction is privileged. 

Special Registers Altered:
Implementation-dependent.

Move From Device Control Register 
Indexed X-form

mfdcrx RT,RA
[Category: Embedded.Device Control]

DCRN I (RA)
RT I DCR(DCRN)

Let the contents of register RA denote a Device Control
Register (the supported Device Control Registers are
implementation-dependent.)

The contents of the designated Device Control Register
are placed into register RT. For 32-bit Device Control
Registers, the contents of bits 32:63 of the designated
Device Control Register are placed into RT. Bits 0:31 of
RT are set to 0.

The specification of Device Control Registers using
mfdcrx and mfdcrux (see Book I) compared to the
specification of Device Control Registers using mfdcr
is implementation-dependent. For example, mfdcr
r2,105 and mfdcrx r2,r1 (where register r1 contains the
value 105) may not produce identical results on an
implementation or between implementations. Also,
accessing privileged Device Control Registers in super-
visor mode with mfdcrux is implementation-depen-
dent.

This instruction is privileged. 

Special Registers Altered:
Implementation-dependent.

Move To Machine State Register  X-form

mtmsr RS

newmsr I (RS)32:63 
if MSRCM = 0 & newmsrCM = 1 then NIA0:31 I 0 
if MSRGS = 1 then

newmsrGS WE I MSRGS WE
prots0:31 I 0
protsUCLEP DEP PMMP I MSRPUCLEP DEP PMMP
newmsr I prots & MSR | ~prots & newmsr

MSR I newmsr

The contents of register RS32:63 are placed into the
MSR. If the thread is changing from 32-bit mode to
64-bit mode, the next instruction is fetched from
320||NIA32:63.

This instruction is privileged and execution synchroniz-
ing.

In addition, alterations to the EE or CE bits are effective
as soon as the instruction completes. Thus if MSREE=0
and an External interrupt is pending, executing an
mtmsr that sets MSREE to 1 will cause the External
interrupt to be taken before the next instruction is exe-
cuted, if no higher priority exception exists. Likewise, if
MSRCE=0 and a Critical Input interrupt is pending, exe-
cuting an mtmsr that sets MSRCE to 1 will cause the
Critical Input interrupt to be taken before the next
instruction is executed if no higher priority exception
exists. (See Section 7.6 on page 1161.)

[Category:Embedded.Hypervisor]
GS, WE and bits protected with MSRP are only modi-
fied if mtmsr is executed in hypervisor state.

Special Registers Altered:
MSR

   

31 RT dcr 323 /
0 6 11 21 31

31 RT RA  /// 259 /
0 6 11 16 21 31

31 RS ///  /// 146 /
0 6 11 16 21 31

For a discussion of software synchronization
requirements when altering certain MSR bits
please refer to Chapter 12.

Programming Note
Chapter 5. Fixed-Point Facility 1055



Version 2.07 B
Move From Machine State Register
X-form  

mfmsr RT 

RT I 320 || MSR

The contents of the MSR are placed into bits 32:63 of
register RT and bits 0:31 of RT are set to 0.

This instruction is privileged.

Special Registers Altered:
None

Write MSR External Enable X-form

wrtee RS

MSREE I (RS)48

The content of (RS)48 is placed into MSREE.

Alteration of the MSREE bit is effective as soon as the
instruction completes. Thus if MSREE=0 and an Exter-
nal interrupt is pending, executing a wrtee instruction
that sets MSREE to 1 will cause the External interrupt to
occur before the next instruction is executed, if no
higher priority exception exists (Section 7.9, “Exception
Priorities” on page 1190).

This instruction is privileged. 

Special Registers Altered:
MSR

31 RT ///  /// 83 /
0 6 11 16 21 31

31 RS ///  /// 131 /
0 6 11 16 21 31
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Write MSR External Enable Immediate
X-form  

wrteei E

MSREE I E

The value specified in the E field is placed into MSREE.

Alteration of the MSREE bit is effective as soon as the
instruction completes. Thus if MSREE=0 and an Exter-
nal interrupt is pending, executing a wrtee instruction
that sets MSREE to 1 will cause the External interrupt to
occur before the next instruction is executed, if no
higher priority exception exists (Section 7.9, “Exception
Priorities” on page 1190).

This instruction is privileged. 

Special Registers Altered:
MSR

  

31 /// /// E  /// 163 /
0 6 11 16 17 21 31

wrtee and wrteei are used to provide atomic
update of MSREE. Typical usage is:
mfmsr Rn #save EE in (Rn)48
wrteei 0 #turn off EE
mfmsr Rn #save EE in (Rn)48
wrteei 0 #turn off EE
  : : :
  : #code with EE disabled
wrtee Rn   #restore EE without altering

     #other MSR bits that might
     #have changed

Programming Note
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5.4.2 OR Instruction
or Rx,Rx,Rx can be used to set PPRPRI (see Figure 3
in  Section 3.1 of Book II) as shown in Figure 18.
PPRPRI remains unchanged if the privilege state of the
thread executing the instruction is lower than the privi-
lege indicated in the figure. (The encodings available to
problem state programs, as well as encodings for addi-
tional shared resource hints not shown here, are
described in Section 3.2 of Book II.) 

Figure 18. Priority levels for or Rx,Rx,Rx

Rx
PPR32PRI Priority Privi-

leged

31 001 very low yes

1 010 low no

6 011 medium low no

2 100 medium no

5 101 medium high yes

3 110 high yes

7 111 very high hypv1

1 If the Embedded.Hypervisor category is supported, 
this value is hypervisor privileged. Otherwise, the 
value is privileged.
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5.4.3 External Process ID Instructions [Category: Embedded.External PID]
External Process ID instructions provide capabilities for
loading and storing General Purpose Registers and
performing cache management operations using a sup-
plied context other than the context normally used by
translation.

The EPLC and EPSC registers provide external con-
texts for performing loads and stores. The EPLC and
the EPSC registers are described in Section 5.3.7.

If an Alignment interrupt, Data Storage interrupt, or a
Data TLB Error interrupt, occurs while attempting to
execute an External Process ID instruction, ESREPID is
set to 1 indicating that the instruction causing the inter-
rupt was an External Process ID instruction; any other
applicable ESR bits are also set.

Load Byte by External Process ID Indexed
X-form

lbepx RT,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I 560 || MEM(EA,1)

Let the effective address (EA) be the sum (RA|0)+(RB).
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

For lbepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of PID
EPLCEGS is used in pace of MSRGS <E.HV>
EPLCELPID is used in pace of LPIDR <E.HV>

This instruction is privileged.

Special Registers Altered:
None

Load Halfword by External Process ID 
Indexed X-form

lhepx RT,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I 480 || MEM(EA,2)

Let the effective address (EA) be the sum (RA|0)+(RB).
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

For lhepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of PID
EPLCEGS is used in pace of MSRGS <E.HV>
EPLCELPID is used in pace of LPIDR <E.HV>

This instruction is privileged.

Special Registers Altered:
None

31 RT RA RB 95 /
0 6 11 16 21 31

This instruction behaves identically to a lbzx
instruction except for using the EPLC register to
provide the translation context.

Programming Note

31 RT RA RB 287 /
0 6 11 16 21 31

This instruction behaves identically to a lhzx
instruction except for using the EPLC register to
provide the translation context.

Programming Note
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Load Word by External Process ID 
Indexed X-form

lwepx RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I 320 || MEM(EA,4)

Let the effective address (EA) be the sum (RA|0)+(RB).
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

For lwepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of PID
EPLCEGS is used in pace of MSRGS <E.HV>
EPLCELPID is used in pace of LPIDR <E.HV>

This instruction is privileged.

Special Registers Altered:
None

Load Doubleword by External Process ID 
Indexed X-form

ldepx RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I MEM(EA,8)

Let the effective address (EA) be the sum (RA|0)+(RB).
The doubleword in storage addressed by EA is loaded
into RT.

For ldepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of PID
EPLCEGS is used in pace of MSRGS <E.HV>
EPLCELPID is used in pace of LPIDR <E.HV>

This instruction is privileged.

Corequisite Categories: 
64-Bit

Special Registers Altered:
None

31 RT RA RB 31 /
0 6 11 16 21 31

This instruction behaves identically to a lwzx
instruction except for using the EPLC register to
provide the translation context.

Programming Note

31 RT RA RB 29 /
0 6 11 16 21 31

This instruction behaves identically to a ldx instruc-
tion except for using the EPLC register to provide
the translation context.

Programming Note
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Store Byte by External Process ID 
Indexed X-form

stbepx RS,RA,RB 

if RA = 0 then b I 0
else          b I (RA)
EA I b + (RB)
MEM(EA,1) I (RS)56:63

Let the effective address (EA) be the sum (RA|0)+(RB).
(RS)56:63 are stored into the byte in storage addressed
by EA.

For stbepx, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of PID
EPSCEGS is used in pace of MSRGS <E.HV>
EPSCELPID is used in pace of LPIDR <E.HV>

This instruction is privileged.

Special Registers Altered:
None

Store Halfword by External Process ID 
Indexed X-form

sthepx RS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA,2) I (RS)48:63

Let the effective address (EA) be the sum (RA|0)+(RB).
(RS)48:63 are stored into the halfword in storage
addressed by EA.

For sthepx, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of PID
EPSCEGS is used in pace of MSRGS <E.HV>
EPSCELPID is used in pace of LPIDR <E.HV>

This instruction is privileged.

Special Registers Altered:
None

31 RS RA RB 223 /
0 6 11 16 21 31

This instruction behaves identically to a stbx
instruction except for using the EPSC register to
provide the translation context.

Programming Note

31 RS RA RB 415 /
0 6 11 16 21 31

This instruction behaves identically to a sthx
instruction except for using the EPSC register to
provide the translation context.

Programming Note
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Store Word by External Process ID 
Indexed X-form

stwepx RS,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA,4) I (RS)32:63

Let the effective address (EA) be the sum (RA|0)+(RB).
(RS)32:63 are stored into the word in storage addressed
by EA.

For stwepx, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of PID
EPSCEGS is used in pace of MSRGS <E.HV>
EPSCELPID is used in pace of LPIDR <E.HV>

This instruction is privileged.

Special Registers Altered:
None

Store Doubleword by External Process ID 
Indexed X-form

stdepx RS,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA,8) I (RS)

Let the effective address (EA) be the sum (RA|0)+(RB).
(RS) is stored into the doubleword in storage
addressed by EA.

For stdepx, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of PID
EPSCEGS is used in pace of MSRGS <E.HV>
EPSCELPID is used in pace of LPIDR <E.HV>

This instruction is privileged.

Corequisite Categories: 
64-Bit

Special Registers Altered:
None

31 RS RA RB 159 /
0 6 11 16 21 31

This instruction behaves identically to a stwx
instruction except for using the EPSC register to
provide the translation context.

Programming Note

31 RS RA RB 157 /
0 6 11 16 21 31

This instruction behaves identically to a stdx
instruction except for using the EPSC register to
provide the translation context.

Programming Note
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Data Cache Block Store by External PID
X-form

dcbstep RA,RB  

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required, a block
containing the byte addressed by EA is in the data
cache of any thread, and any locations in the block are
considered to be modified there, then those locations
are written to main storage. Additional locations in the
block may be written to main storage. The block ceases
to be considered modified in that data cache.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and
the block is in the data cache of this thread, and any
locations in the block are considered to be modified
there, those locations are written to main storage. Addi-
tional locations in the block may be written to main stor-
age, and the block ceases to be considered modified in
that data cache.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

The instruction is treated as a Load with respect to
translation, memory protection, and is treated as a
write with respect to debug events.

This instruction is privileged.

For dcbstep, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of PID
EPLCEGS is used in place of MSR[GS] <E.HV>
EPLCELPID is used in place of LPIDR <E.HV>

Special Registers Altered: 
None

Data Cache Block Touch by External PID 
 X-form

dcbtep TH,RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbtep instruction provides a hint that the program
will probably soon load from the block containing the
byte addressed by EA.  If the Cache Specification cate-
gory is supported, the nature of the hint is affected by
TH values of 0b00000 to 0b00111.  Values associated
with the Stream category are ignored. See
Section 4.3.2 of Book II for more information.

If the block is in a storage location that is Caching Inhib-
ited or Guarded, the hint is ignored.

The only operation that is “caused” by the dcbtep
instruction is the providing of the hint. The actions (if
any) taken in response to the hint are not considered to
be “caused by” or “associated with” the dcbtep instruc-
tion (e.g., dcbtep is considered not to cause any data
accesses). No means are provided by which software
can synchronize these actions with the execution of the
instruction stream. For example, these actions are not
ordered by the memory barrier created by a sync
instruction.

The dcbtep instruction may complete before the opera-
tion it causes has been performed.

The nature of the hint depends, in part, on the value of
the TH field, as specified in the dcbt instruction in
Section 4.3.2 of Book II.

The instruction is treated as a Load, except that no
interrupt occurs if a protection violation occurs.

The instruction is privileged.

The normal address translation mechanism is not used.
The contents of the EPLC register are used to provide
the context in which translation occurs. The following
substitutions are made for just the translation and
access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of PID
EPLCEGS is used in place of MSR[GS] <E.HV>
EPLCELPID is used in place of LPIDR <E.HV>

Special Registers Altered:
    None

Extended Mnemonics:

Extended mnemonics are provided for the Data Cache
Block Touch by External PID instruction so that it can

31 /// RA RB 63 /
0 6 11 16 21 31

This instruction behaves identically to a dcbst
instruction except for using the EPLC register to
provide the translation context.

Programming Note

31 TH RA RB 319 /
0 6 11 16 21 31
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be coded with the TH value as the last operand for all
categories. .

Data Cache Block Flush by External PID
X-form

dcbfep RA,RB,L

Let the effective address (EA) be the sum (RA|0)+(RB).

L=0

If the block containing the byte addressed by EA is
in storage that is Memory Coherence Required
and a block containing the byte addressed by EA is
in the data cache of any processor and any loca-
tions in the block are considered to be modified
there, those locations are written to main storage
and additional locations in the block may be written
to main storage.  The block is invalidated in the
data caches of all processors. 

If the block containing the byte addressed by EA is
in storage that is not Memory Coherence Required
and the block is in the data cache of this processor
and any locations in the block are considered to be
modified there, those locations are written to main
storage and additional locations in the block may
be written to main storage.  The block is invalidated
in the data cache of this processor. 

L=1 (“dcbf local”)  [Category: Embed-
ded.Phased-In] 

The L=1 form of the dcbfep instruction permits a
program to limit the scope of the “flush” operation
to the data cache of this processor. If the block
containing the byte addressed by EA is in the data
cache of this processor, it is removed from this
cache. The coherence of the block is maintained to
the extent required by the Memory Coherence
Required storage attribute. 

L = 3 (“dcbf local primary”) [Category: Embed-
ded.Phased-In]

The L=3 form of the dcbfep instruction permits a
program to limit the scope of the “flush” operation
to the primary data cache of this processor. If the
block containing the byte addressed by EA is in the
primary data cache of this processor, it is removed
from this cache. The coherence of the block is
maintained to the extent required by the Memory
Coherence Required storage attribute. 

For the L operand, the value 2 is reserved. The results
of executing a dcbfep instruction with L=2 are bound-
edly undefined.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited. 

Extended: Equivalent to:
dcbtctep RA,RB,TH dcbtep for TH values of 0b0000 - 

0b0111; 
other TH values are invalid.

dcbtdsep RA,RB,TH dcbtep for TH values of 0b0000 
or 0b1000 - 0b1010;

 other TH values are invalid.

This instruction behaves identically to a dcbt
instruction except for using the EPLC register to
provide the translation context, and not supporting
the Stream category.

Programming Note

31 /// L RA RB 127 /
0 6 9 11 16 21 31
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The instruction is treated as a Load with respect to
translation, memory protection, and is treated as a
write with respect to debug events.

This instruction is privileged.

The normal translation mechanism is not used. The
contents of the EPLC register are used to provide the
context in which translation occurs. The following sub-
stitutions are made for just the translation and access
control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of PID
EPLCEGS is used in place of MSRGS<E.HV>
EPLCELPID is used in place of LPIDR<E.HV>

Special Registers Altered: 
None

Extended Mnemonics:

Extended mnemonics are provided for the Data Cache
Block Flush by External PID instruction so that it can be
coded with the L value as part of the mnemonic rather
than as a numeric operand. These are shown as exam-
ples with the instruction. See Section B.2 of Book III-E.
The extended mnemonics are shown below.

Except in the dcbfep instruction description in this sec-
tion, references to “dcbfep” in Books I-III imply L=0
unless otherwise stated or obvious from context; “dcb-
flep“ is used for L=1 and “dcbflpep“ is used for L=3.

  

  

This instruction behaves identically to a dcbf
instruction except for using the EPLC register to
provide the translation context.

Extended: Equivalent to:
dcbfep RA,RB dcbfep RA,RB,0
dcbflep RA,RB dcbfep RA,RB,1
dcbflpep RA,RB dcbfep RA,RB,3

dcbfep serves as both a basic and an extended
mnemonic.  The Assembler will recognize a dcbfep
mnemonic with three operands as the basic form,
and a dcbfep mnemonic with two operands as the
extended form.  In the extended form the L operand
is omitted and assumed to be 0. 

Programming Note

Programming Note

dcbfep with L=1 can be used to provide a hint that
a block in this processor’s data cache will not be
reused soon. 

dcbfep with L=3 can be used to flush a block from
the processor’s primary data cache but reduce the
latency of a subsequent access. For example, the
block may be evicted from the primary data cache
but a copy retained in a lower level of the cache
hierarchy.

Programs which manage coherence in software
must use dcbfep with L=0.

Programming Note
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Data Cache Block Touch for Store by 
External PID  X-form

dcbtstep TH,RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbtstep instruction provides a hint that the pro-
gram will probably soon store to the block containing
the byte addressed by EA. If the Cache Specification
category is supported, the nature of the hint is affected
by TH values of 0b00000 to 0b00111.  Values associ-
ated with the Stream category are ignored.  See
Section 4.3.2 of Book II for more information.

If the block is in a storage location that is Caching Inhib-
ited or Guarded, the hint is ignored.

The only operation that is “caused” by the dcbtstep
instruction is the providing of the hint. The actions (if
any) taken in response to the hint are not considered to
be “caused by” or “associated with” the dcbtstep
instruction (e.g., dcbtstep is considered not to cause
any data accesses). No means are provided by which
software can synchronize these actions with the execu-
tion of the instruction stream. For example, these
actions are not ordered by the memory barrier created
by a sync instruction.

The dcbtstep instruction may complete before the
operation it causes has been performed.

The instruction is treated as a Store, except that no
interrupt occurs if a protection violation occurs.

The instruction is privileged.

The normal address translation mechanism is not used.
The contents of the EPLC register are used to provide
the context in which translation occurs. The following
substitutions are made for just the translation and
access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of PID
EPLCEGS is used in place of MSR[GS] <E.HV>
EPLCELPID is used in place of LPIDR <E.HV>

Special Registers Altered:
    None

Extended Mnemonics:

Extended mnemonics are provided for the Data Cache
Block Touch for Store by External PID instruction so

that it can be coded with the TH value as the last oper-
and for all categories. .

31 TH RA RB 255 /
0 6 11 16 21 31

Extended: Equivalent to:
dcbtstctep RA,RB,TH dcbtstep for TH values of 

0b0000 - 0b0111; 
other TH values are invalid.

This instruction behaves identically to a dcbtst
instruction except for using the EPLC register to
provide the translation context, and not supporting
the Stream category.

Programming Note
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Instruction Cache Block Invalidate by 
External PID X-form

icbiep RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
instruction cache of any thread, the block is invalidated
in those instruction caches.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and a
block containing the byte addressed by EA is in the
instruction cache of this thread, the block is invalidated
in that instruction cache.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

The instruction is treated as a Load.

This instruction is privileged.

For icbiep, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of PID
EPLCEGS is used in place of MSR[GS] <E.HV>
EPLCELPID is used in place of LPIDR <E.HV>

Special Registers Altered: 
None

Data Cache Block set to Zero by External 
PID  X-form 

dcbzep RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
n I block size (bytes)
m I log2(n)
ea I EA0:63-m || 

m0
MEM(ea, n) I n0x00

Let the effective address (EA) be the sum (RA|0)+(RB).

All bytes in the block containing the byte addressed by
EA are set to zero.

This instruction is treated as a Store.

This instruction is privileged.

The normal translation mechanism is not used. The
contents of the EPSC register are used to provide the
context in which translation occurs. The following sub-
stitutions are made for just the translation and access
control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of PID
EPSCEGS is used in place of MSR[GS] <E.HV>
EPSCELPID is used in place of LPIDR <E.HV>

Special Registers Altered:
None

 

31 /// RA RB 991 /
0 6 11 16 21 31

This instruction behaves identically to an icbi
instruction except for using the EPLC register to
provide the translation context.

Programming Note

31 /// RA RB 1023 /
0 6 11 16 21 31

See the Programming Notes for the dcbz instruc-
tion.

This instruction behaves identically to a dcbz
instruction except for using the EPSC register to
provide the translation context.

Programming Note

Programming Note
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Load Floating-Point Double by External 
Process ID Indexed X-form

lfdepx FRT,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
FRT I MEM(EA,8)

Let the effective address (EA) be the sum (RA|0)+(RB).
The doubleword in storage addressed by EA is loaded
into FRT.

For lfdepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of PID
EPLCEGS is used in place of MSR[GS] <E.HV>
EPLCELPID is used in place of LPIDR <E.HV>

This instruction is privileged.

An attempt to execute lfdepx while MSRFP=0 will
cause a Floating-Point Unavailable interrupt.

Corequisite Categories: 
Floating-Point

Special Registers Altered: 
None

Store Floating-Point Double by External 
Process ID Indexed X-form

stfdepx FRS,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA,8) I (FRS)

Let the effective address (EA) be the sum (RA|0)+(RB).
(FRS) is stored into the doubleword in storage
addressed by EA.

For stfdepx, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of PID
EPSCEGS is used in place of MSR[GS] <E.HV>
EPSCELPID is used in place of LPIDR <E.HV>

This instruction is privileged.

An attempt to execute stfdepx while MSRFP=0 will
cause a Floating-Point Unavailable interrupt.

Corequisite Categories: 
Floating-Point

Special Registers Altered: 
None

31 FRT RA RB 607 /
0 6 11 16 21 31

This instruction behaves identically to a lfdx
instruction except for using the EPLC register to
provide the translation context.

Programming Note

31 FRS RA RB 735 /
0 6 11 16 21 31

This instruction behaves identically to a stfdx
instruction except for using the EPSC register to
provide the translation context.

Programming Note
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Vector Load Doubleword into Doubleword 
by External Process ID Indexed EVX-form

evlddepx RT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
RT I MEM(EA,8)

Let the effective address (EA) be the sum (RA|0)+(RB).
The doubleword in storage addressed by EA is loaded
into RT.

For evlddepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of PID
EPLCEGS is used in place of MSR[GS] <E.HV>
EPLCELPID is used in place of LPIDR <E.HV>

This instruction is privileged.

An attempt to execute evlddepx while MSRSPV=0 will
cause an SPE Unavailable interrupt.

Corequisite Categories: 
Signal Processing Engine

Special Registers Altered: 
None

Vector Store Doubleword into 
Doubleword by External Process ID 
Indexed EVX-form

evstddepx RS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA,8) I (RS)

Let the effective address (EA) be the sum (RA|0)+(RB).
(RS) is stored into the doubleword in storage
addressed by EA.

For evstddepx, the normal translation mechanism is
not used. The contents of the EPSC register are used
to provide the context in which translation occurs. The
following substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of PID
EPSCEGS is used in place of MSR[GS] <E.HV>
EPSCELPID is used in place of LPIDR <E.HV>

This instruction is privileged.

An attempt to execute evstddepx while MSRSPV=0 will
cause an SPE Unavailable interrupt.

Corequisite Categories: 
Signal Processing Engine

Special Registers Altered: 
None

31 RT RA RB 799 /
0 6 11 16 21 31

This instruction behaves identically to a evlddx
instruction except for using the EPLC register to
provide the translation context.

Programming Note

31 RT RA RB 927 /
0 6 11 16 21 31

This instruction behaves identically to a evstddx
instruction except for using the EPSC register to
provide the translation context.

Programming Note
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Load Vector by External Process ID 
Indexed X-form

lvepx VRT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
VRT I MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16)

Let the effective address (EA) be the sum (RA|0)+(RB).
The quadword in storage addressed by the result of EA
ANDed with 0xFFFF_FFFF_FFFF_FFF0 is loaded into
VRT. 

For lvepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of PID
EPLCEGS is used in place of MSR[GS] <E.HV>
EPLCELPID is used in place of LPIDR <E.HV>

This instruction is privileged.

An attempt to execute lvepx while MSRSPV=0 will
cause a Vector Unavailable interrupt.

Corequisite Categories: 
Vector

Special Registers Altered: 
None

Load Vector by External Process ID
Indexed LRU X-form

lvepxl VRT,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
VRT I MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16)
mark_as_not_likely_to_be_needed_again_anytime_soon
( EA )

Let the effective address (EA) be the sum (RA|0)+(RB).
The quadword in storage addressed by the result of EA
ANDed with 0xFFFF_FFFF_FFFF_FFF0 is loaded into
VRT. 

lvepxl provides a hint that the quadword in storage
addressed by EA will probably not be needed again by
the program in the near future.

For lvepxl, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of PID
EPLCEGS is used in place of MSR[GS] <E.HV>
EPLCELPID is used in place of LPIDR <E.HV>

This instruction is privileged.

An attempt to execute lvepxl while MSRSPV=0 will
cause a Vector Unavailable interrupt.

Corequisite Categories: 
Vector

Special Registers Altered: 
None

 

31 VRT RA RB 295 /
0 6 11 16 21 31

This instruction behaves identically to a lvx instruc-
tion except for using the EPLC register to provide
the translation context.

Programming Note

31 VRT RA RB 263 /
0 6 11 16 21 31

See the Programming Notes for the lvxl instruction
in Section 6.7.2 of Book I.

This instruction behaves identically to a lvxl
instruction except for using the EPLC register to
provide the translation context.

Programming Note

Programming Note
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Store Vector by External Process ID 
Indexed X-form

stvepx VRS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16) I (VRS)

Let the effective address (EA) be the sum (RA|0)+(RB).
The contents of VRS are stored into the quadword in
storage addressed by the result of EA ANDed with
0xFFFF_FFFF_FFFF_FFF0. 

For stvepx, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of PID
EPSCEGS is used in place of MSR[GS] <E.HV>
EPSCELPID is used in place of LPIDR <E.HV>

This instruction is privileged.

An attempt to execute stvepx while MSRSPV=0 will
cause a Vector Unavailable interrupt.

Corequisite Categories: 
Vector

Special Registers Altered: 
None

Store Vector by External Process ID 
Indexed LRU X-form

stvepxl VRS,RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16) I (VRS)
mark_as_not_likely_to_be_needed_again_anytime_soon
(EA)

Let the effective address (EA) be the sum (RA|0)+(RB).
The contents of VRS are stored into the quadword in
storage addressed by the result of EA ANDed with
0xFFFF_FFFF_FFFF_FFF0. 

The stvepxl instruction provides a hint that the quad-
word addressed by EA will probably not be needed
again by the program in the near future.

For stvepxl, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of PID
EPSCEGS is used in place of MSR[GS] <E.HV>
EPSCELPID is used in place of LPIDR <E.HV>

This instruction is privileged.

An attempt to execute stvepxl while MSRSPV=0 will
cause a Vector Unavailable interrupt.

Corequisite Categories: 
Vector

Special Registers Altered: 
None

 

31 VRS RA RB 807 /
0 6 11 16 21 31

This instruction behaves identically to a stvx
instruction except for using the EPSC register to
provide the translation context.

Programming Note

31 VRS RA RB 775 /
0 6 11 16 21 31

See the Programming Notes for the lvxl instruction
in Section 6.7.2 of Book I.

This instruction behaves identically to a stvxl
instruction except for using the EPSC register to
provide the translation context.

Programming Note

Programming Note
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Chapter 6.  Storage Control

6.1 Overview
Instruction effective addresses are generated for
sequential instruction fetches and for addresses that
correspond to a change in program flow (branches,
interrupts). Data effective addresses are generated by
Load, Store, and Cache Management instructions. TLB
Management instructions generate effective addresses
to determine the presence of or to invalidate a specific
TLB entry associated with that address. For a complete
discussion of storage addressing and effective address
calculation, see Section 1.10 of Book I.

Portions of the context of an effective address are
appended to it to form the virtual address. The context
is provided by various registers. The virtual address
consists of the Logical Partition ID (LPID) <E.HV>, the
Guest State <E.HV>, the address space identifier, the
process identifier, and the effective address. The virtual
address is translated to a real address by a matching
“direct” entry in the Translation Lookaside Buffer (TLB)
according to procedures described in Section 6.7.3.
The Virtual Page Number (VPN) part of the virtual
address is compared to the TLB contents to determine
a match. The VPN consists of bits of the virtual address
with the exception of the low-order effective address
bits that correspond to the byte offset within the page. If
the Embedded.Page Table category is supported, a vir-
tual address can be translated by the Page Table
pointed to by a matching “indirect” TLB entry as
described in Section 6.7.4. As a result of a Page Table
translation, a direct TLB entry is created, and this direct
TLB entry can be used for subsequent translations. All
virtual addresses are translated by the Page Table
<E.PT> or the TLB, i.e., unlike the Server environment,
there is no real mode. The real address that results
from the translation is used to access main storage. 

The Translation Lookaside Buffer is the hardware
resource that also controls protection and storage con-
trol attributes. TLB permission bits control user and
supervisor read, write and execute capability. If the
Embedded.Hypervisor category is supported, the Virtu-
alization Fault bit permits data accesses to pages to be
trapped to the hypervisor, which allows the hypervisor
to virtualize data accesses to specific pages, e.g.
accesses to memory-mapped I/O. Storage control

attributes described in Book II are supported by corre-
sponding TLB bits, as are four optional implementa-
tion-dependent user-defined storage control attributes.
The organization of the TLB (e.g. associativity, number
of entries, number of arrays, etc.) is implementa-
tion-dependent. MMU configuration and TLB configura-
tion information in various registers describes this
implementation-dependent organization.

Software manages translation directly by installing TLB
entries, and indirectly by setting up the page tables,
which the TLB will cache. TLB Management instruc-
tions are used by software to read, write, search and
invalidate TLB contents. MMU Assist Registers (MAS)
are used to transfer data to and from the TLB arrays by
TLB Management instructions. If the Embedded.Hyper-
visor category is not supported, TLB Management
instructions are privileged instructions. 

A different MMU Architecture Version (MAV) is used to
indicate that different register layouts and functions are
provided. The MMU Architecture Version Number is
specified by the read-only MMUCFG register. The
Embedded.Hypervisor.LRAT, Embedded TLB Write
Conditional, and Embedded.Page Table categories are
available only in MMU Architecture Version 2.0. 

If the Embedded.Hypervisor category is supported and
the Embedded.Hypervisor.LRAT category is not sup-
ported, most TLB Management instructions are hyper-
visor instructions. TLB entries contain real addresses,
and, to maintain isolation between partitions, guest
operating systems are not given access to real
addresses. In this case most TLB Management instruc-
tions trap to the hypervisor. The hypervisor can emulate
a TLB Management instruction by swapping a Real
Page Number for corresponding Logical Page Number
(LPN) in the MAS registers or vice versa so that the
guest OS only sees LPNs.

However, if the Embedded.Hypervisor.LRAT category
is supported, hardware can perform the translation of
an LPN into a corresponding RPN. In this case, a TLB
Write Entry (tlbwe) instruction can be executed in
guest supervisor state. The LPN in the MAS register is
translated into a corresponding RPN by a hardware
lookup in a Logical to Real Address Translation (LRAT)
Chapter 6. Storage Control 1073
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array, and the RPN is written to the TLB in place of the
LPN when tlbwe is executed in guest supervisor state. 

The Embedded.TLB Write Conditional (E.TWC) cate-
gory provides a TLB write operation that is conditional
on a TLB-reservation where the TLB-reservation is pre-
viously established by a tlbsrx. instruction. The
TLB-reservation is cleared by TLB invalidations and
TLB writes involving the same virtual page. Thus, with-
out acquiring a software lock, software can use the
E.TWC category to write a TLB entry while ensuring
that the entry is not a duplicate of an entry created
simultaneously by another thread that shares the TLB
and is not a stale value for a virtual page that was con-
currently invalidated.

Figure 19 gives an overview of address translation if
the Embedded.Page Table category is supported. The
IND bit in a TLB entry indicates whether the entry is a
“direct” entry or “indirect” entry. When a virtual address
is translated, the TLB arrays are searched for a match-
ing entry. If there is one and only one matching direct
entry, that entry is used to translate the VA. If there is
no matching direct TLB entry, but there is one and only
one matching indirect entry, the indirect entry is used to
access a Page Table Entry (PTE). If the PTE is a valid
entry (V bit = 1), the PTE is used to translate the
address  and a “direct” entry is written to the TLB. If the
Embedded.Page Table and Embedded.Hypervisor cat-
egories are both supported, the Embedded.Hypervi-
sor.LRAT category is supported. In this case if the TGS
bit of the indirect TLB entry is 1, the RPN from the PTE
is treated as a Logical Page Number (LPN) and trans-
lated by the LRAT into an RPN. If the Embedded.Page
Table is supported but the Embedded.Hypervisor cate-
gory is not supported, supervisor software can create
direct and indirect TLB entries and can control the
Page Table Entries. If both categories are supported,
guest supervisor software can still create direct and
indirect TLB entries and control the Page Table Entries
if guest execution of TLB Management instructions is
enabled. However, depending on various factors such
as the number of available LRAT entries, performance
may be better if guest virtual addresses are translated
by a Page Table that is managed by hypervisor soft-
ware.

Figure 19. Address translation with page table

Address Size Overview
Real address space size is 2m bytes, m≤64; see
Note 1.
In MMU Architecture Version 1.0, real page sizes
are 4p KB where 0≤p≤15 (i.e., 1 KB, 4KB, 16KB,
64KB, 256KB, 1MB, 4MB, 16MB, 64MB, 256MB,
1GB, 4GB, 16GB, 64GB, 256GB, 1TB); see Note
2. In MMU Architecture Version 2.0, real page
sizes are 2p KB where 0≤p≤31 (i.e., 1 KB, 2 KB,
4KB, 8 KB, 16KB, 32KB, 64KB, 128KB, 256KB,
512KB, 1MB, 2MB, 4MB, 8MB, 16MB, 32MB,
64MB, 128MB, 256MB, 512MB, 1GB, 2GB, 4GB,
8GB, 16GB, 32GB, 64GB, 128GB, 256GB, 512GB,
1TB, 2TB); see Note 2. However, real pages sizes
supported by a Page Table are limited to values of
p where 2≤p≤15.

Effective address space size is 264 bytes in 64-bit
implementations and 232 bytes in 32-bit implemen-
tations.
The virtual address space size depends on the
implementation.

Category E.HV 
not supported

Category E.HV sup-
ported & TGS of 
indirect TLB entry 
= 1

Virtual Address

Lookup in Page Table

direct entry 
matches

Lookup LPN in LRAT
[Category: E.HV.LRAT]

Real Address

Lookup VA in TLB

Only indirect 
entry matches
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- Virtual address space size in 64-bit implemen-
tations is 2v bytes, where:
- 66≤v≤79 if the Embedded.Hypervisor

Category is not supported; see Note 3.
- 68≤v≤92 if the Embedded.Hypervisor

Category is supported; see Note 3.
- Virtual address space size in 32-bit implemen-

tations is 2v bytes, where:
- 34≤v≤47 if the Embedded.Hypervisor

Category is not supported; see Note 3.
- 36≤v≤60 if the Embedded.Hypervisor

Category is supported; see Note 3.
- The number of LPID <E.HV> bits is 1≤g≤12;

see Note 3.
- There is one GS <E.HV> bit.
- There is one AS bit.
- The number of PID bits is 1≤d≤14; see Note 3.
- For any given real page, the virtual page size

is the same as the real page size.
If the Embedded.Hypervisor.LRAT category is sup-
ported, the following applies.

The logical page sizes allowed by the archi-
tecture are the same as the real page sizes.
However, an implementation need not support
the same logical and real page sizes.
The logical address space size is 2q bytes,
where q≤64; see Note 4.

Notes:

1. The value of m is implementation-dependent (sub-
ject to the maximum given above). When used to
address storage, the high-order 64-m bits of the
“64-bit” real address must be zeros. A maximum of
64 bits of real address can by supported by the
TLB. A maximum of 52 bits of real address can be
supported by the Page Table <E.PT>.

2. Which of these pages sizes are supported is
implementation-dependent. If an implementation
supports multiple TLB arrays, the page sizes sup-
ported by each array may be different. Supported
page sizes are indicated by TLB configuration
information (see Sections 6.10.3.3 and 6.10.3.4).

3. The values of v, g, and d are implementa-
tion-dependent (subject to the range given above).
The value of v is a function of g, d, whether the
implementation is 32-bit or 64-bit, and whether the
Embedded.Hypervisor category is supported.

4. The value of q is implementation-dependent (sub-
ject to the maximum given above). A maximum of
64 bits of logical address can by supported by the
LRAT. A maximum of 52 bits of logical address can
be supported by the Page Table <E.PT>.

  

6.2 Storage Exceptions 
A storage exception results when the sequential execu-
tion model requires that a storage access be performed
but the access is not permitted (e.g., is not permitted by
the storage protection mechanism), the access cannot
be performed because the effective address cannot be
translated to a real address, or the access matches
some tracking mechanism criteria (e.g., Data Address
Compare Debug Interrupt). 

In certain cases a storage exception may result in the
“restart” of (re-execution of at least part of) a Load or
Store instruction. See Section 2.2 of Book II and
Section 7.7 on page 1186 in this Book. 

6.3 Instruction Fetch 
For an instruction fetch, MSRIS is appended to the
effective address as part of the virtual address. The
Address Translation mechanism is described in
Section 6.7.2, Section 6.7.3, and, if the Embed-
ded.Page Table category is supported, Section 6.7.4.

6.3.1 Implicit Branch
Explicitly altering certain MSR bits (using mtmsr), or
explicitly altering TLB entries, certain System Registers
and possibly other implementation-dependent regis-
ters, may have the side effect of changing the
addresses, effective or real, from which the current
instruction stream is being fetched. This side effect is
called an implicit branch. For example, an mtmsr
instruction that changes the value of MSRCM may
change the real address from which the current instruc-
tion stream is being fetched. The MSR bits and System
Registers (excluding implementation-dependent regis-
ters) for which alteration can cause an implicit branch
are indicated as such in Chapter 12. “Synchronization
Requirements for Context Alterations” on page 1235.
Implicit branches are not supported by the Power ISA.
If an implicit branch occurs, the results are boundedly
undefined.

[Category: Embedded.Hypervisor.LRAT]: The logi-
cal pages sizes supported by an implementation
are typically larger than the real page sizes sup-
ported. This implies that memory blocks must be
assigned to a partition with larger granularity than
the memory blocks that can be managed within a
partition.

Programming Note
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6.3.2 Address Wrapping Com-
bined with Changing MSR Bit CM
If the current instruction is at effective address 232-4
and is an mtmsr instruction that changes the contents
of MSRCM, the effective address of the next sequential
instruction is undefined.

  

6.4 Data Access
For a normal Load or Store instruction, MSRDS is
appended to the effective address as part of the virtual
address. The Address Translation mechanism is
described in Section 6.7.2, Section 6.7.3, and, if the
Embedded.Page Table category is supported,
Section 6.7.4. The Embedded.External PID category
must be supported. The effective address for an Exter-
nal Process ID Load or Store instruction data access is
processed under control of the EPLC or EPSC, respec-
tively. See Section 5.3.7.1 and Section 5.3.7.2. 

6.5 Performing Operations 
Out-of-Order
An operation is said to be performed “in-order” if, at the
time that it is performed, it is known to be required by
the sequential execution model. An operation is said to
be performed “out-of-order” if, at the time that it is per-
formed, it is not known to be required by the sequential
execution model.

Operations are performed out-of-order on the expecta-
tion that the results will be needed by an instruction that
will be required by the sequential execution model.
Whether the results are really needed is contingent on
everything that might divert the control flow away from
the instruction, such as Branch, Trap, System Call, and
Return From Interrupt instructions, and interrupts, and
on everything that might change the context in which
the instruction is executed.

Typically, operations are performed out-of-order when
resources are available that would otherwise be idle, so
the operation incurs little or no cost. If subsequent
events such as branches or interrupts indicate that the

operation would not have been performed in the
sequential execution model, any results of the opera-
tion are abandoned (except as described below).

In the remainder of this section, including its subsec-
tions, “Load instruction” includes the Cache Manage-
ment and other instructions that are stated in the
instruction descriptions to be “treated as a Load”, and
similarly for “Store instruction”.

A data access that is performed out-of-order may corre-
spond to an arbitrary Load or Store instruction (e.g., a
Load or Store instruction that is not in the instruction
stream being executed). Similarly, an instruction fetch
that is performed out-of-order may be for an arbitrary
instruction (e.g., the aligned word at an arbitrary loca-
tion in instruction storage).

Most operations can be performed out-of-order, as long
as the machine appears to follow the sequential execu-
tion model. Certain out-of-order operations are
restricted, as follows.

Stores

Stores are not performed out-of-order (even if the
Store instructions that caused them were executed
out-of-order).

Accessing Guarded Storage

The restrictions for this case are given in Section
6.8.1.1.

The only permitted side effects of performing an opera-
tion out-of-order are the following.

A Machine Check that could be caused by in-order
execution may occur out-of-order except that, if
category E.HV is supported and the Machine
Check is the result of multiple TLB entries that
translate the same VA, the Machine Check inter-
rupt must occur in the context in which it was
caused. Also, if category E.HV is supported, a
Machine Check interrupt resulting from the follow-
ing situations must be precise.

Execution of an External Process ID instruc-
tion that has an operand that can be trans-
lated by multiple TLB entries.
Execution of a tlbivax instruction that isn’t a
TLB invalidate all and there are multiple
entries in a single thread’s TLB array(s) that
match the complete VPN.
Execution of a tlbilx instruction with T=3 and
there are multiple entries in the TLB array(s)
that match the complete VPN.
Execution of a tlbsx or tlbsrx. instruction and
there are multiple matching TLB entries.

Non-Guarded storage locations that could be
fetched into a cache by in-order fetching or execu-
tion of an arbitrary instruction may be fetched
out-of-order into that cache.

In the case described in the preceding paragraph, if
an interrupt occurs before the next sequential
instruction is executed, the contents of SRR0,
CSRR0, or MCSRR0, as appropriate to the inter-
rupt, are undefined if the Embedded.Hypervisor
category is not supported or the interrupt is
directed to the hypervisor state. If the Embed-
ded.Hypervisor category is supported and the
interrupt is directed to the guest state, the contents
of GSRR0 are undefined.

Programming Note
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6.6 Invalid Real Address
A storage access (including an access that is per-
formed out-of-order; see Section 6.5) may cause a
Machine Check if the accessed storage location con-
tains an uncorrectable error or does not exist. See
Section 7.6.3 on page 1165.

6.7 Storage Control 
This section describes the address translation facility,
access control, and storage control attributes.

Demand-paged virtual memory is supported, as well as
a variety of other management schemes that depend
on precise control of effective-to-real address transla-
tion and flexible memory protection. Translation misses
and protection faults cause precise exceptions. Suffi-
cient information is available to correct the fault and
restart the faulting instruction.

The effective address space is divided into pages. The
page represents the granularity of effective address
translation, access control, and storage control
attributes. In MMU Architecture Version 1.0, up to six-
teen page sizes (1KB, 4KB, 16KB, 64KB, 256KB, 1MB,
4MB, 16MB, 64MB, 256MB, 1GB, 4GB, 16GB, 64GB,
256GB, 1TB) may be simultaneously supported. In
MMU Architecture Version 2.0, up to 32 page sizes (1
KB, 2 KB, 4KB, 8 KB, 16KB, 32KB, 64KB, 128KB,
256KB, 512KB, 1MB, 2MB, 4MB, 8MB, 16MB, 32MB,
64MB, 128MB, 256MB, 512MB, 1GB, 2GB, 4GB, 8GB,
16GB, 32GB, 64GB, 128GB, 256GB, 512GB, 1TB,
2TB) may be simultaneously supported. In order for an
effective to real translation to exist, a valid entry for the
page containing the effective address must be in the
Translation Lookaside Buffer (TLB). Addresses for
which no TLB entry exists cause TLB Miss exceptions.

6.7.1 Translation Lookaside 
Buffer
The Translation Lookaside Buffer (TLB) is the hardware
resource that controls translation, protection, and stor-
age control attributes. The organization of the TLB (e.g.
associativity, number of entries, number of arrays, etc.)
is implementation-dependent. Thus, the software for
updating the TLB is also implementation-dependent.
However, MMU configuration and TLB configuration
information is provided such that software written to
handle various TLB organizations could potentially run
on multiple MMU implementations. A unified TLB orga-
nization (one to four TLB arrays, called TLB0, TLB1,
TLB2 and TLB3, where each contains translations for
both instructions and data) is assumed in the following
description. For details on how to synchronize TLB
updates with instruction execution see Section 6.11.4.3
and Chapter 12.

Maintenance of TLB entries is under software control,
except that if the Embedded.Page Table category is
supported, hardware will write TLB entries for transla-
tions performed via the Page Table. System software
determines TLB entry replacement strategy and the for-
mat and use of any page state information. If a TLB
provides Next Victim (NV) information, software can
optionally use NV to choose a TLB entry to be
replaced. See Section 6.11.4.7. Some implementations
allow software to specify that a hardware generated
hash and hardware replacement algorithm should be
used to select the entry. See Section 6.11.4.7. The TLB
entry contains all the information required to identify the
page, to specify the translation, to specify access con-
trols, and to specify the storage control attributes.

A TLB entry is written by copying information from MAS
registers, using a tlbwe instruction (see page 1141). A
TLB entry is read by copying information to MAS regis-
ters, using a tlbre instruction (see page 1139). Soft-
ware can also search for specific TLB entries using the
tlbsx instruction (see page 1136) and, if the Embed-
ded.TLB Write Conditional category is supported, tlb-
srx. (see page 1138).

Each TLB entry describes a page. Fields in the TLB
entry fall into five categories:

Page identification fields (information required to
identify the page to the hardware translation mech-
anism).
Address translation fields
Access control fields
Storage control attribute fields
TLB management field

While the fields in the TLB entry are required, unless
they are identified as part of a category that is not sup-
ported, no particular TLB entry format is formally speci-
fied. The tlbre and tlbwe instructions provide the ability
to read or write individual entries. Below are shown the
field definitions for the TLB entry. Some fields that are
used only for indirect TLB entries can be overlaid with
fields that are used only for direct TLB entries. Such
overlap is implementation-dependent and an example
is shown in Figure 20 on page 1081.
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Page Identification Fields for direct and indirect 
entries
Name Description
EPN Effective Page Number (up to 54 bits)

Bits 0:n–1 of the EPN field are compared to 
bits 0:n–1 of the effective address (EA) of 
the storage access (where n=64–
log2(page size in bytes) and page size is 
specified by the SIZE field of the TLB 
entry). See Table 2 and Table 3.

Note: Bits X:Y of the EPN field are imple-
mented, where X=0 (64-bit implementa-
tion) or X=32 (32-bit implementation), and 
Y ≤ 53. Y = p - 1 where p = 64–
log2(smallest page size in bytes) and 
smallest page size is the smallest page 
size supported by the implementation as 
specified by TLB array’s TLBnCFG or 
TLBnPS. The number of bits implemented 
for EPN is not required to be the same 
number of bits as are implemented for 
RPN. Implemented bits that represent off-
sets within a page are ignored for address 
comparisons performed for translation, 
invalidation, and searches and software 
should set these bits to zero. Unimple-
mented EPN bits are treated as if they 
contain 0s.

TS   Translation Address Space
This bit indicates the address space this TLB 

entry is associated with. For instruction 
storage accesses, MSRIS must match the 
value of TS in the TLB entry for that TLB 
entry to provide the translation. Likewise, 
for data storage accesses, MSRDS must 
match the value of TS in the TLB entry. For 
the tlbsrx. <E.TWC> instruction, MAS1TS 
provides the address space specification 
that must match the value of TS. For the 
tlbsx instruction, MAS6SAS provides the 
address space specification that must 
match the value of TS. For the instructions 
tlbilx with T=3 and tlbivax with EA61=0, 
MAS6SAS provides the address space 
specification that is compared to the value 
of TS.

SIZE Page Size
For direct TLB entries, the SIZE field speci-

fies the size of the virtual page associated 
with the TLB entry. For indirect TLB 
entries, the SIZE field specifies the maxi-
mum amount of virtual storage that can be 
mapped by the page table to which the 
indirect TLB entry points. The following 
applies in both cases:

For MAV = 1.0, 4SIZEKB, where 0 ≤
SIZE ≤ 15. See Table 2. For TLB
arrays that contain fixed-size TLB
entries, this field is treated as
reserved for tlbwe and tlbre
instructions and is treated as a fixed
value for translations. For variable
page size TLB arrays, this field must
be a value between
TLBnCFGMINSIZE and
TLBnCFGMAXSIZE.
For MAV = 2.0, 2SIZEKB, where 0 ≤
SIZE ≤ 31. See Table 3. This field
must be one of the page sizes spec-
ified by the corresponding TLBnPS
register.

Implementations may support any one or 
more of the page sizes described above. 

TID Translation ID (implementation-dependent 
size)

Field used to identify a shared page (TID=0) 
or the owner’s process ID of a private page 
(TID≠0). See Section 6.7.2.

TLPID Translation Logical Partition ID <E.HV>
This field identifies a partition. The Transla-

tion Logical Partition ID is compared with 
LPIDR contents during translation. This 
allows for an efficient change of address 
space when a transition between partitions 
occurs. This number of bits in this field is 
an implementation-dependent number n, 
where 1≤ n ≤12. See Section 6.7.2.

TGS Translation Guest State <E.HV> 
This 1-bit field indicates whether this TLB 

entry is valid for the guest space or for the 
hypervisor space. The Translation Guest 
Space field is compared with the MSRGS 
bit during translation. This allows for an 
efficient change of address space when a 
transition from guest state to hypervisor 
state occurs. See Section 6.7.2.

0 Hypervisor space
1 Guest space
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V Valid
This bit indicates whether that this TLB entry 

is valid and may be used for translation. 
The Valid bit for a given entry can be set or 
cleared with a tlbwe instruction; alterna-
tively, the Valid bit for an entry may be 
cleared by a tlbilx or tlbivax instruction or 
by a MMUCSR0 TLB invalidate all.

IND Indirect <E.PT> 
This bit distinguishes between an indirect 

TLB entry that points to a Page Table 
(IND=1) and a direct TLB entry that can be 
used directly to translate a virtual address 
(IND=0). If a TLB array does not support 
this bit (TLBnCFGIND = 0), the implied IND 
value is 0. For the tlbsx instruction, 
MAS6SIND provides the direct/indirect 
specification that must match the value of 
IND. For the instructions tlbilx with T=3 
and tlbivax with EA61=0, MAS6SIND pro-
vides the direct/indirect specification that is 
compared to the value of IND. See Section 
6.7.4.

Page Identification Field for indirect entry
Name Description
SPSIZE Sub-Page Size (IND=1) <E.PT>

SPSIZE is a 5-bit field that specifies the mini-
mum page size that can be specified by 
each Page Table Entry in the Page Table 
that is pointed to by the indirect TLB entry. 
This minimum page size is 2SPSIZE KB      
and must be at least 4 KB. Thus SPSIZE 
must be at least 2. Valid values are speci-
fied by EPTCFGSPS2 SPS1 SPS0. See Sec-
tion 6.7.4

Translation Field
Name Description
RPN Real Page Number (up to 54 bits)

For a direct TLB entry, bits 0:n–1 of the RPN 
field are used to replace bits 0:n–1 of the 
effective address to produce the real 
address for the storage access (where 
n=64–log2(page size in bytes) and page size 
is specified by the SIZE field of the TLB 
entry). See Section 6.7.3 for a requirement 
on unused low-order RPN bits (i.e., bits n:53) 
being 0.

For an indirect TLB entry, bits 0:m-1 of the RPN 
field followed by 64-m 0s are the real 
address of the page table pointed to the indi-
rect TLB entry, where m = 61 – (SIZE – 
SPSIZE). RPN bits m:53 must be zero. See 
Section 6.7.4.

Note: Bits X:Y of the RPN field are imple-
mented, where X ≥ 0 and Y ≤ 53. X = 64 - 
MMUCFGRASIZE. Y is the larger of the fol-
lowing applicable values:

p - 1 where p = 64–
log2(smallest_page size in bytes) and
smallest page size is the smallest
page size supported by the imple-
mentation as specified by TLB array’s
TLBnCFG or TLBnPS. 
52 if the Embedded.Page Table cate-
gory is supported and a page table
size of 2 KB is supported (EPTCF-
GPSn - EPTCFGSPSn = 8 for some
value of n).

The number of bits implemented for EPN is not 
required to be the same number of bits as 
are implemented for RPN. Unimplemented 
RPN bits are treated as if they contain 0s.

Storage Control Bits (see Section 6.8.3 on 
page 1097)

Name Description
W Write-Through Required

This bit indicates whether the page is 
Write-Through Required. See Section 1.6.1 
of Book II.

0 This page is not Write-Through 
Required storage.
1 This page is Write-Through Required 
storage.

I Caching Inhibited
This bit indicates whether the page is Caching 

Inhibited. See Section 1.6.2 of Book II.
0 This page is not Caching Inhibited 
storage.
1 This page is Caching Inhibited stor-
age.
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M Memory Coherence Required
This bit indicates whether the page is Memory 

Coherence Required. See Section 1.6.3 of 
Book II.

0 This page is not Memory Coherence 
Required storage.
1 This page is Memory Coherence 
Required storage.

G Guarded
This bit indicates whether the page is Guarded. 

See Section 1.6.4 of Book II and Section 
6.8.1.

0 This page is not Guarded storage.
1 This page is Guarded storage.

E Endian Mode
This bit indicates whether the page is accessed 

in Little-Endian or Big-Endian byte order. 
See Section 1.10.1 of Book I and 
Section 1.6.5 of Book II.

0 The page is accessed in Big-Endian 
byte order.
1 The page is accessed in Little-Endian 
byte order.

U0:U3 User-Definable Storage Control 
Attributes See Section 6.8.2.

Specifies implementation-dependent and sys-
tem-dependent storage control attributes for 
the page associated with the TLB entry. The 
existence of these bits is implementa-
tion-dependent.

VLE Variable Length Encoding <E.VLE> 
This bit specifies whether a page
which contains instructions is to be
decoded as VLE instructions (see
Chapter 1 of Book VLE). See Section
6.8.3 and Chapter 1 of Book VLE.

0 Instructions fetched from the page
are decoded and executed as
non-VLE instructions.

1 Instructions fetched from the page
are decoded and executed as
VLE instructions.

ACM Alternate Coherency Mode
This bit allows an implementation to employ 

more than a single coherency method. This 
allows participation in multiple coherency 
protocols. If the M attribute (Memory Coher-
ence Required) is not set for a page (M=0), 
the page has no coherency associated with it 
and the ACM attribute is ignored. If the M 
attribute is set to 1 for a page (M=1), the 
ACM attribute is used to determine the 
coherence domain (or protocol) used. The 
coherency method used in Alternate Coher-
ency Mode is implementation-dependent.

Access Control Fields for direct TLB entry
Name Description
UX User State Execute Enable (IND=0) 

See Section 6.7.6.1.
0  Instruction fetch and execution is not permit-

ted from this page while MSRPR=1 and will 
cause an Execute Access Control exception 
type Instruction Storage interrupt.

1  Instruction fetch and execution is permitted 
from this page while MSRPR=1.

SX Supervisor State Execute Enable (IND=0) 
See Section 6.7.6.1.
0  Instruction fetch and execution is not permit-

ted from this page while MSRPR=0 and will 
cause an Execute Access Control exception 
type Instruction Storage interrupt.

1  Instruction fetch and execution is permitted 
from this page while MSRPR=0.

UW User State Write Enable (IND=0) 
See Section 6.7.6.2.
0 Store operations, including dcba, dcbz, and 

dcbzep are not permitted to this page when 
MSRPR=1 and will cause a Write Access 
Control exception. A Write Access Control 
exception will cause a Data Storage inter-
rupt.

1  Store operations, including dcba, dcbz, and 
dcbzep are permitted to this page when 
MSRPR=1.

SW Supervisor State Write Enable (IND=0) 
See Section 6.7.6.2.
0 Store operations, including dcba, dcbi, 

dcbz, and dcbzep are not permitted to this 
page when MSRPR=0. Store operations, 
including dcbi, dcbz, and dcbzep, will 
cause a Write Access Control exception. A 
Write Access Control exception will cause a 
Data Storage interrupt.

1  Store operations, including dcba, dcbi, 
dcbz, and dcbzep, are permitted to this 
page when MSRPR=0.

UR User State Read Enable (IND=0) 
See Section 6.7.6.3.
0 Load operations (including load-class Cache 

Management instructions) are not permitted 
from this page when MSRPR=1 and will 
cause a Read Access Control exception. A 
Read Access Control exception will cause a 
Data Storage interrupt.

1  Load operations (including load-class Cache 
Management instructions) are permitted 
from this page when MSRPR=1.
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Figure 20. Overlaid TLB Field Example

  

6.7.2 Virtual Address Spaces
There are two separate address spaces supported.
MSRIS and MSRDS are used to indicate the address
space used for instruction and data accesses respec-
tively. MSRIS and MSRDS can be set independently to
access address space 0 or address space 1. TLB
entries have a corresponding TS bit which is compared
either to MSRIS or MSRDS for instruction and data
accesses respectively to determine if the TLB entry is a
match.

  

If the Embedded.Hypervisor category is supported, the
above two address spaces exist for each logical parti-

SR Supervisor State Read Enable (IND=0) 
See Section 6.7.6.3.
0 Load operations (including load-class Cache 

Management instructions) are not permitted 
from this page when MSRPR=0 and will 
cause a Read Access Control exception. A 
Read Access Control exception will cause a 
Data Storage interrupt.

1  Load operations (including load-class Cache 
Management instructions) are permitted 
from this page when MSRPR=0.

Access Control Field for direct and indirect entries
Name Description
VF Virtualization Fault <E.HV;E.PT>

See Section 6.7.6.4
This 1-bit field specifies whether the TLB entry 

is used by the hypervisor to virtualize data 
accesses, e.g. accesses to memory-mapped 
I/O. A translation of the operand address of a 
Load, Store, or Cache Management instruc-
tion that uses a TLB entry with the Virtualiza-
tion Fault field equal to 1 causes a 
Virtualization Fault exception type Data Stor-
age interrupt regardless of the settings of the 
permission bits. The interrupt is always 
directed to hypervisor state regardless of the 
setting of EPCRDSIGS.

0 A Load, Store, or Cache Management 
access to this page does not cause a Virtual-
ization Fault exception.

1  A Load, Store, or Cache Management 
access to this page causes a Virtualization 
Fault exception.

TLB Management Field
Name Description
IPROT Invalidation Protection

A TLB entry with this bit equal to 1 is protected 
from all TLB invalidation mechanisms except 
the explicit writing of a 0 to the V bit. See 
Section 6.11.4.3. IPROT is implemented 
only for TLB entries in TLB arrays where 
TLBnCFGIPROT is indicated. If IPROT = 1, 
the TLB entry is protected from invalidate 
operations due to any of the following.

execution of tlbivax 
execution of tlbilx
tlbivax invalidations from
another thread
tlbilx invalidations from
another thread when the TLB
is shared with that thread
TLB invalidate all operations 

This bit is a hypervisor resource.

Any TLB entry with IPROT = 0 is volatile and may
be evicted for the following reasons even though
software didn’t explicitly remove or invalidate the
entry.

Generous TLB invalidations (tlbivax and
tlbilx)
TLB updates due to Page Table translations
<E.PT>
Hardware replacement algorithm on a tlbwe
instruction if MMUCFGHES=1 and MAS0HES =1.

On a virtualized implementation, a TLB entry with
IPROT = 0 may be evicted at any time.

TLB entry with IND=0 TLB entry with IND=1

UX SPSIZE0

SX SPSIZE1

UW SPSIZE2

SW SPSIZE3

UR SPSIZE4

SR RPN52

On virtualized implementations, programmers
should weigh the degredation that may be caused
by execute-only pages against the need for the
security availed by the protection.

Because MSRIS and MSRDS are set to 0 by the
hardware on interrupt, the Operating System soft-
ware that handles interrupts should be designed to
run with AS=0. As a result, Operating System soft-
ware that wishes to, for example, use one address
space for user and the other for supervisor should
use AS=0 for supervisor and AS=1 for user.

Programming Note

Virtualized Implementation Note

Programming Note
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tion and for both the guest and non-guest states within
each logical partition. The Logical Partition ID Register
identifies the partition and a field in the TLB entry
(TLPID) specifies which partition that TLB entry is
associated with. The Guest State (GS) bit in the
Machine State Register identifies the guest state or
non-guest state and a bit in the TLB entry (TGS) speci-
fies which of these states that TLB entry is associated
with.

Load, Store, Cache Management, and Branch instruc-
tions and next-sequential-instruction fetches produce a
64-bit effective address. A one-bit address space iden-
tifier and a process identifier are prepended to the

effective address to form the virtual address. If the
Embedded.Hypervisor category is supported, this
address is also prepended by a Logical Partition ID and
Guest State bit. The Logical Partition ID is provided by
the contents of LPIDR and the Guest State bit is pro-
vided by the MSRGS. For instruction fetches, the
address space identifier is provided by MSRIS and the
process identifier is provided by the contents of the Pro-
cess ID Register. For data storage accesses, the
address space identifier is provided by the MSRDS and
the process identifier is provided by the contents of the
Process ID Register. 

Figure 21. Effective-to-Virtual-to-Real TLB Address
Translation Flow

6.7.3 TLB Address Translation
A program references memory by using the effective
address computed by the hardware when it executes a
Load, Store, Cache Management, or Branch instruc-
tion, and when it fetches the next instruction. A virtual
address is formed from the effective address as
described in Section 6.7.2 and the virtual address is
translated to a real address according to the proce-
dures described in this section. The storage subsystem
uses the real address for the access. All storage
access effective addresses are translated to real
addresses using the TLB mechanism. See Figure 21.

The virtual address is used to locate the associated
entry in the TLB. The address space identifier, the pro-
cess identifier, and the effective address of the storage

access are compared to the Translation Address Space
bit (TS), the Translation ID field (TID), and the value in
the Effective Page Number field (EPN), respectively, of
each TLB entry. If the Embedded.Hypervisor category
is supported, the Logical Partition ID and the Guest
State bit are also compared to the Translation Logical
Partition ID (TLPID) and Translation Guest State (TGS)
of each TLB entry. Figure 22 illustrates the criteria for a
virtual address to match a specific TLB entry for a
direct TLB entry (IND = 0). See Section 6.7.4 for details
on Page Table translation using an indirect TLB entry.

The virtual address of a storage access matches a
direct TLB entry if the first four following conditions are
true, and, additionally, if the Embedded.Page Table cat-
egory is supported, the fifth condition is true, and, addi-

PID

64-bit Effective Address

64-bit Real Address

Virtual Address

NOTE: n = 64–log2(page size)

Effective Page Address Offset

0 n 63

Real Page Number Offset

n 630

TLB
multiple-entry

MSRIS for instruction fetch

AS

MSRDS for data storage accesses

RPN0:53

n–1

n–1

LPIDG
S

GS || LPID included if Embedded.Hypervisor
category is supported

MSRGS

PIDLPIDR
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tionally, if the Embedded.Hypervisor category is
supported, the last two conditions are true.

The Valid bit of the TLB entry is 1. 

The value of the address specifier for the storage
access (MSRIS for instruction fetches, MSRDS for
data storage accesses) is equal to the value in the
TS bit of the TLB entry.

The value of the process identifier in the PID regis-
ter is equal to the value in the TID field of the TLB
entry or the value of the TID field of the TLB entry
is equal to 0.

The contents of bits 0:n–1 of the effective address
of the storage access are equal to the value of bits
0:n-1 of the EPN field of the TLB entry (where
n=64-log2(page size in bytes) and page size is
specified by the value of the SIZE field of the TLB
entry). See Table 2 and Table 3.
One of the following conditions is true.

The TLB array supports the IND bit
(TLBnCFGIND = 1) and the IND bit of the TLB
entry is equal to 0.
The TLB array does not support the IND bit
(TLBnCFGIND = 0).

Either the value of the logical partition identifier in
LPIDR is equal to the value of the TLPID field of
the TLB entry, or the value of the TLPID field of the
TLB entry is equal to 0.
The value of the guest state bit (MSRGS) is equal
to the value of the TGS bit of the TLB entry.

  

If the virtual address of the storage access matches a
TLB entry in accordance with the selection criteria
specified in the preceding paragraph, the value of the
Real Page Number field (RPN) of the matching TLB
entry provides the real page number portion of the real
address. Let n=64–log2(page size in bytes) where
page size is specified by the SIZE field of the TLB
entry. Bits n:63 of the effective address are appended
to bits 0:n–1 of the 54-bit RPN field of the matching
TLB entry to produce the 64-bit real address (i.e.,
RA = RPN0:n–1 || EAn:63) that is presented to main stor-
age to perform the storage access. The page size is
determined by the value of the SIZE field of the match-
ing TLB entry. See  Table 4 and Table 5. Depending on
the page size, certain RPN bits of the matching TLB
entry must be zero as shown in  Table 4 and Table 5.
Otherwise, it is implementation-dependent whether the

Table 2: Page Size and Effective Address to TLB EPN 
Comparison for MAV = 1.0

SIZE
Page Size
(4SIZEKB)

EA to EPN Comparison
(bits 0:53–2×SIZE)

0b0000
0b0001
0b0010
0b0011
0b0100
0b0101
0b0110
0b0111
0b1000
0b1001
0b1010
0b1011
0b1100
0b1101
0b1110
0b1111

1 KB
4KB

16KB
64KB

256KB
1MB
4MB

16MB
64MB

256MB
1GB
4GB

16GB
64GB

256GB
1TB

EPN0:53 =? EA0:53
EPN0:51 =? EA0:51
EPN0:49 =? EA0:49
EPN0:47 =? EA0:47
EPN0:45 =? EA0:45
EPN0:43 =? EA0:43
EPN0:41 =? EA0:41
EPN0:39 =? EA0:39
EPN0:37 =? EA0:37
EPN0:35 =? EA0:35
EPN0:33 =? EA0:33
EPN0:31 =? EA0:31
EPN0:29 =? EA0:29
EPN0:27 =? EA0:27
EPN0:25 =? EA0:25
EPN0:23 =? EA0:23

Table 3: Page Size and Effective Address to TLB EPN 
Comparison for MAV = 2.0

SIZE
Page Size
(2SIZEKB)

EA to EPN Comparison
(bits 0:53–SIZE)

0b00000
0b00001
0b00010
0b00011
0b00100
0b00101
0b00110
0b00111
0b01000
0b01001
0b01010
0b01011
0b01100
0b01101
0b01110
0b01111
0b10000
0b10001
0b10010
0b10011
0b10100
0b10101
0b10110
0b10111
0b11000
0b11001
0b11010
0b11011
0b11100
0b11101
0b11110
0b11111

1KB
2KB
4KB
8KB

16KB
32KB
64KB

128KB
256KB
512KB

1MB
2MB
4MB
8MB

16MB
32MB
64MB

128MB
256MB
512MB

1GB
2GB
4GB
8GB

16GB
32GB
64GB

128GB
256GB
512GB

1TB
2TB

EPN0:53 =? EA0:53
EPN0:52 =? EA0:52
EPN0:51 =? EA0:51
EPN0:50 =? EA0:50
EPN0:49 =? EA0:49
EPN0:48 =? EA0:48
EPN0:47 =? EA0:47
EPN0:46 =? EA0:46
EPN0:45 =? EA0:45
EPN0:44 =? EA0:44
EPN0:43 =? EA0:43
EPN0:42 =? EA0:42
EPN0:41 =? EA0:41
EPN0:40 =? EA0:40
EPN0:39 =? EA0:39
EPN0:38 =? EA0:38
EPN0:37 =? EA0:37
EPN0:36 =? EA0:36
EPN0:35 =? EA0:35
EPN0:34 =? EA0:34
EPN0:33 =? EA0:33
EPN0:32 =? EA0:32
EPN0:31 =? EA0:31
EPN0:30 =? EA0:30
EPN0:29 =? EA0:29
EPN0:28 =? EA0:28
EPN0:27 =? EA0:27
EPN0:26 =? EA0:26
EPN0:25 =? EA0:25
EPN0:24 =? EA0:24
EPN0:23 =? EA0:23
EPN0:22 =? EA0:22

An implementation need not support all page sizes.

Programming Note
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address translation is performed as if these RPN bits
are 0 or as if the corresponding RA bits are undefined
values, or either an Instruction Storage exception (for
an instruction fetch) or Data Storage exception (for a
data access) occurs. If the specified page size is not
supported by the implementation’s TLB array, it is
implementation-dependent whether the address trans-
lation is performed as if the page size was a smaller
size or either an Instruction Storage exception (for an
instruction fetch) or Data Storage exception (for a data
access) occurs.

A TLB Miss exception occurs if there is no valid match-
ing direct entry in the TLB for the page specified by the
virtual address (Instruction or Data TLB Error interrupt)
and, if the Embedded.Page Table category is sup-
ported, there is no matching indirect entry (see Section
6.7.4). A TLB Miss exception for an instruction fetch will
result in an Instruction TLB Miss exception type Instruc-
tion TLB Error interrupt. A TLB Miss exception for a
data storage access will result in a Data TLB Miss
exception type Data TLB Error interrupt. Although the
possibility exists to place multiple direct and/or multiple
indirect entries into the TLB that match a specific virtual
address, assuming a set-associative or fully-associa-
tive organization, doing so is a programming error.
Either one of the matching entries is used or a Machine
Check exception occurs if there are multiple matching
direct entries or multiple matching indirect entries for an
instruction or data access. 

The rest of the matching TLB entry provides the access
control bits (UX, SX, UW, SW, UR, SR, VF), and stor-

Table 4: Real Address Generation for MAV = 1.0

SIZE

Page 
Size 

(4SIZE 
KB)

RPN Bits
 Required

to be Equal
 to 0

Real Address

0b0000
0b0001
0b0010
0b0011
0b0100
0b0101
0b0110
0b0111
0b1000
0b1001
0b1010
0b1011
0b1100
0b1101
0b1110
0b1111

1 KB
4KB
16KB
64KB

256KB
1MB
4MB

16MB
64MB
256MB

1GB
4GB

16GB
64GB
256GB

1TB

none
RPN52:53=0
RPN50:53=0
RPN48:53=0
RPN46:53=0
RPN44:53=0
RPN42:53=0
RPN40:53=0
RPN38:53=0
RPN36:53=0
RPN34:53=0
RPN32:53=0
RPN30:53=0
RPN28:53=0
RPN26:53=0
RPN24:53=0

RPN0:53 || EA54:63
RPN0:51 || EA52:63
RPN0:49 || EA50:63
RPN0:47 || EA48:63
RPN0:45 || EA46:63
RPN0:43 || EA44:63
RPN0:41 || EA42:63
RPN0:39 || EA40:63
RPN0:37 || EA38:63
RPN0:35 || EA36:63
RPN0:33 || EA34:63
RPN0:31 || EA32:63
RPN0:29 || EA30:63
RPN0:27 || EA28:63
RPN0:25 || EA26:63
RPN0:23 || EA24:63

Table 5: Real Address Generation for MAV = 2.0

SIZE

Page 
Size 

(4SIZE 
KB)

RPN Bits
 Required

to be Equal
 to 0

Real Address

0b00000
0b00001
0b00010
0b00011
0b00100
0b00101
0b00110
0b00111
0b01000
0b01001
0b01010
0b01011
0b01100
0b01101
0b01110
0b01111
0b10000
0b10001
0b10010
0b10011
0b10100
0b10101
0b10110
0b10111
0b11000
0b11001
0b11010
0b11011
0b11100
0b11101
0b11110
0b11111

1KB
2KB
4KB
8KB

16KB
32KB
64KB

128KB
256KB
512KB

1MB
2MB
4MB
8MB

16MB
32MB
64MB

128MB
256MB
512MB

1GB
2GB
4GB
8GB

16GB
32GB
64GB

128GB
256GB
512GB

1TB
2TB

none
RPN53:53=0
RPN52:53=0
RPN51:53=0
RPN50:53=0
RPN49:53=0
RPN48:53=0
RPN47:53=0
RPN46:53=0
RPN45:53=0
RPN44:53=0
RPN43:53=0
RPN42:53=0
RPN41:53=0
RPN40:53=0
RPN39:53=0
RPN38:53=0
RPN37:53=0
RPN36:53=0
RPN35:53=0
RPN34:53=0
RPN33:53=0
RPN32:53=0
RPN31:53=0
RPN30:53=0
RPN29:53=0
RPN28:53=0
RPN27:53=0
RPN26:53=0
RPN25:53=0
RPN24:53=0
RPN23:53=0

RPN0:53 || EA54:63
RPN0:52 || EA53:63
RPN0:51 || EA52:63
RPN0:50 || EA51:63
RPN0:49 || EA50:63
RPN0:48 || EA49:63
RPN0:47 || EA48:63
RPN0:46 || EA47:63
RPN0:45 || EA46:63
RPN0:44 || EA45:63
RPN0:43 || EA44:63
RPN0:42 || EA43:63
RPN0:41 || EA42:63
RPN0:40 || EA41:63
RPN0:39 || EA40:63
RPN0:38 || EA39:63
RPN0:37 || EA38:63
RPN0:36 || EA37:63
RPN0:35 || EA36:63
RPN0:34 || EA35:63
RPN0:33 || EA34:63
RPN0:32 || EA33:63
RPN0:31 || EA32:63
RPN0:30 || EA31:63
RPN0:29 || EA30:63
RPN0:28 || EA29:63
RPN0:27 || EA28:63
RPN0:26 || EA27:63
RPN0:25 || EA26:63
RPN0:24 || EA25:63
RPN0:23 || EA24:63
RPN0:22 || EA23:63
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age control attributes (ACM [implementation-depen-
dent], VLE <VLE>, U0, U1, U2, U3, W, I, M, G, E) for
the storage access. The access control bits and stor-
age control attribute bits specify whether or not the
access is allowed and how the access is to be per-
formed. See Sections 6.7.6 and 6.11.4.

Figure 22. Address Translation: Virtual Address to direct TLB Entry Match Process

6.7.4 Page Table Address Transla-
tion [Category: Embedded.Page 
Table]
A hardware Page Table is a variable-sized data struc-
ture that specifies the mapping between virtual page
numbers and real page numbers. There can be many
hardware Page Tables. Each Page Table is defined by
an indirect TLB entry. An indirect TLB entry is an entry
that has its IND bit equal to 1.

An indirect TLB entry matches the virtual address if all
fields match per Section 6.7.4 except for the IND bit
and the IND bit of the TLB entry is 1. If there is no
matching direct TLB entry, but there is one and only
one matching indirect entry, the indirect entry is used to
access a Page Table Entry (PTE) if the VF bit of the
indirect TLB entry is 0. If the VF bit of this indirect TLB

entry is 1, a Virtualization Fault exception occurs. If the
PTE is a valid entry (V bit = 1), the PTE is used to
translate the address. The PTE includes the abbrevi-
ated RPN (ARPN), page size (PS), storage control
(WIMGE), implementation-dependent bits, and storage
access control bits (BAP,R,C) that are used for the
access. If the Embedded.Page Table and Embed-
ded.Hypervisor categories are both supported, the
Embedded.Hypervisor.LRAT category is supported. In
this case, the RPN from the PTE is treated as a Logical
Page Number (LPN) and the LPN is translated by the
LRAT into an RPN. See Section 6.9. If there is more
than one matching direct TLB entry or more than one
matching indirect TLB entry, any one of the duplicate
entries may be used or Machine Check exception may
occur.

See Section 6.7.5 for the rules that software must fol-
low when updating the Page Table.
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Even when the Embedded.Hypervisor category is
supported, a Page Table can optionally be treated
as a guest supervisor resource due to the LRAT.

If the Page Table is treated as a hypervisor
resource, the Page Table must be placed in storage
to which only the hypervisor has access. Moreover,
the contents of the Page Table must be such that
non-hypervisor software cannot modify storage that
contains hypervisor programs or data. An LRAT
identity mapping (LPN=RPN) can be used when
the Page Tables are treated as hypervisor
resources, especially if only one LRAT entry is pro-
vided. If the LRAT identity mapping converts LPNs
into RPNs that extend beyond the memory given to
the partition, the Page Table Entries still provide the
hypervisor with a mechanism to limit a guest’s
accesses to memory assigned to the partition,
assuming guest execution of TLB Management
instructions is disabled.

If storage accesses are to scattered virtual pages,
an Embedded Page Table could be sparsely used,
and, in the worst case, there could be only one
valid PTE in the Page Table. In this case it would be
more efficient for software to directly load TLB
entries rather than have both an indirect TLBE and
a direct TLBE, which is loaded from the Page
Table.

Programming Note

Programming Note
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Figure 23. Page Table Translation
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Figure 23 depicts the Page Table translation for a
matching indirect TLB entry (TLBE). The Page Table
Entry that is used to translate the Effective Address is
selected by a real address formed from some combina-
tion of RPN bits from the TLBE and some EA bits. The
low-order m bits of the RPN field in the indirect TLB
entry must be zeros, where m is (SIZE – SPSIZE) – 7.

SIZE minus SPSIZE must be greater than 7 (corre-
sponding to a page table size of at least 2 KB; see
below under “Page Table Size and Alignment”). The
SIZE and SPSIZE fields of the TLBE determine which
bits of the RPN and EA are used in the following man-
ner. 

1. EA23:51 are shifted right q bits, according to a
decode of SPSIZE, to produce a 29-bit result S.
The value of q is (SPSIZE – 2). Bits shifted out of
the rightmost bit position are lost. 

2.  A 21-bit EA mask is formed based on a decode of
SIZE and SPSIZE. The EA mask is (29 - (SIZE –

SPSIZE))0 || (SIZE – SPSIZE)-81.

3. The EA mask from step 2 is ANDed with the
high-order 21 bits of the shifted EA result (S0:20)
from step 1 to form a 21-bit result.

4. RPN32:52from the indirect TLB entry is ORed with
the 21-bit result from step 3 to form a 21-bit result
R.

5. The real address of the PTE is formed as follows:
RA = TLBERPN[0:31] || R || S21:28 || 0b000

The doubleword addressed by the real address result
from step 5 is the PTE used to translate the EA if the
PTE is valid (Valid bit = 1). If the PTE is valid, PTEPS
must be greater than or equal to the SPSIZE of the
associated indirect TLB entry and must be less than or
equal to the SIZE of the associated indirect TLB entry.
The real address (RA) result is formed by concatenat-
ing 0x000 with the ARPN0:51-p from the PTE and with
the low-order p bits of EA, where p is equal to
log2(page size specified by PTEPS).

RA = 0x000 || ARPN0:51-p || EA64-p:63

However, if an implementation supports a real address
with only r bits, r<52, and either the Embedded.Hyper-
visor category is not supported or the TGS bit of the
corresponding indirect TLB entry is 0, the high-order
52-r bits of PTEARPN are ignored and treated as 0s. If
the Embedded.Hypervisor category is supported, an
implementation supports a logical address with only q
bits, q<52, and the TGS bit of the corresponding indi-
rect TLB entry is 1, the high-order 52-q bits of PTEARPN
are ignored and treated as 0s.

If the Embedded.Hypervisor.LRAT category is sup-
ported and the TGS bit of the associated indirect TLB
entry is 1, the RA formed from the PTE is treated as a
logical real address and translated by the LRAT. If there
is no matching entry in the LRAT, an LRAT Miss excep-

tion occurs. See Section 6.9. If an LRAT Error interrupt
results from this exception, ESRPT is set to 1.

If the Page Table Entry that is accessed is invalid (Valid
bit = 0), a Page Table Fault exception occurs. An Exe-
cute, Read, or Write Access Control exception occurs if
a valid PTE is found but the access is not allowed by
the access control mechanism. These exceptions are
types of Instruction Storage exception or Data Storage
exception, depending on whether the effective address
is for an instruction fetch or for a data access.See
Section 7.6.4 and Section 7.6.5 for additional informa-
tion about these and other interrupt types. For either of
these interrupts caused by a Page Table Fault excep-
tion or Execute, Read, or Write Access Control excep-
tion due to PTE permissions, ESRPT or GESRPT is set
to 1 (GESRPT if the Embedded.Hypervisor.LRAT cate-
gory is supported and the interrupt is directed to the
guest. Otherwise, ESRPT).

  

If PTEPS is greater than the SPSIZE of the associ-
ated indirect TLB entry, 2(PS - SPSIZE) PTEs are
needed for the virtual page to ensure there is no
Page Table Fault exception for accesses to the
page regardless of the location of the access within
the page. If a Page Table Fault exception for some
accesses to the page is acceptable, there is no
requirement that all such PTEs for the page be
valid.

Programming Note
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 Storage Control Attributes for the 
Page Table
A Page Table must be located in storage that is
Big-Endian, Memory Coherence Required, not Caching
Inhibited and not Guarded. If the translation of a virtual
address matches an indirect TLB entry that has its stor-
age control attribute E bit equal to 1, M bit equal to 0, I
bit equal to 1, or G bit = 1, it is implementation-depen-
dent whether the translation is performed as if valid val-
ues were substituted for the invalid values or as if the
entry doesn’t match, or either an Instruction Storage
exception (for an instruction fetch) or Data Storage
exception (for a data access) occurs. The Page Table is
allowed to be located in storage that is Write Through
Required or Not Write Through Required. However, the

same W value must be used for a single thread’s indi-
rect and direct TLB entries that map the same PTE.
The Implementations may require specific values for
ACM and U0:U3.

Ordering of Implicit Accesses to the 
Page Table
The definition of “performed” given in Books II and III-E
applies also to the implicit accesses to the Page Table
by the thread in performing address translation.
Accesses for performing address translation are con-
sidered to be loads in this respect. These implicit
accesses are ordered by the sync instruction with L=0
as described below.

The Synchronize instruction is described in
Section 4.4.3 of Book II, but only at the level required
by an application programmer (sync with L=0 or L=1).
This section describes properties of the instruction that
are relevant only to operating system and hypervisor
software programmers. The sync instruction with L=0
(sync) has the following additional properties.

The sync instruction provides an ordering function
for all stores to the Page Table caused by Store
instructions preceding the sync instruction with
respect to lookups of the Page Table that are per-
formed, by the thread executing the sync instruc-
tion, after the sync instruction completes.
Executing a sync instruction ensures that all such
stores will be performed, with respect to the thread
executing the sync instruction, before any implicit
accesses to the affected Page Table Entries, by
such Page Table lookups, are performed with
respect to that thread.

In conjunction with the tlbivax and tlbsync
instructions, the sync instruction provides an
ordering function for TLB invalidations and related
storage accesses on other threads as described in
the tlbsync instruction description on page 1141.

  

Page Table Entry 
Each Page Table Entry (PTE) maps a VPN to an RPN.
If the corresponding indirect TLB entry has an LPID
<E.HV> or PID value of zero, multiple VPNs are
mapped by a single PTE in a Page Table pointed to by

The computation of the real address of the PTE
can be understood as follows. (Some of the facts
mentioned below, such as the fact that the mini-
mum Page Table size is 2K, are covered later in the
section.)

1. q is the number of EA bits above bit 52 that are
part of the byte offset within the effective page.
(The minimum size of a page that is mapped
by a PTE is 4K, so EA52:63 are always part of
the byte offset, and SPSIZE must be at least
2.) S is the low-order 29-q bits of the EPN,
prepended with q 0s.

2. The EA-mask has a number of low-order 1 bits
equal to the difference between log2(# PTEs)
and log2(minimum # PTEs) = 8. (The log2 of
the number of PTEs in a Page Table is SIZE -
SPSIZE. The minimum Page Table size is 2K
and PTE size = 8 bytes, so the minimum num-
ber of PTEs is 211 ÷ 23 = 28.) Call this number
s; i.e., s = (SIZE - SPSIZE) - 8, and the log2 of
the number of PTEs in the Page Table is s+8.

3. The result is the low-order s bits of the EPN
that are immediately above the lowest-order 8
EPN bits (the lowest-order 8 bits are always
used to select the PTE), prepended with 21-s
0s. (If s could be greater than (29-q)-8, the
“EPN” bits included in the result could include
0 bits that were shifted in step 1. However, this
would correspond to (SIZE - SPSIZE) - 8 > (31
- SPSIZE) - 8, which would imply SIZE > 31,
which is impossible.)

4. R consists of the high-order 21-s bits of
RPN32:52 followed by the low-order s bits of the
EPN that are immediately above the low-
est-order 8 EPN bits.

5. The real address of the PTE thus consists of
the high-order 53-s bits of the RPN from the
TLB entry, followed by the low-order s+8 bits of
the EPN (recall that s+8 is the number of PTEs
in the Page Table), followed by 3 0s.

Programming Note

For instructions following a sync instruction,
the memory barrier need not order implicit
storage accesses for purposes of address
translation.

Programming Note
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such an indirect TLB entry. Figure 24 shows the layout
of a PTE.

Figure 24. Page Table Entry

The Page Size (PS) field encodes page sizes using the
same encodes as the TLBSIZE, except that 0b0 is
prepended to the 4-bit PS value (0 || PS) to form the
equivalent 5-bit encode and PS must specify a page
size of 4 KB or larger. See Table 3 on page 1083. 

The Abbreviated Real Page Number (ARPN) field con-
tains the least significant 40 bits of the RPN. The full
RPN associated with the PTE is formed from the ARPN
prepended with 0x000, i.e., RPN = 0x000 || ARPN.
Depending on the page size, certain ARPN bits must
be zero. Specifically, if p>12, ARPN52-p:39 must be
zeros, where p = log2(page size specified by PTEPS). If
an implementation supports a real address with only r
bits, r<52, and either the Embedded.Hypervisor cate-
gory is not supported or the TGS bit of the correspond-
ing indirect TLB entry is 0, the high-order 52-r bits of
PTEARPN are ignored and treated as 0s for address
translation. If the Embedded.Hypervisor category is
supported, an implementation supports a logical

address with only q bits, q<52, and the TGS bit of the
corresponding indirect TLB entry is 1, the high-order
52-q bits of PTEARPN are ignored and treated as 0s for
address translation.

The Base Access Permission (BAP) bits are used
together with the Reference (R) and Change (C) bits to
derive the storage access control bits that are used for
the access. Table 6 shows how the storage access con-
trol bits are derived from the BAP, R, and C bits of the
Page Table Entry.

 

  

Page Table Size and Alignment
A Page Table’s size is 8 × 2(SIZE – SPSIZE). where SIZE
is the page size specified by the SIZE field of the indi-
rect TLB entry used to access the Page Table and
SPSIZE is the sub-page size specified by the SPSIZE
field of this indirect TLB entry. Page Table sizes smaller
than 2 KB are not allowed and SPSIZE must be greater
than or equal to 2. This implies that the Page Table size
s is 2 KB ≤ s ≤ 4 GB. The Page Table is aligned on a
boundary that is a multiple of its size.

TLB Update
As a result of a Page Table translation, a corresponding
direct TLB entry is created if no exception occurs, is
optionally created if certain exceptions occur, and is not
created if certain other exceptions occur.

If no exception occurs, a direct TLB entry is written to
create an entry corresponding to the virtual address
and the contents of the PTE that was used to translate
the virtual address. In this case, hardware selects the
TLB array and TLB entry to be written. Any TLB array

ARPN WIMGE R

im
pl

. d
ep

.

S
W

0

C PS BAP

S
W

1

V

0 40 45 46 50 51 52 56 62 63

Bit(s) Name Description
0:39 ARPN Abbreviated Real Page Number
40:44 WIMGE Storage control attributes
45 R Reference bit
46:49 impl.-de

p.
Implementation-dependent
These bits can be used to support 

User-Definable Storage Control 
Attributes, ACM and VLE. These 
bits are used in any combination of 
the following or subsets of the fol-
lowing: 

46:49 - User-Definable Stor-
age Control Attributes
(U0:U3)
48 - ACM
49 - VLE <VLE>

50 SW0 Available for software use
51 C Change bit
52:55 PS Page Size (real)
56:61 BAP Base Access Permission bits:

0: Base UX
1: Base SX
2: Base UW
3: Base SW
4: Base UR
5: Base SR

62 SW1 Available for software use
63 V Entry valid (V=1) or invalid (V=0)

Table 6: Storage Access Control Bits Derived from a 
Page Table Entry

Derived Storage Access 
Control

Page Table Values

UX BAP0 & R
SX BAP1 & R 
UW BAP2 & R & C
SW BAP3 & R & C
UR BAP4 & R
SR BAP5 & R

Unlike many architectures, the R and C bits in a
Page Table entry are not updated by hardware.

The page size specified by PTEPS must be consis-
tent with the page sizes supported by a direct TLB
entry of a TLB array that can be loaded from the
Page Table.

An implementation need not support all page sizes.

Programming Note

Programming Note
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that meets all the following criteria can be selected by
the hardware.

The TLB array supports the page size specified by
PTEPS.
The TLB array can be loaded from the Page Table
(TLBnCFGPT = 1).

If no TLB array can be selected based on these criteria,
then a TLB Ineligible exception occurs. Hardware also
selects the entry within the TLB array based on some
implementation-dependent algorithm. However, a valid
TLB entry with IPROT = 1 must not be overwritten. If all
TLB entries that can be used for a specific virtual page
have IPROT = 1, then a TLB Ineligible exception
occurs. In the absence of a higher priority exception, an
Instruction Storage or Data Storage interrupt occurs,
depending on whether the Page Table translation was
due to an instruction fetch or data access and ESRTLBI
is set to 1.

It is implementation-dependent whether a TLB entry is
written as a result of a Page Table translation if a Page
Table Fault exception occurs, but, if written, the valid bit
of the TLB entry is set to 0. It is implementation-depen-
dent whether a TLB entry is written as a result of a
Page Table translation if an Execute, Read, or Write
Access Control exception occurs.  If the Embed-
ded.Hypervisor category is supported, an interrupt
caused by a Page Table Translation is directed to the
hypervisor or guest as specified by the applicable
EPCR bits (DSIGS and ISIGS), except that a DSI or ISI
resulting from a TLBI is  always directed to the hypervi-
sor.

A TLB entry is not written as a result of a Page Table
translation if an LRAT Miss exception occurs or a TLB
Ineligible exception occurs. 

If a TLB entry is written, the entry is written based on
the values shown in Table 7.
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.

If implementations write TLB entries for out-of-order
Page Table translations, a mechanism for disabling
such TLB updates must be provided by the implemen-
tation in order for software to preload a TLB array with-
out the possibility of creating multiple direct entries for
the same virtual address.

  

  

6.7.5 Page Table Update Synchro-
nization Requirements [Category: 
Embedded.Page Table]
This section describes rules that software must follow
when updating the Page Table. Otherwise, TLB entries
for outdated PTEs may remain valid. This section
includes suggested sequences of operations for some
representative cases.

In the sequences of operations shown in the following
subsections, any alteration of a Page Table Entry (PTE)
that corresponds to a single line in the sequence is
assumed to be done using a Store instruction for which
the access is atomic. Appropriate modifications must
be made to these sequences if this assumption is not
satisfied (e.g., if a store doubleword operation is done
using two Store Word instructions).

As described in Section 6.5, stores are not performed
out-of-order. Moreover, address translations associated
with instructions preceding the corresponding Store
instructions are not performed again after the stores
have been performed. (These address translations
must have been performed before the store was deter-
mined to be required by the sequential execution
model, because they might have caused an exception.)
As a result, an update to a PTE need not be preceded
by a context synchronizing operation.

All of the sequences require a context synchronizing
operation after the sequence if the new contents of the
PTE are to be used for address translations associated
with subsequent instructions.

As noted in the description of the Synchronize instruc-
tion in Section 4.4.3 of Book II, address translation

Table 7: TLB Update after Page Table Translation
TLB field Load Value
EPN0:p-1 EA0:p-1, where 

p = 64 - log2(page size in bytes) and 
page size is specified by PTEPS. 

Any low-order EPN bits in the TLB 
entry that correspond to byte offsets 

with the page are undefined.
TS TS from indirect TLB entry

SIZE PTEPS
TLPID [Category: 

E.HV]
TLPID from indirect TLB entry

TGS [Category: 
E.HV]

TGS from indirect TLB entry

TID TID from indirect TLB entry
V PTEV

IND 0
RPN  if E.HV.LRAT not supported,

  then
    RPN = 0x000 || PTEARPN || 0b00
   else
      LPN = 0x000 || PTEARPN || 0b00
      RPN = result of LRAT translation 
         of LPN & PTEPS

WIMGE PTEWIMGE
U0:U3, ACM, VLEPTEimpl.-dep. (which of the imple-

mentation-dependent TLB bits 
are loaded and which of the 
PTE46:49 bits is used to load each 
TLB bit are implementa-
tion-dependent)

UR, UW, UX, SR, 
SW, SX

Derived Storage Access Control 
from PTEBAP, PTER, and PTEC. 
See Table 6.

VF 0
IPROT 0

As a hardware simplification the architecture allows
a TLB entry to be written with the valid bit set to 0 if
a Page Table Fault exception occurs. A replace-
ment of a valid TLB entry by an invalid entry is typi-
cally not a significant performance impact since
software often swaps in the virtual page and cre-
ates a valid PTE for the page.

Programming Note

Only software creates indirect TLB entries, but both
software and hardware create direct TLB entries.
Unless a TLB Write Conditional instruction is used,
software must avoid creating a direct TLB entry for
a VPN that may also be simultaneously translated
via a Page Table by a thread sharing the TLB. Oth-
erwise multiple, direct TLB entries could be cre-
ated. If software is preloading a TLB with a direct
TLB entry and there is already an indirect TLB
entry that could be used to translate the same
VPN, software must ensure that no program on any
thread sharing the TLB is accessing the VPN. Oth-
erwise multiple, direct TLB entries could be cre-
ated. If the Embedded.TLB Write Conditional
category is supported, a TLB Write Conditional
instruction can be used to create a direct TLB entry
for the same VPN that may also be mapped by an
existing indirect entry and Page Table Entry,
assuming the page size specified by the TLB Write
Conditional and PTE are identical.

Programming Note
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associated with instructions which occur in program
order subsequent to the Synchronize may actually be
performed prior to the completion of the Synchronize.
To ensure that these instructions and data which may
have been speculatively fetched are discarded, a con-
text synchronizing operation is required.

  

Page Table Entries must not be changed in a manner
that causes an implicit branch.

6.7.5.1 Page Table Updates
When Page Tables are in use, TLBs are non-coherent
caches of the Page Table. TLB entries must be invali-
dated explicitly with one of the methods described in
Section 6.11.4.3.

Unsynchronized lookups in the Page Table continue
even while it is being modified. Any thread, including a
thread on which software is modifying the Page Table,
may look in the Page Table at any time in an attempt to
translate a virtual address. When modifying a PTE,
software must ensure that the PTE’s Valid bit is 0 if the
PTE is inconsistent (e.g., if the BAP field is not correct
for the current ARPN field). 

The sequences of operations shown in the following
subsections assume a multi-threaded processor envi-
ronment. In a system consisting of only a sin-
gle-threaded processor the tlbsync must be omitted,
and the mbar that separates the tlbivax from the tlb-
sync can be omitted. In a multi-threaded processor
environment, when tlbilx is used instead of tlbivax in a
Page Table update, the synchronization requirements
are the same as when tlbivax is used in a system con-
sisting of only a single-threaded processor.

  

6.7.5.1.1 Adding a Page Table Entry

This is the simplest Page Table case. The Valid bit of
the old entry is assumed to be 0. The following
sequence can be used to create a PTE, maintain a
consistent state, and ensure that a subsequent refer-
ence to the virtual address translated by the new entry
will use the correct real address and associated
attributes.

PTEARPN,WIMGE,R,SW0,C,PS,BAP,SW1,VInew values
sync /* order updates before next

   Page Table lookup and before
   next data access.             */

In many cases this context synchronization will
occur naturally; for example, if the sequence is exe-
cuted within an interrupt handler the rfi instruction
that returns from the interrupt handler may provide
the required context synchronization.

Programming Note

For all of the sequences shown in the following
subsections, if it is necessary to communicate com-
pletion of the sequence to software running on
another thread, the sync instruction at the end of
the sequence should be followed by a Store
instruction that stores a chosen value to some cho-
sen storage location X. The memory barrier cre-
ated by the sync instruction ensures that if a Load
instruction executed by another thread returns the
chosen value from location X, the sequence’s
stores to the Page Table have been performed with
respect to that other thread. The Load instruction
that returns the chosen value should be followed by
a context synchronizing instruction in order to
ensure that all instructions following the context
synchronizing instruction will be fetched and exe-
cuted using the values stored by the sequence (or
values stored subsequently). (These instructions
may have been fetched or executed out-of-order
using the old contents of the PTE.)

This Note assumes that the Page Table and loca-
tion X are in storage that is Memory Coherence
Required.

Programming Note
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On a 32-bit implementation, the following sequence can
be used.
PTEARPN(0:31) I new value
mbar /* order 1st update before 2nd */
PTEARPN[32:39],WIMGE,R,SW0,C,PS,BAP,SW1,V Inew values
sync /* order updates before next

   Page Table lookup and before
   next data access.             */

6.7.5.1.2 Deleting a Page Table Entry

The following sequence can be used to ensure that the
translation instantiated by an existing entry is no longer
available.

PTEV I 0 /* (other fields don’t matter)          */
sync /* order update before tlbivax and

   before next Page Table lookup       */
tlbivax(old_LPID,old_GS,old_PID,old_AS,old_VA,
        old_ISIZE, old_IND)

/*invalidate old translation*/
mbar /* order tlbivax before tlbsync       */
tlbsync /* order tlbivax before sync           */
sync /* order tlbivax, tlbsync, and update

      before next data access              */

6.7.5.1.3  Modifying a Page Table Entry

General Case
If a valid entry is to be modified and the translation
instantiated by the entry being modified is to be invali-
dated, the old PTE can be deleted and a new one
added using the sequences described in the two pre-
ceding sections, in order to ensure that the translation
instantiated by the old entry is no longer available,
maintain a consistent state, modify the PTE, and
ensure that a subsequent reference to the virtual
address translated by the new entry will use the correct
real address and associated attributes.

Modifying the SW0 and SW1 Fields
If the only change being made to a valid entry is to
modify the SW0 or SW1 fields, the following sequence
suffices because the SW0 and SW1 fields are not used
by the thread.

loop: ldarx r1 I PTE /* load of PTE */
r1 I new SW0,SW1 /* replace SW0,SW1 in r1*/
stdcx. PTE I r1 /* store of PTE 

if still reserved (new SW0 or SW1
values, other fields unchanged) */

bne- loop    /* loop if lost reservation */

A lwarx/stwcx. pair (specifying the low-order word of
the PTE) can be used instead of the ldarx /stdcx. pair
shown above.

Modifying a Reference or Change Bit
If the only change being made to a valid entry is to
modify the R bit, the C bit or both, the preceding

sequence suffices if the precise instant that hardware
Page Table translations use the new value doesn’t mat-
ter. Reference, Change, and Valid bits are in different
bytes to facilitate the use of a Store instruction of a byte
to modify a Reference or Change bit instead of a ldarx
and stdcx.. However, the correctness of doing so is a
software issue beyond the scope of this architecture.

6.7.5.2 Invalidating an Indirect TLB 
Entry
The following sequence can be used to ensure that
translations by a Page Table that is mapped via an indi-
rect entry will no longer occur and that the storage used
for the Page Table can then be re-used for other pur-
poses.

for all valid PTEs mapped by the indirect TLB entry
  PTEV I 0/* (other fields don’t matter) */
sync /* order stores to PTEs */
for all valid PTEs mapped by the indirect TLB entry
  tlbivax(old_LPID,old_GS,old_PID,old_AS,old_VA,
        old_ISIZE, MAS6SIND = 0)

/*invalidate old PTE translations*/
tbivax(old_LPID,old_GS,old_PID,old_AS,old_VA,
        old_ISIZE, MAS6SIND = 1)

/*invalidate old indirect TLB entry */
mbar /* order tlbivax before tlbsync       */
tlbsync /* order tlbivax before sync           */
sync /* order tlbivax, tlbsync, and update

    before next data access to the storage
    locations occupied by the Page Table 
    pointed to by the old indirect TLBE */

6.7.6 Storage Access Control
After a matching TLB entry has been identified, the
access control mechanism selectively grants execute
access, read access, and write access separately for
user mode versus supervisor mode. If the Embed-
ded.Hypervisor category is supported, the access con-
trol mechanism selectively controls an access so that
the access can be virtualized by the hypervisor if
appropriate. Figure 25 illustrates the access control
process and is described in detail in Sections 6.7.6.1
through 6.7.6.6.

An Execute, Read, or Write Access Control exception
or Virtualization Fault exception occurs if the appropri-
ate TLB entry is found but the access is not allowed by
the access control mechanism (Instruction or Data
Storage interrupt). See Section 7.6 for additional infor-
mation about these and other interrupt types. In certain
cases, Execute, Read, and Write Access Control
exceptions and Virtualization Fault exceptions may
result in the restart of (re-execution of at least part of) a
Load or Store instruction.

Implementations may provide additional access control
capabilities beyond those described here.
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Figure 25. Access Control Process

6.7.6.1 Execute Access
The UX and SX bits of the TLB entry control execute
access to the page (see Table 8).

Instructions may be fetched and executed from a page
in storage while in user state (MSRPR=1) if the UX
access control bit for that page is equal to 1. If the UX
access control bit is equal to 0, then instructions from
that page will not be fetched, and will not be placed into
any cache as the result of a fetch request to that page
while in user state.

Instructions may be fetched and executed from a page
in storage while in supervisor state (MSRPR=0) if the
SX access control bit for that page is equal to 1. If the
SX access control bit is equal to 0, then instructions
from that page will not be fetched, and will not be
placed into any cache as the result of a fetch request to
that page while in supervisor state. 

Instructions from no-execute storage may be in the
instruction cache if they were fetched into that cache
when their effective addresses were mapped to exe-
cute permitted storage. Software need not flush a page
from the instruction cache before marking it no-exe-
cute.

Furthermore, if the sequential execution model calls for
the execution of an instruction from a page that is not
enabled for execution (i.e., UX=0 when MSRPR=1 or
SX=0 when MSRPR=0), an Execute Access Control
exception type Instruction Storage interrupt is taken.

6.7.6.2 Write Access
The UW and SW bits of the TLB entry control write
access to the page (see Table 8).

Store operations (including Store-class Cache Man-
agement instructions) are permitted to a page in stor-
age while in user state (MSRPR=1) if the UW access
control bit for that page is equal to 1. If the UW access
control bit is equal to 0, then execution of the Store
instruction is suppressed and a Write Access Control
exception type Data Storage interrupt is taken.

Store operations (including Store-class Cache Man-
agement instructions) are permitted to a page in stor-
age while in supervisor state (MSRPR=0) if the SW
access control bit for that page is equal to 1. If the SW
access control bit is equal to 0, then execution of the
Store instruction is suppressed and a Write Access
Control exception type Data Storage interrupt is taken.

6.7.6.3 Read Access
The UR and SR bits of the TLB entry control read
access to the page (see Table 8).

Load operations (including Load-class Cache Manage-
ment instructions) are permitted from a page in storage
while in user state (MSRPR=1) if the UR access control
bit for that page is equal to 1. If the UR access control
bit is equal to 0, then execution of the Load instruction
is suppressed and a Read Access Control exception
type Data Storage interrupt is taken.

Load operations (including Load-class Cache Manage-
ment instructions) are permitted from a page in storage
while in supervisor state (MSRPR=0) if the SR access
control bit for that page is equal to 1. If the SR access

access granted

instruction fetch
MSRPR

TLBentry[UX]

TLBentry[SX]

load-class data storage access
TLBentry[UR]

TLBentry[SR]

store-class data storage access
TLBentry[UW]

TLBentry[SW]

TLB match (see Figure 22)

TLBentry[VF]

included if Category 
E.HV supported
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control bit is equal to 0, then execution of the Load
instruction is suppressed and a Read Access Control
exception type Data Storage interrupt is taken.

6.7.6.4 Virtualized Access <E.HV>
The VF bit of the TLB entry prevents a Load or Store
access to the page (see Table 8).

The translation of a Load or Store (including Cache
Management instructions) operand address that uses a
TLB entry with the Translation Virtualization Fault field
equal to 1 causes a Virtualization Fault exception type
Data Storage interrupt regardless of the settings of the
permission bits and regardless of whether the TLB
entry is a direct or indirect entry. The resulting Data
Storage interrupt is directed to the hypervisor state.

6.7.6.5 Storage Access Control Applied 
to Cache Management Instructions
dcbi,  dci, dcbz, and dcbzep instructions are treated
as Stores since they can change data (or cause loss of
data by invalidating dirty lines). As such, they can
cause Write Access Control exception type Data Stor-
age interrupts and Virtualization Fault exception type
Data Storage interrupts. If an implementation first
flushes a line before invalidating it during a dcbi, the
dcbi is treated as a Load since the data is not modified. 

dcba instructions are treated as Stores since they can
change data. However, they do not cause Write Access
Control exceptions. A dcba instruction will not cause a
virtualization fault (TLBVF = 1).

dcblc, dcbtls, dcblq., icblc, icbtls, icblq., icbi, and
icbiep instructions are treated as Loads with respect to
protection. As such, they can cause Read Access Con-
trol exception type Data Storage interrupts and Virtual-
ization Fault exception type Data Storage interrupts.

dcbt, dcbtep, and icbt instructions are treated as
Loads with respect to protection. However, they do not
cause Read Access Control exceptions. A virtualization
fault on these instructions will not result in a Data Stor-
age interrupt.

dcbtst and dcbtstep instructions are treated as Stores
with respect to protection. However, they do not cause
Write Access Control exceptions. A virtualization fault
on these instructions will not result in a Data Storage
interrupt.

It is implementation-dependent whether dcbtsls
instructions are treated as Loads or Stores with respect
to protection. As such, they can cause either Read
Access Control exception type Data Storage interrupts
or Write Access Control exception type Data Storage
interrupts and can also cause Virtualization Fault
exception type Data Storage interrupts.

dcbf, dcbfep, dcbst, and dcbstep instructions are
treated as Loads with respect to protection. Flushing or

storing a line from the cache is not considered a Store
since the store has already been done to update the
cache and the dcbf, dcbfep, dcbst, or dcbstep
instruction is only updating the copy in main storage. As
a Load, they can cause Read Access Control exception
type Data Storage interrupts and Virtualization Fault
exception type Data Storage interrupts. 

6.7.6.6 Storage Access Control Applied 
to String Instructions
When the string length is zero, neither lswx nor stswx
can cause Data Storage interrupts.

Table 8: Storage Access Control Applied to Cache 
Instructions

Instruction
Read Pro-

tection
Violation

Write Pro-
tection

Violation

Virtualiza-
tion Fault1

dcba No No No

dcbf Yes No Yes

dcbfep Yes No Yes

dcbi Yes3 Yes3 Yes

dcblc Yes No Yes

dcbst Yes No Yes

dcbstep Yes No Yes

dcbt No No No

dcbtep No No No

dcbtls Yes No Yes

dcbtst No Yes5 No

dcbtstep No Yes5 No

dcbtstls Yes4 Yes4 Yes4

dcbz No Yes Yes

dcbzep No Yes Yes

dci No No No

icbi Yes No Yes

icbiep Yes No Yes

icblc Yes2 No Yes

icblq. Yes2 No Yes

icbt No No No

icbtls Yes2 No Yes

ici No No No

1. Category: Embedded.Hypervisor
2. icbtls and icblc require execute or read access.
3. dcbi may cause a Read or Write Access Control 

Exception based on whether the data is flushed 
prior to invalidation.

4. It is implementation-dependent whether dcbtstls 
is treated as a Load or a Store.

5. If an exception is detected, the instruction is 
treated as a no-op and no interrupt is taken.
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6.8 Storage Control Attributes
This section describes aspects of the storage control
attributes that are relevant only to privileged software
programmers. The rest of the description of storage
control attributes may be found in Section 1.6 of Book II
and subsections.

6.8.1 Guarded Storage
Storage is said to be “well-behaved” if the correspond-
ing real storage exists and is not defective, and if the
effects of a single access to it are indistinguishable
from the effects of multiple identical accesses to it. Data
and instructions can be fetched out-of-order from
well-behaved storage without causing undesired side
effects.

Storage is said to be Guarded if the G bit is 1 in the TLB
entry that translates the effective address.

In general, storage that is not well-behaved should be
Guarded. Because such storage may represent a con-
trol register on an I/O device or may include locations
that do not exist, an out-of-order access to such stor-
age may cause an I/O device to perform unintended
operations or may result in a Machine Check.

Instruction fetching is not affected by the G bit.

The following rules apply to in-order execution of Load
and Store instructions for which the first byte of the
storage operand is in storage that is both Caching
Inhibited and Guarded.

Load or Store instruction that causes an atomic
access

If any portion of the storage operand has been
accessed and an asynchronous or imprecise inter-
rupt is pending, the instruction completes before
the interrupt occurs.

Load or Store instruction that causes an Alignment
exception, a Data TLB Error exception, or that
causes a Data Storage exception.

The portion of the storage operand that is in Cach-
ing Inhibited and Guarded storage is not accessed.

  

6.8.1.1 Out-of-Order Accesses to 
Guarded Storage
In general, Guarded storage is not accessed
out-of-order. The only exception to this rule is the fol-
lowing. 

Load Instruction

If a copy of any byte of the storage operand is in a
cache then that byte may be accessed in the cache or
in main storage.

6.8.2 User-Definable
User-definable storage control attributes control
user-definable and implementation-dependent behavior
of the storage system. The existence of these bits is
implementation-dependent. These bits are both imple-
mentation-dependent and system-dependent in their
effect. These bits may be used in any combination and
also in combination with the other storage control
attribute bits.

6.8.3 Storage Control Bits
Storage control attributes are specified on a per-page
basis. These attributes are specified in storage control
bits in the TLB entries. The interpretation of their values
is given in Figure 26.

 

Instruction fetching from Guarded storage is per-
mitted. If instruction fetches from Guarded storage
must be prevented, software must set access con-
trol bits for such pages to no-execute (i.e., UX=0
and SX=0).

Programming Note

Bit Storage Control Attribute

W1,6 0 - not Write Through Required
1 - Write Through Required

I6 0 - not Caching Inhibited
1 - Caching Inhibited

M2 0 - not Memory Coherence Required
1 - Memory Coherence Required

Bit Storage Control Attribute
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Figure 26. Storage control bits

In Section 6.8.3.1 and 6.8.3.2, “access” includes
accesses that are performed out-of-order.

  

6.8.3.1 Storage Control Bit Restrictions
All combinations of W, I, M, G, and E values are permit-
ted except those for which both W and I are 1 and
M||G ≠ 0b10. 

The combination WIMG = 0b1110 is used to identify
the Strong Access Ordering (SAO) storage attribute
(see Section 1.7.1, “Storage Access Ordering”, in Book
II). Setting WIMG=0b1110 in a TLB entry causes
accesses to the page to behave as if WIMG=0b0010
with additional strong access ordering behavior. Only
one SAO setting is provided because this attribute is
not intended for general purpose programming, so a
single combination of WIMG bits is supported.

References to Caching Inhibited storage (or storage
with I=1) elsewhere in the Power ISA have no applica-
tion to SAO storage or its WIMG encoding, despite the
fact that the encoding uses using I=1. Conversely, refer-
ences to storage that is not Caching Inhibited (or stor-
age with I=0) apply to SAO storage or its WIMG
encoding. References to Write Through Required stor-
age (or storage with W=1) elsewhere in the Power ISA
have no application to SAO storage or its WIMG encod-
ing, despite the encoding using W=1. Conversely, refer-
ences to storage that is not Write Through Required (or
storage with W=0) apply to SAO storage or its WIMG
encoding.

If a given real page is accessed concurrently as SAO
storage and as non-SAO storage, the result may be
characteristic of the weakly consistent model.

  

Accesses to the same storage location using two effec-
tive addresses for which the W bit differs meet the
memory coherence requirements described in
Section 1.6.3 of Book II if the accesses are performed
by a single thread. If the accesses are performed by
two or more threads, coherence is enforced by the
hardware only if the W bit is the same for all the
accesses.

At any given time, the value of the I bit must be the
same for all accesses to a given real page. 

At any given time, data accesses to a given real page
may use both Endian modes. When changing the
Endian mode of a given real page for instruction fetch-
ing, care must be taken to prevent accesses while the
change is made and to flush the instruction cache(s)
after the change has been completed.

Setting the VLE attribute to 1 and setting the E attribute
to 1 is considered a programming error and an attempt
to fetch instructions from a page so marked produces
an Instruction Storage Interrupt Byte Ordering Excep-
tion and sets ESRBO or GESRBO to 1 (GESRBO if the
Embedded.Hypervisor category is supported and the
interrupt is directed to the guest. Otherwise, ESRBO).

At any given time, the value of the VLE bit must be the
same for all accesses to a given real page. 

G 0 - not Guarded
1 - Guarded

E3 0 - Big-Endian
1 - Little-Endian

U0-U34 User-Definable

VLE5 0 - non Variable Length Encoding (VLE).
1 - VLE

ACM7 0 - not Alternate Coherency Mode
1 - Alternate Coherency Mode (if M=1)

1 Support for the 1 value of the W bit is optional. 
Implementations that do not support the 1 value 
treat the bit as reserved and assume its value to 
be 0.

2 Support of the 1 value is optional for implementa-
tions that do not support multiprocessing, imple-
mentations that do not support this storage control 
attribute assume the value of the bit to be 0, and 
setting M=1 in a TLB entry will have no effect.

3 [Category: Embedded.Little-Endian]
4 Support for these attributes is optional.
5 [Category: VLE]
6 [Category: SAO] The combination WIMG = 

0b1110 has behavior unrelated to the meanings of 
the individual bits. See Section 6.8.3.1, “Storage 
Control Bit Restrictions” for additional information.

7 The coherency method used in Alternate Coher-
ency Mode is implementation-dependent.

In a system consisting of only a single-threaded
processor that has caches, correct coherent execu-
tion does not require storage to be accessed as
Memory Coherence Required, and accessing stor-
age as not Memory Coherence Required may give
better performance.

Bit Storage Control Attribute

Programming Note

If an application program requests both the Write
Through Required and the Caching Inhibited
attributes for a given storage location, the operating
system should set the I bit to 1 and the W bit to 0.
For implementations that support the SAO cate-
gory, the operating system should provide a means
by which application programs can request SAO
storage, in order to avoid confusion with the pre-
ceding guideline (since SAO is encoded using
WI=0b11).

Programming Note
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6.8.3.2 Altering the Storage Control 
Bits
When changing the value of the W bit for a given real
page from 0 to 1, software must ensure that no thread
modifies any location in the page until after all copies of
locations in the page that are considered to be modified
in the data caches have been copied to main storage
using dcbst, dcbstep, dcbf, dcbfep, or dcbi.

When changing the value of the I bit for a given real
page from 0 to 1, software must set the I bit to 1 and
then flush all copies of locations in the page from the
caches using dcbf, dcbfep, or dcbi, and icbi or icbiep
before permitting any other accesses to the page.

  

When changing the value of the M bit for a given real
page, software must ensure that all data caches are
consistent with main storage. The actions required to
do this to are system-dependent.

  

The actions required when changing the ACM bit for a
given real page are system-dependent.

When changing the value of the VLE bit for a given real
page, software must set the VLE bit to the new value,
then, if the page was not Caching Inhibited, invalidate
copies of all locations in the page from instruction
cache using icbi or icbiep, and then execute an isync

instruction before permitting any other accesses to the
page.

When changing the Endian mode of a given real
page used for instruction fetching and the instruc-
tion cache is shared between threads, care must
be taken to prevent accesses from any thread that
shares the instruction cache while the change is
made until the instruction cache flush has been
completed.

The storage control bit alterations described above
are examples of cases in which the directives for
application of statements about the W and I bits to
SAO given in the third paragraph of the preceding
subsection must be applied. A transition from the
typical WIMG=0b0010 for ordinary storage to
WIMG=0b1110 for SAO storage does not require
the flush described above because both WIMG
combinations indicate storage that is not Caching
Inhibited.

For example, when changing the M bit in some
directory-based systems, software may be required
to execute dcbf or dcbfep on each thread to flush
all storage locations accessed with the old M value
before permitting the locations to be accessed with
the new M value.

Programming Note

Programming Note

Programming Note
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Programming Note

This Note suggests one example for managing refer-
ence and change recording.

When performing physical page management, it is use-
ful to know whether a given physical page has been ref-
erenced or altered. Note that this may be more involved
than knowing whether a given TLB entry has been
used to reference or alter memory, since multiple TLB
entries may translate to the same physical page. If it is
necessary to replace the contents of some physical
page with other contents, a page which has been refer-
enced (accessed for any purpose) is more likely to be
retained than a page which has never been referenced.
If the contents of a given physical page are to be
replaced, then the contents of that page must be writ-
ten to the backing store before replacement, if anything
in that page has been changed. Software must main-
tain records to control this process.

Similarly, when performing TLB management, it is use-
ful to know whether a given TLB entry has been refer-
enced. When making a decision about which entry to
cast-out of the TLB, an entry which has been refer-
enced is more likely to be retained in the TLB than an
entry which has never been referenced.

Execute, Read and Write Access Control exceptions
may be used to allow software to maintain reference
information for a TLB entry and for its associated physi-
cal page. The entry is built, with its UX, SX, UR, SR,

UW, and SW bits off, and the index and effective page
number of the entry retained by software. The first
attempt of application code to use the page will cause
an Access Control exception (because the entry is
marked “No Execute”, “No Read”, and “No Write”). The
Instruction or Data Storage interrupt handler records
the reference to the TLB entry and to the associated
physical page in a software table, and then turns on the
appropriate access control bit. An initial read from the
page could be handled by only turning on the appropri-
ate UR or SR access control bits, leaving the page
“read-only”.

In a demand-paged environment, when the contents of
a physical page are to be replaced, if any storage in
that physical page has been altered, then the backing
storage must be updated. The information that a physi-
cal page is dirty is typically recorded in a “Change” bit
for that page.

Write Access Control exceptions may be used to allow
software to maintain change information for a physical
page. For the example just given for reference record-
ing, the first write access to the page via the TLB entry
will create a Write Access Control exception type Data
Storage interrupt. The Data Storage interrupt handler
records the change status to the physical page in a
software table, and then turns on the appropriate UW
and SW bits.
Power ISA™ - Book III-E1100
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6.9 Logical to Real Address 
Translation [Category: Embed-
ded.Hypervisor.LRAT]
In a partitioned environment, a guest operating system
is not allowed to manipulate real page numbers.
Instead the hypervisor virtualizes the real memory and
the guest operating system manages the virtualized
memory using logical page numbers (LPNs). In MMU
Architecture Version 2.0, a Logical to Real Address
Translation (LRAT) array facilitates this virtualization by
providing a hardware translation from an LPN to an
RPN without trapping to the hypervisor for every TLB
update.

LRAT Entry

Below are shown the field definitions for an LRAT entry.

An LRAT entry can be written by the hypervisor using
the tlbwe instruction with MAS0ATSEL equal to 1. The
contents of the LRAT entry specified by MAS0ESEL, and
MAS2EPN are written from MAS registers. See the
tlbwe instruction description in Section 6.11.4.9.

An LRAT entry can be read by the hypervisor using the
tlbre instruction with MAS0ATSEL equal to 1. The con-
tents of the LRAT entry specified by MAS0ESEL and
MAS2EPN are read and placed into the MAS registers.
See the tlbre instruction description in Section
6.11.4.9.

Maintenance of LRAT entries is under hypervisor soft-
ware control. Hypervisor software determines LRAT
entry replacement strategy. There is no Next Victim
support for the LRAT array.

The LRAT array is a hypervisor resource. 

There is at most one LRAT array per thread. 

Name Description
V Valid

This bit indicates that this LRAT entry is valid 
and may be used for translation of an LPN to 
an RPN. The Valid bit for a given entry can 
be set or cleared with a tlbwe instruction.

LPID Logical Partition ID
This optional field identifies a partition. The 

Logical Partition ID is compared with LPIDR 
contents during an LRAT translation. This 
field is required if category E.PT is supported 
or if threads that share an LRAT can be in 
different partitions. Whether the LPID field is 
supported is indicated by LRATCFGLPID.

Note: The number of bits implemented for this 
field is required to be the same as the TLPID 
field in a TLB.

LPN Logical Page Number (up to 54 bits)
Bits 64-q:n–1 of the LPN field are compared to 

bits 64-q:n–1 of the Logical Page Number 
(LPN) for the tlbwe instruction or Page Table 
translation (where q = LRATCFGLASIZE and 
n = 64 –log2(logical page size in bytes) and 
logical page size is specified by the LSIZE 
field of the LRAT entry). See Section 6.7.2. 
Software must set unused low-order LPN 
bits to 0.

Note: Bits X:Y of the LPN field are imple-
mented, where X ≥ 0 and Y ≤ 53. The bits 
implemented for LPN are not required to be 
the same as those implemented for TLBRPN. 
Unimplemented LRPN bits are treated as if 
they contain 0s.

LSIZE Logical Page Size
The LSIZE field specifies the size of the logical 

page associated with the LRAT entry as 
2LSIZEKB, where 0 ≤ LSIZE ≤ 31. Implemen-
tations may support any one or more of 
these logical page sizes (see Section 
6.10.3.6), and these logical page sizes need 
not be the same as the real page sizes that 
are implemented. However, the smallest logi-
cal page is no smaller than the smallest real 
page. The encodes for LSIZE are the same 
as the encodes for the TLB SIZE. See Sec-
tion 6.7.2. This field must be one of the logi-
cal pages sizes specified by the LRATPS 
register.

LRPN LRAT Real Page Number (up to 54 bits)
Bits 0:n–1 of the LRPN field are used to 

replace bits 0:n–1 of the LPN to produce the 
RPN that is written to TLBRPN by a tlbwe 
instruction or a Page Table translation 
(where n=64–log2(logical page size in bytes) 
and logical page size is specified by the 
LSIZE field of the LRAT entry). Software 
must set unused low-order LRPN bits to 0.

Note: Bits X:Y of the LRPN field are imple-
mented, where X ≥ 0 and Y ≤ 53. X = 64 - 
MMUCFGRASIZE. Y = p - 1 where p = 64–
log2(smallest logical page size in bytes) and 
smallest logical page size is the smallest 
page size supported by the implementation 
as specified by the LRATPS register. Unim-
plemented LRPN bits are treated as if they 
contain 0s.
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TLB Write

When the guest operating system manipulates the val-
ues of RPN fields of MAS registers, the values are
treated as forming an LPN. When guest supervisor
software attempts to execute tlbwe on an implementa-
tion that supports MMU Architecture Version 1, tlbre,
and tlbsx, which operate on a TLB entry’s real page
number (RPN) or when guest supervisor software
attempts to execute a TLB Management instruction
with guest execution of TLB Management instructions
disabled (EPCRDGTMI=1), an Embedded Hypervisor
Privilege exception occurs. Also, if TLBnCFGGTWE = 0
for a TLB array and the guest supervisor executes a
tlbwe to the TLB array, an Embedded Hypervisor Privi-
lege exception occurs. If a tlbwe caused the exception,
the hypervisor can replace the LPN value in the MAS
registers with the corresponding RPN, execute a tlbwe,
and restore the LPN in the MAS registers before return-
ing to the guest operating system. If a tlbre or tlbsx
caused the exception, the hypervisor can   execute the
exception-causing instruction and replace the RPN
value in the MAS registers with the corresponding LPN
before returning to the guest operating system.

A Logical to Real Address Translation (LRAT) array pro-
vides a mechanism that allows a guest operating sys-
tem to write the TLB without trapping to the hypervisor.
When guest supervisor software executes tlbwe on an
implementation that supports MMU Architecture Ver-
sion 2, guest execution of TLB Management instruc-
tions is enabled (EPCRDGTMI=0), and TLBnCFGGTWE
= 1 for the TLB array to be written, an LPN is formed. If
MAS7 is implemented, LPN = MAS7RPNU || MAS3RPNL.
Otherwise, LPN = 320 || MAS3RPNL. The LPN is trans-
lated into an RPN by the LRAT if a matching LRAT
entry is found. A matching LRAT entry exists if the fol-
lowing conditions are all true for some LRAT entry.

The Valid bit of the LRAT entry is one.
Either the LPID field is not supported in the LRAT
(LRATCFGLPID=0) or the value of LPIDRLPID is
equal to the value of the LPID field of the LRAT
entry.
Bits 64-q:n-1 of the LPN match the corresponding
bits of the LPN field of the LRAT entry where n =
64 – log2(logical page size in bytes),
logical page size is specified by the LSIZE field of
the LRAT entry, and q is specified by
LRATCFGLASIZE.
Either of the following is true.

MAS1IND = 0 and the value of MAS1TSIZE is
less than or equal to the value of the LSIZE
field of the LRAT entry.
MAS1IND = 1 and the value of (3 +
(MAS1TSIZE – MAS3SPSIZE)) is less than or
equal to the value of the (10 +
LRAT entryLSIZE).

If a matching LRAT entry is found, the LRPN from that
LRAT entry provides the upper bits of the RPN that is
written to the TLB, and the LPN provides the low order
RPN bits written to the TLB. Let n=64–
log2(logical page size in bytes) where logical page size
is specified by the LSIZE field of the LRAT entry. Bits
n:53 of the LPN are appended to bits 0:n–1 of the
LRPN field of the selected LRAT entry to produce the
RPN (i.e., RPN = LRPN0:n–1 || LPNn:53). The page size
specified by the LSIZE of the LRAT entry used to trans-
late the LPN must be one of the values supported by
the implementation’s LRAT array. If the LRAT does not
contain a matching entry for the LPN, an LRAT Miss
exception occurs.

When the hypervisor executes a tlbwe instruction, no
LRAT translation is performed and the RPN formed
from MAS7RPNU and MAS3RPNL is written to the TLB.

Page Table

A Logical to Real Address Translation (LRAT) array pro-
vides a mechanism that allows guest Page Table man-
agement and translation without direct hypervisor
involvement. When an instruction fetch address or a
Load, Store, or Cache Management instruction oper-
and address is translated by the Page Table, the
Embedded.Hypervisor category is supported, and the
TGS bit of the associated indirect TLB entry is 1, the
RPN result of the Page Table translation is treated as
an LPN that is translated into an RPN by the LRAT if a
matching LRAT entry is found. A matching LRAT entry
exists if the following conditions are all true for some
LRAT entry.

The Valid bit of the LRAT entry is one.
Either the LPID field is not supported in the LRAT
(LRATCFGLPID=0) or the value of LPIDRLPID is
equal to the value of the LPID field of the LRAT
entry.
Bits 64-q:n-1 of the LPN match the corresponding
bits of the LPN field of the LRAT entry where n =
64 – log2(logical page size in bytes),
logical page size is specified by the LSIZE field of
the LRAT entry, and q is specified by
LRATCFGLASIZE.
The value of PTEPS is less than or equal to the
value of the LSIZE field of the LRAT entry.

If a matching LRAT entry is found, the LRPN from that
LRAT entry provides the upper bits of the RPN of the
translation result and the LPN provides the low order
RPN bits of the translation result. Let n=64–
log2(logical page size in bytes) where logical page size
is specified by the LSIZE field of the LRAT entry. Bits

Hypervisor software should not create an LRAT
entry that maps any real memory regions for which
a TLB entry should have VF equal to 1. Otherwise,
a guest operating system could incorrectly create
TLB entries, for this memory, with VF=0, assuming
hypervisor software normally sets MAS8VF=0
before giving control to a guest operating system.

Programming Note
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n:51 of the LPN are appended to bits 0:n–1 of the
LRPN field of the selected LRAT entry to produce the
RPN (i.e., RPN = LRPN0:n–1 || LPNn:51). The page size
specified by the LSIZE of the LRAT entry used to trans-
late the LPN must be one of the values supported by
the implementation’s LRAT array. If the LRAT does not
contain a matching entry for the LPN, an LRAT Miss
exception occurs.

6.10 Storage Control Registers
In addition to the registers described below, the
Machine State Register provides the IS and DS bits,
that specify which of the two address spaces the
respective instruction or data storage accesses are
directed towards. MSRPR bit is also used by the stor-
age access control mechanism. If the Embed-
ded.Hypervisor category is supported, the MSRGS bit
is used to identify guest state. The guest supervisor
state exists when MSRPR = 0 and MSRGS = 1. MSRGS
is used to form the virtual address. Also, see
Section 5.3.7 for the registers in the Embedded.Exter-
nal PID category.

6.10.1 Process ID Register
The Process ID Registers are 32-bit registers as shown
in Figure 27. Process ID Register bits are numbered 32
(most-significant bit) to 63 (least-significant bit). The
number of bits implemented in a PID register is indi-
cated by the value of the MMUCFGPIDSIZE. The Pro-
cess ID Register provides a value that is used to
construct a virtual address for accessing storage.

The Process ID Register is a privileged register. This
register can be read using mfspr and can be written
using mtspr. An implementation may opt to implement
only the least-significant n bits of the Process ID Regis-
ter, where 1 ≤ n ≤ 14, and n must be the same as the
number of implemented bits in the TID field of the TLB
entry. The most-significant 32–n bits of the Process ID
Register are treated as reserved.

Figure 27. Processor ID Register (PID)

The PID register fields are described below.

Bit Description

50:63 Processor ID (PID)
Identifies a unique process (except for the
value of 0) and is used to construct a virtual
address for storage accesses.

All other fields are reserved.

 

6.10.2 MMU Assist Registers
The MMU Assist Registers (MAS) are used to transfer
data to and from the TLB arrays. If the Embed-
ded.Hypervisor.LRAT category is supported, MAS reg-
isters are also used to transfer data to and from the
LRAT array. MAS registers can be read and written by
software using mfspr and mtspr instructions. Execu-
tion of a tlbre instruction with MAS0ATSEL=0 causes the
TLB entry specified by MAS0TLBSEL, MAS0ESEL, and
MAS2EPN to be copied to the MAS registers if
TLBnCFGHES = 0 for the TLB array specified by
MAS0TLBSEL whereas the TLB entry is specified by
MAS0ESEL, MAS0TLBSEL, and a hardware generated
hash based on MAS2EPN, MAS1TID, and MAS1TSIZE if
TLBnCFGHES=1. Execution of a tlbwe instruction with
MAS0ATSEL=0 (or in guest supervisor state) causes the
TLB entry specified by MAS0TLBSEL, MAS0ESEL, and
MAS2EPN to be written with contents of the MAS regis-
ters if TLBnCFGHES = 0 for the TLB array specified by
MAS0TLBSEL. If TLBnCFGHES = 1 for a tlbwe, the TLB
entry is selected by MAS0TLBSEL, a hardware gener-
ated hash based on MAS2EPN, MAS1TID, and
MAS1TSIZE, and either a hardware replacement algo-
rithm if MAS0HES=1 or MAS0ESEL if MAS0HES=0.
MAS registers may also be updated by hardware as the
result of any of the following.

a tlbsx instruction 
the occurrence of an Instruction or Data TLB Error
interrupt if any of the following is true.

The Embedded.Hypervisor category is not
supported.
MAS Register updates are enabled for inter-
rupts directed to the hypervisor (EPCRDMIUH
= 0).
The interrupt is directed to the guest state
(EPCRITLBGS = 1 for Instruction TLB Error
interrupt and EPCRDTLBGS = 1 for Data TLB
Error interrupt).

All MAS registers are privileged, except MAS5 and
MAS8, which are hypervisor privileged and are only
provided if Category: Embedded.Hypervisor is sup-
ported. All MAS registers with the exception of MAS7
and, if Embedded.Hypervisor category is not sup-
ported, MAS5 and MAS8, must be implemented. MAS7
is not required to be implemented if the hardware sup-
ports 32 bits or less of real address.

The necessary bits of any multi-bit field in a MAS regis-
ter must be implemented such that only the resources
supported are represented. Any non-implemented bits
in a field should have no effect when writing and should
always read as zero. For example, if only 2 TLB arrays

/// PID
32 50                             63

The PID register was referred to as PID0 in the
Type FSL Storage Control appendix of previous
versions of the architecture.

Programming Note
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are implemented, then only the lower-order bit of the
MAS0TLBSEL field is implemented.

  

6.10.3 MMU Configuration and 
Control Registers

6.10.3.1 MMU Configuration Register 
(MMUCFG)
The read-only MMUCFG register provides information
about the MMU and its arrays. MMUCFG is a privileged
register except that if the Embedded.Hypervisor cate-
gory is supported, MMUCFG is a hypervisor resource.
The layout of the MMUCFG register is shown in Figure
28 for MAV=1.0 and in Figure 29 for MAV=2.0. 

Figure 28. MMU Configuration Register [MAV=1.0]

Figure 29. MMU Configuration Register [MAV=2.0]

The MMUCFG fields are described below.

Bit Description

36:39 LPID Register Size (LPIDSIZE)
The value of LPIDSIZE is the number of bits in
LPIDR that are implemented. Only the least
significant LPIDSIZE bits in LPIDR are imple-
mented. The Embedded.Hypervisor category
is supported if and only if LPIDSIZE > 0.

40:46 Real Address Size (RASIZE)
Number of bits in a real address supported by
the implementation.

47 LRAT Translation Supported (LRAT) [Cate-
gory: Embedded.Hypervisor.LRAT]
Indicates LRAT translation is supported.

0 LRAT translation is not supported. A
tlbwe executed in guest supervisor state
results in an Embedded Hypervisor Privi-
lege exception.

1 LRAT translation is supported by one or
more TLB arrays. See TLBnCFGGTWE.
The LRATCFG and LRATPS registers are
supported.

48 TLB Write Conditional (TWC) [MAV=2.0]
Indicates whether the Embedded.TLB Write
Conditional category is supported.

0 E.TWC category is not supported
1 E.TWC category is supported. See Sec-

tion 6.11.4.2.1 for a description of condi-
tional TLB writes. This category also
includes support for the tlbsrx. instruc-
tion, MAS0WQ, and MAS6ISIZE.

53:57 PID Register Size (PIDSIZE)
The value of PIDSIZE is one less than the
number of bits implemented for each of the
PID registers implemented. Only the least sig-
nificant PIDSIZE+1 bits in the PID registers
are implemented. The maximum number of
PID register bits that may be implemented is
14.

60:61 Number of TLBs (NTLBS)
The value of NTLBS is one less than the num-
ber of software-accessible TLB structures that
are implemented. NTLBS is set to one less
than the number of TLB structures so that its
value matches the maximum value of
MAS0TLBSEL.

00 1 TLB
01 2 TLBs
10 3 TLBs
11 4 TLBs

62:63 MMU Architecture Version Number (MAVN)
Indicates the version number of the architec-
ture of the MMU implemented.

00 Version 1.0
01 Version 2.0
10 Reserved
11 Reserved

All other fields are reserved.

6.10.3.2 TLB Configuration Registers 
(TLBnCFG)
Each TLBnCFG read-only register provides configura-
tion information about each corresponding TLB array
that is implemented. There is one TLBnCFG register
implemented for each TLB array that is implemented.
TLBnCFG corresponds to TLBn for 0 ≤ n ≤
MMUCFGNTLBS. TLBnCFG registers are privileged
registers except that if the Embedded.Hypervisor cate-
gory is supported, TLBnCFG registers are hypervisor
resources. The layout of the TLBnCFG registers is

Operating system developers should be wary of
new implementations silently ignoring unimple-
mented MAS bits on MAS register writes. This is a
common error during initial bring-up of a new pro-
cessor.
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shown in Figure 30 for MAV=1.0 and in Figure 31 for
MAV=2.0. 

Figure 30. TLB Configuration Register [MAV=1.0]

Figure 31. TLB Configuration Register [MAV=2.0]

The TLBnCFG fields are described below.

Bit Description

32:39 Associativity (ASSOC)
Total number of entries in a TLB array which
can be used for translating addresses with a
given EPN. This number is referred to as the
associativity level of the TLB array. Some val-
ues of assoc have special meanings when
used in combination with specific values of
NENTRY, as follows. However, if TLBnCF-
GHES=1, the associativity level of the TLB
array is implementation dependent.

40:43 Minimum Page Size (MINSIZE) [MAV=1.0]
This field defines the minimum page size of
the TLB array. Page size encoding is defined
in Section 6.7.2.

44:47 Maximum Page Size (MAXSIZE) [MAV=1.0]
This field defines the maximum page size of
the TLB array. Page size encoding is defined
in Section 6.7.2.

45 Page Table (PT) [MAV=2.0 and Category:
E.PT]

Indicates that the TLB array can be loaded
from the hardware Page Table.

0 TLB array cannot be loaded from the Page
Table.

1 TLB array can be loaded from the Page
Table.

46 Indirect (IND) [MAV=2.0 and Category: E.PT]
Indicates that an indirect TLB entry can be
created in the TLB array and that there is a
corresponding EPTCFG register that defines
the SIZE and Sub-Page Size values that are
supported.

0 The TLB array treats the IND bit as
reserved.

1 The TLB array supports indirect entries.

47 Guest TLB Write Enabled (GTWE)
[MAV=2.0 and Category: Embedded.Hypervi-
sor.LRAT]
Indicates that a guest supervisor can write the
TLB array because LRAT translation is sup-
ported for the TLB array.

0 A guest supervisor cannot write the TLB
array. A tlbwe executed in guest supervi-
sor state results in an Embedded Hypervi-
sor Privilege exception.

1 A guest supervisor can write the TLB
array if guest execution of TLB Manage-
ment instructions is enabled
(EPCRDGTMI=0).

48 Invalidate Protection (IPROT)
Invalidate protect capability of the TLB array.

0 Indicates invalidate protection capability
not supported.

1 Indicates invalidate protection capability
supported.

49 Page Size Availability (AVAIL) [MAV=1.0]
This defines the page size availability of the
TLB array. If the Embedded.Page Table cate-
gory is supported, this also defines the virtual
address space size availability of TLB array.
Otherwise, this field is reserved.

0 Fixed selectable page size from MINSIZE
to MAXSIZE (all TLB entries are the same
size).

1 Variable page size from MINSIZE to MAX-
SIZE (each TLB entry can be sized sepa-
rately).

50 Hardware Entry Select (HES) [MAV=2.0]
Indicates whether the TLB array supports
MAS0HES and the associated method for
hardware selecting a TLB entry based on
MAS1TID TSIZE and MAS2EPN for a tlbwe
instruction.
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NENTRY ASSOC Meaning
0 0 no TLB present
0 1 TLB geometry is completely 

implementation-defined.  
MAS0ESEL is ignored

0 >1 TLB geometry and number of 
entries is implementation 
defined, but has known associa-
tivity.  For tlbre and tlbwe, a set 
of TLB entries is selected by an 
implementation dependent 
function of MAS8TGS TLPID 
<E.HV>, MAS1TS TID TSIZE, and 
MAS2EPN. MAS0ESEL is used to 
select among entries in this set, 
except on tlbwe if MAS0HES=1.

n > 0 n or 0 TLB is fully associative
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0 MAS0HES is not supported.
1 MAS0HES is supported for tlbwe. See

Section 6.10.3.8. For tlbre, MAS0ESEL
selects among the TLB entries that can be
used for translating addresses with a
given MAS1TID TSIZE and MAS2EPN. The
set of TLB entries is determined by a
hardware generated hash based on
MAS1TID TSIZE and MAS2EPN. The hash
is the same for tlbwe and tlbre for a given
TLB array but could be different for each
TLB array. 

52:63 Number of Entries (NENTRY)
Number of entries in the TLB array.

All other fields are reserved.

6.10.3.3 TLB Page Size Registers 
(TLBnPS) [MAV=2.0]
Each TLBnPS read-only register provides page size
information about each corresponding TLB array that is
implemented in MMU Architecture Version 2.0. Each
Page Size bit (PS0-PS31) that is a one indicates that a
specific page size is supported by the array. Multiple 1
bits indicate that multiple page sizes are supported
concurrently. TLBnPS registers are privileged registers
except that if the Embedded.Hypervisor category is
supported, TLBnPS registers are hypervisor resources.
The layout of the TLBnPS registers is shown in Figure
32. 

Figure 32. TLB n Page Size Register

The TLBnPS fields are described below.

Bit Description

32:63 Page Size 31 - Page Size 0 (PS31-PS0)
PSm indicates whether a direct TLB entry
page size of 2m KB is supported by the TLB
array. PSm corresponds to bit TLBnPS63-m for
m = 0 to 31.

0 Direct TLB entry page size of 2m KB is not
supported.

1 Direct TLB entry page size of 2m KB is
supported.

Table 9 shows the relationship between the Page Size
(PSm) bits in TLBnPS and page size. The existence
and type of mechanism for configuring the use of a sub-
set of supported page sizes is implementation-depen-
dent.

6.10.3.4 Embedded Page Table Config-
uration Register (EPTCFG)
This read-only register consists of 3 pairs of page size
(PSi) and sub-page size (SPSi) values, where i = 0 to 2.
These combinations are supported for Page Table
translations. The page size and sub-page size encod-
ings for PSi and SPSi are the same the MAS1TSIZE
encodings, except that an SPSi value of 0b00001 is
reserved and a value of zero for the SPSi field means
there is no page size and sub-page size combination
information supplied by that field. If SPSi is zero, PSi is
zero. Zero values of PSi and SPSi pairs are the leftmost
fields. See Table 3. For nonzero values of SPSi, PSi
minus SPSi is greater than 7.

The EPTCFG register is a privileged register except
that if the Embedded.Hypervisor category is supported,

PS31 - PS0
32                                                                                                           63

Table 9: Relationship of TLBnPS PS bits 
and LRATPS PS bits to page 
size

TLBnPS or 
LRATPS bit

PSm Page Size

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

PS31
PS30
PS29
PS28
PS27
PS26
PS25
PS24
PS23
PS22
PS21
PS20
PS19
PS18
PS17
PS16
PS15
PS14
PS13
PS12
PS11
PS10
PS9
PS8
PS7
PS6
PS5
PS4
PS3
PS2
PS1
PS0

2TB
1TB

512GB
256GB
128GB
64GB
32GB
16GB
8GB
4GB
2GB
1GB

512MB
256MB
128MB
64MB
32MB
16MB
8mb
4MB
2MB
1MB

512KB
256KB
128KB
64KB
32KB
16KB
8KB
4KB
2KB
1KB
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EPTCFG register is a hypervisor resource. The layout
of the EPTCFG register is shown in Figure 33. 

Figure 33. Embedded Page Table Configuration
Register

The EPTCFG fields are described below.

Bit Description

34:38 Page Size 2 (PS2)
PS2 indicates whether an indirect TLB entry
with a page size of 2PS2 KB combined with the
sub-page size specified by SPS2 is sup-
ported. 

39:43 Sub-Page Size 2 (SPS2)
SPS2 indicates whether an indirect TLB entry
with a sub-page size of 2SPS2 KB combined
with the page size specified by PS2 is sup-
ported. 

44:48 Page Size 1 (PS1)
PS1 indicates whether an indirect TLB entry
with a page size of 2PS1 KB combined with the
sub-page size specified by SPS1 is sup-
ported. 

49:53 Sub-Page Size1 (SPS1)
SPS1 indicates whether an indirect TLB entry
with a sub-page size of 2SPS1 KB combined
with the page size specified by PS1 is sup-
ported. 

54:58 Page Size 0 (PS0)
PS0 indicates whether an indirect TLB entry
with a page size of 2PS0 KB combined with the
sub-page size specified by SPS0 is sup-
ported. 

59:63 Sub-Page Size 0 (SPS0)
SPS0 indicates whether an indirect TLB entry
with a sub-page size of 2SPS0 KB combined
with the page size specified by PS0 is sup-
ported. 

6.10.3.5 LRAT Configuration Register 
(LRATCFG) [Category: Embed-
ded.Hypervisor.LRAT]
The LRATCFG read-only register provides configura-
tion information about the LRAT array. LRATCFG is a
hypervisor resource. The layout of the LRATCFG regis-
ters is shown in Figure 34. 

Figure 34. LRAT Configuration Register

The LRATCFG fields are described below.

Bit Description

32:39 Associativity (ASSOC)
Total number of entries in the LRAT array
which can be used for translating addresses
with a given LPN. This number is referred to
as the associativity level of the LRAT array. A
value equal to NENTRY or 0 indicates the
array is fully-associative.

40:46 Logical Address Size (LASIZE)
Number of bits in a logical address supported
by the implementation.

50 LPID Supported (LPID)
Indicates whether the LPID field in the LRAT is
supported.

0 The LPID field in the LRAT is not sup-
ported.

1 The LPID field in the LRAT is supported.

52:63 Number of Entries (NENTRY)
Number of entries in LRAT array. At least one
entry is supported.

All other fields are reserved.

6.10.3.6 LRAT Page Size Register 
(LRATPS) [Category: Embedded.Hyper-
visor.LRAT]
LRATPS is a read-only register that provides page size
information about the LRAT that is implemented if the
Embedded.Hypervisor.LRAT category is supported in
MMU Architecture Version 2.0. Each Page Size bit
(PS0-PS31) that is a one indicates that a specific logi-
cal page size is supported by the array. Multiple 1 bits
indicate that multiple page sizes are supported concur-
rently. LRATPS is a hypervisor resource. The layout of
the LRATPS registers is shown in Figure 35. 

Figure 35. LRAT Page Size Register

The LRATPS fields are described below.

Bit Description

32:63 Page Size 31 - Page Size 0 (PS31-PS0)
PSm indicates whether a logical page size of
2m KB is supported by the LRAT array. PSm
corresponds to bit LRATPS64-m for m = 0 to
31.

0 Logical page size of 2m KB is not sup-
ported.

1 Logical page size of 2m KB is supported.

All other fields are reserved.

// PS2 SPS2 PS1 SPS1 PS0 SPS0
32 34 39                    44 49                 54 59         63

ASSOC LASIZE ///

LP
ID / NENTRY

32 40 47 50 51 52                                  63

PS31 - PS0
32                                                                                                           63
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Table 9 on page 1106 shows the relationship between
the Page Size (PSm) bits in LRATPS and the logical
page size.

6.10.3.7 MMU Control and Status Reg-
ister (MMUCSR0)
The MMUCSR0 register is used for general control of
the MMU including page sizes for programmable fixed
size TLB arrays [MAV=1.0] and invalidation of the TLB
array. For TLB arrays that have programmable fixed
sizes, the TLBn_PS fields [MAV=1.0] allow software to
specify the page size. MMUCSR0 is a privileged regis-
ter except that if the Embedded.Hypervisor category is
supported, MMUCSR0 is a hypervisor resource. 

The layout of the MMUCSR0 is shown in Figure 36 for
MAV=1.0 and in Figure 37 for MAV=2.0. 

Figure 36. MMU Control and Status Register 0
[MAV=1.0] 

Figure 37. MMU Control and Status Register 0
[MAV=2.0]

The MMUCSR0 fields are described below.

Bit Description

41:56 TLBn Array Page Size [MAV=1.0] 
A 4-bit field specifies the page size for TLBn
array. Page size encoding is defined in Sec-
tion 6.7.2. If the value of TLBn_PS is not
between TLBnCFGMINSIZE and
TLBnCFGMAXSIZE, the page size is set to
TLBnCFGMINSIZE. A TLBn_PS field is imple-
mented only for a TLB array that can be pro-
grammed to support only one of several fixed
page sizes. For each TLB array n (for 0 ≤ n <
MMUCFGNTLBS), this field is implemented
only if the following are all true.

TLBnCFGAVAIL = 0.
TLBnCFGMINSIZE ≠ TLBnCFGMAXSIZE.

Bit Description
41:44TLB3 Array Page Size (TLB3_PS)

Page size of the TLB3 array.
45:48TLB2 Array Page Size (TLB2_PS) 

Page size of the TLB2 array.
49:52TLB1 Array Page Size (TLB1_PS)

Page size of the TLB1 array.
53:56 TLB0 Array Page Size (TLB0_PS) 

Page size of the TLB0 array.

  

57:62 TLBn Invalidate All
TLB invalidate all bit for the TLBn array.

0 If this bit reads as a 1, an invalidate all
operation for the TLBn array is in
progress. Hardware will set this bit to 0
when the invalidate all operation is com-
pleted. Writing a 0 to this bit during an
invalidate all operation is ignored. 

1 TLBn invalidation operation. Hardware ini-
tiates a TLBn invalidate all operation.
When this operation is complete, this bit is
cleared. Writing a 1 during an invalidate
all operation produces an undefined
result. If the TLB array supports IPROT,
entries that have IPROT set will not be
invalidated.

57 TLB2 Invalidate All (TLB2_FI)
TLB invalidate all bit for the TLB2 array.

58 TLB3 Invalidate All (TLB3_FI)
TLB invalidate all bit for the TLB3 array.

61 TLB0 Invalidate All (TLB0_FI) 
TLB invalidate all bit for the TLB0 array.

62 TLB1 Invalidate All (TLB1_FI)
TLB invalidate all bit for the TLB1 array.

All other fields are reserved.

6.10.3.8 MAS0 Register
The MAS0 register contains fields for identifying and
selecting a TLB entry. If the Embedded.Hypervi-
sor.LRAT category is supported, the MAS0 register is
also used to select an LRAT entry as well as select
between a TLB array and the LRAT array. MAS0 regis-
ter fields are loaded by the execution of the tlbsx
instruction and by the occurrence of an Instruction or
Data TLB Error interrupt under certain conditions.
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Changing the fixed page size of an entire
array must be done with great care. If any
entries in the array are valid, changing the
page size may cause those entries to
overlap, creating a serious programming
error. It is suggested that the entire TLB
array be invalidated and any entries with
IPROT have their V bits set to zero before
changing page size.

Programming Note
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MAS0 is a privileged register. The layout of the MAS0
register is shown in Figure 38.

Figure 38. MAS0 register

The MAS0 fields are described below.

Bit Description

32 Array Type Select (ATSEL) [Category:
Embedded.Hypervisor.LRAT]
Selects LRAT or TLB for access for tlbwe and
tlbre. In guest state, MAS0ATSEL is treated as
if it were zero such that a TLB array is always
selected.

0 TLB
1 LRAT

34:35 TLB Select (TLBSEL)
If ATSEL=0 or MSRGS=1, selects TLB for
access. 
If ATSEL=1, TLBSEL is treated as reserved.

00 TLB0
01 TLB1
10 TLB2
11 TLB3

36:47 Entry Select (ESEL)
Identifies an entry in the selected array to be
used for tlbwe and tlbre. Valid values for
ESEL are from 0 to TLBnCFGASSOC - 1 for a
TLB array and 0 to LRATCFGASSOC - 1 for the
LRAT. That is, ESEL selects the entry in the
selected array from the set of entries which
can be used for translating addresses with the
EPN (if TLBnCFGHES=0 and either
MAS0ATSEL=0 or MSRGS=1), the combination
of EPN, SIZE, and PID (for tlbwe if TLBnCF-
GHES=1, MAS0HES=0, and either
MAS0ATSEL=0 or MSRGS=1, and for tlbre if
TLBnCFGHES=1, and either MAS0ATSEL=0 or
MSRGS=1), or the LPN (if MAS0ATSEL=1 and
MSRGS=0) specified by MAS2EPN. For
fully-associative TLB or LRAT arrays, ESEL
ranges from 0 to TLBnCFGNENTRY - 1 or 0 to
LRATCFGNENTRY - 1, respectively.

49 Hardware Entry Select (HES) [MAV=2.0] 
Determines how the TLB entry within the
selected TLB array is selected by tlbwe if a
TLB entry is to be written (MAS0ATSEL=0 or
MSRGS=1). If an LRAT entry is to be written
(MAS0ATSEL=1 and MSRGS=0) by a tlbwe,
HES must be 0. Otherwise the result is unde-
fined. This field has no effect on other TLB
Management instructions. Whether an imple-
mentation supports this bit for a TLB array is

indicated by TLBnCFGHES. If TLBnCFGHES =
0, HES is ignored and treated as 0 for tlbwe.

0 The entry is selected by MAS0ESEL and a
hardware generated hash based on
MAS1TID TSIZE, and MAS2EPN.

1 The entry is selected by a hardware
replacement algorithm and a hardware
generated hash based on MAS1TID TSIZE,
and MAS2EPN.

50:51 Write Qualifier (WQ) [MAV=2.0 and Cate-
gory: Embedded.TLB Write Conditional]
Qualifies the TLB write operation performed
by tlbwe if a TLB entry is to be written
(MAS0ATSEL=0 or MSRGS=1). If an LRAT
entry is to be written (MAS0ATSEL=1 and
MSRGS=0) by a tlbwe and the Embed-
ded.TLB Write Conditional category is sup-
ported, WQ must be 0b00. Otherwise the
result is undefined. This field has no effect on
other TLB Management instructions. Whether
an implementation supports this field is indi-
cated by MMUCFGTWC. If MMUCFGTWC = 0,
WQ is ignored and treated as 0b00 for tlbwe.

00 The selected TLB entry is written regard-
less of the TLB-reservation. The TLB-res-
ervation is cleared.

01 The selected TLB entry is written if and
only if the TLB reservation exists. A tlbwe
with this value is called a TLB Write Con-
ditional. The TLB-reservation is cleared.
See Section 6.11.4.2.1, “TLB Write Condi-
tional [Embedded.TLB Write Conditional]”.

10 The TLB-reservation is cleared; no TLB
entry is written.

11 Reserved

52:63 Next Victim (NV)
NV is a hint to software to identify the next vic-
tim to be targeted for a TLB miss replacement
operation for those TLBs that support the NV
function. If the TLB selected by MAS0TLBSEL
does not support the NV function, this field is
undefined. The method of determining the
next victim is implementation-dependent. NV
is updated on tlbsx hit and miss cases as
shown in Table 11 on page 1116, on execution
of tlbre if the TLB array being accessed sup-
ports the NV field, and on TLB Error interrupts
if the Embedded.Hypervisor category is not
supported, MAS Register updates are
enabled for interrupts directed to the hypervi-
sor (EPCRDMIUH = 0), or the interrupt is
directed to the guest state. When NV is
updated by a supported TLB array, the NV
field will always present a value that can be
used in the MAS0ESEL field. The LRAT array
does not support Next Victim.

All other fields are reserved.

AT
S

E
L /

T
LB

S
E

L ESEL /

H
E

S

WQ NV

32 33 34 36 48 49 50 52                             63
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6.10.3.9 MAS1 Register
The MAS1 register contains fields used for reading and
writing an LRAT <E.HV.LRAT> or TLB entry. MAS1 reg-
ister fields are also loaded by the execution of the tlbsx
instruction and by the occurrence of an Instruction or
Data TLB Error interrupt under certain conditions. TLB
fields loaded from the MAS1 register are used for
selecting a TLB entry during translation. If the Embed-
ded.Hypervisor.LRAT category is supported, LRAT
fields V and LSIZE, which are loaded from
MAS1V TSIZE, are used for selecting an LRAT entry for
translating LPNs when tlbwe is executed in guest
supervisor state and, if the Embedded.Page Table cate-
gory is supported, during page table lookups performed
when the PTEARPN is treated as an LPN (The Embed-
ded.Hypervisor.LRAT category is supported and the
TGS bit of the corresponding indirect TLB entry is 1).
MAS1 is a privileged register. The layout of the MAS1
register is shown in Figure 39 for MAV=1.0 and in Fig-
ure 40 for MAV=2.0. 

Figure 39. MAS1 register [MAV=1.0]

Figure 40. MAS1 register [MAV=2.0]

The MAS1 fields are described below.

Bit Definition

32 Valid Bit (V)
See the corresponding TLB bit definition in
Section 6.7.1 and the corresponding LRAT bit
definition in Section 6.9.

33 Invalidate Protect (IPROT) 
See the corresponding TLB bit definition in
Section 6.7.1.

34:47 Translation Identity (TID)
See the corresponding TLB field definition in
Section 6.7.1.

50 Indirect (IND) [MAV=2.0 and Category:
Embedded.Page Table]
See the corresponding TLB bit definition in
Section 6.7.1.

51 Translation Space (TS)
See the corresponding TLB bit definition in
Section 6.7.1.

52:55 Translation Size (TSIZE) [MAV=1.0]
See the TLB SIZE field definition in Section
6.7.1.

52:56 Translation Size (TSIZE) [MAV=2.0]
See the TLB SIZE field definition in Section
6.7.1 and the LRAT LSIZE field definition in
Section 6.9.

All other fields are reserved.

6.10.3.10 MAS2 Register
The MAS2 register is a 64-bit register which can be
read and written as a 64-bit register in 64-bit implemen-
tations and as a 32-bit register in 32-bit implementa-
tions. In both 64-bit and 32-bit implementations, the
MAS2U register can be used to read or write EPN0:31
as a 32-bit SPR access. The MAS2 register contains
fields used for reading and writing an LRAT
<E.HV.LRAT> or TLB entry. MAS2 register fields are
also loaded by the execution of the tlbsx instruction
and by the occurrence of an Instruction or Data TLB
Error interrupt under certain conditions. The register
contains fields for specifying the effective page address
and the storage control attributes for a TLB entry. If the
Embedded.Hypervisor.LRAT category is supported, the
MAS2 register EPN field can also be used for specify-
ing the logical page number for an LRAT entry. The only
MAS2 field used for the LRAT array is EPN. MAS2 is a
privileged register. The layout of the MAS2 register is
shown in Figure 41 for MAV=1.0 and in Figure 42 for
MAV=2.0. 

Figure 41. MAS2 register [MAV = 1.0]

Figure 42. MAS2 register [MAV = 2.0]

The MAS2 fields are described below.

Bit Description

0:31 MAS2 Upper (MAS2U)
MAS2U is an SPR that corresponds to
EPN0:31 of MAS2. 

0:51 Effective Page Number (EPN) [MAV=1.0]
See the corresponding TLB bit definition in
Section 6.7.1. Bits that correspond to an offset
within the smallest virtual page implemented
need not be implemented. Unimplemented
EPN bits are treated as 0s.

0:53 Effective Page Number (EPN) [MAV=2.0
See the corresponding TLB bit definition in
Section 6.7.1 and the LRAT LPN field defini-

V

IP
R

O
T TID /// TS TSIZE ///

32 33 34 48 51 52 56                63

V

IP
R

O
T TID //

IN
D TS TSIZE ///

32 33 34 48 50 51 52 57            63

MAS2U ///

EPN ///

A
C

M
V

LE W I M G

0 32 52 57 58 59 60 61 62

MAS2U ///

EPN ///

A
C

M
V

LE W I M G

0 32 54 57 58 59 60 61 62
Power ISA™ - Book III-E1110



Version 2.07 B
tion in Section 6.9. Bits that correspond to an
offset within the smallest virtual page imple-
mented need not be implemented. Unimple-
mented EPN bits are treated as 0s.

57 Alternate Coherency Mode (ACM) 
See the corresponding TLB bit definition in
Section 6.7.1. If ACM is not supported by the
implementation, this bit is treated as reserved.

  

58 VLE Mode (VLE) [Category: VLE]
See the corresponding TLB bit definition in
Section 6.7.1. If the VLE category is not sup-
ported, this bit is treated as reserved.

  

59 Write Through (W)
See the corresponding TLB bit definition in
Section 6.7.1.

60 Caching Inhibited (I)
See the corresponding TLB bit definition in
Section 6.7.1.

61 Memory Coherence Required (M)
See the corresponding TLB bit definition in
Section 6.7.1.

62 Guarded (G)
See the corresponding TLB bit definition in
Section 6.7.1.

63 Endianness (E)
See the corresponding TLB bit definition in
Section 6.7.1.

All other fields are reserved.

6.10.3.11 MAS3 Register
The MAS3 register contains fields used for reading and
writing an LRAT <E.HV.LRAT> or TLB entry. MAS3 reg-
ister fields are also loaded by the execution of the tlbsx
instruction and by the occurrence of an Instruction or
Data TLB Error interrupt under certain conditions. The
MAS3 register contains fields for specifying the real

page address, user defined attributes, and the permis-
sion attributes for a TLB entry. if the Embedded.Page
Table category is supported, MAS3 also contains a field
specifying the minimum page size specified by each
Page Table Entry that is mapped by the indirect TLB
entry. if the Embedded.Hypervisor.LRAT category is
supported, the low-order LRPN bits of the LRAT array
can be read into or written from MAS3RPNL by hypervi-
sor software. If the Embedded.Hypervisor.LRAT cate-
gory is supported, the RPN specified by MAS7 and
MAS3 is treated as an LPN for tlbwe executed in guest
supervisor state (see Section 6.9). MAS3 is a privileged
register. if the Embedded.Page Table category is sup-
ported, MAS3 has different meanings depending on the
MAS1IND value. For MAS1IND = 0, the layout of the
MAS3 register is shown in Figure 43 for MAV=1.0 and
in Figure 44 for MAV=2.0. 

Figure 43. MAS3 register for MAS1IND=0 [MAV=1.0]

Figure 44. MAS3 register for MAS1IND=0 [MAV=2.0]

For MAS1IND = 1, the layout of the MAS3 register is
shown in Figure 45. 

Figure 45. MAS3 register for MAS1IND=1 [MAV=2.0
and Category: E.PT]

The MAS3 fields are described below.

Bit Description

32:51 Real Page Number (bits 32:51) (RPNL or
RPN32:51) [MAV=1.0]
The real page number is formed by the upper
n bits of (MAS7RPNU || MAS3RPNL), where n =
64 - log2(page size in bytes) and page size is
specified by MAS1TSIZE for a tlbwe instruction
and by the SIZE field of the TLB entry if a TLB
entry is being read by a tlbre or tlbsx instruc-
tion. RPN0:31 are accessed through MAS7.
RPNL bits corresponding to bits that are not
implemented in the RPN field of the TLB are
treated as reserved.

32:53 Real Page Number (bits 32:53) (RPNL or
RPN32:53) [MAV=2.0]
The real page number is formed by the upper
n bits of (MAS7RPNU || MAS3RPNL), where n =
64 - log2(page size in bytes) and page size is

Some previous implementations may
have a TLB storage bit accessed via this
bit position and labeled as X0. Software
should not use the presence of this bit
(the ability to set to 1 and read a 1) to
determine if the implementation supports
the Alternate Coherency Mode.

Some previous implementations may
have a TLB storage bit accessed via this
position and labeled as X1. Software
should not use the presence of this bit
(the ability to set to 1 and read a 1) to
determine if the implementation supports
the VLE.

Programming Note

Programming Note
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specified by MAS1TSIZE for a tlbwe instruc-
tion, by the SIZE field of the TLB entry if a TLB
entry is being read by a tlbre or tlbsx instruc-
tion or by the LSIZE field of the LRAT entry if
an LRAT entry is being read by a tlbre instruc-
tion. RPNL bits corresponding to bits that are
not implemented in the RPN field of the TLB
are treated as reserved.

54:57 User Bits (U0:U3)
See the corresponding TLB bit definition in
Section 6.7.1. If one or more of these bits is
not implemented in the TLB, the correspond-
ing MAS3 bit is treated as reserved.

If MAS1IND = 0, MAS358:63 are defined as follows:

58 User State Execute Enable (UX)
See the corresponding TLB bit definition in
Section 6.7.1.

59 Supervisor State Execute Enable (SX)
See the corresponding TLB bit definition in
Section 6.7.1.

60 User State Write Enable (UW)
See the corresponding TLB bit definition in
Section 6.7.1.

61 Supervisor State Write Enable (SW)
See the corresponding TLB bit definition in
Section 6.7.1.

62 User State Read Enable (UR)
See the corresponding TLB bit definition in
Section 6.7.1.

63 Supervisor State Read Enable (SR)
See the corresponding TLB bit definition in
Section 6.7.1.

If MAS1IND = 1, MAS358:63 are defined as follows:

58:62 Sub-Page Size (SPSIZE)
See the corresponding TLB field definition in
Section 6.7.1.

63 Undefined) (UND)
The value of this bit is undefined after a tlbre
or tlbsx.

All other fields are reserved.

6.10.3.12 MAS4 Register
The MAS4 register contains fields for specifying default
information to be pre-loaded on an Instruction or Data
TLB Error interrupt if the Embedded.Hypervisor cate-
gory is not supported, MAS Register updates are
enabled for interrupts directed to the hypervisor
(EPCRDMIUH = 0), or the interrupt is directed to the
guest state. See Section 6.11.4.7 for more information.
MAS4 is a privileged register. The layout of the MAS4

register is shown in Figure 46 for MAV=1.0 and in Fig-
ure 47 for MAV=2.0. 

Figure 46. MAS4 register [MAV=1.0]

Figure 47. MAS4 register [MAV=2.0]

The MAS4 fields are described below.

Bit Description

34:35 TLBSEL Default Value (TLBSELD) 
Specifies the default value loaded in
MAS0TLBSEL on the interrupt.

48 IND Default Value (INDD) 
Specifies the default value loaded in MAS1IND
and MAS6SIND on the interrupt.

52:55 Default TSIZE Value (TSIZED) [MAV=1.0]
Specifies the default value loaded into
MAS1TSIZE on a TLB miss exception.

52:56 Default TSIZE Value (TSIZED) [MAV=2.0]
Specifies the default value loaded into
MAS1TSIZE on a TLB miss exception. If
MMUCFGTWC = 1, TSIZED is also the default
value loaded into MAS6ISIZE on the interrupt.

57 Default ACM Value (ACMD)
Specifies the default value loaded into
MAS2ACM on the interrupt.

58 Default VLE Value (VLED) [Category: VLE]
Specifies the default value loaded into
MAS2VLE on the interrupt.

59 Default W Value (WD)
Specifies the default value loaded into MAS2W
on the interrupt.

60 Default I Value (ID)
Specifies the default value loaded into MAS2I
on the interrupt.

61 Default M Value (MD)
Specifies the default value loaded into MAS2M
on the interrupt.

62 Default G Value (GD)
Specifies the default value loaded into MAS2G
on the interrupt.

//

T
LB

S
E

LD ///

T
S

IZ
E

D /

A
C

M
D

V
LE

D
W

D
ID M
D

G
D

E
D

32 34 36 52 56 57 58 59 60 61 62 63

//

T
LB

S
E

LD ///

IN
D

D

//

T
S

IZ
E

D

A
C

M
D

V
LE

D
W

D
ID M
D

G
D

E
D

32 34 36 48 49 52 57 58 59 60 61 62 63
Power ISA™ - Book III-E1112



Version 2.07 B
63 Default E Value (ED)
Specifies the default value loaded into MAS2E
on the interrupt.

All other fields are reserved.

6.10.3.13 MAS5 Register
The MAS5 register contains fields for specifying LPID
and GS values to be used when searching TLB entries
with the tlbsrx. <E.TWC> and tlbsx instructions. The
SLPID and SGS fields are used to match TLPID and
TGS fields in the TLB entry. The MAS5 fields are also
used for selecting TLB entries to be invalidated by the
tlbilx or tlbivax instructions. MAS5 is a hypervisor
resource. The layout of the MA5 register is shown in
Figure 48.

Figure 48. MAS5 register

The MAS5 fields are described below.

Bit Description

32 Search GS (SGS)
Specifies the GS value used when searching
the TLB during execution of tlbsrx. <E.TWC>
and tlbsx and for selecting TLB entries to be
invalidated by tlbilx or tlbivax. The SGS field
is compared with the TGS field of each TLB
entry to find a matching entry.

52:63 Search Logical Partition ID (SLPID)
Specifies the LPID value used when search-
ing the TLB during execution of tlbsrx.
<E.TWC> and tlbsx and for selecting TLB
entries to be invalidated by tlbilx or tlbivax.
The SLPID field is compared with the TLPID
field of each TLB entry to find a matching
entry. Only the least significant MMUCFGLPID-

SIZE bits of SLPID are implemented.

All other fields are reserved.

  

6.10.3.14 MAS6 Register
The MAS6 register contains fields for specifying PID,
IND, and AS values to be used when searching TLB
entries with the tlbsx instruction and, if MMUCFGTWC =
1 or TLBnCFGHES = 1, for specifying the PID, IND, AS,
and size of the virtual address space to be used for
selecting TLB entries to be invalidated by the tlbilx T=3
or tlbivax instructions. MAS6 is a privileged register.

The layout of the MAS6 register is shown in Figure 49
for MAV=1.0 and in Figure 50 for MAV=2.0.

Figure 49. MAS6 register [MAV = 1.0]

Figure 50. MAS6 register [MAV = 2.0]

The MAS6 fields are described below.

Bit Description

34:47 Search PID (SPID)
Specifies the value of PID used when search-
ing the TLB during execution of tlbsx. It also
defines the PID of the TLB entry to be invali-
dated by tlbilx with T=1 or T=3 and tlbivax
with EA61=0. The number of bits implemented
is the same as the number of bits imple-
mented in the PID register.

  

52:56 Invalidation Size (ISIZE) [MAV=2.0]
ISIZE defines the size of the virtual address
space mapped by the TLB entry to be invali-
dated by tlbilx T=3 and tlbivax. This field is
only supported if MMUCFGTWC = 1 or, for any
TLB array, TLBnCFGHES = 1. Otherwise this
field is reserved.

  

62 Indirect Value for Searches (SIND)
[MAV=2.0 and Category: Embedded.Page
Table] 
Specifies the value of IND used when search-
ing the TLB during execution of tlbsx. It also
defines the Indirect (IND) value of the TLB
entry to be invalidated by tlbilx T=3 and
tlbivax.

63 Address Space Value for Searches (SAS)
Specifies the value of AS used when search-
ing the TLB during execution of tlbsx. It also
defines the TS value of the TLB entry to be
invalidated by tlbilx T=3 and tlbivax.

All other fields are reserved.

S
G

S /// SLPID

32 33 52                                   63

Hypervisor software should generally treat MAS5
as part of the partition state.

Programming Note

// SPID ///

S
A

S

32 34 48 63

// SPID /// ISIZE ///

S
IN

D
S

A
S

32 34 48 52 57 62 63

The SPID field was referred to as SPID0
in previous versions of the architecture.

To make code more portable across
implementations, software should always
set ISIZE before executing tlbilx T=3 and
tlbivax.

Programming Note

Programming Note
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6.10.3.15 MAS7 Register
The MAS7 register contains a field used for reading
and writing an LRAT <E.HV.LRAT> or TLB entry. MAS7
register field is also loaded by the execution of the
tlbsx instruction. The MAS7 register contains the high
order address bits of the RPN for a TLB entry in imple-
mentations that support more than 32 bits of physical
address. if the Embedded.Hypervisor.LRAT category is
supported by such implementations, the high-order
LRPN bits of the LRAT array can be read into or written
from MAS7 by hypervisor software. If the Embed-
ded.Hypervisor.LRAT category is supported, the RPN
specified by MAS7and MAS3 is treated as an LPN for
tlbwe executed in guest supervisor state (see Section
6.9). If no more than 32 bits of physical addressing are
supported, it is implementation-dependent whether
MAS7 is implemented. MAS7 is a privileged register.
The layout of the MAS7 is shown in Figure 51. 

Figure 51. MAS7 register

The MAS7 fields are described below.

Bit Description

32:63 Real Page Number (bits 0:31) (RPNU or
RPN0:31)
RPN32:53 are accessed through MAS3. RPNU
bits corresponding to bits that are not imple-
mented in the RPN field of the TLB are treated
as reserved.

6.10.3.16 MAS8 Register [Category: 
Embedded.Hypervisor]
The MAS8 register contains fields used for reading and
writing an LRAT <E.HV.LRAT> or TLB entry. The MAS8
register fields are also loaded from a matching TLB
entry by execution of a tlbsx instruction that is success-
ful. The associated TLB fields are used to select a TLB
entry during TLB address translation and TLB
searches, and to force a Data Storage Interrupt to be
directed to the hypervisor state. MAS8 is an hypervisor
resource. The LPID field of the LRAT is used to select
an LRAT entry during LRAT translation. The layout of
the MAS8 register is shown in Figure 52.

Figure 52. MAS8 register

The MAS8 fields are described below.

Bit Description

32 Translation Guest State (TGS)
See the corresponding TLB bit definition in
Section 6.7.1.

33 Translation Virtualization Fault (VF)
See the corresponding TLB bit definition in
Section 6.7.1.

52:63 Translation Logical Process ID (TLPID)
See the corresponding TLB bit definition in
Section 6.7.1 and the LRAT LPID field defini-
tion in Section 6.9.

All other fields are reserved.

  

  

6.10.3.17 Accesses to Paired MAS Reg-
isters
In 64-bit implementations, certain MAS registers can
be accessed in pairs with a single mtspr or mfspr
instruction. The registers that can be accessed this way
are shown in Table 10. These register pairs are treated
as if they are a single 64-bit register by a mtspr or
mfspr instruction. 

RPNU
32                                                                                                                   63

T
G

S
V

F /// TLPID

32 33 34 52                                   63

Hypervisor software should generally treat MAS8
as part of the partition state. After executing tlbsx
and tlbre, hypervisor software may need to restore
MAS8 before returning to guest state. This is espe-
cially important if the Embedded.Hypervisor.LRAT
category is supported because a guest can exe-
cute a tlbwe instruction that writes a TLB entry with
the MAS8 values.

For a TLB entry with VF=1, hypervisor software
should have the execution permission bits set so
that an instruction fetch of the page is prevented.

The VF bit can be used to force a Data Storage
interrupt for virtualization of MMIO.

Table 10:MAS Register Pairs

64-bit Pairs
SPR 

Number

Privileged 
mtspr & 
mfspr

Cat2 

MAS5 || MAS6
MAS8 || MAS1
MAS7 || MAS3
MAS0 || MAS1

348
349
372
373

hypv1

hypv1

yes
yes

E.HV; 64
E.HV; 64

64
64

1 This register is a hypervisor resource, and can be 
accessed by one of these instructions only in 
hypervisor state (see Chapter 2).

2 See Section 1.3.5 of Book I. If multiple categories 
are listed, the register pair is only provided if all 
categories are supported. Otherwise the SPR 
number is treated as reserved.

Programming Note

Programming Note
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6.10.3.18 MAS Register Update Sum-
mary
Table 11 summarizes how MAS registers are modified
by Instruction TLB Error interrupt, Data TLB Error inter-
rupt and the TLB Management instructions.
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Table 11:MAS Register Update Summary for TLB operations

MAS Field 
Updated

Value Loaded on Event

Data TLB 
Error Inter-

rupt on Load 
or Store that 
is not cate-

gory E.PD or 
Instruction 
TLB Error 
Interrupt2

Data TLB 
Error Inter-

rupt on Exter-
nal Process 

ID Load 
<E.PD>2

Data TLB 
Error Inter-

rupt on Exter-
nal Process 

ID Store 
<E.PD>2

tlbsx hit tlbsx miss tlbre

MAS0ATSEL 
<E.HV>

0 0 0 0 0 —

MAS0TLBSEL MAS4TLBSELD MAS4TLBSELD MAS4TLBSELD TLB array that 
hit

MAS4TLBSELD —

MAS0ESEL if TLB array 
[MAS4TLBSEL

D] supports 
next victim 

then hardware 
hint,

else unde-
fined

if TLB array 
[MAS4TLBSEL

D] supports 
next victim 

then hardware 
hint,

else unde-
fined

if TLB array 
[MAS4TLBSEL

D] supports 
next victim 

then hardware 
hint,

else unde-
fined

index of entry 
that hit

if TLB array 
[MAS4TLBSEL

D] supports 
next victim 

then hardware 
hint,

else unde-
fined

—

MAS0HES TLBnCFGHES 
for array speci-

fied by 
MAS4TLBSELD

TLBnCFGHES 
for array speci-

fied by 
MAS4TLBSELD

TLBnCFGHES 
for array speci-

fied by 
MAS4TLBSELD

0 TLBnCFGHES 
for array speci-

fied by 
MAS4TLBSELD

—

MAS0WQ 
<E.TWC>

0b01 0b01 0b01 0b01 0b01 —

MAS0NV if TLB array 
[MAS4TLBSEL

D] supports 
next victim 
then next 

hardware hint,
else unde-

fined

if TLB array 
[MAS4TLBSEL

D] supports 
next victim 
then next 

hardware hint,
else unde-

fined

if TLB array 
[MAS4TLBSEL

D] supports 
next victim 
then next 

hardware hint,
else unde-

fined

if TLB array 
with the 

matching 
entry sup-

ports next vic-
tim then 

hardware hint,
else unde-

fined

if TLB array 
[MAS4TLBSEL

D] supports 
next victim 
then next 

hardware hint,
else unde-

fined

if TLB array 
[MAS0TLBSEL] 
supports next 
victim then 

hardware hint,
else unde-

fined

MAS1V 1 1 1 1 0 TLBV

MAS1IPROT 0 0 0 TLBIPROT 0 TLBIPROT

MAS1TID PID EPLCEPID EPSCEPID TLBTID MAS6SPID TLBTID

MAS1IND 
<E.PT>

MAS4INDD MAS4INDD MAS4INDD TLBIND MAS4INDD TLBIND

MAS1TS MSRIS or 
MSRDS

EPLCEAS EPSCEAS TLBTS MAS6SAS TLBTS

MAS1TSIZE MAS4TSIZED MAS4TSIZED MAS4TSIZED TLBSIZE MAS4TSIZED TLBSIZE

MAS2EPN EA0:53
1 EA0:53 EA0:53 TLBEPN undefined TLBEPN

MAS2ACM MAS4ACMD MAS4ACMD MAS4ACMD TLBACM MAS4ACMD TLBACM

MAS2VLE <VLE> MAS4VLED MAS4VLED MAS4VLED TLBVLE MAS4VLED TLBVLE

MAS2W I M G E MAS4WD ID MD 

GD ED

MAS4WD ID MD 

GD ED

MAS4WD ID MD 

GD ED

TLBW I M G E MAS4WD ID MD 

GD ED

TLBW I M G E

MAS3RPNL 0 0 0 TLBRPN[32:53] 0 TLBRPN[32:53]
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MAS3U0:U3 0 0 0 TLBU0:U3 0 TLBU0:U3

MAS3UX SX UW 

SW UR SR

0 0 0 if Category: 
E.PT is not 

supported or 
TLBIND

= 0 then 
TLBUX SX UW 

SW UR SR

0 if Category: 
E.PT is not 

supported or 
TLBIND

= 0 then 
TLBUX SX UW 

SW UR SR

MAS3SPSIZE (see the entry 
for MAS3UX SX 

UW SW UR SR)

(see the entry 
for MAS3UX SX 

UW SW UR SR)

(see the entry 
for MAS3UX SX 

UW SW UR SR)

if Category: 
E.PT sup-
ported and 

TLBIND
= 1 then TLB-

SPSIZE

(see the entry 
for MAS3UX SX 

UW SW UR SR)

if Category: 
E.PT sup-
ported and 

TLBIND
= 1 then TLB-

SPSIZE

MAS3UND (see the entry 
for MAS3UX SX 

UW SW UR SR)

(see the entry 
for MAS3UX SX 

UW SW UR SR)

(see the entry 
for MAS3UX SX 

UW SW UR SR)

if Category: 
E.PT sup-
ported and 

TLBIND
= 1 then 

undefined

(see the entry 
for MAS3UX SX 

UW SW UR SR)

if Category: 
E.PT sup-
ported and 

TLBIND
= 1 then 

undefined

MAS5 <E.HV> & 
MAS4

—3 —3 —3 — — —

MAS6SPID PID EPLCEPID EPSCEPID — — —

MAS6ISIZE if 
TLBnCFGHES=1 

or <E.TWC>

MAS4TSIZED MAS4TSIZED MAS4TSIZED — — —

MAS6SAS MSRIS or 
MSRDS

EPLCEAS EPSCEAS — — —

MAS6SIND 
<E.PT>

MAS4INDD MAS4INDD MAS4INDD — — —

MAS7RPNU 0 0 0 TLBRPN[0:31] 0 TLBRPN[0:31]

MAS8TGS VF 

TLPID <E.HV>
—3 —3 —3 TLBTGS VF 

TLPID

— TLBTGS VF 

TLPID

1. If MSRCM=0 (32-bit mode) at the time of the exception, EPN0:31 are set to 0.
2. If the E.HV category is not supported, MAS Register updates are enabled for interrupts directed to the hypervisor 

(EPCRDMIUH = 0), or the interrupt is directed to the guest state.
3. MAS5 and MAS8 are not updated on a Data or Instruction TLB Error interrupt. The hypervisor should ensure they 

already contain values appropriate to the partition.

Table 11:MAS Register Update Summary for TLB operations

MAS Field 
Updated

Value Loaded on Event

Data TLB 
Error Inter-

rupt on Load 
or Store that 
is not cate-

gory E.PD or 
Instruction 
TLB Error 
Interrupt2

Data TLB 
Error Inter-

rupt on Exter-
nal Process 

ID Load 
<E.PD>2

Data TLB 
Error Inter-

rupt on Exter-
nal Process 

ID Store 
<E.PD>2

tlbsx hit tlbsx miss tlbre
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6.11 Storage Control Instructions

6.11.1 Cache Management Instructions
This section describes aspects of cache management
that are relevant only to privileged software program-
mers.

For a dcbz or dcba instruction that causes the target
block to be newly established in the data cache without
being fetched from main storage, the hardware need
not verify that the associated real address is valid. The
existence of a data cache block that is associated with
an invalid real address (see Section 6.6) can cause a

delayed Machine Check interrupt or a delayed Check-
stop.

Each implementation provides an efficient means by
which software can ensure that all blocks that are con-
sidered to be modified in the data cache have been
copied to main storage before the thread enters any
power conserving mode in which data cache contents
are not retained.

Data Cache Block Invalidate  X-form

dcbi RA,RB 

if RA=0 then b ← 0
else         b ← (RA)
EA ← b + (RB)
InvalidateDataCacheBlock( EA )

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
data cache of any thread, then the block is invalidated
in those data caches. On some implementations,
before the block is invalidated, if any locations in the
block are considered to be modified in any such data
cache, those locations are written to main storage and
additional locations in the block may be written to main
storage.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and a
block containing the byte addressed by EA is in the
data cache of this thread, then the block is invalidated
in that data cache. On some implementations, before
the block is invalidated, if any locations in the block are
considered to be modified in that data cache, those
locations are written to main storage and additional
locations in the block may be written to main storage.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Store (see
Section 6.7.6.5) on implementations that invalidate a
block without first writing to main storage all locations in
the block that are considered to be modified in the data
cache, except that the invalidation is not ordered by

mbar. On other implementations this instruction is
treated as a Load (see the section cited above).

If a thread holds a reservation and some other thread
executes a dcbi that specifies a location in the same
reservation granule, the reservation may be lost only if
the dcbi is treated as a Store.

dcbi may cause a cache locking exception, the details
of which are implementation-dependent.

This instruction is privileged.

Special Registers Altered:
None

31 ///  RA RB 470 / 
0 6 11 16 21 31
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6.11.2  Cache Locking [Category: Embedded Cache Locking]
The Embedded Cache Locking category defines
instructions and methods for locking cache blocks for
frequently used instructions and data. Cache locking
allows software to instruct the cache to keep latency
sensitive data readily available for fast access. This is
accomplished by marking individual cache blocks as
locked.

A locked block differs from a normal block in the cache
in the following way:

blocks that are locked in the cache do not partici-
pate in the normal replacement policy when a
block must be replaced.

6.11.2.1 Lock Setting, Query, and 
Clearing
Cache Locking instructions are used by software to
indicate which blocks in a cache should be locked,
unlocked, or queried for lock status.

Blocks are locked into the cache by software using
Lock Set instructions. The following instructions are
provided to lock data items into the data and instruction
cache:

dcbtls - Data cache block touch and lock set.
dcbtstls - Data cache block touch for store and
lock set.
icbtls - Instruction cache block touch and lock set.

The RA and RB operands in these instructions are
used to identify the block to be locked. The CT field
indicates which cache in the cache hierarchy should be
targeted. (See Section 4.3 of Book II.)

These instructions are similar in nature to the dcbt,
dcbtst, and icbt instructions, but are not hints and thus
locking instructions do not execute speculatively and
may cause additional exceptions. For unified caches,
both the instruction lock set and the data lock set target
the same cache.

Blocks are unlocked from the cache by software using
Lock Clear instructions. The following instructions are
provided to unlock instructions and data in their respec-
tive caches:

dcblc - Data cache block lock clear.
icblc - Instruction cache block lock clear.

The RA and RB operands in these instructions are
used to identify the block to be unlocked. The CT field
indicates which cache in the cache hierarchy should be
targeted.

Additionally, an implementation-dependent method can
be provided for software to clear all the locks in the
cache. 

The status of whether a cache block is locked in the
cache can be queried by software using Lock Query
instructions:

dcblq. - Data cache block lock query.
icblq. - Instruction cache block lock query.

The RA and RB operands in these instructions are
used to identify the block to be queried. The CT field
indicates which cache in the cache hierarchy should be
targeted. These instructions set CR0 to indicate
whether the block is locked or is not locked.

An implementation is not required to unlock blocks that
contain data that has been invalidated unless it is
explicitly unlocked with a dcblc or icblc instruction; if
the implementation does not unlock the block upon
invalidation, the block remains locked even though it
contains invalid data. If the implementation does not
clear locks when the associated block is invalidated,
the method of locking is said to be persistent; otherwise
it is not persistent. An implementation may choose to
implement locks as persistent or not persistent; how-
ever, the preferred method is persistent.

It is implementation-dependent if cache blocks are
implicitly unlocked in the following ways:

A locked block is invalidated as the result of a dcbi,
dcbf, dcbfep, icbi, or icbiep instruction.
A locked block is evicted because of an overlock-
ing condition.
A snoop hit on a locked block that requires the
block to be invalidated. This can occur because the
data the block contains has been modified external
to the thread, or another thread has explicitly inval-
idated the block.
The entire cache containing the locked block is
invalidated.

6.11.2.2 Error Conditions
Setting locks in the cache can fail for a variety of rea-
sons. A Lock Set instruction addressing a byte in stor-
age that is not allowed to be accessed by the storage
access control mechanism (see Section 6.7.6) will
cause a Data Storage interrupt (DSI). Addresses refer-
enced by Cache Locking instructions are always trans-
lated as data references; therefore, icbtls instructions
that fail to translate or are not allowed by the storage
access control mechanism cause Data TLB Error inter-
rupts and Data Storage interrupts, respectively. Cache
Locking and clearing operations can fail due to
non-privileged access. The methods for determining
other failure conditions such as unable-to-lock or over-
locking (see below), is implementation-dependent. 

If the Embedded.Hypervisor category is supported and
MSRPUCLEP = 1, an attempt to execute a Cache Lock-
ing instruction in guest state results in an Embedded
Hypervisor Privilege exception if MSRPR = 0 or a cache
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locking exception if MSRPR = 1. When the Embed-
ded.Hypervisor category is not supported, MSRPUCLEP
= 0, or MSRGS = 0, then if a Cache Locking instruction
is executed in user mode and MSRUCLE is 0, a cache
locking exception occurs. If a Data Storage interrupt
occurs as a result of a cache locking exception, one of
the following ESR or GESR bits is set to 1 (GESR if the
Embedded.Hypervisor category is supported and the
interrupt is directed to the guest. Otherwise, ESR). 

Bit Description

42 DLK0 

0 Default setting.
1 A dcbtls, dcbtstls, dcblq., or dcblc

instruction was executed in user mode.

43 DLK1

0 Default setting.
1 An icbtls or icblc instruction was exe-

cuted in user mode.

[Category:Embedded.Hypervisor]
The behavior of Cache Locking instructions in guest
privileged state (dcbtls, dcbtstls, dcblc, dcblq.,
icbtls, icblc, icblq.) is dependent on the setting of
MSRPUCLEP. When MSRPUCLEP = 0, Cache Locking
instructions are permitted to execute normally in the
guest privileged state. When MSRPUCLEP = 1, cache
locking instructions are not permitted to execute in the
guest privileged state and cause an Embedded Hyper-
visor Privilege exception when executed. See
Section 4.2.2, “Machine State Register Protect Regis-
ter (MSRP)”.

6.11.2.2.1 Overlocking

If no exceptions occur for the execution of an dcbtls,
dcbtstls, or icbtls instruction, an attempt is made to
lock the specified block into the cache. If all of the avail-
able cache blocks into which the specified block may be
loaded are already locked, an overlocking condition
occurs. The overlocking condition may be reported in
an implementation-dependent manner.

If an overlocking condition occurs, it is implementa-
tion-dependent whether the specified block is not
locked into the cache or if another locked block is
evicted and the specified block is locked.

The selection of which block is replaced in an overlock-
ing situation is implementation-dependent. The over-
locking condition is still said to exist, and is reflected in
any implementation-dependent overlocking status.

An attempt to lock a block that is already present and
valid in the cache will not cause an overlocking condi-
tion.

If a cache block is to be loaded because of an instruc-
tion other than a Cache Management or Cache Locking

instruction and all available blocks into which the block
can be loaded are locked, the instruction executes and
completes, but no cache blocks are unlocked and the
block is not loaded into the cache.

  

6.11.2.2.2 Unable-to-lock, Unable-to-unlock, and 
Unable-to-query Conditions

If no exceptions occur and no overlocking condition
exists, an attempt to set, query,  or unlock a lock may
fail if any of the following are true:

The target address is marked Caching Inhibited, or
the storage control attributes of the address use a
coherency protocol that does not support locking.
The target cache is disabled or not present.
The CT field of the instructions contains a value
not supported by the implementation.
Any other implementation-specific error conditions
are detected.

If an unable-to-lock or unable-to-unlock condition
occurs, the Lock Set or Lock Clear instruction is treated
as a no-op and the condition may be reported in an
implementation-dependent manner. If an
unable-to-query condition occurs,  the CR0 status bit
for the query is set to 0.

Since caches may be shared among threads, an
overlocking condition may occur when loading a
block even though a given thread has not locked all
the available cache blocks. Similarly. blocks may be
unlocked as a result of invalidations by other
threads.

Programming Note
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6.11.2.3 Cache Locking Instructions

Data Cache Block Lock Query X-form

dcblq. CT,RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

The block containing the byte addressed by EA in the
data cache specified by the CT field is queried to deter-
mine its lock status and CR0 is set as follows:

CR0 = 0b00 || status || XERSO

Status is set to 1 if the block is locked in the data cache
specified by the CT field. Status is set to 0 if the block is
not locked in the data cache specified by the CT field.

The instruction is treated as a Load.

If an unable-to-query condition occurs (see Section
6.11.2.2.2)  status is set to 0.

This instruction is privileged unless the Embedded
Cache Locking.User Mode category is supported. If the
Embedded Cache Locking.User Mode category is sup-
ported, this instruction is privileged only if MSRUCLE=0.

Special Registers Altered:
CR0

Instruction Cache Block Lock Query
X-form

icblq. CT,RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

The block containing the byte addressed by EA in the
instruction cache specified by the CT field is queried to
determine its lock status and CR0 is set as follows:

CR0 = 0b00 || status || XERSO

Status is set to 1 if the block is locked in the instruction
cache specified by the CT field. Status is set to 0 if the
block is not locked in the instruction cache specified by
the CT field.

The instruction is treated as a Load.

If an unable-to-query condition occurs (see Section
6.11.2.2.2)  status is set to 0.

This instruction is privileged unless the Embedded
Cache Locking.User Mode category is supported. If the
Embedded Cache Locking.User Mode category is sup-
ported, this instruction is privileged only if MSRUCLE=0.

Special Registers Altered:
CR0

31 / CT RA RB 422 1
0 6 7 11 16 21 31 31 / CT RA RB 198 1

0 6 7 11 16 21 31
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Data Cache Block Touch and Lock Set
X-form 

dcbtls CT,RA,RB

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbtls instruction provides a hint that the program
will probably soon load from the block containing the
byte addressed by EA, and that the block containing
the byte addressed by EA is to be loaded and locked
into the cache specified by the CT field. (See
Section 4.3 of Book II.) If the CT field is set to a value
not supported by the implementation, no operation is
performed.

If the block already exists in the cache, the block is
locked without accessing storage. An unable-to-lock
condition may occur (see Section 6.11.2.2.2), or an
overlocking condition may occur (see Section
6.11.2.2.1). 

The dcbtls instruction may complete before the opera-
tion it causes has been performed.

The instruction is treated as a Load. 

This instruction is privileged unless the Embedded
Cache Locking.User Mode category is supported. If the
Embedded Cache Locking.User Mode category is
supported, this instruction is privileged only if
MSRUCLE=0.

Special Registers Altered:
    None

Data Cache Block Touch for Store and 
Lock Set X-form 

dcbtstls CT,RA,RB  

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbtstls instruction provides a hint that the pro-
gram will probably soon store to the block containing
the byte addressed by EA, and that the block contain-
ing the byte addressed by EA is to be loaded and
locked into the cache specified by the CT field. (See
Section 4.3 of Book II.) If the CT field is set to a value
not supported by the implementation, no operation is
performed.

If the block already exists in the cache, the block is
locked without accessing storage. An unable-to-lock
condition may occur (see Section 6.11.2.2.2), or an
overlocking condition may occur (see Section
6.11.2.2.1).

The dcbtstls instruction may complete before the oper-
ation it causes has been performed.

The instruction is treated as a Store. 

This instruction is privileged unless the Embedded
Cache Locking.User Mode category is supported. If the
Embedded Cache Locking.User Mode category is sup-
ported, this instruction is privileged only if MSRUCLE=0.

Special Registers Altered:
    None

31 / CT RA RB 166 /
0 6 7 11 16 21 31

31 / CT RA RB 134 /
0 6 7 11 16 21 31
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Instruction Cache Block Touch and Lock 
Set X-form

icbtls CT,RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

The icbtls instruction causes the block containing the
byte addressed by EA to be loaded and locked into the
instruction cache specified by CT, and provides a hint
that the program will probably soon execute code from
the block. See Section 4.3 of Book II for a definition of
the CT field.

If the block already exists in the cache, the block is
locked without refetching from memory.

This instruction treated as a Load (see Section 4.3 of
Book II).

If an unable-to-lock condition occurs (see Section
6.11.2.2.2) no operation is performed.

This instruction is privileged unless the Embedded
Cache Locking.User Mode category is supported. If the
Embedded Cache Locking.User Mode category is sup-
ported, this instruction is privileged only if MSRUCLE=0.

Special Registers Altered:
None

Instruction Cache Block Lock Clear 
X-form

icblc CT,RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

The block containing the byte addressed by EA in the
instruction cache specified by the CT field is unlocked.

The instruction is treated as a Load.

If an unable-to-lock condition occurs (see Section
6.11.2.2.2) no operation is performed. If the block con-
taining the byte addressed by EA is not locked in the
specified cache, no cache operation is performed.

This instruction is privileged unless the Embedded
Cache Locking.User Mode category is supported. If the
Embedded Cache Locking.User Mode category is sup-
ported, this instruction is privileged only if MSRUCLE=0.

Special Registers Altered:
None

Data Cache Block Lock Clear X-form

dcblc CT,RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

The block containing the byte addressed by EA in the
data cache specified by the CT field is unlocked.

The instruction is treated as a Load.

If an unable-to-lock condition occurs (see Section
6.11.2.2.2)  no operation is performed. If the block con-
taining the byte addressed by EA is not locked in the
specified cache, no cache operation is performed.

This instruction is privileged unless the Embedded
Cache Locking.User Mode category is supported. If the
Embedded Cache Locking.User Mode category is sup-
ported, this instruction is privileged only if MSRUCLE=0.

Special Registers Altered:
None

 

31 / CT RA RB 486 /
0 6 7 11 16 21 31

31 / CT RA RB 230 /
0 6 7 11 16 21 31

31 / CT RA RB 390 /
0 6 7 11 16 21 31

The dcblc and icblc instructions are used to
remove locks previously set by the corresponding
lock set instructions.
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6.11.3 Synchronize Instruction 
The Synchronize instruction is described in
Section 4.4.3 of Book II, but only at the level required
by an application programmer. This section describes
properties of the instruction that are relevant only to
operating system programmers. 

When L=1, the Sync instruction provides an ordering
function for the operations caused by the Message
Send instruction and previous Stores for which the
specified storage location is in storage that is Memory
Coherence Required and is neither Write Through
Required nor Caching Inhibited.  The stores must be
performed with respect to the thread receiving the mes-
sage prior to any access caused by or associated with
any instruction executed after the corresponding inter-
rupt is taken.

In conjunction with the tlbie and tlbsync instructions,
when L=0, the sync instruction provides an ordering
function for TLB invalidations and related storage
accesses on other threads as described in the tlbsync
instruction description on page 1141.

When L=0, the Sync instruction also provides an order-
ing function for the operations caused by the Message
Send instruction and previous Stores.  The stores must
be performed with respect to the thread receiving the
message prior to any access caused by or associated
with any instruction executed after the corresponding
interrupt is taken.

6.11.4 LRAT [Category: Embed-
ded.Hypervisor.LRAT] and TLB 
Management
Unless the Embedded.Page Table category is sup-
ported, no format for the Page Tables or the Page Table
Entries is implied. Software has significant flexibility in
implementing a custom replacement strategy. For
example, software may choose to set IPROT=1 for TLB
entries that correspond to frequently used storage, so
that those entries are never cast out of the TLB and
TLB Miss exceptions to those pages never occur. At a
minimum, software must maintain a TLB entry or
entries for the Instruction and Data TLB Error interrupt
handlers.

TLB management is performed in software with some
hardware assist. This hardware assist consists of a
minimum of:

Automatic recording of the effective address caus-
ing a TLB Error interrupt. For Instruction TLB Error
interrupts, the address is saved in the Save/
Restore Register 0. For Data TLB Error interrupts,
the address is saved in the Data Exception
Address Register. 

Automatic updating of the MAS register on the
occurrence of a TLB Error interrupt if the Embed-

ded.Hypervisor category is not supported, MAS
Register updates are enabled for interrupts
directed to the hypervisor (EPCRDMIUH = 0), or the
interrupt is directed to the guest state.

Instructions for reading, writing, searching, invali-
dating, and synchronizing the TLB. If the Embed-
ded.Hypervisor.LRAT category is supported, a
subset of these instructions can also be used for
reading and writing the LRAT.

 

6.11.4.1 Reading TLB or LRAT Entries
TLB entries can be read by executing tlbre instructions.
If the Embedded.Hypervisor.LRAT category is sup-
ported, LRAT entries can be read by also executing
tlbre instructions. At the time of tlbre execution, a TLB
array is selected if MAS0ATSEL=0 or MSRGS=1. The
LRAT array is selected if MAS0ATSEL=1 and MSRGS=0.
The LRAT can be read only when in hypervisor state. 

If a TLB array is selected, MAS0TLBSEL selects the TLB
array to be read. If TLBnCFGHES=0, the TLB entry in
the selected TLB array is selected by MAS0ESEL and
MAS2EPN. In this case, MAS0ESEL selects one of the
possible entries that can be used for a given MAS2EPN.
If TLBnCFGHES=1, the TLB entry in the selected TLB
array is selected by MAS0ESEL and by a hardware gen-
erated hash based on MAS1TID TSIZE, and MAS2EPN.
In this case, MAS0ESEL selects one of the possible
entries that can be used for a given MAS1TID TSIZE and
MAS2EPN. 

If an LRAT array is selected, the LRAT entry is selected
by MAS0ESEL and MAS2EPN. In this case, MAS0ESEL
selects one of the possible entries that can be used for
a given MAS2EPN. 

Specifying invalid values for MAS0TLBSEL, MAS0ESEL,
MAS2EPN or, if TLBnCFGHES=1, MAS1TID or
MAS1TSIZE, results in MAS1V being set to 0 and unde-
fined results in the other MAS register fields that are
loaded by the tlbre instruction. Which values are invalid
is implementation-dependent. For example, even
though an implementation has only one TLB array, the
implementation could simply ignore MAS0TLBSEL, read
the selected entry in the TLB array, and load the MAS
registers from the TLB entry regardless of the
MAS0TLBSEL value.

If the Embedded.Hypervisor category is supported
and if EPCRITLBGS DTLBGS = 0b00, the hypervisor
can virtualize the physical TLB by keeping a soft-
ware copy of at least the guest operating system
TLB entries with IPROT=1 and avoid keeping the
guest Instruction and Data TLB Error interrupt han-
dlers in the physical TLB.

Programming Note
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6.11.4.2 Writing TLB or LRAT Entries
TLB entries can be written by executing tlbwe instruc-
tions. If the Embedded.Hypervisor.LRAT category is
supported, LRAT entries can also be written by execut-
ing tlbwe instructions. At the time of tlbwe execution, a
TLB array is selected if MAS0ATSEL=0 or MSRGS=1.
The LRAT array is selected if MAS0ATSEL=1 and
MSRGS=0. The LRAT can be written only when in
hypervisor state. 

If a TLB array is selected, MAS0TLBSEL selects the TLB
array to be written. If TLBnCFGHES=0, the TLB entry in
the selected TLB array is selected by MAS0ESEL and
MAS2EPN. In this case, MAS0ESEL selects one of the
possible entries that can be used for a given MAS2EPN.
If TLBnCFGHES=1 and MAS0HES=0, the TLB entry in
the selected TLB array is selected by a hardware gen-
erated hash based on MAS1TID TSIZE, MAS2EPN, and
MAS0ESEL. In this case, MAS0ESEL selects one of the
possible entries that can be used for a given
MAS0TLBSEL, MAS1TID TSIZE, and MAS2EPN. If
TLBnCFGHES=1 and MAS0HES=1, the TLB entry in the
selected TLB array is selected by a hardware replace-
ment algorithm and a hardware generated hash based
on MAS1TID TSIZE and MAS2EPN. 

If an LRAT array is selected, the LRAT entry is selected
by MAS0ESEL and MAS2EPN. In this case, MAS0ESEL
selects one of the possible entries that can be used for
a given MAS2EPN. LRAT entries can be written only
with MAS0HES= 0.

At the time of tlbwe execution, the MAS registers con-
tain the contents to be written to the indexed TLB entry.
Upon completion of the tlbwe instruction, the contents
of the MAS registers corresponding to TLB entry fields
will be written to the indexed TLB entry, except that if
the Embedded.Hypervisor.LRAT category is supported,
guest execution of TLB Management instructions is
enabled (EPCRDGTMI=0), MSRPR = 0, MSRGS = 1,
and, for the TLB array to be written, TLBnCFGGTWE =
1, the RPN from the MAS registers is treated like an
LPN and translated by the LRAT, and the RPN from the
LRAT is written to the TLB entry if the translation is suc-
cessful. See Section 6.9. If the LRAT translation fails,
an LRAT Miss exception occurs.

If the Embedded.Hypervisor.LRAT category is sup-
ported and a guest supervisor executes a tlbwe
instruction with MAS1IPROT=1 or for which the entry to
be overwritten has IPROT=1, an Embedded Hypervisor
Privilege exception occurs. However, if MAS0WQ=0b01,

it is implementation-dependent whether the Embedded
Hypervisor Privilege exception occurs.

If the Embedded.Hypervisor.LRAT category is sup-
ported and a guest supervisor executes a tlbwe
instruction with MAS0HES =0, it is implementa-
tion-dependent whether the Embedded Hypervisor
Privilege exception occurs.

If a TLB entry is being written with MAS0HES =1, the
hardware replacement algorithm picks an entry in the
selected array from the set of entries which can be
used for translating addresses with the specified TID,
TSIZE and EPN. Whenever possible, an entry with
IPROT equal to 0 is selected. However, an Embedded
Hypervisor Privilege exception occurs on a tlbwe if all
the following conditions are met.

The Embedded.Hypervisor.LRAT category is sup-
ported.
The tlbwe is executed in guest supervisor state.
IPROT=1 for all entries which can be used for
translating addresses with the specified TID,
TSIZE and EPN.
MAS0WQ= 0b00

If MAS0WQ= 0b01, MAS0HES =1, and the first three of
the above conditions are met, it is implementa-
tion-dependent whether an Embedded Hypervisor Priv-
ilege exception occurs.

For TLBs with TLBnCFGHES=1, the relationship
between the TLB entry selected by a tlbwe with
MAS0HES=0 versus the TLB entry selected by a tlbwe
with MAS0HES=1 is implementation-dependent and
may depend on the history of TLB use.

If an invalid value is specified for MAS0TLBSEL
MAS0ESEL or MAS2EPN, either no TLB entry is written
by the tlbwe, or the tlbwe is performed as if some
implementation-dependent, valid value were substi-
tuted for the invalid value, or an Illegal Instruction
exception occurs. If the page size specified by
MAS1TSIZE is not supported by the specified array, the
tlbwe may be performed as if TSIZE were some imple-
mentation-dependent value, or an Illegal Instruction
exception occurs.

If the Embedded.Hypervisor category is supported but
the Embedded.Hypervisor.LRAT category is not sup-
ported, the tlbwe instruction is hypervisor privileged.
Otherwise, this instruction is privileged.

 

When reading TLB entries, MAS2EPN or a subset
of the bits in MAS2EPN is used to form the index for
accessing the TLB array, i.e., MAS2EPN isn’t neces-
sarily an effective page number. 

Programming Note

Since a hardware replacement algorithm selects
the entry for a tlbwe instruction with MAS0HES = 1,
it is typically not possible to write the same entry
using a second tlbwe instruction with MAS0HES =
1. Doing so might create multiple entries for the
same virtual page. If software needs to change the
value of any of the TLB fields, software should gen-
erally invalidate the original entry before executing
the second tlbwe instruction with the new values.

Programming Note
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6.11.4.2.1 TLB Write Conditional [Embed-
ded.TLB Write Conditional]

The tlbsrx. <E.TWC> instruction and tlbwe instruction
with MAS0WQ = 0b01 together permit a convenient way
for software to write a TLB entry while ensuring that the
entry is not a duplicate entry and is not a stale, invalid
value. Without the TLB Write Conditional facility, soft-
ware must hold a software lock during the process of
creating a TLB entry in order to prevent other threads
from updating a shared TLB or invalidating a TLB entry.
The tlbsrx. <E.TWC> instruction has two effects that
occur either at the same time or in the following order.

1. A TLB-reservation is established for a virtual
address, and, if the Embedded Page Table cate-
gory is supported, an associated IND value. 

2. A search of the selected TLB array is performed.

The TLB-reservation is used by a subsequent tlbwe
instruction that writes a TLB entry (i.e., MAS0ATSEL = 0
or MSRGS=1) with MAS0WQ = 0b01. The TLB is only
written by this tlbwe if the TLB-reservation still exists at
the instant the TLB is written. A tlbwe that writes the
TLB is said to “succeed”. TLB Write Conditional cannot
be used for the LRAT. 

TLB-reservation

A TLB-reservation is set by a tlbsrx. <E.TWC> instruc-
tion. The TLB-reservation has an associated IND
<E.PT> and virtual address consisting of AS, PID,
EA0:53, LPID <E.HV>, and GS <E.HV>. These values
come from MAS1IND <E.PT>, MAS1TS MAS1TID,
MAS2EPN, MAS5SLPID <E.HV>, and MAS5SGS
<E.HV>, respectively. There is no specific page size
associated with the TLB-reservation. The TLB-reserva-
tion applies to any virtual page that contains the virtual
address. There is only one TLB-reservation in a thread.

The TLB-reservation is cleared by any of the following.
The thread holding the TLB-reservation executes
another tlbsrx. <E.TWC>: This clears the first
TLB-reservation and establishes a new one.
A tlbivax is executed by any thread and all the fol-
lowing conditions are met.

Either the Embedded.Hypervisor category is
not supported or the MAS5SGS and
MAS5SLPID values used by the tlbivax match
the GS and LPID values associated with the
TLB-reservation.
The MAS6SPID and MAS6SAS values used by
the tlbivax match the PID and AS values
associated with the TLB-reservation.
The EA0:n-1 values of the tlbivax match the
EA0:n-1 values associated with the TLB-reser-
vation, where n=64-log2(page size in bytes)
and page size is specified by the MAS6ISIZE.

The thread holding the TLB-reservation or another
thread that shares the TLB with this thread exe-
cutes a mtspr to MMUCSR0 that performs a TLB
invalidate all operation and LPIDR contents of the

thread executing the mtspr matches the LPID
value associated with the TLB-reservation.
If Category: Embedded.Hypervisor is supported,
and a tlbilx with T = 0 is executed by the thread
holding the TLB-reservation or by a thread that
shares the TLB with this thread, and the
MAS5SLPID value used by the tlbilx matches the
LPID value associated with the TLB-reservation.
If Category: Embedded.Hypervisor is supported,
and a tlbilx with T = 1 is executed by the thread
holding the TLB-reservation or by a thread that
shares the TLB with this thread, and the
MAS5SLPID and MAS6SPID values used by the
tlbilx match the LPID and PID values associated
with the TLB-reservation.
If Category: Embedded.Hypervisor is supported,
and a tlbilx with T = 3 is executed by the thread
holding the TLB-reservation or by a thread that
shares the TLB with this thread, the MAS5SGS,
MAS5SLPID, MAS6SPID, and MAS6SAS values used
by the tlbilx match the GS, LPID, PID, and AS val-
ues associated with the TLB-reservation, and
EA0:n-1 values of the tlbilx match the EA0:n-1 val-
ues associated with the TLB-reservation, where
n=64-log2(page size in bytes) and page size is
specified by the MAS6ISIZE.
A tlbwe instruction is executed by the thread hold-
ing the TLB-reservation or by a thread that shares
the TLB with this thread, and all the following are
true. 

An interrupt does not occur as a result of the
tlbwe instruction.
The Embedded.Hypervisor category is not
supported or the MAS8TLPID value used by
the tlbwe match the LPID value associated
with the TLB-reservation.
The Embedded.Hypervisor category is not
supported or the MAS8TGS value used by the
tlbwe match the GS value associated with the
TLB-reservation.
The MAS1TID value used by the tlbwe
matches the PID value associated with the
TLB-reservation.
The Embedded.Page Table category is not
supported or the MAS1IND value used by the
tlbwe matches the IND value associated with
the TLB-reservation.
The MAS1TS value used by the tlbwe
matches the AS value associated with the
TLB-reservation.
Bits 0:(n-1) of MAS2EPN used by the tlbwe
match the EA0:n-1 values associated with the
TLB-reservation, where
n=64-log2(page size in bytes) and page size
is specified by the MAS1TSIZE used by the
tlbwe. 
Either of the following conditions are met.

The MAS0WQ used by the tlbwe
instruction is 0b00.
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The MAS0WQ used by the tlbwe
instruction is 0b01 and the TLB-reser-
vation for the thread executing the
tlbwe exists.

The thread that has the TLB-reservation or another
thread that shares the TLB with this thread that, as
a result of a Page Table translation, writes a TLB
entry and all the following conditions are met.

The TS and EA0:n-1 values for the new TLB
entry match the corresponding values associ-
ated with the TLB-reservation where n =
64-log2(page size in bytes), where page size
is specified by the SIZE value written to the
TLB entry.
The Embedded.Hypervisor category is not
supported or TLPID for the new TLB entry
matches the LPID associated with the
TLB-reservation. 
The Embedded.Hypervisor category is not
supported or TGS for the new TLB entry
matches the GS associated with the TLB-res-
ervation. 
The TID for the new TLB entry matches the
PID associated with the TLB-reservation.
The Valid bit for the new TLB entry is 1.
The IND value associated with the TLB-reser-
vation is 0.

Implementations are allowed to clear a TLB-reservation
for conditions other than those specified above. The
architecture assures that a TLB-reservation will be
cleared when required per the above requirements, but
does not guarantee that these are the only conditions
for clearing a TLB-reservation. However, the occur-
rence of an interrupt does not clear a TLB-reservation.

  

Synchronization of TLB-reservation

The side-effect of a tlbsrx. <E.TWC> instruction setting
the TLB-reservation can be synchronized by a context
synchronizing instruction or event.

 

Serialization of TLB operations

Regardless of which threads initiated the operations, all
operations (reads, writes, invalidates, and searches)
involving a single TLB are defined to be serialized such
that only one operation occurs at a time. This operation
is consistent with the program order of the thread per-
forming the TLB operation. This also applies to a TLB
that is shared by multiple threads. Even if there is no
matching TLB entry on a tlbivax, the TLB is still
searched to determine there is no matching entry and
this search is still referred to as the TLB invalidation.

If two threads share a TLB and both simultaneously
execute a tlbsrx. <E.TWC> instruction for a virtual
address in a virtual page V, and then both threads exe-
cute a TLB Write Conditional to create a TLB entry for
the virtual page V, at most one of these tlbwe instruc-
tions succeeds.

If, after thread P1 establishes a TLB-reservation for a
virtual address in a virtual page V, another thread P2
executes a tlbivax that invalidates a TLB entry for the
virtual page V and thread P1 does a TLB Write Condi-
tional to create a TLB entry for the virtual page V, then
one of the following occurs.

The TLB invalidation occurs before the TLB write.
Thus the TLB-reservation is lost and the TLB Write
Conditional does not succeed.
The TLB write occurs before the TLB invalidation.
Thus the TLB Write Conditional succeeds and the
resulting TLB entry created by the tlbwe is invali-
dated by the tlbivax.

Forward progress

Forward progress in loops that use tlbsrx. <E.TWC>
and tlbwe with MAS0WQ = 0b01 is achieved by a coop-
erative effort among hardware and system software.

Software running on two threads that share a TLB
should not attempt to create two TLB entries that
would both translate a specific virtual address and
where the TID or LPID values differ, i.e., one of the
values is zero and the other is nonzero. The
TLB-reservation will not protect against this case,
since a TLB-reservation is not cleared by a tlbwe
unless there is an exact match on the PID and
LPID values.

Likewise software should not attempt to create a
Page Table entry and a TLB entry where both
entries would translate a specific virtual address,
where the TLB array written by the Page Table
translation is used by the same thread that uses
this TLB entry, and where the TID or LPID values of
the PTE and TLB entry differ, i.e., one of the values
is zero and the other is nonzero. The TLB-reserva-
tion will not protect against this case, since a
TLB-reservation is not cleared by a TLB write
resulting from a Page Table translation unless there
is an exact match on the PID and LPID values.

Programming Note

A common operation is to ensure that the TLB-res-
ervation has been set by a tlbsrx. <E.TWC>
instruction before executing a subsequent Load
instruction of a software page table entry in order to
ensure the TLB-reservation detects an invalidation
of the entry that was accessed. Beside using a con-
text synchronizing instruction, software can also
ensure the TLB-reservation has been set by a tlb-
srx. <E.TWC> instruction by reading the CR0 field
or CR with a mfocrf or mfcr instruction after the
tlbsrx. <E.TWC> and creating a dependency
between the data read from CR0 or CR and the
address used for the subsequent Load instruction.
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The architecture guarantees that when a thread exe-
cutes a tlbsrx. <E.TWC> to set a TLB-reservation for
virtual address X and then a TLB Write Conditional to
write a TLB entry, either

1. the TLB Write Conditional succeeds and the TLB
entry is written, or 

2. the TLB Write Conditional fails because the
TLB-reservation was reset because some other
thread invalidated all TLB entries in the system for
the virtual page containing the virtual address X or
some other thread wrote a shared TLB entry for
the virtual page containing the virtual address X, or 

3. the TLB Write Conditional fails because the
thread’s TLB-reservation was lost for some other
reason.

In Case 1 forward progress is made in the sense that
the thread successfully wrote the TLB entry. In Case 2,
the system as a whole makes progress in the sense
that either some thread successfully invalidated TLB
entries for virtual address X or some thread that shares
the TLB wrote a TLB entry for the virtual page contain-
ing virtual address X. Case 3 covers TLB-reservation
loss required for correct operation of the rest of the sys-
tem. This includes TLB-reservation loss caused by
some other thread invalidating all entries in a shared
TLB, as well as TLB-reservation loss caused by system
software invalidating all entries for the PID value asso-
ciated with virtual address X. It may also include imple-
mentation-dependent causes of reservation loss.

An implementation may make a forward progress guar-
antee, defining the conditions under which the system
as a whole makes progress. Such a guarantee must
specify the possible causes of TLB-reservation loss in
Case 3. While the architecture alone cannot provide
such a guarantee, the characteristics listed in Cases 1
and 2 are necessary conditions for any forward
progress guarantee. An implementation and operating
system can build on them to provide such a guarantee.

  

6.11.4.3 Invalidating TLB Entries
TLB entries may be invalidated by three different meth-
ods or if the Embedded.Hypervisor category is sup-
ported, by four different methods. 

The TLB entry can be invalidated as the result of a
tlbwe instruction that sets the MAS1V bit in the
entry to 0. 
TLB entries may be invalidated as a result of a
tlbivax instruction or from an invalidation resulting
from a tlbivax on another thread. 

TLB entries may be invalidated as a result of an
invalidate all operation specified through appropri-
ate settings in the MMUCSR0.
If the Embedded.Hypervisor category is sup-
ported, TLB entries may be invalidated as a result
of a tlbilx instruction.

See Section 6.11.4.4 for the effects of the above meth-
ods on TLB lookaside information.

In systems consisting of a single-threaded processor
as well as in systems consisting of multi-threaded pro-
cessors, invalidations can occur on a wider set of TLB
entries than intended. That is, a virtual address pre-
sented for invalidation may cause not only the intended
TLB targeted for invalidation to be invalidated, but may
also invalidate other TLB entries depending on the
implementation. This is because parts of the translation
mechanism may not be fully specified to the hardware
at invalidate time. This is especially true in SMP sys-
tems, where the invalidation address must be supplied
to all threads in the system, and there may be other lim-
itations imposed by the hardware implementation. This
phenomenon is known as generous invalidates. The
architecture assures that the intended TLB will be inval-
idated, but does not guarantee that it will be the only
one. A TLB entry invalidated by writing the V bit of the
TLB entry to 0 by use of a tlbwe instruction is guaran-
teed to invalidate only the selected TLB entry. Invali-
dates occurring from tlbilx or tlbivax instructions or
from tlbivax instructions on another thread may cause
generous invalidates.

The architecture provides a method to protect against
generous invalidations. This is important since there
are certain virtual memory regions that must be prop-
erly mapped to make forward progress. To prevent this,
the architecture specifies an IPROT bit for TLB entries.
If the IPROT bit is set to 1 in a given TLB entry, that
entry is protected from invalidations resulting from
tlbilx <E.HV> and tlbivax instructions, or from invali-
date all operations. TLB entries with the IPROT field set
may only be invalidated by explicitly writing the TLB
entry and specifying a 0 for the V (MAS1V) field. This
does not preclude the possibility that a TLB entry with
the IPROT field set can be replaced by a tlbwe execut-
ing with hypervisor privilege when MAS0HES=1. A sub-
sequent tlbivax or tlbilx can then invalidate the
replaced TLB entry.

To invalidate one or more individual virtual pages from
all TLB arrays in all threads without the involvement of
software running on other threads, software can exe-
cute the following sequence of instructions.

one or more tlbivax instructions
mbar or sync
tlbsync
sync

The architecture does not include a “fairness guar-
antee”. In competing for a TLB-reservation, two
threads can indefinitely lock out a third.

Programming Note
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Other instructions, excluding tlbivax, may be inter-
leaved with the instruction sequence shown above, but
the instructions in the sequence must appear in the
order shown. On systems consisting of only a sin-
gle-threaded processor or on systems where every
thread shares every TLB, the tlbsync and the preced-
ing mbar or sync can be omitted.

  

 

 

 

 

 

 

 

6.11.4.4 TLB Lookaside Information
For performance reasons, most implementations also
have implementation-specific lookaside information
that is used in address translation. This lookaside infor-
mation is a cache of recently used TLB entries. 

If TLBnCFGHES=0, lookaside information for the asso-
ciated TLB array is kept coherent with the TLB and is
invisible to software. Any write to the TLB array that dis-
places or updates an entry will be reflected in the

Implementations are permitted to have a restriction
on the number of threads doing a tlbivax-mbar/
sync-tlbsync-sync sequence. This restriction
could be imposed by the system or the hardware.

For the preceding instruction sequence, the mbar
or first sync instruction prevents the reordering of
tlbivax instructions previously executed by the
thread with respect to the subsequent tlbsync
instruction. The tlbsync instruction and the subse-
quent sync instruction together ensure that all stor-
age accesses for which the address was translated
using the translations being invalidated will be per-
formed with respect to any thread or mechanism, to
the extent required by the associated Memory
Coherence Required and Alternate Coherency
Mode attributes, before any data accesses caused
by instructions following the sync instruction are
performed with respect to that thread or mecha-
nism.

The most obvious issue with generous invalidations
is the code memory region that serves as the
exception handler for MMU faults. If this region
does not have a valid mapping, an MMU exception
cannot be handled because the first address of the
exception handler will result in another MMU
exception.

Not all TLB arrays in a given implementation will
implement the IPROT attribute. It is likely that
implementations that are suitable for demand page
environments will implement it for only a single
array, while not implementing it for other TLB
arrays.

Programming Note

Programming Note

Programming Note

Programming Note

Operating systems and hypervisors need to use
great care when using protected (IPROT) TLB
entries, particularly in SMP systems. A system that
contains TLB entries on other threads will require a
cross thread interrupt or some other synchroniza-
tion mechanism to assure that each thread per-
forms the required invalidation by writing its own
TLB entries.

For MMU Architecture Version 1.0, to ensure a TLB
entry that is not protected by IPROT is invalidated if
software does not know which TLB array the entry
is in, software should issue a tlbivax instruction tar-
geting each TLB in the implementation with the EA
to be invalidated.

The preferred method of invalidating entire TLB
arrays is invalidation using MMUCSR0, however
tlbilx may be more efficient.

Invalidations using MMUCSR0 only affect the TLB
array on the thread that performs the invalidation.
To perform invalidations on all threads in a coher-
ence domain on a multi-threaded processor or on a
system containing multiple single-threaded proces-
sors, software should use tlbivax. If a large num-
ber of TLB entries need to be invalidated, using
MMUCSR0 or, if the Embedded.Hypervisor cate-
gory is supported, tlbilx, on each thread may be
more efficient.

Since a hardware replacement algorithm selects
the entry for a tlbwe instruction with MAS0HES = 1,
it is typically not possible to invalidate the entry
using a second tlbwe instruction with MAS0HES = 1
and MAS1V = 0. If software needs to invalidate a
single entry that was written with MAS0HES = 1,
software should generally invalidate the entry using
tlbilx with T=3 or tlbivax.

Programming Note
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lookaside information, invalidating the lookaside infor-
mation corresponding to the previous TLB entry. Any
type of invalidation of an entry in TLB will also invali-
date the corresponding entry in the lookaside informa-
tion.

If TLBnCFGHES=1, lookaside information for the asso-
ciated TLB array  is not required to be kept coherent
with the TLB. Only in the  following conditions will the
lookaside information be kept coherent  with the TLB.
The MMUCSR0 TLB invalidate all will invalidate all
lookaside information.  The tlbilx and tlbivax instruc-
tions  invalidate lookaside information corresponding to
TLB entry values  that they are specified to invalidate
as well as those TLB entry  values that would have
been invalidated except for their IPROT=1 value.

The same instructions that synchronize invalidations of
TLB entries also synchronize invalidation of TLB looka-
side information.

 

6.11.4.5 Invalidating LRAT Entries
There is only one mechanism for invalidating LRAT
entries. An LRAT entry can be invalidated as the result
of a tlbwe instruction that overwrites the LRAT entry
with a new valid entry or that sets LRATV = 0. Only one
LRAT entry is invalidated by a single tlbwe.

6.11.4.6 Searching TLB Entries
Software may search the MMU by using the tlbsx
instruction, and, if Category: TLB Write Conditional cat-
egory is supported, the tlbsrx. <E.TWC> instruction.
The tlbsrx. <E.TWC> and tlbsx instructions use IND,
PID, and AS values from the MAS registers instead of
the PID registers and the MSR, and, if the Embed-
ded.Hypervisor category is supported, these instruc-
tions use an LPID and GS value from the MAS
registers instead LPIDR and MSR. This allows software
to search address spaces that differ from the current
address space defined by the PID registers. This is
useful for TLB fault handling.

6.11.4.7 TLB Replacement Hardware 
Assist
The architecture provides mechanisms to assist soft-
ware in creating and updating TLB entries when certain
MMU related exceptions occur. This is called TLB
Replacement Hardware Assist. Hardware will update
the MAS registers on the occurrence of a Data TLB
Error Interrupt or Instruction TLB Error interrupt if the
Embedded.Hypervisor category is not supported, MAS

Register updates are enabled for interrupts directed to
the hypervisor (EPCRDMIUH = 0), or the interrupt is
directed to the guest state.

When a Data or Instruction TLB Error interrupt (TLB
miss) occurs and if the Embedded.Hypervisor category
is not supported, MAS Register updates are enabled
for interrupts directed to the hypervisor (EPCRDMIUH =
0), or the interrupt is directed to the guest state, then
MAS0, MAS1, and MAS2 are automatically updated
using the defaults specified in MAS4 as well as the AS
and EPN values corresponding to the access that
caused the exception. MAS6 is updated to set
MAS6SPID to the value of PID (EPLCEPID for External
PID Load instructions or EPSCEPID for External PID
Store instructions), MAS6SIND to the value of
MAS4INDD, and MAS6SAS to the value of MSRDS or
MSRIS depending on the type of access (data or
instruction) that caused the error. In addition, if
MAS4TLBSELD identifies a TLB array that supports NV
(Next Victim), MAS0ESEL is loaded with a value that
hardware predicts represents the best TLB entry to vic-
timize to create a new TLB entry and MAS0NV is
updated with the TLB entry index of what hardware pre-
dicts to be the next victim for the set of entries which
can be used for translating addresses with the EPN that
caused the exception. Thus MAS0ESEL identifies the
current TLB entry to be replaced, and MAS0NV points
to the next victim. When software writes the TLB entry,
the MAS0NV field is written to the TLB array’s set of
next victim values. The algorithm used by the hardware
to determine which TLB entry should be targeted for
replacement is implementation-dependent.

Next Victim support is provided for TLB arrays that are
set associative and that have TLBnCFGHES=0. Next
Victim support is not provided for TLB arrays that are
fully associative.

The automatic update of the MAS registers sets up all
the necessary fields for creating a new TLB entry with
the exception of RPN, the U0-U3 attribute bits, and the
permission bits. With the exception of the upper 32 bits
of RPN and the page attributes (should software desire
to specify changes from the default attributes), all the
remaining fields are located in MAS3, requiring only the
single MAS register manipulation by software before
writing the TLB entry.

For Instruction Storage interrupt (ISI) and Data Storage
interrupt (DSI) related exceptions, the MAS registers
are not updated. Software must explicitly search the
TLB to find the appropriate entry.

The update of MAS registers through TLB Replace-
ment Hardware Assist is summarized in Table 11 on
page 1116.

If TLBnCFGHES=1 for a TLB array and it is impor-
tant that the lookaside information corresponding to
a TLB entry be invalidated,  software should use
tlbilx or tlbivax to invalidate the virtual  address. 

Programming Note
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6.11.4.8 32-bit and 64-bit Specific MMU 
Behavior
MMU behavior is largely unaffected by whether the
thread is in 32-bit computation mode (MSRCM=0) or
64-bit computation mode (MSRCM=1). The only differ-
ences occur in the EPN field of the TLB entry and the
EPN field of MAS2. The differences are summarized
here.

Executing a tlbwe instruction in 32-bit mode will
set bits 0:31 of the TLB EPN field to zero unless
MAS0ATSEL is set, in which case those bits are not
written to zero.
For an update to MAS registers via TLB Replace-
ment Hardware Assist (see Section 6.11.4.7), an
update to bits 0:53 of the EPN field occurs regard-
less of the computation mode of the thread at the
time of the exception or the interrupt computation
mode in which the interrupt is taken. If the instruc-
tion causing the exception was executing in 32-bit
mode, bits 0:31 of the EPN field in MAS2 will be
set to 0.
Executing a tlbre instruction in 32-bit mode will set
bits 0:31 of the MAS2 EPN field to an undefined
value.

In 32-bit implementations, MAS2U can be used to
read or write EPN0:31 of MAS2.

 

Next Victim support is not provided for a fully asso-
ciative array because such an array is intended for
mostly static mappings of addresses.

This allows a 32-bit OS to operate seamlessly in
32-bit mode on a 64-bit implementation and a
64-bit OS to easily support 32-bit applications.

Programming Note
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6.11.4.9 TLB Management Instructions
The tlbivax instruction is used to invalidate TLB
entries. Additional instructions are used to read and
write, and search TLB entries, and to provide an order-

ing function for the effects of tlbivax. If the Embed-
ded.Hypervisor category is supported, the tlbilx
instruction is used to invalidate TLB entries in the
thread executing the tlbilx.

TLB Invalidate Virtual Address Indexed
X-form

tlbivax RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
for each thread
  if MAV = 1.0 then for TLB array = EA59:60
  if MAV = 2.0 then for each TLB array
    for each TLB entry
      if MMUCFGTWC = 1 or TLBnCFGHES = 1 then
        c I MAS6ISIZE
      else 
        c I entrySIZE
      if MAV = 1.0 then
       m I ¬((1 << (2 × c)) - 1)
      else
       m I ¬((1 << c) - 1)
      if ((EA0:53 & m) = (entryEPN & m)) &
       entrySIZE = MAS6ISIZE &
        entryTID = MAS6SPID & entryTS = MAS6SAS &
       (E.PT not supported | entryIND = MAS6SIND) &
        (E.HV not supported |
         (entryTLPID = MAS5SLPID & 
          entryTGS = MAS5SGS)) |
        ((MAV = 1.0) & (EA61 = 1))
        then 
          if entryIPROT = 0 then entryV I 0

Let the effective address (EA) be the sum (RA|0)+
(RB). The EA is interpreted as show below.

EA0:53 EA0:53

EA54:58 Reserved

EA59:60 TLB array selector [MAV = 1.0] 

00 TLB0
01 TLB1
10 TLB2
11 TLB3

EA61 TLB invalidate all [MAV = 1.0]

EA62:63 Reserved

If EA61=0, all TLB entries on all threads that have all of
the following properties are made invalid. The MAS
registers listed are those in the thread executing the
tlbivax.

The MMU architecture version is 2.0 or the entry is
in the TLB array targeted by EA59:60.

The logical AND of EA0:53 and m is equal to the
logical AND of the EPN value of the TLB entry and
m, where m is based on the following.

If MMUCFGTWC = 1 or TLBnCFGHES = 1, c is
equal MAS6ISIZE. Otherwise, c is equal to
entrySIZE.
If MMU Architecture Version 1.0 is supported,
m is equal to the logical NOT of ((1 << (2 ×
c)) - 1). Otherwise, m is equal to the logical
NOT of ((1 << c) - 1).

The TID value of the TLB entry is equal to MAS6SPID
and the TS value of the TLB entry is equal to
MAS6SAS.
The implementation does not support the Embed-
ded.Page Table category or the IND value of the
TLB entry is equal to MAS6SIND.
Either of the following is true:

The implementation does not support the
Embedded.Hypervisor category.
 The TLPID value of the TLB entry is equal to
MAS5SLPID and the TGS value of the TLB entry
is equal to MAS5SGS.

entryIPROT = 0.

In MMU Architecture Version 1.0 if EA61=1, all entries
in all threads not protected by the IPROT attribute in the
TLB array targeted by EA59:60 are made invalid.

If the instruction specifies a TLB array that does not
exist, the instruction is treated as if the instruction form
is invalid. If the implementation requires the page size
to be specified by MAS6ISIZE (MMUCFGTWC = 1 or, for
the specified TLB array, TLBnCFGHES = 1) and the
page size specified by MAS6ISIZE is not supported by
the implementation, the instruction is treated as if the
instruction form is invalid.

If the operation isn’t a TLB invalidate all and there are
multiple entries in a single thread’s TLB array(s) that
match the complete VPN, then zero or more matching
entries with IPROT=0 are invalidated or a Machine
Check interrupt occurs. If the Embedded.Hypervisor
category is supported, this Machine Check interrupt
must be precise.

The operation performed by this instruction is ordered
by the mbar (or sync) instruction with respect to a sub-
sequent tlbsync instruction executed by the thread
executing the tlbivax instruction. The operations
caused by tlbivax and tlbsync are ordered by mbar as
a set of operations which is independent of the other
sets that mbar orders.

The effects of the invalidation on this thread are not
guaranteed to be visible to the programming model

31 /// RA RB 786 /
0 6 11 16 21 31
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until the completion of a context synchronizing opera-
tion.

Invalidations may occur for other TLB entries in the
designated array, but in no case will any TLB entries
with the IPROT attribute set be made invalid.

If RA does not equal 0, it is implementation-dependent
whether an Illegal Instruction exception occurs.

If the Embedded.Hypervisor category is supported, this
instruction is hypervisor privileged. Otherwise, this
instruction is privileged.

Special Registers Altered:
None

  

    

    

Care must be taken not to invalidate any TLB entry
that contains the mapping for any interrupt vector. 

For backward compatibility, implementations may
ignore a TLB entry’s TS and TID fields when deter-
mining whether an entry should be invalidated.
Since this and other such generous invalidation can
be performed, consideration should be given to
protecting a TLB entry that maps an interrupt vec-
tor by setting TLBIPROT =1.

The tlbilx instruction is the preferred way of per-
forming TLB invalidations for operating systems
running as a guest to the hypervisor since the inval-
idations are partitioned and do not require hypervi-
sor privilege.

The TLB invalidate all function (EA61=1) only exists
in MMU Architecture Version 1.0 implementations.
It should only be used when running existing soft-
ware is deemed important.

Programming Note
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TLB Invalidate Local Indexed
X-form

tlbilx RA,RB [Category: Embedded.Phased In]]

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
for each TLB array
  for each TLB entry
    if MMUCFGTWC = 1 or TLBnCFGHES = 1 then 
      c I MAS6ISIZE
    else 
      c I entrySIZE
    if MAV = 1.0 then
     m I ¬((1 << (2 × c)) - 1)
    else
     m I ¬((1 << c) - 1)
    if (entryIPROT = 0) & (entryTLPID = MAS5SLPID) then
      if T = 0 then entryV I 0
      if T = 1 & entryTID = MAS6SPID then entryV I 0
     if T = 3 & entryTGS = MAS5SGS &
         ((EA0:53 & m) = (entryEPN & m)) &
         entrySIZE = MAS6ISIZE &
         entryTID = MAS6SPID & entryTS = MAS6SAS &
        (E.PT not supported | entryIND = MAS6SIND)
        then 
          entryV I 0

Let the effective address (EA) be the sum (RA|0) +
(RB).

The tlbilx instruction invalidates TLB entries in the
thread that executes the tlbilx instruction. TLB entries
which are protected by the IPROT attribute (entryIPROT
= 1) are not invalidated.

If T = 0, all TLB entries that have all of the following
properties are made invalid on the thread executing the
tlbilx instruction.

The TLPID of the entry matches MAS5SLPID.
The IPROT of entry is 0.

If T = 1, all TLB entries that have all of the following
properties are made invalid on the thread executing the
tlbilx instruction.

The TLPID of the entry matches MAS5SLPID.
The TID of the entry matches MAS6SPID.
The IPROT of entry is 0.

If T = 3, all TLB entries in the thread executing the tlbilx
instruction that have all of the following properties are
made invalid.

The TLPID value of the TLB entry is equal to
MAS5SLPID and the TGS value of the TLB entry is
equal to MAS5SGS.
The logical AND of EA0:53 and m is equal to the
logical AND of the EPN value of the TLB entry and
m, where m is based on the following.

If MMUCFGTWC = 1 or TLBnCFGHES = 1, c is
equal MAS6ISIZE. Otherwise, c is equal to
entrySIZE.
If MMU Architecture Version 1.0 is supported,
m is equal to the logical NOT of ((1 << (2 ×
c)) - 1). Otherwise, m is equal to the logical
NOT of ((1 << c) - 1).

The TID value of the TLB entry is equal to MAS6SPID
and the TS value of the TLB entry is equal to
MAS6SAS.
The implementation does not support the Embed-
ded.Page Table category or the IND value of the
TLB entry is equal to MAS6SIND.
The IPROT of entry is 0.

The effects of the invalidation are not guaranteed to be
visible to the programming model until the completion
of a context synchronizing operation.

Invalidations may occur for other TLB entries on the
thread executing the tlbilx instruction, but in no case
will any TLB entries with the IPROT attribute set be
made invalid.

If T = 2, the instruction form is invalid. 

If T = 3 and the implementation requires the page size
to be specified by MAS6ISIZE (MMUCFGTWC = 1 or, for
any TLB array, TLBnCFGHES = 1) and the page size
specified by MAS6ISIZE is not supported by the imple-
mentation, the instruction is treated as if the instruction
form is invalid.

If T=3 and there are multiple entries in the TLB array(s)
that match the complete VPN, then zero or more
matching entries with IPROT=0 are invalidated or a
Machine Check interrupt occurs. If the Embed-
ded.Hypervisor category is supported, this Machine
Check interrupt must be precise.

If RA does not equal 0, it is implementation-dependent
whether an Illegal Instruction exception occurs.

If the Embedded.Hypervisor category is supported and
guest execution of TLB Management instructions is dis-
abled (EPCRDGTMI=1), this instruction is hypervisor
privileged. Otherwise, this instruction is privileged.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for TLB Invalidate
Local:

31 /// T RA RB 18 /
0 6 9 11 16 21 31

Extended: Equivalent to:
tlbilxlpid tlbilx 0,0,0
tlbilxpid tlbilx 1,0,0
tlbilxva RA,RB tlbilx 3,RA,RB
tlbilxva RB tlbilx 3,0,RB
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tlbilx is the preferred way of performing TLB invali-
dations, especially for operating systems running
as a guest to the hypervisor since the invalidations
are partitioned and do not require hypervisor privi-
lege.

When dispatching a guest operating system, hyper-
visor software should always set MAS5SLPID to the
guest’s corresponding LPID value. 

Executing a tlbilx instruction with T=0 or T=1 may
take many cycles to perform. Software should only
issue these operations when an LPID or a PID
value is reused or taken out of use.

Programming Note
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TLB Search Indexed X-form

tlbsx RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
Valid_matching_entry_exists I 0
for each TLB array
  for each TLB entry
    if MAV = 1.0 then
      m I ¬((1 << (2 × entrySIZE)) - 1)
    else
      m I ¬((1 << entrySIZE) - 1)
    if ((EA0:53 & m) = (entryEPN & m)) &
       (entryTID = MAS6SPID | entryTID = 0) &
       entryTS = MAS6SAS &
       (E.PT not supported | entryIND = MAS6SIND) &
       (E.HV not supported | (entryTGS = MAS5SGS &
       (entryTLPID = MAS5SLPID | entryTLPID = 0))) then
      Valid_matching_entry_exists I 1
      exit for loops
if Valid_matching_entry_exists
  entry I matching entry found
  array I TLB array number where TLB entry found
  index I index into TLB array of TLB entry found
  if TLB array supports Next Victim then
    hint I hardware hint for Next Victim
  else 
    hint I undefined
  rpn I entryRPN
  MAS0ATSEL I 0
  MAS0TLBSEL I array
  MAS0ESEL I index
  if MAS0HES supported
    MAS0HES I 0
  if Next Victim supported then
    if TLB array specified by MAS0TLBSEL supports NV
      then
        MAS0NV I hint
      else
        MAS0NV I undefined
  MAS1V I 1
  MAS1TID TS TSIZE I entryTID TS SIZE
  if TLB array supports IPROT then
    MAS1IPROT I entryIPROT
  else 
    MAS1IPROT I 0
  if category E.PT supported then
    if TLB array supports indirect entries then
      MAS1IND I entryIND
      if entryIND = 1
        MAS3SPSIZE I entrySPSIZE
      else
        MAS3UX SX UW SW UR SR I entryUX SX UW SW UR SR
    else
      MAS1IND I 0
      MAS3UX SX UW SW UR SR I entryUX SX UW SW UR SR
  else
    MAS3UX SX UW SW UR SR I entryUX SX UW SW UR SR
  MAS2EPN W I M G E I entryEPN W I M G E
  if category VLE supported then MAS2VLE I entryVLE

  if ACM supported then MAS2ACM I entryACM
  MAS3RPNL I rpn32:53
  MAS3U0:U3 I entryU0:U3
  MAS7RPNU I rpn0:31
 if category E.HV supported then
   MAS8TGS VF TLPID ← entryTGS VF TLPID
else
  MAS0ATSEL I 0
  MAS0TLBSEL I MAS4TLBSELD
  if Next Victim supported then
    if TLB array specified by MAS4TLBSELD supports
      Next Victim then
        MAS0ESEL I hint
        MAS0NV I hint for next replacement
      else
        MAS0ESEL I undefined
        MAS0NV I undefined
  else
    MAS0ESEL I undefined
  if MAS0HES supported
    MAS0HES I TLBnCFGHES for the TLB array specified
                by MAS4TLBSELD
  MAS1V IPROT I 0
  MAS1TID TS I MAS6SPID SAS
  MAS1TSIZE I MAS4TSIZED
  if Embedded.Page Table category supported then
    MAS1IND I MAS4INDD
  MAS2W I M G E I MAS4WD ID MD GD ED
  if category VLE supported then MAS2VLE I MAS4VLED
  if ACM supported, then MAS2ACM I MAS4ACMD
  MAS2EPN I undefined
  MAS3RPNL I 0
  MAS3U0:U3 UX SX UW SW UR SR I 0
  MAS7RPNU I 0
if category E.TWC supported then MAS0WQI 0b01

Let the effective address (EA) be the sum (RA|0)+
(RB).

If any TLB array contains a valid entry matching the
MAS1IND <E.PT> and virtual address formed by
MAS5SGS <E.HV>, MAS5SLPID <E.HV>, MAS1TS TID,
and EA, the search is considered successful. A TLB
entry matches if all the following conditions are met.

The valid bit of the TLB entry is 1.
The logical AND of EA0:53 and m is equal to the
logical AND of the EPN value of the TLB entry and
m, where m is determined as follows:

If MMU Architecture Version 1.0 is supported,
m is equal to the logical NOT of ((1 << (2 ×
entrySIZE)) - 1). Otherwise, m is equal to the
logical NOT of ((1 << entrySIZE) - 1)

The TID value of the TLB entry is equal to MAS6SPID
or is zero.
The TS value of the TLB entry is equal to MAS6SAS.
Either the Embedded.Page Table category is not
supported or the IND value of the TLB entry is
equal to MAS6SIND.
Either of the following is true:

The implementation does not support the
Embedded.Hypervisor category.
The TGS value of the TLB entry is equal to
MAS5SGS and either the TLPID value of the
TLB entry is equal to MAS5SLPID or is zero.
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If the search is successful, MAS register fields are
loaded from the matching TLB entry according to the
following.

MAS0ATSEL is set to 0.
MAS0TLBSEL is set to the number of the TLB array
with the matching entry.
MAS0ESEL is set to the index of the matching entry.
If MAS0HES is supported, MAS0HES is set to 0.
If Next Victim is supported for any TLB array, the
following applies.

If the TLB array with the matching entry sup-
ports Next Victim, MAS0NV is MAS0NV is set
to the hardware hint for the index of the entry
to be replaced. Otherwise, MAS0NV is set to
an implementation-dependent undefined
value.

MAS1V is set to 1.
MAS1TID TS TSIZE are loaded from the TID, TS, and
SIZE fields of the TLB entry.
If the TLB array supports IPROT, MAS1IPROT is
loaded from the IPROT bit of the TLB entry. Other-
wise, MAS1IPROT is set to 0.
MAS2EPN W I M G E are loaded from the EPN, W, I,
M, G, and E fields of the TLB entry.
If the VLE category is supported, MAS2VLE is
loaded from the VLE bit of the TLB entry.
If Alternate Coherency Mode is supported,
MAS2ACM is loaded from the ACM bit of the TLB
entry.
MAS3RPNL is loaded from the lower 22-bits of the
RPN field of the TLB entry, and, if implemented,
MAS7RPNU is loaded from the upper 32-bits of the
RPN field of the TLB entry.
The supported User-Defined storage control bits in
MAS3U0:U3 are loaded from the respective sup-
ported U0:U3 bits of the TLB entry.
If the Embedded.Page Table category is not sup-
ported, MAS3UX SX UW SW UR SR are loaded from
the UX, SX, UW, SW, UR, and SR bits of the TLB
entry. Otherwise, the following applies.

if the TLB array does not support indirect
entries, MAS1IND is set to 0 and MAS3UX SX

UW SW UR SR are loaded from the UX, SX, UW,
SW, UR, and SR bits of the TLB entry. Other-
wise, the following applies.

MAS1IND is loaded from the IND bit of
the TLB entry.
If the IND bit of the TLB entry is 1,
MAS3SPSIZE is loaded from the
SPSIZE field of the TLB entry, and
MAS3UND is set to an implementa-
tion-dependent undefined value. 
If the IND bit of the TLB entry is 0,
MAS3UX SX UW SW UR SR are loaded
from the UX, SX, UW, SW, UR, and SR
bits of the TLB entry.

If the Embedded.Hypervisor category is imple-
mented, MAS8TGS VF TLPID are loaded from the
TGS, VF, and TLPID fields of the TLB entry.

If no valid matching translation exists, MAS1V is set to 0
and the MAS register fields are loaded according to the
following in order to facilitate a TLB replacement.

MAS0ATSEL is set to 0.
MAS0TLBSEL is loaded from MAS4TLBSELD.
If Next Victim is not supported for any TLB array,
MAS0ESEL is set to an implementation-dependent
undefined value. Otherwise, the following applies.

If the TLB array specified by MAS4TLBSELD
supports Next Victim, MAS0ESEL is set to the
hardware hint for the index of the entry to be
replaced and MAS0NV is set to the hardware
hint for the index of the next entry to be
replaced. Otherwise, MAS0ESEL and MAS0NV
are set to implementation-dependent unde-
fined values.

If MAS0HES is supported, MAS0HES is set to the
value of TLBnCFGHES for the TLB array specified
by MAS4TLBSELD.
MAS1IPROT is set to 0.
MAS1TID TS are loaded from MAS6SPID SAS.
MAS1TSIZE is loaded from MAS4TSIZED.
If the Embedded.Page Table category is sup-
ported, MAS1IND is set to MAS4INDD.
MAS2EPN is set to an implementation-dependent
undefined value.
MAS2W I M G E are loaded from MAS4WD ID MD GD

ED.
If the VLE category is supported, MAS2VLE is
loaded from MAS4VLED.
If Alternate Coherency Mode is supported,
MAS2ACM is loaded from MAS4ACMD.
MAS3RPNL and, if implemented, MAS7RPNU are
set to 0s.
The supported User-Defined storage control bits
bits in MASU0:U3 are set to 0s.
MAS3UX SX UW SW UR SR are set to 0s.

If the Embedded.TLB Write Conditional category is
supported, MAS0WQ is set to 0b01.

If a tlbsx is successful, it is considered to “hit”. Other-
wise, it is considered to “miss”.

If there are multiple matching TLB entries, either one of
the matching entries is used or a Machine Check
exception occurs. If the Embedded.Hypervisor cate-
gory is supported, this Machine Check interrupt must
be precise.

If RA does not equal zero, it is implementation-depen-
dent whether an Illegal Instruction exception occurs. 

If the Embedded.Hypervisor category is supported, this
instruction is hypervisor privileged. Otherwise, this
instruction is privileged.

Special Registers Altered:
MAS0 MAS1 MAS2 MAS3 MAS7 
MAS8 (if category E.HV supported)
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TLB Search and Reserve Indexed X-form

tlbsrx. RA,RB [Category: Embedded.TLB Write
Conditional]

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
pid I MAS1TID
as I MAS1TS
if Embedded.Page Table category supported then
  ind I MAS1IND
if category E.HV supported then
  gs I MAS5SGS
  lpid I MAS5SLPID
  va I gs || lpid || as || pid || EA
else
  va I as || pid || EA
TLB-RESERVE I 1
if Embedded.Page Table category supported then
  TLB-RESERVE_IND_N_ADDR I ind || va
else
  TLB-RESERVE_ADDR I va
Valid_matching_entry_exists I 0
for each TLB array
  for each TLB entry
    if MAV = 1.0 then
      m I ¬((1 << (2 × entrySIZE)) - 1)
    else
      m I ¬((1 << entrySIZE) - 1)
    if ((EA0:53 & m) = (entryEPN & m)) &
       (entryTID = MAS1TID | entryTID = 0) &
       entryTS = MAS1TS &
       (E.PT not supported | entryIND = MAS1IND) &
       (E.HV not supported | (entryTGS = MAS5SGS &
       (entryTLPID = MAS5SLPID | entryTLPID = 0))) then
      Valid_matching_entry_exists I 1
      exit for loops
if Valid_matching_entry_exists then
  CR0 I 0b0010
else
  CR0 I 0b0000

Let the effective address (EA) be the sum (RA|0)+
(RB).

If any TLB array contains a valid entry matching the
MAS1IND <E.PT> and virtual address formed by
MAS5SGS <E.HV>, MAS5SLPID <E.HV>, MAS1TS TID,
and EA, the search is considered successful. A TLB
entry matches if all the following conditions are met.

The valid bit of the TLB entry is 1.
Either the Embedded.Page Table category is not
supported or the IND value of the TLB entry is
equal to MAS1IND.
The logical AND of EA0:53 and m is equal to the
logical AND of the EPN value of the TLB entry and
m, where m is determined as follows:

If MMU Architecture Version 1.0 is supported,
m is equal to the logical NOT of ((1 << (2 ×

entrySIZE)) - 1). Otherwise, m is equal to the
logical NOT of ((1 << entrySIZE) - 1)

The TID value of the TLB entry is equal to MAS1TID
or is zero.
The TS value of the TLB entry is equal to MAS1TS.
Either of the following is true:

The implementation does not support the
Embedded.Hypervisor category.
The TGS value of the TLB entry is equal to
MAS5SGS and either the TLPID value of the
TLB entry is equal to MAS5SLPID or is zero.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the search was successful.

CR0LT GT EQ SO = 0b00 || n || 0

This instruction creates a TLB-reservation for use by a
TLB Write instruction. The virtual address described
above is associated with the TLB-reservation, and
replaces any address previously associated with the
TLB-reservation. (The TLB-reservation is created
regardless of whether the search succeeds.)

If there are multiple matching TLB entries, either one of
the matching entries is used or a Machine Check
exception occurs. If the Embedded.Hypervisor cate-
gory is supported, this Machine Check interrupt must
be precise.

If RA does not equal zero, it is implementation-depen-
dent whether an Illegal Instruction exception occurs.

If the Embedded.Hypervisor category is supported and
guest execution of TLB Management instructions is dis-
abled (EPCRDGTMI=1), this instruction is hypervisor
privileged. Otherwise, this instruction is privileged.

Special Registers Altered:
CR0
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TLB Read Entry X-form

tlbre

if MAS0ATSEL= 0 then
  if TLBnCFGHES = 0 then
    entry I SelectTLB(MAS0TLBSEL,MAS0ESEL, MAS2EPN)
  else
    entry I SelectTLB(MAS0TLBSEL, MAS1TID TSIZE,
         MAS2EPN, MAS0ESEL)
  if Next Victim supported then
    if TLB array specified by MAS0TLBSEL supports NV
      then
        MAS0NV I hint
      else
        MAS0NV I undefined
  if TLB entry is found then
    rpn I entryRPN
    MAS1V TID TS TSIZE I entryV TID TS SIZE
    if TLB array supports IPROT then
      MAS1IPROT I entryIPROT
    else 
      MAS1IPROT I 0
    if category E.PT supported then
      if TLB array supports indirect entries then
        MAS1IND I entryIND
        if entryIND = 1
          MAS3SPSIZE I entrySPSIZE
        else
          MAS3UX SX UW SW UR SR I entryUX SX UW SW UR SR
      else
        MAS1IND I 0
        MAS3UX SX UW SW UR SR I entryUX SX UW SW UR SR
    else
      MAS3UX SX UW SW UR SR I entryUX SX UW SW UR SR
    MAS2EPN W I M G E I entryEPN W I M G E
    if category VLE supported then MAS2VLEIentryVLE
    if ACM supported then MAS2ACM I entryACM
    MAS3RPNL I rpn32:53
    MAS3U0:U3 I entryU0:U3
    MAS7RPNU I rpn0:31
    if category E.HV supported then
      MAS8TGS VF TLPID I entryTGS VF TLPID
  else
    MAS1V I 0
    MAS1IPROT TID TS TSIZE I undefined
    if Embedded.Page Table supported then
        MAS1IND I undefined
    MAS2EPN W I M G E I undefined
    if category VLE supported then
      MAS2VLE I undefined
    if ACM supported then MAS2ACM I undefined
    MAS3RPNL U0:U3 UX SX UW SW UR SR  I undefined
    MAS7RPNU I undefined
    if category E.HV supported then
      MAS8TGS VF TLPID I undefined
else
  entry I SelectLRAT(MAS0ESEL, MAS2EPN)
  MAS0NV I undefined
  if LRAT entry is found then
    rpn I entryLRPN
    MAS1V TSIZE I entryV LSIZE 

    MAS1IPROT TID TS  I 0 0 0
    if Embedded.Page Table supported then
      MAS1IND I 0
    MAS2EPN I entryLPN
    MAS2W I M G E I 0 0 0 0 0
    if category VLE supported then
      MAS2VLE I 0
    if ACM supported then MAS2ACM I 0
    MAS3RPNL I rpn32:53
    MAS3U0:U3 UX SX UW SW UR SR I 0 0 0 0 0 0 0
    MAS7RPNU I rpn0:31
    MAS8TGS VF I 0 0
    if the LRAT supports LPID
      MAS8TLPID I entryLPID
    else
      MAS8TLPID I undefined
  else
    MAS1V I 0
    MAS1IPROT TID TS TSIZE I undefined
    if Embedded.Page Table supported then
      MAS1IND I undefined
    MAS2EPN W I M G E I undefined
    if category VLE supported then
      MAS2VLE I undefined
    if ACM supported then MAS2ACM I undefined
    MAS3RPNL U0:U3 UX SX UW SW UR SR  I undefined
    MAS7RPNU I undefined
    MAS8TGS VF TLPID I undefined

If the Embedded.Hypervisor.LRAT category is not sup-
ported or MAS0ATSEL is 0, then the following applies.

If Next Victim is supported for any TLB array, the
following applies.

If the TLB array specified by MAS0TLBSEL
supports Next Victim, MAS0NV is set to the
hardware hint for the index of the entry to be
replaced. Otherwise, MAS0NV is set to an
implementation-dependent undefined value.

A TLB entry is selected in one of the following
ways.

if TLBnCFGHES=0 for the TLB array selected
by MAS0TLBSEL, the TLB entry is specified by
MAS0TLBSEL, MAS0ESEL and MAS2EPN.
if TLBnCFGHES=1 for the TLB array selected
by MAS0TLBSEL, the TLB entry is specified by
MAS0TLBSEL, MAS0ESEL and a hardware gen-
erated hash based on MAS1TID, MAS1TSIZE,
and MAS2EPN.

If the selected TLB entry exists, MAS register fields are
loaded according to the following.

MAS1V TID TS TSIZE are loaded from the V, TID, TS,
and SIZE fields of the TLB entry.
If the TLB array supports IPROT, MAS1IPROT is
loaded from the IPROT bit of the TLB entry. Other-
wise, MAS1IPROT is set to 0.
MAS2EPN W I M G E are loaded from the EPN, W, I,
M, G, and E fields of the TLB entry.
If the VLE category is supported, MAS2VLE is
loaded from the VLE bit of the TLB entry.
If Alternate Coherency Mode is supported,
MAS2ACM is loaded from the ACM bit of the TLB
entry.
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MAS3RPNL is loaded from the lower 22-bits of the
RPN field of the TLB entry, and, if implemented,
MAS7RPNU is loaded from the upper 32-bits of the
RPN field of the TLB entry.
The supported User-Defined storage control bits in
MAS3U0:U3 are loaded from the respective sup-
ported U0:U3 bits of the TLB entry.
If the Embedded.Page Table category is not sup-
ported, MAS3UX SX UW SW UR SR are loaded from
the UX, SX, UW, SW, UR, and SR bits of the TLB
entry. Otherwise, the following applies.

if the TLB array does not support indirect
entries, MAS1IND is set to 0 and MAS3UX SX

UW SW UR SR are loaded from the UX, SX, UW,
SW, UR, and SR bits of the TLB entry. Other-
wise, the following applies.

MAS1IND is loaded from the IND bit of
the TLB entry.
If the IND bit of the TLB entry is 1,
MAS3SPSIZE is loaded from the
SPSIZE field of the TLB entry, and
MAS3UND is set to an implementa-
tion-dependent undefined value. 
If the IND bit of the TLB entry is 0,
MAS3UX SX UW SW UR SR are loaded
from the UX, SX, UW, SW, UR, and SR
bits of the TLB entry.

If the Embedded.Hypervisor category is imple-
mented, MAS8TGS VF TLPID are loaded from the
TGS, VF, and TLPID fields of the TLB entry.

If the Embedded.Hypervisor.LRAT category is sup-
ported, the LRAT array is specified (MAS0ATSEL = 1),
then the following applies. 

MAS0NV is set to an implementation-dependent
undefined value.
If the LRAT entry specified by MAS0ESEL and
MAS2EPN exists, MAS register fields are loaded
from the LRAT entry according to the following.

MAS1V TSIZE are loaded from the V and
LSIZE fields of the LRAT entry.
MAS1IPROT TID TS, MAS2W I M G E, and
MAS3UX SX UW SW UR SR are set to 0s.
If the Embedded.Page Table category is sup-
ported, MAS1IND is set to 0.
MAS2EPN is loaded from the LPN field of the
LRAT entry.
If the VLE category is supported, MAS2VLE is
set to 0.
If Alternate Coherency Mode is supported,
MAS2ACM is set to 0.
MAS3RPNL is loaded from the lower 22-bits of
the LRPN field of the LRAT entry, and, if
implemented, MAS7RPNU is loaded from the
upper 32-bits of the LRPN field of the LRAT
entry.
The supported User-Defined storage control
bits in MAS3U0:U3 are set to 0s.
MAS8TGS VF are set to 0s.

If the LPID field in the LRAT is supported
(LRATCFGLPID = 1), MAS8TLPID is loaded
from the TLPID field of the LRAT entry.

If TLBnCFGHES = 1 and the page size specified by
MAS1TSIZE is not supported by the specified array, the
tlbre may be performed as if TSIZE were some imple-
mentation-dependent value or, as described below, as
if the entry can not be found, or an Illegal Instruction
exception occurs.

It is implementation-dependent whether a TLB or LRAT
entry can not be found or whether larger values of the
fields that select an entry are simply mapped to existing
entries. If the specified TLB or LRAT entry does not
exist, MAS1V is set to 0 and the following MAS register
fields are set to implementation-dependent undefined
values.

MAS1IPROT TID TS TSIZE, MAS2EPN W I M G E,
MAS3UX SX UW SW UR SR, MAS3RPNL, and, if imple-
mented, MAS7RPNU
If the VLE category is supported, MAS2VLE
If Alternate Coherency Mode is supported,
MAS2ACM
The supported User-Defined storage control bits in
MAS3U0:U3
If the Embedded.Page Table category is sup-
ported, MAS1IND
If the Embedded.Hypervisor category is imple-
mented, MAS8TGS VF TLPID

If the Embedded.Hypervisor category is supported, this
instruction is hypervisor privileged. Otherwise, this
instruction is privileged.

Special Registers Altered:
MAS0 MAS1 MAS2 MAS3 MAS7 
MAS8 (if category E.HV is supported)

 

Hypervisor software should generally prevent guest
operating system visibility of the RPN. After execut-
ing a tlbsx or tlbre on behalf of a guest, the hyper-
visor should replace the RPN fields in the MAS3
and MAS7 registers with the corresponding values
from the appropriate LPN. 

Programming Note
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TLB Synchronize X-form

tlbsync

The tlbsync instruction provides an ordering function
for the effects of all tlbivax instructions executed by the
thread executing the tlbsync instruction, with respect
to the memory barrier created by a subsequent sync
instruction executed by the same thread. Executing a
tlbsync instruction ensures that all of the following will
occur.

All TLB invalidations caused by tlbivax instructions
preceding the tlbsync instruction will have com-
pleted on any other thread before any data
accesses caused by instructions following the
sync instruction are performed with respect to that
thread.

All storage accesses by other threads for which the
address was translated using the translations
being invalidated will have been performed with
respect to the thread executing the sync instruc-
tion, to the extent required by the associated Mem-
ory Coherence Required attributes, before the
sync instruction’s memory barrier is created.

The operation performed by this instruction is ordered
by the mbar or sync instruction with respect to preced-
ing tlbivax instructions executed by the thread execut-
ing the tlbsync instruction. The operations caused by
tlbivax and tlbsync are ordered by mbar as a set of
operations, which is independent of the other sets that
mbar orders.

The tlbsync instruction may complete before opera-
tions caused by tlbivax instructions preceding the tlb-
sync instruction have been performed.

If the Embedded.Hypervisor category is supported, this
instruction is hypervisor privileged. Otherwise, this
instruction is privileged.

Special Registers Altered:
None

  

TLB Write Entry X-form

tlbwe

if MAS0WQ = 0b00 | MAS0WQ = 0b01 then

  if MAS0ATSEL = 0 or MSRGS = 1 then
    if TLBnCFGHES = 0 then
      entry I SelectTLB(MAS0TLBSEL,MAS0ESEL, MAS2EPN)
    else
      if MAS0HES = 1 then
        entry I SelectTLB(MAS0TLBSEL, MAS1TID TSIZE,
         MAS2EPN, hardware_replacement_algorithm)
      else
        entry I SelectTLB(MAS0TLBSEL, MAS1TID TSIZE,
         MAS2EPN, MAS0ESEL)
    if TLB array specified by MAS0TLBSEL supports NV
      &((MAS0WQ = 0b00) | (category E.TWC supported
      & (MAS0WQ = 0b01) & (TLB-reservation))) then
        hint I MAS0NV
    if TLB entry is found &
      ((MAS0WQ = 0b00) | ((category E.TWC supported)
      & (MAS0WQ = 0b01) & (TLB-reservation))) then
      if category E.HV.LRAT supported & (MSRGS=1) &       
        (MAS1V=1) then
          rpn I translate_logical_to_real(MAS7RPNU
            || MAS3RPNL, MAS8TLPID)
      else
        if MAS7 implemented then 
          rpn I MAS7RPNU || MAS3RPNL
        else rpn I 320 || MAS3RPNL
      entryV IPROT TID TS SIZE I MAS1V IPROT TID TS TSIZE
      entryEPN VLE W I M G E ACM I MAS2EPN VLE W I M G E ACM
      entryU0:U3 I MAS3U0:U3
      if category E.PT supported and
        TLB array supports indirect entries then
          entryIND I MAS1IND
          if MAS1IND = 0 then
            entryUX SX UW SW UR SR I MAS3UX SX UW SW UR SR
          else
            entrySPSIZE I MAS3SPSIZE
        else
           entryUX SX UW SW UR SR I MAS3UX SX UW SW UR SR
      entryRPN I rpn
      if (category E.HV is supported)
        entryTGS VF TLPID I MAS8TGS VF TLPID
    if category E.TWC supported
      TLB-reservation I 0
  else
    entry I SelectLRAT(MAS0ESEL,MAS2EPN)
    if LRAT entry is found &
      (MAS0WQ = 0b00) & (MAS0HES = 0b0) then
      hint I MAS0NV
      entryV LSIZE I MAS1V TSIZE
      entryLPN I MAS2EPN
      entryRPN I MAS7RPNU || MAS3RPNL
      if LRATCFGLPID = 1
        entryLPID I MAS8TLPID
else
  if category E.TWC supported
    TLB-reservation I 0
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Care must be taken on some implementations
when using the tlbsync instruction as there may be
a system-imposed restriction of only one tlbsync
allowed on the bus at a given time in the system.

Programming Note
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If the Embedded.TLB Write Conditional category is not
supported, MAS0WQ is treated as if it were 0b00 in the
following description.

If the Embedded.Hypervisor.LRAT category is not sup-
ported or MSRGS=1, MAS0ATSEL is treated as if it were
zero in the following description.

If a TLB array is specified (MAS0ATSEL = 0 or MSRGS =
1) and TLBnCFGHES=0 for the TLB array selected by
MAS0TLBSEL, MAS0HES is treated as 0 in the following
description.

If the Embedded.Page Table category is supported, a
TLB array is specified (MAS0ATSEL = 0 or MSRGS = 1),
and the specified TLB array does not support indirect
entries, MAS1IND is treated as 0.

If a TLB array is specified (MAS0ATSEL = 0 or MSRGS =
1) and MAS0WQ is 0b00 or 0b01, the following applies.

If the Embedded.Hypervisor is not supported, the
tlbwe instruction is executed in hypervisor state, or
MAS1V=0, an RPN is formed by concatenating
MAS7RPNU with MAS3RPNL (RPN =     MAS7RPNU
|| MAS3RPNL).
If the Embedded.Hypervisor category is sup-
ported, the tlbwe instruction is executed in guest
state, and MAS1V=1, an LPN is formed by concat-
enating MAS7RPNU with MAS3RPNL (LPN =
MAS7RPNU || MAS3RPNL). However, if MAS7 is not
implemented, LPN = 320 || MAS3RPNL. This LPN is
translated by the LRAT to obtain the RPN. If there
is no LRAT entry that translates this LPN for the
LPID specified by MAS8TLPID, an LRAT Miss
exception occurs. However, if MAS0WQ is 0b01
and no TLB-reservation exists, it is implementa-
tion-dependent whether the LRAT Miss exception
occurs.
If TLBnCFGHES for the TLB array selected by
MAS0TLBSEL is 0, the TLB entry is specified by
MAS0TLBSEL, MAS0ESEL, and MAS2EPN. If
TLBnCFGHES is 1 and MAS0HES is 1, the TLB
entry is selected by MAS0TLBSEL, a hardware
replacement algorithm, and a hardware generated
hash based on MAS1TID TSIZE, and MAS2EPN. If
TLBnCFGHES is 1 and MAS0HES is 0, the TLB
entry is selected by MAS0TLBSEL, MAS0ESEL and
a hardware generated hash based on
MAS0TLBSEL, MAS1TID TSIZE, and MAS2EPN.
The selected TLB entry is written (see the follow-
ing major bulleted item) if all the following condi-
tions are met.

There is no LRAT Miss exception.
MAS0WQ is 0b00 or both the following are
true. 

MAS0WQ is 0b01
A TLB-reservation exists.

MAS1IPROT is 0, the Embedded.Hypervisor
category is not supported, or MSRGS = 0.
The selected TLB entry has IPROT = 0, the
Embedded.Hypervisor category is not sup-
ported, or MSRGS = 0.

If the Embedded.Hypervisor category is sup-
ported, use the first of the following sub-bullets that
applies.

If EPCRDGTMI=1 and MSRGS=1, no TLB entry
is written and a Hypervisor Privilege exception
occurs.
If the selected entry exists, the selected entry
has IPROT=1, MAS0WQ=0b00, and
MSRGS=1, no TLB entry is written, and a
Hypervisor Privilege exception occurs.
If MAS0WQ=0b00, MAS1V=1, MAS1IPROT=1,
and MSRGS=1, no TLB entry is written, and a
Hypervisor Privilege exception occurs.
If MAS0WQ=0b00, MAS1V=0,  MAS1IPROT=1,
and MSRGS=1, no TLB entry is written, and it
is implementation-dependent whether a
Hypervisor Privilege exception occurs.
If the selected entry has IPROT=1,
MAS0WQ=0b01, and MSRGS=1, no TLB entry
is written, and it is implementation-dependent
whether a Hypervisor Privilege exception
occurs.
If MAS0WQ=0b01, MAS1IPROT=1, and
MSRGS=1, no TLB entry is written, and it is
implementation-dependent whether a Hyper-
visor Privilege exception occurs.
If TLBnCFGHES=1, MAS0HES=0, and
MSRGS=1, no TLB entry is written, and it is
implementation-dependent whether a Hyper-
visor Privilege exception occurs.

If a TLB entry is to be written per the preceding descrip-
tion, then regardless of whether the selected TLB entry
exists, MAS0NV provides a suggestion to hardware of
what the hardware hint for replacement should be when
the next Data or Instruction TLB Error Interrupt for a vir-
tual address that uses the set of TLB entries containing
the entry written by the tlbwe instruction.

If the selected TLB entry exists and the TLB entry is to
be written per the preceding description, the fields of
the TLB entry are loaded from the MAS registers
according to the following.

The V, TID, TS, and SIZE fields of the TLB entry
are loaded from MAS1V TID TS TSIZE.
If the TLB array supports IPROT, the IPROT bit of
the TLB entry is loaded from MAS1IPROT.
The EPN, W, I, M, G, and E fields of the TLB entry
are loaded from MAS2EPN W I M G E.
If the VLE category is supported, the VLE bit of the
TLB entry is loaded from MAS2VLE.
If Alternate Coherency Mode is supported, the
ACM bit of the TLB entry is loaded from MAS2ACM.
The RPN field of the TLB entry is loaded from the
RPN described above.
The supported User-Defined storage control bits
(U0:U3) of the TLB entry are loaded from the
respective bits in MAS3U0:U3.
If the Embedded.Page Table category is supported
and the TLB array supports indirect entries, the fol-
lowing applies.
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The IND of the TLB entry is loaded from
MAS1IND.
If MAS1IND is 1, the SPSIZE field of the TLB
entry is loaded from MAS3SPSIZE.
If MAS1IND is 0, the UX, SX, UW, SW, UR,
and SR bits of the TLB entry are loaded from
MAS3UX SX UW SW UR SR.

If the Embedded.Page Table category is not sup-
ported or the TLB array does not support indirect
entries, the UX, SX, UW, SW, UR, and SR bits of
the TLB entry are loaded from MAS3UX SX UW SW

UR SR.
If the Embedded.Hypervisor category is imple-
mented, the TGS, VF, and TLPID fields of the TLB
entry are loaded from MAS8TGS VF TLPID.

If the LRAT array is specified (MAS0ATSEL = 0 or
MSRGS = 1) for a tlbwe, MAS0WQ must be 0b00 and
MAS0HES must be 0. If the LRAT array is specified
(MAS0ATSEL = 0 or MSRGS = 1), MAS0WQ is 0b00,
MAS0HES is 0, and the tlbwe instruction is executed in
hypervisor state, the following applies.

An RPN is formed by concatenating MAS7RPNU
with MAS3RPNL (RPN =     MAS7RPNU ||
MAS3RPNL)
The contents of the MAS1V TSIZE, MAS2EPN, and
the RPN described above are written to the
selected LRAT entryV LSIZE LPN RPN.
If the LPID field in the LRAT is supported
(LRATCFGLPID = 1), MAS8TLPID is written to the
LPID field of the selected entry.

If no exception occurs, and either MAS0WQ is 0b10 or a
TLB array was selected by the tlbwe (MAS0ATSEL=0 or
MSRGS=1), the TLB-reservation is cleared.

If MAS0WQ is 0b10, no TLB entry is written.

If MAS0WQ is 0b11, the instruction is treated as if the
instruction form is invalid.

If the page size specified by MAS1TSIZE is not sup-
ported by the specified array, the tlbwe may be per-
formed as if TSIZE were some
implementation-dependent value, or an Illegal Instruc-
tion exception occurs.

If a TLB entry is to be written per the preceding descrip-
tion, MAS1IND=1, and values of I,M,G, and E to be writ-
ten to the TLB entry are inconsistent with storage that
is not Caching Inhibited, Memory Coherence Required,
not Guarded, and Big-Endian, the tlbwe may be per-
formed as described or an Illegal Instruction exception
occurs. Also, if a TLB entry is to be written per the pre-
ceding description, MAS1IND=1, and values of ACM
and U0:U3 to be written to the TLB entry are inconsis-
tent with the requirements that an implementation has
for storage control attributes for a Page Table, the tlbwe
may be performed as described or an Illegal Instruction
exception occurs.

If an invalid value is specified for MAS0TLBSEL
MAS0ESEL or MAS2EPN, either no TLB entry is written

by the tlbwe, or the tlbwe is performed as if some
implementation-dependent, valid value were substi-
tuted for the invalid value, or an Illegal Instruction
exception occurs.

A context synchronizing instruction is required after a
tlbwe instruction to ensure any subsequent instructions
that will use the updated TLB or LRAT values execute
in the new context.

If TLBnCFGHES=1 for the selected TLB array, a TLB
write does not necessarily invalidate implementa-
tion-specific TLB lookaside information. See Section
6.11.4.4.

This instruction is hypervisor privileged if the Embed-
ded.Hypervisor category is supported and any of the
following is true.

The Embedded.Hypervisor.LRAT category is not
supported.
MSRGS = 1 and, for the TLB array selected by
MAS0TLBSEL, TLBnCFGGTWE = 0.
Guest execution of TLB Management instructions
is disabled (EPCRDGTMI=1).

Otherwise, this instruction is privileged.

Special Registers Altered:
None

  

Care must be taken not to invalidate any TLB entry
that contains the mapping for any interrupt vector.

Programming Note
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Chapter 7.  Interrupts and Exceptions

7.1 Overview
An interrupt is the action in which the thread saves its
old context (MSR and next instruction address) and
begins execution at a pre-determined interrupt-handler
address, with a modified MSR. Exceptions are the
events that will, if enabled, cause the thread to take an
interrupt.

Exceptions are generated by signals from internal and
external peripherals, instructions, the internal timer
Interrupts are divided into 4 classes, as described in
Section 7.4.3, such that only one interrupt of each class
is reported, and when it is processed no program state
is lost. Since Save/Restore register pairs GSRR0/
GSRR1 <E.HV> SRR0/SRR1, CSRR0/CSRR1,
DSRR0/DSRR1 [Category: E.ED], and MCSSR0/
MCSSR1 are serially reusable resources used by guest
<E.HV>, base, critical, debug [Category: E.ED],
Machine Check interrupts, respectively, program state
may be lost when an unordered interrupt is taken. (See
Section 7.8, “Interrupt Ordering and Masking”.

7.2 Interrupt Registers

7.2.1 Save/Restore Register 0
Save/Restore Register 0 (SRR0) is a 64-bit register.
SRR0 bits are numbered 0 (most-significant bit) to 63
(least-significant bit). The register is used to save
machine state on non-critical interrupts, and to restore
machine state when an rfi is executed. On a non-criti-
cal interrupt, SRR0 is set to the current or next instruc-
tion address. When rfi is executed, instruction
execution continues at the address in SRR0.

Figure 53. Save/Restore Register 0

In general, SRR0 contains the address of the instruc-
tion that caused the non-critical interrupt, or the

address of the instruction to return to after a non-critical
interrupt is serviced.

The contents of SRR0 when an interrupt is taken are
mode dependent, reflecting the computation mode
when the interrupt is taken and the computation mode
entered for execution of the interrupt (specified by
EPCRICM) <E.HV>. When computation mode when the
interrupt is taken is 32-bit mode and the computation
mode entered for execution of the interrupt is 64-bit
mode, the high-order 32 bits of SRR0 are set to 0s.
When computation mode when the interrupt is taken is
64-bit mode and the computation mode entered for
execution of the interrupt is 32-bit mode,  the contents
SRR0 are undefined. 

The contents of SRR0 upon interrupt can be described
as follows (assuming Addr is the address to be put into
SRR0):

if (MSRCM = 0) & (EPCRICM = 0) 
then SRR0 ← 32undefined ||  Addr32:63

if (MSRCM = 0) & (EPCRICM = 1) 
then SRR0 ← 320 ||  Addr32:63

if (MSRCM = 1)&(EPCRICM = 1) then SRR0 ← Addr0:63
if (MSRCM = 1)&(EPCRICM = 0) then SRR0 ← undefined

The contents of SRR0 can be read into register RT
using mfspr RT,SRR0. The contents of register RS can
be written into the SRR0 using mtspr SRR0,RS.

This register is hypervisor privileged.

7.2.2 Save/Restore Register 1
Save/Restore Register 1 (SRR1) is a 32-bit register.
SRR1 bits are numbered 32 (most-significant bit) to 63
(least-significant bit). The register is used to save
machine state on non-critical interrupts, and to restore
machine state when an rfi is executed. When a
non-critical interrupt is taken, the contents of the MSR
are placed into SRR1. When rfi is executed, the con-
tents of SRR1 are placed into the MSR.

Figure 54. Save/Restore Register 1

SRR0 //
0 62 63

SRR1
0                                                                                                                     63
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Bits of SRR1 that correspond to reserved bits in the
MSR are also reserved.

  

The contents of SRR1 can be read into register RT
using mfspr RT,SRR1. The contents of register RS can
be written into the SRR1 using mtspr SRR1,RS.

This register is hypervisor privileged.

7.2.3 Guest Save/Restore Regis-
ter 0 [Category:Embedded.Hypervi-
sor]
Guest Save/Restore Register 0 (GSRR0) is a 64-bit
register. GSRR0 bits are numbered 0 (most-significant
bit) to 63 (least-significant bit). The register is used to
save machine state on guest interrupts, and to restore
machine state when an rfgi is executed. On a guest
interrupt, GSRR0 is set to the current or next instruction
address. When rfgi is executed, instruction execution
continues at the address in GSRR0.

Figure 55. Guest Save/Restore Register 0

In general, GSRR0 contains the address of the instruc-
tion that caused the guest interrupt, or the address of
the instruction to return to after a guest interrupt is ser-
viced.

The contents of GSRR0 when an interrupt is taken are
mode dependent, reflecting the computation mode cur-
rently in use (specified by MSRCM) and the computa-
tion mode entered for execution of the interrupt
(specified by EPCRGICM). The contents of GSRR0
upon interrupt can be described as follows (assuming
Addr is the address to be put into GSRR0):

if (MSRCM = 0) & (EPCRGICM = 0) 
then GSRR0 ← 32undefined ||  Addr32:63

if (MSRCM = 0) & (EPCRGICM = 1) 
then GSRR0 ← 320 ||  Addr32:63

if (MSRCM = 1)&(EPCRGICM = 1) then GSRR0 ← Addr0:63
if (MSRCM=1)&(EPCRGICM=0) then GSRR0 ← undefined

The contents of GSRR0 can be read into register RT
using mfspr RT,GSRR0. The contents of register RS
can be written into the GSRR0 using mtspr
GSRR0,RS.

This register is privileged.

 

7.2.4 Guest Save/Restore Regis-
ter 1 [Category:Embedded.Hypervi-
sor]
Guest Save/Restore Register 1 (GSRR1) is a 32-bit
register. GSRR1 bits are numbered 32 (most-significant
bit) to 63 (least-significant bit). The register is used to
save machine state on guest interrupts, and to restore
machine state when an rfgi is executed. When a guest
interrupt is taken, the contents of the MSR are placed
into GSRR1. When rfgi is executed, the contents of
GSRR1 are placed into the MSR.

Figure 56. Guest Save/Restore Register 1

Bits of GSRR1 that correspond to reserved bits in the
MSR are also reserved.

  

The contents of GSRR1 can be read into register RT
using mfspr RT,GSRR1. The contents of register RS
can be written into the GSRR1 using mtspr
GSRR1,RS.

This register is privileged.

 

7.2.5 Critical Save/Restore Regis-
ter 0
Critical Save/Restore Register 0 (CSRR0) is a 64-bit
register. CSRR0 bits are numbered 0 (most-significant
bit) to 63 (least-significant bit). The register is used to
save machine state on critical interrupts, and to restore
machine state when an rfci is executed. When a critical
interrupt is taken, the CSRR0 is set to the current or
next instruction address. When rfci is executed,

A MSR bit that is reserved may be inadvertently
modified by rfi/rfci/rfmci.

GSRR0 //
0 62 63

Programming Note
mfspr RT,SRR0 should be used to read GSRR0 in
guest supervisor state. mtspr SRR0,RS should be
used to write GSRR0 in guest supervisor state.
See Section 2.2.1, “Register Mapping”.

GSRR1
0                                                                                                                    63

A MSR bit that is reserved may be inadvertently
modified by rfi/rfgi/rfci/rfdi/rfmci.

mfspr RT,SRR1 should be used to read GSRR1 in
guest supervisor state. mtspr SRR1,RS should be
used to write GSRR1 in guest supervisor state.
See Section 2.2.1, “Register Mapping”.

Programming Note

Programming Note

Programming Note
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instruction execution continues at the address in
CSRR0.

Figure 57. Critical Save/Restore Register 0

In general, CSRR0 contains the address of the instruc-
tion that caused the critical interrupt, or the address of
the instruction to return to after a critical interrupt is ser-
viced.

The contents of CSRR0 when an interrupt is taken are
mode dependent, reflecting the computation mode
when the interrupt is taken and the computation mode
entered for execution of the interrupt (specified by
EPCRICM) [Category:Embedded.Hypervisor]. If compu-
tation mode when the interrupt is taken is 32-bit mode
and the computation mode entered for execution of the
interrupt is 64-bit mode, the high-order 32 bits of
CSRR0 are set to 0s. When computation mode when
the interrupt is taken is 64-bit mode and the computa-
tion mode entered for execution of the interrupt is 32-bit
mode,  the contents CSRR0 are undefined. 

The contents of CSRR0 upon critical interrupt can be
described as follows (assuming Addr is the address to
be put into CSRR0):

if (MSRCM = 0) & (EPCRICM = 0) 
then CSRR0 ← 32undefined ||  Addr32:63

if (MSRCM = 0) & (EPCRICM = 1) 
then CSRR0 ← 320 ||  Addr32:63

if (MSRCM = 1) & (EPCRICM = 1) then CSRR0 ← Addr0:63
if (MSRCM = 1)&(EPCRICM = 0) then CSRR0 ← undefined

The contents of CSRR0 can be read into register RT
using mfspr RT,CSRR0. The contents of register RS
can be written into CSRR0 using mtspr CSRR0,RS.

This register is hypervisor privileged.

7.2.6 Critical Save/Restore Regis-
ter 1
Critical Save/Restore Register 1 (CSRR1) is a 32-bit
register. CSRR1 bits are numbered 32 (most-significant
bit) to 63 (least-significant bit). The register is used to
save machine state on critical interrupts, and to restore
machine state when an rfci is executed. When a critical
interrupt is taken, the contents of the MSR are placed
into CSRR1. When rfci is executed, the contents of
CSRR1 are placed into the MSR.

Figure 58. Critical Save/Restore Register 1

Bits of CSRR1 that correspond to reserved bits in the
MSR are also reserved.

  

The contents of CSRR1 can be read into bits 32:63 of
register RT using mfspr RT,CSRR1, setting bits 0:31 of
RT to zero. The contents of bits 32:63 of register RS
can be written into the CSRR1 using mtspr
CSRR1,RS.

This register is hypervisor privileged.

7.2.7 Debug Save/Restore Regis-
ter 0 [Category: Embed-
ded.Enhanced Debug]
Debug Save/Restore Register 0 (DSRR0) is a 64-bit
register used to save machine state on Debug inter-
rupts, and to restore machine state when an rfdi is exe-
cuted. When a Debug interrupt is taken, the DSRR0 is
set to the current or next instruction address. When rfdi
is executed, instruction execution continues at the
address in DSRR0.

Figure 59. Debug Save/Restore Register 0

In general, DSRR0 contains the address of an instruc-
tion that was executing or just finished execution when
the Debug exception occurred.

The contents of DSRR0 when an interrupt is taken are
mode dependent, reflecting the computation mode
when the interrupt is taken and the computation mode
entered for execution of the interrupt (specified by
EPCRICM) [Category:Embedded.Hypervisor]. If compu-
tation mode when the interrupt is taken is 32-bit mode
and the computation mode entered for execution of the
interrupt is 64-bit mode, the high-order 32 bits of
DSRR0 are set to 0s. When computation mode when
the interrupt is taken is 64-bit mode and the computa-
tion mode entered for execution of the interrupt is 32-bit
mode,  the contents DSRR0 are undefined.

The contents of DSRR0 upon Debug interrupt can be
described as follows (assuming Addr is the address to
be put into DSRR0):

if (MSRCM = 0) & (EPCRICM = 0) then DSRR0 I 
32undefined || 

Addr32:63
if (MSRCM = 0) & (EPCRICM = 1) then DSRR0 I 

320 || Addr32:63
if (MSRCM = 1) & (EPCRICM = 1) then DSRR0 I Addr0:63
if (MSRCM = 1) & (EPCRICM = 0) then DSRR0 I undefined

The contents of DSRR0 can be read into register RT
using mfspr RT,DSRR0. The contents of register RS
can be written into DSRR0 using mtspr DSRR0,RS.

This register is hypervisor privileged.

CSRR0 //
0 62 63

CSRR1
0                                                                                                                     63

A MSR bit that is reserved may be inadvertently
modified by rfi/rfci/rfmci.

DSRR0 //
0 62 63

Programming Note
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7.2.8 Debug Save/Restore Regis-
ter 1 [Category: Embed-
ded.Enhanced Debug]
Debug Save/Restore Register 1 (DSRR1) is a 32-bit
register used to save machine state on Debug inter-
rupts, and to restore machine state when an rfdi is exe-
cuted. When a Debug interrupt is taken, the contents of
the Machine State Register are placed into DSRR1.
When rfdi is executed, the contents of DSRR1 are
placed into the Machine State Register.

Figure 60. Debug Save/Restore Register 1

Bits of DSRR1 that correspond to reserved bits in the
Machine State Register are also reserved.

The contents of DSRR1 can be read into bits 32:63 of
register RT using mfspr RT,DSRR1, setting bits 0:31 of
RT to zero. The contents of bits 32:63 of register RS
can be written into the DSSR1 using mtspr
DSRR1,RS.

This register is hypervisor privileged.

7.2.9 Data Exception Address 
Register
The Data Exception Address Register (DEAR) is a
64-bit register. DEAR bits are numbered 0 (most-signif-
icant bit) to 63 (least-significant bit). The DEAR con-
tains the address that was referenced by a Load, Store
or Cache Management instruction that caused an LRAT
Error interrupt <E.PT> or that caused an Alignment,
Data TLB Miss, Data Storage interrupt if either the
Embedded.Hypervisor category is not supported or the
interrupt is directed to the hypervisor.

The contents of the DEAR when an interrupt is taken
are mode dependent, reflecting the computation mode
currently in use (specified by MSRCM) and the compu-
tation mode entered for execution of the critical inter-
rupt (specified by EPCRICM). The contents of the
DEAR upon interrupt can be described as follows
(assuming Addr is the address to be put into DEAR):

if (MSRCM = 0) & (EPCRICM = 0) 
then DEAR ← 32undefined ||  Addr32:63

if (MSRCM = 0) & (EPCRICM = 1) 
then DEAR ← 320 ||  Addr32:63

if (MSRCM = 1) & (EPCRICM = 1) then DEAR ← Addr0:63
if (MSRCM = 1) & (EPCRICM = 0) then DEAR ← undefined

The contents of DEAR can be read into register RT
using mfspr RT,DEAR. The contents of register RS can
be written into the DEAR using mtspr DEAR,RS.

This register is hypervisor privileged.

7.2.10 Guest Data Exception 
Address Register [Category: 
Embedded.Hypervisor]
The Guest Data Exception Address Register (GDEAR)
is a 64-bit register. GDEAR bits are numbered 0
(most-significant bit) to 63 (least-significant bit). The
GDEAR contains the address that was referenced by a
Load, Store or Cache Management instruction that
caused an Alignment, Data TLB Miss, or Data Storage
interrupt that was directed to the guest supervisor
state. The GDEAR is identical in form and function to
DEAR

The contents of the GDEAR when an interrupt is taken
are mode dependent, reflecting the computation mode
currently in use (specified by MSRCM) and the compu-
tation mode entered for execution of the interrupt (spec-
ified by EPCRGICM). The contents of the GDEAR upon
interrupt can be described as follows (assuming Addr is
the address to be put into GDEAR):

if (MSRCM = 0) & (EPCRGICM = 0) 
then GDEAR ← 32undefined ||  Addr32:63

if (MSRCM = 0) & (EPCRGICM = 1) 
then GDEAR ← 320 ||  Addr32:63

if (MSRCM = 1) & (EPCRGICM = 1)
then GDEAR ← Addr0:63

if (MSRCM = 1)&(EPCRGICM = 0)
then GDEAR ← undefined

The contents of GDEAR can be read into register RT
using mtspr RT,GDEAR. The contents of register RS
can be written into the GDEAR using mtspr
GDEAR,RS.

This register is privileged.

 

7.2.11 Interrupt Vector Prefix Reg-
ister
The Interrupt Vector Prefix Register (IVPR) is a 64-bit
register. Interrupt Vector Prefix Register bits are num-
bered 0 (most-significant bit) to 63 (least-significant bit). 

The IVPR is used for Machine Check interrupt if the
MCIVPR is not supported. The IVPR is used for other
interrupts if Category E.HV is not supported or if the
interrupt is directed to the hypervisor state. For these
interrupts, the IVPR is used in one of the following
ways.

If Interrupt Vector Offset Registers [Category:
Embedded.Phased-Out] are supported, the follow-
ing applies. Bits 48:63 are reserved. Bits 0:47 of

DSRR1
0                                                                                                                      63

mfspr RT,DEAR should be used to read GDEAR in
guest supervisor state. mtspr DEAR,RS should be
used to write GDEAR in guest supervisor state.
See  Section 2.2.1, “Register Mapping”.

Programming Note
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the Interrupt Vector Prefix Register provide the
high-order 48 bits of the address of the exception
processing routines. The 16-bit exception vector
offsets from the appropriate IVOR (provided in
Section 7.6.1, “Interrupt Fixed Offsets [Category:
Embedded.Phased-In]”) are concatenated to the
right of bits 0:47 of the Interrupt Vector Prefix Reg-
ister to form the 64-bit address of the exception
processing routine.
If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, the following
applies. IVPR52:63 are reserved. Bits 0:51 of the
Interrupt Vector Prefix Register provide the
high-order 52 bits of the address of the exception
processing routines. The 12-bit exception vector
offsets (provided in Section 7.6.1, “Interrupt Fixed
Offsets [Category: Embedded.Phased-In]”) are
concatenated to the right of bits 0:47 of the Inter-
rupt Vector Prefix Register to form the 64-bit
address of the exception processing routine.

The contents of Interrupt Vector Prefix Register can be
read into register RT using mfspr RT,IVPR. The con-
tents of register RS can be written into Interrupt Vector
Prefix Register using mtspr IVPR,RS.

This register is hypervisor privileged.

7.2.12 Guest Interrupt Vector Pre-
fix Register [Category: Embed-
ded.Hypervisor]
The Guest Interrupt Vector Prefix Register (GIVPR) is a
64-bit register. Interrupt Vector Prefix Register bits are
numbered 0 (most-significant bit) to 63 (least-significant
bit). 

If Interrupt Vector Offset Registers [Category: Embed-
ded.Phased-Out] are supported, the following applies.
GIVPR48:63 are reserved. For interrupts directed to
guest state, bits 0:47 of the Guest Interrupt Vector Pre-
fix Register provides the high-order 48 bits of the
address of the exception processing routines. The
16-bit exception vector offsets (provided in
Section 7.6.1, “Interrupt Fixed Offsets [Category:
Embedded.Phased-In]”) are concatenated to the right
of bits 0:47 of the Guest Interrupt Vector Prefix Register
to form the 64-bit address of the exception processing
routine.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, the following applies.
GIVPR52:63 are reserved. For interrupts directed to
guest state, bits 0:51 of the Guest Interrupt Vector Pre-
fix Register provide the high-order 52 bits of the
address of the exception processing routines. The
12-bit exception vector offsets (provided in
Section 7.6.1, “Interrupt Fixed Offsets [Category:
Embedded.Phased-In]”) are concatenated to the right
of bits 0:47 of the Guest Interrupt Vector Prefix Register

to form the 64-bit address of the exception processing
routine.

The contents of Guest Interrupt Vector Prefix Register
can be read into register RT using mfspr RT,GIVPR.
The contents of register RS can be written into Interrupt
Vector Prefix Register using mtspr GIVPR,RS.

Write access to this register is hypervisor privileged.
Read access to this register is privileged.

 

mfspr RT,IVPR should be used to read GIVPR in
guest supervisor state. mtspr IVPR,RS should be
used to write GIVPR in guest supervisor state.
Hypervisor software should emulate the accesses
for the guest.

Programming Note
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7.2.13 Exception Syndrome Register
The Exception Syndrome Register (ESR) is a 32-bit
register. ESR bits are numbered 32 (most-significant
bit) to 63 (least-significant bit). The ESR provides a
syndrome to differentiate between the different kinds of
exceptions that can generate the same interrupt type.
Upon the generation of one of these types of interrupts,

the bit or bits corresponding to the specific exception
that generated the interrupt is set, and all other ESR
bits are cleared. Other interrupt types do not affect the
contents of the ESR. The ESR does not need to be
cleared by software. Figure 61 shows the bit definitions
for the ESR.

Bit(s) Name Meaning Associated Interrupt Type
32:35 Implementation-dependent (Implementation-dependent)
36 PIL Illegal Instruction exception Program
37 PPR Privileged Instruction exception Program
38 PTR Trap exception Program
39 FP Floating-point operation Alignment

Data Storage
Data TLB
LRAT Error
Program

40 ST Store operation Alignment
Data Storage
Data TLB
LRAT Error

41 Reserved
42 DLK0 (Implementation-dependent) (Implementation-dependent)

(Implementation-dependent)43 DLK1 (implementation-dependent)
44 AP Auxiliary Processor operation Alignment

Data Storage
Data TLB
LRAT Error
Program

45 PUO Unimplemented Operation exception Program
46 BO Byte Ordering exception Data Storage

Instruction Storage
47 PIE Imprecise exception Program
48:52 Reserved
53 DATA Data Access [Category: Embedded.Page 

Table]
LRAT Error

54 TLBI TLB Ineligible [Category: Embedded.Page 
Table]

Data Storage
Instruction Storage
LRAT Error

55 PT Page Table [Category: Embedded.Page 
Table]

Data Storage
Instruction Storage
LRAT Error

56 SPV Signal Processing operation [Category: Sig-
nal Processing Engine]

Vector operation [Category: Vector]

Alignment
Data Storage
Data TLB
LRAT Error
Embedded Floating-point Data
Embedded Floating-point Round
SPE/Embedded Floating-point/Vector Unavailable

57 EPID External Process ID operation [Category: 
Embedded.External Process ID]

Alignment
Data Storage
Data TLB
LRAT Error
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Figure 61. Exception Syndrome Register
 Definitions

The contents of the ESR can be read into bits 32:63 of
register RT using mfspr RT,ESR, setting bits 0:31 of RT
to zero. The contents of bits 32:63 of register RS can
be written into the ESR using mtspr ESR,RS.

This register is hypervisor privileged.

7.2.14 Guest Exception Syndrome 
Register [Category: Embed-
ded.Hypervisor]
The Guest Exception Syndrome Register (GESR) is a
32-bit register. GESR bits are numbered 32 (most-sig-
nificant bit) to 63 (least-significant bit). The GESR is
identical in form and function to the ESR, but is updated
in place of the ESR when an interrupt is directed to the
guest. For a description of bit settings and meanings
see Section 7.2.13, “Exception Syndrome Register”.

The contents of the GESR can be read into bits 32:63
of register RT using mfspr RT,GESR, setting bits 0:31
of RT to zero. The contents of bits 32:63 of register RS
can be written into the GESR using mtspr GESR,RS.

This register is privileged.

 

7.2.15 Interrupt Vector Offset Reg-
isters [Category: Embed-
ded.Phased-Out]
The Interrupt Vector Prefix Register (IVPR) is a 64-bit
register. Interrupt Vector Prefix Register bits are num-
bered 0 (most-significant bit) to 63 (least-significant bit). 

The IVPR is used for Machine Check interrupt if the
MCIVPR is not supported. The IVPR is used for other
interrupts if Category E.HV is not supported or if the
interrupt is directed to the hypervisor state. For these
interrupts, the IVPR is used in one of the following
ways.

If Interrupt Vector Offset Registers [Category:
Embedded.Phased-Out] are supported, the follow-
ing applies. Bits 48:63 are reserved. Bits 0:47 of
the Interrupt Vector Prefix Register provide the
high-order 48 bits of the address of the exception
processing routines. The 16-bit exception vector
offsets from the appropriate IVOR (provided in
Section 7.2.15) are concatenated to the right of
bits 0:47 of the Interrupt Vector Prefix Register to
form the 64-bit address of the exception process-
ing routine.
If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, the following
applies. IVPR52:63 are reserved. Bits 0:51 of the
Interrupt Vector Prefix Register provide the
high-order 52 bits of the address of the exception
processing routines. The 12-bit exception vector
offsets (provided in Section 7.2.15) are concate-
nated to the right of bits 0:47 of the Interrupt Vector
Prefix Register to form the 64-bit address of the
exception processing routine.

58 VLEMI VLE operation [Category: VLE] Alignment
Data Storage
Data TLB
SPE/Embedded Floating-point/Vector Unavailable
Embedded Floating-point Data
Embedded Floating-point Round
Instruction Storage
LRAT Error
Program
System Call

59:61 Implementation-dependent (Implementation-dependent)
62 MIF Misaligned Instruction [Category: VLE] Instruction TLB

Instruction Storage

Bit(s) Name Meaning Associated Interrupt Type

The information provided by the ESR is not com-
plete. System software may also need to identify
the type of instruction that caused the interrupt,
examine the TLB entry accessed by a data or
instruction storage access, as well as examine the
ESR to fully determine what exception or excep-
tions caused the interrupt. For example, a Data
Storage interrupt may be caused by both a Protec-
tion Violation exception as well as a Byte Ordering
exception. System software would have to look
beyond ESRBO, such as the state of MSRPR in
SRR1 and the page protection bits in the TLB entry
accessed by the storage access, to determine
whether or not a Protection Violation also occurred.

Programming Note

mfspr RT,ESR should be used to read GESR in
guest supervisor state. mtspr ESR,RS should be
used to write GESR in guest supervisor state. See
Section 2.2.1, “Register Mapping”

Programming Note
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Figure 62. Interrupt Vector Offset Register 
Assignments

Bits 48:59 of the contents of IVORi can be read into bits
48:59 of register RT using mfspr RT,IVORi, setting bits
0:47 and bits 60:63 of GPR(RT) to zero. Bits 48:59 of
the contents of register RS can be written into bits
48:59 of IVORi using mtspr IVORi,RS.

These registers are hypervisor privileged.

7.2.16 Guest Interrupt Vector Off-
set Register [Category: Embed-
ded.Hypervisor.Phased-Out]
The Guest Interrupt Vector Offset Registers (GIVORs)
are 32-bit registers. Guest Interrupt Vector Offset Reg-
ister bits are numbered 32 (most-significant bit) to 63
(least-significant bit). Bits 32:47 and bits 60:63 are
reserved. A Guest Interrupt Vector Offset Register pro-
vides the quadword index from the base address pro-
vided by the GIVPR (see Section 7.2.12) for its
respective guest state interrupt. Guest Interrupt Vector
Offset Registers are analogous to Interrupt Vector Off-
set Registers except that they are used when an inter-
rupt is directed to the guest supervisor state. Figure 63
provides the assignments of specific Guest Interrupt
Vector Offset Registers to specific interrupts.

Figure 63. Guest Interrupt Vector Offset Register 
Assignments

Bits 48:59 of the contents of GIVORi can be read into
bits 48:59 of register RT using mfspr RT,GIVORi, set-
ting bits 0:47 and bits 60:63 of GPR(RT) to zero. Bits
48:59 of the contents of register RS can be written into
bits 48:59 of GIVORi using mtspr GIVORi,RS.

Write access to these registers is hypervisor privileged.
Read access to these registers is privileged.

IVORi Interrupt 

IVOR0
IVOR1
IVOR2
IVOR3
IVOR4
IVOR5
IVOR6
IVOR7
IVOR8
IVOR9
IVOR10
GIVOR10

IVOR11
GIVOR11

IVOR12
GIVOR12

IVOR13
IVOR14
IVOR15

Critical Input
Machine Check
Data Storage
Instruction Storage
External Input
Alignment
Program
Floating-Point Unavailable
System Call
Auxiliary Processor Unavailable
Decrementer
Guest Decrementer [Category: Embed-

ded.Hypervisor]
Fixed-Interval Timer Interrupt
Guest Fixed-Interval Timer Interrupt 

[Category: Embedded.Hypervisor]
Watchdog Timer Interrupt
Guest Watchdog Timer Interrupt [Cate-

gory: Embedded.Hypervisor]
Data TLB Error
Instruction TLB Error
Debug

IVOR16
:

IVOR31

Reserved

[Category: Signal Processing Engine]
[Category: Vector]

IVOR32 SPE/Embedded Floating-Point/Vector 
Unavailable Interrupt

[Category: SP.Embedded Float_*]
(IVORs 33 & 34 are required if any SP.Float_ 

dependent category is supported.)

IVOR33
IVOR34

Embedded Floating-Point Data Interrupt
Embedded Floating-Point Round Inter-

rupt

[Category: Embedded Performance Monitor]

IVOR35 Embedded Performance Monitor Inter-
rupt 

[Category: Embedded.Processor Control]

IVOR36
IVOR37

Processor Doorbell Interrupt
Processor Doorbell Critical Interrupt

[Category: Embedded.Hypervisor, Embedded.Pro-
cessor Control]

IVOR38
IVOR39

Guest Processor Doorbell Interrupt
Guest Processor Doorbell Critical/

Machine Check Interrupt

[Category: Embedded.Hypervisor]

IVOR40

IVOR41

Embedded Hypervisor System Call 
Interrupt

Embedded Hypervisor Privilege Inter-
rupt

[Category: Embedded.Hypervisor.LRAT]

IVOR 42 LRAT Error Interrupt

IVOR43..
IVOR63

Implementation-dependent

IVORi Interrupt 

GIVOR2
GIVOR3
GIVOR4
GIVOR8
GIVOR13
GIVOR14

Data Storage
Instruction Storage
External Input
System Call
Data TLB Error
Instruction TLB Error

[Category: Embedded.Performance Monitor]]

GIVOR 35 Embedded Performance Monitor Inter-
rupt

IVORi Interrupt 
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7.2.17 Logical Page Exception 
Register [Category: Embed-
ded.Hypervisor and Embed-
ded.Page Table]
The Logical Page Exception Register (LPER) is a 64-bit
register that is required when both the Embed-
ded.Hypervisor and Embedded.Page Table categories
are supported. LPER bits are numbered 0 (most-signif-
icant bit) to 63 (least-significant bit).

Figure 64. Logical Page Exception Register

The LPER fields are described below.

Bit Definition

12:52 Abbreviated Logical Page Number (ALPN) 
This field contains the Abbreviated Real Page
Number from the PTE which caused the LRAT
Error interrupt. Only bits corresponding to the
PTEARPN bits supported by the implementa-
tion need be implemented.

60:63 Logical Page Size (LPS) 
This field contains the Page Size from the
PTE that caused the LRAT Error interrupt.

All other fields are reserved.

The LPER contains the values of the ARPN and PS
fields from the PTE that was used to translate a virtual
address for an instruction fetch, Load, Store or Cache
Management instruction that caused an LRAT Error
interrupt as a result of an LRAT Miss exception. The
contents of LPER are unchanged by an interrupt for
any other type of exception.

The LPER is a hypervisor resource.

The contents of the Logical Page Exception Register
can be read into register RT using mfspr RT,LPER. On
both a 32-bit and a 64-bit implementation, the contents
of LPER0:31 can be read into register RT32:63 using

mfspr RT,LPERU. The contents of register RS can be
written into the LPER using mtspr LPER,RS. On both a
32-bit and a 64-bit implementation, the contents of reg-
ister RS32:63 can be written into the LPER0:31 using
mtspr LPERU,RS.

On a 32-bit implementation that supports fewer than 33
bits of real address, it is implementation-dependent
whether the SPR number for LPERU is treated as a
reserved value for mfspr and mtspr.

The LPER is a hypervisor resource. 

7.2.18 Machine Check Registers
A set of Special Purpose Registers are provided to sup-
port Machine Check interrupts.

7.2.18.1 Machine Check Save/Restore 
Register 0
Machine Check Save/Restore Register 0 (MCSRR0) is
a 64-bit register used to save machine state on
Machine Check interrupts, and to restore machine state
when an rfmci is executed. When a Machine Check
interrupt is taken, the MCSRR0 is set to the current or
next instruction address. When rfmci is executed,
instruction execution continues at the address in
MCSRR0.

Figure 65. Machine Check Save/Restore Register 0

In general, MCSRR0 contains the address of an
instruction that was executing or about to be executed
when the Machine Check exception occurred.

The contents of MCSRR0 when a Machine Check inter-
rupt is taken are mode dependent, reflecting the com-
putation mode currently in use (specified by MSRCM)
and the computation mode entered for execution of the
Machine Check interrupt (specified by EPCRICM) [Cate-
gory:Embedded.Hypervisor]. The contents of MCSRR0
upon Machine Check interrupt can be described as fol-
lows (assuming Addr is the address to be put into
MCSRR0):

if (MSRCM = 0) & (EPCRICM = 0) 
then MCSRR0 ← 32undefined ||  Addr32:63

if (MSRCM = 0) & (EPCRICM = 1) 
then MCSRR0 ← 320 ||  Addr32:63

if (MSRCM = 1)&(EPCRICM = 1) then MCSRR0 ← Addr0:63
if (MSRCM=1)&(EPCRICM=0) then MCSRR0 ← undefined

The contents of MCSRR0 can be read into register RT
using mfspr RT,MCSRR0. The contents of register RS
can be written into MCSRR0 using mtspr MCSRR0,RS.

This register is hypervisor privileged.

mfspr RT,IVORi should be used to read GIVORi in
guest supervisor state. mtspr IVORi,RS should be
used to write GIVOR in guest supervisor state.
Hypervisor software should emulate the accesses
for the guest.

The architecture only provides a few GIVORs that
are implemented in hardware that are performance
critical. Hypervisor software should emulate access
to IVORs that do not have corresponding GIVORs.

/// ALPN /// LPS
0 12 52 60  63

Programming Note

Programming Note

MCSRR0 //
0 62 63
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7.2.18.2 Machine Check Save/Restore 
Register 1
Machine Check Save/Restore Register 1 (MCSRR1) is
a 32-bit register used to save machine state on
Machine Check interrupts, and to restore machine state
when an rfmci is executed. When a Machine Check
interrupt is taken, the contents of the MSR are placed
into MCSRR1. When rfmci is executed, the contents of
MCSRR1 are placed into the MSR.

Figure 66. Machine Check Save/Restore Register 1

Bits of MCSRR1 that correspond to reserved bits in the
MSR are also reserved.

  

The contents of MCSRR1 can be read into register RT
using mfspr RT,MCSRR1. The contents of register RS
can be written into the MCSRR1 using mtspr
MCSRR1,RS.

This register is hypervisor privileged.

7.2.18.3 Machine Check Syndrome 
Register
MCSR (MCSR) is a 64-bit register that is used to
record the cause of the Machine Check interrupt. The
specific definition of the contents of this register are
implementation-dependent (see the User Manual of the
implementation).

The contents of MCSR can be read into register RT
using mfspr RT,MCSR. The contents of register RS can
be written into the MCSR using mtspr MCSR,RS.

This register is hypervisor privileged.

7.2.18.4 Machine Check Interrupt Vec-
tor Prefix Register
The Machine Check Interrupt Vector Prefix Register
(MCIVPR) is a 64-bit register. MCIVPR is supported
only if Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported. Whether the MCIVPR is
supported is implementation-dependent. 

Machine Check Interrupt Vector Prefix Register bits are
numbered 0 (most-significant bit) to 63 (least-significant
bit). MCIVPR52:63 are reserved. Bits 0:51 of the
Machine Check Interrupt Vector Prefix Register provide
the high-order 52 bits of the address of the Machine
Check exception processing routine. The 12-bit
Machine Check exception vector offset (provided in
Section 7.2.15) is concatenated to the right of bits 0:47

of the Machine Check Interrupt Vector Prefix Register
to form the 64-bit address of the Machine Check excep-
tion processing routine.

The contents of Machine Check Interrupt Vector Prefix
Register can be read into register RT using mfspr
RT,IVPR. The contents of register RS can be written
into Machine Check Interrupt Vector Prefix Register
using mtspr IVPR,RS.

  

7.2.19 External Proxy Register 
[Category: External Proxy]
The External Proxy Register (EPR) contains implemen-
tation-dependent information related to an External
Input interrupt when an External Input interrupt occurs.
The EPR is only considered valid from the time that the
External Input Interrupt occurs until MSREE is set to 1
as the result of a mtmsr or a return from interrupt
instruction.

The format of the EPR is shown below.

Figure 67. External Proxy Register

When the External Input interrupt is taken, the contents
of the EPR provide information related to the External
Input Interrupt.

This register is hypervisor privileged.

 

MCSRR1
0                                                                                                                      63

A MSR bit that is reserved may be inadvertently
modified by rfi/rfci/rfmci.

Programming Note

In some implementations that support Interrupt
Fixed Offsets, certain instruction cache errors
result in a Machine Check exception. The Machine
Check interrupt handler needs to be in Caching
Inhibited storage in order for the interrupt handler to
operate despite an instruction cache error.

EPR
32                                                    63

The EPR is provided for faster interrupt processing
as well as situations where an interrupt must be
taken, but software must delay the resultant pro-
cessing for later.

The EPR contains the vector from the interrupt con-
troller. The process of receiving the interrupt into
the EPR acknowledges the interrupt to the interrupt
controller. The method for enabling or disabling the
acknowledgment of the interrupt by placing the
interrupt-related information in the EPR is imple-
mentation-dependent. If this acknowledgement is
disabled, then the EPR is set to 0 when the Exter-
nal Input interrupt occurs.

Programming Note

Programming Note
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7.2.20 Guest External Proxy Reg-
ister [Category: Embedded Hyper-
visor, External Proxy]
The Guest External Proxy Register (GEPR) contains
implementation-dependent information related to an
External Input interrupt when an External Input inter-
rupt directed to the guest occurs. The GEPR is only
considered valid from the time that the External Input
Interrupt occurs until MSREE is set to 1 as the result of
a mtmsr or a return from interrupt instruction.

The format of the GEPR is shown below.

Figure 68. Guest External Proxy Register

When the External Input interrupt is taken in the guest
supervisor state, the contents of the GEPR provide
information related to the External Input Interrupt.

The contents of the GEPR can be read into bits 32:63
of register RT using mfspr RT,GEPR, setting bits 0:31
of RT to zero. The contents of bits 32:63 of register RS
can be written into the GEPR using mtspr GEPR,RS.

The GEPR is identical in form and function to the EPR.

This register is privileged.

 

 

 

GEPR
32                                                    63

The GEPR is provided for faster interrupt process-
ing as well as situations where an interrupt must be
taken, but software must delay the resultant pro-
cessing for later.

The GEPR contains the vector from the interrupt
controller. The process of receiving the interrupt
into the GEPR acknowledges the interrupt to the
interrupt controller. The method for enabling or dis-
abling the acknowledgment of the interrupt by plac-
ing the interrupt-related information in the GEPR is
implementation-dependent. If this acknowledge-
ment is disabled, then the GEPR is set to 0 when
the External Input interrupt occurs.

mfspr RT,EPR should be used to read GEPR in
guest supervisor state. Hypervisor software should
emulate the accesses for the guest. This keeps the
programming model consistent for an operating
system running as a guest and running directly in
hypervisor state.

Programming Note

Programming Note

Writing the GEPR register is allowed from both
guest supervisor state and hypervisor state. Hyper-
visor must be able to write GEPR to virtualize
External Input interrupt handling for the guest if the
guest is using External Proxy. Writing to EPR from
the guest is not mapped and results in the same
behavior as any undefined supervisor level SPR.

Programming Note
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7.3 Exceptions
There are two kinds of exceptions, those caused
directly by the execution of an instruction and those
caused by an asynchronous event. In either case, the
exception may cause one of several types of interrupts
to be invoked.

Examples of exceptions that can be caused directly by
the execution of an instruction include but are not lim-
ited to the following:

an attempt to execute a reserved-illegal instruction
(Illegal Instruction exception type Program inter-
rupt)

an attempt by an application program to execute a
‘privileged’ instruction (Privileged Instruction
exception type Program interrupt)

an attempt by an application program to access a
‘privileged’ Special Purpose Register (Privileged
Instruction exception type Program interrupt)

an attempt by an application program to access a
Special Purpose Register that does not exist
(Unimplemented Operation Instruction exception
type Program interrupt)

an attempt by a system program to access a Spe-
cial Purpose Register that does not exist (bound-
edly undefined results)

the execution of a defined instruction using an
invalid form (Illegal Instruction exception type Pro-
gram interrupt, Unimplemented Operation excep-
tion type Program interrupt, or Privileged
Instruction exception type Program interrupt)

an attempt to access a storage location that is
either unavailable (Instruction TLB Error interrupt
or Data TLB Error interrupt) or not permitted
(Instruction Storage interrupt or Data Storage
interrupt)

an attempt to access storage with an effective
address alignment not supported by the implemen-
tation (Alignment interrupt)

the execution of a System Call instruction (System
Call interrupt)

the execution of a Trap instruction whose trap con-
dition is met (Trap type Program interrupt)

the execution of a floating-point instruction when
floating-point instructions are unavailable (Float-
ing-point Unavailable interrupt)

the execution of a floating-point instruction that
causes a floating-point enabled exception to exist
(Enabled exception type Program interrupt)

the execution of a defined instruction that is not
implemented by the implementation (Illegal
Instruction exception or Unimplemented Opera-
tion exception type of Program interrupt)

the execution of an instruction that is not imple-
mented by the implementation (Illegal Instruction
exception or Unimplemented Operation exception
type of Program interrupt)

the execution of an auxiliary processor instruction
when the auxiliary processor instruction is unavail-
able (Auxiliary Processor Unavailable interrupt)

the execution of an instruction that causes an aux-
iliary processor enabled exception (Enabled
exception type Program interrupt)

The invocation of an interrupt is precise, except that if
one of the imprecise modes for invoking the Float-
ing-point Enabled Exception type Program interrupt is
in effect then the invocation of the Floating-point
Enabled Exception type Program interrupt may be
imprecise. When the interrupt is invoked imprecisely,
the excepting instruction does not appear to complete
before the next instruction starts (because one of the
effects of the excepting instruction, namely the invoca-
tion of the interrupt, has not yet occurred).

7.4 Interrupt Classification
All interrupts, except for Machine Check, can be classi-
fied as either Asynchronous or Synchronous. Indepen-
dent from this classification, all interrupts, including
Machine Check, can be classified into one of the follow-
ing classes:

Guest [Category:Embedded.Hypervisor]
Base
Critical
Machine Check
Debug[Category:Embedded.Enhanced Debug].

7.4.1 Asynchronous Interrupts
Asynchronous interrupts are caused by events that are
independent of instruction execution. For asynchronous
interrupts, the address reported to the exception han-
dling routine is the address of the instruction that would
have executed next, had the asynchronous interrupt not
occurred.

7.4.2 Synchronous Interrupts
Synchronous interrupts are those that are caused
directly by the execution (or attempted execution) of
instructions, and are further divided into two classes,
precise and imprecise.

Synchronous, precise interrupts are those that pre-
cisely indicate the address of the instruction causing
the exception that generated the interrupt; or, for cer-
tain synchronous, precise interrupt types, the address
of the immediately following instruction. 

Synchronous, imprecise interrupts are those that may
indicate the address of the instruction causing the
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exception that generated the interrupt, or some instruc-
tion after the instruction causing the exception.

7.4.2.1 Synchronous, Precise Inter-
rupts
When the execution or attempted execution of an
instruction causes a synchronous, precise interrupt, the
following conditions exist at the interrupt point.

GSRR0 [Category: Embedded.Hypervisor], SRR0,
CSRR0, or DSRR0 [Category: Embed-
ded.Enhanced Debug] addresses either the
instruction causing the exception or the instruction
immediately following the instruction causing the
exception. Which instruction is addressed can be
determined from the interrupt type and status bits.
An interrupt is generated such that all instructions
preceding the instruction causing the exception
appear to have completed with respect to the exe-
cuting thread. However, some storage accesses
associated with these preceding instructions may
not have been performed with respect to other
threads and mechanisms.
The instruction causing the exception may appear
not to have begun execution (except for causing
the exception), may have been partially executed,
or may have completed, depending on the interrupt
type. See Section 7.7 on page 1186.
Architecturally, no subsequent instruction has exe-
cuted beyond the instruction causing the excep-
tion.

7.4.2.2 Synchronous, Imprecise Inter-
rupts
When the execution or attempted execution of an
instruction causes an imprecise interrupt, the following
conditions exist at the interrupt point.

When the execution or attempted execution of an
instruction causes an imprecise interrupt, the following
conditions exist at the interrupt point.

GSRR0 [Category: Embedded.Hypervisor], SRR0,
or CSRR0 addresses either the instruction causing
the exception or some instruction following the
instruction causing the exception that generated
the interrupt.
An interrupt is generated such that all instructions
preceding the instruction addressed by GSRR0
[Category: Embedded.Hypervisor], SRR0, or
CSRR0 appear to have completed with respect to
the executing thread.
If the imprecise interrupt is forced by the context
synchronizing mechanism, due to an instruction
that causes another exception that generates an
interrupt (e.g., Alignment, Data Storage), then
GSRR0 [Category: Embedded.Hypervisor] or
SRR0 addresses the interrupt-forcing instruction,

and the interrupt-forcing instruction may have been
partially executed (see Section 7.7 on page 1186).
If the imprecise interrupt is forced by the execution
synchronizing mechanism, due to executing an
execution synchronizing instruction other than
sync or isync, then GSRR0 [Category: Embed-
ded.Hypervisor], SRR0, or CSRR0 addresses the
interrupt-forcing instruction, and the interrupt-forc-
ing instruction appears not to have begun execu-
tion (except for its forcing the imprecise interrupt).
If the imprecise interrupt is forced by an sync or
isync instruction, then GSRR0 [Category: Embed-
ded.Hypervisor], SRR0, or CSRR0 may address
either the sync or isync instruction, or the follow-
ing instruction.
If the imprecise interrupt is not forced by either the
context synchronizing mechanism or the execution
synchronizing mechanism, then the instruction
addressed by GSRR0 [Category: Embed-
ded.Hypervisor], SRR0, or CSRR0 may have been
partially executed (see Section 7.7 on page 1186).
No instruction following the instruction addressed
by GSRR0 [Category: Embedded.Hypervisor],
SRR0, or CSRR0 has executed.

7.4.3 Interrupt Classes
Interrupts can also be classified as guest [Category:
Embedded.Hypervisor], base, critical, Machine Check,
and Debug [Category: Embedded.Enhanced Debug]. 

Interrupt classes other than the guest [Category:
Embedded.Hypervisor] or base class may demand
immediate attention even if another class of interrupt is
currently being processed and software has not yet had
the opportunity to save the state of the machine (i.e.,
return address and captured state of the MSR). For this
reason, the interrupts are organized into a hierarchy
(see Section 7.8). To enable taking a critical, Machine
Check, or Debug [Category: Embedded.Enhanced
Debug] interrupt immediately after a guest [Category:
Embedded.Hypervisor] or base class interrupt occurs
(i.e., before software has saved the state of the
machine), these interrupts use the Save/Restore Reg-
ister pair CSRR0/CSRR1, MCSRR0/MCSRR1, or
DSRR0/DSRR1 [Category: Embedded.Enhanced
Debug], and guest [Category: Embedded.Hypervisor]
and base class interrupts use Save/Restore Register
pairs GSRR0/GSRR1 and SRR0/SRR1.respectively.

rupts use Save/Restore Register pair SRR0/SRR1. 

7.4.4 Machine Check Interrupts
Machine Check interrupts are a special case. They are
typically caused by some kind of hardware or storage
subsystem failure, or by an attempt to access an invalid
address. A Machine Check may be caused indirectly by
the execution of an instruction, but not be recognized
and/or reported until long after the thread has executed
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past the instruction that caused the Machine Check. As
such, Machine Check interrupts cannot properly be
thought of as synchronous or asynchronous, nor as
precise or imprecise. The following general rules apply
to Machine Check interrupts:

1. No instruction after the one whose address is
reported to the Machine Check interrupt handler in
MCSRR0 has begun execution.

2. The instruction whose address is reported to the
Machine Check interrupt handler in MCSRR0, and
all prior instructions, may or may not have com-
pleted successfully. All those instructions that are
ever going to complete appear to have done so
already, and have done so within the context exist-
ing prior to the Machine Check interrupt. No further
interrupt (other than possible additional Machine
Check interrupts) will occur as a result of those
instructions.

7.5 Interrupt Processing
Associated with each kind of interrupt is an interrupt
vector, that is the address of the initial instruction that is
executed when the corresponding interrupt occurs.

When Category: Embedded.Hypervisor is imple-
mented, interrupts are directed (see Section 2.3.1,
“Directed Interrupts”) to the guest supervisor state or
the hypervisor state, which effects how some MSR bits
are set. The conditions under which a given interrupt is
directed to the guest supervisor state or hypervisor
state is more fully described in the interrupt definitions
for each interrupt in Section 7.6, “Interrupt Definitions”.

Interrupt processing consists of saving a small part of
the thread’s state in certain registers, identifying the
cause of the interrupt in another register, and continu-
ing execution at the corresponding interrupt vector
location. When an exception exists that will cause an
interrupt to be generated and it has been determined
that the interrupt can be taken, the following actions are
performed, in order:

1. GSRR0 [Category: Embedded.Hypervisor], SRR0,
DSRR0 [Category: Embedded.Enhanced Debug],
MCSRR0, or CSRR0 is loaded with an instruction
address that depends on the interrupt; see the
specific interrupt description for details.

2. The GESR [Category: Embedded.Hypervisor] or
ESR is loaded with information specific to the
exception. Note that many interrupts can only be
caused by a single kind of exception event, and
thus do not need nor use an ESR setting to indi-
cate to the cause of the interrupt was.

3. GSRR1 [Category: Embedded.Hypervisor], SRR1,
DSRR1 [Category: Embedded.Enhanced Debug],
or MCSRR1, or CSRR1 is loaded with a copy of
the contents of the MSR.

4. The MSR is updated as described below. The new
values take effect beginning with the first instruc-
tion following the interrupt. MSR bits of particular
interest are the following.

MSREE,PR,FP,FE0,FE1,IS,DS,SPV are set to 0 by
all interrupts.
If Category E.HV is supported, MSRGS is left
unchanged when an interrupt is directed to the
guest supervisor state, otherwise they are set
to 0 by all interrupts.
If Category E.HV is supported, MSRPMM is left
unchanged when an interrupt is directed to the
guest supervisor state and MSRPPMMP = 1,
otherwise MSRPMM is set to 0 by all interrupts.
If Category E.HV is supported, MSRUCLE is
left unchanged when an interrupt is directed to
the guest supervisor state and MSRPUCLEP =
1, otherwise MSRUCLE is set to 0 by all inter-
rupts.
MSRME is set to 0 by Machine Check inter-
rupts and left unchanged by all other inter-
rupts.
MSRCE is set to 0 by critical class interrupts,
Debug interrupts, and Machine Check inter-
rupts, and is left unchanged by all other inter-
rupts.
MSRDE is set to 0 by critical class interrupts
unless Category E.ED is supported, by Debug
interrupts, and by Machine Check interrupts,
and is left unchanged by all other interrupts.
If Category E.HV is supported and the inter-
rupt is directed to the guest supervisor state,
MSRCM is set to EPCRGICM, otherwise
MSRCM is set to EPCRICM.
Other supported MSR bits are left unchanged
by all interrupts.

See Section 4.2.1 for more detail on the definition
of the MSR.

5. Instruction fetching and execution resumes, using
the new MSR value, at a location specific to the
interrupt. If Category E.HV is supported, and the
interrupt is directed to the guest state, the location
is one of the following, where IVORi (GIVORi) is
the (Guest) Interrupt Vector Offset Register for that
interrupt (see Figure 63 on page 1152):

GIVPR0:47 ||GIVORi48:59 || 0b0000 if
Interrupt Vector Offset Registers [Cate-
gory: Embedded.Phased-Out] are sup-
ported
GIVPR0:51 || fixed offset shown in Fig-
ure Figure 62 on page 1152 if Interrupt
Fixed Offsets [Category: Embed-
ded.Phased-In] are supported

Otherwise, the location is one of the following:
IVPR0:47 || IVORi48:59 || 0b0000 if
Interrupt Vector Offset Registers [Cate-
gory: Embedded.Phased-Out] are sup-
ported
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IVPR0:51 || fixed offset shown in Figure
Figure 62 on page 1152 if Interrupt
Fixed Offsets [Category: Embed-
ded.Phased-In] are supported and
either MCIVPR is not supported or the
interrupt is not a Machine Check
MCIVPR0:51 || fixed offset shown in
Figure Figure 70 on page 1165 if Inter-
rupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported,
MCIVPR is supported, and the inter-
rupt is a Machine Check

The contents of the (Guest) Interrupt Vector Prefix
Register, Machine Check Interrupt Vector Prefix
Register, and (Guest) Interrupt Vector Offset Reg-
isters are indeterminate upon power-on reset, and
must be initialized by system software using the
mtspr instruction.

It is implementation-dependent whether interrupts clear 
reservations obtained with lbarx, lharx, lwarx, ldarx, 
or lqarx.

Interrupts might not clear reservations obtained with
Load and Reserve instructions. The operating system
or hypervisor should do so at appropriate points, such
as at process switch or a partition switch.

At the end of an interrupt handling routine, execution of
an rfgi [Category: Embedded.Hypervsior], rfi, rfdi
[Category: Embedded.Enhanced Debug], rfmci, or rfci
causes the MSR to be restored from the contents of
GSRR1 [Category: Embedded.Hypervisor], SRR1,
DSRR1 [Category: Embedded.Enhanced Debug],
MCSRR1, or CSRR1, and instruction execution to
resume at the address contained in GSRR0 [Category:
Embedded.Hypervisor], SRR0, DSRR0 [Category:
Embedded.Enhanced Debug], MCSRR0, or CSRR0,
respectively.

  

In general, at process switch (partition switch), due
to possible process interlocks and possible data
availability requirements, the operating system
(hypervisor) needs to consider executing the follow-
ing.

stbcx., sthcx., stwcx., stdcx., or stqcx., to
clear the reservation if one is outstanding, to
ensure that a lbarx, lharx, lwarx, ldarx, or
lqarx in the “old” process (partition) is not
paired with a stbcx., sthcx., stwcx., stdcx., or
stqcx. in the “new” process (partition). 
sync, to ensure that all storage operations of
an interrupted process are complete with
respect to other threads before that process
begins executing on another thread. 
isync, rfgi <E.HV>, rfi, rfdi [Category:
Embedded.Enhanced Debug], rfmci, or rfci to
ensure that the instructions in the “new” pro-
cess execute in the “new” context. 

Programming Note
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Programming Note

For instruction-caused interrupts, in some cases it may
be desirable for the operating system to emulate the
instruction that caused the interrupt, while in other
cases it may be desirable for the operating system not
to emulate the instruction. The following list, while not
complete, illustrates criteria by which decisions regard-
ing emulation should be made. The list applies to gen-
eral execution environments; it does not necessarily
apply to special environments such as program debug-
ging, bring-up, etc.

In general, the instruction should be emulated if:

- The interrupt is caused by a condition for
which the instruction description (including
related material such as the introduction to the
section describing the instruction) implies that
the instruction works correctly. Example:
Alignment interrupt caused by lmw for which
the storage operand is not aligned, or by dcbz
or dcbzep for which the storage operand is in
storage that is Write Through Required or
Caching Inhibited.

- The instruction is an illegal instruction that
should appear, to the program executing it, as
if it were supported by the implementation.
Example: Illegal Instruction type Program
interrupt caused by an instruction that has
been phased out of the architecture but is still
used by some programs that the operating

system supports, or by an instruction that is in
a category that the implementation does not
support but is used by some programs that the
operating system supports.

In general, the instruction should not be emulated if:

- The purpose of the instruction is to cause an
interrupt. Example: System Call interrupt
caused by sc.

- The interrupt is caused by a condition that is
stated, in the instruction description, poten-
tially to cause the interrupt. Example: Align-
ment interrupt caused by lwarx for which the
storage operand is not aligned.

- The program is attempting to perform a func-
tion that it should not be permitted to perform.
Example: Data Storage interrupt caused by
lwz for which the storage operand is in stor-
age that the program should not be permitted
to access. (If the function is one that the pro-
gram should be permitted to perform, the con-
ditions that caused the interrupt should be
corrected and the program re-dispatched such
that the instruction will be re-executed. Exam-
ple: Data Storage interrupt caused by lwz for
which the storage operand is in storage that
the program should be permitted to access
but for which there currently is no TLB entry.)
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7.6 Interrupt Definitions

Table 69 provides a summary of each interrupt type,
the various exception types that may cause that inter-
rupt type, the classification of the interrupt, which ESR
(GESR) bits can be set, if any, which MSR bits can

mask the interrupt type and which Interrupt Vector Off-
set Register is used to specify that interrupt type’s vec-
tor address. 
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IVOR0 Critical Input Critical Input x x  CE
or
GS

E 1 1165

IVOR1 Machine Check Machine Check ME
or
GS

E 2,4 1165

IVOR2
GIVOR2 

[E.HV]

Data Storage Access x [ST],[FP,AP,SPV],
[PT],
[VLEMI], [EPID]

E 9 1166

Load and Reserve or 
Store Conditional to 
‘write-thru required’ 
storage (W=1)

x [ST],
[VLEMI]

E 9

Cache Locking x {DLK0,DLK1},[ST]
[VLEMI]

E 8

Byte Ordering x BO, [ST],
[FP,AP,SPV],
[VLEMI], [EPID]

E

Virtualization Fault [ST],
[FP,AP,SPV],
[VLEMI], [EPID]

E.PT

Page Table Fault PT, [ST],
[FP,AP,SPV],
[VLEMI], [EPID]

E.PT

TLB Ineligible TLBI,[ST],
[FP,AP,SPV],
[VLEMI], [EPID]

E.PT

IVOR3
GIVOR3 

[E.HV]

Inst Storage Access x [PT] E 1168
Byte Ordering x BO,

[VLEMI]
E

Mismatched Instruction
Storage (See Book 

VLE.))

x BO,VLEMI E,
VLE

1

Misaligned Instruction
Storage (See Book 

VLE.)

x MIF E,
VLE

1

Page Table Fault PT E.PT
TLB Ineligible TLBI E.PT
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IVOR4 External Input External Input x EE
or
GS

E 1 1170

GIVOR4 
<E.HV>

External Input External Input x EE
and
GS

E.HV 1 1170

IVOR5 Alignment Alignment x [ST],[FP,AP,SPV]
[EPID],[VLEMI]

E 1171

IVOR6 Program Illegal x PIL, [VLEMI] E 1172
Privileged x PPR,[AP],

[VLEMI]
E

Trap x PTR,[VLEMI] E
FP Enabled x x FP, [PIE] FE0,

FE1
E 6,7

AP Enabled x x AP E
Unimplemented Op x PUO, [VLEMI]

[FP,AP,SPV]
E 7

IVOR7 FP Unavailable FP Unavailable x E 1173
IVOR8
GIVOR8 

{E.HV]

System Call System Call x [VLEMI] E,
E.HV

1173

IVOR9 AP Unavailable AP Unavailable x E 1173
IVOR10 Decrementer x EE

or
GS

DIE E 1174

GIVOR10
<E.HV>

Guest Decrementer x EE
and
GS

DIE E.HV 1174

IVOR11 FIT x EE
or
GS

FIE E 1175

GIVOR11
<E.HV>

Guest FIT x EE
and
GS

FIE E.HV 1175

IVOR12 Watchdog x x CE
or
GS

WIE E 10 1176

GIVOR12
<E.HV>

Guest Watchdog x x CE
and
GS

WIE E.HV 10 1176

IVOR13
GIVOR13 

<E.HV>

Data TLB Error Data TLB Miss x [ST],[FP,AP,SPV]
[VLEMI],[EPID]

E,
E.HV

1177

IVOR14
GIVOR14 

<E.HV>

Inst TLB Error Inst TLB Miss x [MIF] E,
E.HV

1178

IVOR Interrupt Exception
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IVOR15 Debug Trap x x DE IDM E 10 1178
Inst Addr Compare x x DE IDM E 10
Data Addr Compare x x DE IDM E 10
Instruction Complete x x DE IDM E 3,10
Branch Taken x x DE IDM E 3,10
Return From Interrupt x x DE IDM E 10
Interrupt Taken x x DE IDM E 10
Uncond Debug Event
Critical Interrupt Taken
Critical Interrupt Return

x
x

x

x DE
DE
DE

IDM
IDM
IDM

E.ED
E.ED
E.ED

10

IVOR32 SPE/Embedded
Floating-Point/Vector
Unavailable

SPE Unavailable x SPV, [VLEMI] SPE 1179

Vector Unavailable SPV V
IVOR33 Embedded Float-

ing-Point Data
Embedded Float-

ing-Point Data
x SPV, [VLEMI] SP.F* 1180

IVOR34 Embedded Float-
ing-Point Round

Embedded Float-
ing-Point Round

x SPV, [VLEMI] SP.F* 1180

IVOR35 Embedded Perfor-
mance Monitor 

Embedded Perfor-
mance Monitor

x EE
or
GS

E.PM 1181

GIVOR35 
<E.HV>

Embedded Perfor-
mance Monitor

Embedded Perfor-
mance Monitor

x EE
and
GS

E.PM,
E.HV

1181

IVOR36 Processor Doorbell Processor Doorbell x EE
or
GS

E.PC 1181

IVOR37 Processor Doorbell 
Critical

Processor Doorbell Crit-
ical

x x CE
or
GS

E.PC 1183

IVOR38 Guest Processor 
Doorbell

Guest Processor Door-
bell

x EE
and
GS

E.PC,
E.HV

1181

IVOR39 Guest Processor 
Doorbell Critical

Guest Processor Door-
bell Critical

x x CE
and
GS

E.PC,
E.HV

1181

Guest Processor 
Doorbell Machine 
Check

Guest Processor Door-
bell Machine Check

x x ME
and
GS

E.PC,
E.HV

1183

IVOR40 Embedded Hypervi-
sor System Call

Embedded Hypervisor 
System Call

x [VLEMI] E.HV 1183

IVOR41 Embedded Hypervi-
sor Privilege

Embedded Hypervisor 
Privilege

x [VLEMI] E.HV 1184

IVOR42 LRAT Error LRAT Miss x [ST],[FP,AP,SPV]
[DATA],[PT]
[VLEMI], [EPID]

E.HV.
LRAT

1184

IVOR Interrupt Exception
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(See Note 5)

M
S

R
 M

as
k 

B
it

(s
)1

D
B

C
R

0/
T

C
R

 M
as

k 
B

it

C
at

eg
o

ry
(S

ec
ti

o
n

1.
3.

5 
o

f 
B

o
o

k 
I)

N
o

te
s 

(s
ee

 p
ag

e 
11

64

P
ag

e

Chapter 7. Interrupts and Exceptions 1163



Version 2.07 B
Figure 69. Interrupt and Exception Types

Figure 69 Notes
1. Although it is not specified, it is common for sys-

tem implementations to provide, as part of the
interrupt controller, independent mask and status
bits for the various sources of Critical Input and
External Input interrupts.

2. Machine Check interrupts are a special case and
are not classified as asynchronous nor synchro-
nous. See Section 7.4.4 on page 1157.

3. The Instruction Complete and Branch Taken debug
events are only defined for MSRDE=1 when in
Internal Debug Mode (DBCR0IDM=1). In other
words, when in Internal Debug Mode with
MSRDE=0, then Instruction Complete and Branch
Taken debug events cannot occur, and no DBSR
status bits are set and no subsequent imprecise
Debug interrupt will occur (see Section 10.4 on
page 1213).

4. Machine Check status information is commonly
provided as part of the system implementation, but
is implementation-dependent.

5. In general, when an interrupt causes a particular
ESR (GESR) bit or bits to be set (or cleared) as
indicated in the table, it also causes all other ESR
(GESR) bits to be cleared. There may be special
rules regarding the handling of implementa-
tion-specific ESR (GESR) bits.

Legend:

[xxx] means ESR(GESR)xxx could be set

[xxx,yyy] means either ESR(GESR)xxx or
ESR(GESR)yyy        may be set, but never both

(xxx,yyy) means either ESR(GESR)xxx or
ESR(GESR)yyy        will be set, but never both

{xxx,yyy} means either ESR(GESR)xxx or
ESR(GESR)yyy will be set, or possibly both

xxx means ESR(GESR)xxx is set

6. The precision of the Floating-point Enabled Excep-
tion type Program interrupt is controlled by the
MSRFE0,FE1 bits. When MSRFE0,FE1=0b01 or
0b10, the interrupt may be imprecise. When such a
Program interrupt is taken, if the address saved in
SRR0 is not the address of the instruction that
caused the exception (i.e., the instruction that
caused FPSCRFEX to be set to 1), ESRPIE is set to
1. When MSRFE0,FE1=0b11, the interrupt is pre-
cise. When MSRFE0,FE1=0b00, the interrupt is
masked, and the interrupt will subsequently occur

imprecisely if and when Floating-point Enabled
Exception type Program interrupts are enabled by
setting either or both of MSRFE0,FE1, and will also
cause ESRPIE to be set to 1. See Section 7.6.8.
Also, exception status on the exact cause is avail-
able in the Floating-Point Status and Control Reg-
ister (see Section 4.2.2 and Section 4.4 of Book I).

The precision of the Auxiliary Processor Enabled
Exception type Program interrupt is implementa-
tion-dependent.

7. Auxiliary Processor exception status is commonly
provided as part of the implementation.

8. Cache locking and cache locking exceptions are
implementation-dependent.

9. Software must examine the instruction and the
subject TLB entry to determine the exact cause of
the interrupt.

10. If the Embedded.Enhanced Debug category is
enabled, this interrupt is not a critical interrupt.
DSRR0 and DSRR1 are used instead of CSRR0
and CSRR1.

7.6.1  Interrupt Fixed Offsets [Cat-
egory: Embedded.Phased-In]
Figure 62 on page 1152 shows the 12-bit low-order
effective address offset for each interrupt type. This
value is the offset from the base address provided by
either the IVPR (see Section 7.2.11) or the GIVPR (see
Section 7.2.12).

1. If an expression of MSR bits is provided, the interrupt is masked if the expression evaluates to 0 and is enabled if 
the expression evaluates to 1.
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Figure 70. Interrupt Vector Offsets

7.6.2 Critical Input Interrupt
A Critical Input interrupt occurs when no higher priority
exception exists (see Section 7.9 on page 1190), a Crit-
ical Input exception is presented to the interrupt mecha-
nism, and MSRCE=1. If Category:
Embedded.Hypervisor is supported, Critical Input inter-
rupts with the exception of Guest Processor Doorbell
Critical are enabled regardless of the state of MSRCE
when MSRGS=1. While the specific definition of a Criti-
cal Input exception is implementation-dependent, it
would typically be caused by the activation of an asyn-
chronous signal that is part of the system. Also, imple-
mentations may provide an alternative means (in
addition to MSRCE) for masking the Critical Input inter-
rupt.

CSRR0, CSRR1, and MSR are updated as follows:

CSRR0 Set to the effective address of the next
instruction to be executed.

CSRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
ME Unchanged.
DE Unchanged if category E.ED is supported;

otherwise set to 0 

All other defined MSR bits set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x020. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR048:59|| 0b0000.

  

7.6.3 Machine Check Interrupt
A Machine Check interrupt occurs when no higher pri-
ority exception exists (see Section 7.9 on page 1190), a
Machine Check exception is presented to the interrupt
mechanism, and MSRME=1. If Category: Embed-
ded.Hypervisor is supported, Machine Check interrupts
with the exception of Guest Processor Doorbell
Machine Check are enabled regardless of the state of
MSRME when MSRGS=1. The specific cause or causes
of Machine Check exceptions are implementa-
tion-dependent, as are the details of the actions taken
on a Machine Check interrupt.

offset Interrupt 

0x000
0x020
0x040
0x060
0x080
0x0A0
0x0C0
0x0E0
0x100
0x120
0x140
0x160

0x180

0x1A0

0x1C0
0x1E0

Machine Check
Critical Input
Debug
Data Storage
Instruction Storage
External Input
Alignment
Program
Floating-Point Unavailable
System Call
Auxiliary Processor Unavailable
Decrementer,

Guest Decrementer [Category: Embed-
ded.Hypervisor]

Fixed-Interval Timer Interrupt,
Guest Fixed-Interval Timer Interrupt [Cat-
egory: Embedded.Hypervisor]

Watchdog Timer Interrupt,
Guest Watchdog Timer Interrupt [Cate-
gory: Embedded.Hypervisor]

Data TLB Error
Instruction TLB Error

[Category: Signal Processing Engine]
[Category: Vector]

0x200 SPE/Embedded Floating-Point/Vector 
Unavailable Interrupt

[Category: SP.Embedded Float_*]
(The following vector offsets are required if any 

SP.Float_ dependent category is supported.)

0x220
0x240

Embedded Floating-Point Data Interrupt
Embedded Floating-Point Round Interrupt

[Category: Embedded Performance Monitor]

0x260 Embedded Performance Monitor Interrupt 

[Category: Embedded.Processor Control]

0x280
0x2A0

Processor Doorbell Interrupt
Processor Doorbell Critical Interrupt

[Category: Embedded.Hypervisor]

0x2C0
0x2E0

0x300
0x320

Guest Processor Doorbell
Guest Processor Doorbell Critical; Guest 

Processor Doorbell Machine Check
Embedded Hypervisor System Call
Embedded Hypervisor Privilege

[Category: Embedded.Hypervisor.LRAT]

0x340 LRAT Error interrupt

0x360
 ...
0x7FF

Reserved

0x800
 ...
0xFFF

Implementation-dependent

Software is responsible for taking any action(s) that
are required by the implementation in order to clear
any Critical Input exception status prior to
re-enabling MSRCE in order to avoid another,
redundant Critical Input interrupt.

Programming Note
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If the Machine Check Extension is implemented,
MCSRR0, MCSRR1, and MCSR are set, otherwise
CSRR0, CSRR1, and ESR are set. The registers are
updated as follows:

CSRR0/MCSRR0
Set to an instruction address. As closely as
possible, set to the effective address of an
instruction that was executing or about to
be executed when the Machine Check
exception occurred.

CSRR1/MCSRR1
Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.

All other defined MSR bits set to 0.

ESR/MCSR
Implementation-dependent.

Instruction execution resumes at address IVPR0:47 ||
IVOR148:59||0b0000.

If the Embedded.Hypervisor category is supported, a
Machine Check interrupt caused by the existence of
multiple direct TLB entries or multiple indirect TLB
entries (or similar entries in implementation-specific
translation caches) which translate a given virtual
address (see Section 6.7.3) must occur while still in the
context of the partition or hypervisor state that caused
it. In these cases, the interrupt must be presented in a
way that permits continuing execution. Treating the
exception as instruction-caused allows these require-
ments to be achieved. Also, if the Embedded.Hypervi-
sor category is supported, a Machine Check interrupt
resulting from the following situations must be precise.

Execution of an External Process ID instruc-
tion that has an operand that can be trans-
lated by multiple TLB entries.
Execution of a tlbivax instruction that isn’t a
TLB invalidate all and there are multiple
entries in a single thread’s TLB array(s) that
match the complete VPN.
Execution of a tlbilx instruction with T=3 and
there are multiple entries in the TLB array(s)
that match the complete VPN.
Execution of a tlbsx or tlbsrx. instruction and
there are multiple matching TLB entries.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported and Machine Check
Interrupt Vector Prefix Register is supported, instruction
execution resumes at address MCIVPR0:51 || 0x000. If
Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported and Machine Check
Interrupt Vector Prefix Register is not implemented,
instruction execution resumes at address IVPR0:51 ||
0x000. Otherwise, instruction execution resumes at
address IVPR0:47 || IVOR148:59|| 0b0000.

  

  

7.6.4 Data Storage Interrupt
A Data Storage interrupt may occur when no higher pri-
ority exception exists (see Section 7.9 on page 1190)
and a Data Storage exception is presented to the inter-
rupt mechanism. A Data Storage exception is caused
when any of the following exceptions arises during exe-
cution of an instruction:

Read Access Control exception

A Read Access Control exception is caused when one
of the following conditions exist.

While in user mode (MSRPR=1), a Load or
‘load-class’ Cache Management instruction
attempts to access a location in storage that is not
user mode read enabled (i.e., page access control
bit UR=0).
While in supervisor mode (MSRPR=0), a Load or
‘load-class’ Cache Management instruction
attempts to access a location in storage that is not
supervisor mode read enabled (i.e., page access
control bit SR=0).

Write Access Control exception

A Write Access Control exception is caused when one
of the following conditions exist.

While in user mode (MSRPR=1), a Store or
‘store-class’ Cache Management instruction
attempts to access a location in storage that is not
user mode write enabled (i.e., page access control
bit UW=0).
While in supervisor mode (MSRPR=0), a Store or
‘store-class’ Cache Management instruction
attempts to access a location in storage that is not

If a Machine Check interrupt is caused by an error
in the storage subsystem, the storage subsystem
may return incorrect data, that may be placed into
registers and/or on-chip caches.

On implementations on which a Machine Check
interrupt can be caused by referring to an invalid
real address, executing a dcbz, dcbzep, or dcba
instruction can cause a delayed Machine Check
interrupt by establishing in the data cache a block
that is associated with an invalid real address. See
Section 4.3 of Book II. A Machine Check interrupt
can eventually occur if and when a subsequent
attempt is made to write that block to main storage,
for example as the result of executing an instruction
that causes a cache miss for which the block is the
target for replacement or as the result of executing
a dcbst, dcbstep, dcbf, or dcbfep instruction.

Programming Note

Programming Note
Power ISA™ - Book III-E1166



Version 2.07 B
supervisor mode write enabled (i.e., page access
control bit SW=0).

Byte Ordering exception

A Byte Ordering exception may occur when the imple-
mentation cannot perform the data storage access in
the byte order specified by the Endian storage attribute
of the page being accessed.

Cache Locking exception

A Cache Locking exception may occur when the locked
state of one or more cache lines has the potential to be
altered. This exception is implementation-dependent.

Storage Synchronization exception

A Storage Synchronization exception will occur when
an attempt is made to execute a Load and Reserve or
Store Conditional instruction from or to a location that is
Write Through Required or Caching Inhibited (if the
interrupt does not occur then the instruction executes
correctly: see Section 4.4.2 of Book II).

If a stbcx., sthcx., stwcx., stdcx., or stqcx. would not
perform its store in the absence of a Data Storage inter-
rupt, and either (a) the specified effective address
refers to storage that is Write Through Required or
Caching Inhibited, or (b) a non-conditional Store to the
specified effective address would cause a Data Storage
interrupt, it is implementation-dependent whether a
Data Storage interrupt occurs.

Page Table Fault exception

A Page Table Fault exception is caused when a Page
Table translation occurs for a data access due to a
Load, Store or Cache Management instruction and the
Page Table Entry that is accessed is invalid (PTE Valid
bit = 0).

TLB Ineligible exception

A TLB Ineligible exception is caused when a Page
Table translation occurs for a data access due to a
Load, Store or Cache Management instruction and any
of the following conditions are true.

The only TLB entries that can be used to hold the
translation for the virtual address have IPROT=1
No TLB array can be loaded from the Page Table
for the page size specified by the PTE.
The PTEARPN is treated as an LPN (The Embed-
ded.Hypervisor category is supported) and there is
no TLB array that meets all the following condi-
tions.

The TLB array supports the page size speci-
fied by the PTE.
The TLB array can be loaded from the Page
Table (TLBnCFGPT = 1).

If the Embedded.Hypervisor category is supported, an
Data Storage interrupt resulting from a TLB Ineligible

exception is always directed to hypervisor state regard-
less of the setting of EPCRDSIGS.

Virtualization Fault exception [Category: Embed-
ded.Hypervisor]

A Virtualization Fault exception will occur when a Load,
Store, or Cache Management Instruction attempts to
access a location in storage that has the Virtualization
Fault (VF) bit set. A Data Storage interrupt resulting
from a Virtualization Fault exception is always directed
to hypervisor state regardless of the setting of EPCRD-

SIGS

Instructions lswx or stswx with a length of zero, icbt,
dcbt, dcbtep, dcbtst, dcbtstep, or dcba cannot cause
a Data Storage interrupt, regardless of the effective
address.

  

When a Data Storage interrupt occurs, the thread sup-
presses the execution of the instruction causing the
Data Storage exception.

If Category: Embedded.Hypervisor is not supported or
if Category: Embedded.Hypervisor is supported and
the interrupt is directed to hypervisor state, SRR0,
SRR1, MSR, DEAR, and ESR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion causing the Data Storage interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM  MSRCM is set to EPCRICM.
CE, ME,
DE Unchanged.

All other defined MSR bits set to 0.

DEAR Set to the effective address of a byte that is
both within the range of the bytes being
accessed by the Storage Access or Cache
Management instruction, and within the

The icbi, icbiep, icbt, icbtls and icblc instructions
are treated as Loads from the addressed byte with
respect to address translation and protection.
These Instruction Cache Management instructions
use MSRDS, not MSRIS, to determine translation
for their operands. Instruction Storage exceptions
and Instruction TLB Miss exceptions are associ-
ated with the ‘fetching’ of instructions not with the
‘execution’ of instructions. Data Storage exceptions
and Data TLB Miss exceptions are associated with
the ‘execution’ of Instruction Cache Management
instructions. One exception to the above is that
icbtls and icblc only cause a Data Storage excep-
tion if they have neither execute access nor read
access.
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page whose access caused the Data Stor-
age exception.

ESR
FP Set to 1 if the instruction causing the inter-

rupt is a floating-point load or store; other-
wise set to 0.

ST Set to 1 if the instruction causing the inter-
rupt is a Store or ‘store-class’ Cache Man-
agement instruction; otherwise set to 0.

DLK0:1 Set to an implementation-dependent value
due to a Cache Locking exception causing
the interrupt.

AP Set to 1 if the instruction causing the inter-
rupt is an Auxiliary Processor load or store;
otherwise set to 0.

BO Set to 1 if the instruction caused a Byte
Ordering exception; otherwise set to 0.

TLBI Set to 1 if a TLB Ineligible exception
occurred during a Page Table translation for
the instruction causing the interrupt; other-
wise set to 0.

PT If a Page Table Fault or Read or Write
Access Control exception occurred during
a Page Table translation for the instruction
causing the interrupt, then PT is set to 1 if
no TLB entry was created from the Page
Table and is set to an implementa-
tion-dependent value if a TLB entry was
created. See Section 6.7.4 for rules about
TLB updates. If no Page Table Fault or
Read or Write Access Control exception
occurred during a Page Table translation for
the instruction causing the interrupt, set to
0.

SPV Set to 1 if the instruction causing the inter-
rupt is a SPE operation or a Vector opera-
tion; otherwise set to 0.

VLEMI Set to 1 if the instruction causing the inter-
rupt resides in VLE storage.

EPID Set to 1 if the instruction causing the inter-
rupt is an External Process ID instruction;
otherwise set to 0.

All other defined ESR bits are set to 0.

If Category: Embedded.Hypervisor is supported and
the interrupt is directed to guest supervisor state
GSRR0, GSRR1, GDEAR, and GESR are set in place
of SRR0, SRR1, DEAR, and ESR, respectively. The
MSR is set as follows:

MSR
CM  MSRCM is set to EPCRGICM.
CE, ME,GS,DE

Unchanged.

Bits in the MSR corresponding to set bits in the
MSRP register are left unchanged.

All other defined MSR bits set to 0.

The following is a prioritized listing of the various
exceptions which cause a Data Storage interrupt and
the corresponding ESR bit, if applicable. Even though
multiple of these exceptions may occur, at most one of
the following exceptions is reported in the ESR. 

1. Cache Locking <ECL>: DLK0:1

2. Page Table Fault <E.PT>: PT

3. Virtualization Fault <E.HV>

4. TLB Ineligible <E.PT>: TLBI

5. Byte Ordering: BO

6. Read Access or Write Access: If the exception
occurred during a Page Table translation, PT
<E.PT>

  

If Category Embedded.Hypervisor is supported and the
interrupt is directed to the guest state, instruction exe-
cution resumes at the address given by one of the fol-
lowing.

GIVPR0:47 || GIVOR248:59||0b0000 if IVORs [Cate-
gory: Embedded.Phased-Out] are supported.
GIVPR0:51||0x060 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

Otherwise, instruction execution resumes at the
address given by one of the following.

IVPR0:47 || IVOR248:59||0b0000 if IVORs [Cate-
gory: Embedded.Phased-Out] are supported.
IVPR0:51||0x060 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

7.6.5 Instruction Storage Interrupt
An Instruction Storage interrupt occurs when no higher
priority exception exists (see Section 7.9 on
page 1190) and an Instruction Storage exception is
presented to the interrupt mechanism. An Instruction
Storage exception is caused when any of the following
exceptions arises during execution of an instruction:

Execute Access Control exception

An Execute Access Control exception is caused when
one of the following conditions exist.

While in user mode (MSRPR=1), an instruction
fetch attempts to access a location in storage that
is not user mode execute enabled (i.e., page
access control bit UX=0).
While in supervisor mode (MSRPR=0), an instruc-
tion fetch attempts to access a location in storage

Since some Data Storage exceptions are not mutu-
ally exclusive, system software may need to exam-
ine the TLB entry or the Page Table entry accessed
by the data storage access in order to determine
whether additional exceptions may have also
occurred.
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that is not supervisor mode execute enabled (i.e.,
page access control bit SX=0).

Byte Ordering exception

A Byte Ordering exception may occur when the imple-
mentation cannot perform the instruction fetch in the
byte order specified by the Endian storage attribute of
the page being accessed.

Page Table Fault exception

A Page Table Fault exception is caused when a Page
Table translation occurs for an instruction fetch and the
Page Table Entry that is accessed is invalid (Valid bit =
0).

TLB Ineligible exception

A TLB Ineligible exception is caused when a Page
Table translation occurs for an instruction fetch and any
of the following conditions are true.

The only TLB entries that can be used to hold the
translation for the virtual address have IPROT=1
No TLB array can be loaded from the Page Table
for the page size specified by the PTE.
The PTEARPN is treated as an LPN (The Embed-
ded.Hypervisor category is supported) and there is
no TLB array that meets all the following condi-
tions.

The TLB array supports the page size speci-
fied by the PTE.
The TLB array can be loaded from the Page
Table (TLBnCFGPT = 1).

If the Embedded.Hypervisor category is supported, an
Instruction Storage interrupt resulting from a TLB Ineli-
gible exception is always directed to hypervisor state
regardless of the setting of EPCRISIGS.

When an Instruction Storage interrupt occurs, the
thread suppresses the execution of the instruction
causing the Instruction Storage exception.

If Category: Embedded.Hypervisor is not supported or
if Category: Embedded.Hypervisor is supported and
the interrupt is directed to hypervisor state, SRR0,
SRR1, MSR, and ESR are updated as follows: 

SRR0, SRR1, MSR, and ESR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion causing the Instruction Storage inter-
rupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
CE, ME,DE

Unchanged.

All other defined MSR bits set to 0.

ESR
BO Set to 1 if the instruction fetch caused a

Byte Ordering exception; otherwise set to
0.

TLBI Set to 1 if a TLB Ineligible exception
occurred during a Page Table translation for
the instruction causing the interrupt; other-
wise set to 0.

PT If a Page Table Fault or an Execute Access
Control exception occurred during a Page
Table translation for the instruction causing
the interrupt, then PT is set to 1 if no TLB
entry was created from the Page Table and
is set to an implementation-dependent
value if a TLB entry was created. See Sec-
tion 6.7.4 for rules about TLB updates. If no
Page Table Fault or Execute Access Con-
trol exception occurred during a Page Table
translation for the instruction causing the
interrupt, set to 0.

VLEMI Set to 1 if the instruction causing the inter-
rupt resides in VLE storage.

All other defined ESR bits are set to 0.

If Category: Embedded.Hypervisor is supported and
the interrupt is directed to guest supervisor state,
GSRR0, GSRR1, and GESR are set in place of SRR0,
SRR1, and ESR, respectively. The MSR is set as fol-
lows:

MSR
CM  MSRCM is set to EPCRGICM.
CE, ME,GS,DE

Unchanged.

Bits in the MSR corresponding to set bits in the
MSRP register are left unchanged.

All other defined MSR bits set to 0.

The following is a prioritized listing of the various
exceptions which cause a Instruction Storage interrupt
and the corresponding ESR bit, if applicable. Even
though multiple of these exceptions may occur, at most
one of the following exceptions is reported in the ESR. 

1. Page Table Fault <E.PT>: PT

2. TLB Ineligible <E.PT>: TLBI

3. Byte Ordering exception: BO

4. Execute Access: If the exception occurred during a
Page Table translation, PT <E.PT>

  

Since some Instruction Storage exceptions are not
mutually exclusive, system software may need to
examine the TLB entry or the Page Table entry
accessed by the data storage access in order to
determine whether additional exceptions may have
also occurred.
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If Category Embedded.Hypervisor is supported and the
interrupt is directed to the guest state, instruction exe-
cution resumes at the address given by one of the fol-
lowing.

GIVPR0:47 || GIVOR348:59||0b0000 if IVORs [Cate-
gory: Embedded.Phased-Out] are supported.
GIVPR0:51||0x080 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

Otherwise, instruction execution resumes at the
address given by one of the following.

IVPR0:47 || IVOR348:59||0b0000 if IVORs [Cate-
gory: Embedded.Phased-Out] are supported.
IVPR0:51||0x080 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

7.6.6 External Input Interrupt 
An External Input interrupt occurs when no higher pri-
ority exception exists (see Section 7.9 on page 1190),
an External Input exception is presented to the interrupt
mechanism, and the interrupt is enabled. While the
specific definition of an External Input exception is
implementation-dependent, it would typically be caused
by the activation of an asynchronous signal that is part
of the processing system. Also, implementations may
provide an alternative means (in addition to the enabled
criteria) for masking the External Input interrupt.

If Category: Embedded.Hypervisor is supported, Exter-
nal Input interrupts are enabled if:

(EPCREXTGS = 0) & ((MSRGS =1) | (MSREE=1))

or

(EPCREXTGS = 1) & (MSRGS =1) & (MSREE=1)

Otherwise, External Input interrupts are enabled if
MSREE=1.

If Category: Embedded.Hypervisor is not supported or
if Category: Embedded.Hypervisor is supported and
the interrupt is directed to hypervisor state, SRR0,
SRR1, and MSR are updated as follows:

SRR0 Set to the effective address of the next
instruction to be executed.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EHSRICM.
CE, ME,DE,

Unchanged.

All other defined MSR bits set to 0.

If Category: Embedded.Hypervisor is supported and
the interrupt is directed to the guest supervisor state,
GSRR0 and GSRR1 are set in place of SRR0 and
SRR1, respectively. The MSR is set as follows:

MSR
CM  MSRCM is set to EPCRGICM.
CE, ME,GS,DE

Unchanged.

Bits in the MSR corresponding to set bits in the
MSRP register are left unchanged.

All other defined MSR bits set to 0.

If Category Embedded.Hypervisor is supported and the
interrupt is directed to the guest state, instruction exe-
cution resumes at the address given by one of the fol-
lowing.

GIVPR0:47 || GIVOR448:59||0b0000 if IVORs [Cate-
gory: Embedded.Phased-Out] are supported.
GIVPR0:51||0x0A0 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

Otherwise, instruction execution resumes at the
address given by one of the following.

IVPR0:47 || IVOR448:59||0b0000 if IVORs [Cate-
gory: Embedded.Phased-Out] are supported.

IVPR0:51||0x0A0 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

  

7.6.7 Alignment Interrupt
An Alignment interrupt occurs when no higher priority
exception exists (see Section 7.9 on page 1190) and
an Alignment exception is presented to the interrupt
mechanism. An Alignment exception may be caused
when the implementation cannot perform a data stor-
age access for one of the following reasons:

The operand of a single-register Load or Store is
not aligned.
The instruction is a Load Multiple or Store Multiple,
or a Move Assist for which the length of the storage
operand is not zero.
The operand of dcbz or dcbzep is in storage that
is Write Through Required or Caching Inhibited, or
one of these instructions is executed in an imple-
mentation that has either no data cache or a Write
Through data cache or the line addressed by the
instruction cannot be established in the cache
because the cache is disabled or locked.
The operand of a Store, except Store Conditional,
or Store String for which the length of the storage
operand is zero, is in storage that is Write-Through
Required.

For lmw and stmw with an operand that is not
word-aligned, and for Load and Reserve and Store

Software is responsible for taking whatever
action(s) are required by the implementation in
order to clear any External Input exception status
prior to re-enabling MSREE in order to avoid
another, redundant External Input interrupt.
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Conditional instructions with an operand that is not
aligned, an implementation may yield boundedly unde-
fined results instead of causing an Alignment interrupt.
A Store Conditional to Write Through Required storage
may either cause a Data Storage interrupt, cause an
Alignment interrupt, or correctly execute the instruction.
For all other cases listed above, an implementation
may execute the instruction correctly instead of causing
an Alignment interrupt. (For dcbz or dcbzep, ‘correct’
execution means setting each byte of the block in main
storage to 0x00.)

  

When an Alignment interrupt occurs, the thread sup-
presses the execution of the instruction causing the
Alignment exception.

SRR0, SRR1, MSR, DEAR, and ESR are updated as
follows:

SRR0 Set to the effective address of the instruc-
tion causing the Alignment interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
CE, ME,DE

Unchanged
CE, ME,
DE, ICM Unchanged.

All other defined MSR bits set to 0.

DEAR Set to the effective address of a byte that is
both within the range of the bytes being
accessed by the Storage Access or Cache
Management instruction, and within the
page whose access caused the Alignment
exception.

ESR
FP Set to 1 if the instruction causing the inter-

rupt is a floating-point load or store; other-
wise set to 0.

ST Set to 1 if the instruction causing the inter-
rupt is a Store; otherwise set to 0.

AP Set to 1 if the instruction causing the inter-
rupt is an Auxiliary Processor load or store;
otherwise set to 0.

SPV Set to 1 if the instruction causing the inter-
rupt is a SPE operation or a Vector opera-
tion; otherwise set to 0.

VLEMI Set to 1 if the instruction causing the inter-
rupt resides in VLE storage.

EPID Set to 1 if the instruction causing the inter-
rupt is an External Process ID instruction;
otherwise set to 0.

All other defined ESR bits are set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x0C0. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR548:59|| 0b0000.

7.6.8 Program Interrupt
A Program interrupt occurs when no higher priority
exception exists (see Section 7.9 on page 1190), a Pro-
gram exception is presented to the interrupt mecha-
nism, and, for Floating-point Enabled exception,
MSRFE0,FE1 are non-zero. A Program exception is
caused when any of the following exceptions arises
during execution of an instruction:

Floating-point Enabled exception

A Floating-point Enabled exception is caused when
FPSCRFEX is set to 1 by the execution of a float-
ing-point instruction that causes an enabled exception,
including the case of a Move To FPSCR instruction that
causes an exception bit and the corresponding enable
bit both to be 1. Note that in this context, the term
‘enabled exception’ refers to the enabling provided by
control bits in the Floating-Point Status and Control
Register. See Section 4.2.2 of Book I.

Auxiliary Processor Enabled exception

The cause of an Auxiliary Processor Enabled exception
is implementation-dependent.

Illegal Instruction exception

An Illegal Instruction exception does occur when exe-
cution is attempted of any of the following kinds of
instructions.

a reserved-illegal instruction
when MSRPR=1 (user mode), an mtspr or mfspr
that specifies an spr value with spr5=0 (user-mode
accessible) that represents an unimplemented
Special Purpose Register

An Illegal Instruction exception may occur when execu-
tion is attempted of any of the following kinds of instruc-
tions. If the exception does not occur, the alternative is
shown in parentheses.

an instruction that is in invalid form (boundedly
undefined results)

The architecture does not support the use of an
unaligned effective address by Load and Reserve
and Store Conditional instructions. If an Alignment
interrupt occurs because one of these instructions
specifies an unaligned effective address, the Align-
ment interrupt handler must not attempt to emulate
the instruction, but instead should treat the instruc-
tion as a programming error.
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an lswx instruction for which register RA or regis-
ter RB is in the range of registers to be loaded
(boundedly undefined results)
a defined instruction that is not implemented by the
implementation (Unimplemented Operation excep-
tion)

Privileged Instruction exception

A Privileged Instruction exception occurs when
MSRPR=1 and execution is attempted of any of the fol-
lowing kinds of instructions.

a privileged instruction
an mtspr or mfspr instruction that specifies an spr
value with spr5=1

Trap exception

A Trap exception occurs when any of the conditions
specified in a Trap instruction are met and the excep-
tion is not also enabled as a Debug interrupt. If enabled
as a Debug interrupt (i.e., DBCR0TRAP=1,
DBCR0IDM=1, and MSRDE=1), then a Debug interrupt
will be taken instead of the Program interrupt.

Unimplemented Operation exception

An Unimplemented Operation exception may occur
when execution is attempted of a defined instruction
that is not implemented by the implementation. Other-
wise an Illegal Instruction exception occurs.

An Unimplemented Operation exception may also
occur when the thread is in 32-bit mode and execution
is attempted of an instruction that is part of the 64-Bit
category. Otherwise the instruction executes normally.

SRR0, SRR1, MSR, and ESR are updated as follows:

SRR0 For all Program interrupts except an
Enabled exception when in one of the
imprecise modes (see Section 4.2.1 on
page 1035) or when a disabled exception is
subsequently enabled, set to the effective
address of the instruction that caused the
Program interrupt.

For an imprecise Enabled exception, set to
the effective address of the excepting
instruction or to the effective address of
some subsequent instruction. If it points to
a subsequent instruction, that instruction
has not been executed, and ESRPIE is set
to 1. If a subsequent instruction is an sync
or isync, SRR0 will point at the sync or
isync instruction, or at the following instruc-
tion.

If FPSCRFEX=1 but both MSRFE0=0 and
MSRFE1=0, an Enabled exception type Pro-
gram interrupt will occur imprecisely prior to
or at the next synchronizing event if these
MSR bits are altered by any instruction that
can set the MSR so that the expression

(MSRFE0 | MSRFE1) & FPSCRFEX

is 1. When this occurs, SRR0 is loaded with
the address of the instruction that would
have executed next, not with the address of
the instruction that modified the MSR caus-
ing the interrupt, and ESRPIE is set to 1.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
CE, ME,DE

Unchanged

All other defined MSR bits set to 0.

ESR
PIL Set to 1 if an Illegal Instruction exception

type Program interrupt; otherwise set to 0
PPR Set to 1 if a Privileged Instruction exception

type Program interrupt; otherwise set to 0
PTR Set to 1 if a Trap exception type Program

interrupt; otherwise set to 0
PUO Set to 1 if an Unimplemented Operation

exception type Program interrupt; other-
wise set to 0

FP Set to 1 if the instruction causing the inter-
rupt is a floating-point instruction; otherwise
set to 0.

PIE Set to 1 if a Floating-point Enabled excep-
tion type Program interrupt, and the
address saved in SRR0 is not the address
of the instruction causing the exception
(i.e., the instruction that caused FPSCRFEX
to be set); otherwise set to 0.

AP Set to 1 if the instruction causing the inter-
rupt is an Auxiliary Processor instruction;
otherwise set to 0.

SPV Set to 1 if the instruction causing the inter-
rupt is a SPE operation or a Vector opera-
tion; otherwise set to 0.

VLEMI Set to 1 if the instruction causing the inter-
rupt resides in VLE storage.

All other defined ESR bits are set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x0E0. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR648:59|| 0b0000.

7.6.9 Floating-Point Unavailable 
Interrupt
A Floating-Point Unavailable interrupt occurs when no
higher priority exception exists (see Section 7.9 on
page 1190), an attempt is made to execute a float-
ing-point instruction (i.e., any instruction listed in
Section 4.6 of Book I), and MSRFP=0.
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When a Floating-Point Unavailable interrupt occurs, the
hardware suppresses the execution of the instruction
causing the Floating-Point Unavailable interrupt.

SRR0, SRR1, and MSR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
CE, ME,DE

Unchanged

All other defined MSR bits set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x100. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR748:59|| 0b0000.

7.6.10 System Call Interrupt
A System Call interrupt occurs when no higher priority
exception exists (see Section 7.9 on page 1190) and a
System Call (sc) instruction is executed. 

If Category: Embedded.Hypervisor is not supported or
if Category: Embedded.Hypervisor is supported and
the interrupt is directed to hypervisor state, SRR0,
SRR1, and MSR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion after the sc instruction.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM  MSRCM is set to EPCRICM.
VLEMI Set to 1 if the instruction causing the inter-

rupt resides in VLE storage.
CE, ME,DE

Unchanged.

All other defined MSR bits set to 0.

If Category: Embedded.Hypervisor is supported and
the interrupt is directed to guest supervisor state
(MSRGS = 1), GSRR0 and GSRR1 are set in place of
SRR0 and SRR1, respectively. The MSR is set as fol-
lows:

MSR
CM  MSRCM is set to EPCRGICM.
CE, ME,GS,DE

Unchanged.

Bits in the MSR corresponding to set bits in the
MSRP register are left unchanged.

All other defined MSR bits set to 0.

If Category Embedded.Hypervisor is supported and the
interrupt is directed to the guest state, instruction exe-
cution resumes at the address given by one of the fol-
lowing.

GIVPR0:47 || GIVOR848:59||0b0000 if IVORs [Cate-
gory: Embedded.Phased-Out] are supported.
GIVPR0:51||0x120 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

Otherwise, instruction execution resumes at the
address given by one of the following.

IVPR0:47 || IVOR848:59||0b0000 if IVORs [Cate-
gory: Embedded.Phased-Out] are supported.
IVPR0:51||0x120 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

7.6.11 Auxiliary Processor 
Unavailable Interrupt
An Auxiliary Processor Unavailable interrupt occurs
when no higher priority exception exists (see
Section 7.9 on page 1190), an attempt is made to exe-
cute an Auxiliary Processor instruction (including Auxil-
iary Processor loads, stores, and moves), the target
Auxiliary Processor is present on the implementation,
and the Auxiliary Processor is configured as unavail-
able. Details of the Auxiliary Processor, its instruction
set, and its configuration are implementation-depen-
dent. See User’s Manual for the implementation.

When an Auxiliary Processor Unavailable interrupt
occurs, the hardware suppresses the execution of the
instruction causing the Auxiliary Processor Unavailable
interrupt.

Registers SRR0, SRR1, and MSR are updated as fol-
lows:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
CE, ME,DE

Unchanged

All other defined MSR bits set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x140. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR948:59|| 0b0000.

7.6.12 Decrementer Interrupt
A Decrementer interrupt occurs when no higher priority
interrupt exists  (see Section 7.9 on page 1190), a Dec-
rementer exception exists (TSRDIS=1),  and the excep-
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tion is enabled. If Category: Embedded.Hypervisor is
supported, the interrupt is enabled by TCR[DIE]=1 and
(MSREE=1 or MSRGS=1). Otherwise, the interrupt is
enabled by TCRDIE=1 and MSREE=1. See Section 9.3
on page 1199.

  

SRR0, SRR1, MSR, and TSR are updated as follows:

SRR0 Set to the effective address of the next
instruction to be executed.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
CE, ME,DE

Unchanged

All other defined MSR bits set to 0.

TSR (See Section 9.7.1 on page 1204.)
DIS Set to 1.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x160. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR1048:59|| 0b0000.

  

7.6.13 Guest Decrementer Inter-
rupt
A Guest Decrementer interrupt occurs when no higher
priority interrupt exists  (see Section 7.9 on page 1190),
a Guest Decrementer exception exists (GTSRDIS=1),
and the exception is enabled. The interrupt is enabled
by GTCR[DIE]=1 and MSREE=1 and MSRGS=1. See
Section 9.7 on page 1203.

  

GSRR0, GSRR1, MSR, and GTSR are updated as fol-
lows:

GSRR0 Set to the effective address of the next
instruction to be executed.

GSRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRGICM.
CE, ME, DE, GS

Unchanged

All other defined MSR bits set to 0.

Guest TSR (See Section 9.8.1 on page 1207.)
DIS Set to 1.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address GIVPR0:51 || 0x160. Otherwise,
instruction execution resumes at address GIVPR0:47 ||
GIVOR1048:59|| 0b0000.

  

7.6.14 Fixed-Interval Timer Inter-
rupt
A Fixed-Interval Timer interrupt occurs when no higher
priority exception exists (see Section 7.9 on
page 1190), a Fixed-Interval Timer exception exists
(TSRFIS=1), and the exception is enabled. If Category:
Embedded.Hypervisor is supported, the interrupt is
enabled by TCRFIE=1 and (MSREE=1 or MSRGS = 1).
Otherwise, the interrupt is enabled by TCRFIE=1 and
MSREE=1. See Section 9.9 on page 1208. 

MSREE also enables the External Input and
Fixed-Interval Timer interrupts.

Software is responsible for clearing the Decre-
menter exception status prior to re-enabling the
MSREE bit in order to avoid another redundant
Decrementer interrupt. To clear the Decrementer
exception, the interrupt handling routine must clear
TSRDIS. Clearing is done by writing a word to TSR
using mtspr with a 1 in any bit position that is to be
cleared and 0 in all other bit positions. The
write-data to the TSR is not direct data, but a mask.
A 1 causes the bit to be cleared, and a 0 has no
effect.

Programming Note

Programming Note

MSREE also enables the External Input and Guest
Fixed-Interval Timer interrupts.

Software is responsible for clearing the Guest Dec-
rementer exception status prior to re-enabling the
MSREE bit in order to avoid another redundant
Guest Decrementer interrupt. To clear the Guest
Decrementer exception, the interrupt handling rou-
tine must clear TSRDIS. Clearing is done by writing
a word to TSR using mtspr with a 1 in any bit posi-
tion that is to be cleared and 0 in all other bit posi-
tions. The write-data to the TSR is not direct data,
but a mask. A 1 causes the bit to be cleared, and a
0 has no effect.

Hypervisor software can modify the value of the
GTSR by writing the desired value to the
GTSRWR. Bits specified in the GTSRWR directly
set or clear the corresponding implemented bits in
the GTSR.

Programming Note

Programming Note
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SRR0, SRR1, MSR, and TSR are updated as follows:

SRR0 Set to the effective address of the next
instruction to be executed.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
CE, ME,DE

Unchanged.

All other defined MSR bits set to 0.

TSR (See Section 9.7.1 on page 1204.)
FIS Set to 1

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x180. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR1148:59|| 0b0000.

  

7.6.15 Guest Fixed Interval Timer 
Interrupt
A Guest Decrementer interrupt occurs when no higher
priority interrupt exists  (see Section 7.9 on page 1190),
a Guest Decrementer exception exists (GTSRDIS=1),
and the exception is enabled. The interrupt is enabled
by GTCR[DIE]=1 and MSREE=1 and MSRGS=1. See
Section 9.8 on page 1206.

  

GSRR0, GSRR1, MSR, and GTSR are updated as fol-
lows:

GSRR0 Set to the effective address of the next
instruction to be executed.

GSRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRGICM.
CE, ME, DE, GS

Unchanged

All other defined MSR bits set to 0.

Guest TSR (See Section 9.8.1 on page 1207.)
DIS Set to 1.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address GIVPR0:51 || 0x160. Otherwise,
instruction execution resumes at address GIVPR0:47 ||
GIVOR1048:59|| 0b0000.

  

7.6.16 Watchdog Timer Interrupt
A Watchdog Timer interrupt occurs when no higher pri-
ority exception exists (see Section 7.9 on page 1190), a
Watchdog Timer exception exists (TSRWIS=1), and the
exception is enabled.  If Category: Embedded.Hypervi-
sor is supported,  the interrupt is enabled by TCRWIE=1
and (MSRCE = 1 or MSRGS=1).Otherwise, the interrupt
is enabled by TCRWIE=1 and MSRCE=1. See
Section 9.11 on page 1208. 

  

CSRR0, CSRR1, MSR, and TSR are updated as fol-
lows:

CSRR0 Set to the effective address of the next
instruction to be executed.

CSRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR

MSREE also enables the External Input and Decre-
menter interrupts.

Software is responsible for clearing the Fixed-Inter-
val Timer exception status prior to re-enabling the
MSREE bit in order to avoid another redundant
Fixed-Interval Timer interrupt. To clear the
Fixed-Interval Timer exception, the interrupt han-
dling routine must clear TSRFIS. Clearing is done
by writing a word to TSR using mtspr with a 1 in
any bit position that is to be cleared and 0 in all
other bit positions. The write-data to the TSR is not
direct data, but a mask. A 1 causes the bit to be
cleared, and a 0 has no effect.

MSREE also enables the External Input and Guest
Fixed-Interval Timer interrupts.

Programming Note

Programming Note

Programming Note

Software is responsible for clearing the Guest Dec-
rementer exception status prior to re-enabling the
MSREE bit in order to avoid another redundant
Guest Decrementer interrupt. To clear the Guest
Decrementer exception, the interrupt handling rou-
tine must clear TSRDIS. Clearing is done by writing
a word to TSR using mtspr with a 1 in any bit posi-
tion that is to be cleared and 0 in all other bit posi-
tions. The write-data to the TSR is not direct data,
but a mask. A 1 causes the bit to be cleared, and a
0 has no effect.

Hypervisor software can modify the value of the
GTSR by writing the desired value to the
GTSRWR. Bits specified in the GTSRWR directly
set or clear the corresponding implemented bits in
the GTSR.

MSRCE also enables the Critical Input interrupt.

Programming Note

Programming Note
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CM MSRCM is set to EPCRICM.
ME Unchanged.
DE Unchanged if category E.ED is supported;

otherwise set to 0.

All other defined MSR bits set to 0.

TSR (See Section 9.7.1 on page 1204.)
WIS Set to 1.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x1A0. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR1248:59|| 0b0000.

  

7.6.17 Guest Watchdog Timer 
Interrupt
A Guest Watchdog Timer interrupt occurs when no
higher priority exception exists (see Section 7.9 on
page 1190), a Guest Watchdog Timer exception exists
(GTSRWIS=1), and the exception is enabled.  The inter-
rupt is enabled by GTCRWIE=1 and MSRCE = 1 and
MSRGS=1. See Section 9.8 on page 1206. 

  

CSRR0, CSRR1, MSR, and GTSR are updated as fol-
lows:

CSRR0 Set to the effective address of the next
instruction to be executed.

CSRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
ME Unchanged.
DE Unchanged if category E.ED is supported;

otherwise set to 0.

All other defined MSR bits set to 0.

Guest TSR(See Section 9.8.1 on page 1207.)
WIS Set to 1.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution

resumes at address IVPR0:51 || 0x1A0. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR1248:59|| 0b0000.

  

  

7.6.18 Data TLB Error Interrupt
A Data TLB Error interrupt occurs when no higher prior-
ity exception exists (see Section 7.9 on page 1190) and
any of the following Data TLB Error exceptions is pre-
sented to the interrupt mechanism. 

TLB Miss exception

Caused when the virtual address associated with a
data storage access does not match any valid entry in
the TLB as specified in Section 6.7.2 on page 1081.

If a stbcx., sthcx., stwcx., stdcx., or stqcx. would not
perform its store in the absence of a Data Storage inter-
rupt, and a non-conditional Store to the specified effec-
tive address would cause a Data Storage interrupt, it is
implementation dependent whether a Data Storage
interrupt occurs.

When a Data TLB Error interrupt occurs, the hardware
suppresses the execution of the instruction causing the
Data TLB Error interrupt.

If Category: Embedded.Hypervisor is not supported or
if Category: Embedded.Hypervisor is supported and
the interrupt is directed to hypervisor state, SRR0,
SRR1, MSR, DEAR, and ESR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion causing the Data TLB Error interrupt

Software is responsible for clearing the Watchdog
Timer exception status prior to re-enabling the
MSRCE bit in order to avoid another redundant
Watchdog Timer interrupt. To clear the Watchdog
Timer exception, the interrupt handling routine
must clear TSRWIS. Clearing is done by writing a
word to TSR using mtspr with a 1 in any bit posi-
tion that is to be cleared and 0 in all other bit posi-
tions. The write-data to the TSR is not direct data,
but a mask. A 1 causes the bit to be cleared, and a
0 has no effect.

MSRCE also enables the Critical Input interrupt.

Programming Note

Programming Note

Software is responsible for clearing the Guest
Watchdog Timer exception status prior to
re-enabling the MSRCE bit in order to avoid another
redundant Guest Watchdog Timer interrupt. To
clear the Guest Watchdog Timer exception, the
interrupt handling routine must clear TSRWIS.
Clearing is done by writing a word to TSR using
mtspr with a 1 in any bit position that is to be
cleared and 0 in all other bit positions. The
write-data to the TSR is not direct data, but a mask.
A 1 causes the bit to be cleared, and a 0 has no
effect.

Hypervisor software can modify the value of the
GTSR by writing the desired value to the
GTSRWR. Bits specified in the GTSRWR directly
set or clear the corresponding implemented bits in
the GTSR.

As all Watchdog Timer interrupts are directed to the
hypervisor, it is the responsibility of hypervisor soft-
ware to reflect interrupts generated by the Guest
Watchdog Timer to the guest supervisor.

Programming Note

Programming Note
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SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EHSRICM.
CE, ME, DE

Unchanged.

All other defined MSR bits set to 0.

DEAR Set to the effective address of a byte that is
both within the range of the bytes being
accessed by the Storage Access or Cache
Management instruction, and within the
page whose access caused the Data TLB
Error exception.

ESR
ST Set to 1 if the instruction causing the inter-

rupt is a Store, dcbi, dcbz, or dcbzep
instruction; otherwise set to 0.

FP Set to 1 if the instruction causing the inter-
rupt is a floating-point load or store; other-
wise set to 0.

AP Set to 1 if the instruction causing the inter-
rupt is an Auxiliary Processor load or store;
otherwise set to 0.

SPV Set to 1 if the instruction causing the inter-
rupt is a SPE operation or a Vector opera-
tion; otherwise set to 0.

VLEMI Set to 1 if the instruction causing the inter-
rupt resides in VLE storage.

EPID Set to 1 if the instruction causing the inter-
rupt is an External Process ID instruction;
otherwise set to 0.

All other defined ESR bits are set to 0.

If Category: Embedded.Hypervisor is supported and
the interrupt is directed to guest supervisor state,
GSRR0, GSRR1, GDEAR, and GESR are set in place
of SRR0, SRR1, DEAR, and ESR, respectively. The
MSR is set as follows:

MSR
CM  MSRCM is set to EPCRGICM.
CE, ME,GS,DE

Unchanged.

Bits in the MSR corresponding to set bits in the
MSRP register are left unchanged.

All other defined MSR bits set to 0.

If Category Embedded.Hypervisor is supported and the
interrupt is directed to the guest state, instruction exe-
cution resumes at the address given by one of the fol-
lowing.

GIVPR0:47 || GIVOR1348:59||0b0000 if IVORs [Cat-
egory: Embedded.Phased-Out] are supported.
GIVPR0:51||0x1C0 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

Otherwise, instruction execution resumes at the
address given by one of the following.

IVPR0:47 || IVOR1348:59||0b0000 if IVORs [Cate-
gory: Embedded.Phased-Out] are supported.
IVPR0:51||0x1C0 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

7.6.19 Instruction TLB Error Inter-
rupt
An Instruction TLB Error interrupt occurs when no
higher priority exception exists (see Section 7.9 on
page 1190) and any of the following Instruction TLB
Error exceptions is presented to the interrupt mecha-
nism. 

TLB Miss exception

Caused when the virtual address associated with an
instruction fetch does not match any valid entry in the
TLB as specified in Section 6.7.2 on page 1081.

When an Instruction TLB Error interrupt occurs, the
hardware suppresses the execution of the instruction
causing the Instruction TLB Miss exception.

If Category: Embedded.Hypervisor is not supported or
if Category: Embedded.Hypervisor is supported and
the interrupt is directed to hypervisor state, SRR0,
SRR1, and MSR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion causing the Instruction TLB Error inter-
rupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
CE, ME,DE

Unchanged.

All other defined MSR bits set to 0.

If Category: Embedded.Hypervisor is supported and
the interrupt is directed to guest supervisor state,
GSRR0 and GSRR1 are set in place of SRR0 and
SRR1, respectively. The MSR is set as follows:

MSR
CM  MSRCM is set to EPCRGICM.
CE, ME,GS,DE

Unchanged.

Bits in the MSR corresponding to set bits in the
MSRP register are left unchanged.

All other defined MSR bits set to 0.

If Category Embedded.Hypervisor is supported and the
interrupt is directed to the guest state, instruction exe-
cution resumes at the address given by one of the fol-
lowing.
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GIVPR0:47 || GIVOR1448:59||0b0000 if IVORs [Cat-
egory: Embedded.Phased-Out] are supported.
GIVPR0:51||0x1E0 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

Otherwise, instruction execution resumes at the
address given by one of the following.

IVPR0:47 || IVOR1448:59||0b0000 if IVORs [Cate-
gory: Embedded.Phased-Out] are supported.
IVPR0:51||0x1E0 if Interrupt Fixed Offsets [Cate-
gory: Embedded.Phased-In] are supported.

7.6.20 Debug Interrupt
A Debug interrupt occurs when no higher priority
exception exists (see Section 7.9 on page 1190), a
Debug exception exists in the DBSR, and Debug inter-
rupts are enabled (DBCR0IDM=1 and MSRDE=1). A
Debug exception occurs when a Debug Event causes a
corresponding bit in the DBSR to be set. See Section
10.5. 

If the Embedded.Enhanced Debug category is not sup-
ported or is supported and is not enabled, CSRR0,
CSRR1, MSR, and DBSR are updated as follows. If the
Embedded.Enhanced Debug category is supported
and is enabled, DSRR0 and DSRR1 are updated as
specified below and CSRR0 and CSRR1 are not
changed. The means by which the Embed-
ded.Enhanced Debug category is enabled is implemen-
tation-dependent.

CSRR0 or DSRR0 [Category: Embedded.Enhanced
Debug]

For Debug exceptions that occur while
Debug interrupts are enabled
(DBCR0IDM=1 and MSRDE=1), CSRR0 is
set as follows:

For Instruction Address Compare
(IAC1, IAC2, IAC3, IAC4), Data
Address Compare (DAC1R, DAC1W,
DAC2R, DAC2W), Trap (TRAP), or
Branch Taken (BRT) debug excep-
tions, set to the address of the instruc-
tion causing the Debug interrupt.
For Instruction Complete (ICMP)
debug exceptions, set to the address
of the instruction that would have exe-
cuted after the one that caused the
Debug interrupt.
For Unconditional Debug Event (UDE)
debug exceptions, set to the address
of the instruction that would have exe-
cuted next if the Debug interrupt had
not occurred.
For Interrupt Taken (IRPT) debug
exceptions, set to the interrupt vector
value of the interrupt that caused the
Interrupt Taken debug event.
For Return From Interrupt (RET)
debug exceptions, set to the address
of the rfi instruction that caused the
Debug interrupt.
For Critical Interrupt Taken (CRPT)
debug exceptions, DSRR0 is set to the
address of the first instruction of the
critical interrupt handler. CSRR0 is
unaffected.
For Critical Interrupt Return (CRET)
debug exceptions, DSRR0 is set to the
address of the rfci instruction that
caused the Debug interrupt. See
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Section 10.4.10, “Critical Interrupt
Return Debug Event [Category:
Embedded.Enhanced Debug]”.

For Debug exceptions that occur while
Debug interrupts are disabled
(DBCR0IDM=0 or MSRDE=0), a Debug
interrupt will occur at the next synchroniz-
ing event if DBCR0IDM and MSRDE are
modified such that they are both 1 and if the
Debug exception Status is still set in the
DBSR. When this occurs, CSRR0 or
DSRR0 [Category:Embedded.Enhanced
Debug] is set to the address of the instruc-
tion that would have executed next, not with
the address of the instruction that modified
the Debug Control Register 0 or MSR and
thus caused the interrupt. 

CSRR1 or DSRR1 [Category: Embedded.Enhanced
Debug]

Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
ME Unchanged

All other supported MSR bits set to 0.

DBSR Set to indicate type of Debug Event (see
Section 10.5.2)

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x040. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR1548:59|| 0b0000.

7.6.21 SPE/Embedded Float-
ing-Point/Vector Unavailable Inter-
rupt
[Categories: SPE.Embedded Float 
Scalar Double, SPE.Embedded 
Float Vector, Vector]
The SPE/Embedded Floating-Point/Vector Unavailable
interrupt occurs when no higher priority exception
exists, and an attempt is made to execute an  SPE,
SPE.Embedded Float Scalar Double, SPE.Embedded
Float Vector, or Vector instruction and MSRSPV = 0.

When an Embedded Floating-Point Unavailable inter-
rupt occurs, the hardware suppresses the execution of
the instruction causing the exception. 

SRR0, SRR1, MSR, and ESR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion causing the Embedded Floating-Point
Unavailable interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
CE, ME,DE

Unchanged

ESR
SPV Set to 1.
VLEMI Set to 1 if the instruction causing the inter-

rupt resides in VLE storage.

 All other defined ESR bits are set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x200. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR3248:59|| 0b0000.

 

This interrupt is also used by the Signal Processing
Engine in the same manner. It should be used by
software to determine if the application is using the
upper 32 bits of the GPRs in a 32-bit implementa-
tion and thus be required to save and restore them
on context switch.

Programming Note
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7.6.22 Embedded Floating-Point 
Data Interrupt
[Categories: SPE.Embedded Float 
Scalar Double, SPE.Embedded 
Float Scalar Single, SPE.Embedded 
Float Vector]
The Embedded Floating-Point Data interrupt occurs
when no higher priority exception exists (see Section
7.9) and an Embedded Floating-Point Data exception is
presented to the interrupt mechanism. The Embedded
Floating-Point Data exception causing the interrupt is
indicated in the SPEFSCR; these exceptions include
Embedded Floating-Point Invalid Operation/Input Error
(FINV, FINVH), Embedded Floating-Point Divide By
Zero (FDBZ, FDBZH), Embedded Floating-Point Over-
flow (FOV, FOVH), and Embedded Floating-Point
Underflow (FUNF, FUNFH)

When an Embedded Floating-Point Data interrupt
occurs, the hardware suppresses the execution of the
instruction causing the exception. 

SRR0, SRR1, MSR, and ESR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion causing the Embedded Floating-Point
Data interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
CE, ME,DE

Unchanged
VLEMI Set to 1 if the instruction causing the inter-

rupt resides in VLE storage.

All other defined MSR bits set to 0.

ESR
SPV Set to 1.

 All other defined ESR bits are set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x220. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR3348:59|| 0b0000.

7.6.23 Embedded Floating-Point 
Round Interrupt
[Categories: SPE.Embedded Float 
Scalar Double, SPE.Embedded 
Float Scalar Single, SPE.Embedded 
Float Vector]
The Embedded Floating-Point Round interrupt occurs
when no higher priority exception exists (see
Section 7.9 on page 1190), SPEFSCRFINXE is set to 1,
and any of the following occurs:

- the unrounded result of an Embedded Float-
ing-Point operation is not exact

- an overflow occurs and overflow exceptions
are disabled (FOVF or FOVFH is set to 1 and
FOVFE is set to 0)

- an underflow occurs and underflow exceptions
are disabled (FUNF is set to 1 and FUNFE is
set to 0).

The value of SPEFSCRFINXS is 1, indicating that one of
the above exceptions has occurred, and additional
information about the exception is found in
SPEFSCRFGH FG FXH FX.

When an Embedded Floating-Point Round interrupt
occurs, the hardware completes the execution of the
instruction causing the exception and writes the result
to the destination register prior to taking the interrupt.

SRR0, SRR1, MSR, and ESR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion following the instruction causing the
Embedded Floating-Point Round interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
CE, ME,DE

Unchanged

All other defined MSR bits set to 0.

ESR
SPV Set to 1.
VLEMI Set to 1 if the instruction causing the inter-

rupt resides in VLE storage.

 All other defined ESR bits are set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x240. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR3448:59|| 0b0000.
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7.6.24 Performance Monitor Inter-
rupt [Category: Embedded.Perfor-
mance Monitor]
The Performance Monitor interrupt is part of the
optional Performance Monitor facility; see Appendix D.

7.6.25 Processor Doorbell Inter-
rupt [Category: Embedded.Proces-
sor Control]
A Processor Doorbell Interrupt occurs when no higher
priority exception exists, a Processor Doorbell excep-
tion is present, and the interrupt is enabled (MSREE=1).
Processor Doorbell exceptions are generated when
DBELL messages (see Section 11) are received and
accepted by the thread.

If Category: Embedded.Hypervisor is supported, the
interrupt is enabled if MSRGS = 1 or MSREE=1.

SRR0, SRR1 and MSR are updated as follows:

SRR0 Set to the effective address of the next
instruction to be executed.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.

CE, ME,DE
Unchanged.

All other defined MSR bits set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x280. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR3648:59|| 0b0000.

7.6.26 Processor Doorbell Critical 
Interrupt [Category: Embed-
ded.Processor Control]
A Processor Doorbell Critical Interrupt occurs when no
higher priority exception exists, a Processor Doorbell
Critical exception is present, and the interrupt is
enabled (MSRCE=1). Processor Doorbell Critical
exceptions are generated when DBELL_CRIT mes-
sages (see Section 11) are received and accepted by
the thread.

If Category: Embedded.Hypervisor is supported, the
interrupt is enabled if MSRGS = 1 or MSRCE=1.

CSRR0, CSRR1 and MSR are updated as follows:

CSRR0 Set to the effective address of the next
instruction to be executed.

CSRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
ME Unchanged.
DE Unchanged if category E.ED is supported,

otherwise set to 0

All other defined MSR bits set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x2A0. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR3748:59|| 0b0000.

7.6.27 Guest Processor Doorbell 
Interrupt [Category: Embed-
ded.Hypervisor,Embedded.Proces-
sor Control]
A Guest Processor Doorbell Interrupt occurs when no
higher priority exception exists, a Guest Processor
Doorbell exception is present, and the interrupt is
enabled (MSRGS=1 and MSREE=1). Guest Processor
Doorbell exceptions are generated when G_DBELL
messages (see Section 11) are received and accepted
by the thread.

If an implementation does not support ±Infinity
rounding modes and the rounding mode is set to be
+Infinity or -Infinity, an Embedded Floating-Point
Round interrupt occurs after every Embedded
Floating-Point instruction for which rounding might
occur regardless of the value of FINXE, provided
no higher priority exception exists.

When an Embedded Floating-Point Round interrupt
occurs, the unrounded (truncated) result of an inex-
act high or low element is placed in the target regis-
ter. If only a single element is inexact, the other
exact element is updated with the correctly
rounded result, and the FG and FX bits corre-
sponding to the other exact element will both be 0. 

The bits FG (FGH) and FX (FXH) are provided so
that an interrupt handler can round the result as it
desires. FG (FGH) is the value of the bit immedi-
ately to the right of the least significant bit of the
destination format mantissa from the infinitely pre-
cise intermediate calculation before rounding. FX
(FXH) is the value of the ‘or’ of all the bits to the
right of the FG (FGH) of the destination format
mantissa from the infinitely precise intermediate
calculation before rounding.

Programming Note
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GSRR0, GSRR1 and MSR are updated as follows:

GSRR0 Set to the effective address of the next
instruction to be executed.

GSRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
CE, ME,DE

Unchanged.

All other defined MSR bits set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x2C0. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR3848:59|| 0b0000.

  

  

Guest Processor Doorbell interrupts are used by
the hypervisor to be notified when the guest operat-
ing system has set MSREE to 1. This allows the
hypervisor to reflect base class interrupts to the
guest at a time when the guest is ready to accept
them (MSRGS=1 and MSREE=1).

Programming Note

Some guest operating systems running on a hyper-
visor may use lazy interrupt blocking. That is, when
the operating system wants to block interrupts at
the interrupt controller, it does not actually perform
the blocking operation, but instead sets a value in
memory that represents the level at which inter-
rupts are to be blocked. When an actual interrupt
occurs, this value is consulted to determine if the
interrupt should have been blocked. If so, the cur-
rent interrupt level that is to be blocked is set in the
interrupt controller and the interrupt handling code
returns without acknowledging the interrupt. When
interrupts are unblocked at a later time, the inter-
rupt will be reasserted by the interrupt controller.
When a hypervisor is taking external interrupts and
then reflecting them to a guest, the hypervisor must
acknowledge the interrupt before reflecting it to the
guest since the external interrupt will occur again
once MSRGS = 1 regardless of the state of MSREE.

To emulate the behavior required for lazy interrupt
blocking by the guest, the hypervisor should exe-
cute another msgsnd instruction specifying a
Guest Processor Doorbell at the time that it is
reflecting the interrupt to the guest. When the guest
performs its interrupt acknowledge (a hypercall or
writing to an interrupt controller register emulated
by the hypervisor), the hypervisor can execute a
msgclr to clear a pending message if there are no
other interrupts to be reflected to the guest.

Programming Note
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7.6.28 Guest Processor Doorbell 
Critical Interrupt [Category: 
Embedded.Hypervisor,Embed-
ded.Processor Control]
A Guest Processor Doorbell Critical Interrupt occurs
when no higher priority exception exists, a Guest Pro-
cessor Doorbell Critical exception is present, and the
interrupt is enabled (MSRGS = 1 and MSRCE=1). Guest
Processor Doorbell Critical exceptions are generated
when G_DBELL_CRIT messages (see Section 11) are
received and accepted by the thread.

CSRR0, CSRR1 and MSR are updated as follows:

CSRR0 Set to the effective address of the next
instruction to be executed.

CSRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
ME Unchanged.
DE Unchanged if category E.ED is supported,

otherwise set to 0

All other defined MSR bits set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x2E0. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR3948:59|| 0b0000.

  

7.6.29 Guest Processor Doorbell 
Machine Check Interrupt [Category: 
Embedded.Hypervisor,Embed-
ded.Processor Control]
A Guest Processor Doorbell Machine Check Interrupt
occurs when no higher priority exception exists, a
Guest Processor Doorbell Machine Check exception is
present, and the interrupt is enabled (MSRGS = 1 and
MSRME=1). Guest Processor Doorbell Machine Check
exceptions are generated when G_DBELL_MC mes-
sages (see Section 11) are received and accepted by
the thread.

CSRR0, CSRR1 and MSR are updated as follows:

CSRR0 Set to the effective address of the next
instruction to be executed.

CSRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to EPCRICM.
ME Unchanged.
DE Unchanged if category E.ED is supported,

otherwise set to 0

All other defined MSR bits set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x2E0. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR3948:59|| 0b0000.

  

  

7.6.30 Embedded Hypervisor Sys-
tem Call Interrupt [Category: 
Embedded.Hypervisor]
An Embedded Hypervisor System Call interrupt occurs
when no higher priority exception exists (see Section
7.9) and a System Call (sc) instruction with LEV = 1 is
executed. 

SRR0, SRR1, and MSR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion after the sc instruction.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM  MSRCM is set to EPCRICM.
VLEMI Set to 1 if the instruction causing the inter-

rupt resides in VLE storage.
CE, ME,DE

Guest Processor Doorbell Critical interrupts are
used by the hypervisor to be notified when the
guest operating system has set MSRCE to 1. This
allows the hypervisor to reflect critical class inter-
rupts to the guest at a time when the guest is ready
to accept them (MSRGS=1 and MSRCE=1).

Programming Note

Guest Processor Doorbell Machine Check inter-
rupts are used by the hypervisor to be notified
when the guest operating system has set MSRME
to 1. This allows the hypervisor to reflect machine
check class interrupts to the guest at a time when
the guest is ready to accept them (MSRGS=1 and
MSRME=1).

Guest Processor Doorbell Critical interrupts and
Guest Processor Doorbell Machine Check inter-
rupts share the same IVOR. Hypervisor software
can differentiate between the two interrupts by
comparing whether CE or ME is set in CSRR1 and
which interrupt class is to be reflected.

Programming Note

Programming Note
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Unchanged.

All other defined MSR bits set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x300. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR4048:59|| 0b0000.

7.6.31 Embedded Hypervisor Priv-
ilege Interrupt [Category: Embed-
ded.Hypervisor]
An Embedded Hypervisor Privilege interrupt occurs
when no higher priority exception exists (see
Section 7.9 on page 1190) and an Embedded Hypervi-
sor Privilege exception is presented to the exception
mechanism. 

An Embedded Hypervisor Privilege exception occurs
when MSRGS = 1 and MSRPR = 0 and execution is
attempted of any of the following:

a hypervisor-privileged instruction
an mtspr or mfspr instruction that specifies an
SPR that is hypervisor privileged
a tlbwe instruction and Category: Embed-
ded.Hypervisor.LRAT is not implemented.
a tlbwe, tlbsrx., or tlbilx instruction and
EPCRDGTMI=1
a tlbwe instruction that attempts to write a TLB
entry for which TLBV=1 and TLBIPROT=1 when
MAS0WQ=0b00
a tlbwe instruction that attempts to write a TLB
entry when MAS1V=1, MAS1IPROT=1, and
MAS0WQ=0b00
a mtpmr or mfpmr instruction and MSRPPMMP = 1
a Cache Locking instruction and MSRPUCLEP = 1

An Embedded Hypervisor Privilege exception may
occur for the following implementation dependent rea-
sons when MSRGS = 1 and MSRPR = 0 and execution
is attempted of any of the following:

a tlbwe instruction that attempts to write a TLB
entry for which TLBV=0 and TLBIPROT=1 when
MAS0WQ=0b00
a tlbwe instruction that attempts to write a TLB
entry when MAS1V=0, MAS1IPROT=1, and
MAS0WQ=0b00
a tlbwe instruction that attempts to write a TLB
entry for which TLBIPROT=1 when MAS0WQ=0b01
a tlbwe instruction that attempts to write a TLB
entry when MAS1IPROT=1, and MAS0WQ=0b01
a tlbwe instruction that attempts to write a TLB
entry when MAS0HES=0
a tlbwe instruction that attempts to write a TLB
entry to an array that is disallowed by the imple-
mentation
an implementation dependent instruction or SPR
which is hypervisor privileged

An Embedded Hypervisor Privilege exception also
occurs when execution is attempted of an ehpriv
instruction, regardless of the state of the thread.

Execution of the instruction causing the interrupt is sup-
pressed and SRR0, SRR1, and MSR are updated as
follows:

SRR0 Set to the effective address of the instruc-
tion causing the Embedded Hypervisor
Privilege interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM  MSRCM is set to EPCRICM.
VLEMI Set to 1 if the instruction causing the inter-

rupt resides in VLE storage.
CE, ME,DE

Unchanged.

All other defined MSR bits set to 0.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:51 || 0x320. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR4148:59|| 0b0000.

7.6.32 LRAT Error Interrupt [Cate-
gory: Embedded.Hypervisor.LRAT]
An LRAT Error interrupt occurs when no higher priority
exception exists (see Section 7.9 on page 1190) and
an LRAT Miss exception is presented to the interrupt
mechanism. 

An LRAT Miss exception is caused by either of the fol-
lowing.

A tlbwe instruction is executed in guest supervisor
state and the logical page number (RPN specified
by MAS7 and MAS3 and page size specified by
MAS1TSIZE) does not match any valid entry in the
LRAT.
A Page Table translation is performed and the
associated PTEARPN is to be treated as an LPN
(the Embedded.Hypervisor category is supported)
and the logical page number (RPN based on
PTEARPN and page size specified by PTEPS) does
not match any valid entry in the LRAT.

When an LRAT Error interrupt occurs, the hardware
suppresses the execution of the instruction causing the
LRAT Error interrupt.

SRR0, SRR1, MSR, ESR, and LPER are updated as
follows:

SRR0 Set to the effective address of the instruc-
tion causing the LRAT Error interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.
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MSR
CM MSRCM is set to EPCRICM.
CE, ME, DE Unchanged.

All other defined MSR bits are set to 0.

DEAR  If the LRAT Error interrupt occurred for a
Page Table translation, set to the effective
address of a byte that is both within the
range of the bytes being accessed by the
Storage Access or Cache Management
instruction, and within the page whose
access caused the LRAT Miss exception.
Otherwise, undefined.

ESR
FP Set to 1 if the instruction causing the inter-

rupt is a floating-point load or store and the
translation of the operand address causes
the LRAT Miss exception; otherwise set to
0.

ST Set to 1 if the instruction causing the inter-
rupt is a Store or ‘store-class’ Cache Man-
agement instruction and the translation of
the operand address causes the LRAT Miss
exception; otherwise set to 0.

AP Set to 1 if the instruction causing the inter-
rupt is an Auxiliary Processor load or store
and the translation of the operand address
causes the LRAT Miss exception; otherwise
set to 0.

SPV Set to 1 if the instruction causing the inter-
rupt is a SPE operation or a Vector opera-
tion, the instruction is a Load or Store, and
the translation of the operand address
causes the LRAT Miss exception; otherwise
set to 0.

DATA Set to 1 if the interrupt is due to an LRAT
miss resulting from a Page Table translation
of a Load, Store or Cache Management
operand address; otherwise set to 0.

TLBI Set to 1 if a TLB Ineligible exception
occurred during a Page Table translation for
the instruction causing the interrupt; other-
wise set to 0.

PT Set to 1 if the cause of the interrupt is an
LRAT miss exception on a Page Table
translation. Set to 0 if the cause of the inter-
rupt is an LRAT miss exception on a tlbwe.

VLEMI Set to 1 if the instruction causing the inter-
rupt resides in VLE storage, the instruction
is a Load, Store, or Cache Management
instruction, and the translation of the oper-
and address causes the LRAT Miss excep-
tion.

EPID Set to 1 if the instruction causing the inter-
rupt is an External Process ID instruction,
the instruction is a Load, Store, or Cache
Management instruction, and the transla-
tion of the operand address causes the
LRAT Miss exception; otherwise set to 0.

All other defined ESR bits are set to 0.

LPER

Set to the values of the ARPN and PS fields from
the PTE that was used to translate a virtual
address for an instruction fetch, Load, Store or
Cache Management  instruction that caused an
LRAT Error interrupt as a result of an LRAT Miss
exception.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] are supported, instruction execution
resumes at address IVPR0:47 || 0x0340. Otherwise,
instruction execution resumes at address IVPR0:47 ||
IVOR4248:59|| 0b0000.
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7.7 Partially Executed Instructions

In general, the architecture permits load and store
instructions to be partially executed, interrupted, and
then to be restarted from the beginning upon return
from the interrupt. Unaligned Load and Store instruc-
tions, or Load Multiple, Store Multiple, Load String, and
Store String instructions may be broken up into multi-
ple, smaller accesses, and these accesses may be per-
formed in any order. In order to guarantee that a
particular load or store instruction will complete without
being interrupted and restarted, software must mark
the storage being referred to as Guarded, and must use
an elementary (non-string or non-multiple) load or store
that is aligned on an operand-sized boundary.

In order to guarantee that Load and Store instructions
can, in general, be restarted and completed correctly
without software intervention, the following rules apply
when an execution is partially executed and then inter-
rupted:

For an elementary Load, no part of the target reg-
ister RT or FRT, will have been altered.
For ‘with update’ forms of Load or Store, the
update register, register RA, will not have been
altered.

On the other hand, the following effects are permissible
when certain instructions are partially executed and
then restarted:

For any Store, some of the bytes at the target stor-
age location may have been altered (if write
access to that page in which bytes were altered is
permitted by the access control mechanism). In
addition, for Store Conditional instructions, CR0
has been set to an undefined value, and it is unde-
fined whether the reservation has been cleared.
For any Load, some of the bytes at the addressed
storage location may have been accessed (if read
access to that page in which bytes were accessed
is permitted by the access control mechanism).
For Load Multiple or Load String, some of the reg-
isters in the range to be loaded may have been
altered. Including the addressing registers (RA,
and possibly RB) in the range to be loaded is a
programming error, and thus the rules for partial
execution do not protect against overwriting of
these registers.

In no case will access control be violated.

As previously stated, the only load or store instructions
that are guaranteed to not be interrupted after being
partially executed are elementary, aligned, guarded
loads and stores. All others may be interrupted after
being partially executed. The following list identifies the
specific instruction types for which interruption after
partial execution may occur, as well as the specific
interrupt types that could cause the interruption:

1. Any Load or Store (except elementary, aligned,
guarded):

Any asynchronous interrupt
Machine Check
Program (Imprecise Mode Floating-Point

Enabled)
Program (Imprecise Mode Auxiliary Processor

Enabled)

2. Unaligned elementary Load or Store, or any multi-
ple or string:

All of the above listed under item 1, plus the
following:
Data Storage (if the access crosses a protec-

tion boundary)
Debug (Data Address Compare)

3. mtcrf may also be partially executed due to the
occurrence of any of the interrupts listed under
item 1 at the time the mtcrf was executing.

All instructions prior to the mtcrf have com-
pleted execution. (Some storage accesses
generated by these preceding instructions
may not have completed.)
No subsequent instruction has begun execu-
tion.
The mtcrf instruction (the address of which
was saved in SRR0/CSRR0/MCSRR0/
DSRR0 [Category: Embedded.Enhanced
Debug] at the occurrence of the interrupt),
may appear not to have begun or may have
partially executed.
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7.8 Interrupt Ordering and Masking

It is possible for multiple exceptions to exist simulta-
neously, each of which could cause the generation of
an interrupt. Furthermore, for interrupts classes other
than the Machine Check interrupt and critical interrupts,
the architecture does not provide for reporting more
than one interrupt of the same class (unless the
Embedded.Enhanced Debug category is supported).
Therefore, the architecture defines that interrupts are
ordered with respect to each other, and provides a
masking mechanism for certain persistent interrupt
types.

When an interrupt is masked (disabled), and an event
causes an exception that would normally generate the
interrupt, the exception persists as a status bit in a reg-
ister (which register depends upon the exception type).
However, no interrupt is generated. Later, if the inter-
rupt is enabled (unmasked), and the exception status
has not been cleared by software, the interrupt due to
the original exception event will then finally be gener-
ated.

All asynchronous interrupts can be masked. In addition,
certain synchronous interrupts can be masked. An
example of such an interrupt is the Floating-Point
Enabled exception type Program interrupt. The execu-
tion of a floating-point instruction that causes the
FPSCRFEX bit to be set to 1 is considered an exception
event, regardless of the setting of MSRFE0,FE1. If
MSRFE0,FE1 are both 0, then the Floating-Point
Enabled exception type of Program interrupt is masked,
but the exception persists in the FPSCRFEX bit. Later, if
the MSRFE0,FE1 bits are enabled, the interrupt will
finally be generated.

The architecture enables implementations to avoid situ-
ations in which an interrupt would cause the state infor-
mation (saved in Save/Restore Registers) from a
previous interrupt to be overwritten and lost. In order to
do this, the architecture defines interrupt classes in a
hierarchical manner. At each interrupt class, hardware
automatically disables any further interrupts associated
with the interrupt class by masking the interrupt enable
in the MSR when the interrupt is taken. In addition,
each interrupt class masks the interrupt enable in the
MSR for each lower class in the hierarchy. The hierar-

chy of interrupt classes is as follows from highest to
lowest: 

Figure 71. Interrupt Hierarchy

[Category: Embedded.Hypervisor]
The masking of interrupts is affected by MSRGS and
whether the interrupt is directed to the guest supervisor
state or the hypervisor state. In general, interrupts
directed to the hypervisor state (with the exception of
Guest Processor Doorbell type interrupts), are enabled
if MSRGS = 1 regardless of the value of other MSR
enables. Interrupts directed to the guest supervisor
state are enabled if the associated MSR enables are
set and MSRGS = 1.

If the Embedded.Enhanced Debug category is not sup-
ported (or is supported and is not enabled), then the
Debug interrupt becomes a Critical class interrupt and
all critical class interrupts will clear DE, CE, and EE in
the MSR.

Base Class interrupts that occur as a result of precise
exceptions are not masked by the EE bit in the MSR
and any such exception that occurs prior to software
saving the state of SRR0/1 in a base class exception
handler will result in a situation that could result in the
loss of state information.

This first step of the hardware clearing the MSR enable
bits lower in the hierarchy shown in Figure 71 prevents
any subsequent asynchronous interrupts from overwrit-
ing the Save/Restore Registers (SRR0/SRR1, CSRR0/
CSRR1, MCSRR0/MCSRR1, or DSRR0/DSRR1 [Cate-
gory: Embedded.Enhanced Debug]), prior to software
being able to save their contents. Hardware also auto-
matically clears, on any interrupt,
MSRPR,FP,FE0,FE1,IS,DS. The clearing of these bits
assists in the avoidance of subsequent interrupts of
certain other types. However, guaranteeing that inter-
rupt classes lower in the hierarchy do not occur and
thus do not overwrite the Save/Restore Registers
(SRR0/SRR1, CSRR0/CSRR1, DSRR0/DSRR1 [Cate-
gory: Embedded.Enhanced Debug], or MCSRR0/
MCSRR1) also requires the cooperation of system soft-
ware. Specifically, system software must avoid the exe-

Interrupt Class
MSR Enables 

Cleared
Save/Restore 

Registers
Machine Check ME,DE, CE, EE MSRR0/1

Debug1 DE,CE,EE DSRR0/1

Critical CE,EE CSRR0/1
Base EE SRR0/1

Guest <E.HV> EE GSRR0/1
1 The Debug interrupt class is Category: E.ED. 

Note: MSRDE may be cleared when a critical inter-
rupt occurs if Category: E.ED is not supported.
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cution of instructions that could cause (or enable) a
subsequent interrupt, if the contents of the Save/
Restore Registers (SRR0/SRR1, CSRR0/CSRR1,
DSRR0/DSRR1 [Category: Embedded.Enhanced
Debug]), or MCSRR0/MCSRR1) have not yet been
saved.

7.8.1 Guidelines for System Soft-
ware 
The following list identifies the actions that system soft-
ware must avoid, prior to having saved the Save/
Restore Registers’ contents:

Re-enabling an interrupt class that is at the same
or a lower level in the interrupt hierarchy. This
includes the following actions:

- Re-enabling of MSREE

- Re-enabling of MSRCE,EE in critical class
interrupt handlers, and if the Embed-
ded.Enhanced Debug category is not sup-
ported, re-enabling of MSRDE.

- [Category: Embedded.Enhanced Debug]
Re-enabling of MSRCE,EE,DE in Debug class
interrupt handlers

- Re-enabling of MSREE,CE,DE,ME in Machine
Check interrupt handlers.

Branching (or sequential execution) to addresses
for which any of the following conditions are true.

The address is not mapped by the TLB or the
Page Table or is mapped without UX=1 or
SX=1 permission.
Both the Embedded.Hypervisor.LRAT and the
Embedded Page.Table category are sup-
ported, MSRGS=1, and the effective address
is mapped by the Page Table but the LPN is
not mapped by the LRAT.

This prevents Instruction Storage, LRAT Error, and
Instruction TLB Error interrupts.

Load, Store or Cache Management instructions to
addresses for which any of the following conditions
are true.

The address is not mapped by the TLB or the
Page Table or is mapped without the required
access permissions.
Both the Embedded.Hypervisor.LRAT and the
Embedded Page.Table category are sup-
ported, MSRGS=1, and the effective address
is mapped by the Page Table but the LPN is
not mapped by the LRAT.

This prevents Data Storage, LRAT Error, and Data
TLB Error interrupts.

Execution of any floating-point instruction

This prevents Floating-Point Unavailable inter-
rupts. Note that this interrupt would occur upon the

execution of any floating-point instruction, due to
the automatic clearing of MSRFP. However, even if
software were to re-enable MSRFP, floating-point
instructions must still be avoided in order to pre-
vent Program interrupts due to various possible
Program interrupt exceptions (Floating-Point
Enabled, Unimplemented Operation).

Re-enabling of MSRPR

This prevents Privileged Instruction exception type
Program interrupts. Alternatively, software could
re-enable MSRPR, but avoid the execution of any
privileged instructions.

Execution of any Auxiliary Processor instruction

This prevents Auxiliary Processor Unavailable
interrupts, and Auxiliary Processor Enabled type
and Unimplemented Operation type Program inter-
rupts.

Execution of any Illegal instructions

This prevents Illegal Instruction exception type
Program interrupts.

Execution of any instruction that could cause an
Alignment interrupt

This prevents Alignment interrupts. Included in this
category are any string or multiple instructions,
and any unaligned elementary load or store
instructions. See Section 7.6.7 on page 1170 for a
complete list of instructions that may cause Align-
ment interrupts.

It is not necessary for hardware or software to avoid
interrupts higher in the interrupt hierarchy (see
Figure 71 on page 1187) from within interrupt handlers
(and hence, for example, hardware does not automati-
cally clear MSRCE,ME,DE upon a base class interrupt),
since interrupts at each level of the hierarchy use differ-
ent pairs of Save/Restore Registers to save the instruc-
tion address and MSR (i.e., SRR0/SRR1 for base class
interrupts, and MCSRR0/MCSRR1,DSRR0/DSRR1
[Category: Embedded.Enhanced Debug], or CSRR0/
CSRR1 for non-base class interrupts). The converse,
however, is not true. That is, hardware and software
must cooperate in the avoidance of interrupts lower in
the hierarchy from occurring within interrupt handlers,
even though the these interrupts use different Save/
Restore Register pairs. This is because the interrupt
higher in the hierarchy may have occurred from within a
interrupt handler for an interrupt lower in the hierarchy
prior to the interrupt handler having saved the Save/
Restore Registers. Therefore, within an interrupt han-
dler, Save/Restore Registers for all interrupts lower in
the hierarchy may contain data that is necessary to the
system software.
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7.8.2 Interrupt Order
The following is a prioritized listing of the various
enabled interrupts for which exceptions might exist
simultaneously:

1. Synchronous (Non-Debug) Interrupts: 
Data Storage
Instruction Storage
Alignment
Program
Embedded Hypervisor Privilege [Category:

Embedded.Hypervisor]
Floating-Point Unit Unavailable
Auxiliary Processor Unavailable
Embedded Floating-Point Unavailable [Cate-

gory: SP.Embedded Float_*]
SPE/Embedded Floating-Point/Vector

Unavailable [Category: SP.Embedded
Float_*]

Embedded Floating-Point Data [Category:
SP.Embedded Float_*]

Embedded Floating-Point Round [Category:
SP.Embedded Float_*]

System Call
Embedded Hypervisor System Call [Category:

Embedded.Hypervisor]
Data TLB Error
Instruction TLB Error
LRAT Error [Category: Embedded.Hypervi-

sor.LRAT]

Only one of the above types of synchronous inter-
rupts may have an existing exception generating it
at any given time. This is guaranteed by the excep-
tion priority mechanism (see Section 7.9 on
page 1190) and the requirements of the Sequen-
tial Execution Model.

2. Machine Check

3. Guest Processor Doorbell Machine Check [Cate-
gory: Embedded.Hypervisor]

4. Debug
5. Critical Input
6. Watchdog Timer
7. Guest Watchdog Timer [Category: Embed-

ded.Hypervisor]
8. Processor Doorbell Critical [Category: Embed-

ded.Processor Control]
9. Guest Processor Doorbell Critical [Category:

Embedded.Hypervisor]
10. External Input Category: Embedded.Processor

Control
11. Fixed-Interval Timer Category: Embedded.Proces-

sor Control
12. Guest Fixed-Interval Timer Category: Embed-

ded.Processor Control, Embedded.Hypervisor
13. Decrementer Category: Embedded.Processor

Control
14. Guest Decrementer Category: Embedded.Proces-

sor Control, Embedded.Hypervisor

15. Processor Doorbell [Category: Embedded.Proces-
sor Control]

16. Guest Processor Doorbell [Category: Embed-
ded.Hypervisor]

17. Embedded Performance Monitor

Even though, as indicated above, the base, synchro-
nous exception types listed under item 1 are generated
with higher priority than the non-base interrupt classes
listed in items 2-6, the fact is that these base class
interrupts will immediately be followed by the highest
priority existing interrupt in items 2-5, without executing
any instructions at the base class interrupt handler.
This is because the base interrupt classes do not auto-
matically disable the MSR mask bits for the interrupts
listed in 2-5. In all other cases, a particular interrupt
class from the above list will automatically disable any
subsequent interrupts of the same class, as well as all
other interrupt classes that are listed below it in the pri-
ority order.
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7.9 Exception Priorities
All synchronous (precise and imprecise) interrupts are
reported in program order, as required by the Sequen-
tial Execution Model. The one exception to this rule is
the case of multiple synchronous imprecise interrupts.
Upon a synchronizing event, all previously executed
instructions are required to report any synchronous
imprecise interrupt-generating exceptions, and the
interrupt will then be generated with all of those excep-
tion types reported cumulatively, in both the ESR, and
any status registers associated with the particular
exception type (e.g. the Floating-Point Status and Con-
trol Register).

For any single instruction attempting to cause multiple
exceptions for which the corresponding synchronous
interrupt types are enabled, this section defines the pri-
ority order by which the instruction will be permitted to
cause a single enabled exception, thus generating a
particular synchronous interrupt. Note that it is this
exception priority mechanism, along with the require-
ment that synchronous interrupts be generated in pro-
gram order, that guarantees that at any given time,
there exists for consideration only one of the synchro-
nous interrupt types listed in item 1 of Section 7.8.2 on
page 1189. The exception priority mechanism also pre-
vents certain debug exceptions from existing in combi-
nation with certain other synchronous
interrupt-generating exceptions.

Because unaligned Load and Store instructions, or
Load Multiple, Store Multiple, Load String, and Store
Sting instructions may be broken up into multiple,
smaller accesses, and these accesses may be per-
formed in any order. The exception priority mechanism
applies to each of the multiple storage accesses in the
order they are performed by the implementation.

This section does not define the permitted setting of
multiple exceptions for which the corresponding inter-
rupt types are disabled. The generation of exceptions
for which the corresponding interrupt types are disabled
will have no effect on the generation of other exceptions
for which the corresponding interrupt types are
enabled. Conversely, if a particular exception for which
the corresponding interrupt type is enabled is shown in
the following sections to be of a higher priority than
another exception, it will prevent the setting of that
other exception, independent of whether that other
exception’s corresponding interrupt type is enabled or
disabled.

Except as specifically noted, only one of the exception
types listed for a given instruction type will be permitted
to be generated at any given time. The priority of the
exception types are listed in the following sections
ranging from highest to lowest, within each instruction
type.

  

7.9.1 Exception Priorities for 
Defined Instructions

7.9.1.1 Exception Priorities for Defined 
Floating-Point Load and Store Instruc-
tions
The following prioritized list of exceptions may occur as
a result of the attempted execution of any defined
Floating-Point Load and Store instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. LRAT Error for instruction fetch [Categories: E.PT

and E.HV.LRAT]
5. Program (Illegal Instruction)
6. Program (Privileged Instruction)
7. Floating-Point Unavailable
8. Program (Unimplemented Operation)
9. Data TLB Error

10. Data Storage (all types)
11. Alignment
12. LRAT Error for data access [Categories: E.PT and

E.HV.LRAT]
13. Debug (Data Address Compare)
14. Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction
Address Compare) and a Debug (Data Address Com-
pare), and is not causing any of the exceptions listed in
items 2-11, it is permissible for both exceptions to be
generated and recorded in the DBSR. A single Debug
interrupt will result.

7.9.1.2 Exception Priorities for Other 
Defined Load and Store Instructions and 
Defined Cache Management Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of any other defined
Load or Store instruction, or defined Cache Manage-
ment instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. LRAT Error for instruction fetch [Categories: E.PT

and E.HV.LRAT]
5. Program (Illegal Instruction)
6. Program (Privileged Instruction)

Some exception types may even be mutually exclu-
sive of each other and could otherwise be consid-
ered the same priority. In these cases, the
exceptions are listed in the order suggested by the
sequential execution model.

Programming Note
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7. Program (Unimplemented Operation)
8. Embedded Hypervisor Privilege [Category: E.HV]
9. Data TLB Error

10. Data Storage (all types)
11. Alignment
12. LRAT Error for data access [Categories: E.PT and

E.HV.LRAT]
13. Debug (Data Address Compare)
14. Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction
Address Compare) and a Debug (Data Address Com-
pare), and is not causing any of the exceptions listed in
items 2-11, it is permissible for both exceptions to be
generated and recorded in the DBSR. A single Debug
interrupt will result.

7.9.1.3 Exception Priorities for Other 
Defined Floating-Point Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of any defined float-
ing-point instruction other than a load or store.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. LRAT Error [Categories: E.PT and E.HV.LRAT]
5. Program (Illegal Instruction)
6. Floating-Point Unavailable
7. Program (Unimplemented Operation)
8. Program (Floating-point Enabled)
9. Debug (Instruction Complete)

7.9.1.4 Exception Priorities for Defined 
Privileged Instructions 
The following prioritized list of exceptions may occur as
a result of the attempted execution of any defined privi-
leged instruction, except dcbi, rfi, and rfci instructions.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. LRAT Error [Categories: E.PT and E.HV.LRAT] (for

hardware tablewalk)
5. Program (Illegal Instruction, except for TLB man-

agement instructions with invalid MAS settings,
see 9)

6. Program (Privileged Instruction)
7. Program (Unimplemented Operation)
8. Embedded Hypervisor Privilege [Category: E.HV]
9. Program (Illegal Instruction, special case for TLB

management instructions with invalid MAS set-
tings)

10. LRAT Error [Category: E.HV.LRAT] (for tlbwe)
11. Debug (Instruction Complete)

For mtmsr, mtspr (DBCR0, DBCR1, DBCR2), mtspr
(TCR), and mtspr (TSR), if they are not causing Debug
(Instruction Address Compare) nor Program (Privileged

Instruction) exceptions, it is possible that they are
simultaneously enabling (via mask bits) multiple exist-
ing exceptions (and at the same time possibly causing
a Debug (Instruction Complete) exception). When this
occurs, the interrupts will be handled in the order
defined by Section 7.8.2 on page 1189.

7.9.1.5 Exception Priorities for Defined 
Trap Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of a defined Trap
instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. LRAT Error [Categories: E.PT and E.HV.LRAT]
5. Program (Illegal Instruction)
6. Program (Unimplemented Operation)
7. Debug (Trap)
8. Program (Trap)
9. Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction
Address Compare) and a Debug (Trap), and is not
causing any of the exceptions listed in items 2-6, it is
permissible for both exceptions to be generated and
recorded in the DBSR. A single Debug interrupt will
result.

7.9.1.6 Exception Priorities for Defined 
System Call Instruction
The following prioritized list of exceptions may occur as
a result of the attempted execution of a defined System
Call instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. LRAT Error [Categories: E.PT and E.HV.LRAT]
5. Program (Illegal Instruction)
6. Program (Unimplemented Operation)
7. System Call
8. Embedded Hypervisor System Call [Category:

E.HV]
9. Debug (Instruction Complete)

7.9.1.7 Exception Priorities for Defined 
Branch Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of any defined
branch instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. LRAT Error [Categories: E.PT and E.HV.LRAT]
5. Program (Illegal Instruction)
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6. Program (Unimplemented Operation)
7. Debug (Branch Taken)
8. Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction
Address Compare) and a Debug (Branch Taken), and
is not causing any of the exceptions listed in items 2-6,
it is permissible for both exceptions to be generated
and recorded in the DBSR. A single Debug interrupt will
result.

7.9.1.8 Exception Priorities for Defined 
Return From Interrupt Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of an rfi, rfci, rfmci,
rfdi [Category:Embedded.Enhanced Debug], rfgi [Cat-
egory: Embedded.Hypervisor] instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. LRAT Error [Categories: E.PT and E.HV.LRAT]
5. Program (Illegal Instruction)
6. Program (Privileged Instruction)
7. Program (Unimplemented Operation)
8. Debug (Return From Interrupt)
9. Debug (Instruction Complete)

If the rfi or rfci, rfmci, or rfdi [Category: Embed-
ded.Enhanced Debug] or rfgi [Category: Embed-
ded.Hypervisor] instruction is causing both a Debug
(Instruction Address Compare) and a Debug (Return
From Interrupt), and is not causing any of the excep-
tions listed in items 2-6, it is permissible for both excep-
tions to be generated and recorded in the DBSR. A
single Debug interrupt will result.

7.9.1.9 Exception Priorities for Other 
Defined Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of all other instruc-
tions not listed above.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. LRAT Error instruction fetch [Categories: E.PT and

E.HV.LRAT]
5. Program (Illegal Instruction)
6. Program (Privileged Instruction)
7. Program (Unimplemented Operation)
8. Embedded Hypervisor Privilege <E.HV>
9. LRAT Error for data access for tlbwe [Category:

E.HV.LRAT]
10. Debug (Instruction Complete)

7.9.2 Exception Priorities for 
Reserved Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of any reserved
instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
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Chapter 8.  Reset and Initialization

8.1 Background
This chapter describes the requirements for thread
reset. This includes both the means of causing reset,
and the specific initialization that is required to be per-
formed automatically by the hardware. This chapter
also provides an overview of the operations that should
be performed by initialization software.

In general, the specific actions taken by a thread upon
reset are implementation-dependent. Also, it is the
responsibility of system initialization software to initial-
ize the majority of thread and system resources after
reset. Implementations are required to provide a mini-
mum thread initialization such that this system software
may be fetched and executed, thereby accomplishing
the rest of system initialization.

8.2 Reset Mechanisms
This specification defines two mechanisms for inter-
nally invoking a thread reset operation using either the
Watchdog Timer (see Section 9.11 on page 1208) or
the Debug facilities using DBCR0RST (see
Section 10.5.1.1 on page 1221). In addition, implemen-
tations will typically provide additional means for invok-
ing a reset operation, using an external mechanism
such as a signal pin, which when activated, causes the
thread to be reset.

8.3 Thread State after Reset
The initial thread state is controlled by the register con-
tents after reset. In general, the contents of most regis-
ters are undefined after reset.

The hardware is only guaranteed to initialize those reg-
isters (or specific bits in registers) which must be initial-
ized in order for software to be able to reliably perform
the rest of system initialization.

The Thread Enable Register, Machine State Register,
Processor Version Register, and a TLB entry are
updated as follows.

Thread Enable Register [Category: 
Embedded Multi-Threading]
The TEN is set to the value 0x0000_0000_0000_0001,
indicating that only thread 0 is enabled.

Machine State Register
The state of the MSR for all threads is as shown in
Figure 72.

Figure 72. Machine State Register Initial Values

Logical Partition Identification Regis-
ter [Category: Embedded.Hypervisor]
The Logical Partition Identification Register (LPIDR) is
set to 0.

Bit Setting Comments
CM 0 Computation Mode (set to 32-bit 

mode)
GS 0 Hypervisor state <E.HV>

UCLE 0 User Cache Locking Enable

SPV 0 SPE/Embedded Floating-Point/
Vector Unavailable

CE 0 Critical Input interrupts disabled

DE 0 Debug interrupts disabled

EE 0 External Input interrupts disabled
PR 0 Supervisor mode

FP 0 FP unavailable

ME 0 Machine Check interrupts disabled
FE0 0 FP exception type Program inter-

rupts disabled

FE1 0 FP exception type Program inter-
rupts disabled

IS 0 Instruction Address Space 0
DS 0 Data Address Space 0

PMM 0 Performance Monitor Mark
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Processor Version Register
Implementation-Dependent. (This register is read-only,
and contains a value which identifies the specific imple-
mentation)

TLB entry
A TLB entry (which entry is implementation-dependent)
is initialized in an implementation-dependent manner
that maps the last page in the implemented effective
storage address space, with the following field settings:

Figure 73. TLB Initial Values

The initial settings of EPN and RPN are dependent
upon the number of bits implemented in the EPN and
RPN fields and the minimum page size supported by
the implementation. For example, an implementation
that supports 64KB pages as the smallest size and 32
bits of effective address would implement a 16 bit EPN
and set the initial value of the EPN field of the TLB boot
entry to 216-1 (0xFFFF) while an implementation that
supports 4K pages as the smallest size and 32 bits of
effective address would implement a 20 bit EPN and

Field Setting Comments
V 1 valid

EPN see 
below

Represents the last page in
effective address space

RPN see 
below

Represents the last page in
physical address space

TS 0 translation address space 0

IND 
<E.PT>

0 direct entry

TLPID 
<E.HV>

0 translation logical partition ID

TGS 
<E.HV>

0 translation hypervisor state

SIZE ? smallest page size supported
W ? implementation-dependent value

I ? implementation-dependent value

M ? implementation-dependent value
G ? implementation-dependent value

E ? implementation-dependent value

U0 ? implementation-dependent value
U1 ? implementation-dependent value

U2 ? implementation-dependent value

U3 ? implementation-dependent value
TID ? implementation-dependent value,

but page must be accessible

UX ? implementation-dependent value

UR ? implementation-dependent value
UW ? implementation-dependent value

SX 1 page is execute accessible in
supervisor mode

SR 1 page is read accessible in
supervisor mode

SW 1 page is write accessible in
supervisor mode

VLE ? implementation-dependent value

ACM ? implementation-dependent value
IPROT ? implementation-dependent value

VF 
<E.HV>

0 no virtualization fault
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set the initial value of the boot entry to 220-1
(0xFFFFF).

Instruction execution begins at the last word address of
the page mapped by the boot TLB entry. Note that this
address is different from the System Reset interrupt
vector specified in Book III-S.

An implementation may provide additional methods for
initializing the TLB entry used for initial boot by provid-
ing an implementation-dependent RPN, or initializing
other TLB entries.

If Category: Embedded Multi-threading.Thread Man-
agement is not supported, instruction execution for
other threads begins at the last word address of the
effective address space; otherwise execution begins at
the address specified by the NIA register correspond-
ing to the thread. 

8.4 Software Initialization 
Requirements
When reset occurs, the thread is initialized to a mini-
mum configuration to start executing initialization code.
Initialization code is necessary to complete the thread
and system configuration. The initialization code
described in this section is the minimum recommended
for configuring the thread to run application code.

Initialization code should configure the following
resources:

- Invalidate the instruction cache and data
cache (implementation-dependent).

- Initialize system memory as required by the
operating system or application code. 

- Initialize the Interrupt Vector Prefix Register
and Interrupt Vector Offset Register.

- Initialize other registers as needed by the sys-
tem.

- Initialize off-chip system facilities.

- Dispatch the operating system or application
code.
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Chapter 9.  Timer Facilities

9.1 Overview
The Time Base, Decrementer, Fixed-interval Timer,
and Watchdog Timer provide timing functions for the
system. The remainder of this section describes these
registers and related facilities.

9.2 Time Base (TB)
The Time Base (TB) is a 64-bit register (see Figure 74)
containing a 64-bit unsigned integer that is incremented
periodically. Each increment adds 1 to the low-order bit
(bit 63). The frequency at which the integer is updated
is implementation-dependent.

Figure 74. Time Base

The Time Base bits 0:59 increment until their value
becomes 0xFFF_FFFF_FFFF_FFFF (259 - 1), at the
next increment their value becomes
0x000_0000_0000_0000. There is no interrupt or other
indication when this occurs.

Time base bits 60:63 may increment at a variable rate.
When the value of bit 59 changes, bits 60:63 are set to
zero; if bits 60:63 increment to 0xF before the value of
bit 59 changes, they remain at 0xF until the value of bit
59 changes.

The period of the Time Base depends on the driving
frequency. As an order of magnitude example, suppose
that the CPU clock is 1 GHz and that the Time Base is
driven by this frequency divided by 32. Then the period
of the Time Base would be

    TTB =  = 5.90 × 1011 seconds

which is approximately 18,700 years.

The Time Base is implemented such that:

1. Loading a GPR from the Time Base has no effect
on the accuracy of the Time Base.

2. Copying the contents of a GPR to the Time Base
replaces the contents of the Time Base with the
contents of the GPR.

The Power ISA does not specify a relationship between
the frequency at which the Time Base is updated and
other frequencies, such as the CPU clock or bus clock
in a Power ISA system. The Time Base update fre-
quency is not required to be constant. What is required,
so that system software can keep time of day and oper-
ate interval timers, is one of the following.

The system provides an (implementation-depen-
dent) interrupt to software whenever the update
frequency of the Time Base bits 0:59 changes, and
a means to determine what the current update fre-
quency is.

The update frequency of the Time Base bits 0:59 is
under the control of the system software.

Implementations must provide a means for either pre-
venting the Time Base from incrementing or preventing
it from being read in user mode (MSRPR=1). If the
means is under software control, it must be privileged.
There must be a method for getting all Time Bases in
the system to start incrementing with values that are
identical or almost identical.

TBU TBL
0 32                                                    63

Field Description
TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base

264 32×
1 GHz

---------------------
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9.2.1 Writing the Time Base
Writing the Time Base is hypervisor privileged. Read-
ing the Time Base is not privileged, it is discussed in
Book II.

It is not possible to write the entire 64-bit Time Base
using a single instruction. The mttbl and mttbu
extended mnemonics write the lower and upper halves
of the Time Base (TBL and TBU), respectively, preserv-
ing the other half. These are extended mnemonics for
the mtspr instruction; see Appendix B, “Assembler
Extended Mnemonics” on page 1245.

The Time Base can be written by a sequence such as:

lwz Rx,upper # load 64-bit value for
lwz Ry,lower # TB into Rx and Ry
li Rz,0
mttbl Rz  # set TBL to 0
mttbu Rx  # set TBU
mttbl Ry  # set TBL

Provided that no interrupts occur while the last three
instructions are being executed, loading 0 into TBL pre-
vents the possibility of a carry from TBL to TBU while
the Time Base is being initialized.

  

  

If software initializes the Time Base on power-on to
some reasonable value and the update frequency
of the Time Base is constant, the Time Base can
be used as a source of values that increase at a
constant rate, such as for time stamps in trace
entries.

Even if the update frequency is not constant, val-
ues read from the Time Base are monotonically
increasing (except when the Time Base wraps from
264-1 to 0). If a trace entry is recorded each time
the update frequency changes, the sequence of
Time Base values can be post-processed to
become actual time values.

Successive readings of the Time Base may return
identical values.

See the description of the Time Base in Book II, for
ways to compute time of day in POSIX format from
the Time Base.

In virtualized implementations, TBU and TBL are
read-only.

The instructions for writing the Time Base are
mode-independent. Thus code written to set the
Time Base will work correctly in either 64-bit or
32-bit mode.

Programming Note

Virtualized Implementation Note

Programming Note
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9.3 Decrementer
The Decrementer (DEC) is a 32-bit decrementing
counter that provides a mechanism for causing a Dec-
rementer interrupt after a programmable delay. The
contents of the Decrementer are treated as a signed
integer.

Figure 75. Decrementer

Decrementer bits 32:59 count down until their value
becomes 0x000_0000, at the next increment their value
becomes 0xFFF_FFFF. Decrementer bits 60:63 may
decrement at a variable rate. When the value of bit 59
changes, bits 60:63 are set to 0xF; if bits 60:63 decre-
ment to 0x0 before the value of bit 59 changes, they
remain at 0x0 until the value of bit 59 changes.

The Decrementer is driven by the same frequency as
the Time Base. The period of the Decrementer will
depend on the driving frequency, but if the same values
are used as given above for the Time Base (see Sec-
tion 9.2), and if the Time Base update frequency is con-
stant, the period would be

   TDEC =  = 137 seconds.

The Decrementer counts down.

The operation of the Decrementer satisfies the follow-
ing constraints.

1. The operation of the Time Base and the Decre-
menter is coherent, i.e., the counters are driven by
the same fundamental time base.

2. Loading a GPR from the Decrementer has no
effect on the accuracy of the Time Base.

3. Copying the contents of a GPR to the Decrementer
replaces the contents of the Decrementer with the
contents of the GPR.

  

9.3.1 Writing and Reading the 
Decrementer
The contents of the Decrementer can be read or written
using the mfspr and mtspr instructions, both of which
are hypervisor privileged. When mfspr and mtspr are
executed in guest supervisor state, the access to the
DEC is mapped to the GDEC. Using an extended mne-
monic (see Appendix B, “Assembler Extended Mne-
monics” on page 1245), the Decrementer can be
written from GPR Rx using:

mtdec  Rx

The Decrementer can be read into GPR Rx using:

mfdec  Rx

Copying the Decrementer to a GPR has no effect on
the Decrementer contents or on the interrupt mecha-
nism.

9.3.2 Decrementer Events
A Decrementer event occurs when a decrement occurs
on a Decrementer value of 0x0000_0001. 

Upon the occurrence of a Decrementer event, the Dec-
rementer may be reloaded from a 32-bit Decrementer
Auto-Reload Register (DECAR). See Section 9.5. Upon
the occurrence of a Decrementer event, the Decre-
menter has the following basic modes of operation.

Decrement to one and stop on zero
If TCRARE=0, TSRDIS is set to 1, the value
0x0000_0000 is then placed into the DEC, and the
Decrementer stops decrementing. 

A Decrementer interrupt occurs when no higher
priority interrupt exists, a Decrementer exception
exists, and the exception is enabled.    If Category:
Embedded.Hypervisor is supported, the interrupt
is enabled by TCRDIE=1 and (MSREE=1 or
MSRGS=1). Otherwise, the interrupt is enabled by
TCRDIE=1 and MSREE=1. See Section 7.6.12,
“Decrementer Interrupt” on page 1173 for details of
register behavior caused by the Decrementer inter-
rupt.

Decrement to one and auto-reload
If TCRARE=1, TSRDIS is set to 1, the contents of
the Decrementer Auto-Reload Register is then
placed into the DEC, and the Decrementer contin-
ues decrementing from the reloaded value.

A Decrementer interrupt occurs when no higher
priority interrupt exists, a Decrementer exception
exists, and the exception is enabled.    If Category:
Embedded.Hypervisor is supported, the interrupt
is enabled by TCRDIE=1 and (MSREE=1 or

DEC
32                                                    63

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Decrementer input frequency will also change.
Software must be aware of this in order to set inter-
val timers.

If Decrementer bits 60:63 are used as part of a ran-
dom number generator, software must account for
the fact that these bits are set to 0xF only when bit
59 changes state regardless of whether or not they
decremented to 0x0 since they were previously set
to 0xF.

232 32×
1 GHz

---------------------
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MSRGS=1). Otherwise, the interrupt is enabled by
TCRDIE=1 and MSREE=1. See Section 7.6.12,
“Decrementer Interrupt” on page 1173 for details of
register behavior caused by the Decrementer inter-
rupt.

Forcing the Decrementer to 0 using the mtspr instruc-
tion will not cause a Decrementer exception; however,
decrementing which was in progress at the instant of
the mtspr may cause the exception. To eliminate the
Decrementer as a source of exceptions, set TCRDIE to
0 (clear the Decrementer Interrupt Enable bit).

If it is desired to eliminate all Decrementer activity, the
procedure is as follows:

1. Write 0 to TCRDIE. This will prevent Decrementer
activity from causing exceptions.

2. Write 0 to TCRARE to disable the Decrementer
auto-reload.

3. Write 0 to Decrementer. This will halt Decrementer
decrementing. While this action will not cause a
Decrementer exception to be set in TSRDIS, a near
simultaneous decrement may have done so.

4. Write 1 to TSRDIS. This action will clear TSRDIS to
0 ( see Section 9.7.1 on page 1204). This will clear
any Decrementer exception which may be pend-
ing. Because the Decrementer is frozen at zero, no
further Decrementer events are possible.

If the auto-reload feature is disabled (TCRARE=0), then
once the Decrementer decrements to zero, it will stay
there until software reloads it using the mtspr instruc-
tion.

On reset, TCRARE is set to 0. This disables the
auto-reload feature.

9.4 Guest Decrementer [Cate-
gory: Embedded.Hypervisor]
The Guest Decrementer (GDEC) is a 32-bit decrement-
ing counter that provides a mechanism for causing a
Guest Decrementer interrupt after a programmable
delay. The contents of the Guest Decrementer are
treated as a signed integer.

Figure 76. Guest Decrementer

Guest Decrementer bits 32:59 count down until their
value becomes 0x000_0000, at the next increment their
value becomes 0xFFF_FFFF. Guest Decrementer bits
60:63 may decrement at a variable rate. When the
value of bit 59 changes, bits 60:63 are set to 0xF; if bits
60:63 decrement to 0x0 before the value of bit 59
changes, they remain at 0x0 until the value of bit 59
changes.

The Guest Decrementer is driven by the same fre-
quency as the Time Base. The period of the Guest
Decrementer will depend on the driving frequency, but
if the same values are used as given above for the
Time Base (see Section 9.2), and if the Time Base
update frequency is constant, the period would be

   TDEC =  = 137 seconds.

The Guest Decrementer counts down.

The operation of the Guest Decrementer satisfies the
following constraints.

1. The operation of the Time Base and the Guest
Decrementer is coherent, i.e., the counters are
driven by the same fundamental time base.

2. Loading a GPR from the Guest Decrementer has
no effect on the accuracy of the Time Base.

3. Copying the contents of a GPR to the Guest Dec-
rementer replaces the contents of the Guest Dec-
rementer with the contents of the GPR.

  

9.4.1 Writing and Reading the 
Guest Decrementer
The contents of the Decrementer can be read or written
using the mfspr and mtspr instructions, both of which
are supervisor privileged.

Copying the Guest Decrementer to a GPR has no
effect on the Guest Decrementer contents or on the
interrupt mechanism.

9.4.2 Guest Decrementer Events
A Guest Decrementer event occurs when a decrement
occurs on a Guest Decrementer value of 0x0000_0001. 

Upon the occurrence of a Guest Decrementer event,
the Guest Decrementer may be reloaded from a 32-bit
Guest Decrementer Auto-Reload Register (GDECAR).
See see Section 9.6. Upon the occurrence of a Guest
Decrementer event, the Guest Decrementer has the
following basic modes of operation.

GDEC
32                                                    63

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Guest Decrementer input frequency will also
change. Software must be aware of this in order to
set interval timers.

If Guest Decrementer bits 60:63 are used as part of
a random number generator, software must
account for the fact that these bits are set to 0xF
only when bit 59 changes state regardless of
whether or not they decremented to 0x0 since they
were previously set to 0xF.

232 32×
1 GHz

---------------------
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Decrement to one and stop on zero
If GTCRARE=0, GTSRDIS is set to 1, the value
0x0000_0000 is then placed into the GDEC, and
the Guest Decrementer stops decrementing. 

A Guest Decrementer interrupt occurs when no
higher priority interrupt exists, a Guest Decre-
menter exception exists, and the exception is
enabled.   The interrupt is enabled by GTCRDIE=1
and (MSREE=1 or MSRGS=1). See Section 7.6.13,
“Guest Decrementer Interrupt” on page 1174 for
details of register behavior caused by the Guest
Decrementer interrupt.

Decrement to one and auto-reload
If GTCRARE=1, GTSRDIS is set to 1, the contents
of the Guest Decrementer Auto-Reload Register is
then placed into the GDEC, and the Guest Decre-
menter continues decrementing from the reloaded
value.

A Guest Decrementer interrupt occurs when no
higher priority interrupt exists, a Guest Decre-
menter exception exists, and the exception is
enabled. The interrupt is enabled by GTCRDIE=1
and (MSREE=1 or MSRGS=1). See Section 7.6.13,
“Guest Decrementer Interrupt” on page 1174 for
details of register behavior caused by the Guest
Decrementer interrupt.

Forcing the Guest Decrementer to 0 using the mtspr
instruction will not cause a Guest Decrementer excep-
tion; however, decrementing which was in progress at
the instant of the mtspr may cause the exception. To
eliminate the Guest Decrementer as a source of excep-
tions, set GTCRDIE to 0 (clear the Guest Decrementer
Interrupt Enable bit).

If it is desired to eliminate all Guest Decrementer activ-
ity, the procedure is as follows:

1. Write 0 to GTCRDIE. This will prevent Guest Dec-
rementer activity from causing exceptions.

2. Write 0 to GTCRARE to disable the Guest Decre-
menter auto-reload.

3. Write 0 to Guest Decrementer. This will halt Guest
Decrementer decrementing. While this action will
not cause a Guest Decrementer exception to be
set in GTSRDIS, a near simultaneous decrement
may have done so.

4. Write 1 to GTSRDIS. This action will clear GTSRDIS
to 0 (see Section 9.8.1 on page 1207). This will
clear any Guest Decrementer exception which may
be pending. Because the Guest Decrementer is
frozen at zero, no further Guest Decrementer
events are possible.

If the auto-reload feature is disabled (GTCRARE=0),
then once the Guest Decrementer decrements to zero,
it will stay there until software reloads it using the
mtspr instruction.

On reset, GTCRARE is set to 0. This disables the
auto-reload feature.

 

9.5 Decrementer Auto-Reload 
Register 
The Decrementer Auto-Reload Register is a 32-bit reg-
ister as shown below.

Figure 77. Decrementer Auto-Reload Register

Bits of the Decrementer Auto-Reload register are num-
bered 32 (most-significant bit) to 63 (least-significant
bit). The Decrementer Auto-Reload Register is pro-
vided to support the auto-reload feature of the Decre-
menter. See Section 9.3.2

The contents of the Decrementer Auto-Reload Register
cannot be read. The contents of bits 32:63 of register
RS can be written to the Decrementer Auto-Reload
Register using the mtspr instruction.

This register is hypervisor privileged.

9.6 Guest Decrementer 
Auto-Reload Register [Cate-
gory:Embedded.Hypervisor]
The Guest Decrementer Auto-Reload Register is a
32-bit register as shown below.

Figure 78. Guest Decrementer Auto-Reload
Register

Bits of the Guest Decrementer Auto-Reload Register
are numbered 32 (most-significant bit) to 63 (least-sig-
nificant bit). The Guest Decrementer Auto-Reload Reg-
ister is provided to support the auto-reload feature of
the Guest Decrementer. See Section 9.4.2.

The contents of the Guest Decrementer Auto-Reload
Register cannot be read. The contents of bits 32:63 of
register RS can be written to the Guest Decrementer
Auto-Reload Register using the mtspr instruction.

This register is hypervisor privileged.

mfspr RT,DEC should be used to read GDEC in
guest supervisor state. mtspr DEC,RS should be
used to write GDEC in guest supervisor state. 

DECAR
32                                                    63

GDECAR
32                                                    63

Programming Note
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mtspr DECAR,RS should be used to write GDE-
CAR in guest supervisor state. Hypervisor software
should emulate the accesses for the guest.

Programming Note
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9.7 Timer Control Register 
The Timer Control Register (TCR) is a 32-bit register.
Timer Control Register bits are numbered 32 (most-sig-
nificant bit) to 63 (least-significant bit). The Timer Con-
trol Register controls Decrementer (see Section 9.3),

Fixed-Interval Timer (see Section 9.9), and Watchdog
Timer (see Section 9.11) options.

The relationship of the Timer facilities to the TCR and
TB is shown in the figure below.

This register is hypervisor privileged. In guest supervi-
sor state, the access to the TCR is mapped to the
GTCR.

Figure 79. Relationships of the Timer Facilities

The contents of the Timer Control Register can be read
using the mfspr instruction. The contents of bits 32:63
of register RS can be written to the Timer Control Reg-
ister using the mtspr instruction.

The contents of the TCR are defined below:

Bit(s) Description

32:33 Watchdog Timer Period (WP) (see
Section 9.11 on page 1208)

Specifies one of 4 bit locations of the Time
Base used to signal a Watchdog Timer
exception on a transition from 0 to 1. The 4
Time Base bits that can be specified to
serve as the Watchdog Timer period are
implementation-dependent.

34:35 Watchdog Timer Reset Control (WRC) (see
Section 9.11 on page 1208)

00 No Watchdog Timer reset will occur.

TCRWRC resets to 0b00. 

01-11
Force thread to be reset on second
time-out of Watchdog Timer. The exact
function of any of these settings is imple-
mentation-dependent.

36 Watchdog Timer Interrupt Enable (WIE)
(see Section 9.11 on page 1208)

0 Disable Watchdog Timer interrupt
1 Enable Watchdog Timer interrupt

37 Decrementer Interrupt Enable (DIE) (see
Section 9.3 on page 1199)

0 Disable Decrementer interrupt
1 Enable Decrementer interrupt

38:39 Fixed-Interval Timer Period (FP) (see
Section 9.9 on page 1208)

Specifies one of 4 bit locations of the Time
Base used to signal a Fixed-Interval Timer

Timer Clock

TIME BASE (incrementer)

Decrementer event ‹ 0/1 detect

DEC

31
DECAR

0

auto-reload

310

TBL
310

TBU

(decrementer)

Watchdog Timer events based on one of 4 Time
Base bits selected by TCRWP

(the 4 Time Base bits that can be selected by
TCRWP are implementation-dependent)

Fixed-Interval Timer events based on one of 4
Time Base bits selected by TCRFP

(the 4 Time Base bits that can be selected by
TCRFP are implementation-dependent)
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exception on a transition from 0 to 1. The 4
Time Base bits that can be specified to serve
as the Fixed-Interval Timer period are imple-
mentation-dependent.

40 Fixed-Interval Timer Interrupt Enable (FIE)
(see Section 9.9 on page 1208)

0 Disable Fixed-Interval Timer interrupt
1 Enable Fixed-Interval Timer interrupt

41 Auto-Reload Enable (ARE)

0 Disable auto-reload of the Decrementer

Decrementer exception is presented (i.e.,
TSRDIS is set to 1) when the Decrementer
is decremented from a value of
0x0000_0001. The next value placed in the
Decrementer is the value 0x0000_0000.

If Category: Embedded.Hypervisor is sup-
ported, when (MSREE=1 or MSRGS=1),
TCRDIE=1, and TSRDIS=1, a Decrementer
interrupt is taken.

If Category: Embedded.Hypervisor is not
supported, when MSREE=1, TCRDIE=1,
and TSRDIS=1, a Decrementer interrupt is
taken. Software must reset TSRDIS.

1 Enable auto-reload of the Decrementer

Decrementer exception is presented (i.e.,
TSRDIS is set to 1) when the Decrementer
is decremented from a value of
0x0000_0001. The contents of the Decre-
menter Auto-Reload Register is placed in
the Decrementer. The Decrementer
resumes decrementing.

If Category: Embedded.Hypervisor is sup-
ported, when (MSREE=1 or MSRGS=1),
TCRDIE=1, and TSRDIS=1, a Decrementer
interrupt is taken. If Category: Embed-
ded.Hypervisor is not supported, when
MSREE=1, TCRDIE=1, and TSRDIS=1, a
Decrementer interrupt is taken. Software
must reset TSRDIS.

42 Implementation-dependent

43:63 Reserved

9.7.1 Timer Status Register
The Timer Status Register (TSR) is a 32-bit register.
Timer Status Register bits are numbered 32 (most-sig-
nificant bit) to 63 (least-significant bit). The Timer Sta-
tus Register contains status on timer events and the
most recent Watchdog Timer-initiated thread reset. 

The Timer Status Register is set via hardware, and
read and cleared via software. The contents of the
Timer Status Register can be read using the mfspr
instruction. Bits in the Timer Status Register can be

cleared using the mtspr instruction. Clearing is done
by writing bits 32:63 of a General Purpose Register to
the Timer Status Register with a 1 in any bit position
that is to be cleared and 0 in all other bit positions. The
write-data to the Timer Status Register is not direct
data, but a mask. A 1 causes the bit to be cleared, and
a 0 has no effect.

The contents of the TSR are defined below:

Bit(s) Description

32 Enable Next Watchdog Timer (ENW) (see
Section 9.11 on page 1208)

0 Action on next Watchdog Timer time-out is
to set TSRENW

1 Action on next Watchdog Timer time-out is
governed by TSRWIS

33 Watchdog Timer Interrupt Status (WIS) (see
Section 9.11 on page 1208)

0 A Watchdog Timer event has not
occurred.

1 A Watchdog Timer event has occurred. If
Category: Embedded.Hypervisor is sup-
ported, when (MSRCE=1 or MSRGS=1 )
and TCRWIE=1, a Watchdog Timer inter-
rupt is taken. If Category: Embed-
ded.Hypervisor is not supported, when
MSRCE=1 and TCRWIE=1, a Watchdog
Timer interrupt is taken.

34:35 Watchdog Timer Reset Status (WRS) (see
Section 9.11 on page 1208)

These two bits are set to one of three values
when a reset is caused by the Watchdog
Timer. These bits are undefined at power-up.

00 No Watchdog Timer reset has occurred.
01 Implementation-dependent reset informa-

tion.
10 Implementation-dependent reset informa-

tion.
11 Implementation-dependent reset informa-

tion.

36 Decrementer Interrupt Status (DIS) (see
Section 9.3.2 on page 1199)

0 A Decrementer event has not occurred.
1 A Decrementer event has occurred. If Cat-

egory: Embedded.Hypervisor is sup-
ported, when (MSREE=1 or MSRGS=1)
and TCRDIE=1, a Decrementer interrupt is
taken. If Category: Embedded.Hypervisor
is not supported, when MSREE=1 and
TCRDIE=1, a Decrementer interrupt is
taken.

37 Fixed-Interval Timer Interrupt Status (FIS)
(see Section 9.9 on page 1208)

0 A Fixed-Interval Timer event has not
occurred.

1 A Fixed-Interval Timer event has
occurred. If Category: Embedded.Hyper-
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visor is supported, when (MSREE=1 or
MSRGS=1) and TCRFIE=1, a Fixed-Inter-
val Timer interrupt is taken. If  Category:
Embedded.Hypervisor is not supported,
when MSREE=1 and TCRFIE=1, a
Fixed-Interval Timer interrupt is taken.

38:63 Reserved

This register is hypervisor privileged. In guest supervi-
sor state, the access to the TSR is mapped to the
GTSR.
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9.8 Guest Timer Control Regis-
ter [Category: Embedded.Hyper-
visor]
The Guest Timer Control Register (GTCR) is a 32-bit
register. Guest Timer Control Register bits are num-
bered 32 (most-significant bit) to 63 (least-significant

bit). The Guest Timer Control Register controls Guest
Decrementer (see Section 9.4), Guest Fixed-Interval
Timer (see Section 9.10), and Watchdog Timer (see
Section 9.11) options.

The relationship of the Guest Timer facilities to the
GTCR and TB is shown in the figure below.

This register is supervisor privileged.

Figure 80. Relationships of the Guest Timer
Facilities

The contents of the Guest Timer Control Register can
be read using the mfspr instruction. The contents of
bits 32:63 of register RS can be written to the Timer
Control Register using the mtspr instruction.

The contents of the GTCR are defined below:

Bit(s) Description

32:33 Guest Watchdog Timer Period (WP) (see
Section 9.11 on page 1208)

Specifies one of 4 bit locations of the Time
Base used to signal a Guest Watchdog
Timer exception on a transition from 0 to 1.
The 4 Time Base bits that can be specified
to serve as the Guest Watchdog Timer
period are implementation-dependent.

34:35 Guest Watchdog Timer Reset Control
(WRC) (see Section 9.11 on page 1208)

00 No Guest Watchdog Timer reset will occur

GTCRWRC resets to 0b00.

01-11
Force thread to signal a Watchdog Timer
exception to the hypervisor on second
time-out of Guest Watchdog Timer.  

36 Guest Watchdog Timer Interrupt Enable
(WIE) (see Section 9.11 on page 1208)

0 Disable Guest Watchdog Timer interrupt
1 Enable Guest Watchdog Timer interrupt

37 Guest Decrementer Interrupt Enable (DIE)
(see Section 9.3 on page 1199)

0 Disable Guest Decrementer interrupt

Timer Clock

TIME BASE (incrementer)

Guest Decrementer event ‹ 0/1 detect

GDEC

31
GDECAR

0

auto-reload

310

TBL
310

TBU

(guest decrementer)

Watchdog Timer events based on one of 4 Time
Base bits selected by GTCRWP

(the 4 Time Base bits that can be selected by
GTCRWP are implementation-dependent)

Guest Fixed-Interval Timer events based on one
of 4 Time Base bits selected by GTCRFP

(the 4 Time Base bits that can be selected by
GTCRFP are implementation-dependent)

In previous versions of the architecture, it
was not possible for software to clear
WRC. That limitation has been removed.

Architecture Note
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1 Enable Guest Decrementer interrupt

38:39 Guest Fixed-Interval Timer Period (FP) (see
Section 9.9 on page 1208)

Specifies one of 4 bit locations of the Time
Base used to signal a Guest Fixed-Interval
Timer exception on a transition from 0 to 1.
The 4 Time Base bits that can be specified to
serve as the Guest Fixed-Interval Timer
period are implementation-dependent.

40 Guest Fixed-Interval Timer Interrupt
Enable (FIE) (see Section 9.9 on page 1208

0 Disable Guest Fixed-Interval Timer inter-
rupt

1 Enable Guest Fixed-Interval Timer inter-
rupt

41 Guest Auto-Reload Enable (ARE)

0 Disable auto-reload of the Guest Decre-
menter

Guest Decrementer exception is presented
(i.e., GTSRDIS is set to 1) when the Guest
Decrementer is decremented from a value
of 0x0000_0001. The next value placed in
the Guest Decrementer is the value
0x0000_0000. When (MSREE=1 and
MSRGS=1), GTCRDIE=1, and GTSRDIS=1,
a Guest Decrementer interrupt is taken.
Software must reset GTSRDIS.

1 Enable auto-reload of the Guest Decre-
menter

Guest Decrementer exception is presented
(i.e., GTSRDIS is set to 1) when the Guest
Decrementer is decremented from a value
of 0x0000_0001. The contents of the Guest
Decrementer Auto-Reload Register is
placed in the Guest Decrementer. When
(MSREE=1 and MSRGS=1), GTCRDIE=1,
and GTSRDIS=1, a Guest Decrementer
interrupt is taken. Software must reset
GTSRDIS.

42 Implementation-dependent

43:63 Reserved

 

9.8.1 Guest Timer Status Register 
[Category: Embedded.Hypervisor]
The Guest Timer Status Register (GTSR) is a 32-bit
register. Guest Timer Status Register bits are num-
bered 32 (most-significant bit) to 63 (least-significant

bit). The Guest Timer Status Register contains status
on timer events and the most recent Watchdog
Timer-initiated thread reset. 

The Guest Timer Status Register is set via hardware,
and read and cleared via software. The contents of the
Guest Timer Status Register can be read using the
mfspr instruction. Bits in the Guest Timer Status Reg-
ister can be cleared using the mtspr instruction. Clear-
ing is done by writing bits 32:63 of a General Purpose
Register to the Guest Timer Status Register with a 1 in
any bit position that is to be cleared and 0 in all other bit
positions. The write-data to the Guest Timer Status
Register is not direct data, but a mask. A 1 causes the
bit to be cleared, and a 0 has no effect.

The contents of the GTSR are defined below:

Bit(s) Description

32 Enable Next Guest Watchdog Timer (ENW)
(see Section 9.11 on page 1208)

0 Action on next Guest Watchdog Timer
time-out is to set GTSRENW

1 Action on next Guest Watchdog Timer
time-out is governed by GTSRWIS

33 Guest Watchdog Timer Interrupt Status
(WIS) (see Section 9.11 on page 1208)

0 A Guest Watchdog Timer event has not
occurred.

1 A Guest Watchdog Timer event has
occurred. When (MSRCE=1 and
MSRGS=1 ) and GTCRWIE=1, a Guest
Watchdog Timer interrupt is taken.

34:35 Guest Watchdog Timer Reset Status (WRS)
(see Section 9.11 on page 1208)

These two bits are set to one of three values
when a reset is caused by the Guest Watch-
dog Timer. These bits are undefined at
power-up.

00 No Guest Watchdog Timer reset has
occurred.

01 Implementation-dependent reset informa-
tion.

10 Implementation-dependent reset informa-
tion.

11 Implementation-dependent reset informa-
tion.

36 Guest Decrementer Interrupt Status (DIS)
(see Section 9.4.2 on page 1200)

0 A Guest Decrementer event has not
occurred.

1 A Guest Decrementer event has occurred.
When MSREE=1 and MSRGS=1 and
GTCRDIE=1, a Guest Decrementer inter-
rupt is taken.

37 Guest Fixed-Interval Timer Interrupt Status
(FIS) (see Section 9.10 on page 1208)

0 A Guest Fixed-Interval Timer event has
not occurred.

mfspr RT,TCR should be used to read GTCR in
guest supervisor state. mtspr TCR,RS should be
used to write GTCR in guest supervisor state. 

Programming Note
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1 A Guest Fixed-Interval Timer event has
occurred. When (MSREE=1 and
MSRGS=1) and GTCRFIE=1, a Guest
Fixed-Interval Timer interrupt is taken.

38:63 Reserved

This register is supervisor privileged.

 

9.8.2 Guest Timer Status Register 
Write Register (GTSRWR) [Cate-
gory: Embedded.Hypervisor]
The Guest Timer Status Register Write Register
(GTSRWR) allows a hypervisor state program to write
the contents of the Guest Timer Status Register (see
Section 9.8.1). The format of the GTSRWR is shown in
Figure 81 below..

Figure 81. Guest Timer Status Register Write
Register

The GTSRWR is provided as a means to restore the
contents of the GTSR on a partition switch.

Writing GTSRWR changes the value in the GTSR.
Writing non-zero bits may cause a Guest Decrementer
or Fixed-Interval Timer exception.

This register is hypervisor privileged.

 

9.9 Fixed-Interval Timer
The Fixed-Interval Timer (FIT) is a mechanism for pro-
viding timer interrupts with a repeatable period, to facili-
tate system maintenance. It is similar in function to an
auto-reload Decrementer, except that there are fewer
selections of interrupt period available. The Fixed-Inter-
val Timer exception occurs on 0 to 1 transitions of a
selected bit from the Time Base (see Section 9.7).

The Fixed-Interval Timer exception is logged by TSR-

FIS. A Fixed-Interval Timer interrupt occurs when no
higher priority interrupt exists (see Section 7.9 on

page 1190), a Fixed-Interval Timer exception exists
(TSRFIS=1), and the exception is enabled.  If category
mbedded.Hypervisor is supported, the interrupt is
enabled by TCRFIE=1 and (MSREE = 1 or MSRGS=1).
Otherwise, the interrupt is enabled by TCRFIE=1 and
MSREE=1.  See Section 7.6.14 on page 1174 for
details of register behavior caused by the Fixed-Interval
Timer interrupt.

Note that a Fixed-Interval Timer exception will also
occur if the selected Time Base bit transitions from 0 to
1 due to an mtspr instruction that writes a 1 to the bit
when its previous value was 0.

9.10 Guest Fixed-Interval Timer 
[Category: Embedded.Hypervi-
sor]
The Guest Fixed-Interval Timer (FIT) is a mechanism
for providing timer interrupts with a repeatable period,
to facilitate system maintenance. It is similar in function
to an auto-reload Guest Decrementer, except that there
are fewer selections of interrupt period available. The
Guest Fixed-Interval Timer exception occurs on 0 to 1
transitions of a selected bit from the Time Base (see
Section 9.7).

The Guest Fixed-Interval Timer exception is logged by
GTSRFIS. A Guest Fixed-Interval Timer interrupt occurs
when no higher priority interrupt exists (see Section 7.9
on page 1190), a Guest Fixed-Interval Timer exception
exists (GTSRFIS=1), and the exception is enabled.  The
interrupt is enabled by GTCRFIE=1 and (MSREE = 1
and MSRGS=1).  See Section 7.6.15 for details of reg-
ister behavior caused by the Fixed-Interval Timer inter-
rupt.

Note that a Guest Fixed-Interval Timer exception will
also occur if the selected Time Base bit transitions from
0 to 1 due to an mtspr instruction that writes a 1 to the
bit when its previous value was 0.

9.11 Watchdog Timer
The Watchdog Timer is a facility intended to aid system
recovery from faulty software or hardware. Watchdog
time-outs occur on 0 to 1 transitions of selected bits
from the Time Base (Section 9.7).

When a Watchdog Timer time-out occurs while Watch-
dog Timer Interrupt Status is clear (TSRWIS = 0) and
the next Watchdog Time-out is enabled (TSRENW = 1),
a Watchdog Timer exception is generated and logged
by setting TSRWIS to 1. This is referred to as a Watch-
dog Timer First Time Out. A Watchdog Timer interrupt
occurs when no higher priority interrupt exists (see
Section 7.9 on page 1190), a Watchdog Timer excep-

mfspr RT,TSR should be used to read GTSR in
guest supervisor state. mtspr TSR,RS should be
used to write GTSR in guest supervisor state. 

GTSRWR
32                                                    63

Hypervisors must ensure that a partition swap does
not cause missing timer events to occur in guests.
Upon partition restore, the hypervisor must set the
appropriate status conditions in the GTSR.

Programming Note
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tion exists (TSRWIS=1), and the exception is enabled.  If
Category: Embedded.Hypervisor is supported, the
interrupt is enabled by TCRWIE=1 and (MSRCE = 1 or
MSRGS=1).  Otherwise, the interrupt is enabled by
TCRWIE=1 and MSRCE=1.  See Section 7.6.16 on
page 1175 for details of register behavior caused by the
Watchdog Timer Interrupt. The purpose of the Watch-
dog Timer First time-out is to give an indication that
there may be problem and give the system a chance to
perform corrective action or capture a failure before a
reset occurs from the Watchdog Timer Second time-out
as explained further below.

Note that a Watchdog Timer exception will also occur if
the selected Time Base bit transitions from 0 to 1 due
to an mtspr instruction that writes a 1 to the bit when its
previous value was 0.

When a Watchdog Timer time-out occurs while
TSRWIS = 1 and TSRENW = 1, a thread reset occurs if it
is enabled by a non-zero value of the Watchdog Reset
Control field in the Timer Control Register (TCRWRC).
This is referred to as a Watchdog Timer Second Time
Out. The assumption is that TSRWIS was not cleared
because the thread was unable to execute the Watch-
dog Timer interrupt handler, leaving reset as the only
available means to restart the system.

A more complete view of Watchdog Timer behavior is
afforded by Figure 82 and Figure 83, which describe
the Watchdog Timer state machine and Watchdog
Timer controls. The numbers in parentheses in the fig-
ure refer to the discussion of modes of operation which
follow the table.

Figure 82. Watchdog State Machine

TSRENW,WIS=0b00

TSRENW,WIS=0b01

TSRENW,WIS=0b10

TSRENW,WIS=0b11

Time-out. No exception recorded in TSRWIS. 

Time-out. Set TSRENW

Time-out

(2) SW Loop

(3) SW Loop

(1) Watchdog

Handler

(2)
Interrupt
Handler

TSRWRS ← TCRWRC
TCRWRC ← 0b00

Set TSRENW so next time-out will cause exception.

Interrupt

Watchdog

 so next time-out will 

If TCRWRC≠00 then RESET, including

cause reset

Time-out. WDT exception recorded in TSRWIS. 
If Category: Embedded.Hypervisor is supported,  
WDT interrupt will occur if enabled by TCRWIE=1 
and (MSRCE=1 or MSRGS=1). If category
Embedded.Hypervisor is not supported, WDT will
occur if enabled by TCRWIE=1 and MSRCE=1. 
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Figure 83. Watchdog Timer Controls

The controls described in the above table imply three
different modes of operation that a programmer might
select for the Watchdog Timer. Each of these modes
assumes that TCRWRC has been set to allow thread
reset by the Watchdog facility:

1. Always take the Watchdog Timer interrupt when
pending, and never attempt to prevent its occur-
rence. In this mode, the Watchdog Timer interrupt
caused by a first time-out is used to clear TSRWIS
so a second time-out never occurs. TSRENW is not
cleared, thereby allowing the next time-out to
cause another interrupt.

2. Always take the Watchdog Timer interrupt when
pending, but avoid when possible. In this mode a
recurring code loop of reliable duration (or perhaps
a periodic interrupt handler such as the
Fixed-Interval Timer interrupt handler) is used to
repeatedly clear TSRENW such that a first time-out
exception is avoided, and thus no Watchdog Timer
interrupt occurs. Once TSRENW has been cleared,
software has between one and two full Watchdog
periods before a Watchdog exception will be
posted in TSRWIS. If this occurs before the soft-
ware is able to clear TSRENW again, a Watchdog
Timer interrupt will occur. In this case, the Watch-
dog Timer interrupt handler will then clear both
TSRENW and TSRWIS, in order to (hopefully) avoid
the next Watchdog Timer interrupt.

3. Never take the Watchdog Timer interrupt. In this
mode, Watchdog Timer interrupts are disabled (via
TCRWIE=0), and the system depends upon a
recurring code loop of reliable duration (or perhaps
a periodic interrupt handler such as the
Fixed-Interval Timer interrupt handler) to repeat-
edly clear TSRWIS such that a second time-out is
avoided, and thus no reset occurs. TSRENW is not
cleared, thereby allowing the next time-out to set

TSRWIS again. The recurring code loop must have
a period which is less than one Watchdog Timer
period in order to guarantee that a Watchdog
Timer reset will not occur.

9.12 Guest Watchdog Timer 
[Category: Embedded.Hypervi-
sor]
The Guest Watchdog Timer is a facility intended to aid
system recovery from faulty software or hardware.
Guest Watchdog time-outs occur on 0 to 1 transitions of
selected bits from the Time Base (Section 9.7).

When a Guest Watchdog Timer time-out occurs while
Guest Watchdog Timer Interrupt Status is clear
(GTSRWIS = 0) and the next Guest Watchdog Time-out
is enabled (GTSRENW = 1), a Guest Watchdog Timer
exception is generated and logged by setting GTSRWIS
to 1. This is referred to as a Guest Watchdog Timer
First Time Out. A Guest Watchdog Timer interrupt
occurs when no higher priority interrupt exists (see
Section 7.9 on page 1190), a Guest Watchdog Timer
exception exists (GTSRWIS=1), and the exception is
enabled.  The interrupt is enabled by GTCRWIE=1 and
(MSRCE = 1 and MSRGS=1).  See Section 7.6.17  for
details of register behavior caused by the Guest Watch-
dog Timer Interrupt. The purpose of the Guest Watch-
dog Timer First time-out is to give an indication that
there may be problem and give the system a chance to
perform corrective action or capture a failure before a
virtualized reset (a Watchdog Timer exception in the
hypervisor) occurs from the Guest Watchdog Timer
Second time-out as explained further below.

Note that a Guest Watchdog Timer exception will also
occur if the selected Time Base bit transitions from 0 to

Enable
Next WDT 
(TSRENW)

WDT Status
(TSRWIS)

Action when timer interval expires

0 0 Set Enable Next Watchdog Timer (TSRENW=1).

0 1 Set Enable Next Watchdog Timer (TSRENW=1).

1 0 Set Watchdog Timer interrupt status bit (TSRWIS=1). If 
Category: Embedded.Hypervisor is supported and 
Watchdog Timer interrupt is enabled (TCRWIE=1 and 
(MSRCE=1 or MSRGS=1)), then interrupt.If Category: 
Embedded.Hypervisor is not supported and Watchdog 
Timer interrupt is enabled (TCRWIE=1 and MSRCE=1), 
then interrupt.

1 1 Cause Watchdog Timer reset action specified by
TCRWRC. Reset will copy pre-reset TCRWRC into 
TSRWRS, then clear TCRWRC.
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1 due to an mtspr instruction that writes a 1 to the bit
when its previous value was 0.

A Guest Watchdog Timer Second Time Out results
when a Guest Watchdog Timer time-out occurs while
GTSRWIS = 1, GTSRENW = 1, and a non-zero value is
present in the Guest Watchdog Reset Control field in
the Guest Timer Control Register (GTCRWRC). In this
case, a Watchdog Timer Interrupt is directed toward the
hypervisor and the value set in GTSRWRS reflects the
virtualized reset condition.  The assumption is that

GTSRWIS was not cleared because the guest was
unable to execute the Guest Watchdog Timer interrupt
handler, leaving a virtualized reset as the only available
means to stop or restart the guest.

A more complete view of Guest Watchdog Timer
behavior is afforded by Figure 84 and Figure 85, which
describe the Guest Watchdog Timer state machine and
Guest Watchdog Timer controls. The numbers in
parentheses in the figure refer to the discussion of
modes of operation which follow the table.

Figure 84. Guest Watchdog State Machine

Figure 85. Guest Watchdog Timer Controls

The controls described in the above table imply three
different modes of operation that a programmer might
select for the Guest Watchdog Timer. Each of these
modes assumes that GTCRWRC has been set on a

thread to allow virtualized reset by the Guest Watchdog
facility:

GTSRENW,WIS=0b00

GTSRENW,WIS=0b01

GTSRENW,WIS=0b10

GTSRENW,WIS=0b11

Time-out. No exception recorded in GTSRWIS. 

Time-out. Set GTSRENW

Time-out

(2) SW Loop

(3) SW Loop

(1) Watchdog

Handler

(2)
Interrupt
Handler

GTSRWRS ← GTCRWRC
GTCRWRC ← 0b00

Set GTSRENW so next time-out will cause exception.

Interrupt

Watchdog

 so next time-out will 

Watchdog Timer exception, including

cause a hypervisor Watchdog Timer exception

Time-out. WDT exception recorded in GTSRWIS. 
 WDT interrupt will occur if enabled by TCRWIE=1

 
  and (MSRCE=1 and MSRGS=1).  

If GTCRWRC=00 then cause a hypervisor

Enable
Next WDT 

(GTSRENW)

WDT Status
(GTSRWIS)

Action when timer interval expires

0 0 Set Enable Next Guest Watchdog Timer (GTSRENW=1).

0 1 Set Enable Next Guest Watchdog Timer (GTSRENW=1).

1 0 Set Guest Watchdog Timer interrupt status bit (GTSR-

WIS=1). If Guest Watchdog Timer interrupt is enabled 
(GTCRWIE=1 and (MSRCE=1 and MSRGS=1)), then 
interrupt.

1 1 Cause Guest Watchdog Timer virtualized reset action 
specified by GTCRWRC. Virtualized reset will copy 
pre-reset GTCRWRC into GTSRWRS, then clear GTCR-

WRC.
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1. Always take the Guest Watchdog Timer interrupt
when pending, and never attempt to prevent its
occurrence. In this mode, the Guest Watchdog
Timer interrupt caused by a first time-out is used to
clear GTSRWIS so a second time-out never occurs.
GTSRENW is not cleared, thereby allowing the next
time-out to cause another interrupt.

2. Always take the Guest Watchdog Timer interrupt
when pending, but avoid when possible. In this
mode a recurring code loop of reliable duration (or
perhaps a periodic interrupt handler such as the
Guest Fixed-Interval Timer interrupt handler) is
used to repeatedly clear GTSRENW such that a
first time-out exception is avoided, and thus no
Guest Watchdog Timer interrupt occurs. Once
GTSRENW has been cleared, software has
between one and two full Guest Watchdog periods
before a Guest Watchdog exception will be posted
in GTSRWIS. If this occurs before the software is
able to clear GTSRENW again, a Guest Watchdog
Timer interrupt will occur. In this case, the Guest
Watchdog Timer interrupt handler will then clear
both GTSRENW and GTSRWIS, in order to (hope-
fully) avoid the next Guest Watchdog Timer inter-
rupt.

3. Never take the Guest Watchdog Timer interrupt. In
this mode, Guest Watchdog Timer interrupts are
disabled (via GTCRWIE=0), and the system
depends upon a recurring code loop of reliable
duration (or perhaps a periodic interrupt handler
such as the Guest Fixed-Interval Timer interrupt
handler) to repeatedly clear GTSRWIS such that a
second time-out is avoided, and thus no virtualized
reset occurs. GTSRENW is not cleared, thereby
allowing the next time-out to set GTSRWIS again.
The recurring code loop must have a period which
is less than one Guest Watchdog Timer period in
order to guarantee that a Guest Watchdog Timer
virtualized reset will not occur.

9.13 Freezing the Timer Facili-
ties
The debug mechanism provides a means of tempo-
rarily freezing the timers upon a debug event. When-
ever a debug event is set in the Debug Status Register,
all timers will be frozen by preventing the Time Base
from incrementing. This allows a debugger to simulate
the appearance of ‘real time’, even though the applica-
tion has been temporarily ‘halted’ to service the debug
event. See the description of bit 63 of the Debug Con-
trol Register 0 (Freeze Timers on Debug Event or
DBCR0FT) in Section 10.5.1.1 on page 1221.
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Chapter 10.  Debug Facilities 

10.1 Overview
Debug facilities are provided to enable hardware and
software debug functions, such as instruction and data
breakpoints and program single stepping. The debug
facilities consist of a set of Debug Control Registers
(DBCR0, DBCR1, and DBCR2) (see Section 10.5.1 on
page 1221), a set of Address Compare Registers
(IAC1, IAC2, IAC3, IAC4, DAC1, and DAC2), (see
Section 10.4.3, Section 10.4.4, and Section 10.4.5), a
Debug Status Register (DBSR) (see Section 10.5.2) for
enabling and recording various kinds of debug events,
and a special Debug interrupt type built into the inter-
rupt mechanism (see Section 7.6.20). The debug facili-
ties also provide a mechanism for software-controlled
thread reset, and for controlling the operation of the tim-
ers in a debug environment.

The mfspr and mtspr instructions (see Section 5.4.1)
provide access to the registers of the debug facilities.

In addition to the facilities described here, implementa-
tions will typically include debug facilities, modes, and
access mechanisms which are implementation-spe-
cific. For example, implementations will typically pro-
vide access to the debug facilities via a dedicated
interface such as the IEEE 1149.1 Test Access Port
(JTAG).

10.2 Internal Debug Mode
Debug events include such things as instruction and
data breakpoints. These debug events cause status
bits to be set in the Debug Status Register. The exist-
ence of a set bit in the Debug Status Register is consid-
ered a Debug exception. Debug exceptions, if enabled,
will cause Debug interrupts.

There are two different mechanisms that control
whether Debug interrupts are enabled. The first is the
MSRDE bit, and this bit must be set to 1 to enable
Debug interrupts. The second mechanism is an enable
bit in the Debug Control Register 0 (DBCR0). This bit is
the Internal Debug Mode bit (DBCR0IDM), and it must
also be set to 1 to enable Debug interrupts.

When DBCR0IDM=1, the thread is in Internal Debug
Mode. In this mode, debug events will (if also enabled
by MSRDE) cause Debug interrupts. Software at the
Debug interrupt vector location will thus be given con-
trol upon the occurrence of a debug event, and can
access (via the normal instructions) all architected
resources. In this fashion, debug monitor software can
control the thread and gather status, and interact with
debugging hardware.

When the thread is not in Internal Debug Mode
(DBCR0IDM=0), debug events may still occur and be
recorded in the Debug Status Register. These excep-
tions may be monitored via software by reading the
Debug Status Register (using mfspr), or may eventu-
ally cause a Debug interrupt if later enabled by setting
DBCR0IDM=1 (and MSRDE=1). Behavior when debug
events occur while DBCR0IDM=0 is implementa-
tion-dependent.

10.3 External Debug Mode [Cat-
egory: Embedded.Enhanced 
Debug]
The External Debug Mode is a mode in which external
facilities can control execution and access registers and
other resources. These facilities are defined as the
external debug facilities and are not defined here, how-
ever some instructions and registers share internal and
external debug roles and are briefly described as nec-
essary.

A dnh instruction is provided to stop instruction fetching
and execution and allow the thread to be managed by
an external debug facility. After the dnh instruction is
executed, instructions are not fetched, interrupts are
not taken, and the thread does not execute instructions. 

10.4 Debug Events
Debug events are used to cause Debug exceptions to
be recorded in the Debug Status Register (see
Section 10.5.2). In order for a debug event to be
enabled to set a Debug Status Register bit and thereby
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cause a Debug exception, the specific event type must
be enabled by a corresponding bit or bits in the Debug
Control Register DBCR0 (see Section 10.5.1.1),
DBCR1 (see Section 10.5.1.2), or DBCR2 (see
Section 10.5.1.3), in most cases; the Unconditional
Debug Event (UDE) is an exception to this rule. Once a
Debug Status Register bit is set, if Debug interrupts are
enabled by MSRDE, a Debug interrupt will be gener-
ated.

[Category: Embedded.Hypervisor]
To prevent spurious hypervisor debug events from
occurring when a guest has been permitted to use the
Debug facilities, if the thread is in hypervisor state
(MSRGS=0) and debug events are disabled for hypervi-
sor (EPCRDUVD=1), no debug events are allowed to
occur except for the Unconditional Debug Event. It is
implementation-dependent whether the Unconditional
Debug Event is allowed to occur in hypervisor state
when EPCRDUVD=1.

Certain debug events are not allowed to occur when
MSRDE=0. In such situations, no Debug exception
occurs and thus no Debug Status Register bit is set.
Other debug events may cause Debug exceptions and
set Debug Status Register bits regardless of the state
of MSRDE. The associated Debug interrupts that result
from such Debug exceptions will be delayed until
MSRDE=1, provided the exceptions have not been
cleared from the Debug Status Register in the mean-
time.

Any time that a Debug Status Register bit is allowed to
be set while MSRDE=0, a special Debug Status Regis-
ter bit, Imprecise Debug Event (DBSRIDE), will also be
set. DBSRIDE indicates that the associated Debug
exception bit in the Debug Status Register was set
while Debug interrupts were disabled via the MMSRDE
bit. Debug interrupt handler software can use this bit to
determine whether the address recorded in CSRR0/
DSRR0 [Category: Embedded.Enhanced Debug]
should be interpreted as the address associated with
the instruction causing the Debug exception, or simply
the address of the instruction after the one which set
the MSRDE bit, thereby enabling the delayed Debug
interrupt.

Debug interrupts are ordered with respect to other
interrupt types (see Section 7.8 on page 179). Debug
exceptions are prioritized with respect to other excep-
tions (see Section 7.9 on page 183).

There are eight types of debug events defined:

1. Instruction Address Compare debug events
2. Data Address Compare debug events
3. Trap debug events
4. Branch Taken debug events
5. Instruction Complete debug events
6. Interrupt Taken debug events
7. Return debug events
8. Unconditional debug events

9. Critical Interrupt Taken debug events [Category:
Embedded.Enhanced Debug]

10. Critical Interrupt Return debug events [Category:
Embedded.Enhanced Debug]
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Programming Note

There are two classes of debug exception types:

Type 1: exception before instruction

Type 2: exception after instruction

Almost all debug exceptions fall into the first type. That
is, they all take the interrupt upon encountering an
instruction having the exception without updating any
architectural state (other than DBSR, CSRR0/DSRR0
[Category: Embedded.Enhanced Debug], CSRR1/
DSRR1 [Category: Embedded.Enhanced Debug],
MSR) for that instruction. 

The CSRR0/DSRR0 [Category: Embedded.Enhanced
Debug] for this type of exception points to the instruc-
tion that encountered the exception. This includes IAC,
DAC, branch taken, etc.

The only exception which fall into the second type is the
instruction complete debug exception. This exception is
taken upon completing and updating one instruction
and then pointing CSRR0/DSRR0 [Category: Embed-
ded.Enhanced Debug] to the next instruction to exe-
cute.

To make forward progress for any Type 1 debug excep-
tion one does the following:

1. Software sets up Type 1 exceptions (e.g. branch
taken debug exceptions) and then returns to nor-
mal program operation

2. Hardware takes Debug interrupt upon the first
branch taken Debug exception, pointing to the
branch with CSRR0/DSRR0 [Category: Embed-
ded.Enhanced Debug].

3. Software, in the debug handler, sees the branch
taken exception type, does whatever logging/anal-

ysis it wants to, then clears all debug event enables
in the DBCR except for the instruction complete
debug event enable.

4. Software does an rfci or rfdi [Category: Embed-
ded.Enhanced Debug].

5. Hardware would execute and complete one
instruction (the branch taken in this case), and
then take a Debug interrupt with CSRR0/DSRR0
[Category: Embedded.Enhanced Debug] pointing
to the target of the branch.

6. Software would see the instruction complete inter-
rupt type. It clears the instruction complete event
enable, then enables the branch taken interrupt
event again.

7. Software does an rfci or rfdi [Category: Embed-
ded.Enhanced Debug].

8. Hardware resumes on the target of the taken
branch and continues until another taken branch,
in which case we end up at step 2 again.

This, at first, seems like a double tax (i.e., 2 debug
interrupts for every instance of a Type 1 exception), but
there doesn't seem like any other clean way to make
forward progress on Type 1 debug exceptions. The only
other way to avoid the double tax is to have the debug
handler routine actually emulate the instruction pointed
to for the Type 1 exceptions, determine the next instruc-
tion that would have been executed by the interrupted
program flow and load the CSRR0/DSRR0 [Category:
Embedded.Enhanced Debug] with that address and do
an rfci/rfdi [Category: Embedded.Enhanced Debug];
this is probably not faster.

10.4.1 Instruction Address Com-
pare Debug Event
One or more Instruction Address Compare debug
events (IAC1, IAC2, IAC3 or IAC4) occur if they are
enabled and execution is attempted of an instruction at
an address that meets the criteria specified in the
DBCR0, DBCR1, IAC1, IAC2, IAC3, and IAC4 Regis-
ters.

Instruction Address Compare User/
Supervisor Mode
DBCR1IAC1US specifies whether IAC1 debug events
can occur in user mode or supervisor mode, or both.

DBCR1IAC2US specifies whether IAC2 debug events
can occur in user mode or supervisor mode, or both.

DBCR1IAC3US specifies whether IAC3 debug events
can occur in user mode or supervisor mode, or both.

DBCR1IAC4US specifies whether IAC4 debug events
can occur in user mode or supervisor mode, or both.

Effective/Real Address Mode
DBCR1IAC1ER specifies whether effective addresses,
real addresses, effective addresses and MSRIS=0, or
effective addresses and MSRIS=1 are used in deter-
mining an address match on IAC1 debug events.

DBCR1IAC2ER specifies whether effective addresses,
real addresses, effective addresses and MSRIS=0, or
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effective addresses and MSRIS=1 are used in deter-
mining an address match on IAC2 debug events.

DBCR1IAC3ER specifies whether effective addresses,
real addresses, effective addresses and MSRIS=0, or
effective addresses and MSRIS=1 are used in deter-
mining an address match on IAC3 debug events.

DBCR1IAC4ER specifies whether effective addresses,
real addresses, effective addresses and MSRIS=0, or
effective addresses and MSRIS=1 are used in deter-
mining an address match on IAC4 debug events.

Instruction Address Compare Mode
DBCR1IAC12M specifies whether all or some of the bits
of the address of the instruction fetch must match the
contents of the IAC1 or IAC2, whether the address
must be inside a specific range specified by the IAC1
and IAC2 or outside a specific range specified by the
IAC1 and IAC2 for an IAC1 or IAC2 debug event to
occur.

DBCR1IAC34M specifies whether all or some of the bits
of the address of the instruction fetch must match the
contents of the IAC3 Register or IAC4 Register,
whether the address must be inside a specific range
specified by the IAC3 Register and IAC4 Register or
outside a specific range specified by the IAC3 Register
and IAC4 Register for an IAC3 or IAC4 debug event to
occur.

There are four instruction address compare modes.

There are four instruction address compare modes.

- Exact address compare mode
If the address of the instruction fetch is equal
to the value in the enabled IAC Register, an
instruction address match occurs. For 64-bit
implementations, the addresses are masked
to compare only bits 32:63 when the thread is
executing in 32-bit mode.

- Address bit match mode
For IAC1 and IAC2 debug events, if the
address of the instruction fetch access,
ANDed with the contents of the IAC2, are
equal to the contents of the IAC1, also ANDed
with the contents of the IAC2, an instruction
address match occurs.

For IAC3 and IAC4 debug events, if the
address of the instruction fetch, ANDed with
the contents of the IAC4, are equal to the con-
tents of the IAC3, also ANDed with the con-
tents of the IAC4, an instruction address
match occurs.

For 64-bit implementations, the addresses are
masked to compare only bits 32:63 when the
thread is executing in 32-bit mode.

- Inclusive address range compare mode
For IAC1 and IAC2 debug events, if the 64-bit

address of the instruction fetch is greater than
or equal to the contents of the IAC1 and less
than the contents of the IAC2, an instruction
address match occurs.

For IAC3 and IAC4 debug events, if the 64-bit
address of the instruction fetch is greater than
or equal to the contents of the IAC3 and less
than the contents of the IAC4, an instruction
address match occurs.

- For 64-bit implementations, the addresses are
masked to compare only bits 32:63 when the
thread is executing in 32-bit mode.

- Exclusive address range compare mode
For IAC1 and IAC2 debug events, if the 64-bit
address of the instruction fetch is less than the
contents of the IAC1 or greater than or equal
to the contents of the IAC2, an instruction
address match occurs.

For IAC3 and IAC4 debug events, if the 64-bit
address of the instruction fetch is less than the
contents of the IAC3 or greater than or equal
to the contents of the IAC4, an instruction
address match occurs.

For 64-bit implementations, the addresses are
masked to compare only bits 32:63 when the
thread is executing in 32-bit mode.

See the detailed description of DBCR0 (see
Section 10.5.1.1, “Debug Control Register 0 (DBCR0)”
on page 1221) and DBCR1 (see Section 10.5.1.2,
“Debug Control Register 1 (DBCR1)” on page 1222)
and the modes for detecting IAC1, IAC2, IAC3 and
IAC4 debug events. Instruction Address Compare
debug events can occur regardless of the setting of
MSRDE or DBCR0IDM.

When an Instruction Address Compare debug event
occurs, the corresponding DBSRIAC1, DBSRIAC2,
DBSRIAC3, or DBSRIAC4 bit or bits are set to record the
debug exception. If MSRDE=0, DBSRIDE is also set to 1
to record the imprecise debug event.

If MSRDE=1 (i.e., Debug interrupts are enabled) at the
time of the Instruction Address Compare debug excep-
tion, a Debug interrupt will occur immediately (provided
there exists no higher priority exception which is
enabled to cause an interrupt). The execution of the
instruction causing the exception will be suppressed,
and CSRR0/DSRR0 [Category: Embedded.Enhanced
Debug] will be set to the address of the excepting
instruction.

If MSRDE=0 (i.e., Debug interrupts are disabled) at the
time of the Instruction Address Compare debug excep-
tion, a Debug interrupt will not occur, and the instruction
will complete execution (provided the instruction is not
causing some other exception which will generate an
enabled interrupt).
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Later, if the debug exception has not been reset by
clearing DBSRIAC1, DBSRIAC2, DBSRIAC3, and
DBSRIAC4, and MSRDE is set to 1, a delayed Debug
interrupt will occur. In this case, CSRR0/DSRR0 [Cate-
gory: Embedded.Enhanced Debug will contain the
address of the instruction after the one which enabled
the Debug interrupt by setting MSRDE to 1. Software in
the Debug interrupt handler can observe DBSRIDE to
determine how to interpret the value in CSRR0/DSRR0
[Category: Embedded.Enhanced Debug.

10.4.2 Data Address Compare 
Debug Event
One or more Data Address Compare debug events
(DAC1R, DAC1W, DAC2R, DAC2W) occur if they are
enabled, execution is attempted of a data storage
access instruction, and the type, address, and possibly
even the data value of the data storage access meet
the criteria specified in the Debug Control Register 0,
Debug Control Register 2, and the DAC1 and DAC2
Registers.

Data Address Compare Read/Write 
Enable
DBCR0DAC1 specifies whether DAC1R debug events
can occur on read-type data storage accesses and
whether DAC1W debug events can occur on write-type
data storage accesses.

DBCR0DAC2 specifies whether DAC2R debug events
can occur on read-type data storage accesses and
whether DAC2W debug events can occur on write-type
data storage accesses.

Indexed-string instructions (lswx, stswx) for which the
XER field specifies zero bytes as the length of the
string are treated as no-ops, and are not allowed to
cause Data Address Compare debug events.

All Load instructions are considered reads with respect
to debug events, while all Store instructions are consid-
ered writes with respect to debug events. In addition,
the Cache Management instructions, and certain spe-
cial cases, are handled as follows.

- dcbt, dcbtls, dcblq., dcbtep, icbt, icbtls,
icbi, icblc, icblq., dcblc, and icbiep are all
considered reads with respect to debug
events. Note that dcbt, dcbtep, and icbt are
treated as no-operations when they report
Data Storage or Data TLB Miss exceptions,
instead of being allowed to cause interrupts.
However, these instructions are allowed to
cause Debug interrupts, even when they
would otherwise have been no-op’ed due to a
Data Storage or Data TLB Miss exception.

- dcbtst, dcbtstls, dcbtstep, dcbz, dcbzep,
dcbi, dcbf, dcbfep, dcba, dcbst, and dcb-
step are all considered writes with respect to

debug events. Note that dcbf, dcbfep, dcbst,
and dcbstep are considered reads with
respect to Data Storage exceptions, since
they do not actually change the data at a
given address. However, since the execution
of these instructions may result in write activity
on the data bus, they are treated as writes
with respect to debug events.  Note also that
dcbtst and dcbtstep are treated as no-opera-
tions when they report Data Storage or Data
TLB Miss exceptions, instead of being allowed
to cause interrupts. However, these instruc-
tions are allowed to cause Debug interrupts,
even when they would otherwise have been
no-op’ed due to a Data Storage or Data TLB
Miss exception.

 

Data Address Compare User/Supervi-
sor Mode

DBCR2DAC1US specifies whether DAC1R and
DAC1W debug events can occur in user mode or
supervisor mode, or both.

DBCR2DAC2US specifies whether DAC2R and
DAC2W debug events can occur in user mode or
supervisor mode, or both.

Effective/Real Address Mode
DBCR2DAC1ER specifies whether effective
addresses, real addresses, effective addresses
and MSRDS=0, or effective addresses and
MSRDS=1 are used to in determining an address
match on DAC1R and DAC1W debug events.

DBCR2DAC2ER specifies whether effective
addresses, real addresses, effective addresses
and MSRDS=0, or effective addresses and
MSRDS=1 are used to in determining an address
match on DAC2R and DAC2W debug events.

Data Address Compare Mode
DBCR2DAC12M specifies whether all or some of the
bits of the address of the data storage access must
match the contents of the DAC1 or DAC2, whether
the address must be inside a specific range speci-
fied by the DAC1 and DAC2 or outside a specific
range specified by the DAC1 and DAC2 for a
DAC1R, DAC1W, DAC2R or DAC2W debug event
to occur.

There are four data address compare modes.

- Exact address compare mode
If the 64-bit address of the data storage
access is equal to the value in the enabled
Data Address Compare Register, a data
address match occurs.
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For 64-bit implementations, the addresses are
masked to compare only bits 32:63 when the
thread is executing in 32-bit mode.

- Address bit match mode
If the address of the data storage access,
ANDed with the contents of the DAC2, are
equal to the contents of the DAC1, also
ANDed with the contents of the DAC2, a data
address match occurs.

For 64-bit implementations, the addresses are
masked to compare only bits 32:63 when the
thread is executing in 32-bit mode.

- Inclusive address range compare mode
If the 64-bit address of the data storage
access is greater than or equal to the contents
of the DAC1 and less than the contents of the
DAC2, a data address match occurs.

For 64-bit implementations, the addresses are
masked to compare only bits 32:63 when the
thread is executing in 32-bit mode.

- Exclusive address range compare mode
If the 64-bit address of the data storage
access is less than the contents of the DAC1
or greater than or equal to the contents of the
DAC2, a data address match occurs.

For 64-bit implementations, the addresses are
masked to compare only bits 32:63 when the
thread is executing in 32-bit mode.

The description of DBCR0 (see Section 10.5.1.1) and
DBCR2 (see Section 10.5.1.3) and the modes for
detecting Data Address Compare debug events. Data
Address Compare debug events can occur regardless
of the setting of MSRDE or DBCR0IDM. 

When an Data Address Compare debug event occurs,
the corresponding DBSRDAC1R, DBSRDAC1W,
DBSRDAC2R, or DBSRDAC2W bit or bits are set to 1 to
record the debug exception. If MSRDE=0, DBSRIDE is
also set to 1 to record the imprecise debug event.

If MSRDE=1 (i.e., Debug interrupts are enabled) at the
time of the Data Address Compare debug exception, a
Debug interrupt will occur immediately (provided there
exists no higher priority exception which is enabled to
cause an interrupt), the execution of the instruction
causing the exception will be suppressed, and CSRR0/
DSRR0 [Category: Embedded.Enhanced Debug will be
set to the address of the excepting instruction. Depend-
ing on the type of instruction and/or the alignment of
the data access, the instruction causing the exception
may have been partially executed (see Section 7.7).

If MSRDE=0 (i.e., Debug interrupts are disabled) at the
time of the Data Address Compare debug exception, a
Debug interrupt will not occur, and the instruction will
complete execution (provided the instruction is not

causing some other exception which will generate an
enabled interrupt). Also, DBSRIDE is set to indicate that
the debug exception occurred while Debug interrupts
were disabled by MSRDE=0.

Later, if the debug exception has not been reset by
clearing DBSRDAC1R, DBSRDAC1W, DBSRDAC2R,
DBSRDAC2W, and MSRDE is set to 1, a delayed Debug
interrupt will occur. In this case, CSRR0/DSRR0 [Cate-
gory: Embedded.Enhanced Debug will contain the
address of the instruction after the one which enabled
the Debug interrupt by setting MSRDE to 1. Software in
the Debug interrupt handler can observe DBSRIDE to
determine how to interpret the value in CSRR0/DSRR0
[Category: Embedded.Enhanced Debug].

10.4.3 Trap Debug Event
A Trap debug event (TRAP) occurs if DBCR0TRAP=1
(i.e., Trap debug events are enabled) and a Trap
instruction (tw, twi, td, tdi) is executed and the condi-
tions specified by the instruction for the trap are met.
The event can occur regardless of the setting of
MSRDE or DBCR0IDM.

When a Trap debug event occurs, DBSRTR is set to 1 to
record the debug exception. If MSRDE=0, DBSRIDE is
also set to 1 to record the imprecise debug event.

If MSRDE=1 (i.e., Debug interrupts are enabled) at the
time of the Trap debug exception, a Debug interrupt will
occur immediately (provided there exists no higher pri-
ority exception which is enabled to cause an interrupt),
and CSRR0/DSRR0 [Category: Embedded.Enhanced
Debug] will be set to the address of the excepting
instruction. 

If MSRDE=0 (i.e., Debug interrupts are disabled) at the
time of the Trap debug exception, a Debug interrupt will
not occur, and a Trap exception type Program interrupt
will occur instead if the trap condition is met.

Later, if the debug exception has not been reset by
clearing DBSRTR, and MSRDE is set to 1, a delayed
Debug interrupt will occur. In this case, CSRR0/DSRR0
[Category: Embedded.Enhanced Debug will contain
the address of the instruction after the one which
enabled the Debug interrupt by setting both MSRDE
and DBCR0IDM to 1. Software in the debug interrupt
handler can observe DBSRIDE to determine how to
interpret the value in CSRR0/DSRR0 [Category:
Embedded.Enhanced Debug].

10.4.4 Branch Taken Debug Event
A Branch Taken debug event (BRT) occurs if
DBCR0BRT=1 (i.e., Branch Taken Debug events are
enabled), execution is attempted of a branch instruction
whose direction will be taken (that is, either an uncondi-
tional branch, or a conditional branch whose branch
condition is met), and MSRDE=1.
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Branch Taken debug events are not recognized if
MSRDE=0 at the time of the execution of the branch
instruction and thus DBSRIDE can not be set by a
Branch Taken debug event. This is because branch
instructions occur very frequently. Allowing these com-
mon events to be recorded as exceptions in the DBSR
while debug interrupts are disabled via MSRDE would
result in an inordinate number of imprecise Debug
interrupts.

When a Branch Taken debug event occurs, the DBSR-

BRT bit is set to 1 to record the debug exception and a
Debug interrupt will occur immediately (provided there
exists no higher priority exception which is enabled to
cause an interrupt). The execution of the instruction
causing the exception will be suppressed, and CSRR0/
DSRR0 [Category: Embedded.Enhanced Debug] will
be set to the address of the excepting instruction. 

10.4.5 Instruction Complete 
Debug Event
An Instruction Complete debug event (ICMP) occurs if
DBCR0ICMP=1 (i.e., Instruction Complete debug events
are enabled), execution of any instruction is completed,
and MSRDE=1. Note that if execution of an instruction
is suppressed due to the instruction causing some
other exception which is enabled to generate an inter-
rupt, then the attempted execution of that instruction
does not cause an Instruction Complete debug event.
The sc instruction does not fall into the type of an
instruction whose execution is suppressed, since the
instruction actually completes execution and then gen-
erates a System Call interrupt. In this case, the Instruc-
tion Complete debug exception will also be set.

Instruction Complete debug events are not recognized
if MSRDE=0 at the time of the execution of the instruc-
tion, DBSRIDE can not be set by an ICMP debug event.
This is because allowing the common event of Instruc-
tion Completion to be recorded as an exception in the
DBSR while Debug interrupts are disabled via MSRDE
would mean that the Debug interrupt handler software
would receive an inordinate number of imprecise
Debug interrupts every time Debug interrupts were
re-enabled via MSRDE.

When an Instruction Complete debug event occurs,
DBSRICMP is set to 1 to record the debug exception, a
Debug interrupt will occur immediately (provided there
exists no higher priority exception which is enabled to
cause an interrupt), and CSRR0/DSRR0 [Category:
Embedded.Enhanced Debug] will be set to the address
of the instruction after the one causing the Instruction
Complete debug exception. 

10.4.6 Interrupt Taken Debug 
Event

10.4.6.1 Causes of Interrupt Taken 
Debug Events
Only base class interrupts and guest class interrupts
(Category: Embedded.Hypervisor) can cause an Inter-
rupt Taken debug event. If the Embedded.Enhanced
Debug category is not supported or is supported and
not enabled, all other interrupts automatically clear
MSRDE, and thus would always prevent the associated
Debug interrupt from occurring precisely. If the Embed-
ded.Enhanced Debug category is supported and
enabled, then critical class interrupts do not automati-
cally clear MSRDE, but they cause Critical Interrupt
Taken debug events instead of Interrupt Taken debug
events.

Also, if the Embedded.Enhanced Debug category is not
supported or is supported and not enabled, Debug
interrupts themselves are critical class interrupts, and
thus any Debug interrupt (for any other debug event)
would always end up setting the additional exception of
DBSRIRPT upon entry to the Debug interrupt handler.
At this point, the Debug interrupt handler would be
unable to determine whether or not the Interrupt Taken
debug event was related to the original debug event.

10.4.6.2 Interrupt Taken Debug Event 
Description
An Interrupt Taken debug event (IRPT) occurs if
DBCR0IRPT=1 (i.e., Interrupt Taken debug events are
enabled) and a base class interrupt occurs. Interrupt
Taken debug events can occur regardless of the setting
of MSRDE.

When an Interrupt Taken debug event occurs, DBSR-

IRPT is set to 1 to record the debug exception. If
MSRDE=0, DBSRIDE is also set to 1 to record the
imprecise debug event.

If MSRDE=1 (i.e., Debug interrupts are enabled) at the
time of the Interrupt Taken debug event, a Debug inter-
rupt will occur immediately (provided there exists no
higher priority exception which is enabled to cause an
interrupt), and Critical Save/Restore Register 0/Debug
Save/Restore Register 0 [Category: Embed-
ded.Enhanced Debug] will be set to the address of the
interrupt vector which caused the Interrupt Taken
debug event. No instructions at the base interrupt han-
dler will have been executed. 

If MSRDE=0 (i.e., Debug interrupts are disabled) at the
time of the Interrupt Taken debug event, a Debug inter-
rupt will not occur, and the handler for the interrupt
which caused the Interrupt Taken debug event will be
allowed to execute.
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Later, if the debug exception has not been reset by
clearing DBSRIRPT, and MSRDE is set to 1, a delayed
Debug interrupt will occur. In this case, CSRR0/DSRR0
[Category: Embedded.Enhanced Debug] will contain
the address of the instruction after the one which
enabled the Debug interrupt by setting MSRDE to 1.
Software in the Debug interrupt handler can observe
the DBSRIDE bit to determine how to interpret the value
in CSRR0/DSRR0 [Category: Embedded.Enhanced
Debug.]

10.4.7 Return Debug Event
A Return debug event (RET) occurs if DBCR0RET=1
and an attempt is made to execute an rfi (and also rfgi
<E.HV>). Return debug events can occur regardless of
the setting of MSRDE.

When a Return debug event occurs, DBSRRET is set to
1 to record the debug exception. If MSRDE=0, DBSRIDE
is also set to 1 to record the imprecise debug event.

If MSRDE=1 at the time of the Return Debug event, a
Debug interrupt will occur immediately, and CSRR0/
DSRR0 [Category: Embedded.Enhanced Debug] will
be set to the address of the rfi. 

If MSRDE=0 at the time of the Return Debug event, a
Debug interrupt will not occur.

Later, if the Debug exception has not been reset by
clearing DBSRRET, and MSRDE is set to 1, a delayed
imprecise Debug interrupt will occur. In this case,
CSRR0/DSRR0 [Category: Embedded.Enhanced
Debug will contain the address of the instruction after
the one which enabled the Debug interrupt by setting
MSRDE to 1. An imprecise Debug interrupt can be
caused by executing an rfi when DBCR0RET=1 and
MSRDE=0, and the execution of that rfi happens to
cause MSRDE to be set to 1. Software in the Debug
interrupt handler can observe the DBSRIDE bit to deter-
mine how to interpret the value in CSRR0/DSRR0 [Cat-
egory: Embedded.Enhanced Debug].

10.4.8 Unconditional Debug Event
An Unconditional debug event (UDE) occurs when the
Unconditional Debug Event (UDE) signal is activated by
the debug mechanism. The exact definition of the UDE
signal and how it is activated is implementation-depen-
dent. The Unconditional debug event is the only debug
event which does not have a corresponding enable bit
for the event in DBCR0 (hence the name of the event).
The Unconditional debug event can occur regardless of
the setting of MSRDE. 

When an Unconditional debug event occurs, the
DBSRUDE bit is set to 1 to record the Debug exception.
If MSRDE=0, DBSRIDE is also set to 1 to record the
imprecise debug event.

If MSRDE=1 (i.e., Debug interrupts are enabled) at the
time of the Unconditional Debug exception, a Debug
interrupt will occur immediately (provided there exists
no higher priority exception which is enabled to cause
an interrupt), and CSRR0/DSRR0 [Category: Embed-
ded.Enhanced Debug] will be set to the address of the
instruction which would have executed next had the
interrupt not occurred. 

If MSRDE=0 (i.e., Debug interrupts are disabled) at the
time of the Unconditional Debug exception, a Debug
interrupt will not occur.

Later, if the Unconditional Debug exception has not
been reset by clearing DBSRUDE, and MSRDE is set to
1, a delayed Debug interrupt will occur. In this case,
CSRR0/DSRR0 [Category: Embedded.Enhanced
Debug] will contain the address of the instruction after
the one which enabled the Debug interrupt by setting
MSRDE to 1. Software in the Debug interrupt handler
can observe DBSRIDE to determine how to interpret the
value in CSRR0/DSRR0 [Category: Embed-
ded.Enhanced Debug].

10.4.9 Critical Interrupt Taken 
Debug Event [Category: Embed-
ded.Enhanced Debug]
A Critical Interrupt Taken debug event (CIRPT) occurs if
DBCR0CIRPT = 1 (i.e., Critical Interrupt Taken debug
events are enabled) and a critical interrupt occurs. A
critical interrupt is any interrupt that saves state in
CSRR0 and CSRR1 when the interrupt is taken. Criti-
cal Interrupt Taken debug events can occur regardless
of the setting of MSRDE.

When a Critical Interrupt Taken debug event occurs,
DBSRCIRPT is set to 1 to record the debug event. If
MSRDE=0, DBSRIDE is also set to 1 to record the
imprecise debug event.

If MSRDE = 1 (i.e. Debug Interrupts are enabled) at the
time of the Critical Interrupt Taken debug event, a
Debug Interrupt will occur immediately (provided there
is no higher priority exception which is enabled to
cause an interrupt), and DSRR0 will be set to the
address of the first instruction of the critical interrupt
handler. No instructions at the critical interrupt handler
will have been executed.

If MSRDE = 0 (i.e. Debug Interrupts are disabled) at the
time of the Critical Interrupt Taken debug event, a
Debug Interrupt will not occur, and the handler for the
critical interrupt which caused the debug event will be
allowed to execute normally. Later, if the debug excep-
tion has not been reset by clearing DBSRCIRPT and
MSRDE is set to 1, a delayed Debug Interrupt will occur.
In this case DSRR0 will contain the address of the
instruction after the one that set MSRDE = 1. Software
in the Debug Interrupt handler can observe DBSRIDE to
determine how to interpret the value in DSRR0.
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10.4.10 Critical Interrupt Return 
Debug Event [Category: Embed-
ded.Enhanced Debug]
A Critical Interrupt Return debug event (CRET) occurs
if DBCR0CRET = 1 (i.e. Critical Interrupt Return debug
events are enabled) and an attempt is made to execute
an rfci instruction. Critical Interrupt Return debug
events can occur regardless of the setting of MSRDE.

When a Critical Interrupt Return debug event occurs,
DBSRCRET is set to 1 to record the debug event. If
MSRDE=0, DBSRIDE is also set to 1 to record the
imprecise debug event.

If MSRDE = 1 (i.e. Debug Interrupts are enabled) at the
time of the Critical Interrupt Return debug event, a
Debug Interrupt will occur immediately (provided there
is no higher priority exception which is enabled to
cause an interrupt), and DSRR0 will be set to the
address of the rfci instruction. 

If MSRDE = 0 (i.e. Debug Interrupts are disabled) at the
time of the Critical Interrupt Return debug event, a
Debug Interrupt will not occur. Later, if the debug
exception has not been reset by clearing DBSRCRET
and MSRDE is set to 1, a delayed Debug Interrupt will
occur. In this case DSRR0 will contain the address of
the instruction after the one that set MSRDE = 1. An
imprecise Debug Interrupt can be caused by executing
an rfci when DBCR0CRET = 1 and MSRDE = 0, and the
execution of the rfci happens to cause MSRDE to be
set to 1. Software in the Debug Interrupt handler can
observe DBSRIDE to determine how to interpret the
value in DSRR0.

10.5 Debug Registers
This section describes debug-related registers that are
accessible to software. These registers are intended for
use by special debug tools and debug software, and
not by general application or operating system code.

10.5.1 Debug Control Registers
Debug Control Register 0 (DBCR0), Debug Control
Register 1 (DBCR1), and Debug Control Register 2
(DBCR2) are each 32-bit registers. Bits of DBCR0,
DBCR1, and DBCR2 are numbered 32 (most-signifi-
cant bit) to 63 (least-significant bit). DBCR0, DBCR1,
and DBCR2 are used to enable debug events, reset the
thread, control timer operation during debug events,
and set the debug mode of the thread.

10.5.1.1 Debug Control Register 0 
(DBCR0)
The contents of the DBCR0 can be read into bits 32:63
of register RT using mfspr RT,DBCR0, setting bits 0:31

of RT to 0. The contents of bits 32:63 of register RS can
be written to the DBCR0 using mtspr DBCR0,RS. The
bit definitions for DBCR0 are shown below.

Bit(s) Description

32 External Debug Mode (EDM)
The EDM bit is a read-only bit that reflects
whether the thread is controlled by an external
debug facility. When EDM is set, internal
debug mode is suppressed and the taking of
debug interrupts does not occur.

0 The thread is not in external debug mode.
1 The thread is in external debug mode.

  

33 Internal Debug Mode (IDM)

0 Debug interrupts are disabled.
1 If MSRDE=1, then the occurrence of a

debug event or the recording of an earlier
debug event in the Debug Status Register
when MSRDE=0 or DBCR0IDM=0 will
cause a Debug interrupt.

  

34:35 Reset (RST)

00 No action
01 Implementation-specific
10 Implementation-specific
11 Implementation-specific

Warning: Writing 0b01, 0b10, or 0b11 to
these bits may cause a thread reset to occur.

36 Instruction Completion Debug Event
(ICMP)

0 ICMP debug events are disabled
1 ICMP debug events are enabled

Note: Instruction Completion will not cause an
ICMP debug event if MSRDE=0.

37 Branch Taken Debug Event Enable (BRT)

0 BRT debug events are disabled
1 BRT debug events are enabled

In a virtualized implementation when
EDM=1, the value of MSRDE is not speci-
fied and is not modifiable.

Software must clear debug event status in
the Debug Status Register in the Debug
interrupt handler when a Debug interrupt
is taken before re-enabling interrupts via
MSRDE. Otherwise, redundant Debug
interrupts will be taken for the same debug
event.

Virtualized Implementation Note

Programming Note
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Note: Taken branches will not cause a BRT
debug event if MSRDE=0.

38 Interrupt Taken Debug Event Enable (IRPT)

0 IRPT debug events are disabled
1 IRPT debug events are enabled

Note: Critical interrupts will not cause an
IRPT Debug event even if MSRDE=0. If the
Embedded.Enhanced Debug category is sup-
ported, see Section 10.4.9.

39 Trap Debug Event Enable (TRAP)

0 TRAP debug events cannot occur
1 TRAP debug events can occur

40 Instruction Address Compare 1 Debug
Event Enable (IAC1)

0 IAC1 debug events cannot occur
1 IAC1 debug events can occur

41 Instruction Address Compare 2 Debug
Event Enable (IAC2)

0 IAC2 debug events cannot occur
1 IAC2 debug events can occur

42 Instruction Address Compare 3 Debug
Event Enable (IAC3)

0 IAC3 debug events cannot occur
1 IAC3 debug events can occur

43 Instruction Address Compare 4 Debug
Event Enable (IAC4)

0 IAC4 debug events cannot occur
1 IAC4 debug events can occur

44:45 Data Address Compare 1 Debug Event
Enable (DAC1)

00 DAC1 debug events cannot occur
01 DAC1 debug events can occur only if a

store-type data storage access
10 DAC1 debug events can occur only if a

load-type data storage access
11 DAC1 debug events can occur on any

data storage access

46:47 Data Address Compare 2 Debug Event
Enable (DAC2)

00 DAC2 debug events cannot occur
01 DAC2 debug events can occur only if a

store-type data storage access
10 DAC2 debug events can occur only if a

load-type data storage access
11 DAC2 debug events can occur on any

data storage access

48 Return Debug Event Enable (RET)

0 RET debug events cannot occur
1 RET debug events can occur

Note: Return From Critical Interrupt will not
cause an RET debug event if MSRDE=0. If the
Embedded.Enhanced Debug category is sup-
ported, see Section 10.4.10

49:56 Reserved

57 Critical Interrupt Taken Debug Event
(CIRPT) [Category: Embedded.Enhanced
Debug]
A Critical Interrupt Taken Debug Event occurs
when DBCR0CIRPT = 1 and a critical interrupt
(any interrupt that uses the critical class, i.e.
uses CSRR0 and CSRR1) occurs.

0 Critical interrupt taken debug events are
disabled.

1 Critical interrupt taken debug events are
enabled.

58 Critical Interrupt Return Debug Event
(CRET) [Category: Embedded.Enhanced
Debug] 
A Critical Interrupt Return Debug Event
occurs when DBCR0CRET= 1 and a return
from critical interrupt (an rfci instruction is
executed) occurs.

0 Critical interrupt return debug events are
disabled.

1 Critical interrupt return debug events are
enabled.

59:62 Implementation-dependent

63 Freeze Timers on Debug Event (FT)

0 Enable clocking of timers and Time Base
1 Disable clocking of timers and Time Base

if any DBSR bit is set (except MRR)

  

This register is hypervisor privileged.

This register is hypervisor privileged.

10.5.1.2 Debug Control Register 1 
(DBCR1)
The contents of the DBCR1 can be read into bits 32:63
a register RT using mfspr RT,DBCR1, setting bits 0:31
of RT to 0. The contents of bits 32:63 of register RS can
be written to the DBCR1 using mtspr DBCR1,RS. The
bit definitions for DBCR1 are shown below. 

Bit(s) Description

32:33 Instruction Address Compare 1 User/
Supervisor  Mode(IAC1US)

00 IAC1 debug events can occur
01 Reserved

The FT bit may not be supported in virtu-
alized implementations.

Virtualized Implementation Note
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10 IAC1 debug events can occur only if
MSRPR=0

11 IAC1 debug events can occur only if
MSRPR=1

34:35 Instruction Address Compare 1 Effective/
Real Mode (IAC1ER)

00 IAC1 debug events are based on effective
addresses

01 IAC1 debug events are based on real
addresses

10 IAC1 debug events are based on effective
addresses and can occur only if MSRIS=0

11 IAC1 debug events are based on effective
addresses and can occur only if MSRIS=1

36:37 Instruction Address Compare 2 User/
Supervisor Mode (IAC2US)

00 IAC2 debug events can occur
01 Reserved
10 IAC2 debug events can occur only if

MSRPR=0
11 IAC2 debug events can occur only if

MSRPR=1

38:39 Instruction Address Compare 2 Effective/
Real Mode (IAC2ER)

00 IAC2 debug events are based on effective
addresses

01 IAC2 debug events are based on real
addresses

10 IAC2 debug events are based on effective
addresses and can occur only if MSRIS=0

11 IAC2 debug events are based on effective
addresses and can occur only if MSRIS=1

40:41 Instruction Address Compare 1/2 Mode
(IAC12M)

00 Exact address compare

IAC1 debug events can occur only if the
address of the instruction fetch is equal to
the value specified in IAC1.

IAC2 debug events can occur only if the
address of the instruction fetch is equal to
the value specified in IAC2.

01 Address bit match

IAC1 and IAC2 debug events can occur
only if the address of the instruction fetch,
ANDed with the contents of IAC2 are equal
to the contents of IAC1, also ANDed with
the contents of IAC2.

If IAC1US≠IAC2US or IAC1ER≠IAC2ER,
results are boundedly undefined.

10 Inclusive address range compare

IAC1 and IAC2 debug events can occur
only if the address of the instruction fetch is
greater than or equal to the value specified
in IAC1 and less than the value specified in
IAC2.

If IAC1US≠IAC2US or IAC1ER≠IAC2ER,
results are boundedly undefined.

11 Exclusive address range compare

IAC1 and IAC2 debug events can occur
only if the address of the instruction fetch is
less than the value specified in IAC1 or is
greater than or equal to the value specified
in IAC2.

If IAC1US≠AC2US or IAC1ER≠IAC2ER,
results are boundedly undefined.

42:47 Reserved

48:49 Instruction Address Compare 3 User/
Supervisor Mode (IAC3US)

00 IAC3 debug events can occur
01 Reserved
10 IAC3 debug events can occur only if

MSRPR=0
11 IAC3 debug events can occur only if

MSRPR=1

50:51 Instruction Address Compare 3 Effective/
Real Mode (IAC3ER)

00 IAC3 debug events are based on effective
addresses

01 IAC3 debug events are based on real
addresses

10 IAC3 debug events are based on effective
addresses and can occur only if MSRIS=0

11 IAC3 debug events are based on effective
addresses and can occur only if MSRIS=1

52:53 Instruction Address Compare 4 User/
Supervisor Mode (IAC4US)

00 IAC4 debug events can occur
01 Reserved
10 IAC4 debug events can occur only if

MSRPR=0
11 IAC4 debug events can occur only if

MSRPR=1

54:55 Instruction Address Compare 4 Effective/
Real Mode (IAC4ER)

00 IAC4 debug events are based on effective
addresses

01 IAC4 debug events are based on real
addresses

10 IAC4 debug events are based on effective
addresses and can occur only if MSRIS=0

11 IAC4 debug events are based on effective
addresses and can occur only if MSRIS=1
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56:57 Instruction Address Compare 3/4 Mode
(IAC34M)

00 Exact address compare

IAC3 debug events can occur only if the
address of the instruction fetch is equal to
the value specified in IAC3.

IAC4 debug events can occur only if the
address of the instruction fetch is equal to
the value specified in IAC4.

01 Address bit match

IAC3 and IAC4 debug events can occur
only if the address of the data storage
access, ANDed with the contents of IAC4
are equal to the contents of IAC3, also
ANDed with the contents of IAC4.

If IAC3US≠IAC4US or IAC3ER≠IAC4ER,
results are boundedly undefined.

10 Inclusive address range compare

IAC3 and IAC4 debug events can occur
only if the address of the instruction fetch is
greater than or equal to the value specified
in IAC3 and less than the value specified in
IAC4.

If IAC3US≠IAC4US or IAC3ER≠IAC4ER,
results are boundedly undefined.

11 Exclusive address range compare

IAC3 and IAC4 debug events can occur
only if the address of the instruction fetch is
less than the value specified in IAC3 or is
greater than or equal to the value specified
in IAC4.

If IAC3US≠IAC4US or IAC3ER≠IAC4ER,
results are boundedly undefined.

58:63 Reserved

This register is hypervisor privileged.

10.5.1.3 Debug Control Register 2 
(DBCR2)
The contents of the DBCR2 can be copied into bits
32:63 register RT using mfspr RT,DBCR2, setting bits
0:31 of register RT to 0. The contents of bits 32:63 of a
register RS can be written to the DBCR2 using
mtspr DBCR2,RS. The bit definitions for DBCR2 are
shown below.

Bit(s) Description

32:33 Data Address Compare 1 User/Supervisor
Mode (DAC1US)

00 DAC1 debug events can occur
01 Reserved
10 DAC1 debug events can occur only if

MSRPR=0
11 DAC1 debug events can occur only if

MSRPR=1

34:35 Data Address Compare 1 Effective/Real
Mode (DAC1ER)

00 DAC1 debug events are based on effec-
tive addresses

01 DAC1 debug events are based on real
addresses

10 DAC1 debug events are based on effec-
tive addresses and can occur only if
MSRDS=0

11 DAC1 debug events are based on effec-
tive addresses and can occur only if
MSRDS=1

36:37 Data Address Compare 2 User/Supervisor
Mode (DAC2US)

00 DAC2 debug events can occur
01 Reserved
10 DAC2 debug events can occur only if

MSRPR=0
11 DAC2 debug events can occur only if

MSRPR=1

38:39 Data Address Compare 2 Effective/Real
Mode (DAC2ER)

00 DAC2 debug events are based on effec-
tive addresses

01 DAC2 debug events are based on real
addresses

10 DAC2 debug events are based on effec-
tive addresses and can occur only if
MSRDS=0

11 DAC2 debug events are based on effec-
tive addresses and can occur only if
MSRDS=1

40:41 Data Address Compare 1/2 Mode
(DAC12M)

00 Exact address compare

DAC1 debug events can occur only if the
address of the data storage access is equal
to the value specified in DAC1.

DAC2 debug events can occur only if the
address of the data storage access is equal
to the value specified in DAC2.

01 Address bit match

DAC1 and DAC2 debug events can occur
only if the address of the data storage
access, ANDed with the contents of DAC2
are equal to the contents of DAC1, also
ANDed with the contents of DAC2.
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If DAC1US≠DAC2US or
DAC1ER≠DAC2ER, results are boundedly
undefined.

10 Inclusive address range compare

DAC1 and DAC2 debug events can occur
only if the address of the data storage
access is greater than or equal to the value
specified in DAC1 and less than the value
specified in DAC2.

If DAC1US ≠ DAC2US or DAC1ER ≠
DAC2ER, results are boundedly undefined.

11 Exclusive address range compare

DAC1 and DAC2 debug events can occur
only if the address of the data storage
access is less than the value specified in
DAC1 or is greater than or equal to the
value specified in DAC2.

If DAC1US ≠ DAC2US or DAC1ER ≠
DAC2ER, results are boundedly undefined.

42:63 Reserved

This register is hypervisor privileged.

 

10.5.2 Debug Status Register
The Debug Status Register (DBSR) is a 32-bit register
and contains status on debug events and the most
recent thread reset. 

The DBSR is set via hardware, and read and cleared
via software. The contents of the DBSR can be read
into bits 32:63 of a register RT using the mfspr instruc-
tion, setting bits 0:31 of RT to zero. Bits in the DBSR
can be cleared using the mtspr instruction. Clearing is
done by writing bits 32:63 of a register to the DBSR
with a 1 in any bit position that is to be cleared and 0 in
all other bit positions. The write-data to the DBSR is not
direct data, but a mask. A 1 causes the bit to be
cleared, and a 0 has no effect.

The bit definitions for the DBSR are shown below:

Bit(s) Description

32 Imprecise Debug Event (IDE)

Set to 1 if MSRDE=0 and a debug event
causes its respective Debug Status Register
bit to be set to 1.

33 Unconditional Debug Event (UDE)

Set to 1 if an Unconditional debug event
occurred. See Section 10.4.8.

34:35 Most Recent Reset (MRR)

Set to one of three values when a reset
occurs. These two bits are undefined at
power-up.

00 No reset occurred since these bits last
cleared by software

01 Implementation-dependent reset informa-
tion

10 Implementation-dependent reset informa-
tion

11 Implementation-dependent reset informa-
tion

36 Instruction Complete Debug Event (ICMP)

Set to 1 if an Instruction Completion debug
event occurred and DBCR0ICMP=1. See
Section 10.4.5.

37 Branch Taken Debug Event (BRT)

Set to 1 if a Branch Taken debug event
occurred and DBCR0BRT=1. See
Section 10.4.4.

38 Interrupt Taken Debug Event (IRPT)

Set to 1 if an Interrupt Taken debug event
occurred and DBCR0IRPT=1. See
Section 10.4.6.

39 Trap Instruction Debug Event (TRAP)

Set to 1 if a Trap Instruction debug event
occurred and DBCR0TRAP=1. See
Section 10.4.3.

40 Instruction Address Compare 1 Debug
Event (IAC1)

Set to 1 if an IAC1 debug event occurred and
DBCR0IAC1=1. See Section 10.4.1.

41 Instruction Address Compare 2 Debug
Event (IAC2)

Set to 1 if an IAC2 debug event occurred and
DBCR0IAC2=1. See Section 10.4.1.

42 Instruction Address Compare 3 Debug
Event (IAC3)

Set to 1 if an IAC3 debug event occurred and
DBCR0IAC3=1. See Section 10.4.1.

43 Instruction Address Compare 4 Debug
Event (IAC4)

For DAC12M inclusive (10) and exclusive (11)
range comparisons, either DBCR0DAC1 or
DBCR0DAC2 can be set to one in order to enable
the range comparison. It is permissible for both
DBCR0DAC1 and DBCR0DAC2 to be enabled. In that
case, both DBSRDAC1 and DBSRDAC2 will be set
for a range match. 

The same behavior holds for DAC34M with the
appropriate substitutions.

Architecture Note
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Set to 1 if an IAC4 debug event occurred and
DBCR0IAC4=1. See Section 10.4.1.

44 Data Address Compare 1 Read Debug
Event (DAC1R)

Set to 1 if a read-type DAC1 debug event
occurred and DBCR0DAC1=0b10 or
DBCR0DAC1=0b11. See Section 10.4.2.

45 Data Address Compare 1 Write Debug
Event (DAC1W)

Set to 1 if a write-type DAC1 debug event
occurred and DBCR0DAC1=0b01 or
DBCR0DAC1=0b11. See Section 10.4.2.

46 Data Address Compare 2 Read Debug
Event (DAC2R)

Set to 1 if a read-type DAC2 debug event
occurred and DBCR0DAC2=0b10 or
DBCR0DAC2=0b11. See Section 10.4.2.

47 Data Address Compare 2 Write Debug
Event (DAC2W)

Set to 1 if a write-type DAC2 debug event
occurred and DBCR0DAC2=0b01 or
DBCR0DAC2=0b11. See Section 10.4.2.

48 Return Debug Event (RET)

Set to 1 if a Return debug event occurred and
DBCR0RET=1. See Section 10.4.2.

49:52 Reserved

53:56 Implementation-dependent

57 Critical Interrupt Taken Debug Event
(CIRPT) [Category: Embedded.Enhanced
Debug]
A Critical Interrupt Taken Debug Event occurs
when DBCR0CIRPT=1 and a critical interrupt
(any interrupt that uses the critical class, i.e.
uses CSRR0 and CSRR1) occurs.

0 Critical interrupt taken debug events are
disabled.

1 Critical interrupt taken debug events are
enabled.

58 Critical Interrupt Return Debug Event
(CRET) [Category: Embedded.Enhanced
Debug] 
A Critical Interrupt Return Debug Event
occurs when DBCR0CRET=1 and a return
from critical interrupt (an rfci instruction is
executed) occurs.

0 Critical interrupt return debug events are
disabled.

1 Critical interrupt return debug events are
enabled.

59:63 Implementation-dependent

This register is hypervisor privileged.
Power ISA™ - Book III-E1226



Version 2.07 B
10.5.3 Debug Status Register 
Write Register (DBSRWR)
The Debug Status Register Write Register (DBSRWR)
allows a hypervisor state program to write the contents
of the Debug Status Register (see Section 10.5.2,
“Debug Status Register”). The format of the DBSRWR
is shown in Figure 86 below. 

Figure 86. Debug Status Register Write Register

The DBSRWR is provided as a means to restore the
contents of the DBSR on a partition switch.

The DBSRWR is hypervisor privileged.

Writing DBSRWR changes the value in the DBSR.
Writing non-zero bits may enable an imprecise Debug
exception which may cause later imprecise Debug
Interrupts. In order to correctly write DBSRWR, soft-
ware should ensure that MSRDE = 0 when the value is
written and perform a context synchronizing operation
before setting MSRDE to 1.

10.5.4 Instruction Address Com-
pare Registers
The Instruction Address Compare Register 1, 2, 3, and
4 (IAC1, IAC2, IAC3, and IAC4 respectively) are each
64-bits, with bit 63 being reserved.

A debug event may be enabled to occur upon an
attempt to execute an instruction from an address
specified in either IAC1, IAC2, IAC3, or IAC4, inside or
outside a range specified by IAC1 and IAC2 or, inside
or outside a range specified by IAC3 and IAC4, or to
blocks of addresses specified by the combination of the
IAC1 and IAC2, or to blocks of addresses specified by
the combination of the IAC3 and IAC4. Since all instruc-
tion addresses are required to be word-aligned, the two
low-order bits of the Instruction Address Compare Reg-
isters are reserved and do not participate in the com-
parison to the instruction address (see Section 10.4.1
on page 1215).

The contents of the Instruction Address Compare i
Register (where i={1,2,3, or 4}) can be read into regis-
ter RT using mfspr RT,IACi. The contents of register RS
can be written to the Instruction Address Compare i
Register using mtspr IACi,RS.

This register is hypervisor privileged.

10.5.5 Data Address Compare 
Registers
The Data Address Compare Register 1 and 2 (DAC1
and DAC2 respectively) are each 64-bits.

A debug event may be enabled to occur upon loads,
stores, or cache operations to an address specified in
either the DAC1 or DAC2, inside or outside a range
specified by the DAC1 and DAC2, or to blocks of
addresses specified by the combination of the DAC1
and DAC1 (see Section 10.4.2).

The contents of the Data Address Compare i Register
(where i={1 or 2}) can be read into register RT using
mfspr RT,DACi. The contents of register RS can be
written to the Data Address Compare i Register using
mtspr DACi,RS.

The contents of the DAC1 or DAC2 are compared to
the address generated by a data storage access
instruction.

These registers are hypervisor privileged.

DBSRWR
32 63
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10.6 Debugger Notify Halt Instruction 

The dnh instruction provides the means for the transfer
of information between the thread and an implementa-
tion-dependent external debug facility. dnh also causes
the thread to stop fetching and executing instructions.

Debugger Notify Halt XFX-form

dnh DUI,DUIS 

if enabled by implementation-dependent means
then

implementation-dependent register I DUI
halt thread

else
illegal instruction exception

Execution of the dnh instruction causes the thread to
stop fetching instructions and taking interrupts if execu-
tion of the instruction has been enabled. The contents
of the DUI field are sent to the external debug facility to
identify the reason for the halt.

If execution of the dnh instruction has not been previ-
ously enabled, executing the dnh instruction produces
an Illegal Instruction exception. The means by which
execution of the dnh instruction is enabled is imple-
mentation-dependent.

The current state of the debug facility, whether the
thread is in IDM or EDM mode has no effect on the exe-
cution of the dnh instruction.

The instruction is context synchronizing.

 

Special Registers Altered: 
None

19 DUI DUIS 198 /
0 6 11 21 31

The DUIS field in the instruction may be used to
pass information to an external debug facility. After
the dnh instruction has executed, the instruction
itself can be read back by the Illegal Instruction
Interrupt handler or the external debug facility if the
contents of the DUIS field are of interest. If the
thread entered the Illegal Instruction Interrupt han-
dler, software can use SRR0 to obtain the address
of the dnh instruction which caused the handler to
be invoked.

Programming Note
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Chapter 11.  Processor Control [Category: 
Embedded.Processor Control]

11.1 Overview
The Processor Control facility provides a mechanism
for threads within a coherence domain to send mes-
sages to all devices in the coherence domain. The facil-
ity provides a mechanism for sending interrupts that are
not dependent on the interrupt controller to threads and
allows message filtering by the threads that receive the
message.

The Processor Control facility is also useful for sending
messages to a device that provides specialized ser-
vices such as secure boot operations controlled by a
security device.

The Processor Control facility defines how threads
send messages and what actions threads take on the
receipt of a message. The actions taken by devices
other than threads are not defined.

 

11.2 Programming Model
Threads initiate a message by executing the msgsnd
instruction and specifying a message type and mes-
sage payload in a general purpose register. Sending a
message causes the message to be sent to all the
devices, including the sending thread, in the coherence
domain in a reliable manner.

Each device receives all messages that are sent. The
actions that a device takes are dependent on the mes-

sage type and payload. There are no restrictions on
what messages a thread can send.

To provide inter thread interrupt capability the following
doorbell message types are defined:

Processor Doorbell 
Processor Doorbell Critical
Guest Processor Doorbell <E.HV>
Guest Processor Doorbell Critical <E.HV>
Guest Processor Doorbell Machine Check <E.HV>

A doorbell message causes an interrupt to occur on
threads when the message is received and the thread
determines through examination of the payload that the
message should be accepted. The examination of the
payload for this purpose is termed filtering. The accep-
tance of a doorbell message causes an exception to be
generated on the accepting thread.

Threads accept and filter messages defined in
Section 11.2.1. Threads may also accept other imple-
mentation-dependent defined messages.

11.2.1 Message Handling and Fil-
tering
Threads filter, accept, and handle message types
defined as follows. The message type is specified in the
message and is determined by the contents of register
RB32:36 used as the operand in the msgsnd instruc-
tion.The message type is interpreted as follows:

Value Description

0 Doorbell Interrupt (DBELL)
A Processor Doorbell exception is generated
on the thread when the thread has filtered the
message based on the payload and has
determined that it should accept the message.
A Processor Doorbell Interrupt occurs when
no higher priority exception exists, a Proces-
sor Doorbell exception exists, and the inter-
rupt is enabled (MSREE=1). If Category:
Embedded.Hypervisor is supported, the inter-
rupt is enabled if (MSREE=1 or MSRGS=1).

A common use of msgsnd is to deliver an external
interrupt to a partition which has set MSREE=0.  A
guest doorbell message will interrupt to the hyper-
visor when MSREE=1 and MSRGS=1.  The hypervi-
sor can then deliver the external interrupt to the
partition.  For Servers, a similar set of operations
can also be performed using the Book III-S msg-
snd instruction. These operations achieve a result
analogous to the mediated external interrupt in
Book III-S.

Programming Note
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1 Doorbell Critical Interrupt (DBELL_CRIT)
A Processor Doorbell Critical exception is
generated on the thread when the thread has
filtered the message based on the payload
and has determined that it should accept the
message. A Processor Doorbell Critical Inter-
rupt occurs when no higher priority exception
exists, a Processor Doorbell Critical exception
exists, and the interrupt is enabled
(MSRCE=1). If Category: Embedded.Hypervi-
sor is supported, the interrupt is enabled if
(MSRCE=1 or MSRGS=1).

2 Guest Doorbell Interrupt (G_DBELL)
<E.HV>
A Guest Processor Doorbell exception is gen-
erated on the thread when the thread has fil-
tered the message based on the payload and
has determined that it should accept the mes-
sage. A Guest Processor Doorbell Interrupt
occurs when no higher priority exception
exists, a Guest Processor Doorbell exception
exists, and the interrupt is enabled (MSREE=1
and MSRGS=1).

3 Guest Doorbell Interrupt Critical
(G_DBELL_CRIT) <E.HV>
A Guest Processor Doorbell Critical exception
is generated on the thread when the thread
has filtered the message based on the pay-
load and has determined that it should accept
the message. A Guest Processor Doorbell
Critical Interrupt occurs when no higher prior-
ity exception exists, a Guest Processor Door-
bell Critical exception exists, and the interrupt
is enabled (MSRCE=1 and MSRGS=1).

4 Guest Doorbell Interrupt Machine Check
(G_DBELL_MC) <E.HV>
A Guest Processor Doorbell Machine Check
exception is generated on the thread when the
thread has filtered the message based on the
payload and has determined that it should
accept the message. A Guest Processor
Doorbell Machine Check Interrupt occurs
when no higher priority exception exists, a
Guest Processor Doorbell Machine Check
exception exists, and the interrupt is enabled
(MSRME=1 and MSRGS=1).

Message types other than these and their associated
actions are implementation-dependent.

11.2.2 Doorbell Message Filtering
A thread receiving a DBELL message will filter the
message and either ignore the message or accept the
message and generate a Processor Doorbell exception
based on the payload and the state of the thread at the
time the message is received.

The payload is specified in the message and is deter-
mined by the contents of register RB37:63 used as the
operand in the msgsnd instruction. The payload bits
are defined below.

Bit Description

37 Broadcast (BRDCAST)
If set, the message is accepted by all threads
regardless of the value of the PIR register and
the value of PIRTAG.

0 If the value of PIR and PIRTAG are equal
a Processor Doorbell exception is gener-
ated.

1 A Processor Doorbell exception is gener-
ated regardless of the value of PIRTAG
and PIR.

38:49 LPID Tag (LPIDTAG) <E.HV>
The contents of this field are compared with
the contents of the LPIDR. If LPIDTAG = 0, it
matches all values in the LPIDR register.

50:63 PIR Tag (PIRTAG)
The contents of this field are compared with
bits 50:63 of the PIR register.

If category E.HV is supported by the thread on which a
DBELL message is received, the message will only be
accepted if it is for this partition (payloadLPIDTAG =
LPIDR) or it is for all partitions (payloadLPIDTAG = 0) and
it meets the additional criteria for acceptance below.

If a DBELL message is received by a thread, the mes-
sage is accepted and a Processor Doorbell exception is
generated if one of the following conditions exist:

This is a broadcast message (payloadBRDCAST=1);
The message is intended for this thread
(PIR50:63=payloadPIRTAG).

The exception condition remains until a Processor
Doorbell Interrupt is taken, or a msgclr instruction is
executed on the receiving thread with a message type
of DBELL. A change to any of the filtering criteria (i.e.
changing the PIR register) will not clear a pending Pro-
cessor Doorbell exception.

DBELL messages are not cumulative. That is, if a
DBELL message is accepted and the interrupt is
pended because MSREE=0, additional DBELL mes-
sages that would be accepted are ignored until the Pro-
cessor Doorbell exception is cleared by taking the
interrupt or cleared by executing a msgclr with a mes-
sage type of DBELL on the receiving thread.

The temporal relationship between when a DBELL
message is sent and when it is received in a given
thread is not defined.

11.2.2.1 Doorbell Critical Message Fil-
tering
A thread receiving a DBELL_CRIT message type will
filter the message and either ignore the message or
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accept the message and generate a Processor Door-
bell Critical exception based on the payload and the
state of the thread at the time the message is received.

The payload is specified in the message and is deter-
mined by the contents of register RB37:63 used as the
operand in the msgsnd instruction. The payload bits
are defined below.

Bit Description

37 Broadcast (BRDCAST)
If set, the message is accepted by all threads
regardless of the value of the PIR register and
the value of PIRTAG.

0 If the value of PIR and PIRTAG are equal
a Processor Doorbell Critical exception is
generated.

1 A Processor Doorbell Critical exception is
generated regardless of the value of
PIRTAG and PIR.

38:49 LPID Tag (LPIDTAG) <E.HV>
The contents of this field are compared with
the contents of the LPIDR. If LPIDTAG = 0, it
matches all values in the LPIDR register.

50:63 PIR Tag (PIRTAG)
The contents of this field are compared with
bits 50:63 of the PIR register.

If category E.HV is supported by the thread on which a
DBELL_CRIT message is received, the message will
only be accepted if it is for this partition (payloadLPIDTAG
= LPIDR) or it is for all partitions (payloadLPIDTAG = 0)
and it meets the additional criteria for acceptance
below.

If a DBELL_CRIT message is received by a thread, the
message is accepted and a Processor Doorbell Critical
exception is generated if one of the following conditions
exist:

This is a broadcast message (payloadBRDCAST=1);
The message is intended for this thread
(PIR50:63=payloadPIRTAG).

DBELL_CRIT messages are not cumulative. That is, if
a DBELL_CRIT message is accepted and the interrupt
is pended because MSRCE=0, additional DBELL_CRIT
messages that would be accepted are ignored until the
Processor Doorbell Critical exception is cleared by tak-
ing the interrupt or cleared by executing a msgclr with
a message type of DBELL_CRIT on the receiving
thread.

The temporal relationship between when a
DBELL_CRIT message is sent and when it is received
in a given thread is not defined.

The temporal relationship between when a
DBELL_CRIT message is sent and when it is received
in a given thread is not defined.

11.2.2.2 Guest Doorbell Message Filter-
ing [Category: Embedded.Hypervisor]
A thread receiving a G_DBELL message type will filter
the message and either ignore the message or accept
the message and generate a Guest Processor Doorbell
Critical exception based on the payload and the state of
the thread at the time the message is received.

The payload is specified in the message and is deter-
mined by the contents of register RB37:63 used as the
operand in the msgsnd instruction. The payload bits
are defined below.

Bit Description

37 Broadcast (BRDCAST)
If set, the message is accepted by all threads
regardless of the value of the GPIR register
and the value of PIRTAG.

0 If the value of GPIR and PIRTAG are
equal a Guest Processor Doorbell excep-
tion is generated.

1 A Guest Processor Doorbell exception is
generated regardless of the value of
PIRTAG and GPIR.

38:49 LPID Tag (LPIDTAG)
The contents of this field are compared with
the contents of the LPIDR. If LPIDTAG = 0, it
matches all values in the LPIDR register.

50:63 PIR Tag (PIRTAG)
The contents of this field are compared with
bits 50:63 of the GPIR register.

When a G_DBELL message is received by a thread,
the message will only be accepted if it is for this parti-
tion (payloadLPIDTAG = LPIDR) or it is for all partitions
(payloadLPIDTAG = 0) and it meets the additional criteria
for acceptance below.

The message is accepted and a Guest Processor
Doorbell exception is generated if one of the following
conditions exist:

This is a broadcast message (payloadBRDCAST=1);
The message is intended for this thread
(GPIR50:63=payloadPIRTAG).

G_DBELL messages are not cumulative. That is, if a
G_DBELL message is accepted and the interrupt is
pended because MSRCE=0, additional G_DBELL mes-
sages that would be accepted are ignored until the
Guest Processor Doorbell exception is cleared by tak-
ing the interrupt or cleared by executing a msgclr with
a message type of G_DBELL on the receiving thread.

The temporal relationship between when a G_DBELL
message is sent and when it is received in a given
thread is not defined.
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11.2.2.3 Guest Doorbell Critical Mes-
sage Filtering [Category: Embed-
ded.Hypervisor]
A thread receiving a G_DBELL_CRIT message type
will filter the message and either ignore the message or
accept the message and generate a Guest Processor
Doorbell Critical exception based on the payload and
the state of the thread at the time the message is
received.

The payload is specified in the message and is deter-
mined by the contents of register RB37:63 used as the
operand in the msgsnd instruction. The payload bits
are defined below.

Bit Description

37 Broadcast (BRDCAST)
If set, the message is accepted by all threads
regardless of the value of the GPIR register
and the value of PIRTAG.

0 If the value of GPIR and PIRTAG are
equal a Guest Processor Doorbell Critical
exception is generated.

1 A Guest Processor Doorbell Critical
exception is generated regardless of the
value of PIRTAG and GPIR.

38:49 LPID Tag (LPIDTAG) 
The contents of this field are compared with
the contents of the LPIDR. If LPIDTAG = 0, it
matches all values in the LPIDR register.

50:63 PIR Tag (PIRTAG)
The contents of this field are compared with
bits 50:63 of the GPIR register.

When a G_DBELL_CRIT message is received by a
thread, the message will only be accepted if it is for this
partition (payloadLPIDTAG = LPIDR) or it is for all parti-
tions (payloadLPIDTAG = 0) and it meets the additional
criteria for acceptance below.

If a G_DBELL_CRIT message is received by a thread,
the message is accepted and a Guest Processor Door-
bell Critical exception is generated if one of the follow-
ing conditions exist:

This is a broadcast message (payloadBRDCAST=1);
The message is intended for this thread
(GPIR50:63=payloadPIRTAG).

G_DBELL_CRIT messages are not cumulative. That is,
if a G_DBELL_CRIT message is accepted and the
interrupt is pended because MSRCE=0, additional
G_DBELL messages that would be accepted are
ignored until the Guest Processor Doorbell Critical
exception is cleared by taking the interrupt or cleared
by executing a msgclr with a message type of
G_DBELL_CRIT on the receiving thread.

The temporal relationship between when a
G_DBELL_CRIT message is sent and when it is
received in a given thread is not defined.

11.2.2.4 Guest Doorbell Machine Check 
Message Filtering [Category: Embed-
ded.Hypervisor]
A thread receiving a G_DBELL_MC message type will
filter the message and either ignore the message or
accept the message and generate a Guest Processor
Doorbell Machine Check exception based on the pay-
load and the state of the thread at the time the mes-
sage is received.

The payload is specified in the message and is deter-
mined by the contents of register RB37:63 used as the
operand in the msgsnd instruction. The payload bits
are defined below.

Bit Description

37 Broadcast (BRDCAST)
If set, the message is accepted by all threads
regardless of the value of the GPIR register
and the value of PIRTAG.

0 If the value of GPIR and PIRTAG are
equal a Guest Processor Doorbell
Machine Check exception is generated.

1 A Guest Processor Doorbell Machine
Check exception is generated regardless
of the value of PIRTAG and GPIR.

38:49 LPID Tag (LPIDTAG)
The contents of this field are compared with
the contents of the LPIDR. If LPIDTAG = 0, it
matches all values in the LPIDR register.

50:63 PIR Tag (PIRTAG)
The contents of this field are compared with
bits 50:63 of the GPIR register.

When a G_DBELL_MC message is received by a
thread, the message will only be accepted if it is for this
partition (payloadLPIDTAG = LPIDR) or it is for all parti-
tions (payloadLPIDTAG = 0) and it meets the additional
criteria for acceptance below.

If a G_DBELL_MC message is received by a thread,
the message is accepted and a Guest Processor Door-
bell Machine Check exception is generated if one of the
following conditions exist:

This is a broadcast message (payloadBRDCAST=1);
The message is intended for this thread
(GPIR50:63=payloadPIRTAG).

G_DBELL_MC messages are not cumulative. That is, if
a G_DBELL_MC message is accepted and the inter-
rupt is pended because MSRCE=0, additional
G_DBELL_MC messages that would be accepted are
ignored until the Guest Processor Doorbell Machine
Check exception is cleared by taking the interrupt or
cleared by executing a msgclr with a message type of
G_DBELL_MC on the receiving thread.

The temporal relationship between when a
G_DBELL_MC message is sent and when it is received
in a given thread is not defined.
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11.3 Processor Control Instructions

msgsnd and msgclr instructions are provided for
sending and clearing messages to threads and other

devices in the coherence domain. These instructions
are hypervisor privileged.

Message Send X-form

msgsnd  RB 

msgtype I GPR(RB)32:36
payload I GPR(RB)37:63
send_msg_to_choherence_domain(msgtype, payload)

msgsnd sends a message to all devices in the coher-
ence domain. The message contains a type and a pay-
load. The message type (msgtype) is defined by the
contents of RB32:36 and the message payload is
defined by the contents of RB37:63. Message delivery is
reliable and guaranteed. Each device may perform spe-
cific actions based on the message type and payload or
may ignore messages. Consult the implementation
user’s manual for specific actions taken based on mes-
sage type and payload.

For threads, actions taken on receipt of a message are
defined in Section 11.2.1.

This instruction is hypervisor privileged.

Special Registers Altered: 
None

 

Message Clear X-form

msgclr RB 

msgtype I GPR(RB)32:36
clear_received_message(msgtype)

msgclr clears a message of msgtype previously
accepted by the thread executing the msgclr. msgtype
is defined by the contents of RB32:36. A message is
said to be cleared when a pending exception generated
by an accepted message has not yet taken its associ-
ated interrupt.

A context synchronizing instruction or event that is exe-
cuted or occurs subsequent to the execution of msgclr
ensures that the formerly pending exception will not
result in an interrupt when the corresponding interrupt
class is reenabled.

For threads, the types of messages that can be cleared
are defined in Section 11.2.1.

This instruction is hypervisor privileged.

Special Registers Altered: 
None

 

31 /// /// RB 206 /
0 6 11 16 21 31

if msgsnd is used to send notify the receiver that
updates have been made to storage, a sync should
be placed between the stores and the msgsnd.
See  Section 6.11.3, “Synchronize Instruction” on
page 1124.

Programming Note

31 /// /// RB 238 /
0 6 11 16 21 31

Execution of a msgclr instruction that clears a
pending exception when the associated interrupt is
masked because the interrupt enable (MSREE or
MSRCE) is set to 0 will always clear the pending
exception (and thus the interrupt will not occur) only
if the instruction that sets MSREE or MSRCE to 1 is
context synchronizing or a context synchronizating
operation occurs subsequent to the instruction but
before MSREE or MSRCE is set to 1.

Programming Note
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Chapter 12.  Synchronization Requirements for Context 
Alterations

Changing the contents of certain System Registers, the
contents of TLB entries, or the contents of other system
resources that control the context in which a program
executes can have the side effect of altering the context
in which data addresses and instruction addresses are
interpreted, and in which instructions are executed and
data accesses are performed. For example, changing
certain bits in the MSR has the side effect of changing
how instruction addresses are calculated. These side
effects need not occur in program order, and therefore
may require explicit synchronization by software. (Pro-
gram order is defined in Book II.)

An instruction that alters the context in which data
addresses or instruction addresses are interpreted, or
in which instructions are executed or data accesses are
performed, is called a context-altering instruction. This
chapter covers all the context-altering instructions. The
software synchronization required for them is shown in
Table 13 (for data access) and Table 12 (for instruction
fetch and execution).

The notation “CSI” in the tables means any context syn-
chronizing instruction (e.g., sc, isync, rfi, rfci, rfmci, or
rfdi [Category: Embedded. Enhanced Debug]). A con-
text synchronizing interrupt (i.e., any interrupt except
non-recoverable Machine Check) can be used instead
of a context synchronizing instruction. If it is, phrases
like “the synchronizing instruction”, below, should be
interpreted as meaning the instruction at which the
interrupt occurs. If no software synchronization is
required before (after) a context-altering instruction,
“the synchronizing instruction before (after) the con-
text-altering instruction” should be interpreted as mean-
ing the context-altering instruction itself.

The synchronizing instruction before the context-alter-
ing instruction ensures that all instructions up to and
including that synchronizing instruction are fetched and
executed in the context that existed before the alter-
ation.  The synchronizing instruction after the con-
text-altering instruction ensures that all instructions
after that synchronizing instruction are fetched and exe-
cuted in the context established by the alteration.
Instructions after the first synchronizing instruction, up
to and including the second synchronizing instruction,
may be fetched or executed in either context.

If a sequence of instructions contains context-altering
instructions and contains no instructions that are
affected by any of the context alterations, no software
synchronization is required within the sequence.

  

No software synchronization is required before or after
a context-altering instruction that is also context syn-
chronizing (e.g., rfi, etc.) or when altering the MSR in
most cases (see the tables). No software synchroniza-
tion is required before most of the other alterations
shown in Table 12, because all instructions preceding
the context-altering instruction are fetched and
decoded before the context-altering instruction is exe-
cuted (the hardware must determine whether any of
these preceding instructions are context synchroniz-
ing).

Unless otherwise stated, the material in this chapter
assumes a single-threaded environment.

Sometimes advantage can be taken of the fact that
certain events, such as interrupts, and certain
instructions that occur naturally in the program,
such as an rfi, rfgi [Category: Embedded.Hypervi-
sor], rfci, rfmci, or rfdi [Category:
Embeddd.Enhanced Debug] that returns from an
interrupt handler, provide the required synchroniza-
tion.

Programming Note
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Notes:
1. There are additional software synchronization

requirements for this instruction in multi-threaded
environments (e.g., it may be necessary to invali-
date one or more TLB entries on all threads in the
system and to be able to determine that the invali-
dations have completed and that all side effects of
the invalidations have taken effect); it is also nec-
essary to execute a tlbsync instruction.

2. The alteration must not cause an implicit branch in
real address space. Thus the real address of the
context-altering instruction and of each subse-
quent instruction, up to and including the next con-
text synchronizing instruction, must be

Instruction or 
Event

Required    
Before

Required 
After

Notes

interrupt none        none
rfi none        none
rfci none        none
rfmci none none
rfdi[Category:E.ED] none none
rfgi none        none
sc none        none
mtmsr (GS) none        CSI
mtspr (LPIDR) none        CSI 2
mtspr (GIVPR) none        none
mtspr (DBSRWR) none CSI
mtspr (EPCR) none CSI
mtspr (GIVORi) none        none
mtmsr (CM) none        none
mtmsr (UCLE) none        none
mtmsr (SPV) none        CSI
mtmsr (CE) none        none 4
mtmsr (EE) none        none 4
mtmsr (PR) none CSI
mtmsr (FP) none CSI
mtmsr (DE) none CSI
mtmsr (ME) none CSI 3
mtmsr (FE0) none        CSI
mtmsr (FE1) none        CSI
mtmsr (IS) none        CSI 2
mtspr (DEC) none        none 7
mtspr (GDEC) none        none 7
mtspr (PID) none        CSI 2
mtspr (IVPR) none        none
mtspr (DBSR) -- -- 5
mtspr 

(DBCR0,DBCR1)
-- -- 5 

mtspr 
(IAC1,IAC2,IAC3,
IAC4)

-- -- 5

mtspr (IVORi) none        none
mtspr (TSR) none        none 7
mtspr (GTSR) none        none 7
mtspr (GTSRWR) none        CSI 7
mtspr (TCR) none        none 7
mtspr (GTCR) none        none 7
mtspr (MMUCSR0) 

TLB invalidate all
none        CSI, or

CSI and sync
6,9

mtspr (MCIVPR) none        none
tlbilx none        CSI, or

CSI and sync
6

Store(PTE) none {sync, CSI} 1,8
tlbivax none        CSI, or

CSI and sync
1,6

Table 12:Synchronization requirements for instruction 
fetch and/or execution

tlbwe none        CSI, or
CSI and sync

1,6

wrtee none        none 4
wrteei none        none 4

Instruction or  
Event

Required  
Before  

Required     
After     

Notes

interrupt none none
rfi none none
rfci none none
rfmci none none
rfdi[Category:E.ED] none none
rfgi none        none
sc none none
mtmsr (GS) none        CSI
mtspr (LPIDR) CSI        CSI
mtmsr (CM) none CSI
mtmsr (PR) none CSI
mtmsr (ME) none CSI 3
mtmsr (DS) none CSI
mtspr (PID) CSI CSI
mtspr (DBSR) -- -- 5
mtspr 

(DBCR0,DBCR2)
--- --- 5

mtspr 
(DAC1,DAC2)

-- -- 5

mtspr (MMUCSR0) 
TLB invalidate all

CSI CSI, or CSI
and sync

6,9

tlbilx CSI CSI, or CSI
and sync

6

Store(PTE) none {sync, CSI} 1,8
tlbivax CSI CSI, or CSI

and sync
1,6

tlbwe CSI CSI, or CSI
and sync

1,6

Table 13:Synchronization requirements for data access

Instruction or 
Event

Required    
Before

Required 
After

Notes

Table 12:Synchronization requirements for instruction 
fetch and/or execution
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independent of whether the alteration has taken
effect.

3. A context synchronizing instruction is required
after altering MSRME to ensure that the alteration
takes effect for subsequent Machine Check inter-
rupts, which may not be recoverable and therefore
may not be context synchronizing.

4. The effect of changing MSREE or MSRCE is imme-
diate.

If an mtmsr, wrtee, or wrteei instruction sets
MSREE to ‘0’, an External Input, DEC or FIT inter-
rupt does not occur after the instruction is exe-
cuted. 

If an mtmsr, wrtee, or wrteei instruction changes
MSREE from ‘0’ to ‘1’ when an External Input, Dec-
rementer, Fixed-Interval Timer, or higher priority
enabled exception exists, the corresponding inter-
rupt occurs immediately after the mtmsr, wrtee, or
wrteei is executed, and before the next instruction
is executed in the program that set MSREE to ‘1’.

If an mtmsr instruction sets MSRCE to ‘0’, a Criti-
cal Input or Watchdog Timer interrupt does not
occur after the instruction is executed. 

If an mtmsr instruction changes MSRCE from ‘0’ to
‘1’ when a Critical Input, Watchdog Timer or higher
priority enabled exception exists, the correspond-
ing interrupt occurs immediately after the mtmsr is
executed, and before the next instruction is exe-
cuted in the program that set MSRCE to ‘1’.

5. Synchronization requirements for changing any of
the Debug Facility Registers are implementa-
tion-dependent.

6. For data accesses, the context synchronizing
instruction before the tlbwe, tlbilx, or tlbivax
instruction ensures that all storage accesses due
to preceding instructions have completed to a point
at which they have reported all exceptions they will
cause.

The context synchronizing instruction after the
tlbwe, tlbilx, or tlbivax ensures that subsequent
storage accesses (data and instruction) will use
the updated value in the TLB entry(s) being
affected. It does not ensure that all storage
accesses previously translated by the TLB entry(s)
being updated have completed with respect to
storage; if these completions must be ensured, the
tlbwe, tlbilx, or tlbivax must be followed by a
sync instruction as well as by a context synchro-
nizing instruction.

  

7. The elapsed time between the Decrementer reach-
ing zero, or the transition of the selected Time
Base bit for the Fixed-Interval Timer or the Watch-
dog Timer, and the signalling of the Decrementer,
Fixed-Interval Timer or the Watchdog Timer excep-
tion is not defined.

8. The notation “{sync, CSI}” denotes an instruction
sequence. Other instructions may be interleaved
with this sequence, but these instructions must
appear in the order shown.

No software synchronization is required before the
Store instruction because (a) stores are not per-
formed out-of-order and (b) address translations
associated with instructions preceding the Store
instruction are not performed again after the store
has been performed (see Section 5.5). These
properties ensure that all address translations
associated with instructions preceding the Store
instruction will be performed using the old contents
of the PTE.

The sync instruction after the Store instruction
ensures that all lookups of the Page Table that are
performed after the sync instruction completes will
use the value stored (or a value stored subse-
quently). The context synchronizing instruction
after the sync instruction ensures that any address
translations associated with instructions following
the context synchronizing instruction that were per-
formed using the old contents of the PTE will be
discarded, with the result that these address trans-
lations will be performed again and, if there is no
corresponding entry in any implementation-spe-
cific address translation lookaside information, will
use the value stored (or a value stored subse-
quently).

The following sequence illustrates why it is
necessary, for data accesses, to ensure that all
storage accesses due to instructions before
the tlbwe or tlbivax have completed to a point
at which they have reported all exceptions they
will cause. Assume that valid TLB entries exist
for the target storage location when the
sequence starts. 

A program issues a load or store to a
page. 
The same program executes a tlbwe or
tlbivax that invalidates the corresponding
TLB entry. 
The Load or Store instruction finally exe-
cutes, and gets a TLB Miss exception. 
The TLB Miss exception is semantically
incorrect. In order to prevent it, a context
synchronizing instruction must be exe-
cuted between steps 1 and 2. 

Programming Note
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The sync instruction also ensures that all storage
accesses associated with instructions preceding
the sync instruction, before the sync instruction is
executed, will be performed with respect to any
thread or mechanism, to the extent required by the
associated Memory Coherence Required or Alter-
nate Coherence Mode attributes, before any data
accesses caused by instructions following the
sync instruction are performed with respect to that
thread or mechanism.

9. After executing a mtspr that sets one of the TLB
invalidate all bits in the MMUCSR0 to a 1, software
must read MMUCSR0 using a mfspr instruction
until the corresponding bit is zero and then perform
the CSI, or CSI and sync as indicated in the
“Required After” column.
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Appendix A.  Implementation-Dependent Instructions

This appendix documents architectural resources that
are allocated for specific implementation-sensitive func-
tions which have scope-limited utility. Implementations

may exercise reasonable flexibility in implementing
these functions, but that flexibility should be limited to
that allowed in this appendix.

A.1 Embedded Cache Initialization [Category: Embedded.Cache Ini-
tialization]

Data Cache Invalidate X-form

dci CT

If CT is not supported by the implementation, this
instruction designates the primary data cache as the
target data cache.

If CT is supported by the implementation, let CT desig-
nate either the primary data cache or another level of
the data cache hierarchy, as specified in Section 4.3,
“Cache Management Instructions”, in Book II, as the
target data cache.

The contents of the target data cache of the thread exe-
cuting the dci instruction are invalidated.

Software must place a sync instruction before the dci
to guarantee all previous data storage accesses com-
plete before the dci is performed.

Software must place a sync instruction after the dci to
guarantee that the dci completes before any subse-
quent data storage accesses are performed.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonic for Data Cache Invalidate

Extended: Equivalent to:
dccci dci      0

Instruction Cache Invalidate X-form

ici CT

If CT is not supported by the implementation, this
instruction designates the primary instruction cache as
the target instruction cache.

If CT is supported by the implementation, let CT desig-
nate either the primary instruction cache or another
level of the instruction cache hierarchy, as specified in
Section 4.3, “Cache Management Instructions”, in Book
II, as the target instruction cache.

The contents of the target instruction cache of the
thread executing the ici instruction are invalidated.

Software must place a sync instruction before the ici to
guarantee all previous instruction storage accesses
complete before the ici is performed.

Software must place an isync instruction after the ici to
invalidate any instructions that may have already been
fetched from the previous contents of the instruction
cache after the isync.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonic for Instruction Cache Invalidate

Extended: Equivalent to:
iccci ici      0

31 / CT /// /// 454 /
0 6 7 11 16 21 31

31 / CT /// /// 966 /
0 6 7 11 16 21 31
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A.2 Embedded Cache Debug Facility
[Category: Embedded.Cache Debug]

A.2.1 Embedded Cache Debug Registers

A.2.1.1 Data Cache Debug Tag Register 
High
The Data Cache Debug Tag Register High (DCDBTRH)
is a 32-bit Special Purpose Register. The Data Cache
Debug Tag Register High is read using mfspr and is
set by dcread.

Figure 87. Data Cache Debug Tag Register High

 

This register is hypervisor privileged.

A.2.1.2 Data Cache Debug Tag Register 
Low
The Data Cache Debug Tag Register Low (DCDBTRL)
is a 32-bit Special Purpose Register. The Data Cache
Debug Tag Register Low is read using mfspr and is set
by dcread.

Figure 88. Data Cache Debug Tag Register Low

 

This register is hypervisor privileged.

DCDBTRH
32 63

An example implementation of DCDBTRH could
have the following content and format.

Bit(s) Description

32:55 Tag Real Address (TRA)
Bits 0:23 of the lower 32 bits of the 36-bit
real address associated with this cache
block

56 Valid (V)
The valid indicator for the cache block (1
indicates valid)

57:59 Reserved

60:63 Tag Extended Real Address (TERA)
Upper 4 bits of the 36-bit real address
associated with this cache block

Implementations may support different content and
format based on their cache implementation.

Programming Note

DCDBTRL
32 63

An example implementation of DCDBTRL could
have the following content and format.

Bit(s) Description

32:44 Reserved (TRA)

45 U bit parity (UPAR)

46:47 Tag parity (TPAR)

48:51 Data parity (DPAR)

52:55 Modified (dirty) parity (MPAR)

56:59 Dirty Indicators (D)
The “dirty” (modified) indicators for each
of the four doublewords in the cache block

60 U0 Storage Attribute (U0)
The U0 storage attribute for the page
associated with this cache block

61 U1 Storage Attribute (U1)
The U1 storage attribute for the page
associated with this cache block

62 U2 Storage Attribute (U2)
The U2 storage attribute for the page
associated with this cache block

63 U3 Storage Attribute (U3)
The U3 storage attribute for the page
associated with this cache block

Implementations may support different content and
format based on their cache implementation.

Programming Note
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A.2.1.3 Instruction Cache Debug Data 
Register
The Instruction Cache Debug Data Register (ICDBDR)
is a read-only 32-bit Special Purpose Register. The
Instruction Cache Debug Data Register can be read
using mfspr and is set by icread.

Figure 89. Instruction Cache Debug Data Register

This register is hypervisor privileged.

A.2.1.4 Instruction Cache Debug Tag 
Register High
The Instruction Cache Debug Tag Register High (ICDB-
TRH) is a 32-bit Special Purpose Register. The Instruc-
tion Cache Debug Tag Register High is read using
mfspr and is set by icread.

Figure 90. Instruction Cache Debug Tag Register
High

 

This register is hypervisor privileged.

A.2.1.5 Instruction Cache Debug Tag 
Register Low
The Instruction Cache Debug Tag Register Low (ICDB-
TRL) is a 32-bit Special Purpose Register. The Instruc-
tion Cache Debug Tag Register Low is read using
mfspr and is set by icread.

Figure 91. Instruction Cache Debug Tag Register
Low

 

This register is hypervisor privileged.

ICDBDR
32 63

ICDBTRH
32 63

An example implementation of ICDBTRH could
have the following content and format.

Bit(s) Description

32:55 Tag Effective Address (TEA)
Bits 0:23 of the 32-bit effective address
associated with this cache block

56 Valid (V)
The valid indicator for the cache block (1
indicates valid)

57:58 Tag parity (TPAR)

59 Instruction Data parity (DPAR)

60:63 Reserved

Implementations may support different content and
format based on their cache implementation.

Programming Note

ICDBTRL
32 63

An example implementation of ICDBTRL could
have the following content and format.

Bit(s) Description

32:53 Reserved

54 Translation Space (TS)
The address space portion of the virtual
address associated with this cache block.

55 Translation ID Disable (TD)
TID Disable field for the memory page
associated with this cache block

56:63 Translation ID (TID)
TID field portion of the virtual address
associated with this cache block

Other implementations may support different con-
tent and format based on their cache implementa-
tion.

Programming Note
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A.2.2 Embedded Cache Debug Instructions 

Data Cache Read X-form

dcread RT,RA,RB

[Alternative Encoding]

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
C I log2(cache size)
B I log2(cache block size)
IDXI EA64-C:63-B
WD I EA64-B:61
RT0:31I undefined
RT32:63I (data cache data)[IDX]WD×32:WD×32+31
DCDBTRHI (data cache tag high)[IDX]
DCDBTRLI (data cache tag low)[IDX]

Let the effective address (EA) be the sum of the con-
tents of register RA, or 0 if RA is equal to 0, and the
contents of register RB.

Let C = log2(cache size in bytes).
Let B = log2(cache block size in bytes).

EA64-C:63-B selects one of the 2C-B data cache blocks.

EA64-B:61 selects one of the data words in the selected
data cache block.

The selected word in the selected data cache block is
placed into register RT.

The contents of the data cache directory entry associ-
ated with the selected data cache block are placed into
DCDBTRH and DCDBTRL (see Figure 87 and
Figure 88).

dcread requires software to guarantee execution syn-
chronization before subsequent mfspr instructions can
read the results of the dcread instruction into GPRs. In
order to guarantee that the mfspr instructions obtain
the results of the dcread instruction, a sequence such
as the following must be used:

sync # ensure that all previous
# cache operations have
# completed

dcread regT,regA,regB# read cache information;

isync # ensure dcread completes
# before attempting to
# read results

mfspr regD,dcdbtrh # move high portion of tag
# into GPR D

mfspr   regE,dcdbtrl # move low portion of tag
# into GPR E

This instruction is hypervisor privileged.

Special Registers Altered:
DCDBTRH DCDBTRL

 

 

31 RT RA RB 486 /
0 6 11 16 21 31

31 RT RA RB 326 /
0 6 11 16 21 31

dcread can be used by a debug tool to determine
the contents of the data cache, without knowing the
specific addresses of the blocks which are currently
contained within the cache.

Execution of dcread before the data cache has
completed all cache operations associated with
previously executed instructions (such as block fills
and block flushes) is undefined. 

Programming Note
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Instruction Cache Read X-form

icread RA,RB

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
C I log2(cache size)
B I log2(cache block size)
IDXI EA64-C:63-B
WD I EA64-B:61
ICDBDRI (instruction cache data)[IDX]WD×32:WD×32+31
ICDBTRHI (instruction cache tag high)[IDX]
ICDBTRLI (instruction cache tag low)[IDX]

Let the effective address (EA) be the sum of the con-
tents of register RA, or 0 if RA is equal to 0, and the
contents of register RB.

Let C = log2(cache size in bytes).
Let B = log2(cache block size in bytes).

EA64-C:63-B selects one of the 2C-B instruction cache
blocks.

EA64-B:61 selects one of the data words in the selected
instruction cache block.

The selected word in the selected instruction cache
block is placed into ICDBDR.

The contents of the instruction cache directory entry
associated with the selected cache block are placed
into ICDBTRH and ICDBTRL (see Figure 90 and
Figure 91).

icread requires software to guarantee execution syn-
chronization before subsequent mfspr instructions can
read the results of the icread instruction into GPRs. In
order to guarantee that the mfspr instructions obtain
the results of the icread instruction, a sequence such
as the following must be used:

icread regA,regB # read cache information

isync      # ensure icread completes
# before attempting to
# read results

mficdbdr regC # move instruction
# information into GPR C

mficdbtrh regD # move high portion of
# tag into GPR D

mficdbtrl regE # move low portion of tag
# into GPR E

This instruction is hypervisor privileged.

Special Registers Altered:
ICDBDR ICDBTRH ICDBTRL

 

31 /// RA RB 998 /
0 6 11 16 21 31

icread can be used by a debug tool to determine
the contents of the instruction cache, without know-
ing the specific addresses of the blocks which are
currently contained within the cache.

Programming Note
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Appendix B.  Assembler Extended Mnemonics

In order to make assembler language programs simpler
to write and easier to understand, a set of extended
mnemonics and symbols is provided for certain instruc-
tions.  This appendix defines extended mnemonics and
symbols related to instructions defined in Book III.

Assemblers should provide the extended mnemonics
and symbols listed here, and may provide others.
Appendix B. Assembler Extended Mnemonics 1245
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B.1 Move To/From Special Purpose Register Mnemonics

This section defines extended mnemonics for the
mtspr and mfspr instructions, including the Special
Purpose Registers (SPRs) defined in Book I and cer-
tain privileged SPRs, and for the Move From Time Base
instruction defined in Book II.

The mtspr and mfspr instructions specify an SPR as a
numeric operand; extended mnemonics are provided
that represent the SPR in the mnemonic rather than
requiring it to be coded as an operand.  Similar
extended mnemonics are provided for the Move From

Time Base instruction, which specifies the portion of
the Time Base as a numeric operand.

Note: mftb serves as both a basic and an extended
mnemonic. The Assembler will recognize an mftb mne-
monic with two operands as the basic form, and an
mftb mnemonic with one operand as the extended
form. In the extended form the TBR operand is omitted
and assumed to be 268 (the value that corresponds to
TB).

 

Table 14:Extended mnemonics for moving to/from an SPR

Special Purpose Register
Move To SPR Move From SPR

Extended Equivalent to Extended Equivalent to

Fixed-Point Exception Register mtxer Rx mtspr 1,Rx mfxer Rx mfspr Rx,1

Link Register mtlr  Rx mtspr 8,Rx mflr  Rx mfspr Rx,8

Count Register mtctr Rx mtspr 9,Rx mfctr Rx mfspr Rx,9

Decrementer mtdec Rx mtspr 22,Rx mfdec Rx mfspr Rx,22

Save/Restore Register 0 mtsrr0 Rx mtspr 26,Rx mfsrr0 Rx mfspr Rx,26

Save/Restore Register 1 mtsrr1 Rx mtspr 27,Rx mfsrr1 Rx mfspr Rx,27

Special Purpose Registers
 G0 through G3

mtsprg n,Rx mtspr 272+n,Rx mfsprg Rx,n mfspr Rx,272+n

Time Base [Lower] mttbl Rx mtspr 284,Rx mftb Rx mftb Rx,2681

mfspr Rx,268

Time Base Upper mttbu Rx mtspr 285,Rx mftbu Rx mftb Rx,2691

mfspr Rx,269

PPR32 mtppr32 Rx mtspr 898, Rx mfppr32 Rx mfspr Rx, 898

Processor Version Register - - mfpvr Rx mfspr Rx,287
1 The mftb instruction is Category: Phased-Out. Assemblers targeting Version 2.03 or later of the architecture 

should generate an mfspr instruction for the mftb and mftbu extended mnemonics; see the corresponding 
Assembler Note in the mftb instruction description (see Section 6.2.1 of Book II).
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B.2  Data Cache Block Flush 
Mnemonics [Category: Embed-
ded.Phased In]
The L field in the Data Cache Block Flush by External
PID instruction controls the scope of the flush function
performed by the instruction. Extended mnemonics are
provided that represent the L value in the mnemonic
rather than requiring it to be coded as a numeric oper-
and. 

Note: dcbfep serves as both a basic and an extended
mnemonic.  The Assembler will recognize a dcbfep
mnemonic with three operands as the basic form, and a
dcbfep mnemonic with two operands as the extended
form.  In the extended form the L operand is omitted
and assumed to be 0. 

dcbfep RA,RB (equivalent to: dcbfep 
RA,RB,0)

dcbflep RA,RB (equivalent to: dcbfep 
RA,RB,1)

dcbflpep RA,RB (equivalent to: dcbfep 
RA,RB,3)
Appendix B. Assembler Extended Mnemonics 1247
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Appendix C.  Guidelines for 64-bit Implementations in 
32-bit Mode and 32-bit Implementations

C.1 Hardware Guidelines

C.1.1 64-bit Specific Instructions
The instructions in the Category: 64-Bit are considered
restricted only to 64-bit processing. A 32-bit implemen-
tation need not implement the group; likewise, the
32-bit applications will not utilize any of these instruc-
tions. All other instructions shall either be supported
directly by the implementation, or sufficient infrastruc-
ture will be provided to enable software emulation of
the instructions. A 64-bit implementation that is execut-
ing in 32-bit mode may choose to take an Unimple-
mented Instruction Exception when these 64-bit
specific instructions are executed.

C.1.2 Registers on 32-bit Imple-
mentations
The Power ISA provides 32-bit and 64-bit registers. All
32-bit registers shall be supported as defined in the
specification except the MSR and EPCR. The MSR
shall be supported as defined in the specification
except that CM is treated as a reserved bit. EPCR shall
be supported as defined in the specification except that
ICM and GICM are treated as reserved bits. Only bits
32:63 of the 64-bit registers are required to be imple-
mented in hardware in a 32-bit implementation except
for the 64-bit FPRs. Such 64-bit registers include the
LR, the CTR, the XER, the 32 GPRs, SRR0, CSRR0,
DSRR0 <E.ED>, MCSRR0. and GSRR0 <E.HV>.

For additional information, see Section 1.5.2 of Book I.

C.1.3 Addressing on 32-bit Imple-
mentations
Only bits 32:63 of the 64-bit instruction and data stor-
age effective addresses need to be calculated and pre-
sented to main storage. Given that the only branch and
data storage access instructions that are not included
in Section C.1.1 are defined to prepend 32 0s to bits
32:63 of the effective address computation, a 32-bit
implementation can simply bypass the prepending of
the 32 0s when implementing these instructions. For

Branch to Link Register and Branch to Count Register
instructions, given the LR and CTR are implemented
only as 32-bit registers, only concatenating 2 0s to the
right of bits 32:61 of these registers is necessary to
form the 32-bit branch target address.

For next sequential instruction address computation,
the behavior is the same as for 64-bit implementations
in 32-bit mode.

C.1.4 TLB Fields on 32-bit Imple-
mentations
32-bit implementations should support bits 32:53 of the
Effective Page Number (EPN) field in the TLB. This size
provides support for a 32-bit effective address, which
Power ISA ABIs may have come to expect to be avail-
able. 32-bit implementations may support greater than
32-bit real addresses by supporting more than bits
32:53 of the Real Page Number (RPN) field in the TLB.

C.1.5 Thread Control and Status 
on 32-bit Implementations
As the TEN and TENSR are 32-bits on 32-bit imple-
mentations, the maximum number of threads for such
implementations is limited to 32.

C.2 32-bit Software Guidelines

C.2.1 32-bit Instruction Selection
Any software that uses any of the instructions listed in
Category: 64-Bit shall be considered 64-bit software,
and correct execution cannot be guaranteed on 32-bit
implementations. Generally speaking, 32-bit software
should avoid using any instruction or instructions that
depend on any particular setting of bits 0:31 of any
64-bit application-accessible system register, including
General Purpose Registers, for producing the correct
32-bit results. Context switching may or may not pre-
serve the upper 32 bits of application-accessible 64-bit
Appendix C. Guidelines for 64-bit Implementations in 32-bit Mode and 1249
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system registers and insertion of arbitrary settings of
those upper 32 bits at arbitrary times during the execu-
tion of the 32-bit application must not affect the final
result.
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Appendix D.  Example Performance Monitor 
[Category: Embedded.Performance Monitor] 

D.1 Overview
This appendix describes an example of a Performance
Monitor facility. It defines an architecture suitable for
performance monitoring facilities in the Embedded
environment. The architecture itself presents only pro-
gramming model visible features in conjunction with
architecturally defined behavioral features. Much of the
selection of events is by necessity implementa-
tion-dependent and is not described as part of the
architecture; however, this document provides guide-
lines for some features of a performance monitor imple-
mentation that should be followed by all
implementations.

The example Performance Monitor facility provides the
ability to monitor and count predefined events such as
clocks, misses in the instruction cache or data cache,
types of instructions decoded, or mispredicted
branches. The count of such events can be used to trig-
ger the Performance Monitor exception. While most of
the specific events are not architected, the mechanism
of controlling data collection is.

The example Performance Monitor facility can be used
to do the following:

Improve system performance by monitoring soft-
ware execution and then recoding algorithms for
more efficiency. For example, memory hierarchy
behavior can be monitored and analyzed to opti-
mize task scheduling or data distribution algo-
rithms. 

Characterize performance in environments not
easily characterized by benchmarking.

Help system developers bring up and debug their
systems.

D.2 Programming Model
The example Performance Monitor facility defines a set
of Performance Monitor Registers (PMRs) that are
used to collect and control performance data collection
and an interrupt to allow intervention by software. The
PMRs provide various controls and access to collected
data. They are categorized as follows:

Counter registers. These registers are used for
data collection. The occurrence of selected events
are counted here. These registers are named
PMC0..15. User and supervisor level access to
these registers is through different PMR numbers
allowing different access rights.

Global controls. This register control global set-
tings of the Performance Monitor facility and affect
all counters. This register is named PMGC0. User
and supervisor level access to these registers is
through different PMR numbers allowing different
access rights. In addition, a bit in the MSR
(MSRPMM) is defined to enable/disable counting.

Local controls. These registers control settings that
apply only to a particular counter. These registers
are named PMLCa0..15 and PMLCb0..15. User
and supervisor level access to these registers is
through different PMR numbers allowing different
access rights. Each set of local control registers
(PMLCan and PMLCbn) contains controls that
apply to the associated same numbered counter
register (e.g. PMLCa0 and PMLCb0 contain con-
trols for PMC0 while PMLCa1 and PMLCb1 con-
tain controls for PMC1).

 

The counter registers, global controls, and local
controls have alias names which cause the assem-
bler to use different PMR numbers. The names
PMC0...15, PMGC0, PMLCa0...15, and
PMLCb0...15 cause the assembler to use the
supervisor level PMR number, and the names
UPMC0...15, UPMGC0, UPMLCa0...15, and
UPMLCb0...15 cause the assembler to use the
user-level PMR number.

The two mark values (0 and 1) are equivalent
except with respect to interrupts. That is, either
mark value can be specified for a given process,
and either mark value can control whether the
PMCs are incremented, but interrupts always
cause the mark value in the MSR to be set to 0.

Assembler Note

Architecture Note
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A given implementation may implement fewer counter
registers (and their associated control registers) than
are architected. Architected counter and counter con-
trol registers that are not implemented behave the
same as unarchitected Performance Monitor Registers.

PMRs are described in Section D.3.

Software uses the global and local controls to select
which events are counted in the counter registers,
when such events should be counted, and what action
should be taken when a counter overflows. Software
can use the collected information to determine perfor-
mance attributes of a given segment of code, a pro-
cess, or the entire software system. PMRs can be read
by software using the mfpmr instruction and PMRs can
be written by using the mtpmr instruction. Both instruc-
tions are described in Section D.4.

Since counters are defined as 32-bit registers, it is pos-
sible for the counting of some events to overflow. A Per-
formance Monitor interrupt is provided that can be
programmed to occur in the event of a counter overflow.
The Performance Monitor interrupt is described in
detail in Section D.2.5 and Section D.2.6.

D.2.1 Event Counting
Event counting can be configured in several different
ways. This section describes configurability and spe-
cific unconditional counting modes. 

D.2.2 Thread Context Config-
urability
Counting can be enabled if conditions in the thread
state match a software-specified condition. Because a
software task scheduler may switch a thread’s execu-
tion among multiple processes and because statistics
on only a particular process may be of interest, a facility
is provided to mark a process. The Performance Moni-
tor mark bit, MSRPMM, is used for this purpose. System
software may set this bit to 1 when a marked process is
running. This enables statistics to be gathered only dur-
ing the execution of the marked process. The states of
MSRPR and MSRPMM together define a state that the
thread (supervisor or user) and the process (marked or
unmarked) may be in at any time. If this state matches
an individual state specified by the PMLCanFCS, PML-
CanFCU, PMLCanFCM1 and PMLCanFCM0 fields in
PMLCan (the state for which monitoring is enabled),
counting is enabled for PMCn.

Each event, on an implementation basis, may count
regardless of the value of MSRPMM. The counting
behavior of each event should be documented in the
User’s Manual.

The thread states and the settings of the PMLCanFCS,
PMLCanFCU, PMLCanFCM1 and PMLCanFCM0 fields in

PMLCan necessary to enable monitoring of each
thread state are shown in Figure 92.

Figure 92. Thread States and PMLCan Bit Settings

Two unconditional counting modes may be specified:

Counting is unconditionally enabled regardless of
the states of MSRPMM and MSRPR. This can be
accomplished by setting PMLCanFCS,
PMLCanFCU, PMLCanFCM1, and PMLCanFCM0 to
0 for each counter control.

Counting is unconditionally disabled regardless of
the states of MSRPMM and MSRPR. This can be
accomplished by setting PMGC0FAC to 1 or by set-
ting PMLCanFC to 1 for each counter control. Alter-
natively, this can be accomplished by setting
PMLCanFCM1 to 1 and PMLCanFCM0 to 1 for each
counter control or by setting PMLCanFCS to 1 and
PMLCanFCU to 1 for each counter control.

 

D.2.3 Event Selection
Events to count are determined by placing an imple-
mentation defined event value into the
PMLCa0..15EVENT field. Which events may be pro-
grammed into which counter are implementation spe-
cific and should be defined in the User’s Manual. In
general, most events may be programmed into any of
the implementation available counters. Programming a
counter with an event that is not supported for that
counter gives boundedly undefined results.

Thread State FCS FCU FCM1 FCM0

Marked 0 0 0 1

Not marked 0 0 1 0

Supervisor 0 1 0 0

User 1 0 0 0

Marked and supervisor 0 1 0 1

Marked and user 1 0 0 1

Not marked and supervisor 0 1 1 0

Not mark and user 1 0 1 0

All 0 0 0 0

None X X 1 1

None 1 1 X X

Events may be counted in a fuzzy manner. That is,
events may not be counted precisely due to the
nature of an implementation. Users of the Perfor-
mance Monitor facility should be aware that an
event may be counted even if it was precisely fil-
tered, though it should not have been. In general
such discrepancies are statistically unimportant
and users should not assume that counts are
explicitly accurate.

Programming Note
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D.2.4 Thresholds
Thresholds are values that must be exceeded for an
event to be counted. Threshold values are programmed
in the PMLCb0..15THRESHOLD field. The events which
may be thresholded and the units of each event that
may be thresholded are implementation-dependent.
Programming a threshold value for an event that is not
defined to use a threshold gives boundedly undefined
results.

D.2.5 Performance Monitor 
Exception
A Performance Monitor exception occurs when counter
overflow detection is enabled and a counter overflows.
More specifically, for each counter register n, if
PMGC0PMIE=1, PMLCanCE=1, PMCnOV=1, and the
performance monitor interrupt is enabled in the MSR
(see below), a Performance Monitor exception is said to
exist. The Performance Monitor exception condition will
cause a Performance Monitor interrupt if the exception
is the highest priority exception.

The performance monitor interrupt enabling conditions
in the MSR are as follows:

If category E.HV is implemented, the performance
monitor interrupt is enabled if:

EPCRPMGS=0 and (MSREE=1 or MSRGS=1).
The interrupt will be directed to the hypervisor
state. or if
EPCRPMGS=1 and (MSREE=1 and
MSRGS=1). The interrupt will be directed to
the guest state.

If category E.HV is not implemented, the perfor-
mance monitor interrupt is enabled if MSREE=1.

The Performance Monitor exception is level sensitive
and the exception condition may cease to exist if any of
the required conditions fail to be met. Thus it is possible
for a counter to overflow and continue counting events
until PMCnOV becomes 0 without taking a Performance
Monitor interrupt if the enabling conditions in the MSR
are not met during the overflow condition. To avoid this,
software should program the counters to freeze if an
overflow condition is detected (see Section D.3.4).

D.2.6 Performance Monitor Inter-
rupt
A Performance Monitor interrupt occurs when a Perfor-
mance Monitor exception exists and no higher priority

exception exists. When a Performance Monitor inter-
rupt occurs, SRR0 and SRR1 (GSRR0 and GSRR1 if
EPCRPMGS=1 <E.HV>) record the current state of the
NIA and the MSR and the MSR is set to handle the
interrupt. Instruction execution resumes at an address
based on which categories are supported:

If both Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In]  and Embedded.Hypervisor are
supported, instruction execution resumes at:

address IVPR0:51 || 0x260 when EPCRP-

MGS=0. Otherwise, instruction execution
resumes at address GIVPR0:47 || 0x260.

If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] is supported and Embed-
ded.Hypervisor is not supported, instruction
execution resumes at address IVPR0:51 || 0x260.
If Interrupt Fixed Offsets [Category: Embed-
ded.Phased-In] is not supported and Embed-
ded.Hypervisor is  supported, instruction execution
resumes at:

address IVPR0:51 || IVOR3548:59 || 0b0000.
when EPCRPMGS=0. Otherwise, instruction
execution resumes at address GIVPR0:47 ||
GIVOR3548:59 || 0b0000.

If neither Interrupt Fixed Offsets [Category:
Embedded.Phased-In] nor Embedded.Hypervisor
is  supported, instruction execution resumes at
address IVPR0:51 || IVOR3548:59 || 0b0000. 

The Performance Monitor interrupt is precise and asyn-
chronous.

 

D.3 Performance Monitor Regis-
ters

D.3.1 Performance Monitor Glo-
bal Control Register 0
The Performance Monitor Global Control Register 0
(PMGC0) controls all Performance Monitor counters.

Figure 93. [User] Performance Monitor Global
Control Register 0

These bits are interpreted as follows:

Bit Description

Event name and event numbers will differ greatly
across implementations and software should not
expect that events and event names will be consis-
tent.

Programming Note

When taking a Performance Monitor interrupt soft-
ware should clear the overflow condition by reading
the counter register and setting the counter register
to a non-overflow value since the normal return
from the interrupt will set MSREE back to 1.

PMGC0
32 63

Programming Note
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32 Freeze All Counters (FAC)
The FAC bit is sticky; that is, once set to 1 it
remains set to 1 until it is set to 0 by an mtpmr
instruction.

0 The PMCs can be incremented (if enabled
by other Performance Monitor control
fields).

1 The PMCs can not be incremented. 

33 Performance Monitor Interrupt Enable
(PMIE)

0 Performance Monitor interrupts are dis-
abled.

1 Performance Monitor interrupts are
enabled and occur when an enabled con-
dition or event occurs. Enabled conditions
and events are described in Section D.2.5.

34 Freeze Counters on Enabled Condition or
Event (FCECE)
Enabled conditions and events are described
in Section D.2.5.

0 The PMCs can be incremented (if enabled
by other Performance Monitor control
fields).

1 The PMCs can be incremented (if enabled
by other Performance Monitor control
fields) only until an enabled condition or
event occurs. When an enabled condition
or event occurs, PMGC0FAC is set to 1. It
is the user’s responsibility to set
PMGC0FAC to 0.

35:63 Reserved

The UPMGC0 register is an alias to the PMGC0 regis-
ter for user mode read only access.

D.3.2 Performance Monitor Local 
Control A Registers 
The Performance Monitor Local Control A Registers 0
through 15 (PMLCa0..15) function as event selectors
and give local control for the corresponding numbered
Performance Monitor counters. PMLCa works with the
corresponding numbered PMLCb register. 

Figure 94. [User] Performance Monitor Local
Control A Registers

PMLCa is set to 0 at reset. These bits are interpreted
as follows:

Bit Description

32 Freeze Counter (FC)

0 The PMC can be incremented (if enabled
by other Performance Monitor control
fields).

1 The PMC can not be incremented.

33 Freeze Counter in Supervisor State (FCS)

0 The PMC is incremented (if enabled by
other Performance Monitor control fields).

1 The PMC can not be incremented if
MSRPR is 0.

34 Freeze Counter in User State (FCU)

0 The PMC can be incremented (if enabled
by other Performance Monitor control
fields).

1 The PMC can not be incremented if
MSRPR is 1.

35 Freeze Counter while Mark is Set (FCM1)

0 The PMC can be incremented (if enabled
by other Performance Monitor control
fields).

1 The PMC can not be incremented if
MSRPMM is 1.

36 Freeze Counter while Mark is Cleared
(FCM0)

0 The PMC can be incremented (if enabled
by other Performance Monitor control
fields).

1 The PMC can not be incremented if
MSRPMM is 0.

37 Condition Enable (CE)

0 Overflow conditions for PMCn cannot
occur (PMCn cannot cause interrupts,
cannot freeze counters)

1 Overflow conditions occur when the
most-significant-bit of PMCn is equal to 1.

It is recommended that CE be set to 0 when
counter PMCn is selected for chaining; see
Section D.5.1.

38 Freeze Counter in Guest State (FCGS)

0 The PMC is incremented (if enabled by
other Performance Monitor control fields).

1 The PMC can not be incremented if
MSRGS is 1.

39 Freeze Counter in Hypervisor State (FCHS)

0 The PMC is incremented (if enabled by
other Performance Monitor control fields).

1 The PMC can not be incremented if
MSRGS is 0 and MSRPR is 0.

40 Reserved

41:47 Event Selector (EVENT)
Up to 128 events selectable; see Section
D.2.3.

48:53 Setting is implementation-dependent.

PMLCa0..15
32 63
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54:63 Reserved

The UPMLCa0..15 registers are aliases to the
PMLCa0..15 registers for user mode read only access.

D.3.3 Performance Monitor Local 
Control B Registers 
The Performance Monitor Local Control B Registers 0
through 15 (PMLCb0..15) specify a threshold value and
a multiple to apply to a threshold event selected for the
corresponding Performance Monitor counter. Threshold
capability is implementation counter dependent. Not all
events or all counters of an implementation are guaran-
teed to support thresholds. PMLCb works with the cor-
responding numbered PMLCa register. 

Figure 95. [User] Performance Monitor Local
Control B Register

PMLCb is set to 0 at reset. These bits are interpreted
as follows:

Bit Description

32:52 Reserved

53:55 Threshold Multiple (THRESHMUL)

000 Threshold field is multiplied by 1
(THRESHOLD × 1)

001 Threshold field is multiplied by 2
(THRESHOLD × 2)

010 Threshold field is multiplied by 4
(THRESHOLD × 4)

011 Threshold field is multiplied by 8
(THRESHOLD × 8)

100 Threshold field is multiplied by 16
(THRESHOLD × 16)

101 Threshold field is multiplied by 32
(THRESHOLD × 32)

110 Threshold field is multiplied by 64
(THRESHOLD × 64)

111 Threshold field is multiplied by 128
(THRESHOLD × 128)

56:57 Reserved

58:63 Threshold (THRESHOLD)
Only events that exceed the value THRESH-
OLD multiplied as described by THRESHMUL
are counted. Events to which a threshold
value applies are implementation-dependent
as are the unit (for example duration in cycles)
and the granularity with which the threshold
value is interpreted. 

The UPMLCb0..15 registers are aliases to the
PMLCb0..15 registers for user mode read only access.

D.3.4 Performance Monitor 
Counter Registers
The Performance Monitor Counter Registers
(PMC0..15) are 32-bit counters that can be pro-
grammed to generate interrupt signals when they over-
flow. Each counter is enabled to count up to 128
events.

Figure 96. [User] Performance Monitor Counter
Registers

PMCs are set to 0 at reset. These bits are interpreted
as follows:

Bit Description

32 Overflow (OV)

0 Counter has not reached an overflow
state.

1 Counter has reached an overflow state. 

33:63 Counter Value (CV) 
Indicates the number of occurrences of the
specified event. 

The minimum value for a counter is 0 (0x0000_0000)
and the maximum value is 4,294,967,295
(0xFFFF_FFFF). A counter can increment up to the
maximum value and then wraps to the minimum value.
A counter enters the overflow state when the high-order
bit is set to 1, which normally occurs only when the
counter increments from a value below 2,147,483,648
(0x8000_0000) to a value greater than or equal to
2,147,483,648 (0x8000_0000).

Several different actions may occur when an overflow
state is reached, depending on the configuration:

If PMLCanCE is 0, no special actions occur on
overflow: the counter continues incrementing, and
no exception is signaled.
If PMLCanCE and PMGC0FCECE are 1, all counters
are frozen when PMCn overflows.
If PMLCanCE, PMGC0PMIE, and MSREE are 1, an
exception is signalled when PMCn reaches over-

PMLCb0..15
32 63

By varying the threshold value, software can obtain
a profile of the event characteristics subject to
thresholding. For example, if PMC1 is configured to
count cache misses that last longer than the
threshold value, software can measure the distribu-
tion of cache miss durations for a given program by
monitoring the program repeatedly using a different
threshold value each time.

PMC0..15
32 63

Programming Note
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flow. Note that the interrupts are masked by setting
MSREE to 0. An overflow condition may be present
while MSREE is zero, but the interrupt is not taken
until MSREE is set to 1.

If an overflow condition occurs while MSREE is 0 (the
exception is masked), the exception is still signalled
once MSREE is set to 1 if the overflow condition is still
present and the configuration has not been changed in
the meantime to disable the exception; however, if
MSREE remains 0 until after the counter leaves the
overflow state (MSB becomes 0), or if MSREE remains
0 until after PMLCanCE or PMGC0PMIE are set to 0, the
exception does not occur.

 

The following sequence is generally recommended for
setting the counter values and configurations.

1. Set PMGC0FAC to 1 to freeze the counters.

2. Perform a series of mtpmr operations to initialize
counter values and configure the control registers

3. Release the counters by setting PMGC0FAC to 0
with a final mtpmr.

Loading a PMC with an overflowed value can
cause an immediate exception. For example, if
PMLCanCE, PMGC0PMIE, and MSREE are all 1,
and an mtpmr loads an overflowed value into a
PMCn that previously held a non-overflowed value,
then an interrupt will be generated before any event
counting has occurred.

Programming Note
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D.4 Performance Monitor Instructions

Move From Performance Monitor Register
XFX-form

mfpmr RT,PMRN

n I pmrn5:9 || pmrn0:4
if length(PMR(n)) = 64 then

RT I PMR(n)
else

RT I 320 || PMR(n)32:63

Let PMRN denote a Performance Monitor Register
number and PMR the set of Performance Monitor Reg-
isters.

The contents of the designated Performance Monitor
Register are placed into register RT.

The list of defined Performance Monitor Registers and
their privilege class is provided in Figure 97.

Execution of this instruction specifying a defined and
privileged Performance Monitor Register when
MSRPR=1 will result in a Privileged Instruction excep-
tion.

Category: Embedded.Hypervisor]
If MSRPPMMP = 1 and MSRGS = 1, execution of this
instruction specifying a defined Performance Monitor
Register sets RT to 0. 

Execution of this instruction specifying an undefined
Performance Monitor Register will either result in an
Illegal Instruction exception or will produce an unde-
fined value for register RT.

Special Registers Altered: 
None

Move To Performance Monitor Register
XFX-form

mtpmr PMRN,RS

n I pmrn5:9 || pmrn0:4
if length(PMR(n)) = 64 then

PMR(n) I (RS)
else

PMR(n) I (RS)32:63

Let PMRN denote a Performance Monitor Register
number and PMR the set of Performance Monitor Reg-
isters.

The contents of the register RS are placed into the des-
ignated Performance Monitor Register.

The list of defined Performance Monitor Registers and
their privilege class is provided in Figure 97.

Execution of this instruction specifying a defined and
privileged Performance Monitor Register when
MSRPR=1 will result in a Privileged Instruction excep-
tion.

[Category: Embedded.Hypervisor]
If MSRPPMMP = 1 and MSRGS = 1 and MSRPR = 0,
execution of this instruction specifying a defined Perfor-
mance Monitor Register results in a Embedded Hyper-
visor Privilege exception. 

Execution of this instruction specifying an undefined
Performance Monitor Register will either result in an
Illegal Instruction exception or will perform no opera-
tion.

Special Registers Altered: 
None

 

Figure 97. Embedded.Peformance Monitor PMRs

31 RT pmrn 334 /
0 6 11 21 31

31 RS pmrn 462 /
0 6 11 21 31

decimal
PMR1

Register Name
Privileged

Cat
pmrn5:9 pmrn0:4 mtpmr mfpmr

0-15 00000 0xxxx PMC0..15 - no E.PM
16-31 00000 1xxxx PMC0..15 yes yes E.PM

128-143 00100 0xxxx PMLCA0..15 - no E.PM
144-159 00100 1xxxx PMLCA0..15 yes yes E.PM
256-271 01000 0xxxx PMLCB0..15 - no E.PM
272-287 01000 1xxxx PMLCB0..15 yes yes E.PM

384 01100 00000 PMGC0 - no E.PM
400 01100 10000 PMGC0 yes yes E.PM

- This register is not defined for this instruction.
1 Note that the order of the two 5-bit halves of the PMR number is reversed.
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D.5 Performance Monitor Soft-
ware Usage Notes

D.5.1 Chaining Counters
An implementation may contain events that are used to
“chain” counters together to provide a larger range of
event counts. This is accomplished by programming the
desired event into one counter and programming
another counter with an event that occurs when the first
counter transitions from 1 to 0 in the most significant
bit.

The counter chaining feature can be used to decrease
the processing pollution caused by Performance Moni-
tor interrupts, (things like cache contamination, and
pipeline effects), by allowing a higher event count than
is possible with a single counter. Chaining two counters
together effectively adds 32 bits to a counter register
where the first counter’s carry-out event acts like a
carry-out feeding the second counter. By defining the
event of interest to be another PMC’s overflow genera-
tion, the chained counter increments each time the first
counter rolls over to zero. Multiple counters may be
chained together. 

Because the entire chained value cannot be read in a
single instruction, an overflow may occur between
counter reads, producing an inaccurate value. A
sequence like the following is necessary to read the
complete chained value when it spans multiple
counters and the counters are not frozen. The example
shown is for a two-counter case.

loop:
mfpmr Rx,pmctr1 #load from upper counter
mfpmr Ry,pmctr0 #load from lower counter
mfpmr Rz,pmctr1 #load from upper counter
cmp cr0,0,Rz,Rx #see if ‘old’ = ‘new’
bc 4,2,loop

 #loop if carry occurred between reads

The comparison and loop are necessary to ensure that
a consistent set of values has been obtained. The
above sequence is not necessary if the counters are
frozen.

D.5.2 Thresholding
Threshold event measurement enables the counting of
duration and usage events. Assume an example event,
dLFB load miss cycles, requires a threshold value. A
dLFB load miss cycles event is counted only when the
number of cycles spent recovering from the miss is
greater than the threshold. If the event is counted on
two counters and each counter has an individual
threshold, one execution of a performance monitor pro-
gram can sample two different threshold values. Mea-
suring code performance with multiple concurrent
thresholds expedites code profiling significantly.
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Chapter 1.  Variable Length Encoding Introduction

This chapter describes computation modes, document
conventions, a processor overview, instruction formats,
storage addressing, and instruction addressing.

1.1 Overview
Variable Length Encoding (VLE) is a code density opti-
mized re-encoding of much of the instruction set
defined by Books I, II, and III-E using both 16-bit and
32-bit instruction formats.

VLE offers more efficient binary representations of
applications for the Embedded processor spaces
where code density plays a major role in affecting over-
all system cost, and to a somewhat lesser extent, per-
formance.

VLE is a supplement to the instruction set defined by
Book I-III and code pages using VLE encoding or
non-VLE encoding can be intermingled in a system
providing focus on both high performance and code
density where most needed.

VLE provides alternative encodings to instructions
defined in Books I-III to enable reduced code footprint.
This set of alternative encodings is selected on a page
basis. A single storage attribute bit selects between
standard instruction encodings and VLE instructions for
that page of memory. 

Instruction encodings in pages marked as VLE are
either 16 or 32 bits long, and are aligned on 16-bit
boundaries. Because of this, all instruction pages
marked as VLE are required to use Big-Endian byte
ordering.

The programming model uses the same register set
with both instruction set encodings, although some reg-
isters are not accessible by VLE instructions using the
16-bit formats and not all condition register (CR) fields
are used by Conditional Branch instructions or instruc-
tions that access the condition register executing from
a VLE instruction page. In addition, immediate fields
and displacements differ in size and use, due to the
more restrictive encodings imposed by VLE instruction
formats. 

VLE additional instruction fields are described in
Section 1.4.19, “Instruction Fields”.

Other than the requirement of Big-Endian byte ordering
for instruction pages and the additional storage
attribute to identify whether the instruction page corre-
sponds to a VLE section of code, VLE complies with
the memory model, register model, timer facilities,
debug facilities, and interrupt/exception model defined
in Book I-III and therefore execute in the same environ-
ment as non-VLE instructions.

1.2 Documentation Conventions
Book VLE adheres to the documentation conventions
defined inSection 1.3 of Book I. Note however that this
book defines instructions that apply to the User Instruc-
tion Set Architecture, the Virtual Environment Architec-
ture, and the Operating Environment Architecture. 

1.2.1 Description of Instruction 
Operation
The RTL (register transfer language) descriptions in
Book VLE conform to the conventions described in
Section 1.3.4 of Book I.

1.3 Instruction Mnemonics and 
Operands
The description of each instruction includes the mne-
monic and a formatted list of operands. VLE instruction
semantics are either identical or similar to those of
other instructions in the architecture. Where the
semantics, side-effects, and binary encodings are iden-
tical, the standard mnemonics and formats are used.
Such unchanged instructions are listed and appropri-
ately referenced, but the instruction definitions are not
replicated in this book. Where the semantics are similar
but the binary encodings differ, the standard mnemonic
is typically preceded with an e_ to denote a VLE
instruction. To distinguish between similar instructions
available in both 16- and 32-bit forms under VLE and
standard instructions, VLE instructions encoded with
16 bits have an se_ prefix. The following are examples:
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stwx RS,RA,RB // standard Book I instruction
e_stw RS,D(RA) // 32-bit VLE instruction
se_stw RZ,SD4(RX) // 16-bit VLE instruction

1.4 VLE Instruction Formats
All VLE instructions to be executed are either two or
four bytes long and are halfword-aligned in storage.
Thus, whenever instruction addresses are presented to
the processor (as in Branch instructions), the low-order
bit is treated as 0. Similarly, whenever the processor
generates an instruction address, the low-order bit is
zero.

The format diagrams given below show horizontally all
valid combinations of instruction fields. Only those for-
mats that are unique to VLE-defined instructions are
included here. Instruction forms that are available in
VLE or non-VLE mode are described in Section 1.6 of
Book I and are not repeated here.

In some cases an instruction field must contain a par-
ticular value. If a field that must contain a particular
value does not contain that value, the instruction form is
invalid and the results are as described for invalid
instruction forms in Book I.

VLE instructions use split field notation as defined in
Section 1.6 of Book I.

1.4.1 BD8-form (16-bit Branch 
Instructions) 

Figure 1. BD8 instruction format

1.4.2 C-form (16-bit Control 
Instructions) 

Figure 2. C instruction format

1.4.3 IM5-form (16-bit register + 
immediate Instructions)

Figure 3. IM5 instruction format

1.4.4 OIM5-form (16-bit register + 
offset immediate Instructions)

Figure 4. OIM5 instruction format

1.4.5 IM7-form (16-bit Load imme-
diate Instructions) 

Figure 5. IM7 instruction format

1.4.6 R-form (16-bit Monadic 
Instructions)

Figure 6. R instruction format

1.4.7 RR-form (16-bit Dyadic 
Instructions)

Figure 7. RR instruction format

1.4.8 SD4-form (16-bit Load/Store 
Instructions)

Figure 8. SD4 instruction format

1.4.9 BD15-form

Figure 9. BD15 instruction format

0 5 6 8 15

OPCD BO16 BI16 BD8
OPCD X

O
LK BD8

0 15

OPCD
OPCD LK

0 6 7 12 15

OPCD X
O

UI5 RX

0 6 7 12 15

OPCD X
O

OIM5 RX

OPCD R
C

OIM5 RX

0 5 12 15

OPCD UI7 RX

0 6 12 15

OPCD XO RX

0 6 8 12 15

OPCD XO RY RX
OPCD X

O
R
C RY RX

OPCD XO ARY RX
OPCD XO RY ARX

0 4 8 12 15

OPCD SD4 RZ RX

0  6 10 12 16 31

OPCD XO BO32 BI32 BD15 LK
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1.4.10 BD24-form

Figure 10. BD24 instruction format

1.4.11 D8-form

Figure 11. D8 instruction format

1.4.12 ESC-form 

1.4.13 I16A-form 

Figure 12. I16A instruction format

1.4.14 I16L-form

Figure 13. I16L instruction format

1.4.15 M-form

Figure 14. M instruction format

1.4.16 SCI8-form

Figure 15. SC18 instruction format

1.4.17 LI20-form

Figure 16. LI20 instruction format

1.4.18 X-form

Figure 17. X instruction format

1.4.19 Instruction Fields
VLE uses instruction fields defined in Section 1.6.28 of
Book I as well as VLE-defined instruction fields defined
below.

ARX (12:15)
Field used to specify an “alternate” General
Purpose Register in the range R8:R23 to be
used as a destination.

ARY (8:11)
Field used to specify an “alternate” General
Purpose Register in the range R8:R23 to be
used as a source.

BD8 (8:15), BD15 (16:30), BD24 (7:30)
Immediate field specifying a signed two's
complement branch displacement which is
concatenated on the right with 0b0 and
sign-extended to 64 bits.

BD15. (Used by 32-bit branch conditional
class instructions) A 15-bit signed displace-
ment that is sign-extended and shifted left one
bit (concatenated with 0b0) and then added to
the current instruction address to form the
branch target address.

BD24. (Used by 32-bit branch class instruc-
tions) A 24-bit signed displacement that is

0  6 7    31

OPCD 0 BD24 LK

0  6   11  16 24 31

OPCD RT RA XO D8
OPCD RS RA XO D8

0  6   11  16 21 31

OPCD // // ELEV XO

0  6   11  16 21 31

OPCD si RA XO si
OPCD ui RA XO ui

0  6   11  16 21 31

OPCD RT ui XO ui

0 6 11 16 21 26 31

OPCD RS RA SH MB ME X
O

OPCD RS RA SH MB ME X
O

0  6   11  16 21 22 24 31

OPCD RT RA XO RcF SCL UI8
OPCD RT RA XO F SCL UI8
OPCD RS RA XO RcF SCL UI8
OPCD RS RA XO F SCL UI8
OPCD 000 BF32 RA XO F SCL UI8
OPCD 001 BF32 RA XO F SCL UI8
OPCD XO RA XO F SCL UI8

0  6   11  16 17 21 31

OPCD RT li20 XO li20 li20

0  6  9  11  16 21 31

OPCD BF 0 RA RB XO /
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sign-extended and shifted left one bit (concat-
enated with 0b0) and then added to the cur-
rent instruction address to form the branch
target address.

BD8. (Used by 16-bit branch and branch con-
ditional class instructions) An 8-bit signed dis-
placement that is sign-extended and shifted
left one bit (concatenated with 0b0) and then
added to the current instruction address to
form the branch target address.

BI16 (6:7), BI32 (12:15)
Field used to specify one of the Condition
Register fields to be used as a condition of a
Branch Conditional instruction.

BO16 (5), BO32 (10:11)

Field used to specify whether to branch if the
condition is true, false, or to decrement the
Count Register and branch if the Count Regis-
ter is not zero in a Branch Conditional instruc-
tion.

BF32 (9:10)
Field used to specify one of the Condition
Register fields to be used as a target of a
compare instruction.

D8 (24:31)
The D8 field is a 8-bit signed displacement
which is sign-extended to 64 bits.

ELEV (16:20)
Field used by the e_sc instruction.

F (21) Fill value used to fill the remaining 56 bits of a
scaled-immediate 8 value. 

LI20 (17:20 || 11:15 || 21:31)
A 20-bit signed immediate value which is
sign-extended to 64 bits for the e_li instruc-
tion.

LK (7, 15, 31)
LINK bit.

0 Do not set the Link Register.
1 Set the Link Register. The sum of the

value 2 or 4 and the address of the Branch
instruction is placed into the Link Register.

OIM5 (7:11)
Offset Immediate field used to specify a 5-bit
unsigned fixed-point value in the range [1:32]
encoded as [0:31]. Thus the binary encoding
of 0b00000 represents an immediate value of
1, 0b00001 represents an immediate value of
2, and so on.

OPCD (0:3, 0:4, 0:5, 0:9, 0:14, 0:15)
Primary opcode field.

Rc (6, 7, 20, 31)
RECORD bit.

0 Do not alter the Condition Register.

1 Set Condition Register Field 0.

RX (12:15)
Field used to specify a General Purpose Reg-
ister in the ranges R0:R7 or R24:R31 to be
used as a source or as a destination. R0 is
encoded as 0b0000, R1 as 0b0001, etc. R24
is encoded as 0b1000, R25 as 0b1001, etc.

RY (8:11)
Field used to specify a General Purpose Reg-
ister in the ranges R0:R7 or R24:R31 to be
used as a source. R0 is encoded as 0b0000,
R1 as 0b0001, etc. R24 is encoded as
0b1000, R25 as 0b1001, etc.

RZ (8:11)
Field used to specify a General Purpose Reg-
ister in the ranges R0:R7 or R24:R31 to be
used as a source or as a destination for load/
store data. R0 is encoded as 0b0000, R1 as
0b0001, etc. R24 is encoded as 0b1000, R25
as 0b1001, etc.

SCL (22:23)
Field used to specify a scale amount in Imme-
diate instructions using the SCI8-form. Scaling
involves left shifting by 0, 8, 16, or 24 bits.

SD4 (4:7)
Used by 16-bit load and store class instruc-
tions. The SD4 field is a 4-bit unsigned imme-
diate value zero-extended to 64 bits, shifted
left according to the size of the operation, and
then added to the base register to form a
64-bit EA. For byte operations, no shift is per-
formed. For half-word operations, the immedi-
ate is shifted left one bit (concatenated with
0b0). For word operations, the immediate is
shifted left two bits (concatenated with
0b00).SI (6:10 || 21:31, 11:15 || 21:31)
A 16-bit signed immediate value
sign-extended to 64 bits and used as one
operand of the instruction. 

UI (6:10 || 21:31, 11:15 || 21:31)
A 16-bit unsigned immediate value
zero-extended to 64 bits or padded with 16
zeros and used as one operand of the instruc-
tion. The instruction encoding differs between
the I16A and I16L instruction formats as
shown in Section 1.4.13 and Section 1.4.14.

UI5 (7:11) 
Immediate field used to specify a 5-bit
unsigned fixed-point value.

UI7 (5:11)
Immediate field used to specify a 7-bit
unsigned fixed-point value.

UI8 (24:31)
Immediate field used to specify an 8-bit
unsigned fixed-point value.
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XO (6, 6:7, 6:10, 6:11, 16, 16:19, 16:20, 16:23, 31)
Extended opcode field.

 

For scaled immediate instructions using the
SCI8-form, the instruction assembly syntax
requires a single immediate value, sci8, that the
assembler will synthesize into the appropriate F,
SCL, and UI8 fields. The F, SCL, and UI8 fields
must be able to be formed correctly from the given
sci8 value or the assembler will flag the assembly
instruction as an error.

Assembler Note
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Chapter 2.  VLE Storage Addressing

A program references memory using the effective
address (EA) computed by the processor when it exe-
cutes a Storage Access or Branch instruction (or cer-
tain other instructions described in Book II and Book
III-E), or when it fetches the next sequential instruction.

2.1 Data Storage Addressing Modes

Table 1 lists data storage addressing modes supported
by the VLE category.

Table 1: Data Storage Addressing Modes

Mode Form Description

Base+16-bit displacement
(32-bit instruction format)

D-form The 16-bit D field is sign-extended and added to the contents of the GPR 
designated by RA or to zero if RA = 0 to produce the EA.

Base+8-bit displacement 
(32-bit instruction format)

D8-form The 8-bit D8 field is sign-extended and added to the contents of the GPR 
designated by RA or to zero if RA = 0 to produce the EA.

Base+scaled 4-bit displace-
ment 
(16-bit instruction format)

SD4-form The 4-bit SD4 field zero-extended, scaled (shifted left) according to the 
size of the operand, and added to the contents of the GPR designated 
by RX to produce the EA. (Note that RX = 0 is not a special case.)

Base+Index 
(32-bit instruction format)

X-form The GPR contents designated by RB are added to the GPR contents 
designated by RA or to zero if RA = 0 to produce the EA.
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2.2 Instruction Storage 
Addressing Modes
Table 2 lists instruction storage addressing modes sup-
ported by the VLE category.

2.2.1 Misaligned, Mismatched, 
and Byte Ordering Instruction Stor-
age Exceptions
A Misaligned Instruction Storage Exception occurs
when an implementation which supports VLE attempts
to execute an instruction that is not 32-bit aligned and
the VLE storage attribute is not set for the page that
corresponds to the effective address of the instruction.
The attempted execution can be the result of a Branch
instruction which has bit 62 of the target address set to
1 or the result of an rfi, se_rfi, rfci, se_rfci, rfdi,
se_rfdi, rfgi, se_rfgi, rfmci, or se_rfmci instruction
which has bit 62 set in SRR0, SRR0, CSRR0, CSRR0,
DSRR0, DSRR0, GSRR0, GSRR0, MCSRR0, or
MCSRR0 respectively. If a Misaligned Instruction Stor-
age Exception is detected and no higher priority excep-
tion exists, an Instruction Storage Interrupt will occur
setting SRR0(GSRR0) to the misaligned address for
which execution was attempted.

A Mismatched Instruction Storage Exception occurs
when an implementation which supports VLE attempts
to execute an instruction that crosses a page boundary
for which the first page has the VLE storage attribute
set to 1 and the second page has the VLE storage

attribute bit set to 0. If a Mismatched Instruction Stor-
age Exception is detected and no higher priority excep-
tion exists, an Instruction Storage Interrupt will occur
setting SRR0(GSRR0) to the misaligned address for
which execution was attempted.

A Byte Ordering Instruction Storage Exception occurs
when an implementation which supports VLE attempts
to execute an instruction that has the VLE storage
attribute set to 1 and the E (Endian) storage attribute
set to 1 for the page that corresponds to the effective
address of the instruction. If a Byte Ordering Instruction
Storage Exception is detected and no higher priority
exception exists, an Instruction Storage Interrupt will
occur setting SRR0(GSRR0) to the address for which
execution was attempted.

2.2.2 VLE Exception Syndrome 
Bits
Two bits in the Exception Syndrome Register (ESR)
(see Section 7.2.13 of Book III-E) are provided to facili-
tate VLE exception handling, VLEMI and MIF.

ESR(GESR)VLEMI is set when an exception and subse-
quent interrupt is caused by the execution or attempted

Table 2: Instruction Storage Addressing Modes

Mode Description

Taken BD24-form Branch instruc-
tions (32-bit instruction format)

The 24-bit BD24 field is concatenated on the right with 0b0, sign-extended, and 
then added to the address of the branch instruction.

Taken B15-form Branch instruc-
tions (32-bit instruction format)

The 15-bit BD15 field is concatenated on the right with 0b0, sign-extended, and 
then added to the address of the branch instruction to form the EA of the next 
instruction.

Take BD8-form Branch instruc-
tions (16-bit instruction format)

The 8-bit BD8 field is concatenated on the right with 0b0, sign-extended, and 
then added to the address of the branch instruction to form the EA of the next 
instruction.

Sequential instruction fetching (or 
non-taken branch instructions)

The value 4 [2] is added to the address of the current 32-bit [16-bit] instruction to 
form the EA of the next instruction. If the address of the current instruction is 
0xFFFF_FFFF_FFFF_FFFC [0xFFFF_FFFF_FFFF_FFFE] in 64-bit mode or 
0xFFFF_FFFC [0xFFFF_FFFE] in 32-bit mode, the address of the next 
sequential instruction is undefined.

Any Branch instruction with 
LK = 1 (32-bit instruction for-
mat)

The value 4 is added to the address of the current branch instruction and the 
result is placed into the LR. If the address of the current instruction is 
0xFFFF_FFFF_FFFF_FFFC in 64-bit mode o r0xFFFF_FFFC in 32-bit mode, 
the result placed into the LR is undefined.

Branch se_bl. se_blrl. se_bctrl 
instructions (16-bit instruction 
format)

The value 2 is added to the address of the current branch instruction and the 
result is placed into the LR. If the address of the current instruction is 
0xFFFF_FFFF_FFFF_FFFE in 64-bit mode or 0xFFFF_FFFE in 32-bit mode, 
the result placed into the LR is undefined.
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execution of an instruction that resides in memory with
the VLE storage attribute set.

ESR(GESR)MIF is set when an Instruction Storage
Interrupt is caused by a Misaligned Instruction Storage
Exception or when an Instruction TLB Error Interrupt
was caused by a TLB miss on the second half of a mis-
aligned 32-bit instruction.

ESR(GESR)BO is set when an Instruction Storage
Interrupt is caused by a Mismatched Instruction Stor-
age Exception or a Byte Ordering Instruction Storage
Exception.

 

When an Instruction TLB Error Interrupt occurs
as the result of a Instruction TLB miss on the
second half of a 32-bit VLE instruction that is
aligned to only 16-bits, SRR0 will point to the
first half of the instruction and ESRMIF will be
set to 1. Any other status posted as a result of
the TLB miss (such as MAS register updates
described in Chapter 6 of Book III-E) will
reflect the page corresponding to the second
half of the instruction which caused the
Instruction TLB miss.

Programming Note
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Chapter 3.  VLE Compatibility with Books I–III

This chapter addresses the relationship between VLE
and Books I–III. 

3.1 Overview
Category VLE uses the same semantics as Books I–III.
Due to the limited instruction encoding formats, VLE
instructions typically support reduced immediate fields
and displacements, and not all operations defined by
Books I–III are encoded in category VLE. The basic
philosophy is to capture all useful operations, with most
frequent operations given priority. Immediate fields and
displacements are provided to cover the majority of
ranges encountered in Embedded control code.
Instructions are encoded in either a 16- or 32-bit for-
mat, and these may be freely intermixed. 

VLE instructions cannot access floating-point registers
(FPRs). VLE instructions use GPRs and SPRs with the
following limitations:

VLE instructions using the 16-bit formats are lim-
ited to addressing GPR0–GPR7, and GPR24–
GPR31 in most instructions. Move instructions are
provided to transfer register contents between
these registers and GPR8–GPR23.
VLE compare and bit test instructions using the
16-bit formats implicitly set their results in CR0.

VLE instruction encodings are generally different than
instructions defined by Books I–III, except that most
instructions falling within primary opcode 31 are
encoded identically and have identical semantics
unless they affect or access a resource not supported
by category VLE.

3.2 VLE Processor and Storage 
Control Extensions
This section describes additional functionality to sup-
port category VLE.

3.2.1 Instruction Extensions
This section describes extensions to support VLE oper-
ations. Because instructions may reside on a half-word

boundary, bit 62 is not masked by instructions that read
an instruction address from a register, such as the LR,
CTR, or a save/restore register 0, that holds an instruc-
tion address:

The instruction set defined by Books I-III is modified to
support halfword instruction addressing, as follows:

For Return From Interrupt instructions, such as rfi,
rfci, rfdi, rfgi, and rfmci no longer mask bit 62 of
the respective save/restore register 0. The destina-
tion address is SRR00:62 || 0b0, CSRR00:62 || 0b0,
DSRR00:62 || 0b0, GSRR00:62 || 0b0, and
MCSRR00:62 || 0b0, respectively.
For bclr, bclrl, bcctr, and bcctrl no longer mask
bit 62 of the LR or CTR. The destination address is
LR0:62 || 0b0 or CTR0:62 || 0b0.

3.2.2 MMU Extensions
VLE operation is indicated by the VLE storage attribute.
When the VLE storage attribute for a page is set to 1,
instruction fetches from that page are decoded and pro-
cessed as VLE instructions. See Section 6.8.3 of Book
III-E.

When instructions are executing from a page that has
the VLE storage attribute set to 1, the processor is said
to be in VLE mode.

3.3 VLE Limitations
VLE instruction fetches are valid only when performed
in a Big-Endian mode. Attempting to fetch an instruc-
tion in a Little-Endian mode from a page with the VLE
storage attribute set causes an Instruction Storage
Byte-ordering exception.

Support for concurrent modification and execution of
VLE instructions is implementation-dependent.
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Chapter 4.  Branch Operation Instructions

This section defines Branch instructions that can be
executed when a processor is in VLE mode and the
registers that support them.

4.1 Branch Facility Registers
The registers that support branch operations are:

Section 4.1.1, “Condition Register (CR)”
Section 4.1.2, “Link Register (LR)”
Section 4.1.3, “Count Register (CTR)”

4.1.1 Condition Register (CR)
The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides a
mechanism for testing (and branching). The CR is more
fully defined in Book I.

Category VLE uses the entire CR, but some compari-
son operations and all Branch instructions are limited to
using CR0–CR3. The full Book I condition register field
and logical operations are provided however.

Figure 18. Condition Register

The bits in the Condition Register are grouped into
eight 4-bit fields, CR Field 0 (CR0) ... CR Field 7 (CR7),
which are set by VLE defined instructions in one of the
following ways.

Specified fields of the condition register can be set
by a move to the CR from a GPR (mtcrf, mtocrf).
A specified CR field can be set by a move to the
CR from another CR field (e_mcrf) or from
XER32:35 (mcrxr).
CR field 0 can be set as the implicit result of a
fixed-point instruction.
A specified CR field can be set as the result of a
fixed-point compare instruction.
CR field 0 can be set as the result of a fixed-point
bit test instruction.

Other instructions from implemented categories may
also set bits in the CR in the same manner that they
would when not in VLE mode.

Instructions are provided to perform logical operations
on individual CR bits and to test individual CR bits.

For all fixed-point instructions in which the Rc bit is
defined and set, and for e_add2i., e_and2i.,and
e_and2is., the first three bits of CR field 0 (CR32:34)
are set by signed comparison of the result to zero, and
the fourth bit of CR field 0 (CR35) is copied from the
final state of XERSO. “Result” here refers to the entire
64-bit value placed into the target register in 64-bit
mode, and to bits 32:63 of the value placed into the tar-
get register in 32-bit mode.

if (64-bit mode)
then M I 0
else M I 32

if      (target_register)M:63 < 0 then c I 0b100
else if (target_register)M:63 > 0 then c I 0b010
else c I 0b001
CR0 I c || XERSO

If any portion of the result is undefined, the value
placed into the first three bits of CR field 0 is undefined.

The bits of CR field 0 are interpreted as shown below.

CR Bit Description

32 Negative (LT)
The result is negative.

33 Positive (GT)
The result is positive.

34 Zero (EQ)
The result is 0.

35 Summary overflow (SO)
This is a copy of the contents of XERSO at the
completion of the instruction.

4.1.1.1 Condition Register Setting for 
Compare Instructions
For compare instructions, a CR field specified by the
BF operand for the e_cmph, e_cmphl, e_cmpi, and
e_cmpli instructions, or CR0 for the se_cmpl,
e_cmp16i, e_cmph16i, e_cmphl16i, e_cmpl16i,
se_cmp, se_cmph, se_cmphl, se_cmpi, and
se_cmpli instructions, is set to reflect the result of the
comparison. The CR field bits are interpreted as shown
below. A complete description of how the bits are set is

CR
32 63
Chapter 4. Branch Operation Instructions 1273



Version 2.07 B
given in the instruction descriptions and Section 5.6,
“Fixed-Point Compare and Bit Test Instructions”.

Condition register bits settings for compare instructions
are interpreted as follows. (Note: e_cmpi, and e_cmpli
instructions have a BF32 field instead of BF field; for
these instructions, BF32 should be substituted for BF in
the list below.)

CR Bit Description

4×BF + 32
Less Than (LT)
For signed fixed-point compare, (RA) or (RX)
< sci8, SI, (RB), or (RY).
For unsigned fixed-point compare, (RA) or
(RX) <u sci8, UI, UI5, (RB), or (RY).

4×BF + 33
Greater Than (GT)
For signed fixed-point compare, (RA) or (RX)
> sci8, SI, (RB), or (RY).
For unsigned fixed-point compare, (RA) or
(RX) >u sci8, UI, UI5, (RB), or (RY).

4×BF + 34
Equal (EQ)
For fixed-point compare, (RA) or (RX) = sci8,
UI, UI5, SI, (RB), or (RY).

4×BF + 35
Summary Overflow (SO)
For fixed-point compare, this is a copy of the
contents of XERSO at the completion of the
instruction.

4.1.1.2 Condition Register Setting for 
the Bit Test Instruction
The Bit Test Immediate instruction, se_btsti, also sets
CR field 0. See the instruction description and also
Section 5.6, “Fixed-Point Compare and Bit Test Instruc-
tions”. 

4.1.2 Link Register (LR)
VLE instructions use the Link Register (LR) as defined
in Book I, although category VLE defines a subset of all
variants of Book I conditional branches involving the
LR.

4.1.3 Count Register (CTR)
VLE instructions use the Count Register (CTR) as
defined in Book I, although category VLE defines a
subset of the variants of Book I conditional branches
involving the CTR.
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4.2 Branch Instructions

The sequence of instruction execution can be changed
by the branch instructions. Because VLE instructions
must be aligned on half-word boundaries, the low-order
bit of the generated branch target address is forced to 0
by the processor in performing the branch.

The branch instructions compute the EA of the target in
one of the following ways, as described in Section 2.2,
“Instruction Storage Addressing Modes”

1. Adding a displacement to the address of the
branch instruction.

2. Using the address contained in the LR (Branch to
Link Register [and Link]).

3. Using the address contained in the CTR (Branch to
Count Register [and Link]).

Branching can be conditional or unconditional, and the
return address can optionally be provided. If the return
address is to be provided (LK = 1), the EA of the
instruction following the branch instruction is placed
into the LR after the branch target address has been
computed; this is done regardless of whether the
branch is taken.

In branch conditional instructions, the BI32 or BI16
instruction field specifies the CR bit to be tested. For
32-bit instructions using BI32, CR32:47 (corresponding
to bits in CR0:CR3) may be specified. For 16-bit
instructions using BI16, only CR32:35 (bits within CR0)
may be specified. 

In branch conditional instructions, the BO32 or BO16
field specifies the conditions under which the branch is
taken and how the branch is affected by or affects the
CR and CTR. Note that VLE instructions also have dif-
ferent encodings for the BO32 and BO16 fields than in
Book I’s BO field. 

If the BO32 field specifies that the CTR is to be decre-
mented, in 64-bit mode CTR0:63 are decremented, and
in 32-bit mode CTR32:63 are decremented. If BO16 or
BO32 specifies a condition that must be TRUE or
FALSE, that condition is obtained from the contents of
CRBI32+32 or CRBI16+32. (Note that CR bits are num-
bered 32:63. BI32 or BI16 refers to the condition regis-
ter bit field in the branch instruction encoding. For
example, specifying BI32 = 2 refers to CR34.)

For Figure 19 let M = 0 in 64-bit mode and M = 32 in
32-bit mode.

Encodings for the BO32 field for VLE are shown in
Figure 19.

Figure 19. BO32 field encodings

Encodings for the BO16 field for VLE are shown in
Figure 20.

Figure 20. BO16 field encodings

BO32 Description

00 Branch if the condition is false.

01 Branch if the condition is true.

10 Decrement CTRM:63, then branch if the 
decremented CTRM:63≠0

11 Decrement CTRM:63, then branch if the 
decremented CTRM:63=0.

BO16 Description

0 Branch if the condition is false.

1 Branch if the condition is true.
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Branch [and Link] BD24-form

e_b target_addr (LK=0)
e_bl target_addr (LK=1)

NIA Iiea CIA + EXTS(BD24 || 0b0)
if LK then LR Iiea CIA + 4

target_addr specifies the branch target address.

The branch target address is the sum of BD24 || 0b0
sign-extended and the address of this instruction, with
the high-order 32 bits of the branch target address set
to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered: 
LR (if LK=1)

Branch [and Link] BD8-form

se_b target_addr (LK=0)
se_bl target_addr (LK=1)

NIA Iiea CIA + EXTS(BD8 || 0b0)
if LK then LR Iiea CIA + 2

target_addr specifies the branch target address.

The branch target address is the sum of BD8 || 0b0
sign-extended and the address of this instruction, with
the high-order 32 bits of the branch target address set
to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered: 
LR (if LK=1)

Branch Conditional [and Link] BD15-form

e_bc BO32,BI32,target_addr (LK=0)
e_bcl BO32,BI32,target_addr (LK=1)

if (64-bit mode)
then M I 0
else M I 32

if BO320 then CTRM:63 I CTRM:63 - 1
ctr_ok  I ¬BO320 | ((CTRM:63 ≠ 0) ⊕ BO321)
cond_ok I BO320 | (CRBI32+32 ≡ BO321)
if ctr_ok & cond_ok then
NIA Iiea (CIA + EXTS(BD15 || 0b0))

else
NIA Iiea CIA + 4

if LK then LR Iiea CIA + 4

The BI32 field specifies the Condition Register bit to be
tested. The BO32 field is used to resolve the branch as
described in Figure 19. target_addr specifies the
branch target address.

The branch target address is the sum of BD15 || 0b0
sign-extended and the address of this instruction, with
the high-order 32 bits of the branch target address set
to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered: 
CTR (if BO320=1) 
LR (if LK=1)

Branch Conditional Short Form BD8-form

se_bc BO16,BI16,target_addr

cond_ok I (CRBI16+32 ≡ BO16)
if cond_ok then
               NIA Iiea CIA + EXTS(BD8 || 0b0)
else           NIA Iiea CIA + 2

The BI16 field specifies the Condition Register bit to be
tested. The BO16 field is used to resolve the branch as
described in Figure 20. target_addr specifies the
branch target address.

The branch target address is the sum of BD8 || 0b0
sign-extended and the address of this instruction, with
the high-order 32 bits of the branch target address set
to 0 in 32-bit mode.

Special Registers Altered: 
None

30 0 BD24 LK
0 6 7 31

58 0 LK BD8
0 6 7 8 15

30 8 BO32 BI32 BD15 LK
0 6 10 12 16 31

28 BO16 BI16 BD8
0 5 6 8 15
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Branch to Count Register [and Link]
C-form

se_bctr (LK=0)
se_bctrl (LK=1)

NIA Iiea CTR0:62 || 0b0
if LK then LR Iiea CIA + 2

The branch target address is CTR0:62 || 0b0 with the
high-order 32 bits of the branch target address set to 0
in 32-bit mode.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered: 
LR (if LK=1)

Branch to Link Register [and Link]C-form

se_blr (LK=0)
se_blrl (LK=1)

NIA Iiea LR0:62 || 0b0
if LK then LR Iiea CIA + 2

The branch target address is LR0:62 || 0b0 with the
high-order 32 bits of the branch target address set to 0
in 32-bit mode.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered: 
LR (if LK=1)

03 LK
0 15

02 LK
0 15
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4.3 System Linkage Instructions

The System Linkage instructions enable the program to
call upon the system to perform a service and provide a
means by which the system can return from performing
a service or from processing an interrupt. System Link-
age instructions defined by the VLE category are identi-
cal in semantics to System Linkage instructions defined

in Book I and Book III-E with the exception of the LEV
field, but are encoded differently.

se_sc provides the same functionality as the Book I
(and Book III-E) instruction sc without the LEV field.
se_rfi, se_rfci, se_rfdi, and se_rfmci provide the
same functionality as the Book III-E instructions rfi,
rfci, rfdi, and rfmci respectively.

System Call C-form,ESC-form

se_sc

e_sc ELEV [Category:Embedded.Hypervisor]

lev = ELEV
if ‘se_sc’ then

lev I 0
rr0 Iiea CIA + 2

else if ‘e_sc’ then
lev I ELEV
rr0 Iiea CIA + 4

if lev = 0 then
if MSRGS = 1 then

GSRR0 Iiea rr0
GSRR1 I MSR
if IVORs supported then

NIA I GIVPR0:47 ||
      GIVOR848:59 || 0b0000

else
NIA I GIVPR0:51 || 0x120

MSR I new_value (see below)
else

SRR0 Iiea rr0
SRR1 I MSR
if IVORs supported then

NIA I IVPR0:47 ||
      IVOR848:59 || 0b0000

else
NIA I IVPR0:51 || 0x120

MSR I new_value (see below)
else if ELEV = 1 then

SRR0 Iiea CIA + 4
SRR1 I MSR
if IVORs supported then

NIA I IVPR0:47 || IVOR4048:59 || 0b0000
else

NIA I IVPR0:51 || 0x300
MSR I new_value (see below)

If category E.HV is not implemented, the System Call
instruction behaves as if MSRGS = 0 and ELEV = 0.

If MSRGS = 0 or if ELEV = 1, the effective address of
the instruction following the System Call instruction is
placed into SRR0 and the contents of the MSR are
copied into SRR1. Otherwise, the effective address of
the instruction following the System Call instruction is
placed into GSRR0 and the contents of the MSR are
copied into GSRR1. ELEV values greater than 1 are
reserved. Bits 0:3 of the ELEV field (instruction bits
16:19) are treated as a reserved field.

If ELEV=0, a System Call interrupt is generated. If
ELEV=1, an Embedded Hypervisor System Call inter-
rupt is generated. The interrupt causes the MSR to be
set as described in Section 7.6.10 and Section 7.6.30
of Book III-E. 

If ELEV=0 or se_sc is executed, and the processor is in
guest state, instruction execution resumes at the
address given by one of the following.

GIVPR0:47 || GIVOR848:59||0b0000 if IVORs [Cate-
gory:Embedded.Phased-Out] are supported.
GIVPR0:51||0x120 if Interrupt Fixed Offsets [Cate-
gory:Embedded.Phased-In] are supported.

If ELEV=0 or se_sc is executed, and the processor is in
hypervisor state, instruction execution resumes at the
address given by one of the following.

IVPR0:47 || IVOR848:59||0b0000 if IVORs [Cate-
gory:Embedded.Phased-Out] are supported.
IVPR0:51||0x120 if Interrupt Fixed Offsets [Cate-
gory:Embedded.Phased-In] are supported.

If ELEV=1, the interrupt causes instruction execution to
resume at the address given by one of the following.

GIVPR0:47 || GIVOR4048:59||0b0000 if IVORs [Cat-
egory:Embedded.Phased-Out] are supported.
GIVPR0:51||0x300 if Interrupt Fixed Offsets [Cate-
gory:Embedded.Phased-In] are supported.

This instruction is context synchronizing.

Special Registers Altered:
SRR0 GSRR0 SRR1 GSRR1 MSR

 

02
0 15

31 /// /// ELEV 36 /
0 6 11 16 21 31

e_sc serves as both a basic and an extended mne-
monic. The Assembler will recognize an e_sc mne-
monic with one operand as the basic form, and an
e_sc mnemonic with no operand as the extended
form. In the extended form, the ELEV operand is
omitted and assumed to be 0.

Programming Note
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Illegal C-form

se_illegal

se_illegal is used to request an Illegal Instruction
exception.

The behavior is the same as if an illegal instruction was
executed.

This instruction is context synchronizing.

Special Registers Altered: 
SRR0 SRR1 MSR ESR

Return From Machine Check Interrupt
C-form

se_rfmci

MSR I MCSRR1
NIA Iiea MCSRR00:62 || 0b0

The se_rfmci instruction is used to return from a
machine check class interrupt, or as a means of estab-
lishing a new context and synchronizing on that new
context simultaneously. 

The contents of MCSRR1 are placed into the MSR. If
the new MSR value does not enable any pending
exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address
MCSRR00:62||0b0. If the new MSR value enables one
or more pending exceptions, the interrupt associated
with the highest priority pending exception is gener-
ated; in this case the values placed into the save/
restore registers by the interrupt processing mecha-
nism (see Chapter 7 of Book III-E) is the address and
MSR value of the instruction that would have been exe-
cuted next had the interrupt not occurred (that is, the
address in MCSRR0 at the time of the execution of the
se_rfmci).

This instruction is privileged and context synchronizing.

Special Registers Altered: 
MSR

0
0 15 11

0 15
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Return From Critical Interrupt C-form

se_rfci

MSR I CSRR1
NIA Iiea CSRR00:62 || 0b0

The se_rfci instruction is used to return from a critical
class interrupt, or as a means of establishing a new
context and synchronizing on that new context simulta-
neously. 

The contents of CSRR1 are placed into the MSR. If the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched, under control
of the new MSR value, from the address
CSRR00:62||0b0. If the new MSR value enables one or
more pending exceptions, the interrupt associated with
the highest priority pending exception is generated; in
this case the values placed into the save/restore regis-
ters by the interrupt processing mechanism (see Chap-
ter 7 of Book III-E) is the address and MSR value of the
instruction that would have been executed next had the
interrupt not occurred (that is, the address in CSRR0 at
the time of the execution of the se_rfci).

This instruction is privileged and context synchronizing.

Special Registers Altered: 
MSR

Return From Interrupt C-form

se_rfi

MSR I SRR1
NIA Iiea SRR00:62 || 0b0

The se_rfi instruction is used to return from a non-criti-
cal class interrupt, or as a means of establishing a new
context and synchronizing on that new context simulta-
neously.

The contents of SRR1 are placed into the MSR. If the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched under control
of the new MSR value from the address SRR00:62||0b0.
If the new MSR value enables one or more pending
exceptions, the interrupt associated with the highest
priority pending exception is generated; in this case the
values placed into the save/restore registers by the
interrupt processing mechanism (see Chapter 7 of
Book III-E) is the address and MSR value of the instruc-
tion that would have been executed next had the inter-
rupt not occurred (that is, the address in SRR0 at the
time of the execution of the se_rfi).

This instruction is privileged and context synchronizing.

Special Registers Altered: 
MSR

09
0 15

08
0 15
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Return From Debug Interrupt C-form

se_rfdi

MSR I DSRR1
NIA Iiea DSRR032:62 || 0b0

The se_rfdi instruction is used to return from a debug
class interrupt, or as a means of establishing a new
context and synchronizing on that new context simulta-
neously. 

The contents of DSRR1 are placed into the MSR. If the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched, under control
of the new MSR value, from the address
DSRR00:62||0b0. If the new MSR value enables one or
more pending exceptions, the interrupt associated with
the highest priority pending exception is generated; in
this case the value placed into the save/restore regis-
ters by the interrupt processing mechanism (see Chap-
ter 7 of Book III-E) is the address of the instruction that
would have been executed next had the interrupt not
occurred (that is, the address in DSRR0 at the time of
the execution of se_rfdi).

This instruction is privileged and context synchronizing.

Special Registers Altered:
MSR

Corequisite Categories:
Embedded.Enhanced Debug

Return From Guest Interrupt C-form

se_rfgi i

newmsr I GSRR1
if MSRGS = 1 then

newmsrGS,WE I MSRGS,WE
prots I MSRPUCLEP,DEP,PMMP
newmsr I prots & MSR | ~prots & newmsr

MSR I newmsr
NIA Iiea GSRR00:62 || 0b0

The se_rfgi instruction is used to return from a guest
state base class interrupt, or as a means of simulta-
neously establishing a new context and synchronizing
on that new context.

The contents of Guest Save/Restore Register 1 are
placed into the MSR. If the se_rfgi is executed in the
guest supervisor state (MSRGS PR = 0b10), the bits
MSRGS WE are not modified and the bits MSRUCLE DE

PMM are modified only if the associated bits in the
Machine State Register Protect (MSRP) Register are
set to 0. If the new MSR value does not enable any
pending exceptions, then the next instruction is fetched,
under control of the new MSR value, from the address
GSRR00:62||0b0. If the new MSR value enables one or
more pending exceptions, the interrupt associated with
the highest priority pending exception is generated; in
this case the value placed into the associated save/
restore register 0 by the interrupt processing mecha-
nism is the address of the instruction that would have
been executed next had the interrupt not occurred (i.e.
the address in GSRR0 at the time of the execution of
the se_rfgi).

This instruction is privileged and context synchronizing.

Special Registers Altered:
MSR

Corequisite Categories:
Embedded.Hypervisor

10
0 15

12
0 15
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4.4 Condition Register Instructions

Condition Register instructions are provided to transfer
values to and from various portions of the CR. Cate-
gory VLE does not introduce any additional functional-
ity beyond that defined in Book I for CR operations, but

does remap the CR-logical and mcrf instruction func-
tionality into primary opcode 31. These instructions
operate identically to the Book I instructions, but are
encoded differently. 

Condition Register AND XL-form

e_crand BT,BA,BB

CRBT+32 I CRBA+32 & CRBB+32

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered: 
CRBT+32

Condition Register AND with Complement
XL-form

e_crandc BT,BA,BB

CRBT+32 I CRBA+32 & ¬CRBB+32

The bit in the Condition Register specified by BA+32 is
ANDed with the one’s complement of the bit in the Con-
dition Register specified by BB+32, and the result is
placed into the bit in the Condition Register specified by
BT+32.

Special Registers Altered: 
CRBT+32

Condition Register Equivalent XL-form

e_creqv BT,BA,BB

CRBT+32 I CRBA+32 ≡ CRBB+32
The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered: 
CRBT+32

Condition Register NAND XL-form

e_crnand BT,BA,BB

CRBT+32 I ¬(CRBA+32 & CRBB+32)
The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered: 
CRBT+32

31 BT BA BB 257 /
0 6 11 16 21 31 31 BT BA BB 129 /

0 6 11 16 21 31

31 BT BA BB 289 /
0 6 11 16 21 31

31 BT BA BB 225 /
0 6 11 16 21 31
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Condition Register NOR XL-form

e_crnor BT,BA,BB

CRBT+32 I ¬(CRBA+32 | CRBB+32)

The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the complemented result is placed into the
bit in the Condition Register specified by BT+32.

Special Registers Altered: 
CRBT+32

Condition Register OR XL-form

e_cror BT,BA,BB

CRBT+32 I CRBA+32 | CRBB+32

The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the result is placed into the bit in the Con-
dition Register specified by BT+32.

Special Registers Altered: 
CRBT+32

Condition Register OR with Complement
XL-form

e_crorc BT,BA,BB

CRBT+32 I CRBA+32 | ¬CRBB+32
The bit in the Condition Register specified by BA+32 is
ORed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered: 
CRBT+32

Condition Register XOR XL-form

e_crxor BT,BA,BB

CRBT+32 I CRBA+32 ⊕ CRBB+32
The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered: 
CRBT+32

Move CR Field XL-form

e_mcrf BF,BFA

CR4xBF+32:4xBF+35 I CR4xBFA+32:4xBFA+35

The contents of Condition Register field BFA are copied
to Condition Register field BF.

Special Registers Altered: 
CR field BF

31 BT BA BB 33 /
0 6 11 16 21 31

31 BT BA BB 449 /
0 6 11 16 21 31

31 BT BA BB 417 /
0 6 11 16 21 31

31 BT BA BB 193 /
0 6 11 16 21 31

31 BF // BFA /// /// 16 /
0 6 9 11 14 16 21 31
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Chapter 5.  Fixed-Point Instructions

This section lists the fixed-point instructions supported
by category VLE. 

5.1 Fixed-Point Load Instructions

The fixed-point Load instructions compute the effective
address (EA) of the memory to be accessed as
described in Section 2.1, “Data Storage Addressing
Modes”

The byte, halfword, word, or doubleword in storage
addressed by EA is loaded into RT or RZ.

Category VLE supports both Big- and Little-Endian
byte ordering for data accesses.

Some fixed-point load instructions have an update form
in which RA is updated with the EA. For these forms, if
RA≠0 and RA≠RT, the EA is placed into RA and the
memory element (byte, halfword, word, or doubleword)
addressed by EA is loaded into RT. If RA=0 or RA =RT,

the instruction form is invalid. This is the same behavior
as specified for load with update instructions in Book I.

The fixed-point Load instructions from Book I, lbzx,
lbzux, lhzx, lhzux, lhax, lhaux, lwzx, and lwzux are
available while executing in VLE mode. The mnemon-
ics, decoding, and semantics for these instructions are
identical to those in Book I. See Section 3.3.2 of Book I
for the instruction definitions.

The fixed-point Load instructions from Book I, lwax,
lwaux, ldx, and ldux are available while executing in
VLE mode on 64-bit implementations. The mnemonics,
decoding, and semantics for these instructions are
identical to those in Book I. See Section 3.3.2 of Book
Ifor the instruction definitions.
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Load Byte and Zero D-form

e_lbz RT,D(RA)

if RA = 0 then b I 0
else b I (RA)
EA I b + EXTS(D)
RT I 560 || MEM(EA, 1)

Let the effective address (EA) be the sum (RA|0) + D.
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

Special Registers Altered: 
None

Load Byte and Zero Short Form SD4-form

se_lbz RZ,SD4(RX)

EA I (RX)+ 600 || SD4
RZ I 560 || MEM(EA, 1)

Let the effective address (EA) be the sum RX + SD4.
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

Special Registers Altered: 
None

Load Byte and Zero with Update D8-form

e_lbzu RT,D8(RA)

EA I (RA) + EXTS(D8)
RT I 560 || MEM(EA, 1)
RA I EA

Let the effective address (EA) be the sum (RA) + D8.
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered: 
None

Load Halfword Algebraic D-form

e_lha RT,D(RA)

if RA = 0 then b I 0
else b I (RA)
EA I b + EXTS(D)
RT I EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum (RA|0) + D.
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the
loaded halfword.

Special Registers Altered: 
None

Load Halfword and Zero D-form

e_lhz RT,D(RA)

if RA = 0 then b I 0
else b I (RA)
EA I b + EXTS(D)
RT I 480 || MEM(EA, 2)

Let the effective address (EA) be the sum (RA|0) + D.
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

Special Registers Altered: 
None

Load Halfword and Zero Short Form 
SD4-form

se_lhz RZ,SD4(RX)

EA I (RX)+ (590 || SD4 || 0)
RZ I 480 || MEM(EA, 2)

Let the effective address (EA) be the sum (RX) + (SD4
|| 0). The halfword in storage addressed by EA is
loaded into RZ48:63. RZ0:47 are set to 0.

Special Registers Altered: 
None

12 RT RA D
0 6 11 16 31

08 SD4 RZ RX
0 4 8 12 15

06 RT RA 0 D8
0 6 11 16 24 31

14 RT RA D
0 6 11 16 31

22 RT RA D
0 6 11 16 31 10 SD4 RZ RX

0 4 8 12 15
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Load Halfword Algebraic with Update
D8-form

e_lhau RT,D8(RA)

EA I (RA) + EXTS(D8)
RT I EXTS(MEM(EA, 2))
RA I EA

Let the effective address (EA) be the sum (RA) + D8.
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the
loaded halfword.

EA is placed into RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered: 
None

Load Halfword and Zero with Update
D8-form

e_lhzu RT,D8(RA)

EA I (RA) + EXTS(D8)
RT I 480 || MEM(EA, 2))
RA I EA

Let the effective address (EA) be the sum (RA) + D8.
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered: 
None

Load Word and Zero D-form

e_lwz RT,D(RA)

if RA = 0 then b I 0
else b I (RA)
EA I b + EXTS(D)
RT I 320 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0) + D.
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

Special Registers Altered: 
None

Load Word and Zero Short FormSD4-form

se_lwz RZ,SD4(RX)

EA I (RX)+ (580 || SD4 || 20)
RZ I 320 || MEM(EA, 2)

Let the effective address (EA) be the sum (RX) + (SD4
|| 00). The word in storage addressed by EA is loaded
into RZ32:63. RZ0:31 are set to 0.

Special Registers Altered: 
None

06 RT RA 03 D8
0 6 11 16 24 31

06 RT RA 01 D8
0 6 11 16 24 31

20 RT RA D
0 6 11 16 31

12 SD4 RZ RX
0 4 8 12 15
Chapter 5. Fixed-Point Instructions 1287



Version 2.07 B
Load Word and Zero with Update D8-form

e_lwzu RT,D8(RA)

EA I (RA) + EXTS(D8)
RT I 320 || MEM(EA, 4))
RA I EA

Let the effective address (EA) be the sum (RA) + D8.
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered: 
None

06 RT RA 02 D8
0 6 11 16 24 31
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5.2 Fixed-Point Store Instructions

The fixed-point Store instructions compute the EA of
the memory to be accessed as described in
Section 2.1, “Data Storage Addressing Modes”. 

The contents of register RS or RZ are stored into the
byte, halfword, word, or doubleword in storage
addressed by EA.

Category VLE supports both Big- and Little-Endian
byte ordering for data accesses.

Some fixed-point store instructions have an update
form, in which register RA is updated with the effective
address. For these forms, the following rules (from
Book I) apply.

If RA≠0, the effective address is placed into regis-
ter RA.

If RS=RA, the contents of register RS are copied
to the target memory element and then EA is
placed into register RA (RS).

The fixed-point Store instructions from Book I, stbx,
stbux, sthx, sthux, stwx, and stwux are available
while executing in VLE mode. The mnemonics, decod-
ing, and semantics for those instructions are identical to
those in Book I; see Section 3.3.3 of Book I for the
instruction definitions.

The fixed-point Store instructions from Book I, stdx and
stdux are available while executing in VLE mode on
64-bit implementations. The mnemonics, decoding,
and semantics for these instructions are identical to
those in Book I; see Section 3.3.3 of Book I for the
instruction definitions.

Store Byte D-form

e_stb RS,D(RA)

if RA = 0 then b I 0
else b I (RA)
EA I b + EXTS(D)
MEM(EA, 1) I (RS)56:63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)56:63 are stored in the byte in storage addressed by
EA.

Special Registers Altered: 
None

Store Byte Short Form SD4-form

se_stb RZ,SD4(RX)

EA I (RX) + EXTS(SD4)
MEM(EA, 1) I (RZ)56:63

Let the effective address (EA) be the sum (RX) + SD4.
(RZ)56:63 are stored in the byte in storage addressed by
EA.

Special Registers Altered:
None

13 RS RA D
0 6 11 16 31

09 SD4 RZ RX
0 4 8 12 15
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Store Byte with Update D8-form

e_stbu RS,D8(RA)

EA I (RA) + EXTS(D8)
MEM(EA, 1) I (RS)56:63
RA I EA

Let the effective address (EA) be the sum (RA) + D8.
(RS)56:63 are stored in the byte in storage addressed by
EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered: 
None

Store Halfword D-form

e_sth RS,D(RA)

if RA = 0 then b I 0
else b I (RA)
EA I b + EXTS(D)
MEM(EA, 2) I (RS)48:63

Let the effective address (EA) be the sum (RA|0) + D.
(RS)48:63 are stored in the halfword in storage
addressed by EA.

Special Registers Altered: 
None

Store Halfword Short Form SD4-form

se_sth RZ,SD4(RX)

EA I (RX) + (590 || SD4 || 0)
MEM(EA, 2) I (RZ)48:63

Let the effective address (EA) be the sum (RX) + (SD4
|| 0). (RZ)48:63 are stored in the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Halfword with Update D8-form

e_sthu RS,D8(RA)

EA I (RA) + EXTS(D8)
MEM(EA, 2) I (RS)48:63
RA I EA

Let the effective address (EA) be the sum (RA) + D8.
(RS)48:63 are stored in the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered: 
None

06 RS RA 04 D8
0 6 11 16 24 31

23 RS RA D
0 6 11 16 31

11 SD4 RZ RX
0 4 8 12 15

06 RS RA 05 D8
0 6 11 16 24 31
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Store Word D-form

e_stw RS,D(RA)

if RA = 0 then b I 0
else b I (RA)
EA I b + EXTS(D)
MEM(EA, 4) I (RS)32:63

Let the effective address (EA) be the sum (RA|0) + D.
(RS)32:63 are stored in the word in storage addressed
by EA.

Special Registers Altered: 
None

Store Word Short Form SD4-form

se_stw RZ,SD4(RX)

EA I (RX) + (580 || SD4 || 20)
MEM(EA, 4) I (RZ)32:63

Let the effective address (EA) be the sum (RX)+ (SD4 ||
00). (RZ)32:63 are stored in the word in storage
addressed by EA.

Special Registers Altered:
None

Store Word with Update D8-form

e_stwu RS,D8(RA)

EA I (RA) + EXTS(D8)
MEM(EA, 4) I (RS)32:63
RA I EA

Let the effective address (EA) be the sum (RA) + D8.
(RS)32:63 are stored in the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered: 
None

21 RS RA D
0 6 11 16 31

13 SD4 RZ RX
0 4 8 12 15

06 RS RA 06 D8
0 6 11 16 24 31
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5.3 Fixed-Point Load and Store 
with Byte Reversal Instructions
The fixed-point Load with Byte Reversal and Store with
Byte Reversal instructions from Book I, lhbrx, lwbrx,
sthbrx, and stwbrx are available while executing in
VLE mode. The mnemonics, decoding, and semantics
for these instructions are identical to those in Book I.
See Section 3.3.5 of Book I for the instruction defini-
tions.

5.4 Fixed-Point Load and Store 
Multiple Instructions
 

Load Multiple Word D8-form

e_lmw RT,D8(RA)

if RA = 0 then b I 0
else b I (RA)
EA I b + EXTS(D8)
r I RT
do while r ≤31

GPR(r) I 320 || MEM(EA,4)
r  I r + 1
EA I EA + 4

Let n = (32-RT). Let the effective address (EA) be the
sum (RA|0) + D8.

n consecutive words starting at EA are loaded into the
low-order 32 bits of GPRs RT through 31. The
high-order 32 bits of these GPRs are set to zero.

If RA is in the range of registers to be loaded, including
the case in which RA = 0, the instruction form is invalid.

Special Registers Altered: 
None

Store Multiple Word D8-form

e_stmw RS,D8(RA)

if RA = 0 then b I 0
else b I (RA)
EA I b + EXTS(D8)
r I RS
do while r ≤31

MEM(EA,4) I GPR(r)32:63
r  I r + 1
EA I EA + 4

Let n = (32-RS). Let the effective address (EA) be the
sum (RA|0) + D8.

n consecutive words starting at EA are stored from the
low-order 32 bits of GPRs RS through 31.

Special Registers Altered: 
None

06 RT RA 08 D8
0 6 11 16 24 31

06 RS RA 9 D8
0 6 11 16 24 31
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5.5 Fixed-Point Arithmetic 
Instructions
The fixed-point Arithmetic instructions use the contents
of the GPRs as source operands, and place results into
GPRs, into status bits in the XER and into CR0.

The fixed-point Arithmetic instructions treat source
operands as signed integers unless the instruction is
explicitly identified as performing an unsigned opera-
tion.

The e_add2i. instruction and other Arithmetic instruc-
tions with Rc=1 set the first three bits of CR0 to charac-
terize the result placed into the target register. In 64-bit
mode, these bits are set by signed comparison of the
result to 0. In 32-bit mode, these bits are set by signed
comparison of the low-order 32 bits of the result to
zero.

e_addic[.] and e_subfic[.] always set CA to reflect the
carry out of bit 0 in 64-bit mode and out of bit 32 in
32-bit mode.

The fixed-point Arithmetic instructions from Book I,
add[.], addo[.], addc[.], addco[.], adde[.], addeo[.],
addme[.], addmeo[.], addze[.], addzeo[.], divw[.],
divwo[.], divwu[.], divwuo[.], mulhw[.], mulhwu[.],
mullw[.], mullwo[.] neg[.], nego[.], subf[.], subfo[.]
subfe[.], subfeo[.], subfme[.], subfmeo[.], subfze[.],
subfzeo[.], subfc[.], and subfco[.] are available while
executing in VLE mode. The mnemonics, decoding,
and semantics for these instructions are identical to
those in Book I; see Section 3.3.9 of Book I for the
instruction definitions.

The fixed-point Arithmetic instructions from Book I,
mulld[.], mulldo[.], mulhd[.], mulhdu[.], muldu[.],
divd[.], divdo[.], divdu[.], and divduo[.] are available
while executing in VLE mode on 64-bit implementa-
tions. The mnemonics, decoding, and semantics for
those instructions are identical to these in Book I; see
Section 3.3.9 of Book I for the instruction definitions.
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Add Short Form RR-form

se_add RX,RY

RX I (RX) + (RY)

The sum (RX) + (RY) is placed into register RX.

Special Registers Altered: 
None

Add Immediate D-form

e_add16i RT,RA,SI

RT I (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered: 
None

Add (2 operand) Immediate and Record
I16A-form

e_add2i. RA,si

RA I (RA) + EXTS(si)

The sum (RA) + si is placed into register RT.

Special Registers Altered: 
CR0

Add (2 operand) Immediate Shifted
I16A-form

e_add2is RA,si

RA I (RA) + EXTS(si || 160)

The sum (RA) + (si || 0x0000) is placed into register RA.

Special Registers Altered: 
None

Add Scaled Immediate SCI8-form

e_addi RT,RA,sci8 (Rc=0)
e_addi. RT,RA,sci8 (Rc=1)

sci8 I 56-SCL×8F || UI8 ||SCL×8F
RT I (RA) + sci8

The sum (RA) + sci8 is placed into register RT.

Special Registers Altered: 
CR0  (if Rc=1)

Add Immediate Short Form OIM5-form

se_addi RX,oimm 

oimm I (590 || OIM5) + 1
RX I (RX) + oimm

The sum (RX) + oimm is placed into RX. The value of
oimm must be in the range of 1 to 32.

Special Registers Altered: 
None

01 0 RY RX
0 6 8 12 15

07 RT RA SI
0 6 11 16 31

28 si RA 17 si
0 6 11 16 21 31

28 si RA 18 si
0 6 11 16 21 31

06 RT RA 8 Rc F SCL UI8
0 6 11 16 20 21 22 24 31

08 0 OIM5 RX
0 6 7 12 15
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Add Scaled Immediate Carrying
SCI8-form

e_addic RT,RA,sci8 (Rc=0)
e_addic. RT,RA,sci8 (Rc=1)

sci8 I 56-SCL×8F || UI8 ||SCL×8F
RT I (RA) + sci8

The sum (RA) + sci8 is placed into register RT.

Special Registers Altered: 
CR0 (if Rc=1)
CA

Subtract RR-form

se_sub RX,RY 

RX I (RX) + ¬(RY) + 1
The sum (RX) + ¬(RY) + 1 is placed into register RX.

Special Registers Altered: 
None

Subtract From Short Form RR-form

se_subf RX,RY

RX I ¬(RX) + (RY) + 1
The sum ¬(RX) + (RY) + 1 is placed into register RX.

Special Registers Altered: 
None

Subtract From Scaled Immediate Carrying
SCI8-form

e_subfic RT,RA,sci8 (Rc=0)
e_subfic. RT,RA,sci8 (Rc=1)

sci8 I 56-SCL×8F || UI8 ||SCL×8F
RT I ¬(RA) + sci8 + 1

The sum ¬(RA) + sci8 + 1 is placed into register RT.

Special Registers Altered: 
CR0 (if Rc=1)
CA

Subtract Immediate OIM5-form

se_subi RX,oimm (Rc=0)
se_subi. RX,oimm (Rc=1)

oimm I (590 || OIM5) + 1
RX I (RX) + ¬oimm + 1

The sum (RA) + ¬oimm + 1 is placed into register RX.
The value of oimm must be in the range 1 to 32.

Special Registers Altered: 
CR0 (if Rc=1)

06 RT RA 9 RcF SCL UI8
0 6 11 16 20 21 22 24 31

1 2 RY RX
0 6 8 12 15

01 3 RY RX
0 6 8 12 15

06 RT RA 11 Rc F SCL UI8
0 6 11 16 20 21 22 24 31

09 Rc OIM5 RX
0 6 7 12 15
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Multiply Low Scaled Immediate SCI8-form

e_mulli RT,RA,sci8

sci8 I 56-SCL×8F || UI8 ||SCL×8F
prod0:127 I (RA) × sci8
RT I prod64:127

The 64-bit first operand is (RA). The 64-bit second
operand is the sci8 operand. The low-order 64-bits of
the 128-bit product of the operands are placed into reg-
ister RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered: 
None

Multiply (2 operand) Low Immediate
I16A-form

e_mull2i RA,si

prod0:127 I (RA) × EXTS(si)
RA I prod64:127

The 64-bit first operand is (RA). The 64-bit second
operand is the sign-extended value of the si operand.
The low-order 64-bits of the 128-bit product of the oper-
ands are placed into register RA.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered: 
None

Multiply Low Word Short Form RR-form

se_mullw RX,RY

RX I (RX)32:63 × (RY)32:63

The 32-bit operands are the low-order 32-bits of RX
and of RY. The 64-bit product of the operands is placed
into register RX.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered: 
None

Negate Short Form R-form

se_neg RX

RX I ¬(RX)+ 1
The sum ¬(RX) + 1 is placed into register RX

If the processor is in 64-bit mode and register RX con-
tains the most negative 64-bit number
(0x8000_0000_0000_0000), the result is the most neg-
ative 64-bit number. Similarly, if the processor is in
32-bit mode and register RX contains the most nega-
tive 32-bit number (0x8000_0000), the result is the
most negative 32-bit number.

Special Registers Altered: 
None

06 RT RA 20 F SCL UI8
0 6 11 16 21 22 24 31 28 si RA 20 si

0 6 11 16 21 31

01 1 RY RX
0 6 8 12 15

0 03 RX
0 6 12 15
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5.6 Fixed-Point Compare and Bit Test Instructions

The fixed-point Compare instructions compare the con-
tents of register RA or register RX with one of the fol-
lowing:

The value of the scaled immediate field sci8
formed from the F, UI8, and SCL fields as:
sci8 I 56-SCL×8F || UI8 ||SCL×8F
The zero-extended value of the UI field
The zero-extended value of the UI5 field
The sign-extended value of the SI field
The contents of register RB or register RY. 

The following comparisons are signed: e_cmph,
e_cmpi, e_cmp16i, e_cmph16i, se_cmp, se_cmph,
and se_cmpi. 

The following comparisons are unsigned: e_cmphl,
e_cmpli, e_cmphl16i, e_cmpl16i, se_cmpli,
se_cmpl, and se_cmphl.

The fixed-point Bit Test instruction tests the bit specified
by the UI5 instruction field and sets the CR0 field as fol-
lows.

.

The fixed-point Compare instructions from Book I, cmp
and cmpl are available while executing in VLE mode.
The mnemonics, decoding, and semantics for these
instructions are identical to those in Book I; see
Section 3.3.10 of Book I for the instruction definitions.

Bit Test Immediate IM5-form

se_btsti RX,UI5

a I UI5
b I a+320 || 1 ||  31-a0
c I (RX) & b
if c = 0 then d I 0b001 else d I 0b010
CR0 I d || XERSO

Bit UI5+32 of register RX is tested for equality to ’0’ and
the result is recorded in CR0. EQ is set if the tested bit
is 0, LT is cleared, and GT is set to the inverse value of
EQ.

Special Registers Altered: 
CR0

Compare Immediate Word I16A-form

e_cmp16i RA,si

b I EXTS(si)
if (RA)32:63 < b32:63 then c I 0b100
if (RA)32:63 > b32:63 then c I 0b010
if (RA)32:63 = b32:63 then c I 0b001
CR0 I c || XERSO 

The low-order 32 bits of register RA are compared with
si, treating operands as signed integers. The result of
the comparison is placed into CR0.

Special Registers Altered: 
CR0

Bit Name Description
0 LT Always set to 0
1 GT RXui5 = 1
2 EQ RXui5 = 0
3 SO Summary overflow from the XER

25 1 UI5 RX
0 6 7 12 15

28 si RA 19 si
0 6 11 16 21 31
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Compare Scaled Immediate Word
SCI8-form

e_cmpi BF32,RA,sci8

sci8 I 56-SCL×8F || UI8 ||SCL×8F
if (RA)32:63 < sci832:63 then c I 0b100
if (RA)32:63 > sci832:63 then c I 0b010
if (RA)32:63 = sci832:63 then c I 0b001
CR4×BF32+32:4×BF32+35 I c || XERSO 

The low-order 32 bits of register RA are compared with
sci8, treating operands as signed integers. The result of
the comparison is placed into CR field BF32.

Special Registers Altered: 
CR field BF32

Compare Word RR-form

se_cmp RX,RY

if (RX)32:63 < (RY)32:63 then c I 0b100
if (RX)32:63 > (RY)32:63 then c I 0b010
if (RX)32:63 = (RY)32:63 then c I 0b001
CR0 I c || XERSO 

The low-order 32 bits of register RX are compared with
the low-order 32 bits of register RY, treating operands
as signed integers. The result of the comparison is
placed into CR0.

Special Registers Altered: 
CR0

Compare Immediate Word Short Form
IM5-form

se_cmpi RX,UI5

b I 590 || UI5
if (RX)32:63 < b32:63 then c I 0b100
if (RX)32:63 > b32:63 then c I 0b010
if (RX)32:63 = b32:63 then c I 0b001
CR0 I c || XERSO 

The low-order 32 bits of register RX are compared with
UI5, treating operands as signed integers. The result of
the comparison is placed into CR0.

Special Registers Altered: 
CR0

Compare Logical Immediate Word
I16A-form

e_cmpl16i RA,ui 

b I 480 || ui
if (RA)32:63 <

u b32:63 then c I 0b100
if (RA)32:63 >

u b32:63 then c I 0b010
if (RA)32:63 = b32:63 then c I 0b001
CR0 I c || XERSO 

The low-order 32 bits of register RA are compared with
ui, treating operands as unsigned integers. The result
of the comparison is placed into CR0.

Special Registers Altered: 
CR0

06 000 BF32 RA 21 F SCL UI8
0 6 9 11 16 21 22 24 31

3 0 RY RX
0 6 8 12 15

10 1 UI5 RX
0 6 7 12 15

28 ui RA 21 ui
0 6 11 16 21 31
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Compare Logical Scaled Immediate Word
SCI8-form

e_cmpli BF32,RA,sci8

sci8 I 56-SCL×8F || UI8 ||SCL×8F
if (RA)32:63 <

u sci832:63 then c I 0b100
if (RA)32:63 >

u sci832:63 then c I 0b010
if (RA)32:63 = sci832:63 then c I 0b001
CR4×BF32+32:4×BF32+35 I c || XERSO 

The low-order 32 bits of register RA are compared with
sci8, treating operands as unsigned integers. The
result of the comparison is placed into CR field BF32.

Special Registers Altered: 
CR field BF32

Compare Logical Word RR-form

se_cmpl RX,RY

if (RX)32:63 <
u (RY)32:63 then c I 0b100

if (RX)32:63 >
u (RY)32:63 then c I 0b010

if (RX)32:63 = (RY)32:63 then c I 0b001
CR0 I c || XERSO 

The low-order 32 bits of register RX are compared with
the low-order 32 bits of register RY, treating operands
as unsigned integers. The result of the comparison is
placed into CR0.

Special Registers Altered: 
CR0

Compare Logical Immediate Word
OIM5-form

se_cmpli RX,oimm

oimm I 590 || (OIM5 + 1)
if (RX)32:63 <

u oimm32:63 then c I 0b100
if (RX)32:63 >

u oimm32:63 then c I 0b010
if (RX)32:63 = oimm32:63 then c I 0b001
CR0 I c || XERSO 

The low-order 32 bits of register RX are compared with
oimm, treating operands as unsigned integers. The
result of the comparison is placed into CR0. The value
of oimm must be in the range of 1 to 32.

Special Registers Altered:
CR0

Compare Halfword X-form

e_cmph BF,RA,RB

a I EXTS((RA)48:63)
b I EXTS((RB)48:63)
if a < b then c I 0b100
if a > b then c I 0b010
if a = b then c I 0b001
CR4×BF+32:4×BF+35 I c || XERSO

The low-order 16 bits of register RA are compared with
the low-order 16 bits of register RB, treating operands
as signed integers. The result of the comparison is
placed into CR field BF.

Special Registers Altered: 
CR field BF

06 001 BF32 RA 21 F SCL UI8
0 6 9 11 16 21 22 24 31

3 1 RY RX
0 6 8 12 15

08 1 OIM5 RX
0 6 7 12 15

31 BF 0 RA RB 14 /
0 6 9 11 16 21 31
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Compare Halfword Short Form RR-form

se_cmph RX,RY

a I EXTS((RX)48:63)
b I EXTS((RY)48:63)
if a < b then c I 0b100
if a > b then c I 0b010
if a = b then c I 0b001
CR0 I c || XERSO

The low-order 16 bits of register RX are compared with
the low-order 16 bits of register RY, treating operands
as signed integers. The result of the comparison is
placed into CR0.

Special Registers Altered: 
CR0

Compare Halfword Immediate I16A-form

e_cmph16i RA,si

a I EXTS((RA)48:63)
b I EXTS(si)
if a < b then c I 0b100
if a > b then c I 0b010
if a = b then c I 0b001
CR0 I c || XERSO 

The low-order 16 bits of register RA are compared with
si, treating operands as signed integers. The result of
the comparison is placed into CR0.

Special Registers Altered: 
CR0

Compare Halfword Logical X-form

e_cmphl BF,RA,RB

a I EXTZ((RA)48:63)
b I EXTZ((RB)48:63)
if a <u b then c I 0b100
if a >u b then c I 0b010
if a = b then c I 0b001
CR4×BF+32:4×BF+35 I c || XERSO

The low-order 16 bits of register RA are compared with
the low-order 16 bits of register RB, treating operands
as unsigned integers. The result of the comparison is
placed into CR field BF.

Special Registers Altered: 
CR field BF

Compare Halfword Logical Short Form
RR-form

se_cmphl RX,RY

a I (RX)48:63
b I (RY)48:63
if a <u b then c I 0b100
if a >u b then c I 0b010
if a = b then c I 0b001
CR0 I c || XERSO

The low-order 16 bits of register RX are compared with
the low-order 16 bits of register RY, treating operands
as unsigned integers. The result of the comparison is
placed into CR0.

Special Registers Altered: 
CR0

3 2 RY RX
0 6 8 12 15

28 si RA 22 si
0 6 11 16 21 31

31 BF 0 RA RB 46 /
0 6 9 11 16 21 31 3 3 RY RX

0 6 8 12 15
Power ISA™ - Book VLE1300



Version 2.07 B
Compare Halfword Logical Immediate
I16A-form

e_cmphl16i RA,ui

a I 480 || (RA)48:63
b I 480 || ui
if a <u b then c I 0b100
if a >u b then c I 0b010
if a = b then c I 0b001
CR0 I c || XERSO 

The low-order 16 bits of register RA are compared with
the ui field, treating operands as signed integers. The
result of the comparison is placed into CR0.

Special Registers Altered: 
CR0

5.7 Fixed-Point Trap Instruc-
tions
The fixed-point Trap instruction from Book I, tw is avail-
able while executing in VLE mode. The mnemonics,
decoding, and semantics for this instruction is identical
to that in Book I; see Section 3.3.11 of Book I for the
instruction definition.

The fixed-point Trap instruction from Book I, td is avail-
able while executing in VLE mode on 64-bit implemen-
tations. The mnemonic, decoding, and semantics for
the td instruction are identical to those in Book I; see
Section 3.3.11 of Book I for the instruction definitions.

5.8 Fixed-Point Select Instruc-
tion 
The fixed-point Select instruction provides a means to
select one of two registers and place the result in a
destination register under the control of a predicate
value supplied by a CR bit. 

The fixed-point Select instruction from Book I, isel is
available while executing in VLE mode. The mnemon-
ics, decoding, and semantics for this instruction is iden-
tical to that in Book I; see Section  of Book I for the
instruction definition.

28 ui RA 23 ui
0 6 11 16 21 31
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5.9 Fixed-Point Logical, Bit, and Move Instructions

The Logical instructions perform bit-parallel operations
on 64-bit operands. The Bit instructions manipulate a
bit, or create a bit mask, in a register. The Move instruc-
tions move a register or an immediate value into a reg-
ister.

The X-form Logical instructions with Rc=1, the
SCI8-form Logical instructions with Rc=1, the RR-form
Logical instructions with Rc=1, the e_and2i. instruc-
tion, and the e_and2is. instruction set the first three
bits of CR field 0 as the arithmetic instructions
described in Section 5.5, “Fixed-Point Arithmetic
Instructions”. (Also see Section 4.1.1.) The Logical
instructions do not change the SO, OV, and CA bits in
the XER.

The fixed-point Logical instructions from Book I, and[.],
or[.], xor[.], nand[.], nor[.], eqv[.], andc[.], orc[.],
extsb[.], extsh[.], cntlzw[.], and popcntb are available
while executing in VLE mode. The mnemonics, decod-
ing, and semantics for these instructions are identical to
those in Book I; see Section 3.3.13 of Book I for the
instruction definitions.

The fixed-point Logical instructions from Book I,
extsw[.] and cntlzd[.] are available while executing in
VLE mode on 64-bit implementations. The mnemonics,
decoding, and semantics for these instructions are
identical to those in Book I; see Section 3.3.13 of Book
I for the instruction definitions.

AND (two operand) Immediate I16L-form

e_and2i. RT,ui

RT I (RT) & (480 || ui)

The contents of register RT are ANDed with 480 || ui
and the result is placed into register RT.

Special Registers Altered: 
CR0

AND (2 operand) Immediate Shifted
I16L-form

e_and2is. RT,ui

RT I (RT) & (320 || ui || 160)

The contents of register RT are ANDed with 320 || ui ||
160 and the result is placed into register RT.

Special Registers Altered: 
CR0

AND Scaled Immediate
SCI8-form

e_andi RA,RS,sci8 (Rc=0)
e_andi. RA,RS,sci8 (Rc=1)

sci8 I 56-SCL×8F || UI8 ||SCL×8F
RA I (RS) & sci8

The contents of register RS are ANDed with sci8 and
the result is placed into register RA.

Special Registers Altered: 
CR0 (if Rc=1)

AND Immediate Short Form IM5-form

se_andi RX,UI5

RX I (RX) & 590 || UI5

The contents of register RX are ANDed with 590 || UI5
and the result is placed into register RX.

Special Registers Altered: 
None

28 RT ui 25 ui
0 6 11 16 21 31 28 RT ui 29 ui

0 6 11 16 21 31

06 RS RA 12 RcF SCL UI8
0 6 11 16 20 21 22 24 31

11 1 UI5 RX
0 6 7 12 15
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OR (two operand) Immediate I16L-form

e_or2i RT,ui

RT I (RT) | (480 || ui)

The contents of register RT are ORed with 480 || ui and
the result is placed into register RT.

Special Registers Altered: 
None

OR (2 operand) Immediate Shifted
I16L-form

e_or2is RT,ui

RT I (RT) | (320 || ui || 160)

The contents of register RT are ORed with 320 || ui ||
160 and the result is placed into register RT.

Special Registers Altered: 
None

OR Scaled Immediate SCI8-form

e_ori RA,RS,sci8 (Rc=0)
e_ori. RA,RS,sci8 (Rc=1)

sci8 I 56-SCL×8F || UI8 ||SCL×8F
RA I (RS) | sci8

The contents of register RS are ORed with sci8 and the
result is placed into register RA.

Special Registers Altered: 
CR0 (if Rc=1)

XOR Scaled Immediate SCI8-form

e_xori RA,RS,sci8 (Rc=0)
e_xori. RA,RS,sci8 (Rc=1)

sci8 I 56-SCL×8F || UI8 ||SCL×8F
RA I (RS) ⊕ sci8

The contents of register RS are XORed with sci8 and
the result is placed into register RA.

Special Registers Altered: 
CR0 (if Rc=1)

AND Short Form RR-form

se_and RX,RY (Rc=0)
se_and. RX,RY (Rc=1)

RX I (RX) & (RY)

The contents of register RX are ANDed with the con-
tents of register RY and the result is placed into register
RX.

Special Registers Altered: 
CR0 (if Rc=1)

AND with Complement Short Form
RR-form

se_andc RX,RY

RX I (RX) & ¬(RY)

The contents of register RX are ANDed with the com-
plement of the contents of register RY and the result is
placed into register RX.

Special Registers Altered: 
None

28 RT ui 24 ui
0 6 11 16 21 31 28 RT ui 26 ui

0 6 11 16 21 31

06 RS RA 13 RcF SCL UI8
0 6 11 16 20 21 22 24 31

06 RS RA 14 Rc F SCL UI8
0 6 11 16 20 21 22 24 31

17 1 Rc RY RX
0 6 7 8 12 15

17 1 RY RX
0 6 8 12 15
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OR Short Form RR-form

se_or RX,RY

RX I (RX) | (RY)

The contents of register RX are ORed with the contents
of register RY and the result is placed into register RX.

Special Registers Altered: 
None

NOT Short Form R-form

se_not RX

RX I ¬(RX)

The contents of RX are complemented and placed into
register RX.

Special Registers Altered: 
None

Bit Clear Immediate IM5-form

se_bclri RX,UI5

a I UI5
RX I (RX) & (a+321 || 0 || 31-a1)

Bit UI5+32 of register RX is set to 0.

Special Registers Altered: 
None

Bit Generate Immediate IM5-form

se_bgeni RX,UI5

a I UI5
RX I (a+320 || 1 || 31-a0)

Bit UI5+32 of register RX is set to 1. All other bits in
register RX are set to 0.

Special Registers Altered: 
None

Bit Mask Generate Immediate IM5-form

se_bmaski RX,UI5

a I UI5
if a = 0 then RX I 641
else RX I 64-a0 || a1

If UI5 is not zero, the low-order UI5 bits are set to 1 in
register RX and all other bits in register RX are set to 0.
If UI5 is 0, all bits in register RX are set to 1.

Special Registers Altered: 
None

Bit Set Immediate IM5-form

se_bseti RX,UI5

a I UI5
RX I (RX) | (a+320 || 1 || 31-a0)

Bit UI5+32 of register RX is set to 1.

Special Registers Altered: 
None

17 0 RY RX
0 6 8 12 15

0 02 RX
0 6 12 15

24 0 UI5 RX
0 6 7 12 15

24 1 UI5 RX
0 6 7 12 15

11 0 UI5 RX
0 6 7 12 15

25 0 UI5 RX
0 6 7 12 15
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Extend Sign Byte Short Form R-form

se_extsb RX

s I (RX)56
RX I 56s || (RX)56:63

(RX)56:63 are placed into RX56:63. Bit 56 of register RX
is placed into RX0:55.

Special Registers Altered: 
None

Extend Sign Halfword Short Form R-form

se_extsh RX

s I (RX)48
RX I 48s || (RX)48:63

(RX)48:63 are placed into RX48:63. Bit 48 of register RX
is placed into RX0:47.

Special Registers Altered: 
None

Extend Zero Byte R-form

se_extzb RX

RX I 560 || (RX)56:63

(RX)56:63 are placed into RX56:63. RX0:55 are set to 0.

Special Registers Altered: 
None

Extend Zero Halfword R-form

se_extzh RX

RX I 480 || (RX)48:63

(RX)48:63 are placed into RX48:63. RX0:47 are set to 0.

Special Registers Altered: 
None

Load Immediate LI20-form

e_li RT,LI20

RT I EXTS(li201:4 || li205:8 || li200 || li209:19)

The sign-extended LI20 field is placed into RT. 

Special Registers Altered: 
None

Load Immediate Short Form IM7-form

se_li RX,UI7

RX I 570 || UI7 

The zero-extended UI7 field is placed into RX. 

Special Registers Altered: 
None

Load Immediate Shifted I16L-form

e_lis RT,ui

RT I 320 || ui || 160

The zero-extended value of ui shifted left 16 bits is
placed into RT. 

Special Registers Altered: 
None

0 13 RX
0 6 12 15

0 15 RX
0 6 12 15

0 12 RX
0 6 12 15

0 14 RX
0 6 12 15

28 RT li20 0 li20 li20
0 6 11 16 17 21 31

09 UI7 RX
0 5 12 15

28 RT ui 28 ui
0 6 11 16 21 31
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Move from Alternate Register RR-form

se_mfar RX,ARY

r I ARY+8
RX I GPR(r)

The contents of register ARY+8 are placed into RX.
ARY specifies a register in the range R8:R23.

Special Registers Altered: 
None

Move Register RR-form

se_mr RX,RY

RX I (RY)

The contents of register RY are placed into RX. 

Special Registers Altered: 
None

Move To Alternate Register RR-form

se_mtar ARX,RY

r I ARX+8
GPR(r) I (RY)

The contents of register RY are placed into register
ARX+8. ARX specifies a register in the range R8:R23.

Special Registers Altered: 
None

0 3 ARY RX
0 6 8 12 15

0 1 RY RX
0 6 8 12 15

0 2 RY ARX
0 6 8 12 15
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5.10 Fixed-Point Rotate and Shift Instructions

The fixed-point Shift instructions from Book I, slw[.],
srw[.], srawi[.], and sraw[.] are available while execut-
ing in VLE mode. The mnemonics, decoding, and
semantics for those instructions are identical to those in
Book I; see Section 3.3.14.2 of Book I for the instruc-
tion definitions.

The fixed-point Shift instructions from Book I, sld[.],
srd[.], sradi[.], and srad[.] are available while execut-
ing in VLE mode on 64-bit implementations. The mne-
monics, decoding, and semantics for those instructions
are identical to those in Book I; see Section 3.3.14.2 of
Book I for the instruction definitions.

Rotate Left Word X-form 

e_rlw RA,RS,RB (Rc=0)
e_rlw. RA,RS,RB (Rc=1)

n I (RB)59:63
RA I ROTL32((RS)32:63,n)

The contents of register RS are rotated32 left the num-
ber of bits specified by (RB)59:63 and the result is
placed into register RA.

Special Registers Altered: 
CR0 (if Rc=1)

Rotate Left Word Immediate X-form

e_rlwi RA,RS,SH (Rc=0)
e_rlwi. RA,RS,SH (Rc=1)

n I SH
RA I ROTL32((RS)32:63,n)

The contents of register RS are rotated32 left SH bits
and the result is placed into register RA.

Special Registers Altered: 
CR0 (if Rc=1)

Rotate Left Word Immediate then Mask 
Insert M-form

e_rlwimi RA,RS,SH,MB,ME

n I SH
r I ROTL32((RS)32:63, n)
m I MASK(MB+32, ME+32)
RA I r&m | (RA)&¬m

The contents of register RS are rotated32 left SH bits. A
mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere. The rotated
data is inserted into register RA under control of the
generated mask.

Special Registers Altered: 
None

Rotate Left Word Immediate then AND 
with Mask M-form

e_rlwinm RA,RS,SH,MB,ME

n I SH
r I ROTL32((RS)32:63, n)
m I MASK(MB+32, ME+32)
RA I r & m

The contents of register RS are rotated32 left SH bits. A
mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere. The rotated
data is ANDed with the generated mask and the result
is placed into register RA.

Special Registers Altered:
None

31 RS RA RB 280 Rc
0 6 11 16 21 31

31 RS RA SH 312 Rc
0 6 11 16 21 31

29 RS RA SH MB ME 0
0 6 11 16 21 26 31

29 RS RA SH MB ME 1
0 6 11 16 21 26 31
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Shift Left Word Immediate X-form

e_slwi RA,RS,SH (Rc=0)
e_slwi. RA,RS,SH (Rc=1)

n I SH
r I ROTL32((RS)32:63, n)
m I MASK(32, 63-n)
RA I r & m

The contents of the low-order 32 bits of register RS are
shifted left SH bits. Bits shifted out of position 32 are
lost. Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed into RA32:63. RA0:31
are set to 0.

Special Registers Altered: 
CR0 (if Rc=1)

Shift Left Word Immediate Short Form
IM5-form

se_slwi RX,UI5

n I UI5
r I ROTL32((RX)32:63, n)
m I MASK(32, 63-n)
RX I r & m

The contents of the low-order 32 bits of register RX are
shifted left UI5 bits. Bits shifted out of position 32 are
lost. Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed into RX32:63. RX0:31
are set to 0.

Special Registers Altered:
None

Shift Left Word RR-form

se_slw RX,RY

n I (RY)58:63
r I ROTL32((RX)32:63, n)
if (RY)58 = 0 then m I MASK(32, 63-n)
else m I 640
RX I r & m

The contents of the low-order 32 bits of register RX are
shifted left the number of bits specified by (RY)58:63.
Bits shifted out of position 32 are lost. Zeros are sup-
plied to the vacated positions on the right. The 32-bit
result is placed into RX32:63. RX0:31 are set to 0. Shift
amounts from 32-63 give a zero result.

Special Registers Altered:
None

Shift Right Algebraic Word Immediate
IM5-form

se_srawi RX,UI5

n I UI5
r I ROTL32((RX)32:63, 64-n)
m I MASK(n+32, 63)
s I (RX)32
RX I r&m | (64s)&¬m
CA I s & ((r&¬m)32:63≠0)
The contents of the low-order 32 bits of register RX are
shifted right UI5 bits. Bits shifted out of position 63 are
lost, and bit 32 of RX is replicated to fill the vacated
positions on the left. Bit 32 of RX is replicated to fill
RX0:31 and the 32-bit result is placed into RX32:63. CA
is set to 1 if the low-order 32 bits of register RX contain
a negative value and any 1-bits are shifted out of bit
position 63; otherwise CA is set to 0. A shift amount of
zero causes RX to receive EXTS((RX)32:63), and CA to
be set to 0.

Special Registers Altered:
CA

31 RS RA SH 56 Rc
0 6 11 16 21 31

27 0 UI5 RX
0 6 7 12 15

16 2 RY RX
0 6 8 12 15 26 1 UI5 RX

0 6 7 12 15
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Shift Right Algebraic Word RR-form

se_sraw RX,RY

n I (RY)59:63
r I ROTL32((RX)32:63, 64-n)
if (RY)58 = 0 then m I MASK(n+32, 63)
else m I 640
s I (RX)32
RX I r&m | (64s)&¬m
CA I s & ((r&¬m)32:63≠0)

The contents of the low-order 32 bits of register RX are
shifted right the number of bits specified by (RY)58:63.
Bits shifted out of position 63 are lost, and bit 32 of RX
is replicated to fill the vacated positions on the left. Bit
32 of RX is replicated to fill RX0:31 and the 32-bit result
is placed into RX32:63. CA is set to 1 if the low-order 32
bits of register RX contain a negative value and any
1-bits are shifted out of bit position 63; otherwise CA is
set to 0. A shift amount of zero causes RX to receive
EXTS((RX)32:63), and CA to be set to 0. Shift amounts
from 32-63 give a result of 64 sign bits, and cause CA
to receive the sign bit of (RX)32:63.

Special Registers Altered:
CA

Shift Right Word Immediate X-form

e_srwi RA,RS,SH (Rc=0)
e_srwi. RA,RS,SH (Rc=1)

n I SH
r I ROTL32((RS)32:63, 64-n)
m I MASK(n+32, 63)
RA I r & m

The contents of the low-order 32 bits of register RS are
shifted right SH bits. Bits shifted out of position 63 are
lost. Zeros are supplied to the vacated positions on the
left. The 32-bit result is placed into RA32:63. RA0:31 are
set to 0.

Special Registers Altered:
CR0 (if Rc=1)

Shift Right Word Immediate Short Form
IM5-form

se_srwi RX,UI5 

n I UI5
r I ROTL32((RX)32:63, 64-n)
m I MASK(n+32, 63)
RX I r & m

The contents of the low-order 32 bits of register RX are
shifted right UI5 bits. Bits shifted out of position 63 are
lost. Zeros are supplied to the vacated positions on the
left. The 32-bit result is placed into RX32:63. RX0:31 are
set to 0.

Special Registers Altered:
None

Shift Right Word RR-form

se_srw RX,RY

n I (RY)59:63
r I ROTL32((RX)32:63, 64-n)
if (RY)58 = 0 then m I MASK(n+32, 63)
else m I 640
RX I r & m

The contents of the low-order 32 bits of register RX are
shifted right the number of bits specified by (RY)58:63.
Bits shifted out of position 63 are lost. Zeros are sup-
plied to the vacated positions on the left. The 32-bit
result is placed into RX32:63. RX0:31 are set to 0. Shift
amounts from 32 to 63 give a zero result.

Special Registers Altered:
None

16 1 RY RX
0 6 8 12 15 31 RS RA SH 568 Rc

0 6 11 16 21 31

26 0 UI5 RX
0 6 7 12 15

16 0 RY RX
0 6 8 12 15
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5.11 Move To/From System Register Instructions

The VLE category provides 16-bit forms of instructions
to move to/from the LR and CTR.

The fixed-point Move To/From System Register instruc-
tions from Book I, mfspr, mtcrf, mfcr, mfdcrx, mtocrf,
mfocrf, mcrxr, mtdcrx, mtdcrux, mfdcrux, and mtspr
are available while executing in VLE mode. The mne-
monics, decoding, and semantics for these instructions
are identical to those in Book I; see Section 3.3.17 of
Book I for the instruction definitions.

The fixed-point Move To/From System Register instruc-
tions from Book III-E, mfspr<E.DC>, mtspr, mfdcr,
mtdcr<E.DC>, mtmsr, mfmsr, wrtee, and wrteei are
available while executing in VLE mode. The mnemon-
ics, decoding, and semantics for these instructions are
identical to those in Book III-E; see Section 5.4.1 of
Book III-E for the instruction definitions.

Move From Count Register R-form

se_mfctr RX

RX I CTR

The CTR contents are placed into register RX.

Special Registers Altered: 
None

Move From Link Register R-form

se_mflr RX

RX I LR

The LR contents are placed into register RX.

Special Registers Altered: 
None

Move To Count Register R-form

se_mtctr RX

CTR I (RX)

The contents of register RX are placed into the CTR.

Special Registers Altered: 
CTR

Move To Link Register R-form

se_mtlr RX

LR I (RX)

The contents of register RX are placed into the LR.

Special Registers Altered: 
LR

0 10 RX
0 6 12 15

0 8 RX
0 6 12 15

0 11 RX
0 6 12 15

0 9 RX
0 6 12 15
Power ISA™ - Book VLE1310



Version 2.07 B
Chapter 6.  Storage Control Instructions

6.1 Storage Synchronization 
Instructions
The memory synchronization instructions implemented
by category VLE are identical in semantics to those
defined in Book II and Book III-E. The se_isync
instruction is defined by category VLE, but has the
same semantics as isync.

The Load and Reserve and Store Conditional instruc-
tions from Book II, lbarx, lharx, lwarx, stbcx., sthcx.,
and stwcx., are available while executing in VLE mode.
The mnemonics, decoding, and semantics for those
instructions are identical to those in Book II; see
Section 4.4.2 of Book II for the instruction definitions.

The Load and Reserve and Store Conditional instruc-
tions from Book II, ldarx and stdcx. are available while
executing in VLE mode on 64-bit implementations. The
mnemonics, decoding, and semantics for those instruc-
tions are identical to those in Book II; see Section 4.4.2
of Book II for the instruction definitions.

The Memory Barrier instructions from Book II, sync
and mbar are available while executing in VLE mode.
The mnemonics, decoding, and semantics for those
instructions are identical to those in Book II; see
Section 4.4.3 of Book II for the instruction definitions.

The wait instruction from Book II is available while exe-
cuting in VLE mode if the category Wait is imple-
mented. The mnemonics, decoding, and semantics for
wait are identical to those in Book II; see Section 4.4 of
Book II for the instruction definition.

Instruction Synchronize C-form

se_isync

Executing an se_isync instruction ensures that all
instructions preceding the se_isync instruction have
completed before the se_isync instruction completes,
and that no subsequent instructions are initiated until
after the se_isync instruction completes. It also
ensures that all instruction cache block invalidations
caused by icbi instructions preceding the se_isync
instruction have been performed with respect to the
processor executing the se_isync instruction, and then
causes any prefetched instructions to be discarded.

Except as described in the preceding sentence, the
se_isync instruction may complete before storage
accesses associated with instructions preceding the
se_isync instruction have been performed. This
instruction is context synchronizing.

The se_isync instruction has identical semantics to the
Book II isync instruction, but has a different encoding.

Special Registers Altered: 
None

01
0 15
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6.2 Cache Management Instruc-
tions
Cache management instructions implemented by cate-
gory VLE are identical to those defined in Book II and
Book III-E.

The Cache Management instructions from Book II,
dcba, dcbf, dcbst, dcbt, dcbtst, dcbz, icbi, and icbt
are available while executing in VLE mode. The mne-
monics, decoding, and semantics for these instructions
are identical to those in Book II; see Section 4.3 of
Book II for the instruction definitions.

The Cache Management instruction from Book III-E,
dcbi is available while executing in VLE mode. The
mnemonics, decoding, and semantics for this instruc-
tion are identical to those in Book III-E; see
Section 6.11.1 of Book III-E for the instruction defini-
tion.

6.3 Cache Locking Instructions
Cache locking instructions implemented by category
VLE are identical to those defined in Book III-E. If the
Cache Locking instructions are implemented in cate-
gory VLE, the Category: Embedded Cache Locking
must also be implemented.

The Cache Locking instructions from Book III-E,
dcbtls, dcbtstls, dcblc, dcblq., icbtls, icblq., and
icblc  are available while executing in VLE mode. The
mnemonics, decoding, and semantics for these instruc-
tions are identical to those in Book III-E; see
Section 6.11.2 of Book III-E for the instruction defini-
tions.

6.4 TLB Management Instruc-
tions
The TLB Management instructions implemented by cat-
egory VLE are identical to those defined in Book III-E. 

The TLB Management instructions from Book III-E,
tlbre, tlbwe, tlbivax, tlbilx, tlbsync, tlbsrx. <E.TWC>,
and tlbsx are available while executing in VLE mode.
The mnemonics, decoding, and semantics for these
instructions are identical to those in Book III-E. See
Section 6.11.4.9 of Book III-E.

Instructions and resources described in Chapter 6 of
Book III-E are available if the appropriate category is
implemented.

6.5 Instruction Alignment and 
Byte Ordering
Only Big-Endian instruction memory is supported when
executing from a page of VLE instructions. Attempting
to fetch VLE instructions from a page marked as Lit-
tle-Endian generates an instruction storage interrupt
byte-ordering exception.
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Chapter 7.  Additional Categories Available in VLE

Instructions and resources from categories other than
Base and Embedded are available in VLE. These
include categories for which all the instructions in the
category use primary opcode 4 or primary opcode 31.

7.1 Move Assist
Move Assist instructions implemented by category VLE
are identical to those defined in Book I. If category
Move Assist is supported in non-VLE mode, Move
Assist instructions are also supported in VLE mode.
The mnemonics, decoding, and semantics for those
instructions are identical to those in Book I; see
Section 3.3.7 of Book I for the instruction definitions.

7.2 Vector
Vector instructions implemented by category VLE are
identical to those defined in Book I. If category Vector is
supported in non-VLE mode, Vector instructions are
also supported in VLE mode. The mnemonics, decod-
ing, and semantics for those instructions are identical to
those in Book I; see Chapter 6 of Book I for the instruc-
tion definitions.

7.3 Signal Processing Engine
Signal Processing Engine instructions implemented by
category VLE are identical to those defined in Book I. If
category Signal Processing Engine is supported in
non-VLE mode, Signal Processing Engine instructions
are also supported in VLE mode. The mnemonics,
decoding, and semantics for those instructions are
identical to those in Book I; see Chapter 8 of Book I for
the instruction definitions.

7.4 Embedded Floating Point
Embedded Floating Point instructions implemented by
category VLE are identical to those defined in Book I. If
category SPE.Embedded Float Scalar Double,
SPE.Embedded Float Scalar Single, or SPE.Embed-
ded Float Vector is supported in non-VLE mode, the
appropriate Embedded Floating Point instructions are
also supported in VLE mode. The mnemonics, decod-
ing, and semantics for those instructions are identical to

those in Book I; see Chapter 9 of Book I for the instruc-
tion definitions.

7.5 Legacy Move Assist
Legacy Move Assist instructions implemented by cate-
gory VLE are identical to those defined in Book I. If cat-
egory Legacy Move Assist is supported in non-VLE
mode, Legacy Move Assist instructions are also sup-
ported in VLE mode. The mnemonics, decoding, and
semantics for those instructions are identical to those in
Book I; see Chapter 10 of Book I for the instruction def-
initions.

7.6 Embedded Hypervisor
Embedded Hypervisor instructions implemented by cat-
egory VLE are not identical to those defined in Book III
- E. The ehpriv instruction is identical in mnemonics,
decoding, and semantics to the instruction defined in
Book III-E. See Section 4.3.1 of Book III-E for the
instruction definition. The sc instruction which provides
a LEV field for executing calls to the hypervisor soft-
ware is implemented as e_sc, which is defined in
Section 4.3 of Book VLE. The rfgi instruction is imple-
mented as se_rfgi, which is also defined in Section 4.3
of Book VLE. If Category: Embedded Hypervisor is
supported in non-VLE mode, Embedded Hypervisor
instructions are also supported in VLE mode.

7.7 External PID
External Process ID instructions implemented by cate-
gory VLE are identical to those defined in Book III-E. If
Category: Embedded.External PID is supported in
non-VLE mode, External Process ID instructions are
also supported in VLE mode. The mnemonics, decod-
ing, and semantics for those instructions are identical to
those in Book III-E; see Chapter 5.3.7 of Book III-E for
the instruction definitions.
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7.8 Embedded Performance 
Monitor
Embedded Performance Monitor instructions imple-
mented by category VLE are identical to those defined
in Book III-E. If Category: Embedded.Performance
Monitor is supported in non-VLE mode, Embedded
Performance Monitor instructions are also supported in
VLE mode. The mnemonics, decoding, and semantics
for those instructions are identical to those in Book
III-E; see Appendix D of Book III-E for the instruction
definitions.

7.9 Processor Control
Processor Control instructions implemented by cate-
gory VLE are identical to those defined in Book III-E. If
Category: Embedded.Processor Control is supported
in non-VLE mode, Processor Control instructions are
also supported in VLE mode. The mnemonics, decod-
ing, and semantics for those instructions are identical to
those in Book III-E; see Chapter 11. for the instruction
definitions.

7.10 Decorated Storage
Decorated Storage instructions implemented by cate-
gory VLE are identical to those defined in Book II. If
category Decorated Storage is supported in non-VLE
mode, Decorated Storage instructions are also sup-
ported in VLE mode. The mnemonics, decoding, and
semantics for those instructions are identical to those in
Book II; see Chapter 8 of Book II for the instruction def-
initions.

7.11 Embedded Cache Initializa-
tion
Embedded Cache Initialization instructions imple-
mented by category VLE are identical to those defined
in Book III-E. If Category: Embedded.Cache Initializa-
tion is supported in non-VLE mode, Embedded Cache
Initialization instructions are also supported in VLE
mode. The mnemonics, decoding, and semantics for
those instructions are identical to those in Book III-E;
Chapter A.1 of Book III-E for the instruction definitions.

7.12 Embedded Cache Debug
Embedded Cache Debug instructions implemented by
category VLE are identical to those defined in Book
III-E. If Category: Embedded.Cache Debug is sup-
ported in non-VLE mode, Embedded Cache Debug
instructions are also supported in VLE mode. The mne-
monics, decoding, and semantics for those instructions

are identical to those in Book III-E; Chapter A.2 of Book
III-E for the instruction definitions.
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Appendix A.  VLE Instruction Set Sorted by Mnemonic

This appendix lists all the instructions available in VLE mode in the Power ISA, in order by mnemonic. Opcodes that
are not defined below are treated as illegal by category VLE.
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XO 7C000214 SR B add[o][.] Add
XO 7C000014 SR B addc[o][.] Add Carrying
XO 7C000114 SR B adde[o][.] Add Extended
XO 7C0001D4 SR B addme[o][.] Add to Minus One Extended
XO 7C000194 SR B addze[o][.] Add to Zero Extended
X 7C000038 SR B and[.] AND
X 7C000078 SR B andc[.] AND with Complement
EVX 1000020F SP brinc Bit Reversed Increment
X 7C000000 B cmp Compare
X 7C000040 B cmpl Compare Logical
X 7C000074 SR 64 cntlzd[.] Count Leading Zeros Doubleword
X 7C000034 SR B cntlzw[.] Count Leading Zeros Word
X 7C0005EC E dcba Data Cache Block Allocate
X 7C0000AC B dcbf Data Cache Block Flush
X 7C0000FE P E.PD dcbfep Data Cache Block Flush by External PID
X 7C0003AC P E dcbi Data Cache Block Invalidate
X 7C00030C M ECL dcblc Data Cache Block Lock Clear
X 7C00034D M ECL dcblq. Data Cache Block Lock Query
X 7C00006C B dcbst Data Cache Block Store
X 7C00007E E.PD dcbstep Data Cache Block Store by External PID
X 7C00022C B dcbt Data Cache Block Touch
X 7C00027E P E.PD dcbtep Data Cache Block Touch by External PID
X 7C00014C M ECL dcbtls Data Cache Block Touch and Lock Set
X 7C0001EC B dcbtst Data Cache Block Touch for Store
X 7C0001FE P E.PD dcbtstep Data Cache Block Touch for Store by External PID
X 7C00010C M ECL dcbtstls Data Cache Block Touch for Store and Lock Set
X 7C0007EC B dcbz Data Cache Block set to Zero
X 7C0007FE P E.PD dcbzep Data Cache Block set to Zero by External PID
X 7C00038C H E.CI dci Data Cache Invalidate
X 7C0003CC H E.CD dcread Data Cache Read [Alternative Encoding]
XO 7C0003D2 SR 64 divd[o][.] Divide Doubleword
XO 7C000392 SR 64 divdu[o][.] Divide Doubleword Unsigned
XO 7C0003D6 SR B divw[o][.] Divide Word
XO 7C000396 SR B divwu[o][.] Divide Word Unsigned
X 7C00009C SR LMV dlmzb[.] Determine Leftmost Zero Byte
X 7C0003C6 DS dsn Decorated Storage Notify
D 1C000000 VLE e_add16i Add Immediate
I16A 70008800 SR VLE e_add2i. Add (2 operand) Immediate and Record
I16A 70009000 VLE e_add2is Add (2 operand) Immediate Shifted
SCI8 18008000 SR VLE e_addi[.] Add Scaled Immediate
SCI8 18009000 SR VLE e_addic[.] Add Scaled Immediate Carrying
I16L 7000C800 SR VLE e_and2i. AND (two operand) Immediate
I16L 7000E800 SR VLE e_and2is. AND (2 operand) Immediate Shifted
SCI8 1800C000 SR VLE e_andi[.] AND Scaled Immediate
BD24 78000000 VLE e_b[l] Branch [and Link]
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BD15 7A000000 CT VLE e_bc[l] Branch Conditional [and Link]
I16A 70009800 VLE e_cmp16i Compare Immediate Word
X 7C00001C VLE e_cmph Compare Halfword
I16A 7000B000 VLE e_cmph16i Compare Halfword Immediate
X 7C00005C VLE e_cmphl Compare Halfword Logical
I16A 7000B800 VLE e_cmphl16i Compare Halfword Logical Immediate
SCI8 1800A800 VLE e_cmpi Compare Scaled Immediate Word
I16A 7000A800 VLE e_cmpl16i Compare Logical Immediate Word
SCI8 1880A800 VLE e_cmpli Compare Logical Scaled Immediate Word
XL 7C000202 VLE e_crand Condition Register AND
XL 7C000102 VLE e_crandc Condition Register AND with Complement
XL 7C000242 VLE e_creqv Condition Register Equivalent
XL 7C0001C2 VLE e_crnand Condition Register NAND
XL 7C000042 VLE e_crnor Condition Register NOR
XL 7C000382 VLE e_cror Condition Register OR
XL 7C000342 VLE e_crorc Condition Register OR with Complement
XL 7C000182 VLE e_crxor Condition Register XOR
D 30000000 VLE e_lbz Load Byte and Zero
D8 18000000 VLE e_lbzu Load Byte and Zero with Update
D 38000000 VLE e_lha Load Halfword Algebraic
D8 18000300 VLE e_lhau Load Halfword Algebraic with Update
D 58000000 VLE e_lhz Load Halfword and Zero
D8 18000100 VLE e_lhzu Load Halfword and Zero with Update
LI20 70000000 VLE e_li Load Immediate
I16L 7000E000 VLE e_lis Load Immediate Shifted
D8 18000800 VLE e_lmw Load Multiple Word
D 50000000 VLE e_lwz Load Word and Zero
D8 18000200 VLE e_lwzu Load Word and Zero with Update
XL 7C000020 VLE e_mcrf Move CR Field
I16A 7000A000 VLE e_mull2i Multiply (2 operand) Low Immediate
SCI8 1800A000 VLE e_mulli Multiply Low Scaled Immediate
I16L 7000C000 VLE e_or2i OR (two operand) Immediate
I16L 7000D000 VLE e_or2is OR (2 operand) Immediate Shifted
SCI8 1800D000 SR VLE e_ori[.] OR Scaled Immediate
X 7C000230 SR VLE e_rlw[.] Rotate Left Word
X 7C000270 SR VLE e_rlwi[.] Rotate Left Word Immediate
M 74000000 VLE e_rlwimi Rotate Left Word Immediate then Mask Insert
M 74000001 VLE e_rlwinm Rotate Left Word Immediate then AND with Mask
ESC 7C000048 VLE,

E.HV
e_sc System Call

X 7C000070 SR VLE e_slwi[.] Shift Left Word Immediate
X 7C000470 SR VLE e_srwi[.] Shift Right Word Immediate
D 34000000 VLE e_stb Store Byte
D8 18000400 VLE e_stbu Store Byte with Update
D 5C000000 VLE e_sth Store Halfword
D8 18000500 VLE e_sthu Store Halfword with Update
D8 18000900 VLE e_stmw Store Multiple Word
D 54000000 VLE e_stw Store Word
D8 18000600 VLE e_stwu Store Word with Update
SCI8 1800B000 SR VLE e_subfic[.] Subtract From Scaled Immediate Carrying
SCI8 1800E000 SR VLE e_xori[.] XOR Scaled Immediate
EVX 100002E4 SP.FD efdabs Floating-Point Double-Precision Absolute Value
EVX 100002E0 SP.FD efdadd Floating-Point Double-Precision Add
EVX 100002EF SP.FD efdcfs Floating-Point Double-Precision Convert from Single-Pre-

cision
EVX 100002F3 SP.FD efdcfsf Convert Floating-Point Double-Precision from Signed 

Fraction
EVX 100002F1 SP.FD efdcfsi Convert Floating-Point Double-Precision from Signed 

Integer
EVX 100002E3 SP.FD efdcfsid Convert Floating-Point Double-Precision from Signed 

Integer Doubleword
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EVX 100002F2 SP.FD efdcfuf Convert Floating-Point Double-Precision from Unsigned 
Fraction

EVX 100002F0 SP.FD efdcfui Convert Floating-Point Double-Precision from Unsigned 
Integer

EVX 100002E2 SP.FD efdcfuid Convert Floating-Point Double-Precision from Unsigned 
Integer Doubleword

EVX 100002EE SP.FD efdcmpeq Floating-Point Double-Precision Compare Equal
EVX 100002EC SP.FD efdcmpgt Floating-Point Double-Precision Compare Greater Than
EVX 100002ED SP.FD efdcmplt Floating-Point Double-Precision Compare Less Than
EVX 100002F7 SP.FD efdctsf Convert Floating-Point Double-Precision to Signed Frac-

tion
EVX 100002F5 SP.FD efdctsi Convert Floating-Point Double-Precision to Signed Inte-

ger
EVX 100002EB SP.FD efdctsidz Convert Floating-Point Double-Precision to Signed Inte-

ger Doubleword with Round toward Zero
EVX 100002FA SP.FD efdctsiz Convert Floating-Point Double-Precision to Signed Inte-

ger with Round toward Zero
EVX 100002F6 SP.FD efdctuf Convert Floating-Point Double-Precision to Unsigned 

Fraction
EVX 100002F4 SP.FD efdctui Convert Floating-Point Double-Precision to Unsigned 

Integer
EVX 100002EA SP.FD efdctuidz Convert Floating-Point Double-Precision to Unsigned 

Integer Doubleword with Round toward Zero
EVX 100002F8 SP.FD efdctuiz Convert Floating-Point Double-Precision to Unsigned 

Integer with Round toward Zero
EVX 100002E9 SP.FD efddiv Floating-Point Double-Precision Divide
EVX 100002E8 SP.FD efdmul Floating-Point Double-Precision Multiply
EVX 100002E5 SP.FD efdnabs Floating-Point Double-Precision Negative Absolute Value
EVX 100002E6 SP.FD efdneg Floating-Point Double-Precision Negate
EVX 100002E1 SP.FD efdsub Floating-Point Double-Precision Subtract
EVX 100002FE SP.FD efdtsteq Floating-Point Double-Precision Test Equal
EVX 100002FC SP.FD efdtstgt Floating-Point Double-Precision Test Greater Than
EVX 100002FD SP.FD efdtstlt Floating-Point Double-Precision Test Less Than
EVX 100002C4 SP.FS efsabs Floating-Point Single-Precision Absolute Value
EVX 100002C0 SP.FS efsadd Floating-Point Single-Precision Add
EVX 100002CF SP.FD efscfd Floating-Point Single-Precision Convert from Double-Pre-

cision
EVX 100002D3 SP.FS efscfsf Convert Floating-Point Single-Precision from Signed 

Fraction
EVX 100002D1 SP.FS efscfsi Convert Floating-Point Single-Precision from Signed Inte-

ger
EVX 100002D2 SP.FS efscfuf Convert Floating-Point Single-Precision from Unsigned 

Fraction
EVX 100002D0 SP.FS efscfui Convert Floating-Point Single-Precision from Unsigned 

Integer
EVX 100002CE SP.FS efscmpeq Floating-Point Single-Precision Compare Equal
EVX 100002CC SP.FS efscmpgt Floating-Point Single-Precision Compare Greater Than
EVX 100002CD SP.FS efscmplt Floating-Point Single-Precision Compare Less Than
EVX 100002D7 SP.FS efsctsf Convert Floating-Point Single-Precision to Signed Frac-

tion
EVX 100002D5 SP.FS efsctsi Convert Floating-Point Single-Precision to Signed Integer
EVX 100002DA SP.FS efsctsiz Convert Floating-Point Single-Precision to Signed Integer 

with Round Towards Zero
EVX 100002D6 SP.FS efsctuf Convert Floating-Point Single-Precision to Unsigned 

Fraction
EVX 100002D4 SP.FS efsctui Convert Floating-Point Single-Precision to Unsigned Inte-

ger
EVX 100002D8 SP.FS efsctuiz Convert Floating-Point Single-Precision to Unsigned Inte-

ger with Round Towards Zero
EVX 100002C9 SP.FS efsdiv Floating-Point Single-Precision Divide
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EVX 100002C8 SP.FS efsmul Floating-Point Single-Precision Multiply
EVX 100002C5 SP.FS efsnabs Floating-Point Single-Precision Negative Absolute Value
EVX 100002C6 SP.FS efsneg Floating-Point Single-Precision Negate
EVX 100002C1 SP.FS efssub Floating-Point Single-Precision Subtract
EVX 100002DE SP.FS efststeq Floating-Point Single-Precision Test Equal
EVX 100002DC SP.FS efststgt Floating-Point Single-Precision Test Greater Than
EVX 100002DD SP.FS efststlt Floating-Point Single-Precision Test Less Than
XL 7C00021C E.HV ehpriv Embedded Hypervisor Privilege
X 7C000238 SR B eqv[.] Equivalent
EVX 10000208 SP evabs Vector Absolute Value
EVX 10000202 SP evaddiw Vector Add Immediate Word
EVX 100004C9 SP evaddsmiaaw Vector Add Signed, Modulo, Integer to Accumulator Word
EVX 100004C1 SP evaddssiaaw Vector Add Signed, Saturate, Integer to Accumulator 

Word
EVX 100004C8 SP evaddumiaaw Vector Add Unsigned, Modulo, Integer to Accumulator 

Word
EVX 100004C0 SP evaddusiaaw Vector Add Unsigned, Saturate, Integer to Accumulator 

Word
EVX 10000200 SP evaddw Vector Add Word
EVX 10000211 SP evand Vector AND
EVX 10000212 SP evandc Vector AND with Complement
EVX 10000234 SP evcmpeq Vector Compare Equal
EVX 10000231 SP evcmpgts Vector Compare Greater Than Signed
EVX 10000230 SP evcmpgtu Vector Compare Greater Than Unsigned
EVX 10000233 SP evcmplts Vector Compare Less Than Signed
EVX 10000232 SP evcmpltu Vector Compare Less Than Unsigned
EVX 1000020E SP evcntlsw Vector Count Leading Signed Bits Word
EVX 1000020D SP evcntlzw Vector Count Leading Zeros Word
EVX 100004C6 SP evdivws Vector Divide Word Signed
EVX 100004C7 SP evdivwu Vector Divide Word Unsigned
EVX 10000219 SP eveqv Vector Equivalent
EVX 1000020A SP evextsb Vector Extend Sign Byte
EVX 1000020B SP evextsh Vector Extend Sign Halfword
EVX 10000284 SP.FV evfsabs Vector Floating-Point Single-Precision Absolute Value
EVX 10000280 SP.FV evfsadd Vector Floating-Point Single-Precision Add
EVX 10000293 SP.FV evfscfsf Vector Convert Floating-Point Single-Precision from 

Signed Fraction
EVX 10000291 SP.FV evfscfsi Vector Convert Floating-Point Single-Precision from 

Signed Integer
EVX 10000292 SP.FV evfscfuf Vector Convert Floating-Point Single-Precision from 

Unsigned Fraction
EVX 10000290 SP.FV evfscfui Vector Convert Floating-Point Single-Precision from 

Unsigned Integer
EVX 1000028E SP.FV evfscmpeq Vector Floating-Point Single-Precision Compare Equal
EVX 1000028C SP.FV evfscmpgt Vector Floating-Point Single-Precision Compare Greater 

Than
EVX 1000028D SP.FV evfscmplt Vector Floating-Point Single-Precision Compare Less 

Than
EVX 10000297 SP.FV evfsctsf Vector Convert Floating-Point Single-Precision to Signed 

Fraction
EVX 10000295 SP.FV evfsctsi Vector Convert Floating-Point Single-Precision to Signed 

Integer
EVX 1000029A SP.FV evfsctsiz Vector Convert Floating-Point Single-Precision to Signed 

Integer with Round Toward Zero
EVX 10000296 SP.FV evfsctuf Vector Convert Floating-Point Single-Precision to 

Unsigned Fraction
EVX 10000294 SP.FV evfsctui Vector Convert Floating-Point Single-Precision to 

Unsigned Integer
EVX 10000298 SP.FV evfsctuiz Vector Convert Floating-Point Single-Precision to 

Unsigned Integer with Round toward Zero
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EVX 10000289 SP.FV evfsdiv Vector Floating-Point Single-Precision Divide
EVX 10000288 SP.FV evfsmul Vector Floating-Point Single-Precision Multiply
EVX 10000285 SP.FV evfsnabs Vector Floating-Point Single-Precision Negative Absolute 

Value
EVX 10000286 SP.FV evfsneg Vector Floating-Point Single-Precision Negate
EVX 10000281 SP.FV evfssub Vector Floating-Point Single-Precision Subtract
EVX 1000029E SP.FV evfststeq Vector Floating-Point Single-Precision Test Equal
EVX 1000029C SP.FV evfststgt Vector Floating-Point Single-Precision Test Greater Than
EVX 1000029D SP.FV evfststlt Vector Floating-Point Single-Precision Test Less Than
EVX 10000301 SP evldd Vector Load Double Word into Double Word
EVX 7C00063E P E.PD evlddepx Vector Load Doubleword into Doubleword by External 

Process ID Indexed
EVX 10000300 SP evlddx Vector Load Double Word into Double Word Indexed
EVX 10000305 SP evldh Vector Load Double Word into Four Halfwords
EVX 10000304 SP evldhx Vector Load Double Word into Four Halfwords Indexed
EVX 10000303 SP evldw Vector Load Double Word into Two Words
EVX 10000302 SP evldwx Vector Load Double Word into Two Words Indexed
EVX 10000309 SP evlhhesplat Vector Load Halfword into Halfwords Even and Splat
EVX 10000308 SP evlhhesplatx Vector Load Halfword into Halfwords Even and Splat 

Indexed
EVX 1000030F SP evlhhossplat Vector Load Halfword into Halfword Odd and Splat
EVX 1000030E SP evlhhossplatx Vector Load Halfword into Halfword Odd Signed and 

Splat Indexed
EVX 1000030D SP evlhhousplat Vector Load Halfword into Halfword Odd Unsigned and 

Splat
EVX 1000030C SP evlhhousplatx Vector Load Halfword into Halfword Odd Unsigned and 

Splat Indexed
EVX 10000311 SP evlwhe Vector Load Word into Two Halfwords Even
EVX 10000310 SP evlwhex Vector Load Word into Two Halfwords Even Indexed
EVX 10000317 SP evlwhos Vector Load Word into Two Halfwords Odd Signed (with 

sign extension)
EVX 10000316 SP evlwhosx Vector Load Word into Two Halfwords Odd Signed 

Indexed (with sign extension)
EVX 10000315 SP evlwhou Vector Load Word into Two Halfwords Odd Unsigned 

(zero-extended)
EVX 10000314 SP evlwhoux Vector Load Word into Two Halfwords Odd Unsigned 

Indexed (zero-extended)
EVX 1000031D SP evlwhsplat Vector Load Word into Two Halfwords and Splat
EVX 1000031C SP evlwhsplatx Vector Load Word into Two Halfwords and Splat Indexed
EVX 10000319 SP evlwwsplat Vector Load Word into Word and Splat
EVX 10000318 SP evlwwsplatx Vector Load Word into Word and Splat Indexed
EVX 1000022C SP evmergehi Vector Merge High
EVX 1000022E SP evmergehilo Vector Merge High/Low
EVX 1000022D SP evmergelo Vector Merge Low
EVX 1000022F SP evmergelohi Vector Merge Low/High
EVX 1000052B SP evmhegsmfaa Vector Multiply Halfwords, Even, Guarded, Signed, Mod-

ulo, Fractional and Accumulate
EVX 100005AB SP evmhegsmfan Vector Multiply Halfwords, Even, Guarded, Signed, Mod-

ulo, Fractional and Accumulate Negative
EVX 10000529 SP evmhegsmiaa Vector Multiply Halfwords, Even, Guarded, Signed, Mod-

ulo, Integer and Accumulate
EVX 100005A9 SP evmhegsmian Vector Multiply Halfwords, Even, Guarded, Signed, Mod-

ulo, Integer and Accumulate Negative
EVX 10000528 SP evmhegumiaa Vector Multiply Halfwords, Even, Guarded, Unsigned, 

Modulo, Integer and Accumulate
EVX 100005A8 SP evmhegumian Vector Multiply Halfwords, Even, Guarded, Unsigned, 

Modulo, Integer and Accumulate Negative
EVX 1000040B SP evmhesmf Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional
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EVX 1000042B SP evmhesmfa Vector Multiply Halfwords, Even, Signed, Modulo, Frac-
tional to Accumulate

EVX 1000050B SP evmhesmfaaw Vector Multiply Halfwords, Even, Signed, Modulo, Frac-
tional and Accumulate into Words

EVX 1000058B SP evmhesmfanw Vector Multiply Halfwords, Even, Signed, Modulo, Frac-
tional and Accumulate Negative into Words

EVX 10000409 SP evmhesmi Vector Multiply Halfwords, Even, Signed, Modulo, Integer
EVX 10000429 SP evmhesmia Vector Multiply Halfwords, Even, Signed, Modulo, Integer 

to Accumulator
EVX 10000509 SP evmhesmiaaw Vector Multiply Halfwords, Even, Signed, Modulo, Integer 

and Accumulate into Words
EVX 10000589 SP evmhesmianw Vector Multiply Halfwords, Even, Signed, Modulo, Integer 

and Accumulate Negative into Words
EVX 10000403 SP evmhessf Vector Multiply Halfwords, Even, Signed, Saturate, Frac-

tional
EVX 10000423 SP evmhessfa Vector Multiply Halfwords, Even, Signed, Saturate, Frac-

tional to Accumulator
EVX 10000503 SP evmhessfaaw Vector Multiply Halfwords, Even, Signed, Saturate, Frac-

tional and Accumulate into Words
EVX 10000583 SP evmhessfanw Vector Multiply Halfwords, Even, Signed, Saturate, Frac-

tional and Accumulate Negative into Words
EVX 10000501 SP evmhessiaaw Vector Multiply Halfwords, Even, Signed, Saturate, Inte-

ger and Accumulate into Words
EVX 10000581 SP evmhessianw Vector Multiply Halfwords, Even, Signed, Saturate, Inte-

ger and Accumulate Negative into Words
EVX 10000408 SP evmheumi Vector Multiply Halfwords, Even, Unsigned, Modulo, Inte-

ger
EVX 10000428 SP evmheumia Vector Multiply Halfwords, Even, Unsigned, Modulo, Inte-

ger to Accumulator
EVX 10000508 SP evmheumiaaw Vector Multiply Halfwords, Even, Unsigned, Modulo, Inte-

ger and Accumulate into Words
EVX 10000588 SP evmheumianw Vector Multiply Halfwords, Even, Unsigned, Modulo, Inte-

ger and Accumulate Negative into Words
EVX 10000500 SP evmheusiaaw Vector Multiply Halfwords, Even, Unsigned, Saturate, 

Integer and Accumulate into Words
EVX 10000580 SP evmheusianw Vector Multiply Halfwords, Even, Unsigned, Saturate, 

Integer and Accumulate Negative into Words
EVX 1000052F SP evmhogsmfaa Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-

ulo, Fractional and Accumulate
EVX 100005AF SP evmhogsmfan Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-

ulo, Fractional and Accumulate Negative
EVX 1000052D SP evmhogsmiaa Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-

ulo, Integer, and Accumulate
EVX 100005AD SP evmhogsmian Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-

ulo, Integer and Accumulate Negative
EVX 1000052C SP evmhogumiaa Vector Multiply Halfwords, Odd, Guarded, Unsigned, 

Modulo, Integer and Accumulate
EVX 100005AC SP evmhogumian Vector Multiply Halfwords, Odd, Guarded, Unsigned, 

Modulo, Integer and Accumulate Negative
EVX 1000040F SP evmhosmf Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-

tional
EVX 1000042F SP evmhosmfa Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-

tional to Accumulator
EVX 1000050F SP evmhosmfaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-

tional and Accumulate into Words
EVX 1000058F SP evmhosmfanw Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-

tional and Accumulate Negative into Words
EVX 1000040D SP evmhosmi Vector Multiply Halfwords, Odd, Signed, Modulo, Integer
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EVX 1000042D SP evmhosmia Vector Multiply Halfwords, Odd, Signed, Modulo, Integer 
to Accumulator

EVX 1000050D SP evmhosmiaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Integer 
and Accumulate into Words

EVX 1000058D SP evmhosmianw Vector Multiply Halfwords, Odd, Signed, Modulo, Integer 
and Accumulate Negative into Words

EVX 10000407 SP evmhossf Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional

EVX 10000427 SP evmhossfa Vector Multiply Halfwords, Odd, Signed, Fractional to 
Accumulator

EVX 10000507 SP evmhossfaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional and Accumulate into Words

EVX 10000587 SP evmhossfanw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional and Accumulate Negative into Words

EVX 10000505 SP evmhossiaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Integer 
and Accumulate into Words

EVX 10000585 SP evmhossianw Vector Multiply Halfwords, Odd, Signed, Saturate, Integer 
and Accumulate Negative into Words

EVX 1000040C SP evmhoumi Vector Multiply Halfwords, Odd, Unsigned, Modulo, Inte-
ger

EVX 1000042C SP evmhoumia Vector Multiply Halfwords, Odd, Unsigned, Modulo, Inte-
ger to Accumulator

EVX 1000050C SP evmhoumiaaw Vector Multiply Halfwords, Odd, Unsigned, Modulo, Inte-
ger and Accumulate into Words

EVX 1000058C SP evmhoumianw Vector Multiply Halfwords, Odd, Unsigned, Modulo, Inte-
ger and Accumulate Negative into Words

EVX 10000504 SP evmhousiaaw Vector Multiply Halfwords, Odd, Unsigned, Saturate, Inte-
ger and Accumulate into Words

EVX 10000584 SP evmhousianw Vector Multiply Halfwords, Odd, Unsigned, Saturate, Inte-
ger and Accumulate Negative into Words

EVX 100004C4 SP evmra Initialize Accumulator
EVX 1000044F SP evmwhsmf Vector Multiply Word High Signed, Modulo, Fractional
EVX 1000046F SP evmwhsmfa Vector Multiply Word High Signed, Modulo, Fractional to 

Accumulator
EVX 1000044D SP evmwhsmi Vector Multiply Word High Signed, Modulo, Integer
EVX 1000046D SP evmwhsmia Vector Multiply Word High Signed, Modulo, Integer to 

Accumulator
EVX 10000447 SP evmwhssf Vector Multiply Word High Signed, Saturate, Fractional
EVX 10000467 SP evmwhssfa Vector Multiply Word High Signed, Saturate, Fractional to 

Accumulator
EVX 1000044C SP evmwhumi Vector Multiply Word High Unsigned, Modulo, Integer
EVX 1000046C SP evmwhumia Vector Multiply Word High Unsigned, Modulo, Integer to 

Accumulator
EVX 10000549 SP evmwlsmiaaw Vector Multiply Word Low Signed, Modulo, Integer and 

Accumulate into Words
EVX 100005C9 SP evmwlsmianw Vector Multiply Word Low Signed, Modulo, Integer and 

Accumulate Negative in Words
EVX 10000541 SP evmwlssiaaw Vector Multiply Word Low Signed, Saturate, Integer and 

Accumulate into Words
EVX 100005C1 SP evmwlssianw Vector Multiply Word Low Signed, Saturate, Integer and 

Accumulate Negative in Words
EVX 10000448 SP evmwlumi Vector Multiply Word Low Unsigned, Modulo, Integer
EVX 10000468 SP evmwlumia Vector Multiply Word Low Unsigned, Modulo, Integer to 

Accumulator
EVX 10000548 SP evmwlumiaaw Vector Multiply Word Low Unsigned, Modulo, Integer and 

Accumulate into Words
EVX 100005C8 SP evmwlumianw Vector Multiply Word Low Unsigned, Modulo, Integer and 

Accumulate Negative in Words
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Version 2.07 B
EVX 10000540 SP evmwlusiaaw Vector Multiply Word Low Unsigned, Saturate, Integer 
and Accumulate into Words

EVX 100005C0 SP evmwlusianw Vector Multiply Word Low Unsigned, Saturate, Integer 
and Accumulate Negative in Words

EVX 1000045B SP evmwsmf Vector Multiply Word Signed, Modulo, Fractional
EVX 1000047B SP evmwsmfa Vector Multiply Word Signed, Modulo, Fractional to Accu-

mulator
EVX 1000055B SP evmwsmfaa Vector Multiply Word Signed, Modulo, Fractional and 

Accumulate
EVX 100005DB SP evmwsmfan Vector Multiply Word Signed, Modulo, Fractional and 

Accumulate Negative
EVX 10000459 SP evmwsmi Vector Multiply Word Signed, Modulo, Integer
EVX 10000479 SP evmwsmia Vector Multiply Word Signed, Modulo, Integer to Accumu-

lator
EVX 10000559 SP evmwsmiaa Vector Multiply Word Signed, Modulo, Integer and Accu-

mulate
EVX 100005D9 SP evmwsmian Vector Multiply Word Signed, Modulo, Integer and Accu-

mulate Negative
EVX 10000453 SP evmwssf Vector Multiply Word Signed, Saturate, Fractional
EVX 10000473 SP evmwssfa Vector Multiply Word Signed, Saturate, Fractional to 

Accumulator
EVX 10000553 SP evmwssfaa Vector Multiply Word Signed, Saturate, Fractional and 

Accumulate
EVX 100005D3 SP evmwssfan Vector Multiply Word Signed, Saturate, Fractional and 

Accumulate Negative
EVX 10000458 SP evmwumi Vector Multiply Word Unsigned, Modulo, Integer
EVX 10000478 SP evmwumia Vector Multiply Word Unsigned, Modulo, Integer to Accu-

mulator
EVX 10000558 SP evmwumiaa Vector Multiply Word Unsigned, Modulo, Integer and 

Accumulate
EVX 100005D8 SP evmwumian Vector Multiply Word Unsigned, Modulo, Integer and 

Accumulate Negative
EVX 1000021E SP evnand Vector NAND
EVX 10000209 SP evneg Vector Negate
EVX 10000218 SP evnor Vector NOR
EVX 10000217 SP evor Vector OR
EVX 1000021B SP evorc Vector OR with Complement
EVX 10000228 SP evrlw Vector Rotate Left Word
EVX 1000022A SP evrlwi Vector Rotate Left Word Immediate
EVX 1000020C SP evrndw Vector Round Word
EVS 10000278 SP evsel Vector Select
EVX 10000224 SP evslw Vector Shift Left Word
EVX 10000226 SP evslwi Vector Shift Left Word Immediate
EVX 1000022B SP evsplatfi Vector Splat Fractional Immediate
EVX 10000229 SP evsplati Vector Splat Immediate
EVX 10000223 SP evsrwis Vector Shift Right Word Immediate Signed
EVX 10000222 SP evsrwiu Vector Shift Right Word Immediate Unsigned
EVX 10000221 SP evsrws Vector Shift Right Word Signed
EVX 10000220 SP evsrwu Vector Shift Right Word Unsigned
EVX 10000321 SP evstdd Vector Store Double of Double
EVX 7C00073E P E.PD evstddepx Vector Store Doubleword into Doubleword by External 

Process ID Indexed
EVX 10000320 SP evstddx Vector Store Doubleword of Doubleword Indexed
EVX 10000325 SP evstdh Vector Store Double of Four Halfwords
EVX 10000324 SP evstdhx Vector Store Double of Four Halfwords Indexed
EVX 10000323 SP evstdw Vector Store Double of Two Words
EVX 10000322 SP evstdwx Vector Store Double of Two Words Indexed
EVX 10000331 SP evstwhe Vector Store Word of Two Halfwords from Even
EVX 10000330 SP evstwhex Vector Store Word of Two Halfwords from Even Indexed
EVX 10000335 SP evstwho Vector Store Word of Two Halfwords from Odd
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EVX 10000334 SP evstwhox Vector Store Word of Two Halfwords from Odd Indexed
EVX 10000339 SP evstwwe Vector Store Word of Word from Even
EVX 10000338 SP evstwwex Vector Store Word of Word from Even Indexed
EVX 1000033D SP evstwwo Vector Store Word of Word from Odd
EVX 1000033C SP evstwwox Vector Store Word of Word from Odd Indexed
EVX 100004CB SP evsubfsmiaaw Vector Subtract Signed, Modulo, Integer to Accumulator 

Word
EVX 100004C3 SP evsubfssiaaw Vector Subtract Signed, Saturate, Integer to Accumulator 

Word
EVX 100004CA SP evsubfumiaaw Vector Subtract Unsigned, Modulo, Integer to Accumula-

tor Word
EVX 100004C2 SP evsubfusiaaw Vector Subtract Unsigned, Saturate, Integer to Accumula-

tor Word
EVX 10000204 SP evsubfw Vector Subtract from Word
EVX 10000206 SP evsubifw Vector Subtract Immediate from Word
EVX 10000216 SP evxor Vector XOR
X 7C000774 SR B extsb[.] Extend Sign Byte
X 7C000734 SR B extsh[.] Extend Sign Halfword
X 7C0007B4 SR 64 extsw[.] Extend Sign Word
X 7C0007AC B icbi Instruction Cache Block Invalidate
X 7C0007BE P E.PD icbiep Instruction Cache Block Invalidate by External PID
X 7C0001CC M ECL icblc Instruction Cache Block Lock Clear
X 7C00018D M ECL icblq. Instruction Cache Block Lock Query
X 7C00002C B icbt Instruction Cache Block Touch
X 7C0003CC M ECL icbtls Instruction Cache Block Touch and Lock Set
X 7C00078C H E.CI ici Instruction Cache Invalidate
X 7C0007CC H E.CD icread Instruction Cache Read
A 7C00001E B isel Integer Select
X 7C000068 B lbarx Load Byte and Reserve Indexed
X 7C000406 DS lbdx Load Byte with Decoration Indexed
X 7C0000BE P E.PD lbepx Load Byte by External Process ID Indexed
X 7C0000EE B lbzux Load Byte and Zero with Update Indexed
X 7C0000AE B lbzx Load Byte and Zero Indexed
X 7C0000A8 64 ldarx Load Doubleword And Reserve Indexed
X 7C0004C6 DS lddx Load Doubleword with Decoration Indexed
X 7C00003A P E.PD;64 ldepx Load Doubleword by External Process ID Indexed
X 7C00006A 64 ldux Load Doubleword with Update Indexed
X 7C00002A 64 ldx Load Doubleword Indexed
X 7C000646 DS lfddx Load Floating Doubleword with Decoration Indexed
X 7C0004BE P E.PD lfdepx Load Floating-Point Double by External Process ID 

Indexed
X 7C0000E8 B lharx Load Halfword and Reserve Indexed
X 7C0002EE B lhaux Load Halfword Algebraic with Update Indexed
X 7C0002AE B lhax Load Halfword Algebraic Indexed
X 7C00062C B lhbrx Load Halfword Byte-Reverse Indexed
X 7C000446 DS lhdx Load Halfword with Decoration Indexed
X 7C00023E P E.PD lhepx Load Halfword by External Process ID Indexed
X 7C00026E B lhzux Load Halfword and Zero with Update Indexed
X 7C00022E B lhzx Load Halfword and Zero Indexed
X 7C0004AA MA lswi Load String Word Immediate
X 7C00042A MA lswx Load String Word Indexed
X 7C00000E V lvebx Load Vector Element Byte Indexed
X 7C00004E V lvehx Load Vector Element Halfword Indexed
X 7C00024E P E.PD lvepx Load Vector by External Process ID Indexed
X 7C00020E P E.PD lvepxl Load Vector by External Process ID Indexed LRU
X 7C00008E V lvewx Load Vector Element Word Indexed
X 7C00000C V lvsl Load Vector for Shift Left Indexed
X 7C00004C V lvsr Load Vector for Shift Right  Indexed
X 7C0000CE V lvx Load Vector Indexed
X 7C0002CE V lvxl Load Vector Indexed  LRU
X 7C000028 B lwarx Load Word And Reserve Indexed
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Version 2.07 B
X 7C0002EA 64 lwaux Load Word Algebraic with Update Indexed
X 7C0002AA 64 lwax Load Word Algebraic Indexed
X 7C00042C B lwbrx Load Word Byte-Reverse Indexed
X 7C000486 DS lwdx Load Word with Decoration Indexed
X 7C00003E P E.PD lwepx Load Word by External Process ID Indexed
X 7C00006E B lwzux Load Word and Zero with Update Indexed
X 7C00002E B lwzx Load Word and Zero Indexed
XO 10000158 SR LMA macchw[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Signed
XO 100001D8 SR LMA macchws[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Signed
XO 10000198 SR LMA macchwsu[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Unsigned
XO 10000118 SR LMA macchwu[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Unsigned
XO 10000058 SR LMA machhw[o][.] Multiply Accumulate High Halfword to Word Modulo 

Signed
XO 100000D8 SR LMA machhws[o][.] Multiply Accumulate High Halfword to Word Saturate 

Signed
XO 10000098 SR LMA machhwsu[o][.] Multiply Accumulate High Halfword to Word Saturate 

Unsigned
XO 10000018 SR LMA machhwu[o][.] Multiply Accumulate High Halfword to Word Modulo 

Unsigned
XO 10000358 SR LMA maclhw[o][.] Multiply Accumulate Low Halfword to Word Modulo 

Signed
XO 100003D8 SR LMA maclhws[o][.] Multiply Accumulate Low Halfword to Word Saturate 

Signed
XO 10000398 SR LMA maclhwsu[o][.] Multiply Accumulate Low Halfword to Word Saturate 

Unsigned
XO 10000318 SR LMA maclhwu[o][.] Multiply Accumulate Low Halfword to Word Modulo 

Unsigned
X 7C0006AC E mbar Memory Barrier
X 7C000400 E mcrxr Move To Condition Register from XER
XFX 7C000026 B mfcr Move From Condition Register
XFX 7C000286 P E.DC mfdcr Move From Device Control Register
X 7C000246 E.DC mfdcrux Move From Device Control Register User-mode Indexed
X 7C000206 P E.DC mfdcrx Move From Device Control Register Indexed
X 7C0000A6 P B mfmsr Move From Machine State Register
XFX 7C100026 B mfocrf Move From One Condition Register Field
XFX 7C00029C O E.PM mfpmr Move From Performance Monitor Register
XFX 7C0002A6 O B mfspr Move From Special Purpose Register
VX 10000604 V mfvscr Move From VSCR
X 7C0001DC H  E.PC msgclr Message Clear
X 7C00019C H E.PC msgsnd Message Send
XFX 7C000120 B mtcrf Move To Condition Register Fields
XFX 7C000386 P E.DC mtdcr Move To Device Control Register
X 7C000346 E.DC mtdcrux Move To Device Control Register User-mode Indexed
X 7C000306 P E.DC mtdcrx Move To Device Control Register Indexed
X 7C000124 P E mtmsr Move To Machine State Register
XFX 7C100120 B mtocrf Move To One Condition Register Field
XFX 7C00039C O E.PM mtpmr Move To Performance Monitor Register
XFX 7C0003A6 O B mtspr Move To Special Purpose Register
VX 10000644 V mtvscr Move To VSCR
X 10000150 SR LMA mulchw[.] Multiply Cross Halfword to Word Signed
X 10000110 SR LMA mulchwu[.] Multiply Cross Halfword to Word Unsigned
XO 7C000092 SR 64 mulhd[.] Multiply High Doubleword
XO 7C000012 SR 64 mulhdu[.] Multiply High Doubleword Unsigned
X 10000050 SR LMA mulhhw[.] Multiply High Halfword to Word Signed
X 10000010 SR LMA mulhhwu[.] Multiply High Halfword to Word Unsigned
XO 7C000096 SR B mulhw[.] Multiply High Word
XO 7C000016 SR B mulhwu[.] Multiply High Word Unsigned
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Version 2.07 B
XO 7C0001D2 SR 64 mulld[o][.] Multiply Low Doubleword
X 10000350 SR LMA mullhw[.] Multiply Low Halfword to Word Signed
X 10000310 SR LMA mullhwu[.] Multiply Low Halfword to Word Unsigned
XO 7C0001D6 SR B mullw[o][.] Multiply Low Word
X 7C0003B8 SR B nand[.] NAND
XO 7C0000D0 SR B neg[o][.] Negate
XO 1000015C SR LMA nmacchw[o][.] Negative Multiply Accumulate Cross Halfword to Word 

Modulo Signed
XO 100001DC SR LMA nmacchws[o][.] Negative Multiply Accumulate Cross Halfword to Word 

Saturate Signed
XO 1000005C SR LMA nmachhw[o][.] Negative Multiply Accumulate High Halfword to Word 

Modulo Signed
XO 100000DC SR LMA nmachhws[o][.] Negative Multiply Accumulate High Halfword to Word Sat-

urate Signed
XO 1000035C SR LMA nmaclhw[o][.] Negative Multiply Accumulate Low Halfword to Word 

Modulo Signed
XO 100003DC SR LMA nmaclhws[o][.] Negative Multiply Accumulate Low Halfword to Word Sat-

urate Signed
X 7C0000F8 SR B nor[.] NOR
X 7C000378 SR B or[.] OR
X 7C000338 SR B orc[.] OR with Complement
X 7C0000F4 B popcntb Population Count Bytes
RR 0400---- VLE se_add Add Short Form
OIM5 2000---- VLE se_addi Add Immediate Short Form
RR 4600---- SR VLE se_and[.] AND Short Form
RR 4500---- VLE se_andc AND with Complement Short Form
IM5 2E00---- VLE se_andi AND Immediate Short Form
BD8 E800---- VLE se_b[l] Branch [and Link]
BD8 E000---- VLE se_bc Branch Conditional Short Form
IM5 6000---- VLE se_bclri Bit Clear Immediate
C 0006---- VLE se_bctr[l] Branch to Count Register [and Link]
IM5 6200---- VLE se_bgeni Bit Generate Immediate
C 0004---- VLE se_blr[l] Branch to Link Register [and Link]
IM5 2C00---- VLE se_bmaski Bit Mask Generate Immediate
IM5 6400---- VLE se_bseti Bit Set Immediate
IM5 6600---- VLE se_btsti Bit Test Immediate
RR 0C00---- VLE se_cmp Compare Word
RR 0E00---- VLE se_cmph Compare Halfword Short Form
RR 0F00---- VLE se_cmphl Compare Halfword Logical Short Form
IM5 2A00---- VLE se_cmpi Compare Immediate Word Short Form
RR 0D00---- VLE se_cmpl Compare Logical Word
OIM5 2200---- VLE se_cmpli Compare Logical Immediate Word
R 00D0---- VLE se_extsb Extend Sign Byte Short Form
R 00F0---- VLE se_extsh Extend Sign Halfword Short Form
R 00C0---- VLE se_extzb Extend Zero Byte
R 00E0---- VLE se_extzh Extend Zero Halfword
C 0000---- VLE se_illegal Illegal
C 0001---- VLE se_isync Instruction Synchronize
SD4 8000---- VLE se_lbz Load Byte and Zero Short Form
SD4 A000---- VLE se_lhz Load Halfword and Zero Short Form
IM7 4800---- VLE se_li Load Immediate Short Form
SD4 C000---- VLE se_lwz Load Word and Zero Short Form
RR 0300---- VLE se_mfar Move from Alternate Register
R 00A0---- VLE se_mfctr Move From Count Register
R 0080---- VLE se_mflr Move From Link Register
RR 0100---- VLE se_mr Move Register
RR 0200---- VLE se_mtar Move To Alternate Register
R 00B0---- VLE se_mtctr Move To Count Register
R 0090---- VLE se_mtlr Move To Link Register
RR 0500---- VLE se_mullw Multiply Low Word Short Form
R 0030---- VLE se_neg Negate Short Form

F
o

rm

Opcode
(hexadeci-

mal)2 M
o

d
e

 D
ep

.1

P
ri

v1

Cat1 Mnemonic Instruction
Appendix A. VLE Instruction Set Sorted by Mnemonic 1325



Version 2.07 B
R 0020---- VLE se_not NOT Short Form
RR 4400---- VLE se_or OR Short Form
C 0009---- H VLE se_rfci Return From Critical Interrupt
C 000A---- H VLE se_rfdi Return From Debug Interrupt
C 000C---- P VLE,

E.HV
se_rfgi Return From Guest Interrupt

C 0008---- P VLE se_rfi Return From Interrupt
C 000B---- H VLE se_rfmci Return From Machine Check Interrupt
C 0002---- VLE se_sc System Call
RR 4200---- VLE se_slw Shift Left Word
IM5 6C00---- VLE se_slwi Shift Left Word Immediate Short Form
RR 4100---- VLE se_sraw Shift Right Algebraic Word
IM5 6A00---- VLE se_srawi Shift Right Algebraic Immediate
RR 4000---- VLE se_srw Shift Right Word
IM5 6800---- VLE se_srwi Shift Right Word Immediate Short Form
SD4 9000---- VLE se_stb Store Byte Short Form
SD4 B000---- VLE se_sth Store Halfword Short Form
SD4 D000---- VLE se_stw Store Word Short Form
RR 0600---- VLE se_sub Subtract
RR 0700---- VLE se_subf Subtract From Short Form
OIM5 2400---- SR VLE se_subi[.] Subtract Immediate
X 7C000036 SR 64 sld[.] Shift Left Doubleword
X 7C000030 SR B slw[.] Shift Left Word
X 7C000634 SR 64 srad[.] Shift Right Algebraic Doubleword
XS 7C000674 SR 64 sradi[.] Shift Right Algebraic Doubleword Immediate
X 7C000630 SR B sraw[.] Shift Right Algebraic Word
X 7C000670 SR B srawi[.] Shift Right Algebraic Word Immediate
X 7C000436 SR 64 srd[.] Shift Right Doubleword
X 7C000430 SR B srw[.] Shift Right Word
X 7C00056D B stbcx. Store Byte Conditional Indexed
X 7C000506 DS stbdx Store Byte with Decoration Indexed
X 7C0001BE P E.PD stbepx Store Byte by External Process ID Indexed
X 7C0001EE B stbux Store Byte with Update Indexed
X 7C0001AE B stbx Store Byte Indexed
X 7C0001AD 64 stdcx. Store Doubleword Conditional Indexed
X 7C0005C6 DS stddx Store Doubleword with Decoration Indexed
X 7C00013A P E.PD;64 stdepx Store Doubleword by External Process ID Indexed
X 7C00016A 64 stdux Store Doubleword with Update Indexed
X 7C00012A 64 stdx Store Doubleword Indexed
X 7C000746 DS stfddx Store Floating Doubleword with Decoration Indexed
X 7C0005BE P E.PD stfdepx Store Floating-Point Double by External Process ID 

Indexed
X 7C00072C B sthbrx Store Halfword Byte-Reverse Indexed
X 7C0005AD B sthcx. Store Halfword Conditional Indexed
X 7C000546 DS sthdx Store Halfword with Decoration Indexed
X 7C00033E P E.PD sthepx Store Halfword by External Process ID Indexed
X 7C00036E B sthux Store Halfword with Update Indexed
X 7C00032E B sthx Store Halfword Indexed
X 7C0005AA MA stswi Store String Word Immediate
X 7C00052A MA stswx Store String Word Indexed
X 7C00010E V stvebx Store Vector Element Byte Indexed
X 7C00014E V stvehx Store Vector Element Halfword Indexed
X 7C00064E P E.PD stvepx Store Vector by External Process ID Indexed
X 7C00060E P E.PD stvepxl Store Vector by External Process ID Indexed LRU
X 7C00018E V stvewx Store Vector Element Word Indexed
X 7C0001CE V stvx Store Vector Indexed
X 7C0003CE V stvxl Store Vector Indexed LRU
X 7C00052C B stwbrx Store Word Byte-Reverse Indexed
X 7C00012D B stwcx. Store Word Conditional Indexed
X 7C000586 DS stwdx Store Word with Decoration Indexed
X 7C00013E P E.PD stwepx Store Word by External Process ID Indexed
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X 7C00016E B stwux Store Word with Update Indexed
X 7C00012E B stwx Store Word Indexed
XO 7C000050 SR B subf[o][.] Subtract From
XO 7C000010 SR B subfc[o][.] Subtract From Carrying
XO 7C000110 SR B subfe[o][.] Subtract From Extended
XO 7C0001D0 SR B subfme[o][.] Subtract From Minus One Extended
XO 7C000190 SR B subfze[o][.] Subtract From Zero Extended
X 7C0004AC B sync Synchronize
X 7C000088 64 td Trap Doubleword
X 7C000624 H E tlbivax TLB Invalidate Virtual Address Indexed
X 7C000764 H E tlbre TLB Read Entry
X 7C000724 H E tlbsx TLB Search Indexed
X 7C00046C H E tlbsync TLB Synchronize
X 7C0007A4 H E tlbwe TLB Write Entry
X 7C000008 B tw Trap Word
VX 10000180 V vaddcuw Vector Add and write Carry-out Unsigned Word
VX 1000000A V vaddfp Vector Add Single-Precision
VX 10000300 V vaddsbs Vector Add Signed Byte Saturate
VX 10000340 V vaddshs Vector Add Signed Halfword Saturate
VX 10000380 V vaddsws Vector Add Signed Word Saturate
VX 10000000 V vaddubm Vector Add Unsigned Byte Modulo
VX 10000200 V vaddubs Vector Add Unsigned Byte Saturate
VX 10000040 V vadduhm Vector Add Unsigned Halfword Modulo
VX 10000240 V vadduhs Vector Add Unsigned Halfword Saturate
VX 10000080 V vadduwm Vector Add Unsigned Word Modulo
VX 10000280 V vadduws Vector Add Unsigned Word Saturate
VX 10000404 V vand Vector Logical AND
VX 10000444 V vandc Vector Logical AND with Complement
VX 10000502 V vavgsb Vector Average Signed Byte
VX 10000542 V vavgsh Vector Average Signed Halfword
VX 10000582 V vavgsw Vector Average Signed Word
VX 10000402 V vavgub Vector Average Unsigned Byte
VX 10000442 V vavguh Vector Average Unsigned Halfword
VX 10000482 V vavguw Vector Average Unsigned Word
VX 1000034A V vcfsx Vector Convert From Signed Fixed-Point Word
VX 1000030A V vcfux Vector Convert From Unsigned Fixed-Point Word 
VC 100003C6 V vcmpbfp[.] Vector Compare Bounds Single-Precision
VC 100000C6 V vcmpeqfp[.] Vector Compare Equal To Single-Precision
VC 10000006 V vcmpequb[.] Vector Compare Equal To Unsigned Byte
VC 10000046 V vcmpequh[.] Vector Compare Equal To Unsigned Halfword
VC 10000086 V vcmpequw[.] Vector Compare Equal To Unsigned Word
VC 100001C6 V vcmpgefp[.] Vector Compare Greater Than or Equal To Single-Preci-

sion
VC 100002C6 V vcmpgtfp[.] Vector Compare Greater Than Single-Precision
VC 10000306 V vcmpgtsb[.] Vector Compare Greater Than Signed Byte
VC 10000346 V vcmpgtsh[.] Vector Compare Greater Than Signed Halfword
VC 10000386 V vcmpgtsw[.] Vector Compare Greater Than Signed Word
VC 10000206 V vcmpgtub[.] Vector Compare Greater Than Unsigned Byte
VC 10000246 V vcmpgtuh[.] Vector Compare Greater Than Unsigned Halfword
VC 10000286 V vcmpgtuw[.] Vector Compare Greater Than Unsigned Word
VX 100003CA V vctsxs Vector Convert To Signed Fixed-Point Word Saturate
VX 1000038A V vctuxs Vector Convert To Unsigned Fixed-Point Word Saturate
VX 1000018A V vexptefp Vector 2 Raised to the Exponent Estimate Floating-Point
VX 100001CA V vlogefp Vector Log Base 2 Estimate Floating-Point
VA 1000002E V vmaddfp Vector Multiply-Add Single-Precision
VX 1000040A V vmaxfp Vector Maximum Single-Precision
VX 10000102 V vmaxsb Vector Maximum Signed Byte
VX 10000142 V vmaxsh Vector Maximum Signed Halfword
VX 10000182 V vmaxsw Vector Maximum Signed Word
VX 10000002 V vmaxub Vector Maximum Unsigned Byte
VX 10000042 V vmaxuh Vector Maximum Unsigned Halfword
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VX 10000082 V vmaxuw Vector Maximum Unsigned Word
VA 10000020 V vmhaddshs Vector Multiply-High-Add Signed Halfword Saturate
VA 10000021 V vmhraddshs Vector Multiply-High-Round-Add Signed Halfword Satu-

rate
VX 1000044A V vminfp Vector Minimum Single-Precision
VX 10000302 V vminsb Vector Minimum Signed Byte
VX 10000342 V vminsh Vector Minimum Signed Halfword
VX 10000382 V vminsw Vector Minimum Signed Word
VX 10000202 V vminub Vector Minimum Unsigned Byte
VX 10000242 V vminuh Vector Minimum Unsigned Halfword
VX 10000282 V vminuw Vector Minimum Unsigned Word
VA 10000022 V vmladduhm Vector Multiply-Low-Add Unsigned Halfword Modulo
VX 1000000C V vmrghb Vector Merge High Byte
VX 1000004C V vmrghh Vector Merge High Halfword
VX 1000008C V vmrghw Vector Merge High Word
VX 1000010C V vmrglb Vector Merge Low Byte
VX 1000014C V vmrglh Vector Merge Low Halfword
VX 1000018C V vmrglw Vector Merge Low Word
VA 10000025 V vmsummbm Vector Multiply-Sum Mixed Byte Modulo
VA 10000028 V vmsumshm Vector Multiply-Sum Signed Halfword Modulo
VA 10000029 V vmsumshs Vector Multiply-Sum Signed Halfword Saturate
VA 10000024 V vmsumubm Vector Multiply-Sum Unsigned Byte Modulo
VA 10000026 V vmsumuhm Vector Multiply-Sum Unsigned Halfword Modulo
VA 10000027 V vmsumuhs Vector Multiply-Sum Unsigned Halfword Saturate
VX 10000308 V vmulesb Vector Multiply Even Signed Byte
VX 10000348 V vmulesh Vector Multiply Even Signed Halfword
VX 10000208 V vmuleub Vector Multiply Even Unsigned Byte
VX 10000248 V vmuleuh Vector Multiply Even Unsigned Halfword
VX 10000108 V vmulosb Vector Multiply Odd Signed Byte
VX 10000148 V vmulosh Vector Multiply Odd Signed Halfword
VX 10000008 V vmuloub Vector Multiply Odd Unsigned Byte
VX 10000048 V vmulouh Vector Multiply Odd Unsigned Halfword
VA 1000002F V vnmsubfp Vector Negative Multiply-Subtract Single-Precision
VX 10000504 V vnor Vector Logical NOR
VX 10000484 V vor Vector Logical OR
VA 1000002B V vperm Vector Permute
VX 1000030E V vpkpx Vector Pack Pixel
VX 1000018E V vpkshss Vector Pack Signed Halfword Signed Saturate
VX 1000010E V vpkshus Vector Pack Signed Halfword Unsigned Saturate
VX 100001CE V vpkswss Vector Pack Signed Word Signed Saturate
VX 1000014E V vpkswus Vector Pack Signed Word Unsigned Saturate
VX 1000000E V vpkuhum Vector Pack Unsigned Halfword Unsigned Modulo
VX 1000008E V vpkuhus Vector Pack Unsigned Halfword Unsigned Saturate
VX 1000004E V vpkuwum Vector Pack Unsigned Word Unsigned Modulo
VX 100000CE V vpkuwus Vector Pack Unsigned Word Unsigned Saturate
VX 1000010A V vrefp Vector Reciprocal Estimate Single-Precision
VX 100002CA V vrfim Vector Round to Single-Precision Integer toward -Infinity
VX 1000020A V vrfin Vector Round to Single-Precision Integer Nearest
VX 1000028A V vrfip Vector Round to Single-Precision Integer toward +Infinity
VX 1000024A V vrfiz Vector Round to Single-Precision Integer toward Zero
VX 10000004 V vrlb Vector Rotate Left Byte
VX 10000044 V vrlh Vector Rotate Left Halfword
VX 10000084 V vrlw Vector Rotate Left Word
VX 1000014A V vrsqrtefp Vector Reciprocal Square Root Estimate Single-Precision
VA 1000002A V vsel Vector Select
VX 100001C4 V vsl Vector Shift Left
VX 10000104 V vslb Vector Shift Left Byte
VA 1000002C V vsldoi Vector Shift Left Double by Octet Immediate
VX 10000144 V vslh Vector Shift Left Halfword
VX 1000040C V vslo Vector Shift Left by Octet
VX 10000184 V vslw Vector Shift Left Word
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Version 2.07 B
1 See the key to the mode dependency and privilege columns on page 1484 and the key to the category column in 
Section 1.3.5 of Book I.

2 For 16-bit instructions, the “Opcode” column represents the 16-bit hexadecimal instruction encoding with the 
opcode and extended opcode in the corresponding fields in the instruction, and with 0’s in bit positions which are 
not opcode bits; dashes are used following the opcode to indicate the form is a 16-bit instruction. For 32-bit 
instructions, the “Opcode”  column represents the 32-bit hexadecimal instruction encoding with the opcode, 
extended opcode, and other fields with fixed values in the corresponding fields in the instruction, and with 0...s in 
bit positions which are not opcode, extended opcode or fixed value bits.

VX 1000020C V vspltb Vector Splat Byte
VX 1000024C V vsplth Vector Splat Halfword
VX 1000030C V vspltisb Vector Splat Immediate Signed Byte
VX 1000034C V vspltish Vector Splat Immediate Signed Halfword
VX 1000038C V vspltisw Vector Splat Immediate Signed Word
VX 1000028C V vspltw Vector Splat Word
VX 100002C4 V vsr Vector Shift Right
VX 10000304 V vsrab Vector Shift Right Algebraic Word
VX 10000344 V vsrah Vector Shift Right Algebraic Halfword
VX 10000384 V vsraw Vector Shift Right Algebraic Word
VX 10000204 V vsrb Vector Shift Right Byte
VX 10000244 V vsrh Vector Shift Right Halfword
VX 1000044C V vsro Vector Shift Right by Octet
VX 10000284 V vsrw Vector Shift Right Word
VX 10000580 V vsubcuw Vector Subtract and Write Carry-Out Unsigned Word
VX 1000004A V vsubfp Vector Subtract Single-Precision
VX 10000700 V vsubsbs Vector Subtract Signed Byte Saturate
VX 10000740 V vsubshs Vector Subtract Signed Halfword Saturate
VX 10000780 V vsubsws Vector Subtract Signed Word Saturate
VX 10000400 V vsububm Vector Subtract Unsigned Byte Modulo
VX 10000600 V vsububs Vector Subtract Unsigned Byte Saturate
VX 10000440 V vsubuhm Vector Subtract Unsigned Halfword Modulo
VX 10000640 V vsubuhs Vector Subtract Unsigned Halfword Saturate
VX 10000480 V vsubuwm Vector Subtract Unsigned Word Modulo
VX 10000680 V vsubuws Vector Subtract Unsigned Word Saturate
VX 10000688 V vsum2sws Vector Sum across Half Signed Word Saturate
VX 10000708 V vsum4sbs Vector Sum across Quarter Signed Byte Saturate
VX 10000648 V vsum4shs Vector Sum across Quarter Signed Halfword Saturate
VX 10000608 V vsum4ubs Vector Sum across Quarter Unsigned Byte Saturate
VX 10000788 V vsumsws Vector Sum across Signed Word Saturate
VX 1000034E V vupkhpx Vector Unpack High Pixel
VX 1000020E V vupkhsb Vector Unpack High Signed Byte
VX 1000024E V vupkhsh Vector Unpack High Signed Halfword
VX 100003CE V vupklpx Vector Unpack Low Pixel
VX 1000028E V vupklsb Vector Unpack Low Signed Byte
VX 100002CE V vupklsh Vector Unpack Low Signed Halfword
VX 100004C4 V vxor Vector Logical XOR
X 7C00007C WT wait Wait
X 7C000106 P E wrtee Write MSR External Enable
X 7C000146 P E wrteei Write MSR External Enable Immediate
X 7C000278 SR B xor[.] XOR
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Version 2.07 B
Appendix B.  VLE Instruction Set Sorted by Opcode

This appendix lists all the instructions available in VLE mode in the Power ISA , in order by opcode. Opcodes that are
not defined below are treated as illegal by category VLE.
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C 0000---- VLE se_illegal Illegal
C 0001---- VLE se_isync Instruction Synchronize
C 0002---- VLE se_sc System Call
C 0004---- VLE se_blr[l] Branch to Link Register [and Link]
C 0006---- VLE se_bctr[l] Branch to Count Register [and Link]
C 0008---- P VLE se_rfi Return From Interrupt
C 0009---- H VLE se_rfci Return From Critical Interrupt
C 000A---- H VLE se_rfdi Return From Debug Interrupt
C 000B---- H VLE se_rfmci Return From Machine Check Interrupt
C 000C---- P VLE,

E.HV
se_rfgi Return From Guest Interrupt

R 0020---- VLE se_not NOT Short Form
R 0030---- VLE se_neg Negate Short Form
R 0080---- VLE se_mflr Move From Link Register
R 0090---- VLE se_mtlr Move To Link Register
R 00A0---- VLE se_mfctr Move From Count Register
R 00B0---- VLE se_mtctr Move To Count Register
R 00C0---- VLE se_extzb Extend Zero Byte
R 00D0---- VLE se_extsb Extend Sign Byte Short Form
R 00E0---- VLE se_extzh Extend Zero Halfword
R 00F0---- VLE se_extsh Extend Sign Halfword Short Form
RR 0100---- VLE se_mr Move Register
RR 0200---- VLE se_mtar Move To Alternate Register
RR 0300---- VLE se_mfar Move from Alternate Register
RR 0400---- VLE se_add Add Short Form
RR 0500---- VLE se_mullw Multiply Low Word Short Form
RR 0600---- VLE se_sub Subtract
RR 0700---- VLE se_subf Subtract From Short Form
RR 0C00---- VLE se_cmp Compare Word
RR 0D00---- VLE se_cmpl Compare Logical Word
RR 0E00---- VLE se_cmph Compare Halfword Short Form
RR 0F00---- VLE se_cmphl Compare Halfword Logical Short Form
VX 10000000 V vaddubm Vector Add Unsigned Byte Modulo
VX 10000002 V vmaxub Vector Maximum Unsigned Byte
VX 10000004 V vrlb Vector Rotate Left Byte
VC 10000006 V vcmpequb[.] Vector Compare Equal To Unsigned Byte
VX 10000008 V vmuloub Vector Multiply Odd Unsigned Byte
VX 1000000A V vaddfp Vector Add Single-Precision
VX 1000000C V vmrghb Vector Merge High Byte
VX 1000000E V vpkuhum Vector Pack Unsigned Halfword Unsigned Modulo
X 10000010 SR LMA mulhhwu[.] Multiply High Halfword to Word Unsigned
XO 10000018 SR LMA machhwu[o][.] Multiply Accumulate High Halfword to Word Modulo 

Unsigned
VA 10000020 V vmhaddshs Vector Multiply-High-Add Signed Halfword Saturate
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VA 10000021 V vmhraddshs Vector Multiply-High-Round-Add Signed Halfword Satu-
rate

VA 10000022 V vmladduhm Vector Multiply-Low-Add Unsigned Halfword Modulo
VA 10000024 V vmsumubm Vector Multiply-Sum Unsigned Byte Modulo
VA 10000025 V vmsummbm Vector Multiply-Sum Mixed Byte Modulo
VA 10000026 V vmsumuhm Vector Multiply-Sum Unsigned Halfword Modulo
VA 10000027 V vmsumuhs Vector Multiply-Sum Unsigned Halfword Saturate
VA 10000028 V vmsumshm Vector Multiply-Sum Signed Halfword Modulo
VA 10000029 V vmsumshs Vector Multiply-Sum Signed Halfword Saturate
VA 1000002A V vsel Vector Select
VA 1000002B V vperm Vector Permute
VA 1000002C V vsldoi Vector Shift Left Double by Octet Immediate
VA 1000002E V vmaddfp Vector Multiply-Add Single-Precision
VA 1000002F V vnmsubfp Vector Negative Multiply-Subtract Single-Precision
VX 10000040 V vadduhm Vector Add Unsigned Halfword Modulo
VX 10000042 V vmaxuh Vector Maximum Unsigned Halfword
VX 10000044 V vrlh Vector Rotate Left Halfword
VC 10000046 V vcmpequh[.] Vector Compare Equal To Unsigned Halfword
VX 10000048 V vmulouh Vector Multiply Odd Unsigned Halfword
VX 1000004A V vsubfp Vector Subtract Single-Precision
VX 1000004C V vmrghh Vector Merge High Halfword
VX 1000004E V vpkuwum Vector Pack Unsigned Word Unsigned Modulo
X 10000050 SR LMA mulhhw[.] Multiply High Halfword to Word Signed
XO 10000058 SR LMA machhw[o][.] Multiply Accumulate High Halfword to Word Modulo 

Signed
XO 1000005C SR LMA nmachhw[o][.] Negative Multiply Accumulate High Halfword to Word 

Modulo Signed
VX 10000080 V vadduwm Vector Add Unsigned Word Modulo
VX 10000082 V vmaxuw Vector Maximum Unsigned Word
VX 10000084 V vrlw Vector Rotate Left Word
VC 10000086 V vcmpequw[.] Vector Compare Equal To Unsigned Word
VX 1000008C V vmrghw Vector Merge High Word
VX 1000008E V vpkuhus Vector Pack Unsigned Halfword Unsigned Saturate
XO 10000098 SR LMA machhwsu[o][.] Multiply Accumulate High Halfword to Word Saturate 

Unsigned
VC 100000C6 V vcmpeqfp[.] Vector Compare Equal To Single-Precision
VX 100000CE V vpkuwus Vector Pack Unsigned Word Unsigned Saturate
XO 100000D8 SR LMA machhws[o][.] Multiply Accumulate High Halfword to Word Saturate 

Signed
XO 100000DC SR LMA nmachhws[o][.] Negative Multiply Accumulate High Halfword to Word Sat-

urate Signed
VX 10000102 V vmaxsb Vector Maximum Signed Byte
VX 10000104 V vslb Vector Shift Left Byte
VX 10000108 V vmulosb Vector Multiply Odd Signed Byte
VX 1000010A V vrefp Vector Reciprocal Estimate Single-Precision
VX 1000010C V vmrglb Vector Merge Low Byte
VX 1000010E V vpkshus Vector Pack Signed Halfword Unsigned Saturate
X 10000110 SR LMA mulchwu[.] Multiply Cross Halfword to Word Unsigned
XO 10000118 SR LMA macchwu[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Unsigned
VX 10000142 V vmaxsh Vector Maximum Signed Halfword
VX 10000144 V vslh Vector Shift Left Halfword
VX 10000148 V vmulosh Vector Multiply Odd Signed Halfword
VX 1000014A V vrsqrtefp Vector Reciprocal Square Root Estimate Single-Precision
VX 1000014C V vmrglh Vector Merge Low Halfword
VX 1000014E V vpkswus Vector Pack Signed Word Unsigned Saturate
X 10000150 SR LMA mulchw[.] Multiply Cross Halfword to Word Signed
XO 10000158 SR LMA macchw[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Signed
XO 1000015C SR LMA nmacchw[o][.] Negative Multiply Accumulate Cross Halfword to Word 

Modulo Signed
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VX 10000180 V vaddcuw Vector Add and write Carry-out Unsigned Word
VX 10000182 V vmaxsw Vector Maximum Signed Word
VX 10000184 V vslw Vector Shift Left Word
VX 1000018A V vexptefp Vector 2 Raised to the Exponent Estimate Floating-Point
VX 1000018C V vmrglw Vector Merge Low Word
VX 1000018E V vpkshss Vector Pack Signed Halfword Signed Saturate
XO 10000198 SR LMA macchwsu[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Unsigned
VX 100001C4 V vsl Vector Shift Left
VC 100001C6 V vcmpgefp[.] Vector Compare Greater Than or Equal To Single-Preci-

sion
VX 100001CA V vlogefp Vector Log Base 2 Estimate Floating-Point
VX 100001CE V vpkswss Vector Pack Signed Word Signed Saturate
XO 100001D8 SR LMA macchws[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Signed
XO 100001DC SR LMA nmacchws[o][.] Negative Multiply Accumulate Cross Halfword to Word 

Saturate Signed
EVX 10000200 SP evaddw Vector Add Word
VX 10000200 V vaddubs Vector Add Unsigned Byte Saturate
EVX 10000202 SP evaddiw Vector Add Immediate Word
VX 10000202 V vminub Vector Minimum Unsigned Byte
EVX 10000204 SP evsubfw Vector Subtract from Word
VX 10000204 V vsrb Vector Shift Right Byte
EVX 10000206 SP evsubifw Vector Subtract Immediate from Word
VC 10000206 V vcmpgtub[.] Vector Compare Greater Than Unsigned Byte
EVX 10000208 SP evabs Vector Absolute Value
VX 10000208 V vmuleub Vector Multiply Even Unsigned Byte
EVX 10000209 SP evneg Vector Negate
EVX 1000020A SP evextsb Vector Extend Sign Byte
VX 1000020A V vrfin Vector Round to Single-Precision Integer Nearest
EVX 1000020B SP evextsh Vector Extend Sign Halfword
EVX 1000020C SP evrndw Vector Round Word
VX 1000020C V vspltb Vector Splat Byte
EVX 1000020D SP evcntlzw Vector Count Leading Zeros Word
EVX 1000020E SP evcntlsw Vector Count Leading Signed Bits Word
VX 1000020E V vupkhsb Vector Unpack High Signed Byte
EVX 1000020F SP brinc Bit Reversed Increment
EVX 10000211 SP evand Vector AND
EVX 10000212 SP evandc Vector AND with Complement
EVX 10000216 SP evxor Vector XOR
EVX 10000217 SP evor Vector OR
EVX 10000218 SP evnor Vector NOR
EVX 10000219 SP eveqv Vector Equivalent
EVX 1000021B SP evorc Vector OR with Complement
EVX 1000021E SP evnand Vector NAND
EVX 10000220 SP evsrwu Vector Shift Right Word Unsigned
EVX 10000221 SP evsrws Vector Shift Right Word Signed
EVX 10000222 SP evsrwiu Vector Shift Right Word Immediate Unsigned
EVX 10000223 SP evsrwis Vector Shift Right Word Immediate Signed
EVX 10000224 SP evslw Vector Shift Left Word
EVX 10000226 SP evslwi Vector Shift Left Word Immediate
EVX 10000228 SP evrlw Vector Rotate Left Word
EVX 10000229 SP evsplati Vector Splat Immediate
EVX 1000022A SP evrlwi Vector Rotate Left Word Immediate
EVX 1000022B SP evsplatfi Vector Splat Fractional Immediate
EVX 1000022C SP evmergehi Vector Merge High
EVX 1000022D SP evmergelo Vector Merge Low
EVX 1000022E SP evmergehilo Vector Merge High/Low
EVX 1000022F SP evmergelohi Vector Merge Low/High
EVX 10000230 SP evcmpgtu Vector Compare Greater Than Unsigned
EVX 10000231 SP evcmpgts Vector Compare Greater Than Signed
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EVX 10000232 SP evcmpltu Vector Compare Less Than Unsigned
EVX 10000233 SP evcmplts Vector Compare Less Than Signed
EVX 10000234 SP evcmpeq Vector Compare Equal
VX 10000240 V vadduhs Vector Add Unsigned Halfword Saturate
VX 10000242 V vminuh Vector Minimum Unsigned Halfword
VX 10000244 V vsrh Vector Shift Right Halfword
VC 10000246 V vcmpgtuh[.] Vector Compare Greater Than Unsigned Halfword
VX 10000248 V vmuleuh Vector Multiply Even Unsigned Halfword
VX 1000024A V vrfiz Vector Round to Single-Precision Integer toward Zero
VX 1000024C V vsplth Vector Splat Halfword
VX 1000024E V vupkhsh Vector Unpack High Signed Halfword
EVS 10000278 SP evsel Vector Select
EVX 10000280 SP.FV evfsadd Vector Floating-Point Single-Precision Add
VX 10000280 V vadduws Vector Add Unsigned Word Saturate
EVX 10000281 SP.FV evfssub Vector Floating-Point Single-Precision Subtract
VX 10000282 V vminuw Vector Minimum Unsigned Word
EVX 10000284 SP.FV evfsabs Vector Floating-Point Single-Precision Absolute Value
VX 10000284 V vsrw Vector Shift Right Word
EVX 10000285 SP.FV evfsnabs Vector Floating-Point Single-Precision Negative Absolute 

Value
EVX 10000286 SP.FV evfsneg Vector Floating-Point Single-Precision Negate
VC 10000286 V vcmpgtuw[.] Vector Compare Greater Than Unsigned Word
EVX 10000288 SP.FV evfsmul Vector Floating-Point Single-Precision Multiply
EVX 10000289 SP.FV evfsdiv Vector Floating-Point Single-Precision Divide
VX 1000028A V vrfip Vector Round to Single-Precision Integer toward  +Infinity
EVX 1000028C SP.FV evfscmpgt Vector Floating-Point Single-Precision Compare Greater 

Than
VX 1000028C V vspltw Vector Splat Word
EVX 1000028D SP.FV evfscmplt Vector Floating-Point Single-Precision Compare Less 

Than
EVX 1000028E SP.FV evfscmpeq Vector Floating-Point Single-Precision Compare Equal
VX 1000028E V vupklsb Vector Unpack Low Signed Byte
EVX 10000290 SP.FV evfscfui Vector Convert Floating-Point Single-Precision from 

Unsigned Integer
EVX 10000291 SP.FV evfscfsi Vector Convert Floating-Point Single-Precision from 

Signed Integer
EVX 10000292 SP.FV evfscfuf Vector Convert Floating-Point Single-Precision from 

Unsigned Fraction
EVX 10000293 SP.FV evfscfsf Vector Convert Floating-Point Single-Precision from 

Signed Fraction
EVX 10000294 SP.FV evfsctui Vector Convert Floating-Point Single-Precision to 

Unsigned Integer
EVX 10000295 SP.FV evfsctsi Vector Convert Floating-Point Single-Precision to Signed 

Integer
EVX 10000296 SP.FV evfsctuf Vector Convert Floating-Point Single-Precision to 

Unsigned Fraction
EVX 10000297 SP.FV evfsctsf Vector Convert Floating-Point Single-Precision to Signed 

Fraction
EVX 10000298 SP.FV evfsctuiz Vector Convert Floating-Point Single-Precision to 

Unsigned Integer with Round toward Zero
EVX 1000029A SP.FV evfsctsiz Vector Convert Floating-Point Single-Precision to Signed 

Integer with Round Toward Zero
EVX 1000029C SP.FV evfststgt Vector Floating-Point Single-Precision Test Greater Than
EVX 1000029D SP.FV evfststlt Vector Floating-Point Single-Precision Test Less Than
EVX 1000029E SP.FV evfststeq Vector Floating-Point Single-Precision Test Equal
EVX 100002C0 SP.FS efsadd Floating-Point Single-Precision Add
EVX 100002C1 SP.FS efssub Floating-Point Single-Precision Subtract
EVX 100002C4 SP.FS efsabs Floating-Point Single-Precision Absolute Value
VX 100002C4 V vsr Vector Shift Right
EVX 100002C5 SP.FS efsnabs Floating-Point Single-Precision Negative Absolute Value
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EVX 100002C6 SP.FS efsneg Floating-Point Single-Precision Negate
VC 100002C6 V vcmpgtfp[.] Vector Compare Greater Than Single-Precision
EVX 100002C8 SP.FS efsmul Floating-Point Single-Precision Multiply
EVX 100002C9 SP.FS efsdiv Floating-Point Single-Precision Divide
VX 100002CA V vrfim Vector Round to Single-Precision Integer toward -Infinity
EVX 100002CC SP.FS efscmpgt Floating-Point Single-Precision Compare Greater Than
EVX 100002CD SP.FS efscmplt Floating-Point Single-Precision Compare Less Than
EVX 100002CE SP.FS efscmpeq Floating-Point Single-Precision Compare Equal
VX 100002CE V vupklsh Vector Unpack Low Signed Halfword
EVX 100002CF SP.FD efscfd Floating-Point Single-Precision Convert from Double-Pre-

cision
EVX 100002D0 SP.FS efscfui Convert Floating-Point Single-Precision from Unsigned 

Integer
EVX 100002D1 SP.FS efscfsi Convert Floating-Point Single-Precision from Signed Inte-

ger
EVX 100002D2 SP.FS efscfuf Convert Floating-Point Single-Precision from Unsigned 

Fraction
EVX 100002D3 SP.FS efscfsf Convert Floating-Point Single-Precision from Signed Frac-

tion
EVX 100002D4 SP.FS efsctui Convert Floating-Point Single-Precision to Unsigned Inte-

ger
EVX 100002D5 SP.FS efsctsi Convert Floating-Point Single-Precision to Signed Integer
EVX 100002D6 SP.FS efsctuf Convert Floating-Point Single-Precision to Unsigned Frac-

tion
EVX 100002D7 SP.FS efsctsf Convert Floating-Point Single-Precision to Signed Fraction
EVX 100002D8 SP.FS efsctuiz Convert Floating-Point Single-Precision to Unsigned Inte-

ger with Round Towards Zero
EVX 100002DA SP.FS efsctsiz Convert Floating-Point Single-Precision to Signed Integer 

with Round Towards Zero
EVX 100002DC SP.FS efststgt Floating-Point Single-Precision Test Greater Than
EVX 100002DD SP.FS efststlt Floating-Point Single-Precision Test Less Than
EVX 100002DE SP.FS efststeq Floating-Point Single-Precision Test Equal
EVX 100002E0 SP.FD efdadd Floating-Point Double-Precision Add
EVX 100002E1 SP.FD efdsub Floating-Point Double-Precision Subtract
EVX 100002E2 SP.FD efdcfuid Convert Floating-Point Double-Precision from Unsigned 

Integer Doubleword
EVX 100002E3 SP.FD efdcfsid Convert Floating-Point Double-Precision from Signed Inte-

ger Doubleword
EVX 100002E4 SP.FD efdabs Floating-Point Double-Precision Absolute Value
EVX 100002E5 SP.FD efdnabs Floating-Point Double-Precision Negative Absolute Value
EVX 100002E6 SP.FD efdneg Floating-Point Double-Precision Negate
EVX 100002E8 SP.FD efdmul Floating-Point Double-Precision Multiply
EVX 100002E9 SP.FD efddiv Floating-Point Double-Precision Divide
EVX 100002EA SP.FD efdctuidz Convert Floating-Point Double-Precision to Unsigned Inte-

ger Doubleword with Round toward Zero
EVX 100002EB SP.FD efdctsidz Convert Floating-Point Double-Precision to Signed Integer 

Doubleword with Round toward Zero
EVX 100002ED SP.FD efdcmplt Floating-Point Double-Precision Compare Less Than
EVX 100002EC SP.FD efdcmpgt Floating-Point Double-Precision Compare Greater Than
EVX 100002EE SP.FD efdcmpeq Floating-Point Double-Precision Compare Equal
EVX 100002EF SP.FD efdcfs Floating-Point Double-Precision Convert from Single-Pre-

cision
EVX 100002F0 SP.FD efdcfui Convert Floating-Point Double-Precision from Unsigned 

Integer
EVX 100002F1 SP.FD efdcfsi Convert Floating-Point Double-Precision from Signed Inte-

ger
EVX 100002F2 SP.FS efscfuf Convert Floating-Point Single-Precision from Unsigned 

Fraction
EVX 100002F3 SP.FD efdcfsf Convert Floating-Point Double-Precision from Signed 

Fraction
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EVX 100002F4 SP.FD efdctui Convert Floating-Point Double-Precision to Unsigned Inte-
ger

EVX 100002F5 SP.FD efdctsi Convert Floating-Point Double-Precision to Signed Integer
EVX 100002F6 SP.FD efdctuf Convert Floating-Point Double-Precision to Unsigned 

Fraction
EVX 100002F7 SP.FD efdctsf Convert Floating-Point Double-Precision to Signed Frac-

tion
EVX 100002F8 SP.FD efdctuiz Convert Floating-Point Double-Precision to Unsigned Inte-

ger with Round toward Zero
EVX 100002FA SP.FD efdctsiz Convert Floating-Point Double-Precision to Signed Integer 

with Round toward Zero
EVX 100002FC SP.FD efdtstgt Floating-Point Double-Precision Test Greater Than
EVX 100002FD SP.FD efdtstlt Floating-Point Double-Precision Test Less Than
EVX 100002FE SP.FD efdtsteq Floating-Point Double-Precision Test Equal
EVX 10000300 SP evlddx Vector Load Double Word into Double Word Indexed
VX 10000300 V vaddsbs Vector Add Signed Byte Saturate
EVX 10000301 SP evldd Vector Load Double Word into Double Word
EVX 10000302 SP evldwx Vector Load Double Word into Two Words Indexed
VX 10000302 V vminsb Vector Minimum Signed Byte
EVX 10000303 SP evldw Vector Load Double Word into Two Words
EVX 10000304 SP evldhx Vector Load Double Word into Four Halfwords Indexed
VX 10000304 V vsrab Vector Shift Right Algebraic Word
EVX 10000305 SP evldh Vector Load Double Word into Four Halfwords
VC 10000306 V vcmpgtsb[.] Vector Compare Greater Than Signed Byte
EVX 10000308 SP evlhhesplatx Vector Load Halfword into Halfwords Even and Splat 

Indexed
VX 10000308 V vmulesb Vector Multiply Even Signed Byte
EVX 10000309 SP evlhhesplat Vector Load Halfword into Halfwords Even and Splat
VX 1000030A V vcfux Vector Convert From Unsigned Fixed-Point Word
EVX 1000030C SP evlhhousplatx Vector Load Halfword into Halfword Odd Unsigned and 

Splat Indexed
VX 1000030C V vspltisb Vector Splat Immediate Signed Byte
EVX 1000030D SP evlhhousplat Vector Load Halfword into Halfword Odd Unsigned and 

Splat
EVX 1000030E SP evlhhossplatx Vector Load Halfword into Halfword Odd Signed and Splat 

Indexed
VX 1000030E V vpkpx Vector Pack Pixel
EVX 1000030F SP evlhhossplat Vector Load Halfword into Halfword Odd and Splat
X 10000310 SR LMA mullhwu[.] Multiply Low Halfword to Word Unsigned
EVX 10000311 SP evlwhe Vector Load Word into Two Halfwords Even
EVX 10000314 SP evlwhoux Vector Load Word into Two Halfwords Odd Unsigned 

Indexed (zero-extended)
EVX 10000315 SP evlwhou Vector Load Word into Two Halfwords Odd Unsigned 

(zero-extended)
EVX 10000316 SP evlwhosx Vector Load Word into Two Halfwords Odd Signed 

Indexed (with sign extension)
EVX 10000317 SP evlwhos Vector Load Word into Two Halfwords Odd Signed (with 

sign extension)
EVX 10000318 SP evlwwsplatx Vector Load Word into Word and Splat Indexed
XO 10000318 SR LMA maclhwu[o][.] Multiply Accumulate Low Halfword to Word Modulo 

Unsigned
EVX 10000319 SP evlwwsplat Vector Load Word into Word and Splat
EVX 1000031C SP evlwhsplatx Vector Load Word into Two Halfwords and Splat Indexed
EVX 1000031D SP evlwhsplat Vector Load Word into Two Halfwords and Splat
EVX 10000320 SP evstddx Vector Store Doubleword of Doubleword Indexed
EVX 10000321 SP evstdd Vector Store Double of Double
EVX 10000322 SP evstdwx Vector Store Double of Two Words Indexed
EVX 10000323 SP evstdw Vector Store Double of Two Words
EVX 10000324 SP evstdhx Vector Store Double of Four Halfwords Indexed
EVX 10000325 SP evstdh Vector Store Double of Four Halfwords
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EVX 10000330 SP evstwhex Vector Store Word of Two Halfwords from Even Indexed
EVX 10000331 SP evstwhe Vector Store Word of Two Halfwords from Even
EVX 10000334 SP evstwhox Vector Store Word of Two Halfwords from Odd Indexed
EVX 10000335 SP evstwho Vector Store Word of Two Halfwords from Odd
EVX 10000338 SP evstwwex Vector Store Word of Word from Even Indexed
EVX 10000339 SP evstwwe Vector Store Word of Word from Even
EVX 1000033C SP evstwwox Vector Store Word of Word from Odd Indexed
EVX 1000033D SP evstwwo Vector Store Word of Word from Odd
VX 10000340 V vaddshs Vector Add Signed Halfword Saturate
VX 10000342 V vminsh Vector Minimum Signed Halfword
VX 10000344 V vsrah Vector Shift Right Algebraic Halfword
VC 10000346 V vcmpgtsh[.] Vector Compare Greater Than Signed Halfword
VX 10000348 V vmulesh Vector Multiply Even Signed Halfword
VX 1000034A V vcfsx Vector Convert From Signed Fixed-Point Word
VX 1000034C V vspltish Vector Splat Immediate Signed Halfword
VX 1000034E V vupkhpx Vector Unpack High Pixel
X 10000350 SR LMA mullhw[.] Multiply Low Halfword to Word Signed
XO 10000358 SR LMA maclhw[o][.] Multiply Accumulate Low Halfword to Word Modulo 

Signed
XO 1000035C SR LMA nmaclhw[o][.] Negative Multiply Accumulate Low Halfword to Word Mod-

ulo Signed
VX 10000380 V vaddsws Vector Add Signed Word Saturate
VX 10000382 V vminsw Vector Minimum Signed Word
VX 10000384 V vsraw Vector Shift Right Algebraic Word
VC 10000386 V vcmpgtsw[.] Vector Compare Greater Than Signed Word
VX 1000038A V vctuxs Vector Convert To Unsigned Fixed-Point Word Saturate
VX 1000038C V vspltisw Vector Splat Immediate Signed Word
XO 10000398 SR LMA maclhwsu[o][.] Multiply Accumulate Low Halfword to Word Saturate 

Unsigned
VC 100003C6 V vcmpbfp[.] Vector Compare Bounds Single-Precision
VX 100003CA V vctsxs Vector Convert To Signed Fixed-Point Word Saturate
VX 100003CE V vupklpx Vector Unpack Low Pixel
XO 100003D8 SR LMA maclhws[o][.] Multiply Accumulate Low Halfword to Word Saturate 

Signed
XO 100003DC SR LMA nmaclhws[o][.] Negative Multiply Accumulate Low Halfword to Word Satu-

rate Signed
VX 10000400 V vsububm Vector Subtract Unsigned Byte Modulo
VX 10000402 V vavgub Vector Average Unsigned Byte
EVX 10000403 SP evmhessf Vector Multiply Halfwords, Even, Signed, Saturate, Frac-

tional
VX 10000404 V vand Vector Logical AND
EVX 10000407 SP evmhossf Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-

tional
EVX 10000408 SP evmheumi Vector Multiply Halfwords, Even, Unsigned, Modulo, Inte-

ger
EVX 10000409 SP evmhesmi Vector Multiply Halfwords, Even, Signed, Modulo, Integer
VX 1000040A V vmaxfp Vector Maximum Single-Precision
EVX 1000040B SP evmhesmf Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional
EVX 1000040C SP evmhoumi Vector Multiply Halfwords, Odd, Unsigned, Modulo, Inte-

ger
VX 1000040C V vslo Vector Shift Left by Octet
EVX 1000040D SP evmhosmi Vector Multiply Halfwords, Odd, Signed, Modulo, Integer
EVX 1000040F SP evmhosmf Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-

tional
EVX 10000423 SP evmhessfa Vector Multiply Halfwords, Even, Signed, Saturate, Frac-

tional to Accumulator
EVX 10000427 SP evmhossfa Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-

tional to Accumulator
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Version 2.07 B
EVX 10000428 SP evmheumia Vector Multiply Halfwords, Even, Unsigned, Modulo, Inte-
ger to Accumulator

EVX 10000429 SP evmhesmia Vector Multiply Halfwords, Even, Signed, Modulo, Integer 
to Accumulator

EVX 1000042B SP evmhesmfa Vector Multiply Halfwords, Even, Signed, Modulo, Frac-
tional to Accumulator

EVX 1000042C SP evmhoumia Vector Multiply Halfwords, Odd, Unsigned, Modulo, Inte-
ger to Accumulator

EVX 1000042D SP evmhosmia Vector Multiply Halfwords, Odd, Signed, Modulo, Integer 
to Accumulator

EVX 1000042F SP evmhosmfa Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-
tional to Accumulator

VX 10000440 V vsubuhm Vector Subtract Unsigned Halfword Modulo
VX 10000442 V vavguh Vector Average Unsigned Halfword
VX 10000444 V vandc Vector Logical AND with Complement
EVX 10000447 SP evmwhssf Vector Multiply Word High Signed, Saturate, Fractional
EVX 10000448 SP evmwlumi Vector Multiply Word Low Unsigned, Modulo, Integer
VX 1000044A V vminfp Vector Minimum Single-Precision
EVX 1000044C SP evmwhumi Vector Multiply Word High Unsigned, Modulo, Integer
VX 1000044C V vsro Vector Shift Right by Octet
EVX 1000044D SP evmwhsmi Vector Multiply Word High Signed, Modulo, Integer
EVX 1000044F SP evmwhsmf Vector Multiply Word High Signed, Modulo, Fractional
EVX 10000453 SP evmwssf Vector Multiply Word Signed, Saturate, Fractional
EVX 10000458 SP evmwumi Vector Multiply Word Unsigned, Modulo, Integer
EVX 10000459 SP evmwsmi Vector Multiply Word Signed, Modulo, Integer
EVX 1000045B SP evmwsmf Vector Multiply Word Signed, Modulo, Fractional
EVX 10000467 SP evmwhssfa Vector Multiply Word High Signed, Saturate, Fractional to 

Accumulator
EVX 10000468 SP evmwlumia Vector Multiply Word Low Unsigned, Modulo, Integer to 

Accumulator
EVX 1000046C SP evmwhumia Vector Multiply Word High Unsigned, Modulo, Integer to 

Accumulator
EVX 1000046D SP evmwhsmia Vector Multiply Word High Signed, Modulo, Integer to 

Accumulator
EVX 1000046F SP evmwhsmfa Vector Multiply Word High Signed, Modulo, Fractional to 

Accumulator
EVX 10000473 SP evmwssfa Vector Multiply Word Signed, Saturate, Fractional to Accu-

mulator
EVX 10000478 SP evmwumia Vector Multiply Word Unsigned, Modulo, Integer to Accu-

mulator
EVX 10000479 SP evmwsmia Vector Multiply Word Signed, Modulo, Integer to Accumu-

lator
EVX 1000047B SP evmwsmfa Vector Multiply Word Signed, Modulo, Fractional to Accu-

mulator
VX 10000480 V vsubuwm Vector Subtract Unsigned Word Modulo
VX 10000482 V vavguw Vector Average Unsigned Word
VX 10000484 V vor Vector Logical OR
EVX 100004C0 SP evaddusiaaw Vector Add Unsigned, Saturate, Integer to Accumulator 

Word
EVX 100004C1 SP evaddssiaaw Vector Add Signed, Saturate, Integer to Accumulator Word
EVX 100004C2 SP evsubfusiaaw Vector Subtract Unsigned, Saturate, Integer to Accumula-

tor Word
EVX 100004C3 SP evsubfssiaaw Vector Subtract Signed, Saturate, Integer to Accumulator 

Word
EVX 100004C4 SP evmra Initialize Accumulator
VX 100004C4 V vxor Vector Logical XOR
EVX 100004C6 SP evdivws Vector Divide Word Signed
EVX 100004C7 SP evdivwu Vector Divide Word Unsigned
EVX 100004C8 SP evaddumiaaw Vector Add Unsigned, Modulo, Integer to Accumulator 

Word
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Version 2.07 B
EVX 100004C9 SP evaddsmiaaw Vector Add Signed, Modulo, Integer to Accumulator Word
EVX 100004CA SP evsubfumiaaw Vector Subtract Unsigned, Modulo, Integer to Accumulator 

Word
EVX 100004CB SP evsubfsmiaaw Vector Subtract Signed, Modulo, Integer to Accumulator 

Word
EVX 10000500 SP evmheusiaaw Vector Multiply Halfwords, Even, Unsigned, Saturate, Inte-

ger and Accumulate into Words
EVX 10000501 SP evmhessiaaw Vector Multiply Halfwords, Even, Signed, Saturate, Integer 

and Accumulate into Words
VX 10000502 V vavgsb Vector Average Signed Byte
EVX 10000503 SP evmhessfaaw Vector Multiply Halfwords, Even, Signed, Saturate, Frac-

tional and Accumulate into Words
EVX 10000504 SP evmhousiaaw Vector Multiply Halfwords, Odd, Unsigned, Saturate, Inte-

ger and Accumulate into Words
VX 10000504 V vnor Vector Logical NOR
EVX 10000505 SP evmhossiaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Integer 

and Accumulate into Words
EVX 10000507 SP evmhossfaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-

tional and Accumulate into Words
EVX 10000508 SP evmheumiaaw Vector Multiply Halfwords, Even, Unsigned, Modulo, Inte-

ger and Accumulate into Words
EVX 10000509 SP evmhesmiaaw Vector Multiply Halfwords, Even, Signed, Modulo, Integer 

and Accumulate into Words
EVX 1000050B SP evmhesmfaaw Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional and Accumulate into Words
EVX 1000050C SP evmhoumiaaw Vector Multiply Halfwords, Odd, Unsigned, Modulo, Inte-

ger and Accumulate into Words
EVX 1000050D SP evmhosmiaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Integer 

and Accumulate into Words
EVX 1000050F SP evmhosmfaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-

tional and Accumulate into Words
EVX 10000528 SP evmhegumiaa Vector Multiply Halfwords, Even, Guarded, Unsigned, 

Modulo, Integer and Accumulate
EVX 10000529 SP evmhegsmiaa Vector Multiply Halfwords, Even, Guarded, Signed, Mod-

ulo, Integer and Accumulate
EVX 1000052B SP evmhegsmfaa Vector Multiply Halfwords, Even, Guarded, Signed, Mod-

ulo, Fractional and Accumulate
EVX 1000052C SP evmhogumiaa Vector Multiply Halfwords, Odd, Guarded, Unsigned, Mod-

ulo, Integer and Accumulate
EVX 1000052D SP evmhogsmiaa Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-

ulo, Integer, and Accumulate
EVX 1000052F SP evmhogsmfaa Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-

ulo, Fractional and Accumulate
EVX 10000540 SP evmwlusiaaw Vector Multiply Word Low Unsigned, Saturate, Integer and 

Accumulate into Words
EVX 10000541 SP evmwlssiaaw Vector Multiply Word Low Signed, Saturate, Integer and 

Accumulate into Words
VX 10000542 V vavgsh Vector Average Signed Halfword
EVX 10000548 SP evmwlumiaaw Vector Multiply Word Low Unsigned, Modulo, Integer and 

Accumulate into Words
EVX 10000549 SP evmwlsmiaaw Vector Multiply Word Low Signed, Modulo, Integer and 

Accumulate into Words
EVX 10000553 SP evmwssfaa Vector Multiply Word Signed, Saturate, Fractional and 

Accumulate
EVX 10000558 SP evmwumiaa Vector Multiply Word Unsigned, Modulo, Integer and 

Accumulate
EVX 10000559 SP evmwsmiaa Vector Multiply Word Signed, Modulo, Integer and Accu-

mulate
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Version 2.07 B
EVX 1000055B SP evmwsmfaa Vector Multiply Word Signed, Modulo, Fractional and 
Accumulate

EVX 10000580 SP evmheusianw Vector Multiply Halfwords, Even, Unsigned, Saturate, Inte-
ger and Accumulate Negative into Words

VX 10000580 V vsubcuw Vector Subtract and Write Carry-Out Unsigned Word
EVX 10000581 SP evmhessianw Vector Multiply Halfwords, Even, Signed, Saturate, Integer 

and Accumulate Negative into Words
VX 10000582 V vavgsw Vector Average Signed Word
EVX 10000583 SP evmhessfanw Vector Multiply Halfwords, Even, Signed, Saturate, Frac-

tional and Accumulate Negative into Words
EVX 10000584 SP evmhousianw Vector Multiply Halfwords, Odd, Unsigned, Saturate, Inte-

ger and Accumulate Negative into Words
EVX 10000585 SP evmhossianw Vector Multiply Halfwords, Odd, Signed, Saturate, Integer 

and Accumulate Negative into Words
EVX 10000587 SP evmhossfanw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-

tional and Accumulate Negative into Words
EVX 10000588 SP evmheumianw Vector Multiply Halfwords, Even, Unsigned, Modulo, Inte-

ger and Accumulate Negative into Words
EVX 10000589 SP evmhesmianw Vector Multiply Halfwords, Even, Signed, Modulo, Integer 

and Accumulate Negative into Words
EVX 1000058B SP evmhesmfanw Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional and Accumulate Negative into Words
EVX 1000058C SP evmhoumianw Vector Multiply Halfwords, Odd, Unsigned, Modulo, Inte-

ger and Accumulate Negative into Words
EVX 1000058D SP evmhosmianw Vector Multiply Halfwords, Odd, Signed, Modulo, Integer 

and Accumulate Negative into Words
EVX 1000058F SP evmhosmfanw Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-

tional and Accumulate Negative into Words
EVX 100005A8 SP evmhegumian Vector Multiply Halfwords, Even, Guarded, Unsigned, 

Modulo, Integer and Accumulate Negative
EVX 100005A9 SP evmhegsmian Vector Multiply Halfwords, Even, Guarded, Signed, Mod-

ulo, Integer and Accumulate Negative
EVX 100005AB SP evmhegsmfan Vector Multiply Halfwords, Even, Guarded, Signed, Mod-

ulo, Fractional and Accumulate Negative
EVX 100005AC SP evmhogumian Vector Multiply Halfwords, Odd, Guarded, Unsigned, Mod-

ulo, Integer and Accumulate Negative
EVX 100005AD SP evmhogsmian Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-

ulo, Integer and Accumulate Negative
EVX 100005AF SP evmhogsmfan Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-

ulo, Fractional and Accumulate Negative
EVX 100005C0 SP evmwlusianw Vector Multiply Word Low Unsigned, Saturate, Integer and 

Accumulate Negative in Words
EVX 100005C1 SP evmwlssianw Vector Multiply Word Low Signed, Saturate, Integer and 

Accumulate Negative in Words
EVX 100005C8 SP evmwlumianw Vector Multiply Word Low Unsigned, Modulo, Integer and 

Accumulate Negative in Words
EVX 100005C9 SP evmwlsmianw Vector Multiply Word Low Signed, Modulo, Integer and 

Accumulate Negative in Words
EVX 100005D3 SP evmwssfan Vector Multiply Word Signed, Saturate, Fractional and 

Accumulate Negative
EVX 100005D8 SP evmwumian Vector Multiply Word Unsigned, Modulo, Integer and 

Accumulate Negative
EVX 100005D9 SP evmwsmian Vector Multiply Word Signed, Modulo, Integer and Accu-

mulate Negative
EVX 100005DB SP evmwsmfan Vector Multiply Word Signed, Modulo, Fractional and 

Accumulate Negative
VX 10000600 V vsububs Vector Subtract Unsigned Byte Saturate
VX 10000604 V mfvscr Move From VSCR
VX 10000608 V vsum4ubs Vector Sum across Quarter Unsigned Byte Saturate
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Version 2.07 B
VX 10000640 V vsubuhs Vector Subtract Unsigned Halfword Saturate
VX 10000644 V mtvscr Move To VSCR
VX 10000648 V vsum4shs Vector Sum across Quarter Signed Halfword Saturate
VX 10000680 V vsubuws Vector Subtract Unsigned Word Saturate
VX 10000688 V vsum2sws Vector Sum across Half Signed Word Saturate
VX 10000700 V vsubsbs Vector Subtract Signed Byte Saturate
VX 10000708 V vsum4sbs Vector Sum across Quarter Signed Byte Saturate
VX 10000740 V vsubshs Vector Subtract Signed Halfword Saturate
VX 10000780 V vsubsws Vector Subtract Signed Word Saturate
VX 10000788 V vsumsws Vector Sum across Signed Word Saturate
D8 18000000 VLE e_lbzu Load Byte and Zero with Update
D8 18000100 VLE e_lhzu Load Halfword and Zero with Update
D8 18000200 VLE e_lwzu Load Word and Zero with Update
D8 18000300 VLE e_lhau Load Halfword Algebraic with Update
D8 18000400 VLE e_stbu Store Byte with Update
D8 18000500 VLE e_sthu Store Halfword with Update
D8 18000600 VLE e_stwu Store Word with Update
D8 18000800 VLE e_lmw Load Multiple Word
D8 18000900 VLE e_stmw Store Multiple Word
SCI8 18008000 SR VLE e_addi[.] Add Scaled Immediate
SCI8 18009000 SR VLE e_addic[.] Add Scaled Immediate Carrying
SCI8 1800A000 VLE e_mulli Multiply Low Scaled Immediate
SCI8 1800A800 VLE e_cmpi Compare Scaled Immediate Word
SCI8 1800B000 SR VLE e_subfic[.] Subtract From Scaled Immediate Carrying
SCI8 1800C000 SR VLE e_andi[.] AND Scaled Immediate
SCI8 1800D000 SR VLE e_ori[.] OR Scaled Immediate
SCI8 1800E000 SR VLE e_xori[.] XOR Scaled Immediate
SCI8 1880A800 VLE e_cmpli Compare Logical Scaled Immediate Word
D 1C000000 VLE e_add16i Add Immediate
OIM5 2000---- VLE se_addi Add Immediate Short Form
OIM5 2200---- VLE se_cmpli Compare Logical Immediate Word
OIM5 2400---- SR VLE se_subi[.] Subtract Immediate
IM5 2A00---- VLE se_cmpi Compare Immediate Word Short Form
IM5 2C00---- VLE se_bmaski Bit Mask Generate Immediate
IM5 2E00---- VLE se_andi AND Immediate Short Form
D 30000000 VLE e_lbz Load Byte and Zero
D 34000000 VLE e_stb Store Byte
D 38000000 VLE e_lha Load Halfword Algebraic
RR 4000---- VLE se_srw Shift Right Word
RR 4100---- VLE se_sraw Shift Right Algebraic Word
RR 4200---- VLE se_slw Shift Left Word
RR 4400---- VLE se_or OR Short Form
RR 4500---- VLE se_andc AND with Complement Short Form
RR 4600---- SR VLE se_and[.] AND Short Form
IM7 4800---- VLE se_li Load Immediate Short Form
D 50000000 VLE e_lwz Load Word and Zero
D 54000000 VLE e_stw Store Word
D 58000000 VLE e_lhz Load Halfword and Zero
D 5C000000 VLE e_sth Store Halfword
IM5 6000---- VLE se_bclri Bit Clear Immediate
IM5 6200---- VLE se_bgeni Bit Generate Immediate
IM5 6400---- VLE se_bseti Bit Set Immediate
IM5 6600---- VLE se_btsti Bit Test Immediate
IM5 6800---- VLE se_srwi Shift Right Word Immediate Short Form
IM5 6A00---- VLE se_srawi Shift Right Algebraic Word Immediate
IM5 6C00---- VLE se_slwi Shift Left Word Immediate Short Form
LI20 70000000 VLE e_li Load Immediate
I16A 70008800 SR VLE e_add2i. Add (2 operand) Immediate and Record
I16A 70009000 VLE e_add2is Add (2 operand) Immediate Shifted
I16A 70009800 VLE e_cmp16i Compare Immediate Word
I16A 7000A000 VLE e_mull2i Multiply (2 operand) Low Immediate
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Version 2.07 B
I16A 7000A800 VLE e_cmpl16i Compare Logical Immediate Word
I16A 7000B000 VLE e_cmph16i Compare Halfword Immediate
I16A 7000B800 VLE e_cmphl16i Compare Halfword Logical Immediate
I16L 7000C000 VLE e_or2i OR (two operand) Immediate
I16L 7000C800 SR VLE e_and2i. AND (two operand) Immediate
I16L 7000D000 VLE e_or2is OR (2 operand) Immediate Shifted
I16L 7000E000 VLE e_lis Load Immediate Shifted
I16L 7000E800 SR VLE e_and2is. AND (2 operand) Immediate Shifted
M 74000000 VLE e_rlwimi Rotate Left Word Immediate then Mask Insert
M 74000001 VLE e_rlwinm Rotate Left Word Immediate then AND with Mask
BD24 78000000 VLE e_b[l] Branch [and Link]
BD15 7A000000 CT VLE e_bc[l] Branch Conditional [and Link]
X 7C000000 B cmp Compare
X 7C000008 B tw Trap Word
X 7C00000C V lvsl Load Vector for Shift Left Indexed
X 7C00000E V lvebx Load Vector Element Byte Indexed
XO 7C000010 SR B subfc[o][.] Subtract From Carrying
XO 7C000012 SR 64 mulhdu[.] Multiply High Doubleword Unsigned
XO 7C000014 SR B addc[o][.] Add Carrying
XO 7C000016 SR B mulhwu[.] Multiply High Word Unsigned
X 7C00001C VLE e_cmph Compare Halfword
A 7C00001E B isel Integer Select
XL 7C000020 VLE e_mcrf Move CR Field
XFX 7C000026 B mfcr Move From Condition Register
X 7C000028 B lwarx Load Word And Reserve Indexed
X 7C00002A 64 ldx Load Doubleword Indexed
X 7C00002C B icbt Instruction Cache Block Touch
X 7C00002E B lwzx Load Word and Zero Indexed
X 7C000030 SR B slw[.] Shift Left Word
X 7C000034 SR B cntlzw[.] Count Leading Zeros Word
X 7C000036 SR 64 sld[.] Shift Left Doubleword
X 7C000038 SR B and[.] AND
X 7C00003A P E.PD;64 ldepx Load Doubleword by External Process ID Indexed
X 7C00003E P E.PD lwepx Load Word by External Process ID Indexed
X 7C000040 B cmpl Compare Logical
XL 7C000042 VLE e_crnor Condition Register NOR
ESC 7C000048 VLE,

E.HV
e_sc System Call

X 7C00004C V lvsr Load Vector for Shift Right  Indexed
X 7C00004E V lvehx Load Vector Element Halfword Indexed
XO 7C000050 SR B subf[o][.] Subtract From
X 7C00005C VLE e_cmphl Compare Halfword Logical
X 7C000068 B lbarx Load Byte and Reserve Indexed
X 7C00006A 64 ldux Load Doubleword with Update Indexed
X 7C00006C B dcbst Data Cache Block Store
X 7C00006E B lwzux Load Word and Zero with Update Indexed
X 7C000070 SR VLE e_slwi[.] Shift Left Word Immediate
X 7C000074 SR 64 cntlzd[.] Count Leading Zeros Doubleword
X 7C000078 SR B andc[.] AND with Complement
X 7C00007C WT wait Wait
X 7C00007E E.PD dcbstep Data Cache Block Store by External PID
X 7C000088 64 td Trap Doubleword
X 7C00008E V lvewx Load Vector Element Word Indexed
XO 7C000092 SR 64 mulhd[.] Multiply High Doubleword
XO 7C000096 SR B mulhw[.] Multiply High Word
X 7C00009C SR LMV dlmzb[.] Determine Leftmost Zero Byte
X 7C0000A6 P B mfmsr Move From Machine State Register
X 7C0000A8 64 ldarx Load Doubleword And Reserve Indexed
X 7C0000AC B dcbf Data Cache Block Flush
X 7C0000AE B lbzx Load Byte and Zero Indexed
X 7C0000BE P E.PD lbepx Load Byte by External Process ID Indexed
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Version 2.07 B
X 7C0000CE V lvx Load Vector Indexed
XO 7C0000D0 SR B neg[o][.] Negate
X 7C0000E8 B lharx Load Halfword and Reserve Indexed
X 7C0000EE B lbzux Load Byte and Zero with Update Indexed
X 7C0000F4 B popcntb Population Count Bytes
X 7C0000F8 SR B nor[.] NOR
X 7C0000FE P E.PD dcbfep Data Cache Block Flush by External PID
XL 7C000102 VLE e_crandc Condition Register AND with Complement
X 7C000106 P E wrtee Write MSR External Enable
X 7C00010C M ECL dcbtstls Data Cache Block Touch for Store and Lock Set
X 7C00010E V stvebx Store Vector Element Byte Indexed
XO 7C000110 SR B subfe[o][.] Subtract From Extended
XO 7C000114 SR B adde[o][.] Add Extended
XFX 7C000120 B mtcrf Move To Condition Register Fields
X 7C000124 P E mtmsr Move To Machine State Register
X 7C00012A 64 stdx Store Doubleword Indexed
X 7C00012D B stwcx. Store Word Conditional Indexed
X 7C00012E B stwx Store Word Indexed
X 7C00013A P E.PD;64 stdepx Store Doubleword by External Process ID Indexed
X 7C00013E P E.PD stwepx Store Word by External Process ID Indexed
X 7C000146 P E wrteei Write MSR External Enable Immediate
X 7C00014C M ECL dcbtls Data Cache Block Touch and Lock Set
X 7C00014E V stvehx Store Vector Element Halfword Indexed
X 7C00016A 64 stdux Store Doubleword with Update Indexed
X 7C00016E B stwux Store Word with Update Indexed
XL 7C000182 VLE e_crxor Condition Register XOR
X 7C00018D M ECL icblq. Instruction Cache Block Lock Query
X 7C00018E V stvewx Store Vector Element Word Indexed
XO 7C000190 SR B subfze[o][.] Subtract From Zero Extended
XO 7C000194 SR B addze[o][.] Add to Zero Extended
X 7C00019C H E.PC msgsnd Message Send
X 7C0001AD 64 stdcx. Store Doubleword Conditional Indexed
X 7C0001AE B stbx Store Byte Indexed
X 7C0001BE P E.PD stbepx Store Byte by External Process ID Indexed
XL 7C0001C2 VLE e_crnand Condition Register NAND
X 7C0001CC M ECL icblc Instruction Cache Block Lock Clear
X 7C0001CE V stvx Store Vector Indexed
XO 7C0001D0 SR B subfme[o][.] Subtract From Minus One Extended
XO 7C0001D2 SR 64 mulld[o][.] Multiply Low Doubleword
XO 7C0001D4 SR B addme[o][.] Add to Minus One Extended
XO 7C0001D6 SR B mullw[o][.] Multiply Low Word
X 7C0001DC H E.PC msgclr Message Clear
X 7C0001EC B dcbtst Data Cache Block Touch for Store
X 7C0001EE B stbux Store Byte with Update Indexed
X 7C0001FE P E.PD dcbtstep Data Cache Block Touch for Store by External PID
XL 7C000202 VLE e_crand Condition Register AND
X 7C000206 P E.DC mfdcrx Move From Device Control Register Indexed
X 7C00020E P E.PD lvepxl Load Vector by External Process ID Indexed LRU
XO 7C000214 SR B add[o][.] Add
XL 7C00021C E.HV ehpriv Embedded Hypervisor Privilege
X 7C00022C B dcbt Data Cache Block Touch
X 7C00022E B lhzx Load Halfword and Zero Indexed
X 7C000230 SR VLE e_rlw[.] Rotate Left Word
X 7C000238 SR B eqv[.] Equivalent
X 7C00023E P E.PD lhepx Load Halfword by External Process ID Indexed
XL 7C000242 VLE e_creqv Condition Register Equivalent
X 7C000246 E.DC mfdcrux Move From Device Control Register User-mode Indexed
X 7C00024E P E.PD lvepx Load Vector by External Process ID Indexed
X 7C00026E B lhzux Load Halfword and Zero with Update Indexed
X 7C000270 SR VLE e_rlwi[.] Rotate Left Word Immediate
X 7C000278 SR B xor[.] XOR
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Version 2.07 B
X 7C00027E P E.PD dcbtep Data Cache Block Touch by External PID
XFX 7C000286 P E.DC mfdcr Move From Device Control Register
X 7C00028C P E.CD dcread Data Cache Read
XFX 7C00029C O E.PM mfpmr Move From Performance Monitor Register
XFX 7C0002A6 O B mfspr Move From Special Purpose Register
X 7C0002AA 64 lwax Load Word Algebraic Indexed
X 7C0002AE B lhax Load Halfword Algebraic Indexed
X 7C0002CE V lvxl Load Vector Indexed  LRU
X 7C0002EA 64 lwaux Load Word Algebraic with Update Indexed
X 7C0002EE B lhaux Load Halfword Algebraic with Update Indexed
X 7C000306 P E.DC mtdcrx Move To Device Control Register Indexed
X 7C00030C M ECL dcblc Data Cache Block Lock Clear
X 7C00032E B sthx Store Halfword Indexed
X 7C000338 SR B orc[.] OR with Complement
X 7C00033E P E.PD sthepx Store Halfword by External Process ID Indexed
XL 7C000342 VLE e_crorc Condition Register OR with Complement
X 7C000346 E.DC mtdcrux Move To Device Control Register User-mode Indexed
X 7C00034D M ECL dcblq. Data Cache Block Lock Query
X 7C00036E B sthux Store Halfword with Update Indexed
X 7C000378 SR B or[.] OR
XL 7C000382 VLE e_cror Condition Register OR
XFX 7C000386 P E.DC mtdcr Move To Device Control Register
X 7C00038C H E.CI dci Data Cache Invalidate
XO 7C000392 SR 64 divdu[o][.] Divide Doubleword Unsigned
XO 7C000396 SR B divwu[o][.] Divide Word Unsigned
XFX 7C00039C O E.PM mtpmr Move To Performance Monitor Register
XFX 7C0003A6 O B mtspr Move To Special Purpose Register
X 7C0003AC P E dcbi Data Cache Block Invalidate
X 7C0003C6 DS dsn Decorated Storage Notify
X 7C0003CC M ECL icbtls Instruction Cache Block Touch and Lock Set
X 7C0003CC H E.CD dcread Data Cache Read [Alternative Encoding]
X 7C0003CE V stvxl Store Vector Indexed LRU
XO 7C0003D2 SR 64 divd[o][.] Divide Doubleword
XO 7C0003D6 SR B divw[o][.] Divide Word
X 7C000400 E mcrxr Move To Condition Register from XER
X 7C000406 DS lbdx Load Byte with Decoration Indexed
X 7C00042A MA lswx Load String Word Indexed
X 7C00042C B lwbrx Load Word Byte-Reverse Indexed
X 7C000430 SR B srw[.] Shift Right Word
X 7C000436 SR 64 srd[.] Shift Right Doubleword
X 7C000446 DS lhdx Load Halfword with Decoration Indexed
X 7C00046C H E tlbsync TLB Synchronize
X 7C000470 SR VLE e_srwi[.] Shift Right Word Immediate
X 7C000486 DS lwdx Load Word with Decoration Indexed
X 7C0004AA MA lswi Load String Word Immediate
X 7C0004AC B sync Synchronize
X 7C0004BE P E.PD lfdepx Load Floating-Point Double by External Process ID 

Indexed
X 7C0004C6 DS lddx Load Doubleword with Decoration Indexed
X 7C000506 DS stbdx Store Byte with Decoration Indexed
X 7C00052A MA stswx Store String Word Indexed
X 7C00052C B stwbrx Store Word Byte-Reverse Indexed
X 7C000546 DS sthdx Store Halfword with Decoration Indexed
X 7C00056D B stbcx. Store Byte Conditional Indexed
X 7C000586 DS stwdx Store Word with Decoration Indexed
X 7C0005AA MA stswi Store String Word Immediate
X 7C0005AD B sthcx. Store Halfword Conditional Indexed
X 7C0005BE P E.PD stfdepx Store Floating-Point Double by External Process ID 

Indexed
X 7C0005C6 DS stddx Store Doubleword with Decoration Indexed
X 7C0005EC E dcba Data Cache Block Allocate
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1 See the key to the mode dependency and privilege column below and the key to the category column in 
Section 1.3.5 of Book I.

2For 16-bit instructions, the “Opcode” column represents the 16-bit hexadecimal instruction encoding with the opcode
and extended opcode in the corresponding fields in the instruction, and with 0’s in bit positions which are not opcode
bits; dashes are used following the opcode to indicate the form is a 16-bit instruction. For 32-bit instructions, the
"Opcode" column represents the 32-bit hexadecimal instruction encoding with the opcode, extended opcode, and
other fields with fixed values in the corresponding fields in the instruction, and with 0’s in bit positions which are not
opcode, extended opcode or fixed value bits."

Mode Dependency and Privilege Abbreviations
Except as described below and in Section 1.10.3, “Effective Address Calculation”, in Book I, all instructions are inde-
pendent of whether the processor is in 32-bit or 64-bit mode. 

X 7C00060E P E.PD stvepxl Store Vector by External Process ID Indexed LRU
X 7C000624 H E tlbivax TLB Invalidate Virtual Address Indexed
X 7C00062C B lhbrx Load Halfword Byte-Reverse Indexed
X 7C000630 SR B sraw[.] Shift Right Algebraic Word
X 7C000634 SR 64 srad[.] Shift Right Algebraic Doubleword
EVX 7C00063E P E.PD evlddepx Vector Load Doubleword into Doubleword by External Pro-

cess ID Indexed
X 7C000646 DS lfddx Load Floating Doubleword with Decoration Indexed
X 7C00064E P E.PD stvepx Store Vector by External Process ID Indexed
X 7C000670 SR B srawi[.] Shift Right Algebraic Word Immediate
XS 7C000674 SR 64 sradi[.] Shift Right Algebraic Doubleword Immediate
X 7C0006AC E mbar Memory Barrier
X 7C000724 H E tlbsx TLB Search Indexed
X 7C00072C B sthbrx Store Halfword Byte-Reverse Indexed
X 7C000734 SR B extsh[.] Extend Sign Halfword
EVX 7C00073E P E.PD evstddepx Vector Store Doubleword into Doubleword by External 

Process ID Indexed
X 7C000746 DS stfddx Store Floating Doubleword with Decoration Indexed
X 7C000764 H E tlbre TLB Read Entry
X 7C000774 SR B extsb[.] Extend Sign Byte
X 7C00078C H E.CI ici Instruction Cache Invalidate
X 7C0007A4 H E tlbwe TLB Write Entry
X 7C0007AC B icbi Instruction Cache Block Invalidate
X 7C0007B4 SR 64 extsw[.] Extend Sign Word
X 7C0007BE P E.PD icbiep Instruction Cache Block Invalidate by External PID
X 7C0007CC H E.CD icread Instruction Cache Read
X 7C0007EC B dcbz Data Cache Block set to Zero
X 7C0007FE P E.PD dcbzep Data Cache Block set to Zero by External PID
XFX 7C100026 B mfocrf Move From One Condition Register Field
XFX 7C100120 B mtocrf Move To One Condition Register Field
SD4 8000---- VLE se_lbz Load Byte and Zero Short Form
SD4 9000---- VLE se_stb Store Byte Short Form
SD4 A000---- VLE se_lhz Load Halfword and Zero Short Form
SD4 B000---- VLE se_sth Store Halfword Short Form
SD4 C000---- VLE se_lwz Load Word and Zero Short Form
SD4 D000---- VLE se_stw Store Word Short Form
BD8 E000---- VLE se_bc Branch Conditional Short Form
BD8 E800---- VLE se_b[l] Branch [and Link]

Mode Dep. Description
CT If the instruction tests the Count Register, it 

tests the low-order 32 bits in 32-bit mode 
and all 64 bits in 64-bit mode.

SR The setting of status registers (such as XER 
and CR0) is mode-dependent.
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Key to Privilege Column 

32 The instruction must be executed only in 
32-bit mode.

64 The instruction must be executed only in 
64-bit mode.

Priv. Description
P Denotes a privileged instruction.
O Denotes an instruction that is treated as priv-

ileged or nonprivileged (or hypervisor, for 
mtspr), depending on the SPR or PMR 
number.

M Denotes an instruction that is treated as priv-
ileged or nonprivileged, depending on the 
value of the UCLE bit of the MSR.

H Denotes an instruction that can be executed 
only in hypervisor state.

Mode Dep. Description
Power ISA™ - Book VLE1346
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Appendix A.  Incompatibilities with the POWER 
Architecture

This appendix identifies the known incompatibilities that
must be managed in the migration from the POWER
Architecture to the Power ISA. Some of the incompati-
bilities can, at least in principle, be detected by the pro-
cessor, which could trap and let software simulate the
POWER operation. Others cannot be detected by the
processor even in principle.

In general, the incompatibilities identified here are
those that affect a POWER application program.
Incompatibilities for instructions that can be used only
by POWER operating system programs are not neces-
sarily discussed. Discussion of incompatibilities that
pertain only to operating system programs assumes
the Server environment (because there is no need for
POWER operating system programs to run in the
Embedded environment).

A.1 New Instructions, Formerly 
Privileged Instructions
Instructions new to Power ISA typically use opcode val-
ues (including extended opcode) that are illegal in
POWER. A few instructions that are privileged in
POWER (e.g., dclz, called dcbz in Power ISA) have
been made nonprivileged in Power ISA. Any POWER
program that executes one of these now-valid or
now-nonprivileged instructions, expecting to cause the
system illegal instruction error handler or the system
privileged instruction error handler to be invoked, will
not execute correctly on Power ISA.

A.2 Newly Privileged
Instructions
The following instructions are nonprivileged in POWER
but privileged in Power ISA.

    mfmsr
    mfsr

A.3 Reserved Fields in
Instructions
These fields are shown with “/”s in the instruction lay-
outs. In both POWER and Power ISA these fields are
ignored by the processor. The Power ISA states that
these fields must contain zero. The POWER Architec-
ture lacks such a statement, but it is expected that
essentially all POWER programs contain zero in these
fields.

In several cases the Power ISA assumes that reserved
fields in POWER instructions indeed contain zero. The
cases include the following.

bclr[l] and bcctr[l] assume that bits 19:20 in the
POWER instructions contain zero.
cmpi, cmp, cmpli, and cmpl assume that bit 10 in
the POWER instructions contains zero.
mtspr and mfspr assume that bits 16:20 in the
POWER instructions contain zero.
mtcrf and mfcr assume that bit 11 in the POWER
instructions is contains zero.
Synchronize assumes that bits 9:10 in the POWER
instruction (dcs) contain zero. (This assumption
provides compatibility for application programs, but
not necessarily for operating system programs;
see Section A.22.)
mtmsr assumes that bit 15 in the POWER instruc-
tion contains zero.

A.4 Reserved Bits in Registers
Both POWER and Power ISA permit software to write
any value to these bits. However in POWER reading
such a bit always returns 0, while in Power ISA reading
it may return either 0 or the value that was last written
to it.

A.5 Alignment Check
The POWER MSR AL bit (bit 24) is no longer sup-
ported; the corresponding Power ISA MSR bit, bit 56, is
reserved. The low-order bits of the EA are always used.
(Notice that the value 0 — the normal value for a
reserved bit —- means “ignore the low-order EA bits” in
Appendix A. Incompatibilities with the POWER Architecture 1349
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POWER, and the value 1 means “use the low-order EA
bits”.) POWER-compatible operating system code will
probably write the value 1 to this bit.

A.6 Condition Register
The following instructions specify a field in the CR
explicitly (via the BF field) and also, in POWER, use bit
31 as the Record bit. In Power ISA, bit 31 is a reserved
field for these instructions and is ignored by the proces-
sor. In POWER, if bit 31 contains 1 the instructions exe-
cute normally (i.e., as if the bit contained 0) except as
follows:

cmp CR0 is undefined if Rc=1 and BF≠0
cmpl CR0 is undefined if Rc=1 and BF≠0
mcrxr CR0 is undefined if Rc=1 and BF≠0
fcmpu CR1 is undefined if Rc=1
fcmpo CR1 is undefined if Rc=1
mcrfs CR1 is undefined if Rc=1 and BF≠1

A.7 LK and Rc Bits
For the instructions listed below, if bit 31 (LK or Rc bit in
POWER) contains 1, in POWER the instruction exe-
cutes as if the bit contained 0 except as follows: if
LK=1, the Link Register is set (to an undefined value,
except for svc); if Rc=1, Condition Register Field 0 or 1
is set to an undefined value. In Power ISA, bit 31 is a
reserved field for these instructions and is ignored by
the processor.

Power ISA instructions for which bit 31 is the LK bit in
POWER:

sc (svc in POWER)
the Condition Register Logical instructions
mcrf
isync (ics in POWER)

Power ISA instructions for which bit 31 is the Rc bit in
POWER:

fixed-point X-form Load and Store instructions
fixed-point X-form Compare instructions
the X-form Trap instruction
mtspr, mfspr, mtcrf, mcrxr, mfcr, mtocrf, mfocrf
floating-point X-form Load and Store instructions
floating-point Compare instructions
mcrfs
dcbz (dclz in POWER)

A.8 BO Field
POWER shows certain bits in the BO field — used by
Branch Conditional instructions — as “x”.  Although the
POWER Architecture does not say how these bits are
to be interpreted, they are in fact ignored by the proces-
sor.

Power ISA shows these bits as “z”, “a”, or “t”. The “z”
bits are ignored, as in POWER. However, the “a” and “t”
bits can be used by software to provide a hint about
how the branch is likely to behave. If a POWER pro-
gram has the “wrong” value for these bits, the program
will produce the same results as on POWER but perfor-
mance may be affected.

A.9 BH Field
Bits 19:20 of the Branch Conditional to Link Register
and Branch Conditional to Count Register instructions
are reserved in POWER but are defined as a branch
hint (BH) field in Power ISA. Because these bits are
hints, they may affect performance but do not affect the
results of executing the instruction.

A.10 Branch Conditional to 
Count Register
For the case in which the Count Register is decre-
mented and tested (i.e., the case in which BO2=0),
POWER specifies only that the branch target address
is undefined, with the implication that the Count Regis-
ter, and the Link Register if LK=1, are updated in the
normal way. Power ISA specifies that this instruction
form is invalid.

A.11 System Call
There are several respects in which Power ISA is
incompatible with POWER for System Call instructions
— which in POWER are called Supervisor Call instruc-
tions.

POWER provides a version of the Supervisor Call
instruction (bit 30 = 0) that allows instruction fetch-
ing to continue at any one of 128 locations. It is
used for “fast SVCs”. Power ISA provides no such
version; if bit 30 of the instruction is 0 the instruc-
tion form is invalid.

POWER provides a version of the Supervisor Call
instruction (bits 30:31 = 0b11) that resumes
instruction fetching at one location and sets the
Link Register to the address of the next instruction.
Power ISA provides no such version: bit 31 is a
reserved field.

For POWER, information from the MSR is saved in
the Count Register. For Power ISA this information
is saved in SRR1.

In POWER bits 16:19 and 27:29 of the instruction
comprise defined instruction fields or a portion
thereof, while in Power ISA these bits comprise
reserved fields.
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In POWER bits 20:26 of the instruction comprise a
portion of the SV field, while in Power ISA these
bits comprise the LEV field.

POWER saves the low-order 16 bits of the instruc-
tion, in the Count Register. Power ISA does not
save them.

The settings of MSR bits by the associated inter-
rupt differ between POWER and Power ISA; see
POWER Processor Architecture and Book III.

A.12 Fixed-Point Exception
Register (XER)
Bits 48:55 of the XER are reserved in Power ISA, while
in POWER the corresponding bits (16:23) are defined
and contain the comparison byte for the lscbx instruc-
tion (which Power ISA lacks).

A.13 Update Forms of Storage 
Access Instructions
Power ISA requires that RA not be equal to either RT
(fixed-point Load only) or 0. If the restriction is violated
the instruction form is invalid. POWER permits these
cases, and simply avoids saving the EA.

A.14 Multiple Register Loads
Power ISArequires that RA, and RB if present in the
instruction format, not be in the range of registers to be
loaded, while POWER permits this and does not alter
RA or RB in this case. (The Power ISA restriction
applies even if RA=0, although there is no obvious ben-
efit to the restriction in this case since RA is not used to
compute the effective address if RA=0.) If the Power
ISA restriction is violated, either the system illegal
instruction error handler is invoked or the results are
boundedly undefined. The instructions affected are:

lmw (lm in POWER)
lswi (lsi in POWER)
lswx (lsx in POWER)

For example, an lmw instruction that loads all 32 regis-
ters is valid in POWER but is an invalid form in Power
ISA.

A.15 Load/Store Multiple 
Instructions
There are two respects in which Power ISA is incom-
patible with POWER for Load Multiple and Store Multi-
ple instructions.

If the EA is not word-aligned, in Power ISA either
an Alignment exception occurs or the addressed
bytes are loaded, while in POWER an Alignment
interrupt occurs if MSRAL=1 (the low-order two bits
of the EA are ignored if MSRAL=0).

In Power ISA the instruction may be interrupted by
a system-caused interrupt, while in POWER the
instruction cannot be thus interrupted.

A.16 Move Assist Instructions
There are several respects in which Power ISA is
incompatible with POWER for Move Assist instructions.

In Power ISA an lswx instruction with zero length
leaves the contents of RT undefined (if RT≠RA and
RT≠RB) or is an invalid instruction form (if RT=RA
or RT=RB), while in POWER the corresponding
instruction (lsx) is a no-op in these cases.

In Power ISA a Move Assist instruction may be
interrupted by a system-caused interrupt, while in
POWER the instruction cannot be thus interrupted.

A.17 Move To/From SPR
There are several respects in which Power ISA is
incompatible with POWER for Move To/From Special
Purpose Register instructions.

The SPR field is ten bits long in Power ISA, but
only five in POWER (see also Section A.3,
“Reserved Fields in Instructions”).

mfspr can be used to read the Decrementer in
problem state in POWER, but only in privileged
state in Power ISA.

If the SPR value specified in the instruction is not
one of the defined values, POWER behaves as fol-
lows.
- If the instruction is executed in problem state

and SPR0=1, a Privileged Instruction type
Program interrupt occurs. No architected reg-
isters are altered except those set by the inter-
rupt.

- Otherwise no architected registers are altered.

In this same case, Power ISA behaves as follows.
- If the instruction is executed in problem state,

a Hypervisor Emulation Assistance interrupt
occurs if spr0=0 and a Privileged Instruction
type Program interrupt occurs if spr0=1. No
architected registers are altered except those
set by the interrupt.

- If the instruction is executed in privileged
state, a Hypervisor Emulation Assistance
interrupt occurs if the SPR value is 0 or, for
mfspr only, if the SPR value is 4, 5, or 6. In
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these cases no architected registers are
altered except those set by the interrupt. Oth-
erwise no operation is performed. (See
Section 4.4.4, “Move To/From System Regis-
ter Instructions” in Book III-S.)

A.18 Effects of Exceptions on 
FPSCR Bits FR and FI
For the following cases, POWER does not specify how
FR and FI are set, while Power ISA preserves them for
Invalid Operation Exception caused by a Compare
instruction, sets FI to 1 and FR to an undefined value
for disabled Overflow Exception, and clears them other-
wise.

Invalid Operation Exception (enabled or disabled)
Zero Divide Exception (enabled or disabled)
Disabled Overflow Exception

A.19 Store Floating-Point Sin-
gle Instructions
There are several respects in which Power ISA is
incompatible with POWER for Store Floating-Point Sin-
gle instructions.

POWER uses FPSCRUE to help determine
whether denormalization should be done, while
Power ISA does not. Using FPSCRUE is in fact
incorrect: if FPSCRUE=1 and a denormalized sin-
gle-precision number is copied from one storage
location to another by means of lfs followed by
stfs, the two “copies” may not be the same.

For an operand having an exponent that is less
than 874 (unbiased exponent less than -149),
POWER stores a zero (if FPSCRUE=0) while
Power ISA stores an undefined value.

A.20 Move From FPSCR
POWER defines the high-order 32 bits of the result of
mffs to be 0xFFFF_FFFF, while Power ISA copies the
high-order 32-bits of the FPSCR.

A.21 Zeroing Bytes in the Data 
Cache
The dclz instruction of POWER and the dcbz instruc-
tion of Power ISA have the same opcode. However, the
functions differ in the following respects.

dclz clears a line while dcbz clears a block.
dclz saves the EA in RA (if RA≠0) while dcbz does
not.
dclz is privileged while dcbz is not.

A.22 Synchronization
The Synchronize instruction (called dcs in POWER)
and the isync instruction (called ics in POWER) cause
more pervasive synchronization in Power ISA than in
POWER. However, unlike dcs, Synchronize does not
wait until data cache block writes caused by preceding
instructions have been performed in main storage.
Also, Synchronize has an L field while dcs does not,
and some uses of the instruction by the operating sys-
tem require L=2<S>. (The L field corresponds to
reserved bits in dcs and hence is expected to be zero
in POWER programs; see Section A.3.)

A.23 Move To Machine State 
Register Instruction
The mtmsr instruction has an L field in Power ISA but
not in POWER. The function of the variant of mtmsr
with L=1 differs from the function of the instruction in
the POWER architecture in the following ways.

In Power ISA, this variant of mtmsr modifies only
the EE and RI bits of the MSR, while in the
POWER mtmsr modifies all bits of the MSR.
This variant of mtmsr is execution synchronizing in
Power ISA but is context synchronizing in POWER.
(The POWER architecture lacks Power ISA’s dis-
tinction between execution synchronization and
context synchronization. The statement in the
POWER architecture specification that mtmsr is
“synchronizing” is equivalent to stating that the
instruction is context synchronizing.)

Also, mtmsr is optional in Power ISA but required in
POWER.

A.24 Direct-Store Segments
POWER’s direct-store segments are not supported in
Power ISA.

A.25 Segment Register
Manipulation Instructions
The definitions of the four Segment Register Manipula-
tion instructions mtsr, mtsrin, mfsr, and mfsrin differ
in two respects between POWER and Power ISA.
Instructions similar to mtsrin and mfsrin are called
mtsri and mfsri in POWER.
privilege: mfsr and mfsri are problem state instruc-

tions in POWER, while mfsr and mfsrin
are privileged in Power ISA.

function: the “indirect” instructions (mtsri and
mfsri) in POWER use an RA register in
computing the Segment Register number,
and the computed EA is stored into RA (if
Power ISA™ - Book Appendices1352



Version 2.07 B
RA≠0 and RA≠RT), while in Power ISA
mtsrin and mfsrin have no RA field and
the EA is not stored.

mtsr, mtsrin (mtsri), and mfsr have the same
opcodes in Power ISA as in POWER. mfsri (POWER)
and mfsrin (Power ISA) have different opcodes.

Also, the Segment Register Manipulation instructions
are required in POWER whereas they are optional in
Power ISA.

A.26 TLB Entry Invalidation
The tlbi instruction of POWER and the tlbie instruction
of Power ISA have the same opcode. However, the
functions differ in the following respects.

tlbi computes the EA as (RA|0) + (RB), while tlbie
lacks an RA field and computes the EA and related
information as (RB).
tlbi saves the EA in RA (if RA≠0), while tlbie lacks
an RA field and does not save the EA.
For tlbi the high-order 36 bits of RB are used in
computing the EA, while for tlbie these bits contain
additional information that is not directly related to
the EA.
For tlbi has no RS operand, while for tlbie the
(RS) is an LPID value used to qualify the TLB
invalidation.

Also, tlbi is required in POWER whereas tlbie is
optional in Power ISA.

A.27 Alignment Interrupts
Any information that may be placed into the DSISR is
undefined in Power ISA, but POWER requires the
DSISR to contain information about the interrupting
instruction. 

A.28 Floating-Point Interrupts
POWER uses MSR bit 20 to control the generation of
interrupts for floating-point enabled exceptions, and
Power ISA uses the corresponding MSR bit, bit 52, for
the same purpose. However, in Power ISA this bit is
part of a two-bit value that controls the occurrence, pre-
cision, and recoverability of the interrupt, while in
POWER this bit is used independently to control the
occurrence of the interrupt (in POWER all floating-point
interrupts are precise).

A.29 Timing Facilities

A.29.1 Real-Time Clock
The POWER Real-Time Clock is not supported in
Power ISA. Instead, Power ISA provides a Time Base.
Both the RTC and the TB are 64-bit Special Purpose
Registers, but they differ in the following respects.

The RTC counts seconds and nanoseconds, while
the TB counts “ticks”.  The ticking rate of the TB is
implementation-dependent.
The RTC increments discontinuously: 1 is added to
RTCU when the value in RTCL passes
999_999_999.  The TB increments continuously: 1
is added to TBU when the value in TBL passes
0xFFFF_FFFF.
The RTC is written and read by the mtspr and
mfspr instructions, using SPR numbers that
denote the RTCU and RTCL. The TB is written and
read by the same instructions using different SPR
numbers.
The SPR numbers that denote POWER’s RTCL
and RTCU are invalid in Power ISA.
The RTC is guaranteed to increment at least once
in the time required to execute ten Add Immediate
instructions.  No analogous guarantee is made for
the TB.
Not all bits of RTCL need be implemented, while
all bits of the TB must be implemented.

A.29.2 Decrementer
The Power ISA Decrementer differs from the POWER
Decrementer in the following respects.

The Power ISA DEC decrements at the same rate
that the TB increments, while the POWER DEC
decrements every nanosecond (which is the same
rate that the RTC increments).
Not all bits of the POWER DEC need be imple-
mented, while all bits of the Power ISA DEC must
be implemented.
The interrupt caused by the DEC has its own inter-
rupt vector location in Power ISA, but is considered
an External interrupt in POWER.
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A.30 Deleted Instructions
The following instructions are part of the POWER
Architecture but have been dropped from the Power
ISA.

(*) This instruction is privileged.

Note: Many of these instructions use the MQ register.
The MQ is not defined in the Power ISA.

A.31 Discontinued Opcodes
The opcodes listed below are defined in the POWER
Architecture but have been dropped from the Power
ISA. The list contains the POWER mnemonic (MNEM),
the primary opcode (PRI), and the extended opcode
(XOP) if appropriate. The corresponding instructions
are reserved in Power ISA.

(*) This instruction is privileged.

  

abs Absolute
clcs Cache Line Compute Size
clf Cache Line Flush
cli (*) Cache Line Invalidate
dclst Data Cache Line Store
div Divide
divs Divide Short
doz Difference Or Zero
dozi Difference Or Zero Immediate
lscbx Load String And Compare Byte Indexed
maskg Mask Generate
maskir Mask Insert From Register
mfsri Move From Segment Register Indirect
mul Multiply
nabs Negative Absolute
rac (*) Real Address Compute
rfi (*) Return From Interrupt
rfsvc Return From SVC
rlmi Rotate Left Then Mask Insert
rrib Rotate Right And Insert Bit
sle Shift Left Extended
sleq Shift Left Extended With MQ
sliq Shift Left Immediate With MQ
slliq Shift Left Long Immediate With MQ
sllq Shift Left Long With MQ
slq Shift Left With MQ
sraiq Shift Right Algebraic Immediate With MQ
sraq Shift Right Algebraic With MQ
sre Shift Right Extended
srea Shift Right Extended Algebraic
sreq Shift Right Extended With MQ
sriq Shift Right Immediate With MQ
srliq Shift Right Long Immediate With MQ
srlq Shift Right Long With MQ
srq Shift Right With MQ

MNEM PRI XOP
abs 31 360
clcs 31 531
clf 31 118
cli (*) 31 502
dclst 31 630
div 31 331
divs 31 363
doz 31 264
dozi 09 -
lscbx 31 277
maskg 31 29
maskir 31 541
mfsri 31 627
mul 31 107
nabs 31 488
rac (*) 31 818
rfi (*) 19 50
rfsvc 19 82
rlmi 22 -
rrib 31 537
sle 31 153
sleq 31 217
sliq 31 184
slliq 31 248
sllq 31 216
slq 31 152
sraiq 31 952
sraq 31 920
sre 31 665
srea 31 921
sreq 31 729
sriq 31 696
srliq 31 760
srlq 31 728
srq 31 664

It might be helpful to current software writers for the
Assembler to flag the discontinued POWER
instructions.

Assembler Note
Power ISA™ - Book Appendices1354



Version 2.07 B
A.32 POWER2 Compatibility

The POWER2 instruction set is a superset of the
POWER instruction set. Some of the instructions added
for POWER2 are included in the Power ISA. Those that
have been renamed in the Power ISA  are listed in this

section, as are the new POWER2 instructions that are
not included in the Power ISA.

Other incompatibilities are also listed.

A.32.1 Cross-Reference for 
Changed POWER2 Mnemonics
The following table lists the new POWER2 instruction
mnemonics that have been changed in the Power ISA
User Instruction Set Architecture, sorted by POWER2
mnemonic.

To determine the Power ISA mnemonic for one of these
POWER2 mnemonics, find the POWER2 mnemonic in

the second column of the table: the remainder of the
line gives the Power ISA mnemonic and the page on
which the instruction is described, as well as the
instruction names.

POWER2 mnemonics that have not changed are not
listed.

A.32.2 Load/Store Floating-Point 
Double
Several of the opcodes for the Load/Store Float-
ing-Point Quad instructions of the POWER2 architec-
ture have been reclaimed by the Load/Store
Foating-Point Double [Indexed] instructions (entries
with a ’-’ in the Power ISA column have not been
reclaimed): 

Differences between the l/stfdp[x] instructions and the
POWER2 l/stfq[u][x] instructions include the following.

The storage operand for the l/stfdp[x] instructions
must be quadword aligned for optimal perfor-
mance.
The register pairs for the l/stfdp[x] instructions
must be even-odd pairs, instead of any consecu-
tive pair.
The l/stfdp[x] instructions do not have update
forms.

A.32.3 Floating-Point Conversion 
to Integer
The fcir and fcirz instructions of POWER2 have the
same opcodes as do the fctiw and fctiwz instructions,
respectively, of Power ISA. However, the functions differ
in the following respects.

fcir and fcirz set the high-order 32 bits of the tar-
get FPR to 0xFFFF_FFFF, while fctiw and fctiwz
set them to an undefined value.
Except for enabled Invalid Operation Exceptions,
fcir and fcirz set the FPRF field of the FPSCR
based on the result, while fctiw and fctiwz set it to
an undefined value.
fcir and fcirz do not affect the VXSNAN bit of the
FPSCR, while fctiw and fctiwz do.
fcir and fcirz set FPSCRXX to 1 for certain cases
of “Large Operands” (i.e., operands that are too
large to be represented as a 32-bit signed
fixed-point integer), while fctiw and fctiwz do not
alter it for any case of “Large Operand”.  (The IEEE
standard requires not altering it for “Large Oper-
ands”.)

Page
POWER2 Power ISA

Mnemonic Instruction Mnemonic  Instruction
152 fcir[.] Floating Convert Double to Integer 

with Round
fctiw[.] Floating Convert To Integer Word

153 fcirz[.] Floating Convert Double to Integer 
with Round to Zero

fctiwz[.] Floating Convert To Integer Word
with round toward Zero

MNEMONIC
POWER2 POWER ISA PRI XOP
lfq lq 56 -
lfqu lfdp 57 0
lfqux - 31 823
lfqx lfdpx 31 791
stfq - 60 -
stfqu stfdp 61  -
stfqux - 31 951
stfqx stfdpx 31 919
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A.32.4 Floating-Point Interrupts
POWER2 uses MSR bits 20 and 23 to control the gen-
eration of interrupts for floating-point enabled excep-
tions, and Power ISA uses the corresponding MSR bits,
bits 52 and 55, for the same purpose. However, in
Power ISA these bits comprise a two-bit value that con-
trols the occurrence, precision, and recoverability of the
interrupt, while in POWER2 these bits are used inde-
pendently to control the occurrence (bit 20) and the
precision (bit 23) of the interrupt. Moreover, in Power
ISA all floating-point interrupts are considered Program
interrupts, while in POWER2 imprecise floating-point
interrupts have their own interrupt vector location.

A.32.5 Trace
The Trace interrupt vector location differs between the
two architectures, and there are many other differ-
ences.

A.33 Deleted Instructions
The following instructions are new in POWER2 imple-
mentations of the POWER Architecture but have been
dropped from the Power ISA.

A.33.1 Discontinued Opcodes
The opcodes listed below are new in POWER2 imple-
mentations of the POWER Architecture but have been
dropped from the Power ISA. The list contains the
POWER2 mnemonic (MNEM), the primary opcode
(PRI), and the extended opcode (XOP) if appropriate.
The instructions are either illegal or reserved in Power
ISA; see Appendix D. 

 

lfq Load Floating-Point Quad
lfqu Load Floating-Point Quad with Update
lfqux Load Floating-Point Quad with Update 

Indexed
lfqx Load Floating-Point Quad Indexed
stfq Store Floating-Point Quad
stfqu Store Floating-Point Quad with Update
stfqux Store Floating-Point Quad with Update 

Indexed
stfqx Store Floating-Point Quad Indexed

MNEM PRI XOP
lfq 56 -
lfqx 31 791
stfqx 31 919
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Appendix B.  Platform Support Requirements

As described in Chapter 1 of Book I, the architecture is
structured as a collection of categories. Each category
is comprised of facilities and/or instructions that
together provide a unit of functionality. The Server and
Embedded categories are referred to as “special”
because all implementations must support at least one
of these categories. Each special category, when taken
together with the Base category, is referred to as an
“environment”, and provides the minimum functionality
required to develop operating systems and applica-
tions.

Every processor implementation supports at least one
of the environments, and may also support a set of cat-
egories chosen based on the target market for the
implementation. However, a Server implementation
supports only those categories designated as part of
the Server platform in Figure 1. To facilitate the devel-
opment of operating systems and applications for a
well-defined purpose or customer set, usually embod-
ied in a unique hardware platform, this appendix docu-
ments the association between a platform and the set
of categories it requires.

Adding a new platform may permit cost-performance
optimization by clearly identifying a unique set of cate-
gories. However, this has the potential to fragment the
application base. As a result, new platforms will be
added only when the optimization benefit clearly out-
weighs the loss due to fragmentation. 

The platform support requirements are documented in
Figure 1. An “x” in a column indicates that the category
is required. A “+” in a column indicates that the require-
ment is being phased in.
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Category Server Plat-
form

Embedded 
Platform

Base x x

Server x

Embedded x

Alternate Time Base

Cache Specification

Decimal Floating-Point x

Decorated Storage

Elemental Memory Barriers

Embedded.Cache Debug

Embedded.Cache Initialization

Embedded.Device Control

Embedded.Enhanced Debug

Embedded.External PID

Embedded.Hypervisor

Embedded.Hypervisor.LRAT

Embedded.Little-Endian

Embedded.Page Table

Embedded.Performance Monitor

Embedded.Processor Control

Embedded Cache Locking

Embedded Multi-Threading
   Embedded Multi-Threading.Thread Man-

agement

Embedded.TLB Write Conditional

External Control

External Proxy

Floating-Point
   Floating-Point.Record

x
x

Legacy Move Assist

Legacy Integer Multiply-Accumulate

Load/Store Quadword x

Memory Coherence x

Move Assist x

Processor Compatibility x

Signal Processing Engine
 SPE.Embedded Float Scalar Double
 SPE.Embedded Float Scalar Single
 SPE.Embedded Float Vector

Store Conditional Page Mobility x

Stream x

Strong Access Order x

Trace x

Transactional Memory x

Figure 1. Platform Support Requirements (Sheet 1 of 2)
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Variable Length Encoding

Vector
 Vector.Little-Endian
 Vector.AES
 Vector.SHA2

x
x
x
x

Vector-Scalar Extension x

Wait

64-Bit x

Category Server Plat-
form

Embedded 
Platform

Figure 1. Platform Support Requirements (Sheet 2 of 2)
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Appendix C.  Complete SPR List

This appendix lists all the Special Purpose Registers in
the Power ISA ,  ordered by SPR number. 

 

decimal
SPR1 Register 

Name
Privileged Length

(bits)
Cat2

spr5:9  spr0:4 mtspr mfspr
1 00000 00001 XER no no 64 B
3 00000 00011 DSCR no no 64 STM
8 00000 01000 LR no no 64 B
9 00000 01001 CTR no no 64 B

13 00000 01101 AMR no9 no 64 S
17 00000 10001 DSCR yes yes 64 STM
18 00000 10010 DSISR yes yes 32 S
19 00000 10011 DAR yes yes 64 S
22 00000 10110 DEC yes13 yes13 32 B
25 00000 11001 SDR1 hypv3 hypv3 64 S
26 00000 11010 SRR0 yes13 yes13 64 B
27 00000 11011 SRR1 yes13 yes13 64 B
28 00000 11100 CFAR   yes yes 64 S
29 00000 11101 AMR yes9 yes 64 S
48 00001 10000 PID yes yes 32 E
53 00001 10101 GDECAR hypv3 no 32 E.HV
54 00001 10110 DECAR hypv12 - 32 E
55 00001 10111 MCIVPR hypv12 hypv12 64 E
56 00001 11000 LPER hypv12 hypv12 64 E.HV; E.PT
57 00001 11001 LPERU hypv12 hypv12 32 E.HV; E.PT
58 00001 11010 CSRR0 hypv12 hypv12 64 E
59 00001 11011 CSRR1 hypv12 hypv12 32 E
60 00001 11100 GTSRWR hypv3 no 32 E.HV
61 00001 11101 IAMR yes8 yes 64 S
61 00001 11101 DEAR yes13 yes13 64 E
62 00001 11110 ESR yes13 yes13 32 E
63 00001 11111 IVPR hypv12 hypv12 64 E

128 00100 00000 TFHAR no no 64 TM
129 00100 00001 TFIAR no no 64 TM
130 00100 00010 TEXASR no no 64 TM
131 00100 00011 TEXASRU no no 32 TM
136 00100 01000 CTRL - no 32 S
152 00100 11000 CTRL   yes - 32 S
153 00100 11001 FSCR yes yes 64 S
157 00100 11101 UAMOR yes10 yes 64 S
159 00100 11111 PSPB yes yes 32 S
176 00101 10000 DPDES hypv3 yes 64 S
177 00101 10001 DHDES hypv3 hypv3 64 S
180 00101 10100 DAWR0 hypv3 hypv3 64 S

Figure 2. SPR Numbers (Sheet 1 of 5)
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186 00101 11010 RPR hypv3 hypv3 64 S
187 00101 11011 CIABR hypv3 hypv3 64 S
188 00101 11100 DAWRX0 hypv3 hypv3 32 S
190 00101 11110 HFSCR hypv3 hypv3 64 S
256 01000 00000 VRSAVE no no 32 B
259 01000 00011 SPRG3 - no 64 B

260-263 01000 001xx SPRG[4-7] - no 64 E
268 01000 01100 TB - no 64 B
269 01000 01101 TBU - no 32 B

272-275 01000 100xx SPRG[0-3] yes13 yes13 64 B
276-279 01000 101xx SPRG[4-7] yes yes 64 E

282 01000 11010 EAR hypv4 hypv4 32 EC
283 01000 11011 CIR - hypv4 32 E
283 01000 11011 CIR - yes 32 S
284 01000 11100 TBL hypv4 - 32 B
285 01000 11101 TBU hypv4 - 32 B
286 01000 11110 TBU40 hypv - 64 S
286 01000 11110 PIR hypv12 yes13 32 E
287 01000 11111 PVR - yes 32 B
304 01001 10000 HSPRG0 hypv3 hypv3 64 S
304 01001 10000 DBSR hypv5,12 hypv12 32 E
305 01001 10001 HSPRG1 hypv3 hypv3 64 S
306 01001 10010 HDSISR hypv3 hypv3 32 S
306 01001 10010 DBSRWR hypv3 - 32 E.HV
307 01001 10011 HDAR hypv3 hypv3 64 S
307 01001 10011 EPCR hypv3 hypv3 32 E.HV, (E;64)
308 01001 10100 SPURR hypv3 yes 64 S
308 01001 10100 DBCR0 hypv12 hypv12 32 E
309 01001 10101 PURR hypv3 yes 64 S
309 01001 10101 DBCR1 hypv12 hypv12 32 E
310 01001 10110 HDEC hypv3 hypv3 32 S
310 01001 10110 DBCR2 hypv12 hypv12 32 E
311 01001 10111 MSRP hypv3 hypv3 32 E.HV
312 01001 11000 RMOR hypv3 hypv3 64 S
312 01001 11000 IAC1 hypv12 hypv12 64 E
313 01001 11001 HRMOR hypv3 hypv3 64 S
313 01001 11001 IAC2 hypv12 hypv12 64 E
314 01001 11010 HSRR0 hypv3 hypv3 64 S
314 01001 11010 IAC3 hypv12 hypv12 64 E
315 01001 11011 HSRR1 hypv3 hypv3 64 S
315 01001 11011 IAC4 hypv12 hypv12 64 E
316 01001 11100 DAC1 hypv12 hypv12 64 E
317 01001 11101 DAC2 hypv12 hypv12 64 E
318 01001 11110 LPCR hypv3 hypv3 64 S
319 01001 11111 LPIDR hypv3 hypv3 32 S
336 01010 10000 TSR yes5,13 yes13 32 E
336 01010 10000 HMER hypv3,8 hypv3 64 S
337 01010 10001 HMEER hypv3 hypv3 64 S
338 01010 10010 PCR hypv3 hypv3 64 S
338 01010 10010 LPIDR hypv3 hypv3 32 E.HV
339 01010 10011 HEIR hypv3 hypv3 32 S
339 01010 10011 MAS5 hypv3 hypv3 32 E.HV
340 01010 10100 TCR yes13 yes13 32 E
341 01010 10101 MAS8 hypv3 hypv3 32 E.HV

decimal
SPR1 Register 

Name
Privileged Length

(bits)
Cat2

spr5:9  spr0:4 mtspr mfspr

Figure 2. SPR Numbers (Sheet 2 of 5)
Power ISA™ - Book Appendices1362



Version 2.07 B
342 01010 10110 LRATCFG - hypv3 32 E.HV.LRAT
343 01010 10111 LRATPS - hypv3 32 E.HV.LRAT

344-347 01010 110xx TLB[0-3]PS - hypv3 32 E.HV
348 01010 11100 MAS5||MAS6 hypv3 hypv3 64 E.HV; 64
349 01010 11101 MAS8||MAS1 hypv3 hypv3 64 E.HV; 64
349 01010 11101 AMOR hypv3 hypv3 64 S
350 01010 11110 EPTCFG hypv9 hypv9 32 E.PT

368-371 01011 100xx GSPRG0-3 yes yes 64 E.HV
372 01011 10100 MAS7||MAS3 yes yes 64 E; 64
373 01011 10101 MAS0||MAS1 yes yes 64 E; 64
374 01011 10110 GDEC yes yes 32 E.HV
375 01011 10111 GTCR yes yes 32 E.HV
376 01011 11000 GTSR yes yes 32 E.HV
378 01011 11010 GSRR0 yes yes 64 E.HV
379 01011 11011 GSRR1 yes yes 32 E.HV
380 01011 11100 GEPR yes yes 32 E.HV;EXP
381 01011 11101 GDEAR yes yes 64 E.HV
382 01011 11110 GPIR hypv3 yes 32 E.HV
383 01011 11111 GESR yes yes 32 E.HV

400-415 01100 1xxxx IVOR[0-15] hypv12 hypv12 32 E
432-435 01101 100xx IVOR38-41 hypv12 hypv12 32 E.HV

436 01101 10100 IVOR42 hypv12 hypv12 32 E.HV.LRAT
437 01101 10101 TENSR - hypv12 64 E.MT
438 01101 10110 TENS hypv12 hypv12 64 E.MT
439 01101 10111 TENC hypv12 hypv12 64 E.MT

440-441 01101 1100x GIVOR2-3 hypv3 yes 32 E.HV
442 01101 11010 GIVOR4 hypv3 yes 32 E.HV
443 01101 11011 GIVOR8 hypv3 yes 32 E.HV
444 01101 11100 GIVOR13 hypv3 yes 32 E.HV
445 01101 11101 GIVOR14 hypv3 yes 32 E.HV
446 01101 11110 TIR - hypv12 64 E.MT
446 01101 11110 TIR - yes 64 S
447 01101 11111 GIVPR hypv3 yes 64 E.HV
464 01110 10000 GIVOR35 hypv3 yes 32 E.HV;E.PM
474 11010 01110 GIVOR10 hypv3 yes 32 E.HV
475 11011 01110 GIVOR11 hypv3 yes 32 E.HV
476 11100 01110 GIVOR12 hypv3 yes 32 E.HV
512 10000 00000 SPEFSCR no no 32 SP
526 10000 01110 ATB/ATBL - no 64 ATB
527 10000 01111 ATBU - no 32 ATB
528 10000 10000 IVOR32 hypv12 hypv12 32 SP
529 10000 10001 IVOR33 hypv12 hypv12 32 SP
530 10000 10010 IVOR34 hypv12 hypv12 32 SP
531 10000 10011 IVOR35 hypv12 hypv12 32 E.PM
532 10000 10100 IVOR36 hypv12 hypv12 32 E.PC
533 10000 10101 IVOR37 hypv12 hypv12 32 E.PC
570 10001 11010 MCSRR0 hypv12 hypv12 64 E
571 10001 11011 MCSRR1 hypv12 hypv12 32 E
572 10001 11100 MCSR hypv12 hypv12 64 E
574 10001 11110 DSRR0 yes yes 64 E.ED
575 10001 11111 DSRR1 yes yes 32 E.ED
604 10010 11100 SPRG8 hypv12 hypv12 64 E
605 10010 11101 SPRG9 yes yes 64 E.ED
624 10011 10000 MAS0 yes yes 32 E
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625 10011 10001 MAS1 yes yes 32 E
626 10011 10010 MAS2 yes yes 64 E
627 10011 10011 MAS3 yes yes 32 E
628 10011 10100 MAS4 yes yes 32 E
630 10011 10110 MAS6 yes yes 32 E
631 10011 10111 MAS2U yes yes 32 E

688-691 10101 100xx TLB[0-3]CFG - hypv12 32 E
702 10101 11110 EPR - yes13 32 EXP
768 11000 00000 SIER - no14 64 S
769 11000 00001 MMCR2 no14 no14 64 S
770 11000 00010 MMCRA no14 no14 64 S
771 11000 00011 PMC1 no14 no14 32 S
772 11000 00100 PMC2 no14 no14 32 S
773 11000 00101 PMC3 no14 no14 32 S
774 11000 00110 PMC4 no14 no14 32 S
775 11000 00111 PMC5 no14 no14 32 S
776 11000 01000 PMC6 no14 no14 32 S
779 11000 01011 MMCR0 no14 no14 64 S
780 11000 01100 SIAR - no14 64 S
781 11000 01101 SDAR - no14 64 S
782 11000 01110 MMCR1 - no14 64 S
784 11000 10000 SIER yes yes 64 S
785 11000 10001 MMCR2 yes yes 64 S
786 11000 10010 MMCRA yes yes 64 S
787 11000 10011 PMC1 yes yes 32 S
788 11000 10100 PMC2 yes yes 32 S
789 11000 10101 PMC3 yes yes 32 S
790 11000 10110 PMC4 yes yes 32 S
791 11000 10111 PMC5 yes yes 32 S
792 11000 11000 PMC6 yes yes 32 S
795 11000 11011 MMCR0 yes yes 64 S
796 11000 11100 SIAR yes yes 64 S
797 11000 11101 SDAR yes yes 64 S
798 11000 11110 MMCR1 yes yes 64 S
800 11001 00000 BESCRS no no 64 S
801 11001 00001 BESCRSU no no 32 S
802 11001 00010 BESCRR no no 64 S
803 11001 00011 BESCRRU no no 32 S
804 11001 00100 EBBHR no no 64 S
805 11001 00101 EBBRR no no 64 S
806 11001 00110 BESCR no no 64 S
808 11001 00110 reserved15 no no na B
809 11001 00110 reserved15 no no na B
810 11001 00110 reserved15 no no na B
811 11001 00110 reserved15 no no na B
815 11001 01111 TAR no no 64 S
848 11010 10000 IC hypv3 yes 64 S
849 11010 10001 VTB hypv3 yes 64 S
896 11100 00000 PPR no no 64 S
898 11100 00010 PPR32 no no 32 B
924 11100 11100 DCDBTRL -6 hypv12 32 E.CD
925 11100 11101 DCDBTRH -6 hypv12 32 E.CD
926 11100 11110 ICDBTRL -7 hypv12 32 E.CD
927 11100 11111 ICDBTRH -7 hypv12 32 E.CD
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944 11101 10000 MAS7 yes yes 32 E
947 11101 10011 EPLC yes yes 32 E.PD
948 11101 10100 EPSC yes yes 32 E.PD
979 11110 10011 ICDBDR -7 hypv12 32 E.CD
1012 11111 10100 MMUCSR0 hypv12 hypv12 32 E
1015 11111 10111 MMUCFG - hypv12 32 E
1023 11111 11111 PIR - yes 32 S

- This register is not defined for this instruction.
1 Note that the order of the two 5-bit halves of the SPR number is reversed.
2 See Section 1.3.5 of Book I. If multiple categories are listed separated by a semico-

lon, all the listed categories must be implemented in order for the other columns of 
the line to apply. A comma separates two alternatives, and takes precedence over a 
semicolon; e.g., the EPCR (E.HV,E;64) must be implemented if either (a) category 
E.HV is implemented or (b) the processor is an Embedded processor that implements 
the 64-Bit category.

3 This register is a hypervisor resource, and can be accessed by this instruction only in 
hypervisor state (see Chapter 2 of Book III-S or  Chapter 2 of Book III-E as appropri-
ate).

4 <S>This register is a hypervisor resource, and can be accessed by this instruction 
only in hypervisor state (see Chapter 2 of Book III-S).
<E>If the Embedded.Hypervisor category is supported, this register is a hypervisor 
resource, and can be accessed by this instruction only in hypervisor state (see Chap-
ter 2 of Book III-E). Otherwise the register is privileged.

5 This register cannot be directly written. Instead, bits in the register corresponding to 1 
bits in (RS) can be cleared using mtspr SPR,RS.

6 The register can be written by the dcread instruction.
7 The register can be written by the icread instruction.
8 This register cannot be directly written. Instead, bits in the register corresponding to 0 

bits in (RS) can be cleared using mtspr SPR,RS.
9 The value specified in register RS may be masked by the contents of the [U]AMOR 

before being placed into the AMR; see the mtspr instruction description in Book III-S.
10 The value specified in register RS may be ANDed with the contents of the AMOR 

before being placed into the UAMOR; see the mtspr instruction description in Book 
III-S.

11 The register is Category: Phased-in.
12 If the Embedded.Hypervisor category is supported, this register is a hypervisor 

resource, and can be accessed by this instruction only in hypervisor state (see Chap-
ter 2 of Book III-E). Otherwise the register is privileged for Embedded.

13 If the Embedded.Hypervisor category is supported, this register is a hypervisor 
resource and can be accessed by this instruction only in hypervisor state, and guest 
references to the register are redirected to the corresponding guest register (see 
Chapter 2 of Book III-E). Otherwise the register is privileged.

14 MMCR0PMCC controls the availability of this SPR, and its contents depend on the priv-
ilege state in which it is accessed. See Section 9.4.4 for details.

15 Accesses to these SPRs are noops; see Section 1.3.3, “Reserved Fields, Reserved 
Values, and Reserved SPRs” in Book I.

SPR numbers 777-778, 783, 793-794, and 799 are reserved for the Performance Moni-
tor. All other SPR numbers that are not shown above and are not implementation-spe-
cific are reserved.
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Appendix D.  Illegal Instructions

With the exception of the instruction consisting entirely
of binary 0s, the instructions in this class are available
for future extensions of the Power ISA; that is, some
future version of the Power ISA may define any of these
instructions to perform new functions.

The following primary opcodes are illegal.

1, 5, 6

The following primary opcodes have unused extended
opcodes. Their unused extended opcodes can be
determined from the opcode maps in Appendix F of
Book Appendices. All unused extended opcodes are
illegal.

4, 19, 30, 31, 56, 5 , 58, 59, 60, 62, 63 

An instruction consisting entirely of binary 0s is illegal,
and is guaranteed to be illegal in all future versions of
this architecture. 
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Appendix E.  Reserved Instructions

The instructions in this class are allocated to specific
purposes that are outside the scope of the Power ISA.

The following types of instruction are included in this
class.

1. The instruction having primary opcode 0, except
the instruction consisting entirely of binary 0s
(which is an illegal instruction; see Section 1.7.2,
“Illegal Instruction Class” on page 21) and the
extended opcode shown below.

256 Service Processor “Attention”

2. Instructions for the POWER Architecture that have
not been included in the Power ISA. These are
listed in Section A.31, “Discontinued Opcodes”
and Section A.33.1, “Discontinued Opcodes”.

3. Implementation-specific instructions used to con-
form to the Power ISA specification.

4. Any other implementation-dependent instructions
that are not defined in the Power ISA.
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Appendix F.  Opcode Maps

This appendix contains tables showing the opcodes
and extended opcodes.

For the primary opcode table (Table 1 on page 1372),
each cell is in the following format.

The category abbreviations are shown on Section 1.3.5
of Book I. However, the categories “Phased-In”,
“Phased-Out”, and floating-point “Record” are not listed
in the opcode tables.

The extended opcode tables show the extended
opcode in decimal, the instruction mnemonic, the cate-
gory, and the instruction format. These tables appear in
order of primary opcode within three groups. The first
group consists of the primary opcodes that have small
extended opcode fields (2-4 bits), namely 30, 58, and
62. The second group consists of primary opcodes that
have 11-bit extended opcode fields. The third group
consists of primary opcodes that have 10-bit extended
opcode fields. The tables for the second and third
groups are rotated.

In the extended opcode tables several special markings
are used.

A prime (‘) following an instruction mnemonic
denotes an additional cell, after the lowest-num-
bered one, used by the instruction. For example,
subfc occupies cells 8 and 520 of primary opcode
31, with the former corresponding to OE=0 and the
latter to OE=1. Similarly, sradi occupies cells 826
and 827, with the former corresponding to sh5=0
and the latter to sh5=1 (the 9-bit extended opcode
413, shown on page 101, excludes the sh5 bit).

Two vertical bars (||) are used instead of primed
mnemonics when an instruction occupies an entire
column of a table.  The instruction mnemonic is
repeated in the last cell of the column.

For primary opcode 31, an asterisk (*) in a cell that
would otherwise be empty means that the cell is

reserved because it is “overlaid”, by a fixed-point or
Storage Access instruction having only a primary
opcode, by an instruction having an extended
opcode in primary opcode 30, 58, or 62, or by a
potential instruction in any of the categories just
mentioned.  The overlaying instruction, if any, is
also shown.  A cell thus reserved should not be
assigned to an instruction having primary opcode
31.  (The overlaying is a consequence of opcode
decoding for fixed-point instructions: the primary
opcode, and the extended opcode if any, are
mapped internally to a 10-bit “compressed
opcode” for ease of subsequent decoding on some
implementations that complied with previous ver-
sions of the architecture.)

Parentheses around the opcode or extended
opcode mean that the instruction was defined in
earlier versions of the Power ISA  but is no longer
defined in the Power ISA.

Curly brackets around the opcode or extended
opcode mean that the instruction will be defined in
future versions of the Power ISA.

long is used as filler for mnemonics that are longer
than a table cell.

An empty cell, a cell containing only an asterisk, or a
cell in which the opcode or extended opcode is paren-
thesized, corresponds to an illegal instruction.

The instruction consisting entirely of binary 0s causes
the system illegal instruction error handler to be
invoked for all members of the POWER family, and this
is likely to remain true in future models (it is guaranteed
in the Power ISA). An instruction having primary
opcode 0 but not consisting entirely of binary 0s is
reserved except for the following extended opcode
(instruction bits 21:30).

256 Service Processor “Attention” 

 

Category

Instruction 
Mnemonic

Opcode in
Hexadecimal

Instruction
Format

Opcode in 
Decimal
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Table 1: Primary opcodes 
0 00 

Illegal,
Reserved

 1 01  2 02 
tdi

64 D 

 3  03 
twi

B D 

 See primary opcode 0 extensions on 
page 1371

 
 Trap Doubleword Immediate
 Trap Word Immediate

4 04 
Vector, LMA, 

SP
 V, LMA, SP

5 05 

            

6 06 

             

7 07 
mulli

BD

 See Table 8 and Table 7
 
 
 Multiply Low Immediate

8  08 
subfic   

             
B  D 

9 09 10 0A 
 cmpli   

             
B D 

11  0B 
cmpi     

B D 

 Subtract From Immediate Carrying

 Compare Logical Immediate
 Compare Immediate

12 0C 
addic    

             
B D 

 13 0D 
addic.  

            
 B D 

 14 0E 
addi    

             
 B D 

 15 0F 
addis    

               
 B D 

 Add Immediate Carrying
 Add Immediate Carrying and Record
 Add Immediate
 Add Immediate Shifted

16 10 
bc

B B 

17 11 
sc

B SC 

18 12 
b
             

B I 

19 13 
CR ops, 

etc.
XL 

 Branch Conditional
 System Call
 Branch
 See Table 10 on page 1385

20 14 
rlwimi   

B M 

 21 15 
rlwinm  

 B M 

22 16 23 17 
rlwnm    

B M 

 Rotate Left Word Imm. then Mask Insert
 Rotate Left Word Imm. then AND with Mask
 
 Rotate Left Word then AND with Mask

24 18 
ori     

             
B D 

25 19 
oris   

            
 B D 

26 1A 
xori    

             
 B D 

27 1B 
xoris    

               
 B D 

 OR Immediate
 OR Immediate Shifted
 XOR Immediate
 XOR Immediate Shifted

28 1C 
andi.    

             
B D 

29 1D 
andis.  

            
B D 

30 1E 
FX Dwd Rot 

MD[S]

31 1F 
FX      

Extended Ops 

 AND Immediate
 AND Immediate Shifted
 See Table 2 on page 1374
 See Table 10 on page 1385

32 20 
lwz

B  D 

33 21 
lwzu

B D 

34 22 
lbz

B D 

35 23 
lbzu     

               
B D 

 Load Word and Zero
 Load Word and Zero with Update
 Load Byte and Zero
 Load Byte and Zero with Update

36 24 
stw     

             
B D 

37 25 
stwu   

            
B D 

38 26 
stb    

             
B D 

39 27 
stbu     

               
B D 

 Store Word
 Store Word with Update
 Store Byte
 Store Byte with Update

40 28 
lhz     

             
B D 

41 29 
lhzu   

            
B D 

42  2A 
lha    

             
B D 

43 2B 
lhau     

               
B  D 

 Load Half and Zero
 Load Half and Zero with Update
 Load Half Algebraic
 Load Half Algebraic with Update

44 2C 
sth

B  D 

45  2D 
sthu

B D 

46 2E 
lmw    

B D 

47 2F 
stmw     

B D 

 Store Half
 Store Half with Update
 Load Multiple Word
 Store Multiple Word

48 30 
lfs     

FP D 

49 31 
lfsu   

FP D 

50 32 
lfd    

FP D 

51 33 
lfdu     

FP D 

 Load Floating-Point Single
 Load Floating-Point Single with Update
 Load Floating-Point Double
 Load Floating-Point Double with Update

52 34 
stfs    

FP D 

53 35 
stfsu   

FP D 

54 36 
stfd    

FP D 

55 37 
stfdu    

FP D 

 Store Floating-Point Single
 Store Floating-Point Single with Update
 Store Floating-Point Double
 Store Floating-Point Double with Update

56 38 
lq
 

LSQ DQ

57 39 
 

58 3A 
FX DS-form 

Loads   
 DS 

59 3B 
FP Single  

& DFP Ops 

 Load Quadword
 See Table 3 on page 1374
 See Table 4 on page 1374
 See Table 16 on page 1389
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60 3C 
VSX Extended 

Ops
 

61 3D 
 stfdp

FP DS

62 3E 
FX DS-form 

Stores   
DS 

63 3F 
FP Double
&DFP Ops 

 
 Store Floating-Point Double Pair
 See Table 6 on page 1374
 See Table 17 on page 1391
 See Table 18 on page 1393

Table 1: Primary opcodes 
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Table 2: Extended opcodes for primary opcode 30 
(instruction bits 27:30)

00 01 10 11

00

0
rldicl

64
MD

1
rldicl’

MD

2
rldicr

64
MD

3
rldicr’

MD

01

4
rldic
64
MD

5
rldic’

MD

6
rldimi

64
MD

7
rldimi’

MD

10

8
rldcl
64

MDS

9
rldcr

64
MDS    

11

Table 3: Extended opcodes for primary opcode 57 
(instruction bits 30:31)

0 1

0

0
lfdp
FP
DS

1

Table 4: Extended opcodes for primary opcode 58 
(instruction bits 30:31)

0 1

0

0
ld
64
DS

1
ldu
64
DS

1

2
lwa
64
DS

Table 5: Extended opcodes for primary opcode 61 
(instruction bits 30:31)

0 1

0

0
stfdp

FP
DS

1

Table 6: Extended opcodes for primary opcode 62 
(instruction bits 30:31)

0          1

0

0
std
64
DS

1
stdu
64
DS

1

2
stq
LSQ
DS
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Table 7: (Left) Extended opcodes for primary opcode 4 [Category: SP.*] (instruction bits 21:31)

     000000 000001 000010 000011 000100 000101 000110 000111 001000 001001 001010 001011 001100 001101 001110 001111

00000

00001

00010

00011

00100

00101

00110

00111

01000
512

evaddw
SP EVX

514
evaddiw

SP EVX

516
evsubfw

SP EVX

518
evsubifw
SP EVX

520
evabs

SP EVX

521
evneg

SP EVX

522
evextsb

SP EVX

523
evextsh

SP EVX

524
evrndw

SP EVX

525
evcntlzw
SP EVX

526
evcntlsw
SP EVX

527
brinc

SP EVX

01001

01010
640

evfsadd
sp.fv EVX

641
evfssub

sp.fv EVX

644
evfsabs

sp.fv EVX

645
evfsnabs
sp.fv EVX

646
evfsneg

sp.fv EVX

648
evfsmul

sp.fv EVX

649
evfsdiv

sp.fv EVX

652
long

sp.fv EVX

653
evfscmplt
sp.fv EVX

654
long

sp.fv EVX

01011
704

efsadd
sp.fs EVX

705
efssub

sp.fs EVX

708
efsabs

sp.fs EVX

709
efsnabs

sp.fs EVX

710
efsneg

sp.fs EVX

712
efsmul

sp.fs EVX

713
efsdiv

sp.fs EVX

716
efscmpgt
sp.fs EVX

717
efscmplt

sp.fs EVX

718
efscmpeq
sp.fs EVX

719
efscfd

sp.fd EVX

01100
768

evlddx
SP EVX

769
evldd

SP EVX

770
evldwx

SP EVX

771
evldw

SP EVX

772
evldhx

SP EVX

773
evldh

SP EVX

776
long

SP EVX

777
long

SP EVX

780
long

SP EVX

781
long

SP EVX

782
long

SP EVX

783
long

SP EVX

01101

01110

01111

10000
1027

evmhessf
SP EVX

1031
evmhossf
SP EVX

1032
long

SP EVX

1033
long

SP EVX

1035
long

SP EVX

1036
long

SP EVX

1037
long

SP EVX

1039
long

SP EVX

10001
1095
long

SP EVX

1096
long

SP EVX

1100
long

SP EVX

1101
long

SP EVX

1103
long

SP EVX

10010

10011
1216
long

SP EVX

1217
long

SP EVX

1218
long

SP EVX

1219
long

SP EVX

1220
evmra

SP EVX

1222
evdivws

SP EVX

1223
evdivwu

SP EVX

1224
long

SP EVX

1225
long

SP EVX

1226
long

SP EVX

1227
long

SP EVX

10100
1280
long

SP EVX

1281
long

SP EVX

1283
long

SP EVX

1284
long

SP EVX

1285
long

SP EVX

1287
long

SP EVX

1288
long

SP EVX

1289
long

SP EVX

1291
long

SP EVX

1292
long

SP EVX

1293
long

SP EVX

1295
long

SP EVX

10101
1344
long

SP EVX

1345
long

SP EVX

1352
long

SP EVX

1353
long

SP EVX

10110
1408
long

SP EVX

1409
long

SP EVX

1411
long

SP EVX

1412
long

SP EVX

1413
long

SP EVX

1415
long

SP EVX

1416
long

SP EVX

1417
long

SP EVX

1419
long

SP EVX

1420
long

SP EVX

1421
long

SP EVX

1423
long

SP EVX

10111
1472
long

SP EVX

1473
long

SP EVX

1480
long

SP EVX

1481
long

SP EVX

11000

11001

11010

11011

11100

11101

11110

11111
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Table 7 (Left-Center) Extended opcodes for primary opcode 4 [Category: SP.*] (instruction bits 21:31)
     010000 010001 010010 010011 010100 010101 010110 010111 011000 011001 011010 011011 011100 011101 011110 011111

00000

00001

00010

00011

00100

00101

00110

00111

01000
529

evand
SP EVX

530
evandc

SP EVX

534
evxor

SP EVX

535
evor

SP EVX

536
evnor

SP EVX

537
eveqv

SP EVX

539
evorc

SP EVX

542
evnand

SP EVX

01001

01010
656

evfscfui
sp.fv EVX

657
evfscfsi

sp.fv EVX

658
evfscfuf

sp.fv EVX

659
evfscfsf

sp.fv EVX

660
evfsctui

sp.fv EVX

661
evfsctsi

sp.fv EVX

662
evfsctuf

sp.fv EVX

663
evfsctsf

sp.fv EVX

664
evfsctuiz
sp.fv EVX

666
evfsctsiz
sp.fv EVX

668
evfststgt

sp.fv EVX

669
evfststlt

sp.fv EVX

670
evfststeq
sp.fv EVX

01011
720

efscfui
sp.fs EVX

721
efscfsi

sp.fs EVX

722
efscfuf

sp.fs EVX

723
efscfsf

sp.fs EVX

724
efsctui

sp.fs EVX

725
efsctsi

sp.fs EVX

726
efsctuf

sp.fs EVX

727
efsctsf

sp.fs EVX

728
efsctuiz

sp.fs EVX

730
efsctsiz

sp.fs EVX

732
efststgt

sp.fs EVX

733
efststlt

sp.fs EVX

734
efststeq

sp.fs EVX

01100
784

evlwhex
SP EVX

785
evlwhe

SP EVX

788
evlwhoux
SP EVX

789
evlwhou

SP EVX

790
evlwhosx
SP EVX

791
evlwhos

SP EVX

792
long

SP EVX

793
long

SP EVX

796
long

SP EVX

797
long

SP EVX

01101

01110

01111

10000

10001
1107

evmwssf
SP EVX

1112
long

SP EVX

1113
long

SP EVX

1115
long

SP EVX

10010

10011

10100

10101
1363
long

SP EVX

1368
long

SP EVX

1369
long

SP EVX

1371
long

SP EVX

10110

10111
1491
long

SP EVX

1496
long

SP EVX

1497
long

SP EVX

1499
long

SP EVX

11000

11001

11010

11011

11100

11101

11110

11111
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Table 7 (Right-Center) Extended opcodes for primary opcode 4 [Category: SP.*] (instruction bits 21:31)
     100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101010 101011 101100 101101 101110 101111

00000

00001

00010

00011

00100

00101

00110

00111

01000
544

evsrwu
SP EVX

545
evsrws

SP EVX

546
evsrwiu

SP EVX

547
evsrwis

SP EVX

548
evslw

SP EVX

550
evslwi

SP EVX

552
evrlw

SP EVX

553
evsplati

SP EVX

554
evrlwi

SP EVX

555
evsplatfi

SP EVX

556
long

SP EVX

557
long

SP EVX

558
long

SP EVX

559
long

SP EVX

01001

01010

01011
736

efdadd
sp.fdEVX

737
efdsub

sp.fdEVX

738
efdcfuid

sp.fdEVX

739
efdcfsid

sp.fdEVX

740
efdabs

sp.fdEVX

741
efdnabs

sp.fdEVX

742
efdneg

sp.fdEVX

744
efdmul

sp.fdEVX

745
efddiv

sp.fdEVX

746
efdctuidz
sp.fdEVX

747
efdctsidz
sp.fdEVX

748
efdcmpgt
sp.fdEVX

749
efdcmplt

sp.fdEVX

750
efdcmpeq
sp.fdEVX

751
efdcfs

sp.fdEVX

01100
800

evstddx
SP EVX

801
evstdd

SP EVX

802
evstdwx

SP EVX

803
evstdw

SP EVX

804
evstdhx

SP EVX

805
evstdh

SP EVX

01101

01110

01111

10000
1059
long

SP EVX

1063
long

SP EVX

1064
long

SP EVX

1065
long

SP EVX

1067
long

SP EVX

1068
long

SP EVX

1069
long

SP EVX

1071
long

SP EVX

10001
1127
long

SP EVX

1128
long

SP EVX

1132
long

SP EVX

1133
long

SP EVX

1135
long

SP EVX

10010

10011

10100
1320
long

SP EVX

1321
long

SP EVX

1323
long

SP EVX

1324
long

SP EVX

1325
long

SP EVX

1327
long

SP EVX

10101

10110
1448
long

SP EVX

1449
long

SP EVX

1451
long

SP EVX

1452
long

SP EVX

1453
long

SP EVX

1455
long

SP EVX

10111

11000

11001

11010

11011

11100

11101

11110

11111
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Table 7 (Right) Extended opcodes for primary opcode 4 [Category: SP.*] (instruction bits 21:31)
     110000 110001 110010 110011 110100 110101 110110 110111 111000 111001 111010 111011 111100 111101 111110 111111

00000

00001

00010

00011

00100

00101

00110

00111

01000
560

evcmpgtu
SP EVX

561
evcmpgts
SP EVX

562
evcmpltu
SP EVX

563
evcmplts
SP EVX

564
evcmpeq
SP EVX

01001
632
evsel

SP EVS

633
evsel’

SP EVS

634
evsel’

SP EVS

635
evsel’

SP EVS

636
evsel’

SP EVS

637
evsel’

SP EVS

638
evsel’

SP EVS

639
evsel’

SP EVS

01010

01011
752

efdcfui
sp.fdEVX

753
efdcfsi

sp.fdEVX

754
efdcfuf

sp.fdEVX

755
efdcfsf

sp.fdEVX

756
efdctui

sp.fdEVX

757
efdctsi

sp.fdEVX

758
efdctuf

sp.fdEVX

759
efdctsf

sp.fdEVX

760
efdctuiz

sp.fdEVX

762
efdctsiz

sp.fdEVX

764
efdtstgt

sp.fdEVX

765
efdtstlt

sp.fdEVX

766
efdtsteq

sp.fdEVX

01100
816

evstwhex
SP EVX

817
evstwhe

SP EVX

820
evstwhox
SP EVX

821
evstwho

SP EVX

824
evstwwex
SP EVX

825
evstwwe

SP EVX

828
evstwwox
SP EVX

829
evstwwo
SP EVX

01101

01110

01111

10000

10001
1139
long

SP EVX

1144
long

SP EVX

1145
long

SP EVX

1147
long

SP EVX

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111
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Table 8: (Left) Extended opcodes for primary opcode 4 [Category: V & LMA] (instruction bits 21:31)

     000000 000001 000010 000011 000100 000101 000110 000111 001000 001001 001010 001011 001100 001101 001110 001111

00000
0

vaddubm
V VX

2
vmaxub

V VX

4
vrlb

V VX

6
vcmpequb

V VC

8
vmuloub
V VX

10
vaddfp

V VX

12
vmrghb

V VX

14
vpkuhum
V VX

00001
64

vadduhm
V VX

66
vmaxuh

V VX

68
vrlh

V VX

70
vcmpequh

V VC

72
vmulouh
V VX

74
vsubfp

V VX

76
vmrghh

V VX

78
vpkuwum
V VX

00010
128

vadduwm
V VX

130
vmaxuw
V VX

132
vrlw

V VX

134
vcmpequw
V VC

136
vmulouw
V VC

137
vmuluwm
V VC

140
vmrghw

V VX

142
vpkuhus
V VX

00011
192

vaddudm
V VX

194
vmaxud

V VX

196
vrld

V VX

198
vcmpeqfp
V VC

199
vcmpequd
V VC

206
vpkuwus
V VX

00100
256

vadduqm
V VX

258
vmaxsb

V VX

260
vslb

V VX

264
vmulosb
V VX

266
vrefp

V VX

268
vmrglb

V VX

270
vpkshus
V VX

00101
320

vaddcuq
V VX

322
vmaxsh

V VX

324
vslh

V VX

328
vmulosh
V VX

330
vrsqrtefp
V VX

332
vmrglh

V VX

334
vpkswus
V VX

00110
384

vaddcuw
V VX

386
vmaxsw

V VX

388
vslw

V VX

392
vmulosw
V VC

394
vexptefp
V VX

396
vmrglw

V VX

398
vpkshss
V VX

00111
450

vmaxsd
V VX

452
vsl

V VX

454
vcmpgefp
V VC

458
vlogefp

V VX

462
vpkswss
V VX

01000
512

vaddubs
V VX

514
vminub

V VX

516
vsrb

V VX

518
vcmpgtub
V VC

520
vmuleub
V VX

522
vrfin

V VX

524
vspltb

V VX

526
vupkhsb
V VX

01001
576

vadduhs
V VX

578
vminuh

V VX

580
vsrh

V VX

582
vcmpgtuh
V VC

584
vmuleuh
V VX

586
vrfiz

V VX

588
vsplth

V VX

590
vupkhsh
V VX

01010
640

vadduws
V VX

642
vminuw

V VX

644
vsrw

V VX

646
vcmpgtuw

V VC

648
vmuleuw
V VC

650
vrfip

V VX

652
vspltw

V VX

654
vupklsb

V VX

01011
706

vminud
V VX

708
vsr

V VX

710
vcmpgtfp
V VC

711
vcmpgtud

V VC

714
vrfim

V VX

718
vupklsh

V VX

01100
768

vaddsbs
V VX

770
vminsb

V VX

772
vsrab

V VX

774
vcmpgtsb
V VC

776
vmulesb
V VX

778
vcfux

V VX

780
vspltisb

V VX

782
vpkpx

V VX

01101
832

vaddshs
V VX

834
vminsh

V VX

836
vsrah

V VX

838
vcmpgtsh
V VC

840
vmulesh
V VX

842
vcfsx

V VX

844
vspltish

V VX

846
vupkhpx
V VX

01110
896

vaddsws
V VX

898
vminsw

V VX

900
vsraw

V VX

902
vcmpgtsw
V VC

904
vmulesw
V VC

906
vctuxs

V VX

908
vspltisw
V VX

01111
962

vminsd
V VX

964
vsrad

V VX

966
vcmpbfp

V VC

967
vcmpgtsd

V VC

970
vctsxs

V VX

974
vupklpx

V VX

10000
1024

vsububm
V VX

1025
bcdadd.

V VX

1026
vavguh

V VX

1028
vand

V VX

1030
vcmpequb.
V VC

1032
vpmsumb
V VX

1034
vmaxfp

V VX

1036
vslo

V VX

10001
1088

vsubuhm
V VX

1089
bcdsub.

V VX

1090
vavguh

V VX

1092
vandc

V VX

1094
vcmpequh.
V VC

1096
vpmsumh
V VX

1098
vminfp

V VX

1100
vsro

V VX

1102
vpkudum
V VX

10010
1152

vsubuwm
V VX

1154
vavguw

V VX

1156
vor

V VX

1158
vcmpequw.
V VC

1160
vpmsumw
V VX

10011
1216

vsubudm
V VX

1220
vxor

V VX

1222
vcmpeqfp.

V VC

1223
vcmpequd.
V VC

1224
vpmsumd
V VX

1230
vpkudus

V VX

10100
1280

vsubuqm
V VX

1282
vavgsb

V VX

1284
vnor

V VX

1288
vcipher

V.AES VX

1289
vcipherlast

V.AES VX

1292
vgbbd

V VX

10101
1344

vsubcuq
V VX

1346
vavgsh

V VX

1348
vorc

V VX

1352
vncipher

V.AES VX

1353
vncipherlast
V.AES VX

1356
vbpermq

V VX

1358
vpksdus

V VX

10110
1408

vsubcuw
V VX

1410
vavgsw

V VX

1412
vnand

V VX

10111
1476
vsld

V VX

1478
vcmpgefp.

V VC

1480
vsbox

V.AESVX

1486
vpksdss

V VX

11000
1536

vsububs
V VX

1537
bcdadd.

V VX

1540
mfvscr

V VX

1542
vcmpgtub.

V VC

1544
vsum4ubs

V VX

11001
1600

vsubuhs
V VX

1601
bcdsub.

V VX

1604
mtvscr

V VX

1606
vcmpgtuh.

V VC

1608
vsum4shs
V VX

1614
vupkhsw

V VX

11010
1664

vsubuws
V VX

1666
vshasigmaw
V.SHA2 VX

1668
veqv

V VX

1670
vcmpgtuw.
V VC

1672
vsum2sws

V VX

1676
vmrgeo

V VX

11011
1666

vshasigmad
V.SHA2 VX

1732
vsrd

V VX

1734
vcmpgtfp.
V VC

1735
vcmpgtud.
V VC

1742
vupklsw

V VX

11100
1792

vsubsbs
V VX

1794
vclzb

V VX

1795
vpopcntb
V VX

1798
vcmpgtsb.
V VC

1800
vsum4sbs
V VX

11101
1856

vsubshs
V VX

1858
vclzh

V VX

1859
vpopcnth
V VX

1862
vcmpgtsh.
V VC

11110
1920

vsubsws
V VX

1922
vclzw

V VX

1923
vpopcntw
V VX

1926
vcmpgtsw.
V VC

1928
vsumsws

V VX

1932
vmrgew

V VX

11111
1986
vclzd

V VX

1987
vpopcntd
V VX

1990
vcmpbfp.
V VC

1991
vcmpgtsd.
V VC
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Version 2.07 B
Table 8 (Left-Center) Extended opcodes for primary opcode 4 [Category: V & LMA] (instruction bits 21:31)
     010000 010001 010010 010011 010100 010101 010110 010111 011000 011001 011010 011011 011100 011101 011110 011111

00000
16

mulhhwu
LMA X

17
mulhhwu.
LMA X

24
machhwu
LMA XO

24
long

LMA XO

00001
80

mulhhw
LMA X

81
mulhhw.

LMA X

88
machhw

LMA XO

89
machhw.
LMA XO

92
nmachhw
LMA XO

93
long

LMA XO

00010
152
long

LMA XO

153
long

LMA XO

00011
216

machhws
LMA XO

217
long

LMA XO

220
long

LMA XO

220
long

LMA XO

00100
272

mulchwu
LMA X

273
mulchwu.
LMA X

280
macchwu
LMA XO

281
long

LMA XO

00101
336

mulchw
LMA X

337
mulchw.

LMA X

344
macchw

LMA XO

345
macchw.
LMA XO

348
nmacchw
LMA XO

349
long

LMA XO

00110
408
long

LMA XO

409
long

LMA XO

00111
472

macchws
LMA XO

473
long

LMA XO

476
long

LMA XO

477
long

LMA XO

01000

01001

01010

01011

01100
784

mullhwu
LMA X

784
mullhwu.
LMA X

792
maclhwu
LMA XO

793
maclhwu.
LMA XO

01101
848

mullhw
LMA X

849
mullhw.

LMA X

856
maclhw

LMA XO

857
maclhw.

LMA XO

860
nmaclhw
LMA XO

861
nmaclhw.
LMA XO

01110
920
long

LMA XO

921
long

LMA XO

01111
984

maclhws
LMA XO

985
maclhws.
LMA XO

988
long

LMA XO

989
long

LMA XO

10000
1048
long

LMA XO

1049
long

LMA XO

10001
1112

machhw'
LMA XO

1113
long

LMA XO

1116
long

LMA XO

1117
long

LMA XO

10010
1176
long

LMA XO

1177
long

LMA XO

10011
1240
long

LMA XO

1241
long

LMA XO

1244
long

LMA XO

1245
long

LMA XO

10100
1304
long

LMA XO

1305
long

LMA XO

10101
1368

macchw'
LMA XO

1369
long

LMA XO

1372
long

LMA XO

1373
long

LMA XO

10110
1432
long

LMA XO

1433
long

LMA XO

10111
1496
long

LMA XO

1497
long

LMA XO

1500
long

LMA XO

1501
long

LMA XO

11000

11001

11010

11011

11100
1816
long

LMA XO

1817
long

LMA XO

11101
1880

maclhw’
LMA XO

1881
maclhw'

LMA XO

1884
long

LMA XO

1885
long

LMA XO

11110
1944
long

LMA XO

1946
long

LMA XO

11111
2008
long

LMA XO

2009
long

LMA XO

2012
long

LMA XO

2013
long

LMA XO
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Version 2.07 B
Table 8 (Right-Center) Extended opcodes for primary opcode 4 [Category: V & LMA] (instruction bits 21:31)
     100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101010 101011 101100 101101 101110 101111

00000
32

vmhaddshs
V VA

32
vmhraddshs
V VA

34
vmladduhm
V VA

36
vmsumubm
V VA

37
vmsummbm
V VA

38
vmsumuhm
V VA

39
vmsumuhs
V VA

40
vmsumshm
V VA

41
vmsumshs
V VA

42
vsel

V VA

43
vperm

V VA

44
vsldoi

V VA

45
vpermxor

V.RAID VA

46
vmaddfp

V VA

47
vnmsubfp
V VA

00001
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00010
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00011
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00100
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00101
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00110
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00111
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01000
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01001
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01010
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01011
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01100
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01101
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01110
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01111
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10000
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10001
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10010
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10011
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10100
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10101
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10110
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10111
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11000
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11001
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11010
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11011
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11100
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11101
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11110
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11111
||
||

vmhaddshs

||
||

vmhraddshs

||
||

vmladduhm

||
||

vmsumubm

||
||

vmsummbm

||
||

vmsumuhm

||
||

vmsumuhs

||
||

vmsumshm

||
||

vmsumshs

||
||

vsel

||
||

vperm

||
||

vsdoi

||
||

vpermxor

||
||

vmaddfp

||
||

vnmsubfp
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Version 2.07 B
Table 8 (Right) Extended opcodes for primary opcode 4 [Category: V & LMA] (instruction bits 21:31)
     110000 110001 110010 110011 110100 110101 110110 110111 111000 111001 111010 111011 111100 111101 111110 111111

00000
60

vaddeuqm
V VA

61
vaddecuq

V VA

62
vsubeuqm
V VA

63
vsubecuq

V VA

00001
||
||
||

||
||
||

||
||
||

||
||
||

00010
||
||
||

||
||
||

||
||
||

||
||
||

00011
||
||
||

||
||
||

||
||
||

||
||
||

00100
||
||
||

||
||
||

||
||
||

||
||
||

00101
||
||
||

||
||
||

||
||
||

||
||
||

00110
||
||
||

||
||
||

||
||
||

||
||
||

00111
||
||
||

||
||
||

||
||
||

||
||
||

01000
||
||
||

||
||
||

||
||
||

||
||
||

01001
||
||
||

||
||
||

||
||
||

||
||
||

01010
||
||
||

||
||
||

||
||
||

||
||
||

01011
||
||
||

||
||
||

||
||
||

||
||
||

01100
||
||
||

||
||
||

||
||
||

||
||
||

01101
||
||
||

||
||
||

||
||
||

||
||
||

01110
||
||
||

||
||
||

||
||
||

||
||
||

01111
||
||
||

||
||
||

||
||
||

||
||
||

10000
||
||
||

||
||
||

||
||
||

||
||
||

10001
||
||
||

||
||
||

||
||
||

||
||
||

10010
||
||
||

||
||
||

||
||
||

||
||
||

10011
||
||
||

||
||
||

||
||
||

||
||
||

10100
||
||
||

||
||
||

||
||
||

||
||
||

10101
||
||
||

||
||
||

||
||
||

||
||
||

10110
||
||
||

||
||
||

||
||
||

||
||
||

10111
||
||
||

||
||
||

||
||
||

||
||
||

11000
||
||
||

||
||
||

||
||
||

||
||
||

11001
||
||
||

||
||
||

||
||
||

||
||
||

11010
||
||
||

||
||
||

||
||
||

||
||
||

11011
||
||
||

||
||
||

||
||
||

||
||
||

11100
||
||
||

||
||
||

||
||
||

||
||
||

11101
||
||
||

||
||
||

||
||
||

||
||
||

11110
||
||
||

||
||
||

||
||
||

||
||
||

11111
||
||
||

||
||
||

||
||
||

||
||
||
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Version 2.07 B
     
Table 9: (Left) Extended opcodes for primary opcode 19 (instruction bits 21:30)

     00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111

00000
0

mcrf 
B XL

  

00001
33 

crnor 
B   XL

 38
rfmci

E      XL

39
rfdi

E.ED X

00010
  

00011
102
rfgi

E      XL

00100
129 

crandc
 B    XL

00101
 

00110
193 crxor
 B    XL

 198
dnh

E.EDXFX

 

00111
225

crnand
B   XL

 

01000
257 

crand
 B    XL

01001
289

creqv
B    XL

01010

01011

01100

01101
417

crorc
B    XL

01110
449
cror

B   XL

01111
 

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010
 

11011

11100

11101

11110

11111
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Version 2.07 B
Table 9. (Right) Extended opcodes for primary opcode 19 (instruction bits 21:30)
     10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

00000
16

bclr
B      XL

18
 rfid

S     XL

  

00001
50
rfi

E    XL

51
rfci

E      XL

 

00010
(82)

 rfsvc
    XL

00011

00100
146

rfebb
S    XL

150
isync

 B     XL

 

00101

00110
     

00111
 

01000
274
hrfid

S     XL

01001

01010

01011

01100
402
doze

S    XL

 

01101
434
nap

S      XL

01110
466

sleep
S      XL

01111
498

rvwinkle
S      XL

10000
528

bcctr
B    XL

10001
560

bctar[l]
B    XL

10010

10011

10100

10101
 

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111
1384



Version 2.07 B
Table 10:(Left) Extended opcodes for primary opcode 31 (instruction bits 21:30)
     00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111

00000
0

cmp
B     X

4
tw

B     X

6
lvsl

V      X

7
lvebx
V      X

8
subfc
B    XO

9
mulhdu
64   XO

10
addc

B    XO

11
mulhwu
B  XO

12
lxsiwzx

VSX    XX

14
Res’d
VLE

15
See

Table 15

00001
32

cmpl
B     X

33
Res’d
VLE

38
lvsr

V     X

39
lvehx
V    X

40
subf

B     XO 

 46
Res’d
VLE

||
||
||

00010
68 
td

64     X

71
lvewx
V     X

73
mulhd

64     XO

74
addg6s’
BCDA   XO

75
mulhw
B     XO 

76
lxsiwax

VSX    XX

78
dlmzb

LMV X

||
||
||

00011
103
lvx

V     X

104
neg

 B     XO

||
||
||

00100
129

Res’d
VLE

131
wrtee
E      X

134
dcbtstls

ECL X

135
stvebx
V     X

136
subfe

B     XO

138
adde

B     XO

138
stxsiwx

VSX    XX

140
msgsndp
S X

||
||
||

00101
 163

wrteei
E     X

166
dcbtls

ECL X

167
stvehx
V     X

174
msgclrp

S X

||
||
||

00110
193

Res’d
VLE

198
icblq.

ECL X

199
stvewx
V     X

200
subfze 
B    XO

202
addze
B   XO 

206
msgsnd

E/S X

||
||
||

00111
225

Res’d
VLE

230
icblc

ECL X

231
stvx

V     X

232
subfme
B    XO

233
mulld

64   XO

234
addme
B    XO

235
mullw
B    XO

238
msgclr

E/S X

||
||
||

01000
257

Res’d
VLE

259
mfdcrx

E.DC      X

262
Res’d
AP

263
lvepxl

E.PD X

266
add 

B     XO

270
ehpriv

E.HV   XL

||
||
||

01001
289

Res’d
VLE

291
mfdcrux
E.DC      X

295
lvepx

E.PD X

302
mfbhrbe

S X

||
||
||

01010
323

mfdcr
E.DC    XFX

326
dcread

E.CD X

   332
lxvdsx

VSX XX

334
mfpmr

E.PM XFX

||
||
||

01011
359
lvxl
V   X

{366}
mftmr

||
||
||

01100
387

mtdcrx
E.DC X

390
dcblc

ECL X

393
divdeu’

64      XO

395
divweu
B      XO

398
mvptas

||
||
||

01101
417

Res’d
VLE

419
mtdcrux

E.DC X

422
dcblq.

ECL      X

 425
divde

64      XO

427
divwe

B      XO

430
clrbhrb

S X

||
||
||

01110
449

Res’d
VLE

451
mtdcr

E.DC XFX

454
dci

E.CI X

457
divdu

64      XO 

459
divwu
B     XO

462
mtpmr

E.PM  XFX

||
||
||

01111
483
dsn

DS    X
486

Res’d
AP

487
stvxl
V     X

489
divd

64    XO

491
divw

B     XO

494
mttmr
EMT XFX

||
||
||

10000
512

mcrxr
E    X

515
lbdx

DS    X
519

Res’d
V     X

520
subfc’ 
B   XO

521
mulhdu’
64XO

522
addc’

B     XO

523
mulhwu’
B   XO

524
lxsspx

VSX    XX

||
||
||

10001
547
lhdx

DS    X
551

Res’d
V     X

552
subf’ 
B   XO

||
||
||

10010
579
lwdx

DS    X
585

mulhd’ 
64   XO

586
addg6s

BCDA  XO

587
mulhw’
B    XO

588
lxsdx

VSX    XX

||
||
||

10011
611
lddx

DS    X
616
neg’ 

B   XO 

||
||
||

10100
643

stbdx
DS    X

647
Res’d
V     X

648
subfe’
B    XO

650
adde’
B   XO

652
stxsspx

VSX    XX

654
tbegin.

TM X

||
||
||

10101
675

sthdx
DS    X

679
Res’d
V     X

686
 tend.

TM X

||
||
||

10110
707

stwdx
DS    X

712
subfze’
B   XO

 714
addze’
B XO

   716
stxsdx

VSX    XX

718
tcheck

TM X

||
||
||

10111
 739

stddx
DS    X

  744
subfme’
B   XO

745
mulld’ 

64    XO

746
addme’
B   XO

747
mullw’ 
B XO

750
tsr.

TM X

||
||
||

11000
775

stvepxl
E.PD X

778
add’ 

B   XO

780
lxvw4x

VSX    XX

782
tabortwc.
TM X

||
||
||

11001
803

lfddx
DS    X

807
stvepx

E.PD X

 814
tabortdc.
TM X

||
||
||

11010
844

lxvd2x
VSX    XX

846
tabortwci.
TM X

||
||
||

11011
878

tabortdci.
TM X

||
||
||

11100
903

Res’d
V     X

905
divdeu’
64   XO

907
divweu’
B   XO

908
stxvw4x

VSX    XX

910
tabort.

TM X

||
||
||

11101
931

stfddx
DS    X

935
Res’d
V     X

937
divde’
64   XO

939
divwe’
64   XO

942
treclaim.

TM X

||
||
||

11110
966
ici

E.CI     X

969
divdu’
64XO

971
divwu’
64XO

972
stxvd2x

VSX    XX

||
||
||

11111
998

icread
E.CD X

1001
divd’

64   XO

1003
divw’
B   XO

1006
trechkpt.
TM X

||
See

Table 15
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Version 2.07 B
Table 10. (Right) Extended opcodes for primary opcode 31 (instruction bits 21:30)
     10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

00000
16

Res’d
VLE

18
tlbilx

E X

19
mfcr

B XFX

20
lwarx

B X

21
ldx

64 X

22
icbt

B X

23
lwzx

B X

24
slw

B X

26
cntlzw

B X

27
sld

64 X

28
and

B X

29
ldepx

E.PD X

30
See

Table 11

31
lwepx

E.PD X

00001
51

mfvsrd
VSX XX

52
lbarx

B X

53
ldux

64 X

54
dcbst

B X

55
lwzux

B X

56
Res’d
VLE

58
cntlzd
64    X

60
andc

B X

62
See

Table 12

00010
(82)

mtsrd
X

83
mfmsr

B X

84
ldarx

64 X

86
dcbf

B X

87
lbzx

B X

94
rldicr*

64 MD

95
lbepx

E.PD X

00011
(114)

mtsrdin
X

115
mfvsrwz
VSX XX

116
lharx

B X

(118)
 clf

      X

119
lbzux

B X

122
popcntb
B X

124
nor

B X

126
rldicr*
64   MD

127
dcbfep

E.PD X

00100
144

mtcrf
B XFX

146
mtmsr

B X

147
  Res’d

149
stdx

64 X

150
stwcx.

B X

151
stwx

B X

154
prtyw

B X

157
stdepx

E.PD;64 X

158
rldic*

64 MD

159
See 

Table 14

00101
178

mtmsrd
S X

179
mtvsrd

VSX XX

181
stdux

64 X

182
stqcx.

LSQ X

183
stwux

B X

186
prtyd

64 X

190
rldic*

64 MD

191
rlwinm*

B M

00110
210
mtsr

S X

211
mtvsrwa
VSX XX

214
stdcx.

64 X

215
stbx

B X

222
rldimi*

64 MD

223
stbepx

E.PD X

00111
242

mtsrin
S X

242
mtvsrwz
VSX XX

246
dcbtst

B X

247
stbux

B X

250
Res’d

252
bpermd
64   X

254
rldimi*

64 MD

255
See 

Table 14

01000
274
tlbiel
S      X

 276
lqarx

LSQ X

278
dcbt

B X

279
lhzx

B X

280
Res’d
VLE

282
cdtbcd

BCDA X

284
eqv

B     X

286
rldcl*

64 MDS

286
See 

Table 14

01001
306
tlbie

S X

308
Res’d

310 
eciwx

EC X

311
lhzux

B X

312
Res’d
VLE

314
cbcdtd

BCDA X

316
xor

B      X

318
rldcr*

64 MDS

319
See 

Table 14

01010
339

mfspr
B XFX

341
lwax

64 X

342
Res’d
AP

343
lhax

B X

350 
 *

351
xori*
B    D

01011
370
tlbia

S X

371
mftb

S XFX

373
lwaux

64 X

374
Res’d
AP

375
lhaux

B X

378
popcntw
B X

382
 *

383
xoris*
B     D

01100
402

slbmte
S X

407
sthx

B      X

412
orc

B X

414
*

415
See 

Table 14

01101
434
slbie

S X

438
ecowx
EC      X

439
sthux
B      X

      444
or

B X

 446
*

447
andis.*
B    D

01110
467

mtspr
B XFX

469 
 *

470
dcbi

E X

471
lmw*

All     D

476
nand
B      X

478
*

01111
498
slbia

S X

501
*

503
stmw*
All     D

506
popcntd
64 X

  508
cmpb

BX

510
*

10000
(530)
no-op

532
ldbrx

64 X

533
lswx

MA     X

534
lwbrx

B X

535
lfsx

FP X

536
srw

B X

 539
srd

64 X

10001
(562)
no-op

566
tlbsync
B      X

567
lfsux

FP      X

568
Res’d
VLE

10010
(594)
no-op

595
mfsr

S X

597
lswi

MA X

598
sync

B      X

599
lfdx

FP     X

607
lfdepx

E.PD X

10011
(626)
no-op

631
lfdux

FP     X

 

10100
  (658)

no-op
659

mfsrin
S X

660
stdbrx

64 X

661
stswx

MA X

662
stwbrx
B     X

663
stfsx

FP     X

10101
(690)
no-op

694
stbcx.
B    X

695
stfsux
FP      X

10110
(722)
no-op

725
stswi

MA     X

   726
sthcx.
B    X

727
stfdx

FP       X

735
stfdepx

E.PD X

10111
(754)
no-op

758
dcba

E X

759
stfdux
FP      X

11000
786

tlbivax
E     X

789
lwzcix
S        X

790
lhbrx
B      X

791
lfdpx

FP      X

792
sraw

B       X

794
srad
64  X

 799
evlddepx
E.PD evx

11001
(818)
rac

      X

821
lhzcix

S        X

822
Res’d

823
Res’d

824
srawi
B      X

826
sradi
64 XS

827
sradi’
64 XS

11010
850

tlbsrx.
E.TWC  X

851
slbmfev
S      X

853
lbzcix

S        X

854
See 

Table 13

855
lfiwax
FP     X

11011
885
ldcix

S        X

887
lfiwzx

FP        X

11100
914
tlbsx

E X

915
slbmfee
S      X

917
stwcix
S        X

918
sthbrx
B     X

919
stfdpx
FP      X

922
extsh
B      X

927
evstddepx
E.PD evx

11101
946
tlbre

E X

949
sthcix
S        X

951
Res’d
AP

954
extsb
B     X

11110
978

tlbwe
E X

979
slbfee.
S      X

981
stbcix
S        X

982
icbi

B      X

983
stfiwx

FP      X

986
extsw
64     X

991
icbiep

E.PD X

11111
 1010

Res’d
1013
stdcix
S        X

1014
dcbz

B      X

1023
dcbzep

E.PD X
1386
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Table 11:Opcode: 31, Extended Opcode: 30
0 11110

00000
30

rldicl*
64 MD

Table 12:Opcode: 31, Extended Opcode: 62
0 11110

00001
62

rldicl*
64 MD

62
wait

WT X

Table 13:Opcode: 31, Extended Opcode: 854
10110

11010
854
eieio

S X

854
mbar

E X

Table 14:Opcode: 31, Extended Opcode: 159
11111

00100
159

rlwimi*
B    M

159
stwepx

E.PD X

00101
191

rlwinm*
B    M

00110
223

stbepx
E.PD X

00111
255

rlwnm*
B   M

01000
287
ori*

B     D

287
lhepx

E.PD X

01001
319
oris*
B D

319
dcbtep

E.PD X

01010
351
xori*
B    D

01011
383

xoris*
B     D

01100
415

andi.*
B    D

415
sthepx

E.PD X
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Version 2.07 B
Table 15:Opcode: 31, Extended Opcode: 15
 01111

00000
15

isel
B A

00001
47
*

||
||
||

00010
79
tdi*

64      D

||
||
||

00011
111
twi*

B      D

||
||
||

00100
143
*

||
||
||

00101
175
*

||
||
||

00110
207
*

||
||
||

00111
239

mulli*
B     D

||
||
||

01000
271

subfic*
B     D

||
||
||

01001
||
||
||

01010
335

cmpli*
B     D

||
||
||

01011
367

cmpi*
B     D

||
||
||

01100
399

addic* 
B     D

||
||
||

01101
431

addic.*
B     D

||
||
||

01110
463

addi*
B     D

||
||
||

01111
495

addis*
B     D

||
||
||

10000
||
||
||

10001
||
||
||

10010
||
||
||

10011
||
||
||

10100
||
||
||

10101
||
||
||

10110
||
||
||

10111
||
||
||

11000
||
||
||

11001
||
||
||

11010
||
||
||

11011
||
||
||

11100
||
||
||

11101
||
||
||

11110
||
||
||

11111
||
||

isel
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Table 16:(Left) Extended opcodes for primary opcode 59 (instruction bits 21:30)

     00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111

00000
2

dadd
DFP     X

3
dqua

DFP     Z

00001
34

dmul
DFP     X

35
drrnd

DFP     Z

00010
66

dscli
DFP Z22

67
dquai

DFP     Z

00011
98

dscri
DFP     Z

99
drintx

DFP  Z23

00100
130

dcmpo
DFP     X

00101
162

dtstex
DFP     X

00110
194

dtstdc
DFP Z23

00111
226

dtstdg
DFP Z23

227
drintn

DFP Z23

01000
258

dctdps
DFP     X

259
dqua’

DFP     Z

 

01001
290

dctfix
DFP     X

291
drrnd’

DFP     Z

01010
322

ddedpd
DFP     X

323
dquai’

DFP     Z

01011
354
dxex

DFP     X

355
drintx’

DFP  Z23

01100

01101

01110

01111
227

drintn’
DFP  Z23

10000
514

dsub
DFP     X

515
dqua’

DFP     Z

10001
546
ddiv

DFP     X

547
drrnd’

DFP     Z

10010
578

dscli’
DFP  Z22

579
dquai’

DFP     Z

10011
610

dscri’
DFP  Z22

611
drintx’

DFP  Z23

10100
642

dcmpu
DFP     X

10101
674

dtstsf
DFP     X

10110
706

dtstdc’
DFP  Z23

10111
738

dtstdg’
DFP  Z23

739
drintn’

DFP  Z23

11000
770
drsp

DFP     X

771
dqua’

DFP     Z

11001
802

dcffix
DFP     X

803
drrnd’

DFP     Z

11010
834

denbcd
DFP     X

835
dquai’

DFP     Z

846
fcfids

FP       X

11011
866
diex

DFP     X

867
drintx’

DFP  Z23

11100
 

11101
 

11110
974

fcfidus
FP       X

11111
995

drintn’
DFP  Z23
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Version 2.07 B
Table 16. (Right) Extended opcodes for primary opcode 59 (instruction bits 21:30)
     10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

00000
18

fdivs
FP     A

20
fsubs
FP     A

21
fadds
FP    A

22
fsqrts
FP     A

24
fres

FP     A

25
fmuls
FP    A

26
frsqrtes
FP    A

28
fmsubs
FP    A

29
fmadds
FP    A

30
fnmsubs
FP    A

31
fnmadds
FP    A

00001
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

00010
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

00011
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

00100
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

00101
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

00110
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

00111
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01000
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01001
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01010
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01011
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01100
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01101
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01110
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01111
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10000
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10001
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10010
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10011
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10100
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10101
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10110
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10111
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11000
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11001
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11010
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11011
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11100
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11101
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11110
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11111
||
||

fdivs

||
||

fsubs

||
||

fadds

|| 
|| 

fsqrts 

||
||

fres

||
||

fmuls

||
||

frsqrtes

||
||

fmsub

||
||

fmadds

|| 
|| 

fnmsubs

||
||

fnmadds
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Version 2.07 B
Table 17.(Left) Extended opcodes for primary opcode 60 (instruction bits 21:30)
     00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111

00000
0

xsaddsp
VSX XX

4
xsmaddasp

VSX XX

8
xxsldwi

VSX XX

00001
32

xssubsp
VSX XX

36
xsmaddmsp

VSX XX

40
xxpermdi

VSX XX

00010
64

xsmulsp
VSX XX

68
xsmsubasp

VSX XX

72
xxmrglw

VSX XX

00011
96

xsdivsp
VSX XX

100
xsmsubmsp

VSX XX

00100
128

xsadddp
VSX XX

132
xsmaddadp

VSX XX

136
xxsldwi

VSX XX

140
xscmpudp

VSX XX

00101
160

xssubdp
VSX XX

164
xsmaddmdp

VSX XX

168
xxpermdi

VSX XX

172
xscmpodp

VSX XX

00110
192

xsmuldp
VSX XX

196
xsmsubadp

VSX XX

200
xxmrglw

VSX XX

00111
224

xsdivdp
VSX XX

228
xsmsubmdp

VSX XX

01000
256

xvdivsp
VSX XX

260
xvmaddasp

VSX XX

264
xxsldwi

VSX XX

268
xvcmpeqsp

VSX XX

01001
288

xvdivsp
VSX XX

292
xvmaddmsp

VSX XX

296
xxpermdi

VSX XX

300
xvcmpgtsp

VSX XX

01010
320

xvdivsp
VSX XX

324
xvmsubasp

VSX XX

328
xxspltw

VSX XX

332
xvcmpgesp

VSX XX

01011
352

xvdivsp
VSX XX

356
xvmsubmsp

VSX XX

01100
384

xvdivdp
VSX XX

388
xvmaddadp

VSX XX

392
xxsldwi

VSX XX

396
xvcmpeqdp

VSX XX

01101
416

xvdivdp
VSX XX

420
xvmaddmdp

VSX XX

424
xxpermdi

VSX XX

428
xvcmpgtdp

VSX XX

01110
448

xvdivdp
VSX XX

452
xvmsubadp

VSX XX

460
xvcmpgedp

VSX XX

01111
480

xvdivdp
VSX XX

484
xvmsubmdp

VSX XX

10000
516

xsnmaddasp
VSX XX

520
xxland

VSX XX

10001
548

xsnmaddmsp
VSX XX

552
xxlandc

VSX XX

10010
580

xsnmsubasp
VSX XX

584
xxlor

VSX XX

10011
612

xsnmsubmsp
VSX XX

616
xxlxor

VSX XX

10100
640

xsmaxdp
VSX XX

644
xsnmaddadp

VSX XX

648
xxlnor

VSX XX

10101
672

xsnibdp
VSX XX

676
xsnmaddmdp

VSX XX

680
xxlorc

VSX XX

10110
704

xscpsgndp
VSX XX

708
xsnmsubadp

VSX XX

712
xxlnand

VSX XX

10111
740

xsnmsubmdp
VSX XX

744
xxleqv

VSX XX

11000
768

xvmaxsp
VSX XX

772
xvnmaddasp

VSX XX

780
xvcmpeqsp.

VSX XX

11001
800

xvminsp
VSX XX

804
xvnmaddmsp

VSX XX

812
xvcmpgtsp.

VSX XX

11010
832

xvcpsgnsp
VSX XX

836
xvnmsubasp

VSX XX

844
xvcmpgesp.

VSX XX

11011
868

xvnmsubmsp
VSX XX

11100
896

xvmaxdp
VSX XX

900
xvnmaddadp

VSX XX

908
xvcmpeqdp.

VSX XX

11101
928

xvmindp
VSX XX

932
xvnmaddmdp

VSX XX

940
xvcmpgtdp.

VSX XX

11110
960

xvcpsgndp
VSX XX

964
xvnmsubadp

VSX XX

972
xvcmpgedp.

VSX XX

11111
996

xvnmsubmdp
VSX XX
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Version 2.07 B
Table 17. (Right) Extended opcodes for primary opcode 60 (instruction bits 21:30)
     10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

00000
20

xsrsqrtesp
VSX XX

22
xssqrtsp

VSX XX

24
xxsel

VSX XA

00001
52

xsresp
VSX XX

00010

00011

00100
144

xscvdpuxws
VSX XX

146
xsrdpi

VSX XX

148
xsrsqrtedp

VSX XX

150
xssqrtdp*

VSX XX

00101
176

xscvdpsxws
VSX XX

178
xsrdpiz

VSX XX

180
xsredp

VSX XX

00110
210

xsrdpip
VSX XX

212
xstsqrtdp

VSX XX

214
xsrdpic*

VSX XX

00111
242

xsrdpim
VSX XX

244
xstdivdp

VSX XX

01000
272

xvcvspuxws
VSX XX

274
xvrspi

VSX XX

278
xvsqrtsp*

VSX XX

01001
304

xvcvspsxws
VSX XX

306
xvrspiz

VSX XX

01010
336

xvcvuxwsp
VSX XX

338
xvrspip

VSX XX

342
xvrspic*

VSX XX

01011
368

xvcvsxwsp
VSX XX

370
xvrspim

VSX XX

372
xvtdivsp

VSX XX

01100
400

xvcvdpuxws
VSX XX

402
xvrdpi

VSX XX

404
xvrsqrtedp

VSX XX

406
xvsqrtdp*

VSX XX

01101
432

xvcvdpsxws
VSX XX

434
xvrdpiz

VSX XX

436
xvredp

VSX XX

01110
464

xvcvuxwdp
VSX XX

466
xvrdpip

VSX XX

468
xvtsqrtdp

VSX XX

470
xvrdpic*

VSX XX

01111
496

xvcvsxwdp
VSX XX

498
xvrdpim

VSX XX

500
xvtdivdp

VSX XX

10000
530

xscvdpsp
VSX XX

534
xscvdpspn

VSX XX

10001
562

xsrsp
VSX XX

10010
592

xscvuxdsp
VSX XX

10011
624

xscvsxdsp
VSX XX

10100
656

xscvdpuxds
VSX XX

658
xscvspdp

VSX XX

662
xscvspdpn

VSX XX

10101
688

xscvdpsxds
VSX XX

690
xsabsdp

VSX XX

10110
720

xscvuxddp
VSX XX

722
xsnabsdp

VSX XX

10111
752

xscvsxddp
VSX XX

754
xsnegdp

VSX XX

11000
784

xvcvspuxds
VSX XX

786
xvcvdpsp

VSX XX

11001
816

xvcvspsxds
VSX XX

818
xvabssp

VSX XX

11010
848

xvcvuxdsp
VSX XX

850
xvnabssp

VSX XX

11011
880

xvcvsxdsp
VSX XX

882
xvnegsp

VSX XX

11100
912

xvcvdpuxds
VSX XX

914
xvcvspdp

VSX XX

11101
944

xvcvdpsxds
VSX XX

946
xvabsdp

VSX XX

11110
976

xvcvuxddp
VSX XX

978
xvnabsdp

VSX XX

11111
1008

xvcvsxddp
VSX XX

1010
xvnegdp

VSX XX
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Version 2.07 B
Table 18:(Left) Extended opcodes for primary opcode 63 (instruction bits 21:30)
     00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111

00000
0

fcmpu
FP     X

2
daddq

DFP     X

3
dquaq

DFP     Z

8
fcpsgn
FP     X

12
frsp

FP     X

14
fctiw

FP     X

15
fctiwz
FP     X

00001
32

fcmpo
FP      X

34
dmulq

DFP     X

35
drrndq

DFP Z23

38
mtfsb1
FP     X

40
fneg

FP     X

00010
64

mcrfs
FP    X

66
dscliq

DFP Z22

67
dquaiq

DFP     Z

70
mtfsb0
FP     X

72
fmr

FP     X

00011
98

dscriq
DFP     Z

99
drintxq
DFP Z23

00100
128
ftdiv

FP        X

130
dcmpoq
DFP     X

134
mtfsfi

FP      X

136
 fnabs
FP     X

142
 fctiwu
FP     X

143
 fctiwuz
FP     X

00101
160

ftsqrt
FP        X

162
dtstexq
DFP     X

00110
194

dtstdcq
DFP Z22

00111
226

dtstdgq
DFP Z22

227
drintnq
DFP Z23

01000
258

dctqpq
DFP     X

259
dqua’

DFP     Z

264
fabs

FP    X

01001
290

dctfixq
DFP     X

291
drrnd’

DFP     Z

01010
322

ddedpdq
DFP     X

323
dquai’

DFP     Z

01011
354

dxexq
DFP     X

355
drintx’

DFP  Z23

01100
392
frin

FP X

01101
424
friz

FP X

01110
456
frip

FP X

01111
483

drintn’
DFP  Z23

488
frim

FP X

10000
514

dsubq
DFP     X

515
dqua’

DFP     Z

10001
546

ddivq
DFP     X

547
drrnd’

DFP     Z

10010
578

dscli’
DFP  Z22

579
dquai’

DFP     Z

583
mffs

FP     X

10011
610

dscri’
DFP  Z22

611
drintx’

DFP  Z23

10100
642

dcmpuq
DFP     X

10101
674

dtstsfq
DFP     X

10110
706

dtstdc’
DFP  Z23

711
mtfsf

FP   XFL

10111
 738

dtstdg’
DFP  Z23

739
drintn’

DFP  Z23

 

11000
770

drdpq
DFP     X

771
dqua’

DFP     Z

11001
802

dcffixq
DFP     X

803
drrnd’

DFP     Z

814
fctid

FP    X

815
fctidz

FP     X

11010
834

denbcdq
DFP     X

835
dquai’

DFP     Z

838
fmrgew
VSX X

846
fcfid

FP    X

11011
866

diexq
DFP     X

867
drintx’

DFP  Z23

11100

11101
942

fctidu
FP    X

943
fctiduz
FP    X

11110
995

fmrgew
VSX X

974
fcfidu
FP    X

11111
995

drintn’
DFP  Z23
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Version 2.07 B
Table 18. (Right) Extended opcodes for primary opcode 63 (instruction bits 21:30)
     10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

00000
18
fdiv

FP    A

20
fsub

FP      A

21
fadd

FP    A

22
fsqrt

FP     A

23
fsel

FP     A

24
fre

FP    A

25
fmul

FP     A

26
frsqrte
FP     A

28
fmsub
FP    A

29
fmadd
FP    A

30
fnmsub
FP     A

31
fnmadd
FP    A

00001
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00010
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00011
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00100
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00101
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00110
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00111
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01000
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01001
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01010
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01011
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01100
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01101
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01110
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01111
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10000
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10001
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10010
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10011
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10100
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10101
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10110
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10111
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11000
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11001
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11010
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11011
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11100
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11101
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11110
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11111
||
||

fdiv

||
||

fsub

||
||

fadd

||
||

fsqrt

||
||

fsel

||
||

fre

||
||

fmul

||
||

frsqrte

||
||

fmsub

||
||

fmadd

||
||

fnmsub

||
||

fnmadd
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Version 2.07 B
Appendix G.  Power ISA Instruction Set Sorted by 
Category

This appendix lists all the instructions in the Power ISA, grouped by category, and in order by mnemonic within cate-
gory.

F
o

rm
at

Opcode

M
o

d
e 

D
ep

.1

P
ri

vi
le

g
e1

Page C
at

eg
o

ry
1

Mnemonic InstructionP
ri

m
ar

y Instruction
Image

(operands 
set to 0’s)

X 31 0x7C0001F8 91 64 bpermd Bit Permute Doubleword
X 31 0x7C000074 SR 90 64 cntlzd[.] Count Leading Zeros Doubleword

XO 31 0x7C0003D2 SR 77 64 divd[.] Divide Doubleword
XO 31 0x7C000352 SR 78 64 divde[.] Divide Doubleword Extended
XO 31 0x7C000752 SR 78 64 divdeo[.] Divide Doubleword Extended & record OV
XO 31 0x7C000312 SR 78 64 divdeu[.] Divide Doubleword Extended Unsigned

XO 31 0x7C000712 SR 78 64 divdeuo[.] Divide Doubleword Extended Unsigned & 
record OV

XO 31 0x7C0007D2 SR 77 64 divdo[.] Divide Doubleword & record OV
XO 31 0x7C000392 SR 77 64 divdu[.] Divide Doubleword Unsigned
XO 31 0x7C000792 SR 77 64 divduo[.] Divide Doubleword Unsigned & record OV
X 31 0x7C0007B4 SR 90 64 extsw[.] Extend Sign Word

DS 58 0xE8000000 53 64 ld Load Doubleword
X 31 0x7C0000A8 782 64 ldarx Load Doubleword And Reserve Indexed
X 31 0x7C000428 61 64 ldbrx Load Doubleword Byte-Reverse Indexed

DS 58 0xE8000001 53 64 ldu Load Doubleword with Update
X 31 0x7C00006A 53 64 ldux Load Doubleword with Update Indexed
X 31 0x7C00002A 53 64 ldx Load Doubleword Indexed

DS 58 0xE8000002 52 64 lwa Load Word Algebraic
X 31 0x7C0002EA 52 64 lwaux Load Word Algebraic with Update Indexed
X 31 0x7C0002AA 52 64 lwax Load Word Algebraic Indexed

XO 31 0x7C000092 SR 76 64 mulhd[.] Multiply High Doubleword
XO 31 0x7C000012 SR 64 64 mulhdu[.] Multiply High Doubleword Unsigned
XO 31 0x7C0001D2 SR 64 64 mulld[.] Multiply Low Doubleword
XO 31 0x7C0005D2 SR 64 64 mulldo[.] Multiply Low Doubleword & record OV
X 31 0x7C0003F4 90 64 popcntd Population Count Doubleword
X 31 0x7C000174 89 64 prtyd Parity Doubleword

MDS 30 0x78000010 SR 96 64 rldcl[.] Rotate Left Doubleword then Clear Left
MDS 30 0x78000012 SR 97 64 rldcr[.] Rotate Left Doubleword then Clear Right
MD 30 0x78000008 SR 96 64 rldic[.] Rotate Left Doubleword Immediate then Clear

MD 30 0x78000000 SR 95 64 rldicl[.] Rotate Left Doubleword Immediate then Clear 
Left

MD 30 0x78000004 SR 95 64 rldicr[.] Rotate Left Doubleword Immediate then Clear 
Right

MD 30 0x7800000C SR 97 64 rldimi[.] Rotate Left Doubleword Immediate then Mask 
Insert

X 31 0x7C000036 SR 100 64 sld[.] Shift Left Doubleword
X 31 0x7C000634 SR 101 64 srad[.] Shift Right Algebraic Doubleword

XS 31 0x7C000674 SR 101 64 sradi[.] Shift Right Algebraic Doubleword Immediate
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Version 2.07 B
X 31 0x7C000436 SR 100 64 srd[.] Shift Right Doubleword
DS 62 0xF8000000 57 64 std Store Doubleword
X 31 0x7C000528 61 64 stdbrx Store Doubleword Byte-Reverse Indexed

X 31 0x7C0001AD 782 64 stdcx. Store Doubleword Conditional Indexed & 
record CR0

DS 62 0xF8000001 57 64 stdu Store Doubleword with Update
X 31 0x7C00016A 57 64 stdux Store Doubleword with Update Indexed
X 31 0x7C00012A 57 64 stdx Store Doubleword Indexed
X 31 0x7C000088 82 64 td Trap Doubleword
D 2 0x08000000 82 64 tdi Trap Doubleword Immediate

XO 31 0x7C000214 SR 68 B add[.] Add
XO 31 0x7C000014 SR 69 B addc[.] Add Carrying
XO 31 0x7C000414 SR 69 B addco[.] Add Carrying & record OV
XO 31 0x7C000114 SR 70 B adde[.] Add Extended
XO 31 0x7C000514 SR 70 B addeo[.] Add Extended & record OV & record OV
D 14 0x38000000 67 B addi Add Immediate
D 12 0x30000000 SR 68 B addic Add Immediate Carrying
D 13 0x34000000 SR 68 B addic. Add Immediate Carrying & record CR0
D 15 0x3C000000 67 B addis Add Immediate Shifted

XO 31 0x7C0001D4 SR 70 B addme[.] Add to Minus One Extended
XO 31 0x7C0005D4 SR 70 B addmeo[.] Add to Minus One Extended & record OV
XO 31 0x7C000614 SR 68 B addo[.] Add & record OV
XO 31 0x7C000194 SR 71 B addze[.] Add to Zero Extended
XO 31 0x7C000594 SR 71 B addzeo[.] Add to Zero Extended & record OV
X 31 0x7C000038 SR 85 B and[.] AND
X 31 0x7C000078 SR 86 B andc[.] AND with Complement
D 28 0x70000000 SR 83 B andi. AND Immediate & record CR0
D 29 0x74000000 SR 83 B andis. AND Immediate Shifted & record CR0
I 18 0x48000000 38 B b[l][a] Branch
B 16 0x40000000 CT 38 B bc[l][a] Branch Conditional

XL 19 0x4C000420 CT 39 B bcctr[l] Branch Conditional to Count Register
XL 19 0x4C000020 CT 39 B bclr[l] Branch Conditional to Link Register

X 19 0x4C000460 40 B bctar[l] Branch Conditional to Branch Target Address 
Register

X 31 0x7C000000 79 B cmp Compare
X 31 0x7C0003F8 87 B cmpb Compare Byte
D 11 0x2C000000 79 B cmpi Compare Immediate
X 31 0x7C000040 80 B cmpl Compare Logical
D 10 0x28000000 80 B cmpli Compare Logical Immediate
X 31 0x7C000034 SR 86 B cntlzw[.] Count Leading Zeros Word

XL 19 0x4C000202 41 B crand Condition Register AND
XL 19 0x4C000102 42 B crandc Condition Register AND with Complement
XL 19 0x4C000242 42 B creqv Condition Register Equivalent
XL 19 0x4C0001C2 41 B crnand Condition Register NAND
XL 19 0x4C000042 42 B crnor Condition Register NOR
XL 19 0x4C000382 41 B cror Condition Register OR
XL 19 0x4C000342 42 B crorc Condition Register OR with Complement
XL 19 0x4C000182 41 B crxor Condition Register XOR
X 31 0x7C0000AC  773 B dcbf Data Cache Block Flush
X 31 0x7C00006C  773 B dcbst Data Cache Block Store
X 31 0x7C00022C  770 B dcbt Data Cache Block Touch
X 31 0x7C0001EC  771 B dcbtst Data Cache Block Touch for Store
X 31 0x7C0007EC  773 B dcbz Data Cache Block Zero

XO 31 0x7C0003D6 SR 73 B divw[.] Divide Word
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Version 2.07 B
XO 31 0x7C000356 SR 74 B divwe[.] Divide Word Extended
XO 31 0x7C000756 SR 74 B divweo[.] Divide Word Extended & record OV
XO 31 0x7C000316 SR 74 B divweu[.] Divide Word Extended Unsigned
XO 31 0x7C000716 SR 74 B divweuo[.] Divide Word Extended Unsigned & record OV
XO 31 0x7C0007D6 SR 73 B divwo[.] Divide Word & record OV
XO 31 0x7C000396 SR 73 B divwu[.] Divide Word Unsigned
XO 31 0x7C000796 SR 73 B divwuo[.] Divide Word Unsigned & record OV
X 31 0x7C000238 SR  86 B eqv[.] Equivalent
X 31 0x7C000774 SR  86 B extsb[.] Extend Sign Byte
X 31 0x7C000734 SR  86 B extsh[.] Extend Sign Halfword
X 31 0x7C0007AC 762 B icbi Instruction Cache Block Invalidate
A 31 0x7C00001E 82 B isel Integer Select

XL 19 0x4C00012C 776 B isync Instruction Synchronize
X 31 0x7C000068 777 B lbarx Load Byte And Reserve Indexed
D 34 0x88000000 48 B lbz Load Byte and Zero
D 35 0x8C000000 48 B lbzu Load Byte and Zero with Update
X 31 0x7C0000EE 48 B lbzux Load Byte and Zero with Update Indexed
X 31 0x7C0000AE 49 B lbzx Load Byte and Zero Indexed
D 42 0xA8000000 50 B lha Load Halfword Algebraic
X 31 0x7C0000E8 778 B lharx Load Halfword And Reserve Indexed Xform
D 43 0xAC000000 50 B lhau Load Halfword Algebraic with Update
X 31 0x7C0002EE 50 B lhaux Load Halfword Algebraic with Update Indexed
X 31 0x7C0002AE 50 B lhax Load Halfword Algebraic Indexed
X 31 0x7C00062C 60 B lhbrx Load Halfword Byte-Reverse Indexed
D 40 0xA0000000 49 B lhz Load Halfword and Zero
D 41 0xA4000000 49 B lhzu Load Halfword and Zero with Update
X 31 0x7C00026E 49 B lhzux Load Halfword and Zero with Update Indexed
X 31 0x7C00022E 49 B lhzx Load Halfword and Zero Indexed
D 46 0xB8000000 62 B lmw Load Multiple Word
X 31 0x7C000028  777 B lwarx Load Word and Reserve Indexed
X 31 0x7C00042C 60 B lwbrx Load Word Byte-Reverse Indexed
D 32 0x80000000 51 B lwz Load Word and Zero
D 33 0x84000000 51 B lwzu Load Word and Zero with Update
X 31 0x7C00006E 51 B lwzux Load Word and Zero with Update Indexed
X 31 0x7C00002E 51 B lwzx Load Word and Zero Indexed

XL 19 0x4C000000 42 B mcrf Move Condition Register Field
XFX 31 0x7C000026 111 B mfcr Move From Condition Register
XFX 31 0x7C100026 111 B mfocrf Move From One Condition Register Field

XFX 31 0x7C0002A6 O
109
814
885
1054

B mfspr Move From Special Purpose Register

XFX 31 0x7C000120 111 B mtcrf Move To Condition Register Fields
XFX 31 0x7C100120 111 B mtocrf Move To One Condition Register Field

XFX 31 0x7C0003A6 O
107
884
1053

B mtspr Move To Special Purpose Register

XO 31 0x7C000096 SR 72 B mulhw[.] Multiply High Word
XO 31 0x7C000016 SR 72 B mulhwu[.] Multiply High Word Unsigned
D 7 0x1C000000 72 B mulli Multiply Low Immediate

XO 31 0x7C0001D6 SR 72 B mullw[.] Multiply Low Word
XO 31 0x7C0005D6 SR 72 B mullwo[.] Multiply Low Word & record OV
X 31 0x7C0003B8 SR 85 B nand[.] NAND

XO 31 0x7C0000D0 SR 71 B neg[.] Negate
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Version 2.07 B
XO 31 0x7C0004D0 SR 71 B nego[.] Negate & record OV
X 31 0x7C0000F8 SR 86 B nor[.] NOR
X 31 0x7C000378 SR 85 B or[.] OR
X 31 0x7C000338 SR 86 B orc[.] OR with Complement
D 24 0x60000000 83 B ori OR Immediate
D 25 0x64000000 84 B oris OR Immediate Shifted
X 31 0x7C0000F4 88 B popcntb Population Count Byte-wise
X 31 0x7C0002F4 88 B popcntw Population Count Words
X 31 0x7C000134 89 B prtyw Parity Word
M 20 0x50000000 SR 94 B rlwimi[.] Rotate Left Word Immediate then Mask Insert

M 21 0x54000000 SR 92 B rlwinm[.] Rotate Left Word Immediate then AND with 
Mask

M 23 0x5C000000 SR 93 B rlwnm[.] Rotate Left Word then AND with Mask

SC 17 0x44000002
43

863
1040

B sc System Call

X 31 0x7C000030 SR 98 B slw[.] Shift Left Word
X 31 0x7C000630 SR 99 B sraw[.] Shift Right Algebraic Word
X 31 0x7C000670 SR 99 B srawi[.] Shift Right Algebraic Word Immediate
X 31 0x7C000430 SR 98 B srw[.] Shift Right Word
D 38 0x98000000 54 B stb Store Byte
X 31 0x7C00056D 779 B stbcx. Store Byte Conditional Indexed
D 39 0x9C000000 54 B stbu Store Byte with Update
X 31 0x7C0001EE 54 B stbux Store Byte with Update Indexed
X 31 0x7C0001AE 54 B stbx Store Byte Indexed
D 44 0xB0000000 55 B sth Store Halfword
X 31 0x7C00072C 60 B sthbrx Store Halfword Byte-Reverse Indexed
X 31 0x7C0005AD 780 B sthcx. Store Halfword Conditional Indexed Xform
D 45 0xB4000000 55 B sthu Store Halfword with Update
X 31 0x7C00036E 55 B sthux Store Halfword with Update Indexed
X 31 0x7C00032E 55 B sthx Store Halfword Indexed
D 47 0xBC000000 62 B stmw Store Multiple Word
D 36 0x90000000 56 B stw Store Word
X 31 0x7C00052C 60 B stwbrx Store Word Byte-Reverse Indexed
X 31 0x7C00012D 781 B stwcx. Store Word Conditional Indexed & record CR0
D 37 0x94000000 56 B stwu Store Word with Update
X 31 0x7C00016E 56 B stwux Store Word with Update Indexed
X 31 0x7C00012E 56 B stwx Store Word Indexed

XO 31 0x7C000050 SR 68 B subf[.] Subtract From
XO 31 0x7C000010 SR 69 B subfc[.] Subtract From Carrying
XO 31 0x7C000410 SR 69 B subfco[.] Subtract From Carrying & record OV
XO 31 0x7C000110 SR 70 B subfe[.] Subtract From Extended
XO 31 0x7C000510 SR 70 B subfeo[.] Subtract From Extended & record OV
D 8 0x20000000 SR 69 B subfic Subtract From Immediate Carrying

XO 31 0x7C0001D0 SR 70 B subfme[.] Subtract From Minus One Extended

XO 31 0x7C0005D0 SR 70 B subfmeo[.] Subtract From Minus One Extended & record 
OV

XO 31 0x7C000450 SR 68 B subfo[.] Subtract From & record OV
XO 31 0x7C000190 SR 71 B subfze[.] Subtract From Zero Extended
XO 31 0x7C000590 SR 71 B subfzeo[.] Subtract From Zero Extended & record OV
X 31 0x7C0004AC 786 B sync Synchronize
X 31 0x7C000008 81 B tw Trap Word
D 3 0x0C000000 81 B twi Trap Word Immediate
X 26 0x68000000 B xnop Executed No Operation
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Version 2.07 B
X 31 0x7C000278 SR 85 B xor[.] XOR
D 26 0x68000000 84 B xori XOR Immediate
D 27 0x6C000000 84 B xoris XOR Immediate Shifted

XO 31 0x7C000094 102 BCDA addg6s Add and Generate Sixes
X 31 0x7C000274 102 BCDA cbcdtd Convert Binary Coded Decimal To Declets
X 31 0x7C000234 102 BCDA cdtbcd Convert Declets To Binary Coded Decimal
X 59 0xEC000004 183 DFP dadd[.] Decimal Floating Add
X 63 0xFC000004 183 DFP daddq[.] Decimal Floating Add Quad
X 59 0xEC000644 205 DFP dcffix[.] Decimal Floating Convert From Fixed
X 63 0xFC000644 205 DFP dcffixq[.] Decimal Floating Convert From Fixed Quad
X 59 0xEC000104 189 DFP dcmpo Decimal Floating Compare Ordered
X 63 0xFC000104 189 DFP dcmpoq Decimal Floating Compare Ordered Quad
X 59 0xEC000504 188 DFP dcmpu Decimal Floating Compare Unordered
X 63 0xFC000504 189 DFP dcmpuq Decimal Floating Compare Unordered Quad
X 59 0xEC000204 203 DFP dctdp[.] Decimal Floating Convert To DFP Long
X 59 0xEC000244 205 DFP dctfix[.] Decimal Floating Convert To Fixed
X 63 0xFC000244 205 DFP dctfixq[.] Decimal Floating Convert To Fixed Quad
X 63 0xFC000204 203 DFP dctqpq[.] Decimal Floating Convert To DFP Extended
X 59 0xEC000284 207 DFP ddedpd[.] Decimal Floating Decode DPD To BCD
X 63 0xFC000284 207 DFP ddedpdq[.] Decimal Floating Decode DPD To BCD Quad
X 59 0xEC000444 186 DFP ddiv[.] Decimal Floating Divide
X 63 0xFC000444 186 DFP ddivq[.] Decimal Floating Divide Quad
X 59 0xEC000684 207 DFP denbcd[.] Decimal Floating Encode BCD To DPD
X 63 0xFC000684 207 DFP denbcdq[.] Decimal Floating Encode BCD To DPD Quad
X 59 0xEC0006C4 208 DFP diex[.] Decimal Floating Insert Exponent
X 63 0xFC0006C4 208 DFP diexq[.] Decimal Floating Insert Exponent Quad
X 59 0xEC000044 185 DFP dmul[.] Decimal Floating Multiply
X 63 0xFC000044 185 DFP dmulq[.] Decimal Floating Multiply Quad

Z23 59 0xEC000006 194 DFP dqua[.] Decimal Quantize
Z23 59 0xEC000086 193 DFP dquai[.] Decimal Quantize Immediate
Z23 63 0xFC000086 193 DFP dquaiq[.] Decimal Quantize Immediate Quad
Z23 63 0xFC000006 194 DFP dquaq[.] Decimal Quantize Quad
X 63 0xFC000604 204 DFP drdpq[.] Decimal Floating Round To DFP Long

Z23 59 0xEC0001C6 201 DFP drintn[.] Decimal Floating Round To FP Integer 
Without Inexact

Z23 63 0xFC0001C6 201 DFP drintnq[.] Decimal Floating Round To FP Integer 
Without Inexact Quad

Z23 59 0xEC0000C6 199 DFP drintx[.] Decimal Floating Round To FP Integer With 
Inexact

Z23 63 0xFC0000C6 199 DFP drintxq[.] Decimal Floating Round To FP Integer With 
Inexact Quad

Z23 59 0xEC000046 196 DFP drrnd[.] Decimal Floating Reround
Z23 63 0xFC000046 196 DFP drrndq[.] Decimal Floating Reround Quad
X 59 0xEC000604 204 DFP drsp[.] Decimal Floating Round To DFP Short

Z22 59 0xEC000084 210 DFP dscli[.] Decimal Floating Shift Coefficient Left 
Immediate

Z22 63 0xFC000084 210 DFP dscliq[.] Decimal Floating Shift Coefficient Left 
Immediate Quad

Z22 59 0xEC0000C4 210 DFP dscri[.] Decimal Floating Shift Coefficient Right 
Immediate

Z22 63 0xFC0000C4 210 DFP dscriq[.] Decimal Floating Shift Coefficient Right 
Immediate Quad

X 59 0xEC000404 183 DFP dsub[.] Decimal Floating Subtract
X 63 0xFC000404 183 DFP dsubq[.] Decimal Floating Subtract Quad

Z22 59 0xEC000184 190 DFP dtstdc Decimal Floating Test Data Class
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Version 2.07 B
Z22 63 0xFC000184 190 DFP dtstdcq Decimal Floating Test Data Class Quad
Z22 59 0xEC0001C4 190 DFP dtstdg Decimal Floating Test Data Group
Z22 63 0xFC0001C4 190 DFP dtstdgq Decimal Floating Test Data Group Quad
X 59 0xEC000144 191 DFP dtstex Decimal Floating Test Exponent
X 63 0xFC000144 191 DFP dtstexq Decimal Floating Test Exponent Quad
X 59 0xEC000544 192 DFP dtstsf Decimal Floating Test Significance
X 63 0xFC000544 192 DFP dtstsfq Decimal Floating Test Significance Quad
X 59 0xEC0002C4 208 DFP dxex[.] Decimal Floating Extract Exponent
X 63 0xFC0002C4 208 DFP dxexq[.] Decimal Floating Extract Exponent Quad
X 31 0x7C0003C6 824 DS dsn Decorated Storage Notify
X 31 0x7C000406 822 DS lbdx Load Byte with Decoration Indexed
X 31 0x7C0004C6 822 DS lddx Load Doubleword with Decoration Indexed

X 31 0x7C000646 822 DS lfddx Load Floating Doubleword with Decoration 
Indexed

X 31 0x7C000446 822 DS lhdx Load Halfword with Decoration Indexed
X 31 0x7C000486 822 DS lwdx Load Word with Decoration Indexed
X 31 0x7C000506 823 DS stbdx Store Byte with Decoration Indexed
X 31 0x7C0005C6 823 DS stddx Store Doubleword with Decoration Indexed

X 31 0x7C000746 823 DS stfddx Store Floating Doubleword with Decoration 
Indexed

X 31 0x7C000546 823 DS sthdx Store Halfword with Decoration Indexed
X 31 0x7C000586 823 DS stwdx Store Word with Decoration Indexed
X 31 0x7C0005EC 770 E dcba Data Cache Block Allocate
X 31 0x7C0003AC P 1118 E dcbi Data Cache Block Invalidate

XFX 19 0x4C00018C 1228 E dnh Debugger Notify Halt
X 31 0x7C00002C 762 B icbt Instruction Cache Block Touch
X 31 0x7C0006AC 790 E mbar Memory Barrier
X 31 0x7C000400 112 E mcrxr Move to Condition Register from XER

XL 19 0x4C000066 P 1041 E rfci Return From Critical Interrupt
XL 19 0x4C000064 P 1041 E rfi Return From Interrupt
XL 19 0x4C00004C P 1042 E rfmci Return From Machine Check Interrupt
X 31 0x7C000024 P 1134 E tlbilx TLB Invalidate Local Indexed
X 31 0x7C000624 P 1132 E tlbivax TLB Invalidate Virtual Address Indexed
X 31 0x7C000764 P 1139 E tlbre TLB Read Entry
X 31 0x7C000724 P 1136 E tlbsx TLB Search Indexed
X 31 0x7C0007A4 P 1141 E tlbwe TLB Write Entry
X 31 0x7C000106 P 1056 E wrtee Write External Enable
X 31 0x7C000146 P 1057 E wrteei Write External Enable Immediate
X 31 0x7C00028C P 1242 E.CD dcread Data Cache Read
X 31 0x7C0003CC P 1242 E.CD dcread Data Cache Read
X 31 0x7C0007CC P 1243 E.CD icread Instruction Cache Read
X 31 0x7C00038C P 1239 E.CI dci Data Cache Invalidate
X 31 0x7C00078C P 1239 E.CI ici Instruction Cache Invalidate

XFX 31 0x7C000286 P 1055 E.DC mfdcr Move From Device Control Register

X 31 0x7C000246 112 E.DC mfdcrux Move From Device Control Register User 
Mode Indexed

X 31 0x7C000206 P 1055 E.DC mfdcrx Move From Device Control Register Indexed
XFX 31 0x7C000386 P 1054 E.DC mtdcr Move To Device Control Register

X 31 0x7C000346 112 E.DC mtdcrux Move To Device Control Register User Mode 
Indexed

X 31 0x7C000306 P 1054 E.DC mtdcrx Move To Device Control Register Indexed
X 19 0x4C00004E P 1042 E.ED rfdi Return From Debug Interrupt

XL 31 0x7C00021C 1043 E.HV ehpriv Embedded Hypervisor Privilege
XL 19 0x4C0000CC P 1043 E.HV rfgi Return From Guest Interrupt
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Version 2.07 B
X 31 0x7C0000FE P 1064 E.PD dcbfep Data Cache Block Flush by External PID
X 31 0x7C00007E P 1063 E.PD dcbstep Data Cache Block Store by External PID
X 31 0x7C00027E P 1063 E.PD dcbtep Data Cache Block Touch by External PID

X 31 0x7C0001FE P 1066 E.PD dcbtstep Data Cache Block Touch for Store by External 
PID

X 31 0x7C0007FE P 1067 E.PD dcbzep Data Cache Block Zero by External PID

EVX 31 0x7C00063E P 1069 E.PD evlddepx Vector Load Double Word into Double Word 
by External PID Indexed

EVX 31 0x7C00073E P 1069 E.PD evstddepx Vector Store Double of Double by External 
PID Indexed

X 31 0x7C0007BE P 1067 E.PD icbiep Instruction Cache Block Invalidate by External 
PID

X 31 0x7C0000BE P 1059 E.PD lbepx Load Byte and Zero by External PID Indexed

X 31 0x7C0004BE P 1068 E.PD lfdepx Load Floating-Point Double by External PID 
Indexed

X 31 0x7C00023E P 1059 E.PD lhepx Load Halfword and Zero by External PID 
Indexed

X 31 0x7C00024E P 1070 E.PD lvepx Load Vector by External PID Indexed
X 31 0x7C00020E P 1070 E.PD lvepxl Load Vector by External PID Indexed Last
X 31 0x7C00003E P 1060 E.PD lwepx Load Word and Zero by External PID Indexed
X 31 0x7C0001BE P 1061 E.PD stbepx Store Byte by External PID Indexed

X 31 0x7C0005BE P 1068 E.PD stfdepx Store Floating-Point Double by External PID 
Indexed

X 31 0x7C00033E P 1061 E.PD sthepx Store Halfword by External PID Indexed
X 31 0x7C00064E P 1071 E.PD stvepx Store Vector by External PID Indexed
X 31 0x7C00060E P 1071 E.PD stvepxl Store Vector by External PID Indexed Last
X 31 0x7C00013E P 1062 E.PD stwepx Store Word by External PID Indexed
X 31 0x7C00003A P 1060 E.PD;64 ldepx Load Doubleword by External PID Indexed
X 31 0x7C00013A P 1062 E.PD;64 stdepx Store Doubleword by External PID Indexed

XFX 31 0x7C00029C O 1257 E.PM mfpmr Move from Performance Monitor Register
XFX 31 0x7C00039C O 1257 E.PM mtpmr Move To Performance Monitor Register

X 31 0x7C0006A5 P 1138 E.TWC tlbsrx. TLB Search and Reserve Indexed
X 31 0x7C00026C 826 EC eciwx External Control In Word Indexed
X 31 0x7C00036C 826 EC ecowx External Control Out Word Indexed
X 31 0x7C00030C M 1123 ECL dcblc Data Cache Block Lock Clear
X 31 0x7C00034D 1121 ECL dcblq. Data Cache Block Lock Query
X 31 0x7C00014C M 1122 ECL dcbtls Data Cache Block Touch and Lock Set

X 31 0x7C00010C M 1122 ECL dcbtstls Data Cache Block Touch for Store and Lock 
Set

X 31 0x7C0001CC M 1124 ECL icblc Instruction Cache Block Lock Clear
X 31 0x7C00018D 1121 ECL icblq. Instruction Cache Block Lock Query
X 31 0x7C0003CC M 1123 ECL icbtls Instruction Cache Block Touch and Lock Set
X 63 0xFC000040 158 FP fcmpo Floating Compare Ordered
X 63 0xFC000000 158 FP fcmpu Floating Compare Unordered
X 63 0xFC000100 147 FP ftdiv Floating Test for software Divide
X 63 0xFC000140 147 FP ftsqrt Floating Test for software Square Root
D 50 0xC8000000 133 FP lfd Load Floating-Point Double
D 51 0xCC000000 133 FP lfdu Load Floating-Point Double with Update

X 31 0x7C0004EE 133 FP lfdux Load Floating-Point Double with Update 
Indexed

X 31 0x7C0004AE 133 FP lfdx Load Floating-Point Double Indexed

X 31 0x7C0006AE 134 FP lfiwax Load Floating-Point as Integer Word Algebraic 
Indexed

X 31 0x7C0006EE 134 FP lfiwzx Load Floating-Point as Integer Word and Zero 
Indexed

D 48 0xC0000000 136 FP lfs Load Floating-Point Single
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Version 2.07 B
D 49 0xC4000000 136 FP lfsu Load Floating-Point Single with Update

X 31 0x7C00046E 136 FP lfsux Load Floating-Point Single with Update 
Indexed

X 31 0x7C00042E 136 FP lfsx Load Floating-Point Single Indexed
X 63 0xFC000080 160 FP mcrfs Move To Condition Register from FPSCR
D 54 0xD8000000 137 FP stfd Store Floating-Point Double
D 55 0xDC000000 137 FP stfdu Store Floating-Point Double with Update

X 31 0x7C0005EE 137 FP stfdux Store Floating-Point Double with Update 
Indexed

X 31 0x7C0005AE 137 FP stfdx Store Floating-Point Double Indexed
X 31 0x7C0007AE 138 FP stfiwx Store Floating-Point as Integer Word Indexed
D 52 0xD0000000 136 FP stfs Store Floating-Point Single
D 53 0xD4000000 136 FP stfsu Store Floating-Point Single with Update

X 31 0x7C00056E 136 FP stfsux Store Floating-Point Single with Update 
Indexed

X 31 0x7C00052E 136 FP stfsx Store Floating-Point Single Indexed
DS 57 0xE4000000 140 FP.out lfdp Load Floating-Point Double Pair
X 31 0x7C00062E 140 FP.out lfdpx Load Floating-Point Double Pair Indexed

DS 61 0xF4000000 140 FP.out stfdp Store Floating-Point Double Pair
X 31 0x7C00072E 140 FP.out stfdpx Store Floating-Point Double Pair Indexed
X 63 0xFC000210 141 FP[R] fabs[.] Floating Absolute Value
A 63 0xFC00002A 143 FP[R] fadd[.] Floating Add
A 59 0xEC00002A 143 FP[R] fadds[.] Floating Add Single
X 63 0xFC00069C 154 FP[R] fcfid[.] Floating Convert From Integer Doubleword

X 59 0xEC00069C 155 FP[R] fcfids[.] Floating Convert From Integer Doubleword 
Single

X 63 0xFC00079C 155 FP[R] fcfidu[.] Floating Convert From Integer Doubleword 
Unsigned

X 59 0xEC00079C 156 FP[R] fcfidus[.] Floating Convert From Integer Doubleword 
Unsigned Single

X 63 0xFC000010 141 FP[R] fcpsgn[.] Floating Copy Sign
X 63 0xFC00065C 150 FP[R] fctid[.] Floating Convert To Integer Doubleword

X 63 0xFC00075C 151 FP[R] fctidu[.] Floating Convert To Integer Doubleword 
Unsigned

X 63 0xFC00075E 152 FP[R] fctiduz[.] Floating Convert To Integer Doubleword 
Unsigned with round toward Zero

X 63 0xFC00065E 151 FP[R] fctidz[.] Floating Convert To Integer Doubleword with 
round toward Zero

X 63 0xFC00001C 152 FP[R] fctiw[.] Floating Convert To Integer Word
X 63 0xFC00011C 153 FP[R] fctiwu[.] Floating Convert To Integer Word Unsigned

X 63 0xFC00011E 154 FP[R] fctiwuz[.] Floating Convert To Integer Word Unsigned 
with round toward Zero

X 63 0xFC00001E 153 FP[R] fctiwz[.] Floating Convert To Integer Word with round 
to Zero

A 63 0xFC000024 144 FP[R] fdiv[.] Floating Divide
A 59 0xEC000024 144 FP[R] fdivs[.] Floating Divide Single
A 63 0xFC00003A 148 FP[R] fmadd[.] Floating Multiply-Add
A 59 0xEC00003A 148 FP[R] fmadds[.] Floating Multiply-Add Single
X 63 0xFC000090 141 FP[R] fmr[.] Floating Move Register
A 63 0xFC000038 148 FP[R] fmsub[.] Floating Multiply-Subtract
A 59 0xEC000038 148 FP[R] fmsubs[.] Floating Multiply-Subtract Single
A 63 0xFC000032 144 FP[R] fmul[.] Floating Multiply
A 59 0xEC000032 144 FP[R] fmuls[.] Floating Multiply Single
X 63 0xFC000110 141 FP[R] fnabs[.] Floating Negative Absolute Value
X 63 0xFC000050 141 FP[R] fneg[.] Floating Negate
A 63 0xFC00003E 149 FP[R] fnmadd[.] Floating Negative Multiply-Add
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Version 2.07 B
A 59 0xEC00003E 149 FP[R] fnmadds[.] Floating Negative Multiply-Add Single
A 63 0xFC00003C 149 FP[R] fnmsub[.] Floating Negative Multiply-Subtract
A 59 0xEC00003C 149 FP[R] fnmsubs[.] Floating Negative Multiply-Subtract Single
A 59 0xEC000030 145 FP[R] fres[.] Floating Reciprocal Estimate Single
X 63 0xFC000018 150 FP[R] frsp[.] Floating Round to Single-Precision
A 63 0xFC000034 146 FP[R] frsqrte[.] Floating Reciprocal Square Root Estimate
A 63 0xFC00002E 159 FP[R] fsel[.] Floating Select
A 63 0xFC00002C 145 FP[R] fsqrt[.] Floating Square Root
A 59 0xEC00002C 145 FP[R] fsqrts[.] Floating Square Root Single
A 63 0xFC000028 143 FP[R] fsub[.] Floating Subtract
A 59 0xEC000028 143 FP[R] fsubs[.] Floating Subtract Single
X 63 0xFC00048E 160 FP[R] mffs[.] Move From FPSCR
X 63 0xFC00008C 162 FP[R] mtfsb0[.] Move To FPSCR Bit 0
X 63 0xFC00004C 162 FP[R] mtfsb1[.] Move To FPSCR Bit 1

XFL 63 0xFC00058E 161 FP[R] mtfsf[.] Move To FPSCR Fields
X 63 0xFC00010C 161 FP[R] mtfsfi[.] Move To FPSCR Field Immediate
A 63 0xFC000030 145 FP[R].in fre[.] Floating Reciprocal Estimate
X 63 0xFC0003D0 157 FP[R].in frim[.] Floating Round To Integer Minus
X 63 0xFC000310 157 FP[R].in frin[.] Floating Round To Integer Nearest
X 63 0xFC000390 157 FP[R].in frip[.] Floating Round To Integer Plus
X 63 0xFC000350 157 FP[R].in friz[.] Floating Round To Integer toward Zero

A 59 0xEC000034 146 FP[R].in frsqrtes[.] Floating Reciprocal Square Root Estimate 
Single

XO 4 0x10000158 675 LMA macchw[.] Multiply Accumulate Cross Halfword to Word 
Modulo Signed

XO 4 0x10000558 675 LMA macchwo[.] Multiply Accumulate Cross Halfword to Word 
Modulo Signed & record OV

XO 4 0x100001D8 675 LMA macchws[.] Multiply Accumulate Cross Halfword to Word 
Saturate Signed

XO 4 0x100005D8 675 LMA macchwso[.] Multiply Accumulate Cross Halfword to Word 
Saturate Signed & record OV

XO 4 0x10000198 676 LMA macchwsu[.] Multiply Accumulate Cross Halfword to Word 
Saturate Unsigned

XO 4 0x10000598 676 LMA macchwsuo[.] Multiply Accumulate Cross Halfword to Word 
Saturate Unsigned & record OV

XO 4 0x10000118 676 LMA macchwu[.] Multiply Accumulate Cross Halfword to Word 
Modulo Unsigned

XO 4 0x10000518 676 LMA macchwuo[.] Multiply Accumulate Cross Halfword to Word 
Modulo Unsigned & record OV

XO 4 0x10000058 677 LMA machhw[.] Multiply Accumulate High Halfword to Word 
Modulo Signed

XO 4 0x10000458 677 LMA machhwo[.] Multiply Accumulate High Halfword to Word 
Modulo Signed & record OV

XO 4 0x100000D8 677 LMA machhws[.] Multiply Accumulate High Halfword to Word 
Saturate Signed

XO 4 0x100004D8 677 LMA machhwso[.] Multiply Accumulate High Halfword to Word 
Saturate Signed & record OV

XO 4 0x10000098 678 LMA machhwsu[.] Multiply Accumulate High Halfword to Word 
Saturate Unsigned

XO 4 0x10000498 678 LMA machhwsuo[.] Multiply Accumulate High Halfword to Word 
Saturate Unsigned & record OV

XO 4 0x10000018 678 LMA machhwu[.] Multiply Accumulate High Halfword to Word 
Modulo Unsigned

XO 4 0x10000418 678 LMA machhwuo[.] Multiply Accumulate High Halfword to Word 
Modulo Unsigned & record OV

XO 4 0x10000358 679 LMA maclhw[.] Multiply Accumulate Low Halfword to Word 
Modulo Signed
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Version 2.07 B
XO 4 0x10000758 679 LMA maclhwo[.] Multiply Accumulate Low Halfword to Word 
Modulo Signed & record OV

XO 4 0x100003D8 679 LMA maclhws[.] Multiply Accumulate Low Halfword to Word 
Saturate Signed

XO 4 0x100007D8 679 LMA maclhwso[.] Multiply Accumulate Low Halfword to Word 
Saturate Signed & record OV

XO 4 0x10000398 680 LMA maclhwsu[.] Multiply Accumulate Low Halfword to Word 
Saturate Unsigned

XO 4 0x10000798 680 LMA maclhwsuo[.] Multiply Accumulate Low Halfword to Word 
Saturate Unsigned & record OV

XO 4 0x10000318 680 LMA maclhwu[.] Multiply Accumulate Low Halfword to Word 
Modulo Unsigned

XO 4 0x10000718 680 LMA maclhwuo[.] Multiply Accumulate Low Halfword to Word 
Modulo Unsigned & record OV

X 4 0x10000150 680 LMA mulchw[.] Multiply Cross Halfword to Word Signed
X 4 0x10000110 680 LMA mulchwu[.] Multiply Cross Halfword to Word Unsigned
X 4 0x10000050 681 LMA mulhhw[.] Multiply High Halfword to Word Signed
X 4 0x10000010 681 LMA mulhhwu[.] Multiply High Halfword to Word Unsigned
X 4 0x10000350 681 LMA mullhw[.] Multiply Low Halfword to Word Signed
X 4 0x10000310 681 LMA mullhwu[.] Multiply Low Halfword to Word Unsigned

XO 4 0x1000015C 682 LMA nmacchw[.] Negative Multiply Accumulate Cross Halfword 
to Word Modulo Signed

XO 4 0x1000055C 682 LMA nmacchwo[.] Negative Multiply Accumulate Cross Halfword 
to Word Modulo Signed & record OV

XO 4 0x100001DC 682 LMA nmacchws[.] Negative Multiply Accumulate Cross Halfword 
to Word Saturate Signed

XO 4 0x100005DC 682 LMA nmacchwso[.] Negative Multiply Accumulate Cross Halfword 
to Word Saturate Signed & record OV

XO 4 0x1000005C 683 LMA nmachhw[.] Negative Multiply Accumulate High Halfword 
to Word Modulo Signed

XO 4 0x1000045C 683 LMA nmachhwo[.] Negative Multiply Accumulate High Halfword 
to Word Modulo Signed & record OV

XO 4 0x100000DC 683 LMA nmachhws[.] Negative Multiply Accumulate High Halfword 
to Word Saturate Signed

XO 4 0x100004DC 683 LMA nmachhwso[.] Negative Multiply Accumulate High Halfword 
to Word Saturate Signed & record OV

XO 4 0x1000035C 684 LMA nmaclhw[.] Negative Multiply Accumulate Low Halfword to 
Word Modulo Signed

XO 4 0x1000075C 684 LMA nmaclhwo[.] Negative Multiply Accumulate Low Halfword to 
Word Modulo Signed & record OV

XO 4 0x100003DC 684 LMA nmaclhws[.] Negative Multiply Accumulate Low Halfword to 
Word Saturate Signed

XO 4 0x100007DC 684 LMA nmaclhwso[.] Negative Multiply Accumulate Low Halfword to 
Word Saturate Signed & record OV

X 31 0x7C00009C 673 LMV dlmzb[.] Determine Leftmost Zero Byte
DQ 56 0xE0000000 P 58 LSQ lq Load Quadword
X 31 0x7C000228 784 LSQ lqarx Load Quadword And Reserve Indexed

DS 62 0xF8000002 P 59 LSQ stq Store Quadword

X 31 0x7C00016D 785 LSQ stqcx. Store Quadword Conditional Indexed and 
record CR0

X 31 0x7C0004AA 64 MA lswi Load String Word Immediate
X 31 0x7C00042A 64 MA lswx Load String Word Indexed
X 31 0x7C0005AA 65 MA stswi Store String Word Immediate
X 31 0x7C00052A 65 MA stswx Store String Word Indexed
X 31 0x7C00035C 44 S clrbhrb Clear BHRB

XL 19 0x4C000324 H 867 S doze Doze
X 31 0x7C0006AC 790 S eieio Enforce In-order Execution of I/O
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Version 2.07 B
XL 19 0x4C000224 H 865 S hrfid Return From Interrupt Doubleword Hypervisor

X 31 0x7C0006AA H 876 S lbzcix Load Byte and Zero Caching Inhibited 
Indexed

X 31 0x7C0006EA H 876 S ldcix Load Doubleword Caching Inhibited Indexed

X 31 0x7C00066A H 876 S lhzcix Load Halfword and Zero Caching Inhibited 
Indexed

X 31 0x7C00062A H 876 S lwzcix Load Word and Zero Caching Inhibited 
Indexed

XFX 31 0x7C00025C 44 S mfbhrbe Move From Branch History Rolling Buffer
X 31 0x7C0004A6 32 P 927 S mfsr Move From Segment Register
X 31 0x7C000526 32 P 927 S mfsrin Move From Segment Register Indirect
X 31 0x7C00015C P 1009 S msgclrp Message Clear Privileged
X 31 0x7C00011C P 1009 S msgsndp Message Send Privileged
X 31 0x7C000164 P 886 S mtmsrd Move To Machine State Register Doubleword
X 31 0x7C0001A4 32 P 926 S mtsr Move To Segment Register
X 31 0x7C0001E4 32 P 926 S mtsrin Move To Segment Register Indirect

XL 19 0x4C000364 H 867 S nap Nap
XL 19 0x4C000124 820 S rfebb Return from Event Based Branch
XL 19 0x4C000024 P 864 S rfid Return from Interrupt Doubleword
XL 19 0x4C0003E4 H 868 S rvwinkle Rip Van Winkle
X 31 0x7C0007A7 SR P 923 S slbfee. SLB Find Entry ESID
X 31 0x7C0003E4 P 920 S slbia SLB Invalidate All
X 31 0x7C000364 P 919 S slbie SLB Invalidate Entry
X 31 0x7C000726 P 923 S slbmfee SLB Move From Entry ESID
X 31 0x7C0006A6 P 922 S slbmfev SLB Move From Entry VSID
X 31 0x7C000324 P 921 S slbmte SLB Move To Entry

XL 19 0x4C0003A4 H 868 S sleep Sleep
X 31 0x7C0007AA H 877 S stbcix Store Byte Caching Inhibited Indexed
X 31 0x7C0007EA H 877 S stdcix Store Doubleword Caching Inhibited Indexed

X 31 0x7C00076A H 877 S sthcix Store Halfword and Zero Caching Inhibited 
Indexed

X 31 0x7C00072A H 877 S stwcix Store Word and Zero Caching Inhibited 
Indexed

X 31 0x7C0002E4 H 932 S tlbia TLB Invalidate All
X 31 0x7C000264 64 H 928 S tlbie TLB Invalidate Entry
X 31 0x7C000224 64 P 930 S tlbiel TLB Invalidate Entry Local

XFX 31 0x7C0002E6 814 S.out mftb Move From Time Base

X 31 0x7C0000A6 P 888
1055

S
E mfmsr Move From Machine State Register

X 31 0x7C000124 P 884
1055

S
E mtmsr Move To Machine State Register

X 31 0x7C00046C H
PH

933
1141

S
E tlbsync TLB Synchronize

X 31 0x7C0001DC H 1008
1233

S
E.PC msgclr Message Clear

X 31 0x7C00019C H 1008
1233

S
E.PC msgsnd Message Send

EVX 4 0x1000020F 594 SP brinc Bit Reversed Increment
EVX 4 0x10000208 594 SP evabs Vector Absolute Value
EVX 4 0x10000202 594 SP evaddiw Vector Add Immediate Word

EVX 4 0x100004C9 594 SP evaddsmiaaw Vector Add Signed, Modulo, Integer to 
Accumulator Word

EVX 4 0x100004C1 595 SP evaddssiaaw Vector Add Signed, Saturate, Integer to 
Accumulator Word

EVX 4 0x100004C8 595 SP evaddumiaaw Vector Add Unsigned, Modulo, Integer to 
Accumulator Word
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Version 2.07 B
EVX 4 0x100004C0 595 SP evaddusiaaw Vector Add Unsigned, Saturate, Integer to 
Accumulator Word

EVX 4 0x10000200 595 SP evaddw Vector Add Word
EVX 4 0x10000211 596 SP evand Vector AND
EVX 4 0x10000212 596 SP evandc Vector AND with Complement
EVX 4 0x10000234 596 SP evcmpeq Vector Compare Equal
EVX 4 0x10000231 596 SP evcmpgts Vector Compare Greater Than Signed
EVX 4 0x10000230 597 SP evcmpgtu Vector Compare Greater Than Unsigned
EVX 4 0x10000233 597 SP evcmplts Vector Compare Less Than Signed
EVX 4 0x10000232 597 SP evcmpltu Vector Compare Less Than Unsigned
EVX 4 0x1000020E 598 SP evcntlsw Vector Count Leading Signed Bits Word
EVX 4 0x1000020D 598 SP evcntlzw Vector Count Leading Zeros Word
EVX 4 0x100004C6 598 SP evdivws Vector Divide Word Signed
EVX 4 0x100004C7 599 SP evdivwu Vector Divide Word Unsigned
EVX 4 0x10000219 599 SP eveqv Vector Equivalent
EVX 4 0x1000020A 599 SP evextsb Vector Extend Sign Byte
EVX 4 0x1000020B 599 SP evextsh Vector Extend Sign Half Word
EVX 4 0x10000301 600 SP evldd Vector Load Double Word into Double Word

EVX 4 0x10000300 600 SP evlddx Vector Load Double Word into Double Word 
Indexed

EVX 4 0x10000305 600 SP evldh Vector Load Double into Four Half Words

EVX 4 0x10000304 600 SP evldhx Vector Load Double into Four Half Words 
Indexed

EVX 4 0x10000303 601 SP evldw Vector Load Double into Two Words
EVX 4 0x10000302 601 SP evldwx Vector Load Double into Two Words Indexed

EVX 4 0x10000309 601 SP evlhhesplat Vector Load Half Word into Half Words Even 
and Splat

EVX 4 0x10000308 601 SP evlhhesplatx Vector Load Half Word into Half Words Even 
and Splat Indexed

EVX 4 0x1000030F 602 SP evlhhossplat Vector Load Half Word into Half Word Odd 
Signed and Splat

EVX 4 0x1000030E 602 SP evlhhossplatx Vector Load Half Word into Half Word Odd 
Signed and Splat Indexed

EVX 4 0x1000030D 602 SP evlhhousplat Vector Load Half Word into Half Word Odd 
Unsigned and Splat

EVX 4 0x1000030C 602 SP evlhhousplatx Vector Load Half Word into Half Word Odd 
Unsigned and Splat Indexed

EVX 4 0x10000311 603 SP evlwhe Vector Load Word into Two Half Words Even

EVX 4 0x10000310 603 SP evlwhex Vector Load Word into Two Half Words Even 
Indexed

EVX 4 0x10000317 603 SP evlwhos Vector Load Word into Two Half Words Odd 
Signed (with sign extension)

EVX 4 0x10000316 603 SP evlwhosx Vector Load Word into Two Half Words Odd 
Signed Indexed (with sign extension)

EVX 4 0x10000315 604 SP evlwhou Vector Load Word into Two Half Words Odd 
Unsigned (zero-extended)

EVX 4 0x10000314 604 SP evlwhoux Vector Load Word into Two Half Words Odd 
Unsigned Indexed (zero-extended)

EVX 4 0x1000031D 604 SP evlwhsplat Vector Load Word into Two Half Words and 
Splat

EVX 4 0x1000031C 604 SP evlwhsplatx Vector Load Word into Two Half Words and 
Splat Indexed

EVX 4 0x10000319 605 SP evlwwsplat Vector Load Word into Word and Splat

EVX 4 0x10000318 605 SP evlwwsplatx Vector Load Word into Word and Splat 
Indexed

EVX 4 0x1000022C 605 SP evmergehi Vector Merge High
EVX 4 0x1000022E 606 SP evmergehilo Vector Merge High/Low
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Version 2.07 B
EVX 4 0x1000022D 605 SP evmergelo Vector Merge Low
EVX 4 0x1000022F 606 SP evmergelohi Vector Merge Low/High

EVX 4 0x1000052B 606 SP evmhegsmfaa Vector Multiply Half Words, Even, Guarded, 
Signed, Modulo, Fractional and Accumulate

EVX 4 0x100005AB 606 SP evmhegsmfan
Vector Multiply Half Words, Even, Guarded, 

Signed, Modulo, Fractional and Accumulate 
Negative

EVX 4 0x10000529 607 SP evmhegsmiaa Vector Multiply Half Words, Even, Guarded, 
Signed, Modulo, Integer and Accumulate

EVX 4 0x100005A9 607 SP evmhegsmian
Vector Multiply Half Words, Even, Guarded, 

Signed, Modulo, Integer and Accumulate 
Negative

EVX 4 0x10000528 607 SP evmhegumiaa Vector Multiply Half Words, Even, Guarded, 
Unsigned, Modulo, Integer and Accumulate

EVX 4 0x100005A8 607 SP evmhegumian
Vector Multiply Half Words, Even, Guarded, 

Unsigned, Modulo, Integer and Accumulate 
Negative

EVX 4 0x1000040B 608 SP evmhesmf Vector Multiply Half Words, Even, Signed, 
Modulo, Fractional

EVX 4 0x1000042B 608 SP evmhesmfa Vector Multiply Half Words, Even, Signed, 
Modulo, Fractional to Accumulator

EVX 4 0x1000050B 608 SP evmhesmfaaw
Vector Multiply Half Words, Even, Signed, 

Modulo, Fractional and Accumulate into 
Words

EVX 4 0x1000058B 608 SP evmhesmfanw
Vector Multiply Half Words, Even, Signed, 

Modulo, Fractional and Accumulate 
Negative into Words

EVX 4 0x10000409 609 SP evmhesmi Vector Multiply Half Words, Even, Signed, 
Modulo, Integer

EVX 4 0x10000429 609 SP evmhesmia Vector Multiply Half Words, Even, Signed, 
Modulo, Integer to Accumulator

EVX 4 0x10000509 609 SP evmhesmiaaw Vector Multiply Half Words, Even, Signed, 
Modulo, Integer and Accumulate into Words

EVX 4 0x10000589 609 SP evmhesmianw
Vector Multiply Half Words, Even, Signed, 

Modulo, Integer and Accumulate Negative 
into Words

EVX 4 0x10000403 610 SP evmhessf Vector Multiply Half Words, Even, Signed, 
Saturate, Fractional

EVX 4 0x10000423 610 SP evmhessfa Vector Multiply Half Words, Even, Signed, 
Saturate, Fractional to Accumulator

EVX 4 0x10000503 611 SP evmhessfaaw
Vector Multiply Half Words, Even, Signed, 

Saturate, Fractional and Accumulate into 
Words

EVX 4 0x10000583 611 SP evmhessfanw
Vector Multiply Half Words, Even, Signed, 

Saturate, Fractional and Accumulate 
Negative into Words

EVX 4 0x10000501 612 SP evmhessiaaw
Vector Multiply Half Words, Even, Signed, 

Saturate, Integer and Accumulate into 
Words

EVX 4 0x10000581 612 SP evmhessianw
Vector Multiply Half Words, Even, Signed, 

Saturate, Integer and Accumulate Negative 
into Words

EVX 4 0x10000408 613 SP evmheumi Vector Multiply Half Words, Even, Unsigned, 
Modulo, Integer

EVX 4 0x10000428 613 SP evmheumia Vector Multiply Half Words, Even, Unsigned, 
Modulo, Integer to Accumulator

EVX 4 0x10000508 613 SP evmheumiaaw Vector Multiply Half Words, Even, Unsigned, 
Modulo, Integer and Accumulate into Words
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Version 2.07 B
EVX 4 0x10000588 613 SP evmheumianw
Vector Multiply Half Words, Even, Unsigned, 

Modulo, Integer and Accumulate Negative 
into Words

EVX 4 0x10000500 614 SP evmheusiaaw
Vector Multiply Half Words, Even, Unsigned, 

Saturate, Integer and Accumulate into 
Words

EVX 4 0x10000580 614 SP evmheusianw
Vector Multiply Half Words, Even, Unsigned, 

Saturate, Integer and Accumulate Negative 
into Words

EVX 4 0x1000052F 615 SP evmhogsmfaa Vector Multiply Half Words, Odd, Guarded, 
Signed, Modulo, Fractional and Accumulate

EVX 4 0x100005AF 615 SP evmhogsmfan
Vector Multiply Half Words, Odd, Guarded, 

Signed, Modulo, Fractional and Accumulate 
Negative

EVX 4 0x1000052D 615 SP evmhogsmiaa Vector Multiply Half Words, Odd, Guarded, 
Signed, Modulo, Integer, and Accumulate

EVX 4 0x100005AD 615 SP evmhogsmian
Vector Multiply Half Words, Odd, Guarded, 

Signed, Modulo, Integer and Accumulate 
Negative

EVX 4 0x1000052C 616 SP evmhogumiaa Vector Multiply Half Words, Odd, Guarded, 
Unsigned, Modulo, Integer and Accumulate

EVX 4 0x100005AC 616 SP evmhogumian
Vector Multiply Half Words, Odd, Guarded, 

Unsigned, Modulo, Integer and Accumulate 
Negative

EVX 4 0x1000040F 616 SP evmhosmf Vector Multiply Half Words, Odd, Signed, 
Modulo, Fractional

EVX 4 0x1000042F 616 SP evmhosmfa Vector Multiply Half Words, Odd, Signed, 
Modulo, Fractional to Accumulator

EVX 4 0x1000050F 617 SP evmhosmfaaw
Vector Multiply Half Words, Odd, Signed, 

Modulo, Fractional and Accumulate into 
Words

EVX 4 0x1000058F 617 SP evmhosmfanw
Vector Multiply Half Words, Odd, Signed, 

Modulo, Fractional and Accumulate 
Negative into Words

EVX 4 0x1000040D 617 SP evmhosmi Vector Multiply Half Words, Odd, Signed, 
Modulo, Integer

EVX 4 0x1000042D 617 SP evmhosmia Vector Multiply Half Words, Odd, Signed, 
Modulo, Integer to Accumulator

EVX 4 0x1000050D 618 SP evmhosmiaaw Vector Multiply Half Words, Odd, Signed, 
Modulo, Integer and Accumulate into Words

EVX 4 0x1000058D 617 SP evmhosmianw
Vector Multiply Half Words, Odd, Signed, 

Modulo, Integer and Accumulate Negative 
into Words

EVX 4 0x10000407 619 SP evmhossf Vector Multiply Half Words, Odd, Signed, 
Saturate, Fractional

EVX 4 0x10000427 619 SP evmhossfa Vector Multiply Half Words, Odd, Signed, 
Saturate, Fractional to Accumulator

EVX 4 0x10000507 620 SP evmhossfaaw
Vector Multiply Half Words, Odd, Signed, 

Saturate, Fractional and Accumulate into 
Words

EVX 4 0x10000587 620 SP evmhossfanw
Vector Multiply Half Words, Odd, Signed, 

Saturate, Fractional and Accumulate 
Negative into Words

EVX 4 0x10000505 621 SP evmhossiaaw
Vector Multiply Half Words, Odd, Signed, 

Saturate, Integer and Accumulate into 
Words

EVX 4 0x10000585 621 SP evmhossianw
Vector Multiply Half Words, Odd, Signed, 

Saturate, Integer and Accumulate Negative 
into Words
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Version 2.07 B
EVX 4 0x1000040C 621 SP evmhoumi Vector Multiply Half Words, Odd, Unsigned, 
Modulo, Integer

EVX 4 0x1000042C 621 SP evmhoumia Vector Multiply Half Words, Odd, Unsigned, 
Modulo, Integer to Accumulator

EVX 4 0x1000050C 622 SP evmhoumiaaw Vector Multiply Half Words, Odd, Unsigned, 
Modulo, Integer and Accumulate into Words

EVX 4 0x1000058C 618 SP evmhoumianw
Vector Multiply Half Words, Odd, Unsigned, 

Modulo, Integer and Accumulate Negative 
into Words

EVX 4 0x10000504 622 SP evmhousiaaw
Vector Multiply Half Words, Odd, Unsigned, 

Saturate, Integer and Accumulate into 
Words

EVX 4 0x10000584 622 SP evmhousianw
Vector Multiply Half Words, Odd, Unsigned, 

Saturate, Integer and Accumulate Negative 
into Words

EVX 4 0x100004C4 623 SP evmra Initialize Accumulator

EVX 4 0x1000044F 623 SP evmwhsmf Vector Multiply Word High Signed, Modulo, 
Fractional

EVX 4 0x1000046F 623 SP evmwhsmfa Vector Multiply Word High Signed, Modulo, 
Fractional to Accumulator

EVX 4 0x1000044D 623 SP evmwhsmi Vector Multiply Word High Signed, Modulo, 
Integer

EVX 4 0x1000046D 623 SP evmwhsmia Vector Multiply Word High Signed, Modulo, 
Integer to Accumulator

EVX 4 0x10000447 624 SP evmwhssf Vector Multiply Word High Signed, Saturate, 
Fractional

EVX 4 0x10000467 624 SP evmwhssfa Vector Multiply Word High Signed, Saturate, 
Fractional to Accumulator

EVX 4 0x1000044C 624 SP evmwhumi Vector Multiply Word High Unsigned, Modulo, 
Integer

EVX 4 0x1000046C 624 SP evmwhumia Vector Multiply Word High Unsigned, Modulo, 
Integer to Accumulator

EVX 4 0x10000549 625 SP evmwlsmiaaw Vector Multiply Word Low Signed, Modulo, 
Integer and Accumulate in Words

EVX 4 0x100005C9 625 SP evmwlsmianw Vector Multiply Word Low Signed, Modulo, 
Integer and Accumulate Negative in Words

EVX 4 0x10000541 625 SP evmwlssiaaw Vector Multiply Word Low Signed, Saturate, 
Integer and Accumulate in Words

EVX 4 0x100005C1 625 SP evmwlssianw Vector Multiply Word Low Signed, Saturate, 
Integer and Accumulate Negative in Words

EVX 4 0x10000448 626 SP evmwlumi Vector Multiply Word Low Unsigned, Modulo, 
Integer

EVX 4 0x10000468 626 SP evmwlumia Vector Multiply Word Low Unsigned, Modulo, 
Integer to Accumulator

EVX 4 0x10000548 626 SP evmwlumiaaw Vector Multiply Word Low Unsigned, Modulo, 
Integer and Accumulate in Words

EVX 4 0x100005C8 626 SP evmwlumianw Vector Multiply Word Low Unsigned, Modulo, 
Integer and Accumulate Negative in Words

EVX 4 0x10000540 627 SP evmwlusiaaw Vector Multiply Word Low Unsigned, Saturate, 
Integer and Accumulate in Words

EVX 4 0x100005C0 627 SP evmwlusianw Vector Multiply Word Low Unsigned, Saturate, 
Integer and Accumulate Negative in Words

EVX 4 0x1000045B 627 SP evmwsmf Vector Multiply Word Signed, Modulo, 
Fractional

EVX 4 0x1000047B 627 SP evmwsmfa Vector Multiply Word Signed, Modulo, 
Fractional to Accumulator

EVX 4 0x1000055B 628 SP evmwsmfaa Vector Multiply Word Signed, Modulo, 
Fractional and Accumulate
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Version 2.07 B
EVX 4 0x100005DB 628 SP evmwsmfan Vector Multiply Word Signed, Modulo, 
Fractional and Accumulate Negative

EVX 4 0x10000459 628 SP evmwsmi Vector Multiply Word Signed, Modulo, Integer

EVX 4 0x10000479 628 SP evmwsmia Vector Multiply Word Signed, Modulo, Integer 
to Accumulator

EVX 4 0x10000559 628 SP evmwsmiaa Vector Multiply Word Signed, Modulo, Integer 
and Accumulate

EVX 4 0x100005D9 628 SP evmwsmian Vector Multiply Word Signed, Modulo, Integer 
and Accumulate Negative

EVX 4 0x10000453 629 SP evmwssf Vector Multiply Word Signed, Saturate, 
Fractional

EVX 4 0x10000473 629 SP evmwssfa Vector Multiply Word Signed, Saturate, 
Fractional to Accumulator

EVX 4 0x10000553 629 SP evmwssfaa Vector Multiply Word Signed, Saturate, 
Fractional and Accumulate

EVX 4 0x100005D3 630 SP evmwssfan Vector Multiply Word Signed, Saturate, 
Fractional and Accumulate Negative

EVX 4 0x10000458 630 SP evmwumi Vector Multiply Word Unsigned, Modulo, 
Integer

EVX 4 0x10000478 630 SP evmwumia Vector Multiply Word Unsigned, Modulo, 
Integer to Accumulator

EVX 4 0x10000558 631 SP evmwumiaa Vector Multiply Word Unsigned, Modulo, 
Integer and Accumulate

EVX 4 0x100005D8 631 SP evmwumian Vector Multiply Word Unsigned, Modulo, 
Integer and Accumulate Negative

EVX 4 0x1000021E 631 SP evnand Vector NAND
EVX 4 0x10000209 631 SP evneg Vector Negate
EVX 4 0x10000218 631 SP evnor Vector NOR
EVX 4 0x10000217 632 SP evor Vector OR
EVX 4 0x1000021B 632 SP evorc Vector OR with Complement
EVX 4 0x10000228 632 SP evrlw Vector Rotate Left Word
EVX 4 0x1000022A 633 SP evrlwi Vector Rotate Left Word Immediate
EVX 4 0x1000020C 633 SP evrndw Vector Round Word
EVS 4 0x10000278 633 SP evsel Vector Select
EVX 4 0x10000224 634 SP evslw Vector Shift Left Word
EVX 4 0x10000226 634 SP evslwi Vector Shift Left Word Immediate
EVX 4 0x1000022B 634 SP evsplatfi Vector Splat Fractional Immediate
EVX 4 0x10000229 634 SP evsplati Vector Splat Immediate
EVX 4 0x10000223 634 SP evsrwis Vector Shift Right Word Immediate Signed
EVX 4 0x10000222 634 SP evsrwiu Vector Shift Right Word Immediate Unsigned
EVX 4 0x10000221 635 SP evsrws Vector Shift Right Word Signed
EVX 4 0x10000220 635 SP evsrwu Vector Shift Right Word Unsigned
EVX 4 0x10000321 635 SP evstdd Vector Store Double of Double
EVX 4 0x10000320 635 SP evstddx Vector Store Double of Double Indexed
EVX 4 0x10000325 636 SP evstdh Vector Store Double of Four Half Words

EVX 4 0x10000324 636 SP evstdhx Vector Store Double of Four Half Words 
Indexed

EVX 4 0x10000323 636 SP evstdw Vector Store Double of Two Words
EVX 4 0x10000322 636 SP evstdwx Vector Store Double of Two Words Indexed

EVX 4 0x10000331 637 SP evstwhe Vector Store Word of Two Half Words from 
Even

EVX 4 0x10000330 637 SP evstwhex Vector Store Word of Two Half Words from 
Even Indexed

EVX 4 0x10000335 637 SP evstwho Vector Store Word of Two Half Words from 
Odd

EVX 4 0x10000334 637 SP evstwhox Vector Store Word of Two Half Words from 
Odd Indexed
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Version 2.07 B
EVX 4 0x10000339 637 SP evstwwe Vector Store Word of Word from Even
EVX 4 0x10000338 637 SP evstwwex Vector Store Word of Word from Even Indexed
EVX 4 0x1000033D 638 SP evstwwo Vector Store Word of Word from Odd
EVX 4 0x1000033C 638 SP evstwwox Vector Store Word of Word from Odd Indexed

EVX 4 0x100004CB 638 SP evsubfsmiaaw Vector Subtract Signed, Modulo, Integer to 
Accumulator Word

EVX 4 0x100004C3 638 SP evsubfssiaaw Vector Subtract Signed, Saturate, Integer to 
Accumulator Word

EVX 4 0x100004CA 639 SP evsubfumiaaw Vector Subtract Unsigned, Modulo, Integer to 
Accumulator Word

EVX 4 0x100004C2 639 SP evsubfusiaaw Vector Subtract Unsigned, Saturate, Integer to 
Accumulator Word

EVX 4 0x10000204 639 SP evsubfw Vector Subtract from Word
EVX 4 0x10000206 639 SP evsubifw Vector Subtract Immediate from Word
EVX 4 0x10000216 639 SP evxor Vector XOR

EVX 4 0x100002E4 660 SP.FD efdabs Floating-Point Double-Precision Absolute 
Value

EVX 4 0x100002E0 661 SP.FD efdadd Floating-Point Double-Precision Add

EVX 4 0x100002EF 666 SP.FD efdcfs Floating-Point Double-Precision Convert from 
Single-Precision

EVX 4 0x100002F3 664 SP.FD efdcfsf Convert Floating-Point Double-Precision from 
Signed Fraction

EVX 4 0x100002F1 663 SP.FD efdcfsi Convert Floating-Point Double-Precision from 
Signed Integer

EVX 4 0x100002E3 664 SP.FD efdcfsid Convert Floating-Point Double-Precision from 
Signed Integer Doubleword

EVX 4 0x100002F2 664 SP.FD efdcfuf Convert Floating-Point Double-Precision from 
Unsigned Fraction

EVX 4 0x100002F0 663 SP.FD efdcfui Convert Floating-Point Double-Precision from 
Unsigned Integer

EVX 4 0x100002E2 664 SP.FD efdcfuid Convert Floating-Point Double-Precision from 
Unsigned Integer Doubleword

EVX 4 0x100002EE 662 SP.FD efdcmpeq Floating-Point Double-Precision Compare 
Equal

EVX 4 0x100002EC 662 SP.FD efdcmpgt Floating-Point Double-Precision Compare 
Greater Than

EVX 4 0x100002ED 662 SP.FD efdcmplt Floating-Point Double-Precision Compare 
Less Than

EVX 4 0x100002F7 666 SP.FD efdctsf Convert Floating-Point Double-Precision to 
Signed Fraction

EVX 4 0x100002F5 664 SP.FD efdctsi Convert Floating-Point Double-Precision to 
Signed Integer

EVX 4 0x100002EB 665 SP.FD efdctsidz
Convert Floating-Point Double-Precision to 

Signed Integer Doubleword with Round 
toward Zero

EVX 4 0x100002FA 666 SP.FD efdctsiz Convert Floating-Point Double-Precision to 
Signed Integer with Round toward Zero

EVX 4 0x100002F6 666 SP.FD efdctuf Convert Floating-Point Double-Precision to 
Unsigned Fraction

EVX 4 0x100002F4 664 SP.FD efdctui Convert Floating-Point Double-Precision to 
Unsigned Integer

EVX 4 0x100002EA 665 SP.FD efdctuidz
Convert Floating-Point Double-Precision to 

Unsigned Integer Doubleword with Round 
toward Zero

EVX 4 0x100002F8 666 SP.FD efdctuiz Convert Floating-Point Double-Precision to 
Unsigned Integer with Round toward Zero

EVX 4 0x100002E9 661 SP.FD efddiv Floating-Point Double-Precision Divide
EVX 4 0x100002E8 661 SP.FD efdmul Floating-Point Double-Precision Multiply
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Version 2.07 B
EVX 4 0x100002E5 660 SP.FD efdnabs Floating-Point Double-Precision Negative 
Absolute Value

EVX 4 0x100002E6 660 SP.FD efdneg Floating-Point Double-Precision Negate
EVX 4 0x100002E1 661 SP.FD efdsub Floating-Point Double-Precision Subtract
EVX 4 0x100002FE 663 SP.FD efdtsteq Floating-Point Double-Precision Test Equal

EVX 4 0x100002FC 662 SP.FD efdtstgt Floating-Point Double-Precision Test Greater 
Than

EVX 4 0x100002FD 663 SP.FD efdtstlt Floating-Point Double-Precision Test Less 
Than

EVX 4 0x100002CF 667 SP.FD efscfd Floating-Point Single-Precision Convert from 
Double-Precision

EVX 4 0x100002C4 653 SP.FS efsabs Floating-Point Absolute Value
EVX 4 0x100002C0 654 SP.FS efsadd Floating-Point Add
EVX 4 0x100002D3 658 SP.FS efscfsf Convert Floating-Point from Signed Fraction
EVX 4 0x100002D1 658 SP.FS efscfsi Convert Floating-Point from Signed Integer

EVX 4 0x100002D2 658 SP.FS efscfuf Convert Floating-Point from Unsigned 
Fraction

EVX 4 0x100002D0 658 SP.FS efscfui Convert Floating-Point from Unsigned Integer
EVX 4 0x100002CE 656 SP.FS efscmpeq Floating-Point Compare Equal
EVX 4 0x100002CC 655 SP.FS efscmpgt Floating-Point Compare Greater Than
EVX 4 0x100002CD 655 SP.FS efscmplt Floating-Point Compare Less Than
EVX 4 0x100002D7 659 SP.FS efsctsf Convert Floating-Point to Signed Fraction
EVX 4 0x100002D5 658 SP.FS efsctsi Convert Floating-Point to Signed Integer

EVX 4 0x100002DA 659 SP.FS efsctsiz Convert Floating-Point to Signed Integer with 
Round toward Zero

EVX 4 0x100002D6 659 SP.FS efsctuf Convert Floating-Point to Unsigned Fraction
EVX 4 0x100002D4 658 SP.FS efsctui Convert Floating-Point to Unsigned Integer

EVX 4 0x100002D8 659 SP.FS efsctuiz Convert Floating-Point to Unsigned Integer 
with Round toward Zero

EVX 4 0x100002C9 654 SP.FS efsdiv Floating-Point Divide
EVX 4 0x100002C8 654 SP.FS efsmul Floating-Point Multiply
EVX 4 0x100002C5 653 SP.FS efsnabs Floating-Point Negative Absolute Value
EVX 4 0x100002C6 653 SP.FS efsneg Floating-Point Negate
EVX 4 0x100002C1 654 SP.FS efssub Floating-Point Subtract
EVX 4 0x100002DE 657 SP.FS efststeq Floating-Point Test Equal
EVX 4 0x100002DC 656 SP.FS efststgt Floating-Point Test Greater Than
EVX 4 0x100002DD 657 SP.FS efststlt Floating-Point Test Less Than
EVX 4 0x10000284 645 SP.FV evfsabs Vector Floating-Point Absolute Value
EVX 4 0x10000280 646 SP.FV evfsadd Vector Floating-Point Add

EVX 4 0x10000293 650 SP.FV evfscfsf Vector Convert Floating-Point from Signed 
Fraction

EVX 4 0x10000291 650 SP.FV evfscfsi Vector Convert Floating-Point from Signed 
Integer

EVX 4 0x10000292 650 SP.FV evfscfuf Vector Convert Floating-Point from Unsigned 
Fraction

EVX 4 0x10000290 650 SP.FV evfscfui Vector Convert Floating-Point from Unsigned 
Integer

EVX 4 0x1000028E 648 SP.FV evfscmpeq Vector Floating-Point Compare Equal
EVX 4 0x1000028C 647 SP.FV evfscmpgt Vector Floating-Point Compare Greater Than
EVX 4 0x1000028D 647 SP.FV evfscmplt Vector Floating-Point Compare Less Than

EVX 4 0x10000297 652 SP.FV evfsctsf Vector Convert Floating-Point to Signed 
Fraction

EVX 4 0x10000295 651 SP.FV evfsctsi Vector Convert Floating-Point to Signed 
Integer

EVX 4 0x1000029A 651 SP.FV evfsctsiz Vector Convert Floating-Point to Signed 
Integer with Round toward Zero
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Version 2.07 B
EVX 4 0x10000296 652 SP.FV evfsctuf Vector Convert Floating-Point to Unsigned 
Fraction

EVX 4 0x10000294 651 SP.FV evfsctui Vector Convert Floating-Point to Unsigned 
Integer

EVX 4 0x10000298 651 SP.FV evfsctuiz Vector Convert Floating-Point to Unsigned 
Integer with Round toward Zero

EVX 4 0x10000289 646 SP.FV evfsdiv Vector Floating-Point Divide
EVX 4 0x10000288 646 SP.FV evfsmul Vector Floating-Point Multiply
EVX 4 0x10000285 645 SP.FV evfsnabs Vector Floating-Point Negative Absolute Value
EVX 4 0x10000286 645 SP.FV evfsneg Vector Floating-Point Negate
EVX 4 0x10000281 646 SP.FV evfssub Vector Floating-Point Subtract
EVX 4 0x1000029E 649 SP.FV evfststeq Vector Floating-Point Test Equal
EVX 4 0x1000029C 648 SP.FV evfststgt Vector Floating-Point Test Greater Than
EVX 4 0x1000029D 649 SP.FV evfststlt Vector Floating-Point Test Less Than

X 31 0x7C00071D 808 TM tabort. Transaction Abort
X 31 0x7C00065D 809 TM tabortdc. Transaction Abort Doubleword Conditional

X 31 0x7C0006DD 810 TM tabortdci. Transaction Abort Doubleword Conditional 
Immediate

X 31 0x7C00061D 809 TM tabortwc. Transaction Abort Word Conditional

X 31 0x7C00069D 809 TM tabortwci. Transaction Abort Word Conditional 
Immediate

X 31 0x7C00051D 806 TM tbegin. Transaction Begin
X 31 0x7C00059C 811 TM tcheck Transaction Check
X 31 0x7C00055C 807 TM tend. Transaction End
X 31 0x7C0007DD 880 TM trechkpt. Transaction Recheckpoint
X 31 0x7C00075D 879 TM treclaim. Transaction Reclaim
X 31 0x7C0005DC 810 TM tsr. Transaction Suspend or Resume

VX 4 0x10000401 315 V bcdadd. Decimal Add Modulo
VX 4 0x10000441 315 V bcdsub. Decimal Subtract Modulo
X 31 0x7C00000E 232 V lvebx Load Vector Element Byte Indexed
X 31 0x7C00004E 229 V lvehx Load Vector Element Halfword Indexed
X 31 0x7C00008E 229 V lvewx Load Vector Element Word Indexed
X 31 0x7C00000C 234 V lvsl Load Vector for Shift Left
X 31 0x7C00004C 234 V lvsr Load Vector for Shift Right
X 31 0x7C0000CE 230 V lvx Load Vector Indexed
X 31 0x7C0002CE 230 V lvxl Load Vector Indexed Last

VX 4 0x10000604 316 V mfvscr Move From Vector Status and Control 
Register

VX 4 0x10000644 316 V mtvscr Move To Vector Status and Control Register
X 31 0x7C00010E 232 V stvebx Store Vector Element Byte Indexed
X 31 0x7C00014E 232 V stvehx Store Vector Element Halfword Indexed
X 31 0x7C00018E 233 V stvewx Store Vector Element Word Indexed
X 31 0x7C0001CE 230 V stvx Store Vector Indexed
X 31 0x7C0003CE 233 V stvxl Store Vector Indexed Last

VX 4 0x10000140 254 V vaddcuq Vector Add & write Carry Unsigned Quadword

VX 4 0x10000180 250 V vaddcuw Vector Add and Write Carry-Out Unsigned 
Word

VA 4 0x1000003D 254 V vaddecuq Vector Add Extended & write Carry Unsigned 
Quadword

VA 4 0x1000003C 254 V vaddeuqm Vector Add Extended Unsigned Quadword 
Modulo

VX 4 0x1000000A 292 V vaddfp Vector Add Single-Precision
VX 4 0x10000300 250 V vaddsbs Vector Add Signed Byte Saturate
VX 4 0x10000340 250 V vaddshs Vector Add Signed Halfword Saturate
VX 4 0x10000380 251 V vaddsws Vector Add Signed Word Saturate
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Version 2.07 B
VX 4 0x10000000 251 V vaddubm Vector Add Unsigned Byte Modulo
VX 4 0x10000200 253 V vaddubs Vector Add Unsigned Byte Saturate
VX 4 0x100000C0 251 V vaddudm Vector Add Unsigned Doubleword Modulo
VX 4 0x10000040 251 V vadduhm Vector Add Unsigned Halfword Modulo
VX 4 0x10000240 253 V vadduhs Vector Add Unsigned Halfword Saturate
VX 4 0x10000100 254 V vadduqm Vector Add Unsigned Quadword Modulo
VX 4 0x10000080 252 V vadduwm Vector Add Unsigned Word Modulo
VX 4 0x10000280 253 V vadduws Vector Add Unsigned Word Saturate
VX 4 0x10000404 286 V vand Vector Logical AND
VX 4 0x10000444 286 V vandc Vector Logical AND with Complement
VX 4 0x10000502 274 V vavgsb Vector Average Signed Byte
VX 4 0x10000542 274 V vavgsh Vector Average Signed Halfword
VX 4 0x10000582 274 V vavgsw Vector Average Signed Word
VX 4 0x10000402 275 V vavgub Vector Average Unsigned Byte
VX 4 0x10000442 275 V vavguh Vector Average Unsigned Halfword
VX 4 0x10000482 275 V vavguw Vector Average Unsigned Word
VX 4 0x1000054C 313 V vbpermq Vector Bit Permute Quadword
VX 4 0x1000054C 313 V vbpermq Vector Bit Permute Quadword

VX 4 0x1000034A 296 V vcfsx Vector Convert From Signed Fixed-Point 
Word To Single-Precision

VX 4 0x1000030A 296 V vcfux Vector Convert From Unsigned Fixed-Point 
Word

VX 4 0x10000702 311 V vclzb Vector Count Leading Zeros Byte
VX 4 0x100007C2 311 V vclzd Vector Count Leading Zeros Doubleword
VX 4 0x10000742 311 V vclzh Vector Count Leading Zeros Halfword
VX 4 0x10000782 311 V vclzw Vector Count Leading Zeros Word
VC 4 0x100003C6 299 V vcmpbfp[.] Vector Compare Bounds Single-Precision
VC 4 0x100000C6 300 V vcmpeqfp[.] Vector Compare Equal To Single-Precision
VC 4 0x10000006 280 V vcmpequb[.] Vector Compare Equal To Unsigned Byte

VC 4 0x100000C7 281 V vcmpequd[.] Vector Compare Equal To Unsigned 
Doubleword

VC 4 0x10000046 281 V vcmpequh[.] Vector Compare Equal To Unsigned Halfword
VC 4 0x10000086 281 V vcmpequw[.] Vector Compare Equal To Unsigned Word

VC 4 0x100001C6 300 V vcmpgefp[.] Vector Compare Greater Than or Equal To 
Single-Precision

VC 4 0x100002C6 301 V vcmpgtfp[.] Vector Compare Greater Than 
Single-Precision

VC 4 0x10000306 282 V vcmpgtsb[.] Vector Compare Greater Than Signed Byte

VC 4 0x100003C7 282 V vcmpgtsd[.] Vector Compare Greater Than Signed 
Doubleword

VC 4 0x10000346 282 V vcmpgtsh[.] Vector Compare Greater Than Signed 
Halfword

VC 4 0x10000386 283 V vcmpgtsw[.] Vector Compare Greater Than Signed Word
VC 4 0x10000206 284 V vcmpgtub[.] Vector Compare Greater Than Unsigned Byte

VC 4 0x100002C7 284 V vcmpgtud[.] Vector Compare Greater Than Unsigned 
Doubleword

VC 4 0x10000246 284 V vcmpgtuh[.] Vector Compare Greater Than Unsigned 
Halfword

VC 4 0x10000286 285 V vcmpgtuw[.] Vector Compare Greater Than Unsigned 
Word

VX 4 0x100003CA 295 V vctsxs Vector Convert From Single-Precision To 
Signed Fixed-Point Word Saturate

VX 4 0x1000038A 295 V vctuxs Vector Convert From Single-Precision To 
Unsigned Fixed-Point Word Saturate

VX 4 0x10000684 286 V veqv Vector Equivalence
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Version 2.07 B
VX 4 0x1000018A 302 V vexptefp Vector 2 Raised to the Exponent Estimate 
Single-Precision

VX 4 0x1000050C 310 V vgbbd Vector Gather Bits by Byte by Doubleword
VX 4 0x100001CA 302 V vlogefp Vector Log Base 2 Estimate Single-Precision
VA 4 0x1000002E 293 V vmaddfp Vector Multiply-Add Single-Precision
VX 4 0x1000040A 294 V vmaxfp Vector Maximum Single-Precision
VX 4 0x10000102 276 V vmaxsb Vector Maximum Signed Byte
VX 4 0x100001C2 276 V vmaxsd Vector Maximum Signed Doubleword
VX 4 0x10000142 276 V vmaxsh Vector Maximum Signed Halfword
VX 4 0x10000182 276 V vmaxsw Vector Maximum Signed Word
VX 4 0x10000002 276 V vmaxub Vector Maximum Unsigned Byte
VX 4 0x100000C2 276 V vmaxud Vector Maximum Unsigned Doubleword
VX 4 0x10000042 276 V vmaxuh Vector Maximum Unsigned Halfword
VX 4 0x10000082 277 V vmaxuw Vector Maximum Unsigned Word

VA 4 0x10000020 266 V vmhaddshs Vector Multiply-High-Add Signed Halfword 
Saturate

VA 4 0x10000021 266 V vmhraddshs Vector Multiply-High-Round-Add Signed 
Halfword Saturate

VX 4 0x1000044A 294 V vminfp Vector Minimum Single-Precision
VX 4 0x10000302 278 V vminsb Vector Minimum Signed Byte
X 4 0x100003C2 278 V vminsd Vector Minimum Signed Doubleword

VX 4 0x10000342 278 V vminsh Vector Minimum Signed Halfword
VX 4 0x10000382 279 V vminsw Vector Minimum Signed Word
VX 4 0x10000202 278 V vminub Vector Minimum Unsigned Byte
VX 4 0x100002C2 278 V vminud Vector Minimum Unsigned Doubleword
VX 4 0x10000242 278 V vminuh Vector Minimum Unsigned Halfword
VX 4 0x10000282 279 V vminuw Vector Minimum Unsigned Word

VA 4 0x10000022 267 V vmladduhm Vector Multiply-Low-Add Unsigned Halfword 
Modulo

VX 4 0x1000000C 242 V vmrghb Vector Merge High Byte
VX 4 0x1000004C 242 V vmrghh Vector Merge High Halfword
VX 4 0x1000008C 243 V vmrghw Vector Merge High Word
VX 4 0x1000010C 242 V vmrglb Vector Merge Low Byte
VX 4 0x1000014C 242 V vmrglh Vector Merge Low Halfword
VX 4 0x1000018C 243 V vmrglw Vector Merge Low Word
VA 4 0x10000025 268 V vmsummbm Vector Multiply-Sum Mixed Byte Modulo
VA 4 0x10000028 268 V vmsumshm Vector Multiply-Sum Signed Halfword Modulo

VA 4 0x10000029 269 V vmsumshs Vector Multiply-Sum Signed Halfword 
Saturate

VA 4 0x10000024 267 V vmsumubm Vector Multiply-Sum Unsigned Byte Modulo

VA 4 0x10000026 269 V vmsumuhm Vector Multiply-Sum Unsigned Halfword 
Modulo

VA 4 0x10000027 270 V vmsumuhs Vector Multiply-Sum Unsigned Halfword 
Saturate

VX 4 0x10000308 262 V vmulesb Vector Multiply Even Signed Byte
VX 4 0x10000348 263 V vmulesh Vector Multiply Even Signed Halfword
VX 4 0x10000388 264 V vmulesw Vector Multiply Even Signed Word
VX 4 0x10000208 262 V vmuleub Vector Multiply Even Unsigned Byte
VX 4 0x10000248 263 V vmuleuh Vector Multiply Even Unsigned Halfword
VX 4 0x10000288 264 V vmuleuw Vector Multiply Even Unsigned Word
VX 4 0x10000108 262 V vmulosb Vector Multiply Odd Signed Byte
VX 4 0x10000148 263 V vmulosh Vector Multiply Odd Signed Halfword
VX 4 0x10000188 264 V vmulosw Vector Multiply Odd Signed Word
VX 4 0x10000008 262 V vmuloub Vector Multiply Odd Unsigned Byte
VX 4 0x10000048 263 V vmulouh Vector Multiply Odd Unsigned Halfword
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Version 2.07 B
VX 4 0x10000088 264 V vmulouw Vector Multiply Odd Unsigned Word
VX 4 0x10000089 265 V vmuluwm Vector Multiply Unsigned Word Modulo
VX 4 0x10000584 286 V vnand Vector NAND

VA 4 0x1000002F 293 V vnmsubfp Vector Negative Multiply-Subtract 
Single-Precision

VX 4 0x10000504 287 V vnor Vector Logical NOR
VX 4 0x10000484 287 V vor Vector Logical OR
VX 4 0x10000544 287 V vorc Vector OR with Complement
VA 4 0x1000002B 246 V vperm Vector Permute
VX 4 0x1000030E 235 V vpkpx Vector Pack Pixel

VX 4 0x100005CE 235 V vpksdss Vector Pack Signed Doubleword Signed 
Saturate

VX 4 0x1000054E 236 V vpksdus Vector Pack Signed Doubleword Unsigned 
Saturate

VX 4 0x1000018E 236 V vpkshss Vector Pack Signed Halfword Signed Saturate

VX 4 0x1000010E 237 V vpkshus Vector Pack Signed Halfword Unsigned 
Saturate

VX 4 0x100001CE 237 V vpkswss Vector Pack Signed Word Signed Saturate
VX 4 0x1000014E 238 V vpkswus Vector Pack Signed Word Unsigned Saturate

VX 4 0x1000044E 238 V vpkudum Vector Pack Unsigned Doubleword Unsigned 
Modulo

VX 4 0x100004CE 238 V vpkudus Vector Pack Unsigned Doubleword Unsigned 
Saturate

VX 4 0x1000000E 238 V vpkuhum Vector Pack Unsigned Halfword Unsigned 
Modulo

VX 4 0x1000008E 239 V vpkuhus Vector Pack Unsigned Halfword Unsigned 
Saturate

VX 4 0x1000004E 239 V vpkuwum Vector Pack Unsigned Word Unsigned Modulo

VX 4 0x100000CE 239 V vpkuwus Vector Pack Unsigned Word Unsigned 
Saturate

VX 4 0x10000408 307 V vpmsumb Vector Polynomial Multiply-Sum Byte
VX 4 0x100004C8 307 V vpmsumd Vector Polynomial Multiply-Sum Doubleword
VX 4 0x10000448 308 V vpmsumh Vector Polynomial Multiply-Sum Halfword
VX 4 0x10000488 308 V vpmsumw Vector Polynomial Multiply-Sum Word
VX 4 0x10000703 312 V vpopcntb Vector Population Count Byte
VX 4 0x100007C3 312 V vpopcntd Vector Population Count Doubleword
VX 4 0x10000743 312 V vpopcnth Vector Population Count Halfword
VX 4 0x10000783 312 V vpopcntw Vector Population Count Word
VX 4 0x1000010A 303 V vrefp Vector Reciprocal Estimate Single-Precision

VX 4 0x100002CA 298 V vrfim Vector Round to Single-Precision Integer 
toward -Infinity

VX 4 0x1000020A 297 V vrfin Vector Round to Single-Precision Integer 
Nearest

VX 4 0x1000028A 297 V vrfip Vector Round to Single-Precision Integer 
toward +Infinity

VX 4 0x1000024A 297 V vrfiz Vector Round to Single-Precision Integer 
toward Zero

VX 4 0x10000004 288 V vrlb Vector Rotate Left Byte
VX 4 0x100000C4 288 V vrld Vector Rotate Left Doubleword
VX 4 0x10000044 288 V vrlh Vector Rotate Left Halfword
VX 4 0x10000084 288 V vrlw Vector Rotate Left Word

VX 4 0x1000014A 303 V vrsqrtefp Vector Reciprocal Square Root Estimate 
Single-Precision

VA 4 0x1000002A 247 V vsel Vector Select
VX 4 0x100001C4 248 V vsl Vector Shift Left
VX 4 0x10000104 289 V vslb Vector Shift Left Byte
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Version 2.07 B
VX 4 0x100005C4 289 V vsld Vector Shift Left Doubleword
VA 4 0x1000002C 248 V vsldoi Vector Shift Left Double by Octet Immediate
VX 4 0x10000144 289 V vslh Vector Shift Left Halfword
VX 4 0x1000040C 248 V vslo Vector Shift Left by Octet
VX 4 0x10000184 289 V vslw Vector Shift Left Word
VX 4 0x1000020C 245 V vspltb Vector Splat Byte
VX 4 0x1000024C 245 V vsplth Vector Splat Halfword
VX 4 0x1000030C 246 V vspltisb Vector Splat Immediate Signed Byte
VX 4 0x1000034C 246 V vspltish Vector Splat Immediate Signed Halfword
VX 4 0x1000038C 246 V vspltisw Vector Splat Immediate Signed Word
VX 4 0x1000028C 245 V vspltw Vector Splat Word
VX 4 0x100002C4 249 V vsr Vector Shift Right
VX 4 0x10000304 291 V vsrab Vector Shift Right Algebraic Byte
VX 4 0x100003C4 291 V vsrad Vector Shift Right Algebraic Doubleword
VX 4 0x10000344 291 V vsrah Vector Shift Right Algebraic Halfword
VX 4 0x10000384 291 V vsraw Vector Shift Right Algebraic Word
VX 4 0x10000204 290 V vsrb Vector Shift Right Byte
VX 4 0x100006C4 290 V vsrd Vector Shift Right Doubleword
VX 4 0x10000244 290 V vsrh Vector Shift Right Halfword
VX 4 0x1000044C 249 V vsro Vector Shift Right by Octet
VX 4 0x10000284 290 V vsrw Vector Shift Right Word

VX 4 0x10000540 260 V vsubcuq Vector Subtract & write Carry Unsigned 
Quadword

VX 4 0x10000580 256 V vsubcuw Vector Subtract and Write Carry-Out Unsigned 
Word

VA 4 0x1000003F 260 V vsubecuq Vector Subtract Extended & write Carry 
Unsigned Quadword

VA 4 0x1000003E 260 V vsubeuqm Vector Subtract Extended Unsigned 
Quadword Modulo

VX 4 0x1000004A 292 V vsubfp Vector Subtract Single-Precision
VX 4 0x10000700 256 V vsubsbs Vector Subtract Signed Byte Saturate
VX 4 0x10000740 256 V vsubshs Vector Subtract Signed Halfword Saturate
VX 4 0x10000780 257 V vsubsws Vector Subtract Signed Word Saturate
VX 4 0x10000400 258 V vsububm Vector Subtract Unsigned Byte Modulo
VX 4 0x10000600 259 V vsububs Vector Subtract Unsigned Byte Saturate
VX 4 0x100004C0 258 V vsubudm Vector Subtract Unsigned Doubleword Modulo
VX 4 0x10000440 258 V vsubuhm Vector Subtract Unsigned Halfword Modulo
VX 4 0x10000640 258 V vsubuhs Vector Subtract Unsigned Halfword Saturate
VX 4 0x10000500 260 V vsubuqm Vector Subtract Unsigned Quadword Modulo
VX 4 0x10000480 258 V vsubuwm Vector Subtract Unsigned Word Modulo
VX 4 0x10000680 259 V vsubuws Vector Subtract Unsigned Word Saturate
VX 4 0x10000688 271 V vsum2sws Vector Sum across Half Signed Word Saturate

VX 4 0x10000708 272 V vsum4sbs Vector Sum across Quarter Signed Byte 
Saturate

VX 4 0x10000648 272 V vsum4shs Vector Sum across Quarter Signed Halfword 
Saturate

VX 4 0x10000608 273 V vsum4ubs Vector Sum across Quarter Unsigned Byte 
Saturate

VX 4 0x10000788 271 V vsumsws Vector Sum across Signed Word Saturate
VX 4 0x1000034E 238 V vupkhpx Vector Unpack High Pixel
VX 4 0x1000020E 241 V vupkhsb Vector Unpack High Signed Byte
VX 4 0x1000024E 241 V vupkhsh Vector Unpack High Signed Halfword
VX 4 0x1000064E 241 V vupkhsw Vector Unpack High Signed Word
VX 4 0x100003CE 240 V vupklpx Vector Unpack Low Pixel
VX 4 0x1000028E 241 V vupklsb Vector Unpack Low Signed Byte
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Version 2.07 B
VX 4 0x100002CE 241 V vupklsh Vector Unpack Low Signed Halfword
VX 4 0x100006CE 241 V vupklsw Vector Unpack Low Signed Word
VX 4 0x100004C4 287 V vxor Vector Logical XOR
VX 4 0x10000508 304 V.AES vcipher Vector AES Cipher
VX 4 0x10000509 304 V.AES vcipherlast Vector AES Cipher Last
VX 4 0x10000548 305 V.AES vncipher Vector AES Inverse Cipher
VX 4 0x10000549 305 V.AES vncipherlast Vector AES Inverse Cipher Last
VX 4 0x100005C8 305 V.AES vsbox Vector AES S-Box
VA 4 0x1000002D 309 V.RAID vpermxor Vector Permute and Exclusive-OR
VX 4 0x100006C2 306 V.SHA2 vshasigmad Vector SHA-512 Sigma Doubleword
VX 4 0x10000682 306 V.SHA2 vshasigmaw Vector SHA-256 Sigma Word
X 63 0xFC00078C 142 VSX fmrgew Floating Merge Even Word
X 63 0xFC00068C 142 VSX fmrgow Floating Merge Odd Word

XX1 31 0x7C000498 392 VSX lxsdx Load VSR Scalar Doubleword Indexed

XX1 31 0x7C000098 392 VSX lxsiwax Load VSX Scalar as Integer Word Algebraic 
Indexed

XX1 31 0x7C000018 393 VSX lxsiwzx Load VSX Scalar as Integer Word and Zero 
Indexed

XX1 31 0x7C000418 393 VSX lxsspx Load VSX Scalar Single-Precision Indexed
XX1 31 0x7C000698 394 VSX lxvd2x Load VSR Vector Doubleword*2 Indexed
XX1 31 0x7C000298 394 VSX lxvdsx Load VSR Vector Doubleword & Splat Indexed
XX1 31 0x7C000618 395 VSX lxvw4x Load VSR Vector Word*4 Indexed
XX1 31 0x7C000066 104 VSX mfvsrd Move From VSR Doubleword
XX1 31 0x7C0000E6 104 VSX mfvsrwz Move From VSR Word and Zero
XX1 31 0x7C000166 105 VSX mtvsrd Move To VSR Doubleword
XX1 31 0x7C0001A6 105 VSX mtvsrwa Move To VSR Word Algebraic
XX1 31 0x7C0001E6 106 VSX mtvsrwz Move To VSR Word and Zero
XX1 31 0x7C000598 395 VSX stxsdx Store VSR Scalar Doubleword Indexed
XX1 31 0x7C000118 393 VSX stxsiwx Store VSX Scalar as Integer Word Indexed
XX1 31 0x7C000518 393 VSX stxsspx Store VSR Scalar Word Indexed
XX1 31 0x7C000798 397 VSX stxvd2x Store VSR Vector Doubleword*2 Indexed
XX1 31 0x7C000718 397 VSX stxvw4x Store VSR Vector Word*4 Indexed
VX 4 0x1000078C 244 VSX vmrgew Vector Merge Even Word
VX 4 0x1000068C 244 VSX vmrgow Vector Merge Odd Word

XX2 60 0xF0000564 398 VSX xsabsdp VSX Scalar Absolute Value Double-Precision
XX3 60 0xF0000100 399 VSX xsadddp VSX Scalar Add Double-Precision
XX3 60 0xF0000000 404 VSX xsaddsp VSX Scalar Add Single-Precision

XX3 60 0xF0000158 406 VSX xscmpodp VSX Scalar Compare Ordered 
Double-Precision

XX3 60 0xF0000118 408 VSX xscmpudp VSX Scalar Compare Unordered 
Double-Precision

XX3 60 0xF0000580 410 VSX xscpsgndp VSX Scalar Copy Sign Double-Precision

XX2 60 0xF0000424 411 VSX xscvdpsp VSX Scalar Convert Double-Precision to 
Single-Precision

XX2 60 0xF000042C 412 VSX xscvdpspn VSX Scalar Convert Double-Precision to 
Single-Precision format Non-signalling

XX2 60 0xF0000560 421 VSX xscvdpsxds VSX Scalar Convert Double-Precision to 
Signed Fixed-Point Doubleword Saturate

XX2 60 0xF0000160 412 VSX xscvdpsxws VSX Scalar Convert Double-Precision to 
Signed Fixed-Point Word Saturate

XX2 60 0xF0000520 415 VSX xscvdpuxds VSX Scalar Convert Double-Precision to 
Unsigned Fixed-Point Doubleword Saturate

XX2 60 0xF0000120 417 VSX xscvdpuxws VSX Scalar Convert Double-Precision to 
Unsigned Fixed-Point Word Saturate

XX2 60 0xF0000524 419 VSX xscvspdp VSX Scalar Convert Single-Precision to 
Double-Precision (p=1)
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Version 2.07 B
XX2 60 0xF000052C 421 VSX xscvspdpn Scalar Convert Single-Precision to 
Double-Precision format Non-signalling

XX2 60 0xF00005E0 422 VSX xscvsxddp VSX Scalar Convert Signed Fixed-Point 
Doubleword to Double-Precision

XX2 60 0xF00004E0 422 VSX xscvsxdsp VSX Scalar Convert Signed Fixed-Point 
Doubleword to Single-Precision

XX2 60 0xF00005A0 423 VSX xscvuxddp VSX Scalar Convert Unsigned Fixed-Point 
Doubleword to Double-Precision

XX2 60 0xF00004A0 423 VSX xscvuxdsp VSX Scalar Convert Unsigned Fixed-Point 
Doubleword to Single-Precision

XX3 60 0xF00001C0 424 VSX xsdivdp VSX Scalar Divide Double-Precision
XX3 60 0xF00000C0 426 VSX xsdivsp VSX Scalar Divide Single-Precision

XX3 60 0xF0000108 428 VSX xsmaddadp VSX Scalar Multiply-Add Type-A 
Double-Precision

XX3 60 0xF0000008 431 VSX xsmaddasp VSX Scalar Multiply-Add Type-A 
Single-Precision

XX3 60 0xF0000148 428 VSX xsmaddmdp VSX Scalar Multiply-Add Type-M 
Double-Precision

XX3 60 0xF0000048 431 VSX xsmaddmsp VSX Scalar Multiply-Add Type-M 
Single-Precision

XX3 60 0xF0000500 434 VSX xsmaxdp VSX Scalar Maximum Double-Precision
XX3 60 0xF0000540 436 VSX xsmindp VSX Scalar Minimum Double-Precision

XX3 60 0xF0000188 438 VSX xsmsubadp VSX Scalar Multiply-Subtract Type-A 
Double-Precision

XX3 60 0xF0000088 441 VSX xsmsubasp VSX Scalar Multiply-Subtract Type-A 
Single-Precision

XX3 60 0xF00001C8 438 VSX xsmsubmdp VSX Scalar Multiply-Subtract Type-M 
Double-Precision

XX3 60 0xF00000C8 441 VSX xsmsubmsp VSX Scalar Multiply-Subtract Type-M 
Single-Precision

XX3 60 0xF0000180 444 VSX xsmuldp VSX Scalar Multiply Double-Precision
XX3 60 0xF0000080 446 VSX xsmulsp VSX Scalar Multiply Single-Precision

XX2 60 0xF00005A4 448 VSX xsnabsdp VSX Scalar Negative Absolute Value 
Double-Precision

XX2 60 0xF00005E4 448 VSX xsnegdp VSX Scalar Negate Double-Precision

XX3 60 0xF0000508 449 VSX xsnmaddadp VSX Scalar Negative Multiply-Add Type-A 
Double-Precision

XX3 60 0xF0000408 454 VSX xsnmaddasp VSX Scalar Negative Multiply-Add Type-A 
Single-Precision

XX3 60 0xF0000548 449 VSX xsnmaddmdp VSX Scalar Negative Multiply-Add Type-M 
Double-Precision

XX3 60 0xF0000448 454 VSX xsnmaddmsp VSX Scalar Negative Multiply-Add Type-M 
Single-Precision

XX3 60 0xF0000588 457 VSX xsnmsubadp VSX Scalar Negative Multiply-Subtract Type-A 
Double-Precision

XX3 60 0xF0000488 460 VSX xsnmsubasp VSX Scalar Negative Multiply-Subtract Type-A 
Single-Precision

XX3 60 0xF00005C8 457 VSX xsnmsubmdp VSX Scalar Negative Multiply-Subtract 
Type-M Double-Precision

XX3 60 0xF00004C8 460 VSX xsnmsubmsp VSX Scalar Negative Multiply-Subtract 
Type-M Single-Precision

XX2 60 0xF0000124 463 VSX xsrdpi VSX Scalar Round to Double-Precision 
Integer

XX2 60 0xF00001AC 464 VSX xsrdpic VSX Scalar Round to Double-Precision 
Integer using Current rounding mode

XX2 60 0xF00001E4 465 VSX xsrdpim VSX Scalar Round to Double-Precision 
Integer toward -Infinity
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Version 2.07 B
XX2 60 0xF00001A4 465 VSX xsrdpip VSX Scalar Round to Double-Precision 
Integer toward +Infinity

XX2 60 0xF0000164 466 VSX xsrdpiz VSX Scalar Round to Double-Precision 
Integer toward Zero

XX1 60 0xF0000168 467 VSX xsredp VSX Scalar Reciprocal Estimate 
Double-Precision

XX2 60 0xF0000068 468 VSX xsresp VSX Scalar Reciprocal Estimate 
Single-Precision

XX2 60 0xF0000464 469 VSX xsrsp VSX Scalar Round to Single-Precision

XX2 60 0xF0000128 470 VSX xsrsqrtedp VSX Scalar Reciprocal Square Root Estimate 
Double-Precision

XX2 60 0xF0000028 471 VSX xsrsqrtesp VSX Scalar Reciprocal Square Root Estimate 
Single-Precision

XX2 60 0xF000012C 472 VSX xssqrtdp VSX Scalar Square Root Double-Precision
XX2 60 0xF000002C 473 VSX xssqrtsp VSX Scalar Square Root Single-Precision
XX3 60 0xF0000140 474 VSX xssubdp VSX Scalar Subtract Double-Precision
XX3 60 0xF0000040 476 VSX xssubsp VSX Scalar Subtract Single-Precision

XX3 60 0xF00001E8 478 VSX xstdivdp VSX Scalar Test for software Divide 
Double-Precision

XX2 60 0xF00001A8 479 VSX xstsqrtdp VSX Scalar Test for software Square Root 
Double-Precision

XX2 60 0xF0000764 479 VSX xvabsdp VSX Vector Absolute Value Double-Precision
XX2 60 0xF0000664 480 VSX xvabssp VSX Vector Absolute Value Single-Precision
XX3 60 0xF0000300 481 VSX xvadddp VSX Vector Add Double-Precision
XX3 60 0xF0000200 485 VSX xvaddsp VSX Vector Add Single-Precision

XX3 60 0xF0000318 487 VSX xvcmpeqdp VSX Vector Compare Equal To 
Double-Precision

XX3 60 0xF0000718 487 VSX xvcmpeqdp. VSX Vector Compare Equal To 
Double-Precision & record CR6

XX3 60 0xF0000218 488 VSX xvcmpeqsp VSX Vector Compare Equal To 
Single-Precision

XX3 60 0xF0000618 488 VSX xvcmpeqsp. VSX Vector Compare Equal To 
Single-Precision & record CR6

XX3 60 0xF0000398 489 VSX xvcmpgedp VSX Vector Compare Greater Than or Equal 
To Double-Precision

XX3 60 0xF0000798 489 VSX xvcmpgedp. VSX Vector Compare Greater Than or Equal 
To Double-Precision & record CR6

XX3 60 0xF0000298 490 VSX xvcmpgesp VSX Vector Compare Greater Than or Equal 
To Single-Precision

XX3 60 0xF0000698 490 VSX xvcmpgesp. VSX Vector Compare Greater Than or Equal 
To Single-Precision & record CR6

XX3 60 0xF0000358 491 VSX xvcmpgtdp VSX Vector Compare Greater Than 
Double-Precision

XX3 60 0xF0000758 491 VSX xvcmpgtdp. VSX Vector Compare Greater Than 
Double-Precision & record CR6

XX3 60 0xF0000258 492 VSX xvcmpgtsp VSX Vector Compare Greater Than 
Single-Precision

XX3 60 0xF0000658 492 VSX xvcmpgtsp. VSX Vector Compare Greater Than 
Single-Precision & record CR6

XX3 60 0xF0000780 493 VSX xvcpsgndp VSX Vector Copy Sign Double-Precision
XX3 60 0xF0000680 493 VSX xvcpsgnsp VSX Vector Copy Sign Single-Precision

XX2 60 0xF0000624 494 VSX xvcvdpsp VSX Vector Convert Double-Precision to 
Single-Precision

XX2 60 0xF0000760 495 VSX xvcvdpsxds VSX Vector Convert Double-Precision to 
Signed Fixed-Point Doubleword Saturate

XX2 60 0xF0000360 497 VSX xvcvdpsxws VSX Vector Convert Double-Precision to 
Signed Fixed-Point Word Saturate
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Version 2.07 B
XX2 60 0xF0000720 499 VSX xvcvdpuxds VSX Vector Convert Double-Precision to 
Unsigned Fixed-Point Doubleword Saturate

XX2 60 0xF0000320 501 VSX xvcvdpuxws VSX Vector Convert Double-Precision to 
Unsigned Fixed-Point Word Saturate

XX2 60 0xF0000724 503 VSX xvcvspdp VSX Vector Convert Single-Precision to 
Double-Precision

XX2 60 0xF0000660 504 VSX xvcvspsxds VSX Vector Convert Single-Precision to 
Signed Fixed-Point Doubleword Saturate

XX2 60 0xF0000260 506 VSX xvcvspsxws VSX Vector Convert Single-Precision to 
Signed Fixed-Point Word Saturate

XX2 60 0xF0000620 508 VSX xvcvspuxds VSX Vector Convert Single-Precision to 
Unsigned Fixed-Point Doubleword Saturate

XX2 60 0xF0000220 510 VSX xvcvspuxws VSX Vector Convert Single-Precision to 
Unsigned Fixed-Point Word Saturate

XX2 60 0xF00007E0 512 VSX xvcvsxddp VSX Vector Convert Signed Fixed-Point 
Doubleword to Double-Precision

XX2 60 0xF00006E0 512 VSX xvcvsxdsp VSX Vector Convert Signed Fixed-Point 
Doubleword to Single-Precision

XX2 60 0xF00003E0 513 VSX xvcvsxwdp VSX Vector Convert Signed Fixed-Point Word 
to Double-Precision

XX2 60 0xF00002E0 513 VSX xvcvsxwsp VSX Vector Convert Signed Fixed-Point Word 
to Single-Precision

XX2 60 0xF00007A0 514 VSX xvcvuxddp VSX Vector Convert Unsigned Fixed-Point 
Doubleword to Double-Precision

XX2 60 0xF00006A0 514 VSX xvcvuxdsp VSX Vector Convert Unsigned Fixed-Point 
Doubleword to Single-Precision

XX2 60 0xF00003A0 515 VSX xvcvuxwdp VSX Vector Convert Unsigned Fixed-Point 
Word to Double-Precision

XX2 60 0xF00002A0 515 VSX xvcvuxwsp VSX Vector Convert Unsigned Fixed-Point 
Word to Single-Precision

XX3 60 0xF00003C0 516 VSX xvdivdp VSX Vector Divide Double-Precision
XX3 60 0xF00002C0 518 VSX xvdivsp VSX Vector Divide Single-Precision

XX3 60 0xF0000308 520 VSX xvmaddadp VSX Vector Multiply-Add Type-A 
Double-Precision

XX3 60 0xF0000208 520 VSX xvmaddasp VSX Vector Multiply-Add Type-A 
Single-Precision

XX3 60 0xF0000348 523 VSX xvmaddmdp VSX Vector Multiply-Add Type-M 
Double-Precision

XX3 60 0xF0000248 523 VSX xvmaddmsp VSX Vector Multiply-Add Type-M 
Single-Precision

XX3 60 0xF0000700 526 VSX xvmaxdp VSX Vector Maximum Double-Precision
XX3 60 0xF0000600 528 VSX xvmaxsp VSX Vector Maximum Single-Precision
XX3 60 0xF0000740 530 VSX xvmindp VSX Vector Minimum Double-Precision
XX3 60 0xF0000640 532 VSX xvminsp VSX Vector Minimum Single-Precision

XX3 60 0xF0000388 534 VSX xvmsubadp VSX Vector Multiply-Subtract Type-A 
Double-Precision

XX3 60 0xF0000288 534 VSX xvmsubasp VSX Vector Multiply-Subtract Type-A 
Single-Precision

XX3 60 0xF00003C8 537 VSX xvmsubmdp VSX Vector Multiply-Subtract Type-M 
Double-Precision

XX3 60 0xF00002C8 537 VSX xvmsubmsp VSX Vector Multiply-Subtract Type-M 
Single-Precision

XX3 60 0xF0000380 540 VSX xvmuldp VSX Vector Multiply Double-Precision
XX3 60 0xF0000280 542 VSX xvmulsp VSX Vector Multiply Single-Precision

XX2 60 0xF00007A4 544 VSX xvnabsdp VSX Vector Negative Absolute Value 
Double-Precision

XX2 60 0xF00006A4 544 VSX xvnabssp VSX Vector Negative Absolute Value 
Single-Precision
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Version 2.07 B
XX2 60 0xF00007E4 545 VSX xvnegdp VSX Vector Negate Double-Precision
XX2 60 0xF00006E4 545 VSX xvnegsp VSX Vector Negate Single-Precision

XX3 60 0xF0000708 546 VSX xvnmaddadp VSX Vector Negative Multiply-Add Type-A 
Double-Precision

XX3 60 0xF0000608 546 VSX xvnmaddasp VSX Vector Negative Multiply-Add Type-A 
Single-Precision

XX3 60 0xF0000748 551 VSX xvnmaddmdp VSX Vector Negative Multiply-Add Type-M 
Double-Precision

XX3 60 0xF0000648 551 VSX xvnmaddmsp VSX Vector Negative Multiply-Add Type-M 
Single-Precision

XX3 60 0xF0000788 554 VSX xvnmsubadp VSX Vector Negative Multiply-Subtract Type-A 
Double-Precision

XX3 60 0xF0000688 554 VSX xvnmsubasp VSX Vector Negative Multiply-Subtract Type-A 
Single-Precision

XX3 60 0xF00007C8 557 VSX xvnmsubmdp VSX Vector Negative Multiply-Subtract 
Type-M Double-Precision

XX3 60 0xF00006C8 557 VSX xvnmsubmsp VSX Vector Negative Multiply-Subtract 
Type-M Single-Precision

XX2 60 0xF0000324 560 VSX xvrdpi VSX Vector Round to Double-Precision 
Integer

XX2 60 0xF00003AC 560 VSX xvrdpic VSX Vector Round to Double-Precision 
Integer using Current rounding mode

XX2 60 0xF00003E4 561 VSX xvrdpim VSX Vector Round to Double-Precision 
Integer toward -Infinity

XX2 60 0xF00003A4 561 VSX xvrdpip VSX Vector Round to Double-Precision 
Integer toward +Infinity

XX2 60 0xF0000364 562 VSX xvrdpiz VSX Vector Round to Double-Precision 
Integer toward Zero

XX2 60 0xF0000368 563 VSX xvredp VSX Vector Reciprocal Estimate 
Double-Precision

XX2 60 0xF0000268 564 VSX xvresp VSX Vector Reciprocal Estimate 
Single-Precision

XX2 60 0xF0000224 565 VSX xvrspi VSX Vector Round to Single-Precision Integer

XX2 60 0xF00002AC 565 VSX xvrspic VSX Vector Round to Single-Precision Integer 
using Current rounding mode

XX2 60 0xF00002E4 566 VSX xvrspim VSX Vector Round to Single-Precision Integer 
toward -Infinity

XX2 60 0xF00002A4 566 VSX xvrspip VSX Vector Round to Single-Precision Integer 
toward +Infinity

XX2 60 0xF0000264 567 VSX xvrspiz VSX Vector Round to Single-Precision Integer 
toward Zero

XX2 60 0xF0000328 567 VSX xvrsqrtedp VSX Vector Reciprocal Square Root Estimate 
Double-Precision

XX2 60 0xF0000228 569 VSX xvrsqrtesp VSX Vector Reciprocal Square Root Estimate 
Single-Precision

XX2 60 0xF000032C 570 VSX xvsqrtdp VSX Vector Square Root Double-Precision
XX2 60 0xF000022C 571 VSX xvsqrtsp VSX Vector Square Root Single-Precision
XX3 60 0xF0000340 572 VSX xvsubdp VSX Vector Subtract Double-Precision
XX3 60 0xF0000240 574 VSX xvsubsp VSX Vector Subtract Single-Precision

XX3 60 0xF00003E8 576 VSX xvtdivdp VSX Vector Test for software Divide 
Double-Precision

XX3 60 0xF00002E8 577 VSX xvtdivsp VSX Vector Test for software Divide 
Single-Precision

XX2 60 0xF00003A8 578 VSX xvtsqrtdp VSX Vector Test for software Square Root 
Double-Precision

XX2 60 0xF00002A8 578 VSX xvtsqrtsp VSX Vector Test for software Square Root 
Single-Precision

XX3 60 0xF0000410 579 VSX xxland VSX Logical AND
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1 See the key to the mode dependency and privilege columns on page 1484 and the key to the category column in Section 1.3.5 of Book I.

XX3 60 0xF0000450 579 VSX xxlandc VSX Logical AND with Complement
XX3 60 0xF00005D0 580 VSX xxleqv VSX Logical Equivalence
XX3 60 0xF0000590 580 VSX xxlnand VSX Logical NAND
XX3 60 0xF0000510 581 VSX xxlnor VSX Logical NOR
XX3 60 0xF0000490 582 VSX xxlor VSX Logical OR
XX3 60 0xF0000550 581 VSX xxlorc VSX Logical OR with Complement
XX3 60 0xF00004D0 582 VSX xxlxor VSX Logical XOR
XX3 60 0xF0000090 583 VSX xxmrghw VSX Merge High Word
XX3 60 0xF0000190 583 VSX xxmrglw VSX Merge Low Word
XX3 60 0xF0000050 584 VSX xxpermdi VSX Permute Doubleword Immediate
XX4 60 0xF0000030 584 VSX xxsel VSX Select
XX3 60 0xF0000010 585 VSX xxsldwi VSX Shift Left Double by Word Immediate
XX2 60 0xF0000290 585 VSX xxspltw VSX Splat Word

X 31 0x7C00007C 791 WT wait Wait for Interrupt
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Appendix H.  Power ISA Instruction Set Sorted by 
Opcode

This appendix lists all the instructions in the Power ISA, sorted by opcode.
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D 2 0x08000000 82 64 tdi Trap Doubleword Immediate
D 3 0x0C000000 81 B twi Trap Word Immediate

VX 4 0x10000000 251 V vaddubm Vector Add Unsigned Byte Modulo
VX 4 0x10000002 276 V vmaxub Vector Maximum Unsigned Byte
VX 4 0x10000004 288 V vrlb Vector Rotate Left Byte
VC 4 0x10000006 280 V vcmpequb[.] Vector Compare Equal To Unsigned Byte
VX 4 0x10000008 262 V vmuloub Vector Multiply Odd Unsigned Byte
VX 4 0x1000000A 292 V vaddfp Vector Add Single-Precision
VX 4 0x1000000C 242 V vmrghb Vector Merge High Byte

VX 4 0x1000000E 238 V vpkuhum Vector Pack Unsigned Halfword Unsigned 
Modulo

X 4 0x10000010 681 LMA mulhhwu[.] Multiply High Halfword to Word Unsigned

XO 4 0x10000018 678 LMA machhwu[.] Multiply Accumulate High Halfword to Word 
Modulo Unsigned

VA 4 0x10000020 266 V vmhaddshs Vector Multiply-High-Add Signed Halfword 
Saturate

VA 4 0x10000021 266 V vmhraddshs Vector Multiply-High-Round-Add Signed 
Halfword Saturate

VA 4 0x10000022 267 V vmladduhm Vector Multiply-Low-Add Unsigned Halfword 
Modulo

VA 4 0x10000024 267 V vmsumubm Vector Multiply-Sum Unsigned Byte Modulo
VA 4 0x10000025 268 V vmsummbm Vector Multiply-Sum Mixed Byte Modulo

VA 4 0x10000026 269 V vmsumuhm Vector Multiply-Sum Unsigned Halfword 
Modulo

VA 4 0x10000027 270 V vmsumuhs Vector Multiply-Sum Unsigned Halfword 
Saturate

VA 4 0x10000028 268 V vmsumshm Vector Multiply-Sum Signed Halfword Modulo

VA 4 0x10000029 269 V vmsumshs Vector Multiply-Sum Signed Halfword 
Saturate

VA 4 0x1000002A 247 V vsel Vector Select
VA 4 0x1000002B 246 V vperm Vector Permute
VA 4 0x1000002C 248 V vsldoi Vector Shift Left Double by Octet Immediate
VA 4 0x1000002D 309 V.RAID vpermxor Vector Permute and Exclusive-OR
VA 4 0x1000002E 293 V vmaddfp Vector Multiply-Add Single-Precision

VA 4 0x1000002F 293 V vnmsubfp Vector Negative Multiply-Subtract 
Single-Precision

VA 4 0x1000003C 254 V vaddeuqm Vector Add Extended Unsigned Quadword 
Modulo

VA 4 0x1000003D 254 V vaddecuq Vector Add Extended & write Carry Unsigned 
Quadword

VA 4 0x1000003E 260 V vsubeuqm Vector Subtract Extended Unsigned 
Quadword Modulo
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VA 4 0x1000003F 260 V vsubecuq Vector Subtract Extended & write Carry 
Unsigned Quadword

VX 4 0x10000040 251 V vadduhm Vector Add Unsigned Halfword Modulo
VX 4 0x10000042 276 V vmaxuh Vector Maximum Unsigned Halfword
VX 4 0x10000044 288 V vrlh Vector Rotate Left Halfword
VC 4 0x10000046 281 V vcmpequh[.] Vector Compare Equal To Unsigned Halfword
VX 4 0x10000048 263 V vmulouh Vector Multiply Odd Unsigned Halfword
VX 4 0x1000004A 292 V vsubfp Vector Subtract Single-Precision
VX 4 0x1000004C 242 V vmrghh Vector Merge High Halfword
VX 4 0x1000004E 239 V vpkuwum Vector Pack Unsigned Word Unsigned Modulo
X 4 0x10000050 681 LMA mulhhw[.] Multiply High Halfword to Word Signed

XO 4 0x10000058 677 LMA machhw[.] Multiply Accumulate High Halfword to Word 
Modulo Signed

XO 4 0x1000005C 683 LMA nmachhw[.] Negative Multiply Accumulate High Halfword 
to Word Modulo Signed

VX 4 0x10000080 252 V vadduwm Vector Add Unsigned Word Modulo
VX 4 0x10000082 277 V vmaxuw Vector Maximum Unsigned Word
VX 4 0x10000084 288 V vrlw Vector Rotate Left Word
VC 4 0x10000086 281 V vcmpequw[.] Vector Compare Equal To Unsigned Word
VX 4 0x10000088 264 V vmulouw Vector Multiply Odd Unsigned Word
VX 4 0x10000089 265 V vmuluwm Vector Multiply Unsigned Word Modulo
VX 4 0x1000008C 243 V vmrghw Vector Merge High Word

VX 4 0x1000008E 239 V vpkuhus Vector Pack Unsigned Halfword Unsigned 
Saturate

XO 4 0x10000098 678 LMA machhwsu[.] Multiply Accumulate High Halfword to Word 
Saturate Unsigned

VX 4 0x100000C0 251 V vaddudm Vector Add Unsigned Doubleword Modulo
VX 4 0x100000C2 276 V vmaxud Vector Maximum Unsigned Doubleword
VX 4 0x100000C4 288 V vrld Vector Rotate Left Doubleword
VC 4 0x100000C6 300 V vcmpeqfp[.] Vector Compare Equal To Single-Precision

VC 4 0x100000C7 281 V vcmpequd[.] Vector Compare Equal To Unsigned 
Doubleword

VX 4 0x100000CE 239 V vpkuwus Vector Pack Unsigned Word Unsigned 
Saturate

XO 4 0x100000D8 677 LMA machhws[.] Multiply Accumulate High Halfword to Word 
Saturate Signed

XO 4 0x100000DC 683 LMA nmachhws[.] Negative Multiply Accumulate High Halfword 
to Word Saturate Signed

VX 4 0x10000100 254 V vadduqm Vector Add Unsigned Quadword Modulo
VX 4 0x10000102 276 V vmaxsb Vector Maximum Signed Byte
VX 4 0x10000104 289 V vslb Vector Shift Left Byte
VX 4 0x10000108 262 V vmulosb Vector Multiply Odd Signed Byte
VX 4 0x1000010A 303 V vrefp Vector Reciprocal Estimate Single-Precision
VX 4 0x1000010C 242 V vmrglb Vector Merge Low Byte

VX 4 0x1000010E 237 V vpkshus Vector Pack Signed Halfword Unsigned 
Saturate

X 4 0x10000110 680 LMA mulchwu[.] Multiply Cross Halfword to Word Unsigned

XO 4 0x10000118 676 LMA macchwu[.] Multiply Accumulate Cross Halfword to Word 
Modulo Unsigned

VX 4 0x10000140 254 V vaddcuq Vector Add & write Carry Unsigned Quadword
VX 4 0x10000142 276 V vmaxsh Vector Maximum Signed Halfword
VX 4 0x10000144 289 V vslh Vector Shift Left Halfword
VX 4 0x10000148 263 V vmulosh Vector Multiply Odd Signed Halfword

VX 4 0x1000014A 303 V vrsqrtefp Vector Reciprocal Square Root Estimate 
Single-Precision

VX 4 0x1000014C 242 V vmrglh Vector Merge Low Halfword
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VX 4 0x1000014E 238 V vpkswus Vector Pack Signed Word Unsigned Saturate
X 4 0x10000150 680 LMA mulchw[.] Multiply Cross Halfword to Word Signed

XO 4 0x10000158 675 LMA macchw[.] Multiply Accumulate Cross Halfword to Word 
Modulo Signed

XO 4 0x1000015C 682 LMA nmacchw[.] Negative Multiply Accumulate Cross Halfword 
to Word Modulo Signed

VX 4 0x10000180 250 V vaddcuw Vector Add and Write Carry-Out Unsigned 
Word

VX 4 0x10000182 276 V vmaxsw Vector Maximum Signed Word
VX 4 0x10000184 289 V vslw Vector Shift Left Word
VX 4 0x10000188 264 V vmulosw Vector Multiply Odd Signed Word

VX 4 0x1000018A 302 V vexptefp Vector 2 Raised to the Exponent Estimate 
Single-Precision

VX 4 0x1000018C 243 V vmrglw Vector Merge Low Word
VX 4 0x1000018E 236 V vpkshss Vector Pack Signed Halfword Signed Saturate

XO 4 0x10000198 676 LMA macchwsu[.] Multiply Accumulate Cross Halfword to Word 
Saturate Unsigned

VX 4 0x100001C2 276 V vmaxsd Vector Maximum Signed Doubleword
VX 4 0x100001C4 248 V vsl Vector Shift Left

VC 4 0x100001C6 300 V vcmpgefp[.] Vector Compare Greater Than or Equal To 
Single-Precision

VX 4 0x100001CA 302 V vlogefp Vector Log Base 2 Estimate Single-Precision
VX 4 0x100001CE 237 V vpkswss Vector Pack Signed Word Signed Saturate

XO 4 0x100001D8 675 LMA macchws[.] Multiply Accumulate Cross Halfword to Word 
Saturate Signed

XO 4 0x100001DC 682 LMA nmacchws[.] Negative Multiply Accumulate Cross Halfword 
to Word Saturate Signed

EVX 4 0x10000200 595 SP evaddw Vector Add Word
VX 4 0x10000200 253 V vaddubs Vector Add Unsigned Byte Saturate

EVX 4 0x10000202 594 SP evaddiw Vector Add Immediate Word
VX 4 0x10000202 278 V vminub Vector Minimum Unsigned Byte

EVX 4 0x10000204 639 SP evsubfw Vector Subtract from Word
VX 4 0x10000204 290 V vsrb Vector Shift Right Byte

EVX 4 0x10000206 639 SP evsubifw Vector Subtract Immediate from Word
VC 4 0x10000206 284 V vcmpgtub[.] Vector Compare Greater Than Unsigned Byte

EVX 4 0x10000208 594 SP evabs Vector Absolute Value
VX 4 0x10000208 262 V vmuleub Vector Multiply Even Unsigned Byte

EVX 4 0x10000209 631 SP evneg Vector Negate
EVX 4 0x1000020A 599 SP evextsb Vector Extend Sign Byte

VX 4 0x1000020A 297 V vrfin Vector Round to Single-Precision Integer 
Nearest

EVX 4 0x1000020B 599 SP evextsh Vector Extend Sign Half Word
EVX 4 0x1000020C 633 SP evrndw Vector Round Word
VX 4 0x1000020C 245 V vspltb Vector Splat Byte

EVX 4 0x1000020D 598 SP evcntlzw Vector Count Leading Zeros Word
EVX 4 0x1000020E 598 SP evcntlsw Vector Count Leading Signed Bits Word
VX 4 0x1000020E 241 V vupkhsb Vector Unpack High Signed Byte

EVX 4 0x1000020F 594 SP brinc Bit Reversed Increment
EVX 4 0x10000211 596 SP evand Vector AND
EVX 4 0x10000212 596 SP evandc Vector AND with Complement
EVX 4 0x10000216 639 SP evxor Vector XOR
EVX 4 0x10000217 632 SP evor Vector OR
EVX 4 0x10000218 631 SP evnor Vector NOR
EVX 4 0x10000219 599 SP eveqv Vector Equivalent
EVX 4 0x1000021B 632 SP evorc Vector OR with Complement
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EVX 4 0x1000021E 631 SP evnand Vector NAND
EVX 4 0x10000220 635 SP evsrwu Vector Shift Right Word Unsigned
EVX 4 0x10000221 635 SP evsrws Vector Shift Right Word Signed
EVX 4 0x10000222 634 SP evsrwiu Vector Shift Right Word Immediate Unsigned
EVX 4 0x10000223 634 SP evsrwis Vector Shift Right Word Immediate Signed
EVX 4 0x10000224 634 SP evslw Vector Shift Left Word
EVX 4 0x10000226 634 SP evslwi Vector Shift Left Word Immediate
EVX 4 0x10000228 632 SP evrlw Vector Rotate Left Word
EVX 4 0x10000229 634 SP evsplati Vector Splat Immediate
EVX 4 0x1000022A 633 SP evrlwi Vector Rotate Left Word Immediate
EVX 4 0x1000022B 634 SP evsplatfi Vector Splat Fractional Immediate
EVX 4 0x1000022C 605 SP evmergehi Vector Merge High
EVX 4 0x1000022D 605 SP evmergelo Vector Merge Low
EVX 4 0x1000022E 606 SP evmergehilo Vector Merge High/Low
EVX 4 0x1000022F 606 SP evmergelohi Vector Merge Low/High
EVX 4 0x10000230 597 SP evcmpgtu Vector Compare Greater Than Unsigned
EVX 4 0x10000231 596 SP evcmpgts Vector Compare Greater Than Signed
EVX 4 0x10000232 597 SP evcmpltu Vector Compare Less Than Unsigned
EVX 4 0x10000233 597 SP evcmplts Vector Compare Less Than Signed
EVX 4 0x10000234 596 SP evcmpeq Vector Compare Equal
VX 4 0x10000240 253 V vadduhs Vector Add Unsigned Halfword Saturate
VX 4 0x10000242 278 V vminuh Vector Minimum Unsigned Halfword
VX 4 0x10000244 290 V vsrh Vector Shift Right Halfword

VC 4 0x10000246 284 V vcmpgtuh[.] Vector Compare Greater Than Unsigned 
Halfword

VX 4 0x10000248 263 V vmuleuh Vector Multiply Even Unsigned Halfword

VX 4 0x1000024A 297 V vrfiz Vector Round to Single-Precision Integer 
toward Zero

VX 4 0x1000024C 245 V vsplth Vector Splat Halfword
VX 4 0x1000024E 241 V vupkhsh Vector Unpack High Signed Halfword

EVS 4 0x10000278 633 SP evsel Vector Select
EVX 4 0x10000280 646 SP.FV evfsadd Vector Floating-Point Add
VX 4 0x10000280 253 V vadduws Vector Add Unsigned Word Saturate

EVX 4 0x10000281 646 SP.FV evfssub Vector Floating-Point Subtract
VX 4 0x10000282 279 V vminuw Vector Minimum Unsigned Word

EVX 4 0x10000284 645 SP.FV evfsabs Vector Floating-Point Absolute Value
VX 4 0x10000284 290 V vsrw Vector Shift Right Word

EVX 4 0x10000285 645 SP.FV evfsnabs Vector Floating-Point Negative Absolute Value
EVX 4 0x10000286 645 SP.FV evfsneg Vector Floating-Point Negate

VC 4 0x10000286 285 V vcmpgtuw[.] Vector Compare Greater Than Unsigned 
Word

EVX 4 0x10000288 646 SP.FV evfsmul Vector Floating-Point Multiply
VX 4 0x10000288 264 V vmuleuw Vector Multiply Even Unsigned Word

EVX 4 0x10000289 646 SP.FV evfsdiv Vector Floating-Point Divide

VX 4 0x1000028A 297 V vrfip Vector Round to Single-Precision Integer 
toward +Infinity

EVX 4 0x1000028C 647 SP.FV evfscmpgt Vector Floating-Point Compare Greater Than
VX 4 0x1000028C 245 V vspltw Vector Splat Word

EVX 4 0x1000028D 647 SP.FV evfscmplt Vector Floating-Point Compare Less Than
EVX 4 0x1000028E 648 SP.FV evfscmpeq Vector Floating-Point Compare Equal
VX 4 0x1000028E 241 V vupklsb Vector Unpack Low Signed Byte

EVX 4 0x10000290 650 SP.FV evfscfui Vector Convert Floating-Point from Unsigned 
Integer

EVX 4 0x10000291 650 SP.FV evfscfsi Vector Convert Floating-Point from Signed 
Integer
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EVX 4 0x10000292 650 SP.FV evfscfuf Vector Convert Floating-Point from Unsigned 
Fraction

EVX 4 0x10000293 650 SP.FV evfscfsf Vector Convert Floating-Point from Signed 
Fraction

EVX 4 0x10000294 651 SP.FV evfsctui Vector Convert Floating-Point to Unsigned 
Integer

EVX 4 0x10000295 651 SP.FV evfsctsi Vector Convert Floating-Point to Signed 
Integer

EVX 4 0x10000296 652 SP.FV evfsctuf Vector Convert Floating-Point to Unsigned 
Fraction

EVX 4 0x10000297 652 SP.FV evfsctsf Vector Convert Floating-Point to Signed 
Fraction

EVX 4 0x10000298 651 SP.FV evfsctuiz Vector Convert Floating-Point to Unsigned 
Integer with Round toward Zero

EVX 4 0x1000029A 651 SP.FV evfsctsiz Vector Convert Floating-Point to Signed 
Integer with Round toward Zero

EVX 4 0x1000029C 648 SP.FV evfststgt Vector Floating-Point Test Greater Than
EVX 4 0x1000029D 649 SP.FV evfststlt Vector Floating-Point Test Less Than
EVX 4 0x1000029E 649 SP.FV evfststeq Vector Floating-Point Test Equal
EVX 4 0x100002C0 654 SP.FS efsadd Floating-Point Add
EVX 4 0x100002C1 654 SP.FS efssub Floating-Point Subtract
VX 4 0x100002C2 278 V vminud Vector Minimum Unsigned Doubleword

EVX 4 0x100002C4 653 SP.FS efsabs Floating-Point Absolute Value
VX 4 0x100002C4 249 V vsr Vector Shift Right

EVX 4 0x100002C5 653 SP.FS efsnabs Floating-Point Negative Absolute Value
EVX 4 0x100002C6 653 SP.FS efsneg Floating-Point Negate

VC 4 0x100002C6 301 V vcmpgtfp[.] Vector Compare Greater Than 
Single-Precision

VC 4 0x100002C7 284 V vcmpgtud[.] Vector Compare Greater Than Unsigned 
Doubleword

EVX 4 0x100002C8 654 SP.FS efsmul Floating-Point Multiply
EVX 4 0x100002C9 654 SP.FS efsdiv Floating-Point Divide

VX 4 0x100002CA 298 V vrfim Vector Round to Single-Precision Integer 
toward -Infinity

EVX 4 0x100002CC 655 SP.FS efscmpgt Floating-Point Compare Greater Than
EVX 4 0x100002CD 655 SP.FS efscmplt Floating-Point Compare Less Than
EVX 4 0x100002CE 656 SP.FS efscmpeq Floating-Point Compare Equal
VX 4 0x100002CE 241 V vupklsh Vector Unpack Low Signed Halfword

EVX 4 0x100002CF 667 SP.FD efscfd Floating-Point Single-Precision Convert from 
Double-Precision

EVX 4 0x100002D0 658 SP.FS efscfui Convert Floating-Point from Unsigned Integer
EVX 4 0x100002D1 658 SP.FS efscfsi Convert Floating-Point from Signed Integer

EVX 4 0x100002D2 658 SP.FS efscfuf Convert Floating-Point from Unsigned 
Fraction

EVX 4 0x100002D3 658 SP.FS efscfsf Convert Floating-Point from Signed Fraction
EVX 4 0x100002D4 658 SP.FS efsctui Convert Floating-Point to Unsigned Integer
EVX 4 0x100002D5 658 SP.FS efsctsi Convert Floating-Point to Signed Integer
EVX 4 0x100002D6 659 SP.FS efsctuf Convert Floating-Point to Unsigned Fraction
EVX 4 0x100002D7 659 SP.FS efsctsf Convert Floating-Point to Signed Fraction

EVX 4 0x100002D8 659 SP.FS efsctuiz Convert Floating-Point to Unsigned Integer 
with Round toward Zero

EVX 4 0x100002DA 659 SP.FS efsctsiz Convert Floating-Point to Signed Integer with 
Round toward Zero

EVX 4 0x100002DC 656 SP.FS efststgt Floating-Point Test Greater Than
EVX 4 0x100002DD 657 SP.FS efststlt Floating-Point Test Less Than
EVX 4 0x100002DE 657 SP.FS efststeq Floating-Point Test Equal
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EVX 4 0x100002E0 661 SP.FD efdadd Floating-Point Double-Precision Add
EVX 4 0x100002E1 661 SP.FD efdsub Floating-Point Double-Precision Subtract

EVX 4 0x100002E2 664 SP.FD efdcfuid Convert Floating-Point Double-Precision from 
Unsigned Integer Doubleword

EVX 4 0x100002E3 664 SP.FD efdcfsid Convert Floating-Point Double-Precision from 
Signed Integer Doubleword

EVX 4 0x100002E4 660 SP.FD efdabs Floating-Point Double-Precision Absolute 
Value

EVX 4 0x100002E5 660 SP.FD efdnabs Floating-Point Double-Precision Negative 
Absolute Value

EVX 4 0x100002E6 660 SP.FD efdneg Floating-Point Double-Precision Negate
EVX 4 0x100002E8 661 SP.FD efdmul Floating-Point Double-Precision Multiply
EVX 4 0x100002E9 661 SP.FD efddiv Floating-Point Double-Precision Divide

EVX 4 0x100002EA 665 SP.FD efdctuidz
Convert Floating-Point Double-Precision to 

Unsigned Integer Doubleword with Round 
toward Zero

EVX 4 0x100002EB 665 SP.FD efdctsidz
Convert Floating-Point Double-Precision to 

Signed Integer Doubleword with Round 
toward Zero

EVX 4 0x100002EC 662 SP.FD efdcmpgt Floating-Point Double-Precision Compare 
Greater Than

EVX 4 0x100002ED 662 SP.FD efdcmplt Floating-Point Double-Precision Compare 
Less Than

EVX 4 0x100002EE 662 SP.FD efdcmpeq Floating-Point Double-Precision Compare 
Equal

EVX 4 0x100002EF 666 SP.FD efdcfs Floating-Point Double-Precision Convert from 
Single-Precision

EVX 4 0x100002F0 663 SP.FD efdcfui Convert Floating-Point Double-Precision from 
Unsigned Integer

EVX 4 0x100002F1 663 SP.FD efdcfsi Convert Floating-Point Double-Precision from 
Signed Integer

EVX 4 0x100002F2 664 SP.FD efdcfuf Convert Floating-Point Double-Precision from 
Unsigned Fraction

EVX 4 0x100002F3 664 SP.FD efdcfsf Convert Floating-Point Double-Precision from 
Signed Fraction

EVX 4 0x100002F4 664 SP.FD efdctui Convert Floating-Point Double-Precision to 
Unsigned Integer

EVX 4 0x100002F5 664 SP.FD efdctsi Convert Floating-Point Double-Precision to 
Signed Integer

EVX 4 0x100002F6 666 SP.FD efdctuf Convert Floating-Point Double-Precision to 
Unsigned Fraction

EVX 4 0x100002F7 666 SP.FD efdctsf Convert Floating-Point Double-Precision to 
Signed Fraction

EVX 4 0x100002F8 666 SP.FD efdctuiz Convert Floating-Point Double-Precision to 
Unsigned Integer with Round toward Zero

EVX 4 0x100002FA 666 SP.FD efdctsiz Convert Floating-Point Double-Precision to 
Signed Integer with Round toward Zero

EVX 4 0x100002FC 662 SP.FD efdtstgt Floating-Point Double-Precision Test Greater 
Than

EVX 4 0x100002FD 663 SP.FD efdtstlt Floating-Point Double-Precision Test Less 
Than

EVX 4 0x100002FE 663 SP.FD efdtsteq Floating-Point Double-Precision Test Equal

EVX 4 0x10000300 600 SP evlddx Vector Load Double Word into Double Word 
Indexed

VX 4 0x10000300 250 V vaddsbs Vector Add Signed Byte Saturate
EVX 4 0x10000301 600 SP evldd Vector Load Double Word into Double Word
EVX 4 0x10000302 601 SP evldwx Vector Load Double into Two Words Indexed
VX 4 0x10000302 278 V vminsb Vector Minimum Signed Byte
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EVX 4 0x10000303 601 SP evldw Vector Load Double into Two Words

EVX 4 0x10000304 600 SP evldhx Vector Load Double into Four Half Words 
Indexed

VX 4 0x10000304 291 V vsrab Vector Shift Right Algebraic Byte
EVX 4 0x10000305 600 SP evldh Vector Load Double into Four Half Words
VC 4 0x10000306 282 V vcmpgtsb[.] Vector Compare Greater Than Signed Byte

EVX 4 0x10000308 601 SP evlhhesplatx Vector Load Half Word into Half Words Even 
and Splat Indexed

VX 4 0x10000308 262 V vmulesb Vector Multiply Even Signed Byte

EVX 4 0x10000309 601 SP evlhhesplat Vector Load Half Word into Half Words Even 
and Splat

VX 4 0x1000030A 296 V vcfux Vector Convert From Unsigned Fixed-Point 
Word

EVX 4 0x1000030C 602 SP evlhhousplatx Vector Load Half Word into Half Word Odd 
Unsigned and Splat Indexed

VX 4 0x1000030C 246 V vspltisb Vector Splat Immediate Signed Byte

EVX 4 0x1000030D 602 SP evlhhousplat Vector Load Half Word into Half Word Odd 
Unsigned and Splat

EVX 4 0x1000030E 602 SP evlhhossplatx Vector Load Half Word into Half Word Odd 
Signed and Splat Indexed

VX 4 0x1000030E 235 V vpkpx Vector Pack Pixel

EVX 4 0x1000030F 602 SP evlhhossplat Vector Load Half Word into Half Word Odd 
Signed and Splat

EVX 4 0x10000310 603 SP evlwhex Vector Load Word into Two Half Words Even 
Indexed

X 4 0x10000310 681 LMA mullhwu[.] Multiply Low Halfword to Word Unsigned
EVX 4 0x10000311 603 SP evlwhe Vector Load Word into Two Half Words Even

EVX 4 0x10000314 604 SP evlwhoux Vector Load Word into Two Half Words Odd 
Unsigned Indexed (zero-extended)

EVX 4 0x10000315 604 SP evlwhou Vector Load Word into Two Half Words Odd 
Unsigned (zero-extended)

EVX 4 0x10000316 603 SP evlwhosx Vector Load Word into Two Half Words Odd 
Signed Indexed (with sign extension)

EVX 4 0x10000317 603 SP evlwhos Vector Load Word into Two Half Words Odd 
Signed (with sign extension)

EVX 4 0x10000318 605 SP evlwwsplatx Vector Load Word into Word and Splat 
Indexed

XO 4 0x10000318 680 LMA maclhwu[.] Multiply Accumulate Low Halfword to Word 
Modulo Unsigned

EVX 4 0x10000319 605 SP evlwwsplat Vector Load Word into Word and Splat

EVX 4 0x1000031C 604 SP evlwhsplatx Vector Load Word into Two Half Words and 
Splat Indexed

EVX 4 0x1000031D 604 SP evlwhsplat Vector Load Word into Two Half Words and 
Splat

EVX 4 0x10000320 635 SP evstddx Vector Store Double of Double Indexed
EVX 4 0x10000321 635 SP evstdd Vector Store Double of Double
EVX 4 0x10000322 636 SP evstdwx Vector Store Double of Two Words Indexed
EVX 4 0x10000323 636 SP evstdw Vector Store Double of Two Words

EVX 4 0x10000324 636 SP evstdhx Vector Store Double of Four Half Words 
Indexed

EVX 4 0x10000325 636 SP evstdh Vector Store Double of Four Half Words

EVX 4 0x10000330 637 SP evstwhex Vector Store Word of Two Half Words from 
Even Indexed

EVX 4 0x10000331 637 SP evstwhe Vector Store Word of Two Half Words from 
Even

EVX 4 0x10000334 637 SP evstwhox Vector Store Word of Two Half Words from 
Odd Indexed
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Version 2.07 B
EVX 4 0x10000335 637 SP evstwho Vector Store Word of Two Half Words from 
Odd

EVX 4 0x10000338 637 SP evstwwex Vector Store Word of Word from Even Indexed
EVX 4 0x10000339 637 SP evstwwe Vector Store Word of Word from Even
EVX 4 0x1000033C 638 SP evstwwox Vector Store Word of Word from Odd Indexed
EVX 4 0x1000033D 638 SP evstwwo Vector Store Word of Word from Odd
VX 4 0x10000340 250 V vaddshs Vector Add Signed Halfword Saturate
VX 4 0x10000342 278 V vminsh Vector Minimum Signed Halfword
VX 4 0x10000344 291 V vsrah Vector Shift Right Algebraic Halfword

VC 4 0x10000346 282 V vcmpgtsh[.] Vector Compare Greater Than Signed 
Halfword

VX 4 0x10000348 263 V vmulesh Vector Multiply Even Signed Halfword

VX 4 0x1000034A 296 V vcfsx Vector Convert From Signed Fixed-Point 
Word To Single-Precision

VX 4 0x1000034C 246 V vspltish Vector Splat Immediate Signed Halfword
VX 4 0x1000034E 238 V vupkhpx Vector Unpack High Pixel
X 4 0x10000350 681 LMA mullhw[.] Multiply Low Halfword to Word Signed

XO 4 0x10000358 679 LMA maclhw[.] Multiply Accumulate Low Halfword to Word 
Modulo Signed

XO 4 0x1000035C 684 LMA nmaclhw[.] Negative Multiply Accumulate Low Halfword to 
Word Modulo Signed

VX 4 0x10000380 251 V vaddsws Vector Add Signed Word Saturate
VX 4 0x10000382 279 V vminsw Vector Minimum Signed Word
VX 4 0x10000384 291 V vsraw Vector Shift Right Algebraic Word
VC 4 0x10000386 283 V vcmpgtsw[.] Vector Compare Greater Than Signed Word
VX 4 0x10000388 264 V vmulesw Vector Multiply Even Signed Word

VX 4 0x1000038A 295 V vctuxs Vector Convert From Single-Precision To 
Unsigned Fixed-Point Word Saturate

VX 4 0x1000038C 246 V vspltisw Vector Splat Immediate Signed Word

XO 4 0x10000398 680 LMA maclhwsu[.] Multiply Accumulate Low Halfword to Word 
Saturate Unsigned

X 4 0x100003C2 278 V vminsd Vector Minimum Signed Doubleword
VX 4 0x100003C4 291 V vsrad Vector Shift Right Algebraic Doubleword
VC 4 0x100003C6 299 V vcmpbfp[.] Vector Compare Bounds Single-Precision

VC 4 0x100003C7 282 V vcmpgtsd[.] Vector Compare Greater Than Signed 
Doubleword

VX 4 0x100003CA 295 V vctsxs Vector Convert From Single-Precision To 
Signed Fixed-Point Word Saturate

VX 4 0x100003CE 240 V vupklpx Vector Unpack Low Pixel

XO 4 0x100003D8 679 LMA maclhws[.] Multiply Accumulate Low Halfword to Word 
Saturate Signed

XO 4 0x100003DC 684 LMA nmaclhws[.] Negative Multiply Accumulate Low Halfword to 
Word Saturate Signed

VX 4 0x10000400 258 V vsububm Vector Subtract Unsigned Byte Modulo
VX 4 0x10000402 275 V vavgub Vector Average Unsigned Byte

EVX 4 0x10000403 610 SP evmhessf Vector Multiply Half Words, Even, Signed, 
Saturate, Fractional

VX 4 0x10000404 286 V vand Vector Logical AND

EVX 4 0x10000407 619 SP evmhossf Vector Multiply Half Words, Odd, Signed, 
Saturate, Fractional

EVX 4 0x10000408 613 SP evmheumi Vector Multiply Half Words, Even, Unsigned, 
Modulo, Integer

VX 4 0x10000408 307 V vpmsumb Vector Polynomial Multiply-Sum Byte

EVX 4 0x10000409 609 SP evmhesmi Vector Multiply Half Words, Even, Signed, 
Modulo, Integer

VX 4 0x1000040A 294 V vmaxfp Vector Maximum Single-Precision
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Version 2.07 B
EVX 4 0x1000040B 608 SP evmhesmf Vector Multiply Half Words, Even, Signed, 
Modulo, Fractional

EVX 4 0x1000040C 621 SP evmhoumi Vector Multiply Half Words, Odd, Unsigned, 
Modulo, Integer

VX 4 0x1000040C 248 V vslo Vector Shift Left by Octet

EVX 4 0x1000040D 617 SP evmhosmi Vector Multiply Half Words, Odd, Signed, 
Modulo, Integer

EVX 4 0x1000040F 616 SP evmhosmf Vector Multiply Half Words, Odd, Signed, 
Modulo, Fractional

XO 4 0x10000418 678 LMA machhwuo[.] Multiply Accumulate High Halfword to Word 
Modulo Unsigned & record OV

EVX 4 0x10000423 610 SP evmhessfa Vector Multiply Half Words, Even, Signed, 
Saturate, Fractional to Accumulator

EVX 4 0x10000427 619 SP evmhossfa Vector Multiply Half Words, Odd, Signed, 
Saturate, Fractional to Accumulator

EVX 4 0x10000428 613 SP evmheumia Vector Multiply Half Words, Even, Unsigned, 
Modulo, Integer to Accumulator

EVX 4 0x10000429 609 SP evmhesmia Vector Multiply Half Words, Even, Signed, 
Modulo, Integer to Accumulator

EVX 4 0x1000042B 608 SP evmhesmfa Vector Multiply Half Words, Even, Signed, 
Modulo, Fractional to Accumulator

EVX 4 0x1000042C 621 SP evmhoumia Vector Multiply Half Words, Odd, Unsigned, 
Modulo, Integer to Accumulator

EVX 4 0x1000042D 617 SP evmhosmia Vector Multiply Half Words, Odd, Signed, 
Modulo, Integer to Accumulator

EVX 4 0x1000042F 616 SP evmhosmfa Vector Multiply Half Words, Odd, Signed, 
Modulo, Fractional to Accumulator

VX 4 0x10000440 258 V vsubuhm Vector Subtract Unsigned Halfword Modulo
VX 4 0x10000442 275 V vavguh Vector Average Unsigned Halfword
VX 4 0x10000444 286 V vandc Vector Logical AND with Complement

EVX 4 0x10000447 624 SP evmwhssf Vector Multiply Word High Signed, Saturate, 
Fractional

EVX 4 0x10000448 626 SP evmwlumi Vector Multiply Word Low Unsigned, Modulo, 
Integer

VX 4 0x10000448 308 V vpmsumh Vector Polynomial Multiply-Sum Halfword
VX 4 0x1000044A 294 V vminfp Vector Minimum Single-Precision

EVX 4 0x1000044C 624 SP evmwhumi Vector Multiply Word High Unsigned, Modulo, 
Integer

VX 4 0x1000044C 249 V vsro Vector Shift Right by Octet

EVX 4 0x1000044D 623 SP evmwhsmi Vector Multiply Word High Signed, Modulo, 
Integer

VX 4 0x1000044E 238 V vpkudum Vector Pack Unsigned Doubleword Unsigned 
Modulo

EVX 4 0x1000044F 623 SP evmwhsmf Vector Multiply Word High Signed, Modulo, 
Fractional

EVX 4 0x10000453 629 SP evmwssf Vector Multiply Word Signed, Saturate, 
Fractional

EVX 4 0x10000458 630 SP evmwumi Vector Multiply Word Unsigned, Modulo, 
Integer

XO 4 0x10000458 677 LMA machhwo[.] Multiply Accumulate High Halfword to Word 
Modulo Signed & record OV

EVX 4 0x10000459 628 SP evmwsmi Vector Multiply Word Signed, Modulo, Integer

EVX 4 0x1000045B 627 SP evmwsmf Vector Multiply Word Signed, Modulo, 
Fractional

XO 4 0x1000045C 683 LMA nmachhwo[.] Negative Multiply Accumulate High Halfword 
to Word Modulo Signed & record OV

EVX 4 0x10000467 624 SP evmwhssfa Vector Multiply Word High Signed, Saturate, 
Fractional to Accumulator
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Version 2.07 B
EVX 4 0x10000468 626 SP evmwlumia Vector Multiply Word Low Unsigned, Modulo, 
Integer to Accumulator

EVX 4 0x1000046C 624 SP evmwhumia Vector Multiply Word High Unsigned, Modulo, 
Integer to Accumulator

EVX 4 0x1000046D 623 SP evmwhsmia Vector Multiply Word High Signed, Modulo, 
Integer to Accumulator

EVX 4 0x1000046F 623 SP evmwhsmfa Vector Multiply Word High Signed, Modulo, 
Fractional to Accumulator

EVX 4 0x10000473 629 SP evmwssfa Vector Multiply Word Signed, Saturate, 
Fractional to Accumulator

EVX 4 0x10000478 630 SP evmwumia Vector Multiply Word Unsigned, Modulo, 
Integer to Accumulator

EVX 4 0x10000479 628 SP evmwsmia Vector Multiply Word Signed, Modulo, Integer 
to Accumulator

EVX 4 0x1000047B 627 SP evmwsmfa Vector Multiply Word Signed, Modulo, 
Fractional to Accumulator

VX 4 0x10000480 258 V vsubuwm Vector Subtract Unsigned Word Modulo
VX 4 0x10000482 275 V vavguw Vector Average Unsigned Word
VX 4 0x10000484 287 V vor Vector Logical OR
VX 4 0x10000488 308 V vpmsumw Vector Polynomial Multiply-Sum Word

XO 4 0x10000498 678 LMA machhwsuo[.] Multiply Accumulate High Halfword to Word 
Saturate Unsigned & record OV

EVX 4 0x100004C0 595 SP evaddusiaaw Vector Add Unsigned, Saturate, Integer to 
Accumulator Word

VX 4 0x100004C0 258 V vsubudm Vector Subtract Unsigned Doubleword Modulo

EVX 4 0x100004C1 595 SP evaddssiaaw Vector Add Signed, Saturate, Integer to 
Accumulator Word

EVX 4 0x100004C2 639 SP evsubfusiaaw Vector Subtract Unsigned, Saturate, Integer to 
Accumulator Word

EVX 4 0x100004C3 638 SP evsubfssiaaw Vector Subtract Signed, Saturate, Integer to 
Accumulator Word

EVX 4 0x100004C4 623 SP evmra Initialize Accumulator
VX 4 0x100004C4 287 V vxor Vector Logical XOR

EVX 4 0x100004C6 598 SP evdivws Vector Divide Word Signed
EVX 4 0x100004C7 599 SP evdivwu Vector Divide Word Unsigned

EVX 4 0x100004C8 595 SP evaddumiaaw Vector Add Unsigned, Modulo, Integer to 
Accumulator Word

VX 4 0x100004C8 307 V vpmsumd Vector Polynomial Multiply-Sum Doubleword

EVX 4 0x100004C9 594 SP evaddsmiaaw Vector Add Signed, Modulo, Integer to 
Accumulator Word

EVX 4 0x100004CA 639 SP evsubfumiaaw Vector Subtract Unsigned, Modulo, Integer to 
Accumulator Word

EVX 4 0x100004CB 638 SP evsubfsmiaaw Vector Subtract Signed, Modulo, Integer to 
Accumulator Word

VX 4 0x100004CE 238 V vpkudus Vector Pack Unsigned Doubleword Unsigned 
Saturate

XO 4 0x100004D8 677 LMA machhwso[.] Multiply Accumulate High Halfword to Word 
Saturate Signed & record OV

XO 4 0x100004DC 683 LMA nmachhwso[.] Negative Multiply Accumulate High Halfword 
to Word Saturate Signed & record OV

EVX 4 0x10000500 614 SP evmheusiaaw
Vector Multiply Half Words, Even, Unsigned, 

Saturate, Integer and Accumulate into 
Words

VX 4 0x10000500 260 V vsubuqm Vector Subtract Unsigned Quadword Modulo

EVX 4 0x10000501 612 SP evmhessiaaw
Vector Multiply Half Words, Even, Signed, 

Saturate, Integer and Accumulate into 
Words

VX 4 0x10000502 274 V vavgsb Vector Average Signed Byte
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Version 2.07 B
EVX 4 0x10000503 611 SP evmhessfaaw
Vector Multiply Half Words, Even, Signed, 

Saturate, Fractional and Accumulate into 
Words

EVX 4 0x10000504 622 SP evmhousiaaw
Vector Multiply Half Words, Odd, Unsigned, 

Saturate, Integer and Accumulate into 
Words

VX 4 0x10000504 287 V vnor Vector Logical NOR

EVX 4 0x10000505 621 SP evmhossiaaw
Vector Multiply Half Words, Odd, Signed, 

Saturate, Integer and Accumulate into 
Words

EVX 4 0x10000507 620 SP evmhossfaaw
Vector Multiply Half Words, Odd, Signed, 

Saturate, Fractional and Accumulate into 
Words

EVX 4 0x10000508 613 SP evmheumiaaw Vector Multiply Half Words, Even, Unsigned, 
Modulo, Integer and Accumulate into Words

VX 4 0x10000508 304 V.AES vcipher Vector AES Cipher

EVX 4 0x10000509 609 SP evmhesmiaaw Vector Multiply Half Words, Even, Signed, 
Modulo, Integer and Accumulate into Words

VX 4 0x10000509 304 V.AES vcipherlast Vector AES Cipher Last

EVX 4 0x1000050B 608 SP evmhesmfaaw
Vector Multiply Half Words, Even, Signed, 

Modulo, Fractional and Accumulate into 
Words

EVX 4 0x1000050C 622 SP evmhoumiaaw Vector Multiply Half Words, Odd, Unsigned, 
Modulo, Integer and Accumulate into Words

VX 4 0x1000050C 310 V vgbbd Vector Gather Bits by Byte by Doubleword

EVX 4 0x1000050D 618 SP evmhosmiaaw Vector Multiply Half Words, Odd, Signed, 
Modulo, Integer and Accumulate into Words

EVX 4 0x1000050F 617 SP evmhosmfaaw
Vector Multiply Half Words, Odd, Signed, 

Modulo, Fractional and Accumulate into 
Words

XO 4 0x10000518 676 LMA macchwuo[.] Multiply Accumulate Cross Halfword to Word 
Modulo Unsigned & record OV

EVX 4 0x10000528 607 SP evmhegumiaa Vector Multiply Half Words, Even, Guarded, 
Unsigned, Modulo, Integer and Accumulate

EVX 4 0x10000529 607 SP evmhegsmiaa Vector Multiply Half Words, Even, Guarded, 
Signed, Modulo, Integer and Accumulate

EVX 4 0x1000052B 606 SP evmhegsmfaa Vector Multiply Half Words, Even, Guarded, 
Signed, Modulo, Fractional and Accumulate

EVX 4 0x1000052C 616 SP evmhogumiaa Vector Multiply Half Words, Odd, Guarded, 
Unsigned, Modulo, Integer and Accumulate

EVX 4 0x1000052D 615 SP evmhogsmiaa Vector Multiply Half Words, Odd, Guarded, 
Signed, Modulo, Integer, and Accumulate

EVX 4 0x1000052F 615 SP evmhogsmfaa Vector Multiply Half Words, Odd, Guarded, 
Signed, Modulo, Fractional and Accumulate

EVX 4 0x10000540 627 SP evmwlusiaaw Vector Multiply Word Low Unsigned, Saturate, 
Integer and Accumulate in Words

VX 4 0x10000540 260 V vsubcuq Vector Subtract & write Carry Unsigned 
Quadword

EVX 4 0x10000541 625 SP evmwlssiaaw Vector Multiply Word Low Signed, Saturate, 
Integer and Accumulate in Words

VX 4 0x10000542 274 V vavgsh Vector Average Signed Halfword
VX 4 0x10000544 287 V vorc Vector OR with Complement

EVX 4 0x10000548 626 SP evmwlumiaaw Vector Multiply Word Low Unsigned, Modulo, 
Integer and Accumulate in Words

VX 4 0x10000548 305 V.AES vncipher Vector AES Inverse Cipher

EVX 4 0x10000549 625 SP evmwlsmiaaw Vector Multiply Word Low Signed, Modulo, 
Integer and Accumulate in Words

VX 4 0x10000549 305 V.AES vncipherlast Vector AES Inverse Cipher Last
VX 4 0x1000054C 313 V vbpermq Vector Bit Permute Quadword
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Version 2.07 B
VX 4 0x1000054C 313 V vbpermq Vector Bit Permute Quadword

VX 4 0x1000054E 236 V vpksdus Vector Pack Signed Doubleword Unsigned 
Saturate

EVX 4 0x10000553 629 SP evmwssfaa Vector Multiply Word Signed, Saturate, 
Fractional and Accumulate

EVX 4 0x10000558 631 SP evmwumiaa Vector Multiply Word Unsigned, Modulo, 
Integer and Accumulate

XO 4 0x10000558 675 LMA macchwo[.] Multiply Accumulate Cross Halfword to Word 
Modulo Signed & record OV

EVX 4 0x10000559 628 SP evmwsmiaa Vector Multiply Word Signed, Modulo, Integer 
and Accumulate

EVX 4 0x1000055B 628 SP evmwsmfaa Vector Multiply Word Signed, Modulo, 
Fractional and Accumulate

XO 4 0x1000055C 682 LMA nmacchwo[.] Negative Multiply Accumulate Cross Halfword 
to Word Modulo Signed & record OV

EVX 4 0x10000580 614 SP evmheusianw
Vector Multiply Half Words, Even, Unsigned, 

Saturate, Integer and Accumulate Negative 
into Words

VX 4 0x10000580 256 V vsubcuw Vector Subtract and Write Carry-Out Unsigned 
Word

EVX 4 0x10000581 612 SP evmhessianw
Vector Multiply Half Words, Even, Signed, 

Saturate, Integer and Accumulate Negative 
into Words

VX 4 0x10000582 274 V vavgsw Vector Average Signed Word

EVX 4 0x10000583 611 SP evmhessfanw
Vector Multiply Half Words, Even, Signed, 

Saturate, Fractional and Accumulate 
Negative into Words

EVX 4 0x10000584 622 SP evmhousianw
Vector Multiply Half Words, Odd, Unsigned, 

Saturate, Integer and Accumulate Negative 
into Words

VX 4 0x10000584 286 V vnand Vector NAND

EVX 4 0x10000585 621 SP evmhossianw
Vector Multiply Half Words, Odd, Signed, 

Saturate, Integer and Accumulate Negative 
into Words

EVX 4 0x10000587 620 SP evmhossfanw
Vector Multiply Half Words, Odd, Signed, 

Saturate, Fractional and Accumulate 
Negative into Words

EVX 4 0x10000588 613 SP evmheumianw
Vector Multiply Half Words, Even, Unsigned, 

Modulo, Integer and Accumulate Negative 
into Words

EVX 4 0x10000589 609 SP evmhesmianw
Vector Multiply Half Words, Even, Signed, 

Modulo, Integer and Accumulate Negative 
into Words

EVX 4 0x1000058B 608 SP evmhesmfanw
Vector Multiply Half Words, Even, Signed, 

Modulo, Fractional and Accumulate 
Negative into Words

EVX 4 0x1000058C 618 SP evmhoumianw
Vector Multiply Half Words, Odd, Unsigned, 

Modulo, Integer and Accumulate Negative 
into Words

EVX 4 0x1000058D 617 SP evmhosmianw
Vector Multiply Half Words, Odd, Signed, 

Modulo, Integer and Accumulate Negative 
into Words

EVX 4 0x1000058F 617 SP evmhosmfanw
Vector Multiply Half Words, Odd, Signed, 

Modulo, Fractional and Accumulate 
Negative into Words

XO 4 0x10000598 676 LMA macchwsuo[.] Multiply Accumulate Cross Halfword to Word 
Saturate Unsigned & record OV

EVX 4 0x100005A8 607 SP evmhegumian
Vector Multiply Half Words, Even, Guarded, 

Unsigned, Modulo, Integer and Accumulate 
Negative
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Version 2.07 B
EVX 4 0x100005A9 607 SP evmhegsmian
Vector Multiply Half Words, Even, Guarded, 

Signed, Modulo, Integer and Accumulate 
Negative

EVX 4 0x100005AB 606 SP evmhegsmfan
Vector Multiply Half Words, Even, Guarded, 

Signed, Modulo, Fractional and Accumulate 
Negative

EVX 4 0x100005AC 616 SP evmhogumian
Vector Multiply Half Words, Odd, Guarded, 

Unsigned, Modulo, Integer and Accumulate 
Negative

EVX 4 0x100005AD 615 SP evmhogsmian
Vector Multiply Half Words, Odd, Guarded, 

Signed, Modulo, Integer and Accumulate 
Negative

EVX 4 0x100005AF 615 SP evmhogsmfan
Vector Multiply Half Words, Odd, Guarded, 

Signed, Modulo, Fractional and Accumulate 
Negative

EVX 4 0x100005C0 627 SP evmwlusianw Vector Multiply Word Low Unsigned, Saturate, 
Integer and Accumulate Negative in Words

EVX 4 0x100005C1 625 SP evmwlssianw Vector Multiply Word Low Signed, Saturate, 
Integer and Accumulate Negative in Words

VX 4 0x100005C4 289 V vsld Vector Shift Left Doubleword

EVX 4 0x100005C8 626 SP evmwlumianw Vector Multiply Word Low Unsigned, Modulo, 
Integer and Accumulate Negative in Words

VX 4 0x100005C8 305 V.AES vsbox Vector AES S-Box

EVX 4 0x100005C9 625 SP evmwlsmianw Vector Multiply Word Low Signed, Modulo, 
Integer and Accumulate Negative in Words

VX 4 0x100005CE 235 V vpksdss Vector Pack Signed Doubleword Signed 
Saturate

EVX 4 0x100005D3 630 SP evmwssfan Vector Multiply Word Signed, Saturate, 
Fractional and Accumulate Negative

EVX 4 0x100005D8 631 SP evmwumian Vector Multiply Word Unsigned, Modulo, 
Integer and Accumulate Negative

XO 4 0x100005D8 675 LMA macchwso[.] Multiply Accumulate Cross Halfword to Word 
Saturate Signed & record OV

EVX 4 0x100005D9 628 SP evmwsmian Vector Multiply Word Signed, Modulo, Integer 
and Accumulate Negative

EVX 4 0x100005DB 628 SP evmwsmfan Vector Multiply Word Signed, Modulo, 
Fractional and Accumulate Negative

XO 4 0x100005DC 682 LMA nmacchwso[.] Negative Multiply Accumulate Cross Halfword 
to Word Saturate Signed & record OV

VX 4 0x10000600 259 V vsububs Vector Subtract Unsigned Byte Saturate

VX 4 0x10000604 316 V mfvscr Move From Vector Status and Control 
Register

VX 4 0x10000608 273 V vsum4ubs Vector Sum across Quarter Unsigned Byte 
Saturate

VX 4 0x10000640 258 V vsubuhs Vector Subtract Unsigned Halfword Saturate
VX 4 0x10000644 316 V mtvscr Move To Vector Status and Control Register

VX 4 0x10000648 272 V vsum4shs Vector Sum across Quarter Signed Halfword 
Saturate

VX 4 0x1000064E 241 V vupkhsw Vector Unpack High Signed Word
VX 4 0x10000680 259 V vsubuws Vector Subtract Unsigned Word Saturate
VX 4 0x10000682 306 V.SHA2 vshasigmaw Vector SHA-256 Sigma Word
VX 4 0x10000684 286 V veqv Vector Equivalence
VX 4 0x10000688 271 V vsum2sws Vector Sum across Half Signed Word Saturate
VX 4 0x1000068C 244 VSX vmrgow Vector Merge Odd Word
VX 4 0x100006C2 306 V.SHA2 vshasigmad Vector SHA-512 Sigma Doubleword
VX 4 0x100006C4 290 V vsrd Vector Shift Right Doubleword
VX 4 0x100006CE 241 V vupklsw Vector Unpack Low Signed Word
VX 4 0x10000700 256 V vsubsbs Vector Subtract Signed Byte Saturate
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Version 2.07 B
VX 4 0x10000702 311 V vclzb Vector Count Leading Zeros Byte
VX 4 0x10000703 312 V vpopcntb Vector Population Count Byte

VX 4 0x10000708 272 V vsum4sbs Vector Sum across Quarter Signed Byte 
Saturate

XO 4 0x10000718 680 LMA maclhwuo[.] Multiply Accumulate Low Halfword to Word 
Modulo Unsigned & record OV

VX 4 0x10000740 256 V vsubshs Vector Subtract Signed Halfword Saturate
VX 4 0x10000742 311 V vclzh Vector Count Leading Zeros Halfword
VX 4 0x10000743 312 V vpopcnth Vector Population Count Halfword

XO 4 0x10000758 679 LMA maclhwo[.] Multiply Accumulate Low Halfword to Word 
Modulo Signed & record OV

XO 4 0x1000075C 684 LMA nmaclhwo[.] Negative Multiply Accumulate Low Halfword to 
Word Modulo Signed & record OV

VX 4 0x10000780 257 V vsubsws Vector Subtract Signed Word Saturate
VX 4 0x10000782 311 V vclzw Vector Count Leading Zeros Word
VX 4 0x10000783 312 V vpopcntw Vector Population Count Word
VX 4 0x10000788 271 V vsumsws Vector Sum across Signed Word Saturate
VX 4 0x1000078C 244 VSX vmrgew Vector Merge Even Word

XO 4 0x10000798 680 LMA maclhwsuo[.] Multiply Accumulate Low Halfword to Word 
Saturate Unsigned & record OV

VX 4 0x100007C2 311 V vclzd Vector Count Leading Zeros Doubleword
VX 4 0x100007C3 312 V vpopcntd Vector Population Count Doubleword

XO 4 0x100007D8 679 LMA maclhwso[.] Multiply Accumulate Low Halfword to Word 
Saturate Signed & record OV

XO 4 0x100007DC 684 LMA nmaclhwso[.] Negative Multiply Accumulate Low Halfword to 
Word Saturate Signed & record OV

D 7 0x1C000000 72 B mulli Multiply Low Immediate
D 8 0x20000000 SR 69 B subfic Subtract From Immediate Carrying
D 10 0x28000000 80 B cmpli Compare Logical Immediate
D 11 0x2C000000 79 B cmpi Compare Immediate
D 12 0x30000000 SR 68 B addic Add Immediate Carrying
D 13 0x34000000 SR 68 B addic. Add Immediate Carrying & record CR0
D 14 0x38000000 67 B addi Add Immediate
D 15 0x3C000000 67 B addis Add Immediate Shifted
B 16 0x40000000 CT 38 B bc[l][a] Branch Conditional

SC 17 0x44000002
43

863
1040

B sc System Call

I 18 0x48000000 38 B b[l][a] Branch
XL 19 0x4C000000 42 B mcrf Move Condition Register Field
XL 19 0x4C000020 CT 39 B bclr[l] Branch Conditional to Link Register
XL 19 0x4C000024 P 864 S rfid Return from Interrupt Doubleword
XL 19 0x4C000042 42 B crnor Condition Register NOR
XL 19 0x4C00004C P 1042 E rfmci Return From Machine Check Interrupt
X 19 0x4C00004E P 1042 E.ED rfdi Return From Debug Interrupt

XL 19 0x4C000064 P 1041 E rfi Return From Interrupt
XL 19 0x4C000066 P 1041 E rfci Return From Critical Interrupt
XL 19 0x4C0000CC P 1043 E.HV rfgi Return From Guest Interrupt
XL 19 0x4C000102 42 B crandc Condition Register AND with Complement
XL 19 0x4C000124 820 S rfebb Return from Event Based Branch
XL 19 0x4C00012C 776 B isync Instruction Synchronize
XL 19 0x4C000182 41 B crxor Condition Register XOR

XFX 19 0x4C00018C 1228 E dnh Debugger Notify Halt
XL 19 0x4C0001C2 41 B crnand Condition Register NAND
XL 19 0x4C000202 41 B crand Condition Register AND

F
o

rm
at

Opcode

M
o

d
e 

D
ep

.1

P
ri

vi
le

g
e1

Page C
at

eg
o

ry
1

Mnemonic InstructionP
ri

m
ar

y Instruction
Image

(operands 
set to 0’s)
Power ISA™ - Book Appendices1438



Version 2.07 B
XL 19 0x4C000224 H 865 S hrfid Return From Interrupt Doubleword Hypervisor
XL 19 0x4C000242 42 B creqv Condition Register Equivalent
XL 19 0x4C000324 H 867 S doze Doze
XL 19 0x4C000342 42 B crorc Condition Register OR with Complement
XL 19 0x4C000364 H 867 S nap Nap
XL 19 0x4C000382 41 B cror Condition Register OR
XL 19 0x4C0003A4 H 868 S sleep Sleep
XL 19 0x4C0003E4 H 868 S rvwinkle Rip Van Winkle
XL 19 0x4C000420 CT 39 B bcctr[l] Branch Conditional to Count Register

X 19 0x4C000460 40 B bctar[l] Branch Conditional to Branch Target Address 
Register

M 20 0x50000000 SR 94 B rlwimi[.] Rotate Left Word Immediate then Mask Insert

M 21 0x54000000 SR 92 B rlwinm[.] Rotate Left Word Immediate then AND with 
Mask

M 23 0x5C000000 SR 93 B rlwnm[.] Rotate Left Word then AND with Mask
D 24 0x60000000 83 B ori OR Immediate
D 25 0x64000000 84 B oris OR Immediate Shifted
X 26 0x68000000 B xnop Executed No Operation
D 26 0x68000000 84 B xori XOR Immediate
D 27 0x6C000000 84 B xoris XOR Immediate Shifted
D 28 0x70000000 SR 83 B andi. AND Immediate & record CR0
D 29 0x74000000 SR 83 B andis. AND Immediate Shifted & record CR0

MD 30 0x78000000 SR 95 64 rldicl[.] Rotate Left Doubleword Immediate then Clear 
Left

MD 30 0x78000004 SR 95 64 rldicr[.] Rotate Left Doubleword Immediate then Clear 
Right

MD 30 0x78000008 SR 96 64 rldic[.] Rotate Left Doubleword Immediate then Clear

MD 30 0x7800000C SR 97 64 rldimi[.] Rotate Left Doubleword Immediate then Mask 
Insert

MDS 30 0x78000010 SR 96 64 rldcl[.] Rotate Left Doubleword then Clear Left
MDS 30 0x78000012 SR 97 64 rldcr[.] Rotate Left Doubleword then Clear Right

X 31 0x7C000000 79 B cmp Compare
X 31 0x7C000008 81 B tw Trap Word
X 31 0x7C00000C 234 V lvsl Load Vector for Shift Left
X 31 0x7C00000E 232 V lvebx Load Vector Element Byte Indexed

XO 31 0x7C000010 SR 69 B subfc[.] Subtract From Carrying
XO 31 0x7C000012 SR 64 64 mulhdu[.] Multiply High Doubleword Unsigned
XO 31 0x7C000014 SR 69 B addc[.] Add Carrying
XO 31 0x7C000016 SR 72 B mulhwu[.] Multiply High Word Unsigned

XX1 31 0x7C000018 393 VSX lxsiwzx Load VSX Scalar as Integer Word and Zero 
Indexed

A 31 0x7C00001E 82 B isel Integer Select
X 31 0x7C000024 P 1134 E tlbilx TLB Invalidate Local Indexed

XFX 31 0x7C000026 111 B mfcr Move From Condition Register
X 31 0x7C000028  777 B lwarx Load Word and Reserve Indexed
X 31 0x7C00002A 53 64 ldx Load Doubleword Indexed
X 31 0x7C00002C 762 E icbt Instruction Cache Block Touch
X 31 0x7C00002E 51 B lwzx Load Word and Zero Indexed
X 31 0x7C000030 SR 98 B slw[.] Shift Left Word
X 31 0x7C000034 SR 86 B cntlzw[.] Count Leading Zeros Word
X 31 0x7C000036 SR 100 64 sld[.] Shift Left Doubleword
X 31 0x7C000038 SR 85 B and[.] AND
X 31 0x7C00003A P 1060 E.PD;64 ldepx Load Doubleword by External PID Indexed
X 31 0x7C00003E P 1060 E.PD lwepx Load Word and Zero by External PID Indexed
X 31 0x7C000040 80 B cmpl Compare Logical
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Version 2.07 B
X 31 0x7C00004C 234 V lvsr Load Vector for Shift Right
X 31 0x7C00004E 229 V lvehx Load Vector Element Halfword Indexed

XO 31 0x7C000050 SR 68 B subf[.] Subtract From
XX1 31 0x7C000066 104 VSX mfvsrd Move From VSR Doubleword

X 31 0x7C000068 777 B lbarx Load Byte And Reserve Indexed
X 31 0x7C00006A 53 64 ldux Load Doubleword with Update Indexed
X 31 0x7C00006C  773 B dcbst Data Cache Block Store
X 31 0x7C00006E 51 B lwzux Load Word and Zero with Update Indexed
X 31 0x7C000074 SR 90 64 cntlzd[.] Count Leading Zeros Doubleword
X 31 0x7C000078 SR 86 B andc[.] AND with Complement
X 31 0x7C00007C 791 WT wait Wait for Interrupt
X 31 0x7C00007E P 1063 E.PD dcbstep Data Cache Block Store by External PID
X 31 0x7C000088 82 64 td Trap Doubleword
X 31 0x7C00008E 229 V lvewx Load Vector Element Word Indexed

XO 31 0x7C000092 SR 76 64 mulhd[.] Multiply High Doubleword
XO 31 0x7C000094 102 BCDA addg6s Add and Generate Sixes
XO 31 0x7C000096 SR 72 B mulhw[.] Multiply High Word

XX1 31 0x7C000098 392 VSX lxsiwax Load VSX Scalar as Integer Word Algebraic 
Indexed

X 31 0x7C00009C 673 LMV dlmzb[.] Determine Leftmost Zero Byte

X 31 0x7C0000A6 P 888
1055

S
E mfmsr Move From Machine State Register

X 31 0x7C0000A8 782 64 ldarx Load Doubleword And Reserve Indexed
X 31 0x7C0000AC  773 B dcbf Data Cache Block Flush
X 31 0x7C0000AE 49 B lbzx Load Byte and Zero Indexed
X 31 0x7C0000BE P 1059 E.PD lbepx Load Byte and Zero by External PID Indexed
X 31 0x7C0000CE 230 V lvx Load Vector Indexed

XO 31 0x7C0000D0 SR 71 B neg[.] Negate
XX1 31 0x7C0000E6 104 VSX mfvsrwz Move From VSR Word and Zero

X 31 0x7C0000E8 778 B lharx Load Halfword And Reserve Indexed Xform
X 31 0x7C0000EE 48 B lbzux Load Byte and Zero with Update Indexed
X 31 0x7C0000F4 88 B popcntb Population Count Byte-wise
X 31 0x7C0000F8 SR 86 B nor[.] NOR
X 31 0x7C0000FE P 1064 E.PD dcbfep Data Cache Block Flush by External PID
X 31 0x7C000106 P 1056 E wrtee Write External Enable

X 31 0x7C00010C M 1122 ECL dcbtstls Data Cache Block Touch for Store and Lock 
Set

X 31 0x7C00010E 232 V stvebx Store Vector Element Byte Indexed
XO 31 0x7C000110 SR 70 B subfe[.] Subtract From Extended
XO 31 0x7C000114 SR 70 B adde[.] Add Extended
XX1 31 0x7C000118 393 VSX stxsiwx Store VSX Scalar as Integer Word Indexed

X 31 0x7C00011C P 1009 S msgsndp Message Send Privileged
XFX 31 0x7C000120 111 B mtcrf Move To Condition Register Fields

X 31 0x7C000124 P 884
1055

S
E mtmsr Move To Machine State Register

X 31 0x7C00012A 57 64 stdx Store Doubleword Indexed
X 31 0x7C00012D 781 B stwcx. Store Word Conditional Indexed & record CR0
X 31 0x7C00012E 56 B stwx Store Word Indexed
X 31 0x7C000134 89 B prtyw Parity Word
X 31 0x7C00013A P 1062 E.PD;64 stdepx Store Doubleword by External PID Indexed
X 31 0x7C00013E P 1062 E.PD stwepx Store Word by External PID Indexed
X 31 0x7C000146 P 1057 E wrteei Write External Enable Immediate
X 31 0x7C00014C M 1122 ECL dcbtls Data Cache Block Touch and Lock Set
X 31 0x7C00014E 232 V stvehx Store Vector Element Halfword Indexed
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Version 2.07 B
X 31 0x7C00015C P 1009 S msgclrp Message Clear Privileged
X 31 0x7C000164 P 886 S mtmsrd Move To Machine State Register Doubleword

XX1 31 0x7C000166 105 VSX mtvsrd Move To VSR Doubleword
X 31 0x7C00016A 57 64 stdux Store Doubleword with Update Indexed

X 31 0x7C00016D 785 LSQ stqcx. Store Quadword Conditional Indexed and 
record CR0

X 31 0x7C00016E 56 B stwux Store Word with Update Indexed
X 31 0x7C000174 89 64 prtyd Parity Doubleword
X 31 0x7C00018D 1121 ECL icblq. Instruction Cache Block Lock Query
X 31 0x7C00018E 233 V stvewx Store Vector Element Word Indexed

XO 31 0x7C000190 SR 71 B subfze[.] Subtract From Zero Extended
XO 31 0x7C000194 SR 71 B addze[.] Add to Zero Extended

X 31 0x7C00019C H 1008
1233

S
E.PC msgsnd Message Send

X 31 0x7C0001A4 32 P 926 S mtsr Move To Segment Register
XX1 31 0x7C0001A6 105 VSX mtvsrwa Move To VSR Word Algebraic

X 31 0x7C0001AD 782 64 stdcx. Store Doubleword Conditional Indexed & 
record CR0

X 31 0x7C0001AE 54 B stbx Store Byte Indexed
X 31 0x7C0001BE P 1061 E.PD stbepx Store Byte by External PID Indexed
X 31 0x7C0001CC M 1124 ECL icblc Instruction Cache Block Lock Clear
X 31 0x7C0001CE 230 V stvx Store Vector Indexed

XO 31 0x7C0001D0 SR 70 B subfme[.] Subtract From Minus One Extended
XO 31 0x7C0001D2 SR 64 64 mulld[.] Multiply Low Doubleword
XO 31 0x7C0001D4 SR 70 B addme[.] Add to Minus One Extended
XO 31 0x7C0001D6 SR 72 B mullw[.] Multiply Low Word

X 31 0x7C0001DC H 1008
1233

S
E.PC msgclr Message Clear

X 31 0x7C0001E4 32 P 926 S mtsrin Move To Segment Register Indirect
XX1 31 0x7C0001E6 106 VSX mtvsrwz Move To VSR Word and Zero

X 31 0x7C0001EC  771 B dcbtst Data Cache Block Touch for Store
X 31 0x7C0001EE 54 B stbux Store Byte with Update Indexed
X 31 0x7C0001F8 91 64 bpermd Bit Permute Doubleword

X 31 0x7C0001FE P 1066 E.PD dcbtstep Data Cache Block Touch for Store by External 
PID

X 31 0x7C000206 P 1055 E.DC mfdcrx Move From Device Control Register Indexed
X 31 0x7C00020E P 1070 E.PD lvepxl Load Vector by External PID Indexed Last

XO 31 0x7C000214 SR 68 B add[.] Add
XL 31 0x7C00021C 1043 E.HV ehpriv Embedded Hypervisor Privilege
X 31 0x7C000224 64 P 930 S tlbiel TLB Invalidate Entry Local
X 31 0x7C000228 784 LSQ lqarx Load Quadword And Reserve Indexed
X 31 0x7C00022C  770 B dcbt Data Cache Block Touch
X 31 0x7C00022E 49 B lhzx Load Halfword and Zero Indexed
X 31 0x7C000234 102 BCDA cdtbcd Convert Declets To Binary Coded Decimal
X 31 0x7C000238 SR  86 B eqv[.] Equivalent

X 31 0x7C00023E P 1059 E.PD lhepx Load Halfword and Zero by External PID 
Indexed

X 31 0x7C000246 112 E.DC mfdcrux Move From Device Control Register User 
Mode Indexed

X 31 0x7C00024E P 1070 E.PD lvepx Load Vector by External PID Indexed
XFX 31 0x7C00025C 44 S mfbhrbe Move From Branch History Rolling Buffer

X 31 0x7C000264 64 H 928 S tlbie TLB Invalidate Entry
X 31 0x7C00026C 826 EC eciwx External Control In Word Indexed
X 31 0x7C00026E 49 B lhzux Load Halfword and Zero with Update Indexed
X 31 0x7C000274 102 BCDA cbcdtd Convert Binary Coded Decimal To Declets
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Version 2.07 B
X 31 0x7C000278 SR 85 B xor[.] XOR
X 31 0x7C00027E P 1063 E.PD dcbtep Data Cache Block Touch by External PID

XFX 31 0x7C000286 P 1055 E.DC mfdcr Move From Device Control Register
X 31 0x7C00028C P 1242 E.CD dcread Data Cache Read

XX1 31 0x7C000298 394 VSX lxvdsx Load VSR Vector Doubleword & Splat Indexed
XFX 31 0x7C00029C O 1257 E.PM mfpmr Move from Performance Monitor Register

XFX 31 0x7C0002A6 O
109
814
885
1054

B mfspr Move From Special Purpose Register

X 31 0x7C0002AA 52 64 lwax Load Word Algebraic Indexed
X 31 0x7C0002AE 50 B lhax Load Halfword Algebraic Indexed
X 31 0x7C0002CE 230 V lvxl Load Vector Indexed Last
X 31 0x7C0002E4 H 932 S tlbia TLB Invalidate All

XFX 31 0x7C0002E6 814 S.out mftb Move From Time Base
X 31 0x7C0002EA 52 64 lwaux Load Word Algebraic with Update Indexed
X 31 0x7C0002EE 50 B lhaux Load Halfword Algebraic with Update Indexed
X 31 0x7C0002F4 88 B popcntw Population Count Words
X 31 0x7C000306 P 1054 E.DC mtdcrx Move To Device Control Register Indexed
X 31 0x7C00030C M 1123 ECL dcblc Data Cache Block Lock Clear

XO 31 0x7C000312 SR 78 64 divdeu[.] Divide Doubleword Extended Unsigned
XO 31 0x7C000316 SR 74 B divweu[.] Divide Word Extended Unsigned
X 31 0x7C000324 P 921 S slbmte SLB Move To Entry
X 31 0x7C00032E 55 B sthx Store Halfword Indexed
X 31 0x7C000338 SR 86 B orc[.] OR with Complement
X 31 0x7C00033E P 1061 E.PD sthepx Store Halfword by External PID Indexed

X 31 0x7C000346 112 E.DC mtdcrux Move To Device Control Register User Mode 
Indexed

X 31 0x7C00034D 1121 ECL dcblq. Data Cache Block Lock Query
XO 31 0x7C000352 SR 78 64 divde[.] Divide Doubleword Extended
XO 31 0x7C000356 SR 74 B divwe[.] Divide Word Extended
X 31 0x7C00035C 44 S clrbhrb Clear BHRB
X 31 0x7C000364 P 919 S slbie SLB Invalidate Entry
X 31 0x7C00036C 826 EC ecowx External Control Out Word Indexed
X 31 0x7C00036E 55 B sthux Store Halfword with Update Indexed
X 31 0x7C000378 SR 85 B or[.] OR

XFX 31 0x7C000386 P 1054 E.DC mtdcr Move To Device Control Register
X 31 0x7C00038C P 1239 E.CI dci Data Cache Invalidate

XO 31 0x7C000392 SR 77 64 divdu[.] Divide Doubleword Unsigned
XO 31 0x7C000396 SR 73 B divwu[.] Divide Word Unsigned
XFX 31 0x7C00039C O 1257 E.PM mtpmr Move To Performance Monitor Register

XFX 31 0x7C0003A6 O
107
884
1053

B mtspr Move To Special Purpose Register

X 31 0x7C0003AC P 1118 E dcbi Data Cache Block Invalidate
X 31 0x7C0003B8 SR 85 B nand[.] NAND
X 31 0x7C0003C6 824 DS dsn Decorated Storage Notify
X 31 0x7C0003CC P 1242 E.CD dcread Data Cache Read
X 31 0x7C0003CC M 1123 ECL icbtls Instruction Cache Block Touch and Lock Set
X 31 0x7C0003CE 233 V stvxl Store Vector Indexed Last

XO 31 0x7C0003D2 SR 77 64 divd[.] Divide Doubleword
XO 31 0x7C0003D6 SR 73 B divw[.] Divide Word
X 31 0x7C0003E4 P 920 S slbia SLB Invalidate All
X 31 0x7C0003F4 90 64 popcntd Population Count Doubleword
X 31 0x7C0003F8 87 B cmpb Compare Byte
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Version 2.07 B
X 31 0x7C000400 112 E mcrxr Move to Condition Register from XER
X 31 0x7C000406 822 DS lbdx Load Byte with Decoration Indexed

XO 31 0x7C000410 SR 69 B subfco[.] Subtract From Carrying & record OV
XO 31 0x7C000414 SR 69 B addco[.] Add Carrying & record OV
XX1 31 0x7C000418 393 VSX lxsspx Load VSX Scalar Single-Precision Indexed

X 31 0x7C000428 61 64 ldbrx Load Doubleword Byte-Reverse Indexed
X 31 0x7C00042A 64 MA lswx Load String Word Indexed
X 31 0x7C00042C 60 B lwbrx Load Word Byte-Reverse Indexed
X 31 0x7C00042E 136 FP lfsx Load Floating-Point Single Indexed
X 31 0x7C000430 SR 98 B srw[.] Shift Right Word
X 31 0x7C000436 SR 100 64 srd[.] Shift Right Doubleword
X 31 0x7C000446 822 DS lhdx Load Halfword with Decoration Indexed

XO 31 0x7C000450 SR 68 B subfo[.] Subtract From & record OV

X 31 0x7C00046C H
PH

933
1141

S
E tlbsync TLB Synchronize

X 31 0x7C00046E 136 FP lfsux Load Floating-Point Single with Update 
Indexed

X 31 0x7C000486 822 DS lwdx Load Word with Decoration Indexed
XX1 31 0x7C000498 392 VSX lxsdx Load VSR Scalar Doubleword Indexed

X 31 0x7C0004A6 32 P 927 S mfsr Move From Segment Register
X 31 0x7C0004AA 64 MA lswi Load String Word Immediate
X 31 0x7C0004AC 786 B sync Synchronize
X 31 0x7C0004AE 133 FP lfdx Load Floating-Point Double Indexed

X 31 0x7C0004BE P 1068 E.PD lfdepx Load Floating-Point Double by External PID 
Indexed

X 31 0x7C0004C6 822 DS lddx Load Doubleword with Decoration Indexed
XO 31 0x7C0004D0 SR 71 B nego[.] Negate & record OV

X 31 0x7C0004EE 133 FP lfdux Load Floating-Point Double with Update 
Indexed

X 31 0x7C000506 823 DS stbdx Store Byte with Decoration Indexed
XO 31 0x7C000510 SR 70 B subfeo[.] Subtract From Extended & record OV
XO 31 0x7C000514 SR 70 B addeo[.] Add Extended & record OV & record OV
XX1 31 0x7C000518 393 VSX stxsspx Store VSR Scalar Word Indexed

X 31 0x7C00051D 806 TM tbegin. Transaction Begin
X 31 0x7C000526 32 P 927 S mfsrin Move From Segment Register Indirect
X 31 0x7C000528 61 64 stdbrx Store Doubleword Byte-Reverse Indexed
X 31 0x7C00052A 65 MA stswx Store String Word Indexed
X 31 0x7C00052C 60 B stwbrx Store Word Byte-Reverse Indexed
X 31 0x7C00052E 136 FP stfsx Store Floating-Point Single Indexed
X 31 0x7C000546 823 DS sthdx Store Halfword with Decoration Indexed
X 31 0x7C00055C 807 TM tend. Transaction End
X 31 0x7C00056D 779 B stbcx. Store Byte Conditional Indexed

X 31 0x7C00056E 136 FP stfsux Store Floating-Point Single with Update 
Indexed

X 31 0x7C000586 823 DS stwdx Store Word with Decoration Indexed
XO 31 0x7C000590 SR 71 B subfzeo[.] Subtract From Zero Extended & record OV
XO 31 0x7C000594 SR 71 B addzeo[.] Add to Zero Extended & record OV
XX1 31 0x7C000598 395 VSX stxsdx Store VSR Scalar Doubleword Indexed

X 31 0x7C00059C 811 TM tcheck Transaction Check
X 31 0x7C0005AA 65 MA stswi Store String Word Immediate
X 31 0x7C0005AD 780 B sthcx. Store Halfword Conditional Indexed Xform
X 31 0x7C0005AE 137 FP stfdx Store Floating-Point Double Indexed

X 31 0x7C0005BE P 1068 E.PD stfdepx Store Floating-Point Double by External PID 
Indexed

X 31 0x7C0005C6 823 DS stddx Store Doubleword with Decoration Indexed
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Version 2.07 B
XO 31 0x7C0005D0 SR 70 B subfmeo[.] Subtract From Minus One Extended & record 
OV

XO 31 0x7C0005D2 SR 64 64 mulldo[.] Multiply Low Doubleword & record OV
XO 31 0x7C0005D4 SR 70 B addmeo[.] Add to Minus One Extended & record OV
XO 31 0x7C0005D6 SR 72 B mullwo[.] Multiply Low Word & record OV
X 31 0x7C0005DC 810 TM tsr. Transaction Suspend or Resume
X 31 0x7C0005EC 770 E dcba Data Cache Block Allocate

X 31 0x7C0005EE 137 FP stfdux Store Floating-Point Double with Update 
Indexed

X 31 0x7C00060E P 1071 E.PD stvepxl Store Vector by External PID Indexed Last
XO 31 0x7C000614 SR 68 B addo[.] Add & record OV
XX1 31 0x7C000618 395 VSX lxvw4x Load VSR Vector Word*4 Indexed

X 31 0x7C00061D 809 TM tabortwc. Transaction Abort Word Conditional
X 31 0x7C000624 P 1132 E tlbivax TLB Invalidate Virtual Address Indexed

X 31 0x7C00062A H 876 S lwzcix Load Word and Zero Caching Inhibited 
Indexed

X 31 0x7C00062C 60 B lhbrx Load Halfword Byte-Reverse Indexed
X 31 0x7C00062E 140 FP.out lfdpx Load Floating-Point Double Pair Indexed
X 31 0x7C000630 SR 99 B sraw[.] Shift Right Algebraic Word
X 31 0x7C000634 SR 101 64 srad[.] Shift Right Algebraic Doubleword

EVX 31 0x7C00063E P 1069 E.PD evlddepx Vector Load Double Word into Double Word 
by External PID Indexed

X 31 0x7C000646 822 DS lfddx Load Floating Doubleword with Decoration 
Indexed

X 31 0x7C00064E P 1071 E.PD stvepx Store Vector by External PID Indexed
X 31 0x7C00065D 809 TM tabortdc. Transaction Abort Doubleword Conditional

X 31 0x7C00066A H 876 S lhzcix Load Halfword and Zero Caching Inhibited 
Indexed

X 31 0x7C000670 SR 99 B srawi[.] Shift Right Algebraic Word Immediate
XS 31 0x7C000674 SR 101 64 sradi[.] Shift Right Algebraic Doubleword Immediate

XX1 31 0x7C000698 394 VSX lxvd2x Load VSR Vector Doubleword*2 Indexed

X 31 0x7C00069D 809 TM tabortwci. Transaction Abort Word Conditional 
Immediate

X 31 0x7C0006A5 P 1138 E.TWC tlbsrx. TLB Search and Reserve Indexed
X 31 0x7C0006A6 P 922 S slbmfev SLB Move From Entry VSID

X 31 0x7C0006AA H 876 S lbzcix Load Byte and Zero Caching Inhibited 
Indexed

X 31 0x7C0006AC 790 S eieio Enforce In-order Execution of I/O
X 31 0x7C0006AC 790 E mbar Memory Barrier

X 31 0x7C0006AE 134 FP lfiwax Load Floating-Point as Integer Word Algebraic 
Indexed

X 31 0x7C0006DD 810 TM tabortdci. Transaction Abort Doubleword Conditional 
Immediate

X 31 0x7C0006EA H 876 S ldcix Load Doubleword Caching Inhibited Indexed

X 31 0x7C0006EE 134 FP lfiwzx Load Floating-Point as Integer Word and Zero 
Indexed

XO 31 0x7C000712 SR 78 64 divdeuo[.] Divide Doubleword Extended Unsigned & 
record OV

XO 31 0x7C000716 SR 74 B divweuo[.] Divide Word Extended Unsigned & record OV
XX1 31 0x7C000718 397 VSX stxvw4x Store VSR Vector Word*4 Indexed

X 31 0x7C00071D 808 TM tabort. Transaction Abort
X 31 0x7C000724 P 1136 E tlbsx TLB Search Indexed
X 31 0x7C000726 P 923 S slbmfee SLB Move From Entry ESID

X 31 0x7C00072A H 877 S stwcix Store Word and Zero Caching Inhibited 
Indexed

X 31 0x7C00072C 60 B sthbrx Store Halfword Byte-Reverse Indexed
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Version 2.07 B
X 31 0x7C00072E 140 FP.out stfdpx Store Floating-Point Double Pair Indexed
X 31 0x7C000734 SR  86 B extsh[.] Extend Sign Halfword

EVX 31 0x7C00073E P 1069 E.PD evstddepx Vector Store Double of Double by External 
PID Indexed

X 31 0x7C000746 823 DS stfddx Store Floating Doubleword with Decoration 
Indexed

XO 31 0x7C000752 SR 78 64 divdeo[.] Divide Doubleword Extended & record OV
XO 31 0x7C000756 SR 74 B divweo[.] Divide Word Extended & record OV
X 31 0x7C00075D 879 TM treclaim. Transaction Reclaim
X 31 0x7C000764 P 1139 E tlbre TLB Read Entry

X 31 0x7C00076A H 877 S sthcix Store Halfword and Zero Caching Inhibited 
Indexed

X 31 0x7C000774 SR  86 B extsb[.] Extend Sign Byte
X 31 0x7C00078C P 1239 E.CI ici Instruction Cache Invalidate

XO 31 0x7C000792 SR 77 64 divduo[.] Divide Doubleword Unsigned & record OV
XO 31 0x7C000796 SR 73 B divwuo[.] Divide Word Unsigned & record OV
XX1 31 0x7C000798 397 VSX stxvd2x Store VSR Vector Doubleword*2 Indexed

X 31 0x7C0007A4 P 1141 E tlbwe TLB Write Entry
X 31 0x7C0007A7 SR P 923 S slbfee. SLB Find Entry ESID
X 31 0x7C0007AA H 877 S stbcix Store Byte Caching Inhibited Indexed
X 31 0x7C0007AC 762 B icbi Instruction Cache Block Invalidate
X 31 0x7C0007AE 138 FP stfiwx Store Floating-Point as Integer Word Indexed
X 31 0x7C0007B4 SR 90 64 extsw[.] Extend Sign Word

X 31 0x7C0007BE P 1067 E.PD icbiep Instruction Cache Block Invalidate by External 
PID

X 31 0x7C0007CC P 1243 E.CD icread Instruction Cache Read
XO 31 0x7C0007D2 SR 77 64 divdo[.] Divide Doubleword & record OV
XO 31 0x7C0007D6 SR 73 B divwo[.] Divide Word & record OV
X 31 0x7C0007DD 880 TM trechkpt. Transaction Recheckpoint
X 31 0x7C0007EA H 877 S stdcix Store Doubleword Caching Inhibited Indexed
X 31 0x7C0007EC  773 B dcbz Data Cache Block Zero
X 31 0x7C0007FE P 1067 E.PD dcbzep Data Cache Block Zero by External PID

XFX 31 0x7C100026 111 B mfocrf Move From One Condition Register Field
XFX 31 0x7C100120 111 B mtocrf Move To One Condition Register Field

D 32 0x80000000 51 B lwz Load Word and Zero
D 33 0x84000000 51 B lwzu Load Word and Zero with Update
D 34 0x88000000 48 B lbz Load Byte and Zero
D 35 0x8C000000 48 B lbzu Load Byte and Zero with Update
D 36 0x90000000 56 B stw Store Word
D 37 0x94000000 56 B stwu Store Word with Update
D 38 0x98000000 54 B stb Store Byte
D 39 0x9C000000 54 B stbu Store Byte with Update
D 40 0xA0000000 49 B lhz Load Halfword and Zero
D 41 0xA4000000 49 B lhzu Load Halfword and Zero with Update
D 42 0xA8000000 50 B lha Load Halfword Algebraic
D 43 0xAC000000 50 B lhau Load Halfword Algebraic with Update
D 44 0xB0000000 55 B sth Store Halfword
D 45 0xB4000000 55 B sthu Store Halfword with Update
D 46 0xB8000000 62 B lmw Load Multiple Word
D 47 0xBC000000 62 B stmw Store Multiple Word
D 48 0xC0000000 136 FP lfs Load Floating-Point Single
D 49 0xC4000000 136 FP lfsu Load Floating-Point Single with Update
D 50 0xC8000000 133 FP lfd Load Floating-Point Double
D 51 0xCC000000 133 FP lfdu Load Floating-Point Double with Update
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Version 2.07 B
D 52 0xD0000000 136 FP stfs Store Floating-Point Single
D 53 0xD4000000 136 FP stfsu Store Floating-Point Single with Update
D 54 0xD8000000 137 FP stfd Store Floating-Point Double
D 55 0xDC000000 137 FP stfdu Store Floating-Point Double with Update

DQ 56 0xE0000000 P 58 LSQ lq Load Quadword
DS 57 0xE4000000 140 FP.out lfdp Load Floating-Point Double Pair
DS 58 0xE8000000 53 64 ld Load Doubleword
DS 58 0xE8000001 53 64 ldu Load Doubleword with Update
DS 58 0xE8000002 52 64 lwa Load Word Algebraic
X 59 0xEC000004 183 DFP dadd[.] Decimal Floating Add

Z23 59 0xEC000006 194 DFP dqua[.] Decimal Quantize
A 59 0xEC000024 144 FP[R] fdivs[.] Floating Divide Single
A 59 0xEC000028 143 FP[R] fsubs[.] Floating Subtract Single
A 59 0xEC00002A 143 FP[R] fadds[.] Floating Add Single
A 59 0xEC00002C 145 FP[R] fsqrts[.] Floating Square Root Single
A 59 0xEC000030 145 FP[R] fres[.] Floating Reciprocal Estimate Single
A 59 0xEC000032 144 FP[R] fmuls[.] Floating Multiply Single

A 59 0xEC000034 146 FP[R].in frsqrtes[.] Floating Reciprocal Square Root Estimate 
Single

A 59 0xEC000038 148 FP[R] fmsubs[.] Floating Multiply-Subtract Single
A 59 0xEC00003A 148 FP[R] fmadds[.] Floating Multiply-Add Single
A 59 0xEC00003C 149 FP[R] fnmsubs[.] Floating Negative Multiply-Subtract Single
A 59 0xEC00003E 149 FP[R] fnmadds[.] Floating Negative Multiply-Add Single
X 59 0xEC000044 185 DFP dmul[.] Decimal Floating Multiply

Z23 59 0xEC000046 196 DFP drrnd[.] Decimal Floating Reround

Z22 59 0xEC000084 210 DFP dscli[.] Decimal Floating Shift Coefficient Left 
Immediate

Z23 59 0xEC000086 193 DFP dquai[.] Decimal Quantize Immediate

Z22 59 0xEC0000C4 210 DFP dscri[.] Decimal Floating Shift Coefficient Right 
Immediate

Z23 59 0xEC0000C6 199 DFP drintx[.] Decimal Floating Round To FP Integer With 
Inexact

X 59 0xEC000104 189 DFP dcmpo Decimal Floating Compare Ordered
X 59 0xEC000144 191 DFP dtstex Decimal Floating Test Exponent

Z22 59 0xEC000184 190 DFP dtstdc Decimal Floating Test Data Class
Z22 59 0xEC0001C4 190 DFP dtstdg Decimal Floating Test Data Group

Z23 59 0xEC0001C6 201 DFP drintn[.] Decimal Floating Round To FP Integer 
Without Inexact

X 59 0xEC000204 203 DFP dctdp[.] Decimal Floating Convert To DFP Long
X 59 0xEC000244 205 DFP dctfix[.] Decimal Floating Convert To Fixed
X 59 0xEC000284 207 DFP ddedpd[.] Decimal Floating Decode DPD To BCD
X 59 0xEC0002C4 208 DFP dxex[.] Decimal Floating Extract Exponent
X 59 0xEC000404 183 DFP dsub[.] Decimal Floating Subtract
X 59 0xEC000444 186 DFP ddiv[.] Decimal Floating Divide
X 59 0xEC000504 188 DFP dcmpu Decimal Floating Compare Unordered
X 59 0xEC000544 192 DFP dtstsf Decimal Floating Test Significance
X 59 0xEC000604 204 DFP drsp[.] Decimal Floating Round To DFP Short
X 59 0xEC000644 205 DFP dcffix[.] Decimal Floating Convert From Fixed
X 59 0xEC000684 207 DFP denbcd[.] Decimal Floating Encode BCD To DPD

X 59 0xEC00069C 155 FP[R] fcfids[.] Floating Convert From Integer Doubleword 
Single

X 59 0xEC0006C4 208 DFP diex[.] Decimal Floating Insert Exponent

X 59 0xEC00079C 156 FP[R] fcfidus[.] Floating Convert From Integer Doubleword 
Unsigned Single

XX3 60 0xF0000000 404 VSX xsaddsp VSX Scalar Add Single-Precision
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Version 2.07 B
XX3 60 0xF0000008 431 VSX xsmaddasp VSX Scalar Multiply-Add Type-A 
Single-Precision

XX3 60 0xF0000010 585 VSX xxsldwi VSX Shift Left Double by Word Immediate

XX2 60 0xF0000028 471 VSX xsrsqrtesp VSX Scalar Reciprocal Square Root Estimate 
Single-Precision

XX2 60 0xF000002C 473 VSX xssqrtsp VSX Scalar Square Root Single-Precision
XX4 60 0xF0000030 584 VSX xxsel VSX Select
XX3 60 0xF0000040 476 VSX xssubsp VSX Scalar Subtract Single-Precision

XX3 60 0xF0000048 431 VSX xsmaddmsp VSX Scalar Multiply-Add Type-M 
Single-Precision

XX3 60 0xF0000050 584 VSX xxpermdi VSX Permute Doubleword Immediate

XX2 60 0xF0000068 468 VSX xsresp VSX Scalar Reciprocal Estimate 
Single-Precision

XX3 60 0xF0000080 446 VSX xsmulsp VSX Scalar Multiply Single-Precision

XX3 60 0xF0000088 441 VSX xsmsubasp VSX Scalar Multiply-Subtract Type-A 
Single-Precision

XX3 60 0xF0000090 583 VSX xxmrghw VSX Merge High Word
XX3 60 0xF00000C0 426 VSX xsdivsp VSX Scalar Divide Single-Precision

XX3 60 0xF00000C8 441 VSX xsmsubmsp VSX Scalar Multiply-Subtract Type-M 
Single-Precision

XX3 60 0xF0000100 399 VSX xsadddp VSX Scalar Add Double-Precision

XX3 60 0xF0000108 428 VSX xsmaddadp VSX Scalar Multiply-Add Type-A 
Double-Precision

XX3 60 0xF0000118 408 VSX xscmpudp VSX Scalar Compare Unordered 
Double-Precision

XX2 60 0xF0000120 417 VSX xscvdpuxws VSX Scalar Convert Double-Precision to 
Unsigned Fixed-Point Word Saturate

XX2 60 0xF0000124 463 VSX xsrdpi VSX Scalar Round to Double-Precision 
Integer

XX2 60 0xF0000128 470 VSX xsrsqrtedp VSX Scalar Reciprocal Square Root Estimate 
Double-Precision

XX2 60 0xF000012C 472 VSX xssqrtdp VSX Scalar Square Root Double-Precision
XX3 60 0xF0000140 474 VSX xssubdp VSX Scalar Subtract Double-Precision

XX3 60 0xF0000148 428 VSX xsmaddmdp VSX Scalar Multiply-Add Type-M 
Double-Precision

XX3 60 0xF0000158 406 VSX xscmpodp VSX Scalar Compare Ordered 
Double-Precision

XX2 60 0xF0000160 412 VSX xscvdpsxws VSX Scalar Convert Double-Precision to 
Signed Fixed-Point Word Saturate

XX2 60 0xF0000164 466 VSX xsrdpiz VSX Scalar Round to Double-Precision 
Integer toward Zero

XX1 60 0xF0000168 467 VSX xsredp VSX Scalar Reciprocal Estimate 
Double-Precision

XX3 60 0xF0000180 444 VSX xsmuldp VSX Scalar Multiply Double-Precision

XX3 60 0xF0000188 438 VSX xsmsubadp VSX Scalar Multiply-Subtract Type-A 
Double-Precision

XX3 60 0xF0000190 583 VSX xxmrglw VSX Merge Low Word

XX2 60 0xF00001A4 465 VSX xsrdpip VSX Scalar Round to Double-Precision 
Integer toward +Infinity

XX2 60 0xF00001A8 479 VSX xstsqrtdp VSX Scalar Test for software Square Root 
Double-Precision

XX2 60 0xF00001AC 464 VSX xsrdpic VSX Scalar Round to Double-Precision 
Integer using Current rounding mode

XX3 60 0xF00001C0 424 VSX xsdivdp VSX Scalar Divide Double-Precision

XX3 60 0xF00001C8 438 VSX xsmsubmdp VSX Scalar Multiply-Subtract Type-M 
Double-Precision

XX2 60 0xF00001E4 465 VSX xsrdpim VSX Scalar Round to Double-Precision 
Integer toward -Infinity
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Version 2.07 B
XX3 60 0xF00001E8 478 VSX xstdivdp VSX Scalar Test for software Divide 
Double-Precision

XX3 60 0xF0000200 485 VSX xvaddsp VSX Vector Add Single-Precision

XX3 60 0xF0000208 520 VSX xvmaddasp VSX Vector Multiply-Add Type-A 
Single-Precision

XX3 60 0xF0000218 488 VSX xvcmpeqsp VSX Vector Compare Equal To 
Single-Precision

XX2 60 0xF0000220 510 VSX xvcvspuxws VSX Vector Convert Single-Precision to 
Unsigned Fixed-Point Word Saturate

XX2 60 0xF0000224 565 VSX xvrspi VSX Vector Round to Single-Precision Integer

XX2 60 0xF0000228 569 VSX xvrsqrtesp VSX Vector Reciprocal Square Root Estimate 
Single-Precision

XX2 60 0xF000022C 571 VSX xvsqrtsp VSX Vector Square Root Single-Precision
XX3 60 0xF0000240 574 VSX xvsubsp VSX Vector Subtract Single-Precision

XX3 60 0xF0000248 523 VSX xvmaddmsp VSX Vector Multiply-Add Type-M 
Single-Precision

XX3 60 0xF0000258 492 VSX xvcmpgtsp VSX Vector Compare Greater Than 
Single-Precision

XX2 60 0xF0000260 506 VSX xvcvspsxws VSX Vector Convert Single-Precision to 
Signed Fixed-Point Word Saturate

XX2 60 0xF0000264 567 VSX xvrspiz VSX Vector Round to Single-Precision Integer 
toward Zero

XX2 60 0xF0000268 564 VSX xvresp VSX Vector Reciprocal Estimate 
Single-Precision

XX3 60 0xF0000280 542 VSX xvmulsp VSX Vector Multiply Single-Precision

XX3 60 0xF0000288 534 VSX xvmsubasp VSX Vector Multiply-Subtract Type-A 
Single-Precision

XX2 60 0xF0000290 585 VSX xxspltw VSX Splat Word

XX3 60 0xF0000298 490 VSX xvcmpgesp VSX Vector Compare Greater Than or Equal 
To Single-Precision

XX2 60 0xF00002A0 515 VSX xvcvuxwsp VSX Vector Convert Unsigned Fixed-Point 
Word to Single-Precision

XX2 60 0xF00002A4 566 VSX xvrspip VSX Vector Round to Single-Precision Integer 
toward +Infinity

XX2 60 0xF00002A8 578 VSX xvtsqrtsp VSX Vector Test for software Square Root 
Single-Precision

XX2 60 0xF00002AC 565 VSX xvrspic VSX Vector Round to Single-Precision Integer 
using Current rounding mode

XX3 60 0xF00002C0 518 VSX xvdivsp VSX Vector Divide Single-Precision

XX3 60 0xF00002C8 537 VSX xvmsubmsp VSX Vector Multiply-Subtract Type-M 
Single-Precision

XX2 60 0xF00002E0 513 VSX xvcvsxwsp VSX Vector Convert Signed Fixed-Point Word 
to Single-Precision

XX2 60 0xF00002E4 566 VSX xvrspim VSX Vector Round to Single-Precision Integer 
toward -Infinity

XX3 60 0xF00002E8 577 VSX xvtdivsp VSX Vector Test for software Divide 
Single-Precision

XX3 60 0xF0000300 481 VSX xvadddp VSX Vector Add Double-Precision

XX3 60 0xF0000308 520 VSX xvmaddadp VSX Vector Multiply-Add Type-A 
Double-Precision

XX3 60 0xF0000318 487 VSX xvcmpeqdp VSX Vector Compare Equal To 
Double-Precision

XX2 60 0xF0000320 501 VSX xvcvdpuxws VSX Vector Convert Double-Precision to 
Unsigned Fixed-Point Word Saturate

XX2 60 0xF0000324 560 VSX xvrdpi VSX Vector Round to Double-Precision 
Integer

XX2 60 0xF0000328 567 VSX xvrsqrtedp VSX Vector Reciprocal Square Root Estimate 
Double-Precision
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Version 2.07 B
XX2 60 0xF000032C 570 VSX xvsqrtdp VSX Vector Square Root Double-Precision
XX3 60 0xF0000340 572 VSX xvsubdp VSX Vector Subtract Double-Precision

XX3 60 0xF0000348 523 VSX xvmaddmdp VSX Vector Multiply-Add Type-M 
Double-Precision

XX3 60 0xF0000358 491 VSX xvcmpgtdp VSX Vector Compare Greater Than 
Double-Precision

XX2 60 0xF0000360 497 VSX xvcvdpsxws VSX Vector Convert Double-Precision to 
Signed Fixed-Point Word Saturate

XX2 60 0xF0000364 562 VSX xvrdpiz VSX Vector Round to Double-Precision 
Integer toward Zero

XX2 60 0xF0000368 563 VSX xvredp VSX Vector Reciprocal Estimate 
Double-Precision

XX3 60 0xF0000380 540 VSX xvmuldp VSX Vector Multiply Double-Precision

XX3 60 0xF0000388 534 VSX xvmsubadp VSX Vector Multiply-Subtract Type-A 
Double-Precision

XX3 60 0xF0000398 489 VSX xvcmpgedp VSX Vector Compare Greater Than or Equal 
To Double-Precision

XX2 60 0xF00003A0 515 VSX xvcvuxwdp VSX Vector Convert Unsigned Fixed-Point 
Word to Double-Precision

XX2 60 0xF00003A4 561 VSX xvrdpip VSX Vector Round to Double-Precision 
Integer toward +Infinity

XX2 60 0xF00003A8 578 VSX xvtsqrtdp VSX Vector Test for software Square Root 
Double-Precision

XX2 60 0xF00003AC 560 VSX xvrdpic VSX Vector Round to Double-Precision 
Integer using Current rounding mode

XX3 60 0xF00003C0 516 VSX xvdivdp VSX Vector Divide Double-Precision

XX3 60 0xF00003C8 537 VSX xvmsubmdp VSX Vector Multiply-Subtract Type-M 
Double-Precision

XX2 60 0xF00003E0 513 VSX xvcvsxwdp VSX Vector Convert Signed Fixed-Point Word 
to Double-Precision

XX2 60 0xF00003E4 561 VSX xvrdpim VSX Vector Round to Double-Precision 
Integer toward -Infinity

XX3 60 0xF00003E8 576 VSX xvtdivdp VSX Vector Test for software Divide 
Double-Precision

VX 4 0x10000401 315 V bcdadd. Decimal Add Modulo

XX3 60 0xF0000408 454 VSX xsnmaddasp VSX Scalar Negative Multiply-Add Type-A 
Single-Precision

XX3 60 0xF0000410 579 VSX xxland VSX Logical AND

XX2 60 0xF0000424 411 VSX xscvdpsp VSX Scalar Convert Double-Precision to 
Single-Precision

XX2 60 0xF000042C 412 VSX xscvdpspn VSX Scalar Convert Double-Precision to 
Single-Precision format Non-signalling

VX 4 0x10000441 315 V bcdsub. Decimal Subtract Modulo

XX3 60 0xF0000448 454 VSX xsnmaddmsp VSX Scalar Negative Multiply-Add Type-M 
Single-Precision

XX3 60 0xF0000450 579 VSX xxlandc VSX Logical AND with Complement
XX2 60 0xF0000464 469 VSX xsrsp VSX Scalar Round to Single-Precision

XX3 60 0xF0000488 460 VSX xsnmsubasp VSX Scalar Negative Multiply-Subtract Type-A 
Single-Precision

XX3 60 0xF0000490 582 VSX xxlor VSX Logical OR

XX2 60 0xF00004A0 423 VSX xscvuxdsp VSX Scalar Convert Unsigned Fixed-Point 
Doubleword to Single-Precision

XX3 60 0xF00004C8 460 VSX xsnmsubmsp VSX Scalar Negative Multiply-Subtract 
Type-M Single-Precision

XX3 60 0xF00004D0 582 VSX xxlxor VSX Logical XOR

XX2 60 0xF00004E0 422 VSX xscvsxdsp VSX Scalar Convert Signed Fixed-Point 
Doubleword to Single-Precision

XX3 60 0xF0000500 434 VSX xsmaxdp VSX Scalar Maximum Double-Precision
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Version 2.07 B
XX3 60 0xF0000508 449 VSX xsnmaddadp VSX Scalar Negative Multiply-Add Type-A 
Double-Precision

XX3 60 0xF0000510 581 VSX xxlnor VSX Logical NOR

XX2 60 0xF0000520 415 VSX xscvdpuxds VSX Scalar Convert Double-Precision to 
Unsigned Fixed-Point Doubleword Saturate

XX2 60 0xF0000524 419 VSX xscvspdp VSX Scalar Convert Single-Precision to 
Double-Precision (p=1)

XX2 60 0xF000052C 421 VSX xscvspdpn Scalar Convert Single-Precision to 
Double-Precision format Non-signalling

XX3 60 0xF0000540 436 VSX xsmindp VSX Scalar Minimum Double-Precision

XX3 60 0xF0000548 449 VSX xsnmaddmdp VSX Scalar Negative Multiply-Add Type-M 
Double-Precision

XX3 60 0xF0000550 581 VSX xxlorc VSX Logical OR with Complement

XX2 60 0xF0000560 421 VSX xscvdpsxds VSX Scalar Convert Double-Precision to 
Signed Fixed-Point Doubleword Saturate

XX2 60 0xF0000564 398 VSX xsabsdp VSX Scalar Absolute Value Double-Precision
XX3 60 0xF0000580 410 VSX xscpsgndp VSX Scalar Copy Sign Double-Precision

XX3 60 0xF0000588 457 VSX xsnmsubadp VSX Scalar Negative Multiply-Subtract Type-A 
Double-Precision

XX3 60 0xF0000590 580 VSX xxlnand VSX Logical NAND

XX2 60 0xF00005A0 423 VSX xscvuxddp VSX Scalar Convert Unsigned Fixed-Point 
Doubleword to Double-Precision

XX2 60 0xF00005A4 448 VSX xsnabsdp VSX Scalar Negative Absolute Value 
Double-Precision

XX3 60 0xF00005C8 457 VSX xsnmsubmdp VSX Scalar Negative Multiply-Subtract 
Type-M Double-Precision

XX3 60 0xF00005D0 580 VSX xxleqv VSX Logical Equivalence

XX2 60 0xF00005E0 422 VSX xscvsxddp VSX Scalar Convert Signed Fixed-Point 
Doubleword to Double-Precision

XX2 60 0xF00005E4 448 VSX xsnegdp VSX Scalar Negate Double-Precision
XX3 60 0xF0000600 528 VSX xvmaxsp VSX Vector Maximum Single-Precision

XX3 60 0xF0000608 546 VSX xvnmaddasp VSX Vector Negative Multiply-Add Type-A 
Single-Precision

XX3 60 0xF0000618 488 VSX xvcmpeqsp. VSX Vector Compare Equal To 
Single-Precision & record CR6

XX2 60 0xF0000620 508 VSX xvcvspuxds VSX Vector Convert Single-Precision to 
Unsigned Fixed-Point Doubleword Saturate

XX2 60 0xF0000624 494 VSX xvcvdpsp VSX Vector Convert Double-Precision to 
Single-Precision

XX3 60 0xF0000640 532 VSX xvminsp VSX Vector Minimum Single-Precision

XX3 60 0xF0000648 551 VSX xvnmaddmsp VSX Vector Negative Multiply-Add Type-M 
Single-Precision

XX3 60 0xF0000658 492 VSX xvcmpgtsp. VSX Vector Compare Greater Than 
Single-Precision & record CR6

XX2 60 0xF0000660 504 VSX xvcvspsxds VSX Vector Convert Single-Precision to 
Signed Fixed-Point Doubleword Saturate

XX2 60 0xF0000664 480 VSX xvabssp VSX Vector Absolute Value Single-Precision
XX3 60 0xF0000680 493 VSX xvcpsgnsp VSX Vector Copy Sign Single-Precision

XX3 60 0xF0000688 554 VSX xvnmsubasp VSX Vector Negative Multiply-Subtract Type-A 
Single-Precision

XX3 60 0xF0000698 490 VSX xvcmpgesp. VSX Vector Compare Greater Than or Equal 
To Single-Precision & record CR6

XX2 60 0xF00006A0 514 VSX xvcvuxdsp VSX Vector Convert Unsigned Fixed-Point 
Doubleword to Single-Precision

XX2 60 0xF00006A4 544 VSX xvnabssp VSX Vector Negative Absolute Value 
Single-Precision

XX3 60 0xF00006C8 557 VSX xvnmsubmsp VSX Vector Negative Multiply-Subtract 
Type-M Single-Precision
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XX2 60 0xF00006E0 512 VSX xvcvsxdsp VSX Vector Convert Signed Fixed-Point 
Doubleword to Single-Precision

XX2 60 0xF00006E4 545 VSX xvnegsp VSX Vector Negate Single-Precision
XX3 60 0xF0000700 526 VSX xvmaxdp VSX Vector Maximum Double-Precision

XX3 60 0xF0000708 546 VSX xvnmaddadp VSX Vector Negative Multiply-Add Type-A 
Double-Precision

XX3 60 0xF0000718 487 VSX xvcmpeqdp. VSX Vector Compare Equal To 
Double-Precision & record CR6

XX2 60 0xF0000720 499 VSX xvcvdpuxds VSX Vector Convert Double-Precision to 
Unsigned Fixed-Point Doubleword Saturate

XX2 60 0xF0000724 503 VSX xvcvspdp VSX Vector Convert Single-Precision to 
Double-Precision

XX3 60 0xF0000740 530 VSX xvmindp VSX Vector Minimum Double-Precision

XX3 60 0xF0000748 551 VSX xvnmaddmdp VSX Vector Negative Multiply-Add Type-M 
Double-Precision

XX3 60 0xF0000758 491 VSX xvcmpgtdp. VSX Vector Compare Greater Than 
Double-Precision & record CR6

XX2 60 0xF0000760 495 VSX xvcvdpsxds VSX Vector Convert Double-Precision to 
Signed Fixed-Point Doubleword Saturate

XX2 60 0xF0000764 479 VSX xvabsdp VSX Vector Absolute Value Double-Precision
XX3 60 0xF0000780 493 VSX xvcpsgndp VSX Vector Copy Sign Double-Precision

XX3 60 0xF0000788 554 VSX xvnmsubadp VSX Vector Negative Multiply-Subtract Type-A 
Double-Precision

XX3 60 0xF0000798 489 VSX xvcmpgedp. VSX Vector Compare Greater Than or Equal 
To Double-Precision & record CR6

XX2 60 0xF00007A0 514 VSX xvcvuxddp VSX Vector Convert Unsigned Fixed-Point 
Doubleword to Double-Precision

XX2 60 0xF00007A4 544 VSX xvnabsdp VSX Vector Negative Absolute Value 
Double-Precision

XX3 60 0xF00007C8 557 VSX xvnmsubmdp VSX Vector Negative Multiply-Subtract 
Type-M Double-Precision

XX2 60 0xF00007E0 512 VSX xvcvsxddp VSX Vector Convert Signed Fixed-Point 
Doubleword to Double-Precision

XX2 60 0xF00007E4 545 VSX xvnegdp VSX Vector Negate Double-Precision
DS 61 0xF4000000 140 FP.out stfdp Store Floating-Point Double Pair
DS 62 0xF8000000 57 64 std Store Doubleword
DS 62 0xF8000001 57 64 stdu Store Doubleword with Update
DS 62 0xF8000002 P 59 LSQ stq Store Quadword
X 63 0xFC000000 158 FP fcmpu Floating Compare Unordered
X 63 0xFC000004 183 DFP daddq[.] Decimal Floating Add Quad

Z23 63 0xFC000006 194 DFP dquaq[.] Decimal Quantize Quad
X 63 0xFC000010 141 FP[R] fcpsgn[.] Floating Copy Sign
X 63 0xFC000018 150 FP[R] frsp[.] Floating Round to Single-Precision
X 63 0xFC00001C 152 FP[R] fctiw[.] Floating Convert To Integer Word

X 63 0xFC00001E 153 FP[R] fctiwz[.] Floating Convert To Integer Word with round 
to Zero

A 63 0xFC000024 144 FP[R] fdiv[.] Floating Divide
A 63 0xFC000028 143 FP[R] fsub[.] Floating Subtract
A 63 0xFC00002A 143 FP[R] fadd[.] Floating Add
A 63 0xFC00002C 145 FP[R] fsqrt[.] Floating Square Root
A 63 0xFC00002E 159 FP[R] fsel[.] Floating Select
A 63 0xFC000030 145 FP[R].in fre[.] Floating Reciprocal Estimate
A 63 0xFC000032 144 FP[R] fmul[.] Floating Multiply
A 63 0xFC000034 146 FP[R] frsqrte[.] Floating Reciprocal Square Root Estimate
A 63 0xFC000038 148 FP[R] fmsub[.] Floating Multiply-Subtract
A 63 0xFC00003A 148 FP[R] fmadd[.] Floating Multiply-Add
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A 63 0xFC00003C 149 FP[R] fnmsub[.] Floating Negative Multiply-Subtract
A 63 0xFC00003E 149 FP[R] fnmadd[.] Floating Negative Multiply-Add
X 63 0xFC000040 158 FP fcmpo Floating Compare Ordered
X 63 0xFC000044 185 DFP dmulq[.] Decimal Floating Multiply Quad

Z23 63 0xFC000046 196 DFP drrndq[.] Decimal Floating Reround Quad
X 63 0xFC00004C 162 FP[R] mtfsb1[.] Move To FPSCR Bit 1
X 63 0xFC000050 141 FP[R] fneg[.] Floating Negate
X 63 0xFC000080 160 FP mcrfs Move To Condition Register from FPSCR

Z22 63 0xFC000084 210 DFP dscliq[.] Decimal Floating Shift Coefficient Left 
Immediate Quad

Z23 63 0xFC000086 193 DFP dquaiq[.] Decimal Quantize Immediate Quad
X 63 0xFC00008C 162 FP[R] mtfsb0[.] Move To FPSCR Bit 0
X 63 0xFC000090 141 FP[R] fmr[.] Floating Move Register

Z22 63 0xFC0000C4 210 DFP dscriq[.] Decimal Floating Shift Coefficient Right 
Immediate Quad

Z23 63 0xFC0000C6 199 DFP drintxq[.] Decimal Floating Round To FP Integer With 
Inexact Quad

X 63 0xFC000100 147 FP ftdiv Floating Test for software Divide
X 63 0xFC000104 189 DFP dcmpoq Decimal Floating Compare Ordered Quad
X 63 0xFC00010C 161 FP[R] mtfsfi[.] Move To FPSCR Field Immediate
X 63 0xFC000110 141 FP[R] fnabs[.] Floating Negative Absolute Value
X 63 0xFC00011C 153 FP[R] fctiwu[.] Floating Convert To Integer Word Unsigned

X 63 0xFC00011E 154 FP[R] fctiwuz[.] Floating Convert To Integer Word Unsigned 
with round toward Zero

X 63 0xFC000140 147 FP ftsqrt Floating Test for software Square Root
X 63 0xFC000144 191 DFP dtstexq Decimal Floating Test Exponent Quad

Z22 63 0xFC000184 190 DFP dtstdcq Decimal Floating Test Data Class Quad
Z22 63 0xFC0001C4 190 DFP dtstdgq Decimal Floating Test Data Group Quad

Z23 63 0xFC0001C6 201 DFP drintnq[.] Decimal Floating Round To FP Integer 
Without Inexact Quad

X 63 0xFC000204 203 DFP dctqpq[.] Decimal Floating Convert To DFP Extended
X 63 0xFC000210 141 FP[R] fabs[.] Floating Absolute Value
X 63 0xFC000244 205 DFP dctfixq[.] Decimal Floating Convert To Fixed Quad
X 63 0xFC000284 207 DFP ddedpdq[.] Decimal Floating Decode DPD To BCD Quad
X 63 0xFC0002C4 208 DFP dxexq[.] Decimal Floating Extract Exponent Quad
X 63 0xFC000310 157 FP[R].in frin[.] Floating Round To Integer Nearest
X 63 0xFC000350 157 FP[R].in friz[.] Floating Round To Integer toward Zero
X 63 0xFC000390 157 FP[R].in frip[.] Floating Round To Integer Plus
X 63 0xFC0003D0 157 FP[R].in frim[.] Floating Round To Integer Minus
X 63 0xFC000404 183 DFP dsubq[.] Decimal Floating Subtract Quad
X 63 0xFC000444 186 DFP ddivq[.] Decimal Floating Divide Quad
X 63 0xFC00048E 160 FP[R] mffs[.] Move From FPSCR
X 63 0xFC000504 189 DFP dcmpuq Decimal Floating Compare Unordered Quad
X 63 0xFC000544 192 DFP dtstsfq Decimal Floating Test Significance Quad

XFL 63 0xFC00058E 161 FP[R] mtfsf[.] Move To FPSCR Fields
X 63 0xFC000604 204 DFP drdpq[.] Decimal Floating Round To DFP Long
X 63 0xFC000644 205 DFP dcffixq[.] Decimal Floating Convert From Fixed Quad
X 63 0xFC00065C 150 FP[R] fctid[.] Floating Convert To Integer Doubleword

X 63 0xFC00065E 151 FP[R] fctidz[.] Floating Convert To Integer Doubleword with 
round toward Zero

X 63 0xFC000684 207 DFP denbcdq[.] Decimal Floating Encode BCD To DPD Quad
X 63 0xFC00068C 142 VSX fmrgow Floating Merge Odd Word
X 63 0xFC00069C 154 FP[R] fcfid[.] Floating Convert From Integer Doubleword
X 63 0xFC0006C4 208 DFP diexq[.] Decimal Floating Insert Exponent Quad
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1 See the key to the mode dependency and privilege columns on page 1484 and the key to the category column in 
Section 1.3.5 of Book I.

X 63 0xFC00075C 151 FP[R] fctidu[.] Floating Convert To Integer Doubleword 
Unsigned

X 63 0xFC00075E 152 FP[R] fctiduz[.] Floating Convert To Integer Doubleword 
Unsigned with round toward Zero

X 63 0xFC00078C 142 VSX fmrgew Floating Merge Even Word

X 63 0xFC00079C 155 FP[R] fcfidu[.] Floating Convert From Integer Doubleword 
Unsigned
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Version 2.07 B
Appendix I.  Power ISA Instruction Set Sorted by 
Mnemonic

This appendix lists all the instructions in the Power ISA, sorted by mnemonic.

F
o

rm
at

Opcode

M
o

d
e 

D
ep

.1

P
ri

vi
le

g
e1

Page C
at

eg
o

ry
1

Mnemonic InstructionP
ri

m
ar

y Instruction
Image

(operands 
set to 0’s)

XO 31 0x7C000214 SR 68 B add[.] Add
XO 31 0x7C000014 SR 69 B addc[.] Add Carrying
XO 31 0x7C000414 SR 69 B addco[.] Add Carrying & record OV
XO 31 0x7C000114 SR 70 B adde[.] Add Extended
XO 31 0x7C000514 SR 70 B addeo[.] Add Extended & record OV & record OV
XO 31 0x7C000094 102 BCDA addg6s Add and Generate Sixes
D 14 0x38000000 67 B addi Add Immediate
D 12 0x30000000 SR 68 B addic Add Immediate Carrying
D 13 0x34000000 SR 68 B addic. Add Immediate Carrying & record CR0
D 15 0x3C000000 67 B addis Add Immediate Shifted

XO 31 0x7C0001D4 SR 70 B addme[.] Add to Minus One Extended
XO 31 0x7C0005D4 SR 70 B addmeo[.] Add to Minus One Extended & record OV
XO 31 0x7C000614 SR 68 B addo[.] Add & record OV
XO 31 0x7C000194 SR 71 B addze[.] Add to Zero Extended
XO 31 0x7C000594 SR 71 B addzeo[.] Add to Zero Extended & record OV
X 31 0x7C000038 SR 85 B and[.] AND
X 31 0x7C000078 SR 86 B andc[.] AND with Complement
D 28 0x70000000 SR 83 B andi. AND Immediate & record CR0
D 29 0x74000000 SR 83 B andis. AND Immediate Shifted & record CR0
I 18 0x48000000 38 B b[l][a] Branch
B 16 0x40000000 CT 38 B bc[l][a] Branch Conditional

XL 19 0x4C000420 CT 39 B bcctr[l] Branch Conditional to Count Register
VX 4 0x10000401 315 V bcdadd. Decimal Add Modulo
VX 4 0x10000441 315 V bcdsub. Decimal Subtract Modulo
XL 19 0x4C000020 CT 39 B bclr[l] Branch Conditional to Link Register

X 19 0x4C000460 40 B bctar[l] Branch Conditional to Branch Target Address 
Register

X 31 0x7C0001F8 91 64 bpermd Bit Permute Doubleword
EVX 4 0x1000020F 594 SP brinc Bit Reversed Increment

X 31 0x7C000274 102 BCDA cbcdtd Convert Binary Coded Decimal To Declets
X 31 0x7C000234 102 BCDA cdtbcd Convert Declets To Binary Coded Decimal
X 31 0x7C00035C 44 S clrbhrb Clear BHRB
X 31 0x7C000000 79 B cmp Compare
X 31 0x7C0003F8 87 B cmpb Compare Byte
D 11 0x2C000000 79 B cmpi Compare Immediate
X 31 0x7C000040 80 B cmpl Compare Logical
D 10 0x28000000 80 B cmpli Compare Logical Immediate
X 31 0x7C000074 SR 90 64 cntlzd[.] Count Leading Zeros Doubleword
X 31 0x7C000034 SR 86 B cntlzw[.] Count Leading Zeros Word

XL 19 0x4C000202 41 B crand Condition Register AND
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XL 19 0x4C000102 42 B crandc Condition Register AND with Complement
XL 19 0x4C000242 42 B creqv Condition Register Equivalent
XL 19 0x4C0001C2 41 B crnand Condition Register NAND
XL 19 0x4C000042 42 B crnor Condition Register NOR
XL 19 0x4C000382 41 B cror Condition Register OR
XL 19 0x4C000342 42 B crorc Condition Register OR with Complement
XL 19 0x4C000182 41 B crxor Condition Register XOR
X 59 0xEC000004 183 DFP dadd[.] Decimal Floating Add
X 63 0xFC000004 183 DFP daddq[.] Decimal Floating Add Quad
X 31 0x7C0005EC 770 E dcba Data Cache Block Allocate
X 31 0x7C0000AC  773 B dcbf Data Cache Block Flush
X 31 0x7C0000FE P 1064 E.PD dcbfep Data Cache Block Flush by External PID
X 31 0x7C0003AC P 1118 E dcbi Data Cache Block Invalidate
X 31 0x7C00030C M 1123 ECL dcblc Data Cache Block Lock Clear
X 31 0x7C00034D 1121 ECL dcblq. Data Cache Block Lock Query
X 31 0x7C00006C  773 B dcbst Data Cache Block Store
X 31 0x7C00007E P 1063 E.PD dcbstep Data Cache Block Store by External PID
X 31 0x7C00022C  770 B dcbt Data Cache Block Touch
X 31 0x7C00027E P 1063 E.PD dcbtep Data Cache Block Touch by External PID
X 31 0x7C00014C M 1122 ECL dcbtls Data Cache Block Touch and Lock Set
X 31 0x7C0001EC  771 B dcbtst Data Cache Block Touch for Store

X 31 0x7C0001FE P 1066 E.PD dcbtstep Data Cache Block Touch for Store by External 
PID

X 31 0x7C00010C M 1122 ECL dcbtstls Data Cache Block Touch for Store and Lock 
Set

X 31 0x7C0007EC  773 B dcbz Data Cache Block Zero
X 31 0x7C0007FE P 1067 E.PD dcbzep Data Cache Block Zero by External PID
X 59 0xEC000644 205 DFP dcffix[.] Decimal Floating Convert From Fixed
X 63 0xFC000644 205 DFP dcffixq[.] Decimal Floating Convert From Fixed Quad
X 31 0x7C00038C P 1239 E.CI dci Data Cache Invalidate
X 59 0xEC000104 189 DFP dcmpo Decimal Floating Compare Ordered
X 63 0xFC000104 189 DFP dcmpoq Decimal Floating Compare Ordered Quad
X 59 0xEC000504 188 DFP dcmpu Decimal Floating Compare Unordered
X 63 0xFC000504 189 DFP dcmpuq Decimal Floating Compare Unordered Quad
X 31 0x7C00028C P 1242 E.CD dcread Data Cache Read
X 31 0x7C0003CC P 1242 E.CD dcread Data Cache Read
X 59 0xEC000204 203 DFP dctdp[.] Decimal Floating Convert To DFP Long
X 59 0xEC000244 205 DFP dctfix[.] Decimal Floating Convert To Fixed
X 63 0xFC000244 205 DFP dctfixq[.] Decimal Floating Convert To Fixed Quad
X 63 0xFC000204 203 DFP dctqpq[.] Decimal Floating Convert To DFP Extended
X 59 0xEC000284 207 DFP ddedpd[.] Decimal Floating Decode DPD To BCD
X 63 0xFC000284 207 DFP ddedpdq[.] Decimal Floating Decode DPD To BCD Quad
X 59 0xEC000444 186 DFP ddiv[.] Decimal Floating Divide
X 63 0xFC000444 186 DFP ddivq[.] Decimal Floating Divide Quad
X 59 0xEC000684 207 DFP denbcd[.] Decimal Floating Encode BCD To DPD
X 63 0xFC000684 207 DFP denbcdq[.] Decimal Floating Encode BCD To DPD Quad
X 59 0xEC0006C4 208 DFP diex[.] Decimal Floating Insert Exponent
X 63 0xFC0006C4 208 DFP diexq[.] Decimal Floating Insert Exponent Quad

XO 31 0x7C0003D2 SR 77 64 divd[.] Divide Doubleword
XO 31 0x7C000352 SR 78 64 divde[.] Divide Doubleword Extended
XO 31 0x7C000752 SR 78 64 divdeo[.] Divide Doubleword Extended & record OV
XO 31 0x7C000312 SR 78 64 divdeu[.] Divide Doubleword Extended Unsigned

XO 31 0x7C000712 SR 78 64 divdeuo[.] Divide Doubleword Extended Unsigned & 
record OV
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XO 31 0x7C0007D2 SR 77 64 divdo[.] Divide Doubleword & record OV
XO 31 0x7C000392 SR 77 64 divdu[.] Divide Doubleword Unsigned
XO 31 0x7C000792 SR 77 64 divduo[.] Divide Doubleword Unsigned & record OV
XO 31 0x7C0003D6 SR 73 B divw[.] Divide Word
XO 31 0x7C000356 SR 74 B divwe[.] Divide Word Extended
XO 31 0x7C000756 SR 74 B divweo[.] Divide Word Extended & record OV
XO 31 0x7C000316 SR 74 B divweu[.] Divide Word Extended Unsigned
XO 31 0x7C000716 SR 74 B divweuo[.] Divide Word Extended Unsigned & record OV
XO 31 0x7C0007D6 SR 73 B divwo[.] Divide Word & record OV
XO 31 0x7C000396 SR 73 B divwu[.] Divide Word Unsigned
XO 31 0x7C000796 SR 73 B divwuo[.] Divide Word Unsigned & record OV
X 31 0x7C00009C 673 LMV dlmzb[.] Determine Leftmost Zero Byte
X 59 0xEC000044 185 DFP dmul[.] Decimal Floating Multiply
X 63 0xFC000044 185 DFP dmulq[.] Decimal Floating Multiply Quad

XFX 19 0x4C00018C 1228 E dnh Debugger Notify Halt
XL 19 0x4C000324 H 867 S doze Doze
Z23 59 0xEC000006 194 DFP dqua[.] Decimal Quantize
Z23 59 0xEC000086 193 DFP dquai[.] Decimal Quantize Immediate
Z23 63 0xFC000086 193 DFP dquaiq[.] Decimal Quantize Immediate Quad
Z23 63 0xFC000006 194 DFP dquaq[.] Decimal Quantize Quad
X 63 0xFC000604 204 DFP drdpq[.] Decimal Floating Round To DFP Long

Z23 59 0xEC0001C6 201 DFP drintn[.] Decimal Floating Round To FP Integer 
Without Inexact

Z23 63 0xFC0001C6 201 DFP drintnq[.] Decimal Floating Round To FP Integer 
Without Inexact Quad

Z23 59 0xEC0000C6 199 DFP drintx[.] Decimal Floating Round To FP Integer With 
Inexact

Z23 63 0xFC0000C6 199 DFP drintxq[.] Decimal Floating Round To FP Integer With 
Inexact Quad

Z23 59 0xEC000046 196 DFP drrnd[.] Decimal Floating Reround
Z23 63 0xFC000046 196 DFP drrndq[.] Decimal Floating Reround Quad
X 59 0xEC000604 204 DFP drsp[.] Decimal Floating Round To DFP Short

Z22 59 0xEC000084 210 DFP dscli[.] Decimal Floating Shift Coefficient Left 
Immediate

Z22 63 0xFC000084 210 DFP dscliq[.] Decimal Floating Shift Coefficient Left 
Immediate Quad

Z22 59 0xEC0000C4 210 DFP dscri[.] Decimal Floating Shift Coefficient Right 
Immediate

Z22 63 0xFC0000C4 210 DFP dscriq[.] Decimal Floating Shift Coefficient Right 
Immediate Quad

X 31 0x7C0003C6 824 DS dsn Decorated Storage Notify
X 59 0xEC000404 183 DFP dsub[.] Decimal Floating Subtract
X 63 0xFC000404 183 DFP dsubq[.] Decimal Floating Subtract Quad

Z22 59 0xEC000184 190 DFP dtstdc Decimal Floating Test Data Class
Z22 63 0xFC000184 190 DFP dtstdcq Decimal Floating Test Data Class Quad
Z22 59 0xEC0001C4 190 DFP dtstdg Decimal Floating Test Data Group
Z22 63 0xFC0001C4 190 DFP dtstdgq Decimal Floating Test Data Group Quad
X 59 0xEC000144 191 DFP dtstex Decimal Floating Test Exponent
X 63 0xFC000144 191 DFP dtstexq Decimal Floating Test Exponent Quad
X 59 0xEC000544 192 DFP dtstsf Decimal Floating Test Significance
X 63 0xFC000544 192 DFP dtstsfq Decimal Floating Test Significance Quad
X 59 0xEC0002C4 208 DFP dxex[.] Decimal Floating Extract Exponent
X 63 0xFC0002C4 208 DFP dxexq[.] Decimal Floating Extract Exponent Quad
X 31 0x7C00026C 826 EC eciwx External Control In Word Indexed
X 31 0x7C00036C 826 EC ecowx External Control Out Word Indexed
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EVX 4 0x100002E4 660 SP.FD efdabs Floating-Point Double-Precision Absolute 
Value

EVX 4 0x100002E0 661 SP.FD efdadd Floating-Point Double-Precision Add

EVX 4 0x100002EF 666 SP.FD efdcfs Floating-Point Double-Precision Convert from 
Single-Precision

EVX 4 0x100002F3 664 SP.FD efdcfsf Convert Floating-Point Double-Precision from 
Signed Fraction

EVX 4 0x100002F1 663 SP.FD efdcfsi Convert Floating-Point Double-Precision from 
Signed Integer

EVX 4 0x100002E3 664 SP.FD efdcfsid Convert Floating-Point Double-Precision from 
Signed Integer Doubleword

EVX 4 0x100002F2 664 SP.FD efdcfuf Convert Floating-Point Double-Precision from 
Unsigned Fraction

EVX 4 0x100002F0 663 SP.FD efdcfui Convert Floating-Point Double-Precision from 
Unsigned Integer

EVX 4 0x100002E2 664 SP.FD efdcfuid Convert Floating-Point Double-Precision from 
Unsigned Integer Doubleword

EVX 4 0x100002EE 662 SP.FD efdcmpeq Floating-Point Double-Precision Compare 
Equal

EVX 4 0x100002EC 662 SP.FD efdcmpgt Floating-Point Double-Precision Compare 
Greater Than

EVX 4 0x100002ED 662 SP.FD efdcmplt Floating-Point Double-Precision Compare 
Less Than

EVX 4 0x100002F7 666 SP.FD efdctsf Convert Floating-Point Double-Precision to 
Signed Fraction

EVX 4 0x100002F5 664 SP.FD efdctsi Convert Floating-Point Double-Precision to 
Signed Integer

EVX 4 0x100002EB 665 SP.FD efdctsidz
Convert Floating-Point Double-Precision to 

Signed Integer Doubleword with Round 
toward Zero

EVX 4 0x100002FA 666 SP.FD efdctsiz Convert Floating-Point Double-Precision to 
Signed Integer with Round toward Zero

EVX 4 0x100002F6 666 SP.FD efdctuf Convert Floating-Point Double-Precision to 
Unsigned Fraction

EVX 4 0x100002F4 664 SP.FD efdctui Convert Floating-Point Double-Precision to 
Unsigned Integer

EVX 4 0x100002EA 665 SP.FD efdctuidz
Convert Floating-Point Double-Precision to 

Unsigned Integer Doubleword with Round 
toward Zero

EVX 4 0x100002F8 666 SP.FD efdctuiz Convert Floating-Point Double-Precision to 
Unsigned Integer with Round toward Zero

EVX 4 0x100002E9 661 SP.FD efddiv Floating-Point Double-Precision Divide
EVX 4 0x100002E8 661 SP.FD efdmul Floating-Point Double-Precision Multiply

EVX 4 0x100002E5 660 SP.FD efdnabs Floating-Point Double-Precision Negative 
Absolute Value

EVX 4 0x100002E6 660 SP.FD efdneg Floating-Point Double-Precision Negate
EVX 4 0x100002E1 661 SP.FD efdsub Floating-Point Double-Precision Subtract
EVX 4 0x100002FE 663 SP.FD efdtsteq Floating-Point Double-Precision Test Equal

EVX 4 0x100002FC 662 SP.FD efdtstgt Floating-Point Double-Precision Test Greater 
Than

EVX 4 0x100002FD 663 SP.FD efdtstlt Floating-Point Double-Precision Test Less 
Than

EVX 4 0x100002C4 653 SP.FS efsabs Floating-Point Absolute Value
EVX 4 0x100002C0 654 SP.FS efsadd Floating-Point Add

EVX 4 0x100002CF 667 SP.FD efscfd Floating-Point Single-Precision Convert from 
Double-Precision

EVX 4 0x100002D3 658 SP.FS efscfsf Convert Floating-Point from Signed Fraction
EVX 4 0x100002D1 658 SP.FS efscfsi Convert Floating-Point from Signed Integer
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EVX 4 0x100002D2 658 SP.FS efscfuf Convert Floating-Point from Unsigned 
Fraction

EVX 4 0x100002D0 658 SP.FS efscfui Convert Floating-Point from Unsigned Integer
EVX 4 0x100002CE 656 SP.FS efscmpeq Floating-Point Compare Equal
EVX 4 0x100002CC 655 SP.FS efscmpgt Floating-Point Compare Greater Than
EVX 4 0x100002CD 655 SP.FS efscmplt Floating-Point Compare Less Than
EVX 4 0x100002D7 659 SP.FS efsctsf Convert Floating-Point to Signed Fraction
EVX 4 0x100002D5 658 SP.FS efsctsi Convert Floating-Point to Signed Integer

EVX 4 0x100002DA 659 SP.FS efsctsiz Convert Floating-Point to Signed Integer with 
Round toward Zero

EVX 4 0x100002D6 659 SP.FS efsctuf Convert Floating-Point to Unsigned Fraction
EVX 4 0x100002D4 658 SP.FS efsctui Convert Floating-Point to Unsigned Integer

EVX 4 0x100002D8 659 SP.FS efsctuiz Convert Floating-Point to Unsigned Integer 
with Round toward Zero

EVX 4 0x100002C9 654 SP.FS efsdiv Floating-Point Divide
EVX 4 0x100002C8 654 SP.FS efsmul Floating-Point Multiply
EVX 4 0x100002C5 653 SP.FS efsnabs Floating-Point Negative Absolute Value
EVX 4 0x100002C6 653 SP.FS efsneg Floating-Point Negate
EVX 4 0x100002C1 654 SP.FS efssub Floating-Point Subtract
EVX 4 0x100002DE 657 SP.FS efststeq Floating-Point Test Equal
EVX 4 0x100002DC 656 SP.FS efststgt Floating-Point Test Greater Than
EVX 4 0x100002DD 657 SP.FS efststlt Floating-Point Test Less Than
XL 31 0x7C00021C 1043 E.HV ehpriv Embedded Hypervisor Privilege
X 31 0x7C0006AC 790 S eieio Enforce In-order Execution of I/O
X 31 0x7C000238 SR  86 B eqv[.] Equivalent

EVX 4 0x10000208 594 SP evabs Vector Absolute Value
EVX 4 0x10000202 594 SP evaddiw Vector Add Immediate Word

EVX 4 0x100004C9 594 SP evaddsmiaaw Vector Add Signed, Modulo, Integer to 
Accumulator Word

EVX 4 0x100004C1 595 SP evaddssiaaw Vector Add Signed, Saturate, Integer to 
Accumulator Word

EVX 4 0x100004C8 595 SP evaddumiaaw Vector Add Unsigned, Modulo, Integer to 
Accumulator Word

EVX 4 0x100004C0 595 SP evaddusiaaw Vector Add Unsigned, Saturate, Integer to 
Accumulator Word

EVX 4 0x10000200 595 SP evaddw Vector Add Word
EVX 4 0x10000211 596 SP evand Vector AND
EVX 4 0x10000212 596 SP evandc Vector AND with Complement
EVX 4 0x10000234 596 SP evcmpeq Vector Compare Equal
EVX 4 0x10000231 596 SP evcmpgts Vector Compare Greater Than Signed
EVX 4 0x10000230 597 SP evcmpgtu Vector Compare Greater Than Unsigned
EVX 4 0x10000233 597 SP evcmplts Vector Compare Less Than Signed
EVX 4 0x10000232 597 SP evcmpltu Vector Compare Less Than Unsigned
EVX 4 0x1000020E 598 SP evcntlsw Vector Count Leading Signed Bits Word
EVX 4 0x1000020D 598 SP evcntlzw Vector Count Leading Zeros Word
EVX 4 0x100004C6 598 SP evdivws Vector Divide Word Signed
EVX 4 0x100004C7 599 SP evdivwu Vector Divide Word Unsigned
EVX 4 0x10000219 599 SP eveqv Vector Equivalent
EVX 4 0x1000020A 599 SP evextsb Vector Extend Sign Byte
EVX 4 0x1000020B 599 SP evextsh Vector Extend Sign Half Word
EVX 4 0x10000284 645 SP.FV evfsabs Vector Floating-Point Absolute Value
EVX 4 0x10000280 646 SP.FV evfsadd Vector Floating-Point Add

EVX 4 0x10000293 650 SP.FV evfscfsf Vector Convert Floating-Point from Signed 
Fraction
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Version 2.07 B
EVX 4 0x10000291 650 SP.FV evfscfsi Vector Convert Floating-Point from Signed 
Integer

EVX 4 0x10000292 650 SP.FV evfscfuf Vector Convert Floating-Point from Unsigned 
Fraction

EVX 4 0x10000290 650 SP.FV evfscfui Vector Convert Floating-Point from Unsigned 
Integer

EVX 4 0x1000028E 648 SP.FV evfscmpeq Vector Floating-Point Compare Equal
EVX 4 0x1000028C 647 SP.FV evfscmpgt Vector Floating-Point Compare Greater Than
EVX 4 0x1000028D 647 SP.FV evfscmplt Vector Floating-Point Compare Less Than

EVX 4 0x10000297 652 SP.FV evfsctsf Vector Convert Floating-Point to Signed 
Fraction

EVX 4 0x10000295 651 SP.FV evfsctsi Vector Convert Floating-Point to Signed 
Integer

EVX 4 0x1000029A 651 SP.FV evfsctsiz Vector Convert Floating-Point to Signed 
Integer with Round toward Zero

EVX 4 0x10000296 652 SP.FV evfsctuf Vector Convert Floating-Point to Unsigned 
Fraction

EVX 4 0x10000294 651 SP.FV evfsctui Vector Convert Floating-Point to Unsigned 
Integer

EVX 4 0x10000298 651 SP.FV evfsctuiz Vector Convert Floating-Point to Unsigned 
Integer with Round toward Zero

EVX 4 0x10000289 646 SP.FV evfsdiv Vector Floating-Point Divide
EVX 4 0x10000288 646 SP.FV evfsmul Vector Floating-Point Multiply
EVX 4 0x10000285 645 SP.FV evfsnabs Vector Floating-Point Negative Absolute Value
EVX 4 0x10000286 645 SP.FV evfsneg Vector Floating-Point Negate
EVX 4 0x10000281 646 SP.FV evfssub Vector Floating-Point Subtract
EVX 4 0x1000029E 649 SP.FV evfststeq Vector Floating-Point Test Equal
EVX 4 0x1000029C 648 SP.FV evfststgt Vector Floating-Point Test Greater Than
EVX 4 0x1000029D 649 SP.FV evfststlt Vector Floating-Point Test Less Than
EVX 4 0x10000301 600 SP evldd Vector Load Double Word into Double Word

EVX 31 0x7C00063E P 1069 E.PD evlddepx Vector Load Double Word into Double Word 
by External PID Indexed

EVX 4 0x10000300 600 SP evlddx Vector Load Double Word into Double Word 
Indexed

EVX 4 0x10000305 600 SP evldh Vector Load Double into Four Half Words

EVX 4 0x10000304 600 SP evldhx Vector Load Double into Four Half Words 
Indexed

EVX 4 0x10000303 601 SP evldw Vector Load Double into Two Words
EVX 4 0x10000302 601 SP evldwx Vector Load Double into Two Words Indexed

EVX 4 0x10000309 601 SP evlhhesplat Vector Load Half Word into Half Words Even 
and Splat

EVX 4 0x10000308 601 SP evlhhesplatx Vector Load Half Word into Half Words Even 
and Splat Indexed

EVX 4 0x1000030F 602 SP evlhhossplat Vector Load Half Word into Half Word Odd 
Signed and Splat

EVX 4 0x1000030E 602 SP evlhhossplatx Vector Load Half Word into Half Word Odd 
Signed and Splat Indexed

EVX 4 0x1000030D 602 SP evlhhousplat Vector Load Half Word into Half Word Odd 
Unsigned and Splat

EVX 4 0x1000030C 602 SP evlhhousplatx Vector Load Half Word into Half Word Odd 
Unsigned and Splat Indexed

EVX 4 0x10000311 603 SP evlwhe Vector Load Word into Two Half Words Even

EVX 4 0x10000310 603 SP evlwhex Vector Load Word into Two Half Words Even 
Indexed

EVX 4 0x10000317 603 SP evlwhos Vector Load Word into Two Half Words Odd 
Signed (with sign extension)
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Version 2.07 B
EVX 4 0x10000316 603 SP evlwhosx Vector Load Word into Two Half Words Odd 
Signed Indexed (with sign extension)

EVX 4 0x10000315 604 SP evlwhou Vector Load Word into Two Half Words Odd 
Unsigned (zero-extended)

EVX 4 0x10000314 604 SP evlwhoux Vector Load Word into Two Half Words Odd 
Unsigned Indexed (zero-extended)

EVX 4 0x1000031D 604 SP evlwhsplat Vector Load Word into Two Half Words and 
Splat

EVX 4 0x1000031C 604 SP evlwhsplatx Vector Load Word into Two Half Words and 
Splat Indexed

EVX 4 0x10000319 605 SP evlwwsplat Vector Load Word into Word and Splat

EVX 4 0x10000318 605 SP evlwwsplatx Vector Load Word into Word and Splat 
Indexed

EVX 4 0x1000022C 605 SP evmergehi Vector Merge High
EVX 4 0x1000022E 606 SP evmergehilo Vector Merge High/Low
EVX 4 0x1000022D 605 SP evmergelo Vector Merge Low
EVX 4 0x1000022F 606 SP evmergelohi Vector Merge Low/High

EVX 4 0x1000052B 606 SP evmhegsmfaa Vector Multiply Half Words, Even, Guarded, 
Signed, Modulo, Fractional and Accumulate

EVX 4 0x100005AB 606 SP evmhegsmfan
Vector Multiply Half Words, Even, Guarded, 

Signed, Modulo, Fractional and Accumulate 
Negative

EVX 4 0x10000529 607 SP evmhegsmiaa Vector Multiply Half Words, Even, Guarded, 
Signed, Modulo, Integer and Accumulate

EVX 4 0x100005A9 607 SP evmhegsmian
Vector Multiply Half Words, Even, Guarded, 

Signed, Modulo, Integer and Accumulate 
Negative

EVX 4 0x10000528 607 SP evmhegumiaa Vector Multiply Half Words, Even, Guarded, 
Unsigned, Modulo, Integer and Accumulate

EVX 4 0x100005A8 607 SP evmhegumian
Vector Multiply Half Words, Even, Guarded, 

Unsigned, Modulo, Integer and Accumulate 
Negative

EVX 4 0x1000040B 608 SP evmhesmf Vector Multiply Half Words, Even, Signed, 
Modulo, Fractional

EVX 4 0x1000042B 608 SP evmhesmfa Vector Multiply Half Words, Even, Signed, 
Modulo, Fractional to Accumulator

EVX 4 0x1000050B 608 SP evmhesmfaaw
Vector Multiply Half Words, Even, Signed, 

Modulo, Fractional and Accumulate into 
Words

EVX 4 0x1000058B 608 SP evmhesmfanw
Vector Multiply Half Words, Even, Signed, 

Modulo, Fractional and Accumulate 
Negative into Words

EVX 4 0x10000409 609 SP evmhesmi Vector Multiply Half Words, Even, Signed, 
Modulo, Integer

EVX 4 0x10000429 609 SP evmhesmia Vector Multiply Half Words, Even, Signed, 
Modulo, Integer to Accumulator

EVX 4 0x10000509 609 SP evmhesmiaaw Vector Multiply Half Words, Even, Signed, 
Modulo, Integer and Accumulate into Words

EVX 4 0x10000589 609 SP evmhesmianw
Vector Multiply Half Words, Even, Signed, 

Modulo, Integer and Accumulate Negative 
into Words

EVX 4 0x10000403 610 SP evmhessf Vector Multiply Half Words, Even, Signed, 
Saturate, Fractional

EVX 4 0x10000423 610 SP evmhessfa Vector Multiply Half Words, Even, Signed, 
Saturate, Fractional to Accumulator

EVX 4 0x10000503 611 SP evmhessfaaw
Vector Multiply Half Words, Even, Signed, 

Saturate, Fractional and Accumulate into 
Words
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Version 2.07 B
EVX 4 0x10000583 611 SP evmhessfanw
Vector Multiply Half Words, Even, Signed, 

Saturate, Fractional and Accumulate 
Negative into Words

EVX 4 0x10000501 612 SP evmhessiaaw
Vector Multiply Half Words, Even, Signed, 

Saturate, Integer and Accumulate into 
Words

EVX 4 0x10000581 612 SP evmhessianw
Vector Multiply Half Words, Even, Signed, 

Saturate, Integer and Accumulate Negative 
into Words

EVX 4 0x10000408 613 SP evmheumi Vector Multiply Half Words, Even, Unsigned, 
Modulo, Integer

EVX 4 0x10000428 613 SP evmheumia Vector Multiply Half Words, Even, Unsigned, 
Modulo, Integer to Accumulator

EVX 4 0x10000508 613 SP evmheumiaaw Vector Multiply Half Words, Even, Unsigned, 
Modulo, Integer and Accumulate into Words

EVX 4 0x10000588 613 SP evmheumianw
Vector Multiply Half Words, Even, Unsigned, 

Modulo, Integer and Accumulate Negative 
into Words

EVX 4 0x10000500 614 SP evmheusiaaw
Vector Multiply Half Words, Even, Unsigned, 

Saturate, Integer and Accumulate into 
Words

EVX 4 0x10000580 614 SP evmheusianw
Vector Multiply Half Words, Even, Unsigned, 

Saturate, Integer and Accumulate Negative 
into Words

EVX 4 0x1000052F 615 SP evmhogsmfaa Vector Multiply Half Words, Odd, Guarded, 
Signed, Modulo, Fractional and Accumulate

EVX 4 0x100005AF 615 SP evmhogsmfan
Vector Multiply Half Words, Odd, Guarded, 

Signed, Modulo, Fractional and Accumulate 
Negative

EVX 4 0x1000052D 615 SP evmhogsmiaa Vector Multiply Half Words, Odd, Guarded, 
Signed, Modulo, Integer, and Accumulate

EVX 4 0x100005AD 615 SP evmhogsmian
Vector Multiply Half Words, Odd, Guarded, 

Signed, Modulo, Integer and Accumulate 
Negative

EVX 4 0x1000052C 616 SP evmhogumiaa Vector Multiply Half Words, Odd, Guarded, 
Unsigned, Modulo, Integer and Accumulate

EVX 4 0x100005AC 616 SP evmhogumian
Vector Multiply Half Words, Odd, Guarded, 

Unsigned, Modulo, Integer and Accumulate 
Negative

EVX 4 0x1000040F 616 SP evmhosmf Vector Multiply Half Words, Odd, Signed, 
Modulo, Fractional

EVX 4 0x1000042F 616 SP evmhosmfa Vector Multiply Half Words, Odd, Signed, 
Modulo, Fractional to Accumulator

EVX 4 0x1000050F 617 SP evmhosmfaaw
Vector Multiply Half Words, Odd, Signed, 

Modulo, Fractional and Accumulate into 
Words

EVX 4 0x1000058F 617 SP evmhosmfanw
Vector Multiply Half Words, Odd, Signed, 

Modulo, Fractional and Accumulate 
Negative into Words

EVX 4 0x1000040D 617 SP evmhosmi Vector Multiply Half Words, Odd, Signed, 
Modulo, Integer

EVX 4 0x1000042D 617 SP evmhosmia Vector Multiply Half Words, Odd, Signed, 
Modulo, Integer to Accumulator

EVX 4 0x1000050D 618 SP evmhosmiaaw Vector Multiply Half Words, Odd, Signed, 
Modulo, Integer and Accumulate into Words

EVX 4 0x1000058D 617 SP evmhosmianw
Vector Multiply Half Words, Odd, Signed, 

Modulo, Integer and Accumulate Negative 
into Words

EVX 4 0x10000407 619 SP evmhossf Vector Multiply Half Words, Odd, Signed, 
Saturate, Fractional
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Version 2.07 B
EVX 4 0x10000427 619 SP evmhossfa Vector Multiply Half Words, Odd, Signed, 
Saturate, Fractional to Accumulator

EVX 4 0x10000507 620 SP evmhossfaaw
Vector Multiply Half Words, Odd, Signed, 

Saturate, Fractional and Accumulate into 
Words

EVX 4 0x10000587 620 SP evmhossfanw
Vector Multiply Half Words, Odd, Signed, 

Saturate, Fractional and Accumulate 
Negative into Words

EVX 4 0x10000505 621 SP evmhossiaaw
Vector Multiply Half Words, Odd, Signed, 

Saturate, Integer and Accumulate into 
Words

EVX 4 0x10000585 621 SP evmhossianw
Vector Multiply Half Words, Odd, Signed, 

Saturate, Integer and Accumulate Negative 
into Words

EVX 4 0x1000040C 621 SP evmhoumi Vector Multiply Half Words, Odd, Unsigned, 
Modulo, Integer

EVX 4 0x1000042C 621 SP evmhoumia Vector Multiply Half Words, Odd, Unsigned, 
Modulo, Integer to Accumulator

EVX 4 0x1000050C 622 SP evmhoumiaaw Vector Multiply Half Words, Odd, Unsigned, 
Modulo, Integer and Accumulate into Words

EVX 4 0x1000058C 618 SP evmhoumianw
Vector Multiply Half Words, Odd, Unsigned, 

Modulo, Integer and Accumulate Negative 
into Words

EVX 4 0x10000504 622 SP evmhousiaaw
Vector Multiply Half Words, Odd, Unsigned, 

Saturate, Integer and Accumulate into 
Words

EVX 4 0x10000584 622 SP evmhousianw
Vector Multiply Half Words, Odd, Unsigned, 

Saturate, Integer and Accumulate Negative 
into Words

EVX 4 0x100004C4 623 SP evmra Initialize Accumulator

EVX 4 0x1000044F 623 SP evmwhsmf Vector Multiply Word High Signed, Modulo, 
Fractional

EVX 4 0x1000046F 623 SP evmwhsmfa Vector Multiply Word High Signed, Modulo, 
Fractional to Accumulator

EVX 4 0x1000044D 623 SP evmwhsmi Vector Multiply Word High Signed, Modulo, 
Integer

EVX 4 0x1000046D 623 SP evmwhsmia Vector Multiply Word High Signed, Modulo, 
Integer to Accumulator

EVX 4 0x10000447 624 SP evmwhssf Vector Multiply Word High Signed, Saturate, 
Fractional

EVX 4 0x10000467 624 SP evmwhssfa Vector Multiply Word High Signed, Saturate, 
Fractional to Accumulator

EVX 4 0x1000044C 624 SP evmwhumi Vector Multiply Word High Unsigned, Modulo, 
Integer

EVX 4 0x1000046C 624 SP evmwhumia Vector Multiply Word High Unsigned, Modulo, 
Integer to Accumulator

EVX 4 0x10000549 625 SP evmwlsmiaaw Vector Multiply Word Low Signed, Modulo, 
Integer and Accumulate in Words

EVX 4 0x100005C9 625 SP evmwlsmianw Vector Multiply Word Low Signed, Modulo, 
Integer and Accumulate Negative in Words

EVX 4 0x10000541 625 SP evmwlssiaaw Vector Multiply Word Low Signed, Saturate, 
Integer and Accumulate in Words

EVX 4 0x100005C1 625 SP evmwlssianw Vector Multiply Word Low Signed, Saturate, 
Integer and Accumulate Negative in Words

EVX 4 0x10000448 626 SP evmwlumi Vector Multiply Word Low Unsigned, Modulo, 
Integer

EVX 4 0x10000468 626 SP evmwlumia Vector Multiply Word Low Unsigned, Modulo, 
Integer to Accumulator

EVX 4 0x10000548 626 SP evmwlumiaaw Vector Multiply Word Low Unsigned, Modulo, 
Integer and Accumulate in Words
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Version 2.07 B
EVX 4 0x100005C8 626 SP evmwlumianw Vector Multiply Word Low Unsigned, Modulo, 
Integer and Accumulate Negative in Words

EVX 4 0x10000540 627 SP evmwlusiaaw Vector Multiply Word Low Unsigned, Saturate, 
Integer and Accumulate in Words

EVX 4 0x100005C0 627 SP evmwlusianw Vector Multiply Word Low Unsigned, Saturate, 
Integer and Accumulate Negative in Words

EVX 4 0x1000045B 627 SP evmwsmf Vector Multiply Word Signed, Modulo, 
Fractional

EVX 4 0x1000047B 627 SP evmwsmfa Vector Multiply Word Signed, Modulo, 
Fractional to Accumulator

EVX 4 0x1000055B 628 SP evmwsmfaa Vector Multiply Word Signed, Modulo, 
Fractional and Accumulate

EVX 4 0x100005DB 628 SP evmwsmfan Vector Multiply Word Signed, Modulo, 
Fractional and Accumulate Negative

EVX 4 0x10000459 628 SP evmwsmi Vector Multiply Word Signed, Modulo, Integer

EVX 4 0x10000479 628 SP evmwsmia Vector Multiply Word Signed, Modulo, Integer 
to Accumulator

EVX 4 0x10000559 628 SP evmwsmiaa Vector Multiply Word Signed, Modulo, Integer 
and Accumulate

EVX 4 0x100005D9 628 SP evmwsmian Vector Multiply Word Signed, Modulo, Integer 
and Accumulate Negative

EVX 4 0x10000453 629 SP evmwssf Vector Multiply Word Signed, Saturate, 
Fractional

EVX 4 0x10000473 629 SP evmwssfa Vector Multiply Word Signed, Saturate, 
Fractional to Accumulator

EVX 4 0x10000553 629 SP evmwssfaa Vector Multiply Word Signed, Saturate, 
Fractional and Accumulate

EVX 4 0x100005D3 630 SP evmwssfan Vector Multiply Word Signed, Saturate, 
Fractional and Accumulate Negative

EVX 4 0x10000458 630 SP evmwumi Vector Multiply Word Unsigned, Modulo, 
Integer

EVX 4 0x10000478 630 SP evmwumia Vector Multiply Word Unsigned, Modulo, 
Integer to Accumulator

EVX 4 0x10000558 631 SP evmwumiaa Vector Multiply Word Unsigned, Modulo, 
Integer and Accumulate

EVX 4 0x100005D8 631 SP evmwumian Vector Multiply Word Unsigned, Modulo, 
Integer and Accumulate Negative

EVX 4 0x1000021E 631 SP evnand Vector NAND
EVX 4 0x10000209 631 SP evneg Vector Negate
EVX 4 0x10000218 631 SP evnor Vector NOR
EVX 4 0x10000217 632 SP evor Vector OR
EVX 4 0x1000021B 632 SP evorc Vector OR with Complement
EVX 4 0x10000228 632 SP evrlw Vector Rotate Left Word
EVX 4 0x1000022A 633 SP evrlwi Vector Rotate Left Word Immediate
EVX 4 0x1000020C 633 SP evrndw Vector Round Word
EVS 4 0x10000278 633 SP evsel Vector Select
EVX 4 0x10000224 634 SP evslw Vector Shift Left Word
EVX 4 0x10000226 634 SP evslwi Vector Shift Left Word Immediate
EVX 4 0x1000022B 634 SP evsplatfi Vector Splat Fractional Immediate
EVX 4 0x10000229 634 SP evsplati Vector Splat Immediate
EVX 4 0x10000223 634 SP evsrwis Vector Shift Right Word Immediate Signed
EVX 4 0x10000222 634 SP evsrwiu Vector Shift Right Word Immediate Unsigned
EVX 4 0x10000221 635 SP evsrws Vector Shift Right Word Signed
EVX 4 0x10000220 635 SP evsrwu Vector Shift Right Word Unsigned
EVX 4 0x10000321 635 SP evstdd Vector Store Double of Double

EVX 31 0x7C00073E P 1069 E.PD evstddepx Vector Store Double of Double by External 
PID Indexed
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Version 2.07 B
EVX 4 0x10000320 635 SP evstddx Vector Store Double of Double Indexed
EVX 4 0x10000325 636 SP evstdh Vector Store Double of Four Half Words

EVX 4 0x10000324 636 SP evstdhx Vector Store Double of Four Half Words 
Indexed

EVX 4 0x10000323 636 SP evstdw Vector Store Double of Two Words
EVX 4 0x10000322 636 SP evstdwx Vector Store Double of Two Words Indexed

EVX 4 0x10000331 637 SP evstwhe Vector Store Word of Two Half Words from 
Even

EVX 4 0x10000330 637 SP evstwhex Vector Store Word of Two Half Words from 
Even Indexed

EVX 4 0x10000335 637 SP evstwho Vector Store Word of Two Half Words from 
Odd

EVX 4 0x10000334 637 SP evstwhox Vector Store Word of Two Half Words from 
Odd Indexed

EVX 4 0x10000339 637 SP evstwwe Vector Store Word of Word from Even
EVX 4 0x10000338 637 SP evstwwex Vector Store Word of Word from Even Indexed
EVX 4 0x1000033D 638 SP evstwwo Vector Store Word of Word from Odd
EVX 4 0x1000033C 638 SP evstwwox Vector Store Word of Word from Odd Indexed

EVX 4 0x100004CB 638 SP evsubfsmiaaw Vector Subtract Signed, Modulo, Integer to 
Accumulator Word

EVX 4 0x100004C3 638 SP evsubfssiaaw Vector Subtract Signed, Saturate, Integer to 
Accumulator Word

EVX 4 0x100004CA 639 SP evsubfumiaaw Vector Subtract Unsigned, Modulo, Integer to 
Accumulator Word

EVX 4 0x100004C2 639 SP evsubfusiaaw Vector Subtract Unsigned, Saturate, Integer to 
Accumulator Word

EVX 4 0x10000204 639 SP evsubfw Vector Subtract from Word
EVX 4 0x10000206 639 SP evsubifw Vector Subtract Immediate from Word
EVX 4 0x10000216 639 SP evxor Vector XOR

X 31 0x7C000774 SR  86 B extsb[.] Extend Sign Byte
X 31 0x7C000734 SR  86 B extsh[.] Extend Sign Halfword
X 31 0x7C0007B4 SR 90 64 extsw[.] Extend Sign Word
X 63 0xFC000210 141 FP[R] fabs[.] Floating Absolute Value
A 63 0xFC00002A 143 FP[R] fadd[.] Floating Add
A 59 0xEC00002A 143 FP[R] fadds[.] Floating Add Single
X 63 0xFC00069C 154 FP[R] fcfid[.] Floating Convert From Integer Doubleword

X 59 0xEC00069C 155 FP[R] fcfids[.] Floating Convert From Integer Doubleword 
Single

X 63 0xFC00079C 155 FP[R] fcfidu[.] Floating Convert From Integer Doubleword 
Unsigned

X 59 0xEC00079C 156 FP[R] fcfidus[.] Floating Convert From Integer Doubleword 
Unsigned Single

X 63 0xFC000040 158 FP fcmpo Floating Compare Ordered
X 63 0xFC000000 158 FP fcmpu Floating Compare Unordered
X 63 0xFC000010 141 FP[R] fcpsgn[.] Floating Copy Sign
X 63 0xFC00065C 150 FP[R] fctid[.] Floating Convert To Integer Doubleword

X 63 0xFC00075C 151 FP[R] fctidu[.] Floating Convert To Integer Doubleword 
Unsigned

X 63 0xFC00075E 152 FP[R] fctiduz[.] Floating Convert To Integer Doubleword 
Unsigned with round toward Zero

X 63 0xFC00065E 151 FP[R] fctidz[.] Floating Convert To Integer Doubleword with 
round toward Zero

X 63 0xFC00001C 152 FP[R] fctiw[.] Floating Convert To Integer Word
X 63 0xFC00011C 153 FP[R] fctiwu[.] Floating Convert To Integer Word Unsigned

X 63 0xFC00011E 154 FP[R] fctiwuz[.] Floating Convert To Integer Word Unsigned 
with round toward Zero
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Version 2.07 B
X 63 0xFC00001E 153 FP[R] fctiwz[.] Floating Convert To Integer Word with round 
to Zero

A 63 0xFC000024 144 FP[R] fdiv[.] Floating Divide
A 59 0xEC000024 144 FP[R] fdivs[.] Floating Divide Single
A 63 0xFC00003A 148 FP[R] fmadd[.] Floating Multiply-Add
A 59 0xEC00003A 148 FP[R] fmadds[.] Floating Multiply-Add Single
X 63 0xFC000090 141 FP[R] fmr[.] Floating Move Register
X 63 0xFC00078C 142 VSX fmrgew Floating Merge Even Word
X 63 0xFC00068C 142 VSX fmrgow Floating Merge Odd Word
A 63 0xFC000038 148 FP[R] fmsub[.] Floating Multiply-Subtract
A 59 0xEC000038 148 FP[R] fmsubs[.] Floating Multiply-Subtract Single
A 63 0xFC000032 144 FP[R] fmul[.] Floating Multiply
A 59 0xEC000032 144 FP[R] fmuls[.] Floating Multiply Single
X 63 0xFC000110 141 FP[R] fnabs[.] Floating Negative Absolute Value
X 63 0xFC000050 141 FP[R] fneg[.] Floating Negate
A 63 0xFC00003E 149 FP[R] fnmadd[.] Floating Negative Multiply-Add
A 59 0xEC00003E 149 FP[R] fnmadds[.] Floating Negative Multiply-Add Single
A 63 0xFC00003C 149 FP[R] fnmsub[.] Floating Negative Multiply-Subtract
A 59 0xEC00003C 149 FP[R] fnmsubs[.] Floating Negative Multiply-Subtract Single
A 63 0xFC000030 145 FP[R].in fre[.] Floating Reciprocal Estimate
A 59 0xEC000030 145 FP[R] fres[.] Floating Reciprocal Estimate Single
X 63 0xFC0003D0 157 FP[R].in frim[.] Floating Round To Integer Minus
X 63 0xFC000310 157 FP[R].in frin[.] Floating Round To Integer Nearest
X 63 0xFC000390 157 FP[R].in frip[.] Floating Round To Integer Plus
X 63 0xFC000350 157 FP[R].in friz[.] Floating Round To Integer toward Zero
X 63 0xFC000018 150 FP[R] frsp[.] Floating Round to Single-Precision
A 63 0xFC000034 146 FP[R] frsqrte[.] Floating Reciprocal Square Root Estimate

A 59 0xEC000034 146 FP[R].in frsqrtes[.] Floating Reciprocal Square Root Estimate 
Single

A 63 0xFC00002E 159 FP[R] fsel[.] Floating Select
A 63 0xFC00002C 145 FP[R] fsqrt[.] Floating Square Root
A 59 0xEC00002C 145 FP[R] fsqrts[.] Floating Square Root Single
A 63 0xFC000028 143 FP[R] fsub[.] Floating Subtract
A 59 0xEC000028 143 FP[R] fsubs[.] Floating Subtract Single
X 63 0xFC000100 147 FP ftdiv Floating Test for software Divide
X 63 0xFC000140 147 FP ftsqrt Floating Test for software Square Root

XL 19 0x4C000224 H 865 S hrfid Return From Interrupt Doubleword Hypervisor
X 31 0x7C0007AC 762 B icbi Instruction Cache Block Invalidate

X 31 0x7C0007BE P 1067 E.PD icbiep Instruction Cache Block Invalidate by External 
PID

X 31 0x7C0001CC M 1124 ECL icblc Instruction Cache Block Lock Clear
X 31 0x7C00018D 1121 ECL icblq. Instruction Cache Block Lock Query
X 31 0x7C00002C 762 B icbt Instruction Cache Block Touch
X 31 0x7C0003CC M 1123 ECL icbtls Instruction Cache Block Touch and Lock Set
X 31 0x7C00078C P 1239 E.CI ici Instruction Cache Invalidate
X 31 0x7C0007CC P 1243 E.CD icread Instruction Cache Read
A 31 0x7C00001E 82 B isel Integer Select

XL 19 0x4C00012C 776 B isync Instruction Synchronize
X 31 0x7C000068 777 B lbarx Load Byte And Reserve Indexed
X 31 0x7C000406 822 DS lbdx Load Byte with Decoration Indexed
X 31 0x7C0000BE P 1059 E.PD lbepx Load Byte and Zero by External PID Indexed
D 34 0x88000000 48 B lbz Load Byte and Zero

X 31 0x7C0006AA H 876 S lbzcix Load Byte and Zero Caching Inhibited 
Indexed
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Version 2.07 B
D 35 0x8C000000 48 B lbzu Load Byte and Zero with Update
X 31 0x7C0000EE 48 B lbzux Load Byte and Zero with Update Indexed
X 31 0x7C0000AE 49 B lbzx Load Byte and Zero Indexed

DS 58 0xE8000000 53 64 ld Load Doubleword
X 31 0x7C0000A8 782 64 ldarx Load Doubleword And Reserve Indexed
X 31 0x7C000428 61 64 ldbrx Load Doubleword Byte-Reverse Indexed
X 31 0x7C0006EA H 876 S ldcix Load Doubleword Caching Inhibited Indexed
X 31 0x7C0004C6 822 DS lddx Load Doubleword with Decoration Indexed
X 31 0x7C00003A P 1060 E.PD;64 ldepx Load Doubleword by External PID Indexed

DS 58 0xE8000001 53 64 ldu Load Doubleword with Update
X 31 0x7C00006A 53 64 ldux Load Doubleword with Update Indexed
X 31 0x7C00002A 53 64 ldx Load Doubleword Indexed
D 50 0xC8000000 133 FP lfd Load Floating-Point Double

X 31 0x7C000646 822 DS lfddx Load Floating Doubleword with Decoration 
Indexed

X 31 0x7C0004BE P 1068 E.PD lfdepx Load Floating-Point Double by External PID 
Indexed

DS 57 0xE4000000 140 FP.out lfdp Load Floating-Point Double Pair
X 31 0x7C00062E 140 FP.out lfdpx Load Floating-Point Double Pair Indexed
D 51 0xCC000000 133 FP lfdu Load Floating-Point Double with Update

X 31 0x7C0004EE 133 FP lfdux Load Floating-Point Double with Update 
Indexed

X 31 0x7C0004AE 133 FP lfdx Load Floating-Point Double Indexed

X 31 0x7C0006AE 134 FP lfiwax Load Floating-Point as Integer Word Algebraic 
Indexed

X 31 0x7C0006EE 134 FP lfiwzx Load Floating-Point as Integer Word and Zero 
Indexed

D 48 0xC0000000 136 FP lfs Load Floating-Point Single
D 49 0xC4000000 136 FP lfsu Load Floating-Point Single with Update

X 31 0x7C00046E 136 FP lfsux Load Floating-Point Single with Update 
Indexed

X 31 0x7C00042E 136 FP lfsx Load Floating-Point Single Indexed
D 42 0xA8000000 50 B lha Load Halfword Algebraic
X 31 0x7C0000E8 778 B lharx Load Halfword And Reserve Indexed Xform
D 43 0xAC000000 50 B lhau Load Halfword Algebraic with Update
X 31 0x7C0002EE 50 B lhaux Load Halfword Algebraic with Update Indexed
X 31 0x7C0002AE 50 B lhax Load Halfword Algebraic Indexed
X 31 0x7C00062C 60 B lhbrx Load Halfword Byte-Reverse Indexed
X 31 0x7C000446 822 DS lhdx Load Halfword with Decoration Indexed

X 31 0x7C00023E P 1059 E.PD lhepx Load Halfword and Zero by External PID 
Indexed

D 40 0xA0000000 49 B lhz Load Halfword and Zero

X 31 0x7C00066A H 876 S lhzcix Load Halfword and Zero Caching Inhibited 
Indexed

D 41 0xA4000000 49 B lhzu Load Halfword and Zero with Update
X 31 0x7C00026E 49 B lhzux Load Halfword and Zero with Update Indexed
X 31 0x7C00022E 49 B lhzx Load Halfword and Zero Indexed
D 46 0xB8000000 62 B lmw Load Multiple Word

DQ 56 0xE0000000 P 58 LSQ lq Load Quadword
X 31 0x7C000228 784 LSQ lqarx Load Quadword And Reserve Indexed
X 31 0x7C0004AA 64 MA lswi Load String Word Immediate
X 31 0x7C00042A 64 MA lswx Load String Word Indexed
X 31 0x7C00000E 232 V lvebx Load Vector Element Byte Indexed
X 31 0x7C00004E 229 V lvehx Load Vector Element Halfword Indexed
X 31 0x7C00024E P 1070 E.PD lvepx Load Vector by External PID Indexed
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Version 2.07 B
X 31 0x7C00020E P 1070 E.PD lvepxl Load Vector by External PID Indexed Last
X 31 0x7C00008E 229 V lvewx Load Vector Element Word Indexed
X 31 0x7C00000C 234 V lvsl Load Vector for Shift Left
X 31 0x7C00004C 234 V lvsr Load Vector for Shift Right
X 31 0x7C0000CE 230 V lvx Load Vector Indexed
X 31 0x7C0002CE 230 V lvxl Load Vector Indexed Last

DS 58 0xE8000002 52 64 lwa Load Word Algebraic
X 31 0x7C000028  777 B lwarx Load Word and Reserve Indexed
X 31 0x7C0002EA 52 64 lwaux Load Word Algebraic with Update Indexed
X 31 0x7C0002AA 52 64 lwax Load Word Algebraic Indexed
X 31 0x7C00042C 60 B lwbrx Load Word Byte-Reverse Indexed
X 31 0x7C000486 822 DS lwdx Load Word with Decoration Indexed
X 31 0x7C00003E P 1060 E.PD lwepx Load Word and Zero by External PID Indexed
D 32 0x80000000 51 B lwz Load Word and Zero

X 31 0x7C00062A H 876 S lwzcix Load Word and Zero Caching Inhibited 
Indexed

D 33 0x84000000 51 B lwzu Load Word and Zero with Update
X 31 0x7C00006E 51 B lwzux Load Word and Zero with Update Indexed
X 31 0x7C00002E 51 B lwzx Load Word and Zero Indexed

XX1 31 0x7C000498 392 VSX lxsdx Load VSR Scalar Doubleword Indexed

XX1 31 0x7C000098 392 VSX lxsiwax Load VSX Scalar as Integer Word Algebraic 
Indexed

XX1 31 0x7C000018 393 VSX lxsiwzx Load VSX Scalar as Integer Word and Zero 
Indexed

XX1 31 0x7C000418 393 VSX lxsspx Load VSX Scalar Single-Precision Indexed
XX1 31 0x7C000698 394 VSX lxvd2x Load VSR Vector Doubleword*2 Indexed
XX1 31 0x7C000298 394 VSX lxvdsx Load VSR Vector Doubleword & Splat Indexed
XX1 31 0x7C000618 395 VSX lxvw4x Load VSR Vector Word*4 Indexed

XO 4 0x10000158 675 LMA macchw[.] Multiply Accumulate Cross Halfword to Word 
Modulo Signed

XO 4 0x10000558 675 LMA macchwo[.] Multiply Accumulate Cross Halfword to Word 
Modulo Signed & record OV

XO 4 0x100001D8 675 LMA macchws[.] Multiply Accumulate Cross Halfword to Word 
Saturate Signed

XO 4 0x100005D8 675 LMA macchwso[.] Multiply Accumulate Cross Halfword to Word 
Saturate Signed & record OV

XO 4 0x10000198 676 LMA macchwsu[.] Multiply Accumulate Cross Halfword to Word 
Saturate Unsigned

XO 4 0x10000598 676 LMA macchwsuo[.] Multiply Accumulate Cross Halfword to Word 
Saturate Unsigned & record OV

XO 4 0x10000118 676 LMA macchwu[.] Multiply Accumulate Cross Halfword to Word 
Modulo Unsigned

XO 4 0x10000518 676 LMA macchwuo[.] Multiply Accumulate Cross Halfword to Word 
Modulo Unsigned & record OV

XO 4 0x10000058 677 LMA machhw[.] Multiply Accumulate High Halfword to Word 
Modulo Signed

XO 4 0x10000458 677 LMA machhwo[.] Multiply Accumulate High Halfword to Word 
Modulo Signed & record OV

XO 4 0x100000D8 677 LMA machhws[.] Multiply Accumulate High Halfword to Word 
Saturate Signed

XO 4 0x100004D8 677 LMA machhwso[.] Multiply Accumulate High Halfword to Word 
Saturate Signed & record OV

XO 4 0x10000098 678 LMA machhwsu[.] Multiply Accumulate High Halfword to Word 
Saturate Unsigned

XO 4 0x10000498 678 LMA machhwsuo[.] Multiply Accumulate High Halfword to Word 
Saturate Unsigned & record OV
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Version 2.07 B
XO 4 0x10000018 678 LMA machhwu[.] Multiply Accumulate High Halfword to Word 
Modulo Unsigned

XO 4 0x10000418 678 LMA machhwuo[.] Multiply Accumulate High Halfword to Word 
Modulo Unsigned & record OV

XO 4 0x10000358 679 LMA maclhw[.] Multiply Accumulate Low Halfword to Word 
Modulo Signed

XO 4 0x10000758 679 LMA maclhwo[.] Multiply Accumulate Low Halfword to Word 
Modulo Signed & record OV

XO 4 0x100003D8 679 LMA maclhws[.] Multiply Accumulate Low Halfword to Word 
Saturate Signed

XO 4 0x100007D8 679 LMA maclhwso[.] Multiply Accumulate Low Halfword to Word 
Saturate Signed & record OV

XO 4 0x10000398 680 LMA maclhwsu[.] Multiply Accumulate Low Halfword to Word 
Saturate Unsigned

XO 4 0x10000798 680 LMA maclhwsuo[.] Multiply Accumulate Low Halfword to Word 
Saturate Unsigned & record OV

XO 4 0x10000318 680 LMA maclhwu[.] Multiply Accumulate Low Halfword to Word 
Modulo Unsigned

XO 4 0x10000718 680 LMA maclhwuo[.] Multiply Accumulate Low Halfword to Word 
Modulo Unsigned & record OV

X 31 0x7C0006AC 790 E mbar Memory Barrier
XL 19 0x4C000000 42 B mcrf Move Condition Register Field
X 63 0xFC000080 160 FP mcrfs Move To Condition Register from FPSCR
X 31 0x7C000400 112 E mcrxr Move to Condition Register from XER

XFX 31 0x7C00025C 44 S mfbhrbe Move From Branch History Rolling Buffer
XFX 31 0x7C000026 111 B mfcr Move From Condition Register
XFX 31 0x7C000286 P 1055 E.DC mfdcr Move From Device Control Register

X 31 0x7C000246 112 E.DC mfdcrux Move From Device Control Register User 
Mode Indexed

X 31 0x7C000206 P 1055 E.DC mfdcrx Move From Device Control Register Indexed
X 63 0xFC00048E 160 FP[R] mffs[.] Move From FPSCR

X 31 0x7C0000A6 P 888
1055

S
E mfmsr Move From Machine State Register

XFX 31 0x7C100026 111 B mfocrf Move From One Condition Register Field
XFX 31 0x7C00029C O 1257 E.PM mfpmr Move from Performance Monitor Register

XFX 31 0x7C0002A6 O
109
814
885
1054

B mfspr Move From Special Purpose Register

X 31 0x7C0004A6 32 P 927 S mfsr Move From Segment Register
X 31 0x7C000526 32 P 927 S mfsrin Move From Segment Register Indirect

XFX 31 0x7C0002E6 814 S.out mftb Move From Time Base

VX 4 0x10000604 316 V mfvscr Move From Vector Status and Control 
Register

XX1 31 0x7C000066 104 VSX mfvsrd Move From VSR Doubleword
XX1 31 0x7C0000E6 104 VSX mfvsrwz Move From VSR Word and Zero

X 31 0x7C0001DC H 1008
1233

S
E.PC msgclr Message Clear

X 31 0x7C00015C P 1009 S msgclrp Message Clear Privileged

X 31 0x7C00019C H 1008
1233

S
E.PC msgsnd Message Send

X 31 0x7C00011C P 1009 S msgsndp Message Send Privileged
XFX 31 0x7C000120 111 B mtcrf Move To Condition Register Fields
XFX 31 0x7C000386 P 1054 E.DC mtdcr Move To Device Control Register

X 31 0x7C000346 112 E.DC mtdcrux Move To Device Control Register User Mode 
Indexed

X 31 0x7C000306 P 1054 E.DC mtdcrx Move To Device Control Register Indexed
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Version 2.07 B
X 63 0xFC00008C 162 FP[R] mtfsb0[.] Move To FPSCR Bit 0
X 63 0xFC00004C 162 FP[R] mtfsb1[.] Move To FPSCR Bit 1

XFL 63 0xFC00058E 161 FP[R] mtfsf[.] Move To FPSCR Fields
X 63 0xFC00010C 161 FP[R] mtfsfi[.] Move To FPSCR Field Immediate

X 31 0x7C000124 P 884
1055

S
E mtmsr Move To Machine State Register

X 31 0x7C000164 P 886 S mtmsrd Move To Machine State Register Doubleword
XFX 31 0x7C100120 111 B mtocrf Move To One Condition Register Field
XFX 31 0x7C00039C O 1257 E.PM mtpmr Move To Performance Monitor Register

XFX 31 0x7C0003A6 O
107
884
1053

B mtspr Move To Special Purpose Register

X 31 0x7C0001A4 32 P 926 S mtsr Move To Segment Register
X 31 0x7C0001E4 32 P 926 S mtsrin Move To Segment Register Indirect

VX 4 0x10000644 316 V mtvscr Move To Vector Status and Control Register
XX1 31 0x7C000166 105 VSX mtvsrd Move To VSR Doubleword
XX1 31 0x7C0001A6 105 VSX mtvsrwa Move To VSR Word Algebraic
XX1 31 0x7C0001E6 106 VSX mtvsrwz Move To VSR Word and Zero

X 4 0x10000150 680 LMA mulchw[.] Multiply Cross Halfword to Word Signed
X 4 0x10000110 680 LMA mulchwu[.] Multiply Cross Halfword to Word Unsigned

XO 31 0x7C000092 SR 76 64 mulhd[.] Multiply High Doubleword
XO 31 0x7C000012 SR 64 64 mulhdu[.] Multiply High Doubleword Unsigned
X 4 0x10000050 681 LMA mulhhw[.] Multiply High Halfword to Word Signed
X 4 0x10000010 681 LMA mulhhwu[.] Multiply High Halfword to Word Unsigned

XO 31 0x7C000096 SR 72 B mulhw[.] Multiply High Word
XO 31 0x7C000016 SR 72 B mulhwu[.] Multiply High Word Unsigned
XO 31 0x7C0001D2 SR 64 64 mulld[.] Multiply Low Doubleword
XO 31 0x7C0005D2 SR 64 64 mulldo[.] Multiply Low Doubleword & record OV
X 4 0x10000350 681 LMA mullhw[.] Multiply Low Halfword to Word Signed
X 4 0x10000310 681 LMA mullhwu[.] Multiply Low Halfword to Word Unsigned
D 7 0x1C000000 72 B mulli Multiply Low Immediate

XO 31 0x7C0001D6 SR 72 B mullw[.] Multiply Low Word
XO 31 0x7C0005D6 SR 72 B mullwo[.] Multiply Low Word & record OV
X 31 0x7C0003B8 SR 85 B nand[.] NAND

XL 19 0x4C000364 H 867 S nap Nap
XO 31 0x7C0000D0 SR 71 B neg[.] Negate
XO 31 0x7C0004D0 SR 71 B nego[.] Negate & record OV

XO 4 0x1000015C 682 LMA nmacchw[.] Negative Multiply Accumulate Cross Halfword 
to Word Modulo Signed

XO 4 0x1000055C 682 LMA nmacchwo[.] Negative Multiply Accumulate Cross Halfword 
to Word Modulo Signed & record OV

XO 4 0x100001DC 682 LMA nmacchws[.] Negative Multiply Accumulate Cross Halfword 
to Word Saturate Signed

XO 4 0x100005DC 682 LMA nmacchwso[.] Negative Multiply Accumulate Cross Halfword 
to Word Saturate Signed & record OV

XO 4 0x1000005C 683 LMA nmachhw[.] Negative Multiply Accumulate High Halfword 
to Word Modulo Signed

XO 4 0x1000045C 683 LMA nmachhwo[.] Negative Multiply Accumulate High Halfword 
to Word Modulo Signed & record OV

XO 4 0x100000DC 683 LMA nmachhws[.] Negative Multiply Accumulate High Halfword 
to Word Saturate Signed

XO 4 0x100004DC 683 LMA nmachhwso[.] Negative Multiply Accumulate High Halfword 
to Word Saturate Signed & record OV

XO 4 0x1000035C 684 LMA nmaclhw[.] Negative Multiply Accumulate Low Halfword to 
Word Modulo Signed
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Version 2.07 B
XO 4 0x1000075C 684 LMA nmaclhwo[.] Negative Multiply Accumulate Low Halfword to 
Word Modulo Signed & record OV

XO 4 0x100003DC 684 LMA nmaclhws[.] Negative Multiply Accumulate Low Halfword to 
Word Saturate Signed

XO 4 0x100007DC 684 LMA nmaclhwso[.] Negative Multiply Accumulate Low Halfword to 
Word Saturate Signed & record OV

X 31 0x7C0000F8 SR 86 B nor[.] NOR
X 31 0x7C000378 SR 85 B or[.] OR
X 31 0x7C000338 SR 86 B orc[.] OR with Complement
D 24 0x60000000 83 B ori OR Immediate
D 25 0x64000000 84 B oris OR Immediate Shifted
X 31 0x7C0000F4 88 B popcntb Population Count Byte-wise
X 31 0x7C0003F4 90 64 popcntd Population Count Doubleword
X 31 0x7C0002F4 88 B popcntw Population Count Words
X 31 0x7C000174 89 64 prtyd Parity Doubleword
X 31 0x7C000134 89 B prtyw Parity Word

XL 19 0x4C000066 P 1041 E rfci Return From Critical Interrupt
X 19 0x4C00004E P 1042 E.ED rfdi Return From Debug Interrupt

XL 19 0x4C000124 820 S rfebb Return from Event Based Branch
XL 19 0x4C0000CC P 1043 E.HV rfgi Return From Guest Interrupt
XL 19 0x4C000064 P 1041 E rfi Return From Interrupt
XL 19 0x4C000024 P 864 S rfid Return from Interrupt Doubleword
XL 19 0x4C00004C P 1042 E rfmci Return From Machine Check Interrupt

MDS 30 0x78000010 SR 96 64 rldcl[.] Rotate Left Doubleword then Clear Left
MDS 30 0x78000012 SR 97 64 rldcr[.] Rotate Left Doubleword then Clear Right
MD 30 0x78000008 SR 96 64 rldic[.] Rotate Left Doubleword Immediate then Clear

MD 30 0x78000000 SR 95 64 rldicl[.] Rotate Left Doubleword Immediate then Clear 
Left

MD 30 0x78000004 SR 95 64 rldicr[.] Rotate Left Doubleword Immediate then Clear 
Right

MD 30 0x7800000C SR 97 64 rldimi[.] Rotate Left Doubleword Immediate then Mask 
Insert

M 20 0x50000000 SR 94 B rlwimi[.] Rotate Left Word Immediate then Mask Insert

M 21 0x54000000 SR 92 B rlwinm[.] Rotate Left Word Immediate then AND with 
Mask

M 23 0x5C000000 SR 93 B rlwnm[.] Rotate Left Word then AND with Mask
XL 19 0x4C0003E4 H 868 S rvwinkle Rip Van Winkle

SC 17 0x44000002
43

863
1040

B sc System Call

X 31 0x7C0007A7 SR P 923 S slbfee. SLB Find Entry ESID
X 31 0x7C0003E4 P 920 S slbia SLB Invalidate All
X 31 0x7C000364 P 919 S slbie SLB Invalidate Entry
X 31 0x7C000726 P 923 S slbmfee SLB Move From Entry ESID
X 31 0x7C0006A6 P 922 S slbmfev SLB Move From Entry VSID
X 31 0x7C000324 P 921 S slbmte SLB Move To Entry
X 31 0x7C000036 SR 100 64 sld[.] Shift Left Doubleword

XL 19 0x4C0003A4 H 868 S sleep Sleep
X 31 0x7C000030 SR 98 B slw[.] Shift Left Word
X 31 0x7C000634 SR 101 64 srad[.] Shift Right Algebraic Doubleword

XS 31 0x7C000674 SR 101 64 sradi[.] Shift Right Algebraic Doubleword Immediate
X 31 0x7C000630 SR 99 B sraw[.] Shift Right Algebraic Word
X 31 0x7C000670 SR 99 B srawi[.] Shift Right Algebraic Word Immediate
X 31 0x7C000436 SR 100 64 srd[.] Shift Right Doubleword
X 31 0x7C000430 SR 98 B srw[.] Shift Right Word
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Version 2.07 B
D 38 0x98000000 54 B stb Store Byte
X 31 0x7C0007AA H 877 S stbcix Store Byte Caching Inhibited Indexed
X 31 0x7C00056D 779 B stbcx. Store Byte Conditional Indexed
X 31 0x7C000506 823 DS stbdx Store Byte with Decoration Indexed
X 31 0x7C0001BE P 1061 E.PD stbepx Store Byte by External PID Indexed
D 39 0x9C000000 54 B stbu Store Byte with Update
X 31 0x7C0001EE 54 B stbux Store Byte with Update Indexed
X 31 0x7C0001AE 54 B stbx Store Byte Indexed

DS 62 0xF8000000 57 64 std Store Doubleword
X 31 0x7C000528 61 64 stdbrx Store Doubleword Byte-Reverse Indexed
X 31 0x7C0007EA H 877 S stdcix Store Doubleword Caching Inhibited Indexed

X 31 0x7C0001AD 782 64 stdcx. Store Doubleword Conditional Indexed & 
record CR0

X 31 0x7C0005C6 823 DS stddx Store Doubleword with Decoration Indexed
X 31 0x7C00013A P 1062 E.PD;64 stdepx Store Doubleword by External PID Indexed

DS 62 0xF8000001 57 64 stdu Store Doubleword with Update
X 31 0x7C00016A 57 64 stdux Store Doubleword with Update Indexed
X 31 0x7C00012A 57 64 stdx Store Doubleword Indexed
D 54 0xD8000000 137 FP stfd Store Floating-Point Double

X 31 0x7C000746 823 DS stfddx Store Floating Doubleword with Decoration 
Indexed

X 31 0x7C0005BE P 1068 E.PD stfdepx Store Floating-Point Double by External PID 
Indexed

DS 61 0xF4000000 140 FP.out stfdp Store Floating-Point Double Pair
X 31 0x7C00072E 140 FP.out stfdpx Store Floating-Point Double Pair Indexed
D 55 0xDC000000 137 FP stfdu Store Floating-Point Double with Update

X 31 0x7C0005EE 137 FP stfdux Store Floating-Point Double with Update 
Indexed

X 31 0x7C0005AE 137 FP stfdx Store Floating-Point Double Indexed
X 31 0x7C0007AE 138 FP stfiwx Store Floating-Point as Integer Word Indexed
D 52 0xD0000000 136 FP stfs Store Floating-Point Single
D 53 0xD4000000 136 FP stfsu Store Floating-Point Single with Update

X 31 0x7C00056E 136 FP stfsux Store Floating-Point Single with Update 
Indexed

X 31 0x7C00052E 136 FP stfsx Store Floating-Point Single Indexed
D 44 0xB0000000 55 B sth Store Halfword
X 31 0x7C00072C 60 B sthbrx Store Halfword Byte-Reverse Indexed

X 31 0x7C00076A H 877 S sthcix Store Halfword and Zero Caching Inhibited 
Indexed

X 31 0x7C0005AD 780 B sthcx. Store Halfword Conditional Indexed Xform
X 31 0x7C000546 823 DS sthdx Store Halfword with Decoration Indexed
X 31 0x7C00033E P 1061 E.PD sthepx Store Halfword by External PID Indexed
D 45 0xB4000000 55 B sthu Store Halfword with Update
X 31 0x7C00036E 55 B sthux Store Halfword with Update Indexed
X 31 0x7C00032E 55 B sthx Store Halfword Indexed
D 47 0xBC000000 62 B stmw Store Multiple Word

DS 62 0xF8000002 P 59 LSQ stq Store Quadword

X 31 0x7C00016D 785 LSQ stqcx. Store Quadword Conditional Indexed and 
record CR0

X 31 0x7C0005AA 65 MA stswi Store String Word Immediate
X 31 0x7C00052A 65 MA stswx Store String Word Indexed
X 31 0x7C00010E 232 V stvebx Store Vector Element Byte Indexed
X 31 0x7C00014E 232 V stvehx Store Vector Element Halfword Indexed
X 31 0x7C00064E P 1071 E.PD stvepx Store Vector by External PID Indexed
X 31 0x7C00060E P 1071 E.PD stvepxl Store Vector by External PID Indexed Last
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Version 2.07 B
X 31 0x7C00018E 233 V stvewx Store Vector Element Word Indexed
X 31 0x7C0001CE 230 V stvx Store Vector Indexed
X 31 0x7C0003CE 233 V stvxl Store Vector Indexed Last
D 36 0x90000000 56 B stw Store Word
X 31 0x7C00052C 60 B stwbrx Store Word Byte-Reverse Indexed

X 31 0x7C00072A H 877 S stwcix Store Word and Zero Caching Inhibited 
Indexed

X 31 0x7C00012D 781 B stwcx. Store Word Conditional Indexed & record CR0
X 31 0x7C000586 823 DS stwdx Store Word with Decoration Indexed
X 31 0x7C00013E P 1062 E.PD stwepx Store Word by External PID Indexed
D 37 0x94000000 56 B stwu Store Word with Update
X 31 0x7C00016E 56 B stwux Store Word with Update Indexed
X 31 0x7C00012E 56 B stwx Store Word Indexed

XX1 31 0x7C000598 395 VSX stxsdx Store VSR Scalar Doubleword Indexed
XX1 31 0x7C000118 393 VSX stxsiwx Store VSX Scalar as Integer Word Indexed
XX1 31 0x7C000518 393 VSX stxsspx Store VSR Scalar Word Indexed
XX1 31 0x7C000798 397 VSX stxvd2x Store VSR Vector Doubleword*2 Indexed
XX1 31 0x7C000718 397 VSX stxvw4x Store VSR Vector Word*4 Indexed
XO 31 0x7C000050 SR 68 B subf[.] Subtract From
XO 31 0x7C000010 SR 69 B subfc[.] Subtract From Carrying
XO 31 0x7C000410 SR 69 B subfco[.] Subtract From Carrying & record OV
XO 31 0x7C000110 SR 70 B subfe[.] Subtract From Extended
XO 31 0x7C000510 SR 70 B subfeo[.] Subtract From Extended & record OV
D 8 0x20000000 SR 69 B subfic Subtract From Immediate Carrying

XO 31 0x7C0001D0 SR 70 B subfme[.] Subtract From Minus One Extended

XO 31 0x7C0005D0 SR 70 B subfmeo[.] Subtract From Minus One Extended & record 
OV

XO 31 0x7C000450 SR 68 B subfo[.] Subtract From & record OV
XO 31 0x7C000190 SR 71 B subfze[.] Subtract From Zero Extended
XO 31 0x7C000590 SR 71 B subfzeo[.] Subtract From Zero Extended & record OV
X 31 0x7C0004AC 786 B sync Synchronize
X 31 0x7C00071D 808 TM tabort. Transaction Abort
X 31 0x7C00065D 809 TM tabortdc. Transaction Abort Doubleword Conditional

X 31 0x7C0006DD 810 TM tabortdci. Transaction Abort Doubleword Conditional 
Immediate

X 31 0x7C00061D 809 TM tabortwc. Transaction Abort Word Conditional

X 31 0x7C00069D 809 TM tabortwci. Transaction Abort Word Conditional 
Immediate

X 31 0x7C00051D 806 TM tbegin. Transaction Begin
X 31 0x7C00059C 811 TM tcheck Transaction Check
X 31 0x7C000088 82 64 td Trap Doubleword
D 2 0x08000000 82 64 tdi Trap Doubleword Immediate
X 31 0x7C00055C 807 TM tend. Transaction End
X 31 0x7C0002E4 H 932 S tlbia TLB Invalidate All
X 31 0x7C000264 64 H 928 S tlbie TLB Invalidate Entry
X 31 0x7C000224 64 P 930 S tlbiel TLB Invalidate Entry Local
X 31 0x7C000024 P 1134 E tlbilx TLB Invalidate Local Indexed
X 31 0x7C000624 P 1132 E tlbivax TLB Invalidate Virtual Address Indexed
X 31 0x7C000764 P 1139 E tlbre TLB Read Entry
X 31 0x7C0006A5 P 1138 E.TWC tlbsrx. TLB Search and Reserve Indexed
X 31 0x7C000724 P 1136 E tlbsx TLB Search Indexed

X 31 0x7C00046C H
PH

933
1141

S
E tlbsync TLB Synchronize

X 31 0x7C0007A4 P 1141 E tlbwe TLB Write Entry
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Version 2.07 B
X 31 0x7C0007DD 880 TM trechkpt. Transaction Recheckpoint
X 31 0x7C00075D 879 TM treclaim. Transaction Reclaim
X 31 0x7C0005DC 810 TM tsr. Transaction Suspend or Resume
X 31 0x7C000008 81 B tw Trap Word
D 3 0x0C000000 81 B twi Trap Word Immediate

VX 4 0x10000140 254 V vaddcuq Vector Add & write Carry Unsigned Quadword

VX 4 0x10000180 250 V vaddcuw Vector Add and Write Carry-Out Unsigned 
Word

VA 4 0x1000003D 254 V vaddecuq Vector Add Extended & write Carry Unsigned 
Quadword

VA 4 0x1000003C 254 V vaddeuqm Vector Add Extended Unsigned Quadword 
Modulo

VX 4 0x1000000A 292 V vaddfp Vector Add Single-Precision
VX 4 0x10000300 250 V vaddsbs Vector Add Signed Byte Saturate
VX 4 0x10000340 250 V vaddshs Vector Add Signed Halfword Saturate
VX 4 0x10000380 251 V vaddsws Vector Add Signed Word Saturate
VX 4 0x10000000 251 V vaddubm Vector Add Unsigned Byte Modulo
VX 4 0x10000200 253 V vaddubs Vector Add Unsigned Byte Saturate
VX 4 0x100000C0 251 V vaddudm Vector Add Unsigned Doubleword Modulo
VX 4 0x10000040 251 V vadduhm Vector Add Unsigned Halfword Modulo
VX 4 0x10000240 253 V vadduhs Vector Add Unsigned Halfword Saturate
VX 4 0x10000100 254 V vadduqm Vector Add Unsigned Quadword Modulo
VX 4 0x10000080 252 V vadduwm Vector Add Unsigned Word Modulo
VX 4 0x10000280 253 V vadduws Vector Add Unsigned Word Saturate
VX 4 0x10000404 286 V vand Vector Logical AND
VX 4 0x10000444 286 V vandc Vector Logical AND with Complement
VX 4 0x10000502 274 V vavgsb Vector Average Signed Byte
VX 4 0x10000542 274 V vavgsh Vector Average Signed Halfword
VX 4 0x10000582 274 V vavgsw Vector Average Signed Word
VX 4 0x10000402 275 V vavgub Vector Average Unsigned Byte
VX 4 0x10000442 275 V vavguh Vector Average Unsigned Halfword
VX 4 0x10000482 275 V vavguw Vector Average Unsigned Word
VX 4 0x1000054C 313 V vbpermq Vector Bit Permute Quadword
VX 4 0x1000054C 313 V vbpermq Vector Bit Permute Quadword

VX 4 0x1000034A 296 V vcfsx Vector Convert From Signed Fixed-Point 
Word To Single-Precision

VX 4 0x1000030A 296 V vcfux Vector Convert From Unsigned Fixed-Point 
Word

VX 4 0x10000508 304 V.AES vcipher Vector AES Cipher
VX 4 0x10000509 304 V.AES vcipherlast Vector AES Cipher Last
VX 4 0x10000702 311 V vclzb Vector Count Leading Zeros Byte
VX 4 0x100007C2 311 V vclzd Vector Count Leading Zeros Doubleword
VX 4 0x10000742 311 V vclzh Vector Count Leading Zeros Halfword
VX 4 0x10000782 311 V vclzw Vector Count Leading Zeros Word
VC 4 0x100003C6 299 V vcmpbfp[.] Vector Compare Bounds Single-Precision
VC 4 0x100000C6 300 V vcmpeqfp[.] Vector Compare Equal To Single-Precision
VC 4 0x10000006 280 V vcmpequb[.] Vector Compare Equal To Unsigned Byte

VC 4 0x100000C7 281 V vcmpequd[.] Vector Compare Equal To Unsigned 
Doubleword

VC 4 0x10000046 281 V vcmpequh[.] Vector Compare Equal To Unsigned Halfword
VC 4 0x10000086 281 V vcmpequw[.] Vector Compare Equal To Unsigned Word

VC 4 0x100001C6 300 V vcmpgefp[.] Vector Compare Greater Than or Equal To 
Single-Precision

VC 4 0x100002C6 301 V vcmpgtfp[.] Vector Compare Greater Than 
Single-Precision
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Version 2.07 B
VC 4 0x10000306 282 V vcmpgtsb[.] Vector Compare Greater Than Signed Byte

VC 4 0x100003C7 282 V vcmpgtsd[.] Vector Compare Greater Than Signed 
Doubleword

VC 4 0x10000346 282 V vcmpgtsh[.] Vector Compare Greater Than Signed 
Halfword

VC 4 0x10000386 283 V vcmpgtsw[.] Vector Compare Greater Than Signed Word
VC 4 0x10000206 284 V vcmpgtub[.] Vector Compare Greater Than Unsigned Byte

VC 4 0x100002C7 284 V vcmpgtud[.] Vector Compare Greater Than Unsigned 
Doubleword

VC 4 0x10000246 284 V vcmpgtuh[.] Vector Compare Greater Than Unsigned 
Halfword

VC 4 0x10000286 285 V vcmpgtuw[.] Vector Compare Greater Than Unsigned 
Word

VX 4 0x100003CA 295 V vctsxs Vector Convert From Single-Precision To 
Signed Fixed-Point Word Saturate

VX 4 0x1000038A 295 V vctuxs Vector Convert From Single-Precision To 
Unsigned Fixed-Point Word Saturate

VX 4 0x10000684 286 V veqv Vector Equivalence

VX 4 0x1000018A 302 V vexptefp Vector 2 Raised to the Exponent Estimate 
Single-Precision

VX 4 0x1000050C 310 V vgbbd Vector Gather Bits by Byte by Doubleword
VX 4 0x100001CA 302 V vlogefp Vector Log Base 2 Estimate Single-Precision
VA 4 0x1000002E 293 V vmaddfp Vector Multiply-Add Single-Precision
VX 4 0x1000040A 294 V vmaxfp Vector Maximum Single-Precision
VX 4 0x10000102 276 V vmaxsb Vector Maximum Signed Byte
VX 4 0x100001C2 276 V vmaxsd Vector Maximum Signed Doubleword
VX 4 0x10000142 276 V vmaxsh Vector Maximum Signed Halfword
VX 4 0x10000182 276 V vmaxsw Vector Maximum Signed Word
VX 4 0x10000002 276 V vmaxub Vector Maximum Unsigned Byte
VX 4 0x100000C2 276 V vmaxud Vector Maximum Unsigned Doubleword
VX 4 0x10000042 276 V vmaxuh Vector Maximum Unsigned Halfword
VX 4 0x10000082 277 V vmaxuw Vector Maximum Unsigned Word

VA 4 0x10000020 266 V vmhaddshs Vector Multiply-High-Add Signed Halfword 
Saturate

VA 4 0x10000021 266 V vmhraddshs Vector Multiply-High-Round-Add Signed 
Halfword Saturate

VX 4 0x1000044A 294 V vminfp Vector Minimum Single-Precision
VX 4 0x10000302 278 V vminsb Vector Minimum Signed Byte
X 4 0x100003C2 278 V vminsd Vector Minimum Signed Doubleword

VX 4 0x10000342 278 V vminsh Vector Minimum Signed Halfword
VX 4 0x10000382 279 V vminsw Vector Minimum Signed Word
VX 4 0x10000202 278 V vminub Vector Minimum Unsigned Byte
VX 4 0x100002C2 278 V vminud Vector Minimum Unsigned Doubleword
VX 4 0x10000242 278 V vminuh Vector Minimum Unsigned Halfword
VX 4 0x10000282 279 V vminuw Vector Minimum Unsigned Word

VA 4 0x10000022 267 V vmladduhm Vector Multiply-Low-Add Unsigned Halfword 
Modulo

VX 4 0x1000078C 244 VSX vmrgew Vector Merge Even Word
VX 4 0x1000000C 242 V vmrghb Vector Merge High Byte
VX 4 0x1000004C 242 V vmrghh Vector Merge High Halfword
VX 4 0x1000008C 243 V vmrghw Vector Merge High Word
VX 4 0x1000010C 242 V vmrglb Vector Merge Low Byte
VX 4 0x1000014C 242 V vmrglh Vector Merge Low Halfword
VX 4 0x1000018C 243 V vmrglw Vector Merge Low Word
VX 4 0x1000068C 244 VSX vmrgow Vector Merge Odd Word
VA 4 0x10000025 268 V vmsummbm Vector Multiply-Sum Mixed Byte Modulo
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Version 2.07 B
VA 4 0x10000028 268 V vmsumshm Vector Multiply-Sum Signed Halfword Modulo

VA 4 0x10000029 269 V vmsumshs Vector Multiply-Sum Signed Halfword 
Saturate

VA 4 0x10000024 267 V vmsumubm Vector Multiply-Sum Unsigned Byte Modulo

VA 4 0x10000026 269 V vmsumuhm Vector Multiply-Sum Unsigned Halfword 
Modulo

VA 4 0x10000027 270 V vmsumuhs Vector Multiply-Sum Unsigned Halfword 
Saturate

VX 4 0x10000308 262 V vmulesb Vector Multiply Even Signed Byte
VX 4 0x10000348 263 V vmulesh Vector Multiply Even Signed Halfword
VX 4 0x10000388 264 V vmulesw Vector Multiply Even Signed Word
VX 4 0x10000208 262 V vmuleub Vector Multiply Even Unsigned Byte
VX 4 0x10000248 263 V vmuleuh Vector Multiply Even Unsigned Halfword
VX 4 0x10000288 264 V vmuleuw Vector Multiply Even Unsigned Word
VX 4 0x10000108 262 V vmulosb Vector Multiply Odd Signed Byte
VX 4 0x10000148 263 V vmulosh Vector Multiply Odd Signed Halfword
VX 4 0x10000188 264 V vmulosw Vector Multiply Odd Signed Word
VX 4 0x10000008 262 V vmuloub Vector Multiply Odd Unsigned Byte
VX 4 0x10000048 263 V vmulouh Vector Multiply Odd Unsigned Halfword
VX 4 0x10000088 264 V vmulouw Vector Multiply Odd Unsigned Word
VX 4 0x10000089 265 V vmuluwm Vector Multiply Unsigned Word Modulo
VX 4 0x10000584 286 V vnand Vector NAND
VX 4 0x10000548 305 V.AES vncipher Vector AES Inverse Cipher
VX 4 0x10000549 305 V.AES vncipherlast Vector AES Inverse Cipher Last

VA 4 0x1000002F 293 V vnmsubfp Vector Negative Multiply-Subtract 
Single-Precision

VX 4 0x10000504 287 V vnor Vector Logical NOR
VX 4 0x10000484 287 V vor Vector Logical OR
VX 4 0x10000544 287 V vorc Vector OR with Complement
VA 4 0x1000002B 246 V vperm Vector Permute
VA 4 0x1000002D 309 V.RAID vpermxor Vector Permute and Exclusive-OR
VX 4 0x1000030E 235 V vpkpx Vector Pack Pixel

VX 4 0x100005CE 235 V vpksdss Vector Pack Signed Doubleword Signed 
Saturate

VX 4 0x1000054E 236 V vpksdus Vector Pack Signed Doubleword Unsigned 
Saturate

VX 4 0x1000018E 236 V vpkshss Vector Pack Signed Halfword Signed Saturate

VX 4 0x1000010E 237 V vpkshus Vector Pack Signed Halfword Unsigned 
Saturate

VX 4 0x100001CE 237 V vpkswss Vector Pack Signed Word Signed Saturate
VX 4 0x1000014E 238 V vpkswus Vector Pack Signed Word Unsigned Saturate

VX 4 0x1000044E 238 V vpkudum Vector Pack Unsigned Doubleword Unsigned 
Modulo

VX 4 0x100004CE 238 V vpkudus Vector Pack Unsigned Doubleword Unsigned 
Saturate

VX 4 0x1000000E 238 V vpkuhum Vector Pack Unsigned Halfword Unsigned 
Modulo

VX 4 0x1000008E 239 V vpkuhus Vector Pack Unsigned Halfword Unsigned 
Saturate

VX 4 0x1000004E 239 V vpkuwum Vector Pack Unsigned Word Unsigned Modulo

VX 4 0x100000CE 239 V vpkuwus Vector Pack Unsigned Word Unsigned 
Saturate

VX 4 0x10000408 307 V vpmsumb Vector Polynomial Multiply-Sum Byte
VX 4 0x100004C8 307 V vpmsumd Vector Polynomial Multiply-Sum Doubleword
VX 4 0x10000448 308 V vpmsumh Vector Polynomial Multiply-Sum Halfword
VX 4 0x10000488 308 V vpmsumw Vector Polynomial Multiply-Sum Word

F
o

rm
at

Opcode

M
o

d
e 

D
ep

.1

P
ri

vi
le

g
e1

Page C
at

eg
o

ry
1

Mnemonic InstructionP
ri

m
ar

y Instruction
Image

(operands 
set to 0’s)
Power ISA™ - Book Appendices1476



Version 2.07 B
VX 4 0x10000703 312 V vpopcntb Vector Population Count Byte
VX 4 0x100007C3 312 V vpopcntd Vector Population Count Doubleword
VX 4 0x10000743 312 V vpopcnth Vector Population Count Halfword
VX 4 0x10000783 312 V vpopcntw Vector Population Count Word
VX 4 0x1000010A 303 V vrefp Vector Reciprocal Estimate Single-Precision

VX 4 0x100002CA 298 V vrfim Vector Round to Single-Precision Integer 
toward -Infinity

VX 4 0x1000020A 297 V vrfin Vector Round to Single-Precision Integer 
Nearest

VX 4 0x1000028A 297 V vrfip Vector Round to Single-Precision Integer 
toward +Infinity

VX 4 0x1000024A 297 V vrfiz Vector Round to Single-Precision Integer 
toward Zero

VX 4 0x10000004 288 V vrlb Vector Rotate Left Byte
VX 4 0x100000C4 288 V vrld Vector Rotate Left Doubleword
VX 4 0x10000044 288 V vrlh Vector Rotate Left Halfword
VX 4 0x10000084 288 V vrlw Vector Rotate Left Word

VX 4 0x1000014A 303 V vrsqrtefp Vector Reciprocal Square Root Estimate 
Single-Precision

VX 4 0x100005C8 305 V.AES vsbox Vector AES S-Box
VA 4 0x1000002A 247 V vsel Vector Select
VX 4 0x100006C2 306 V.SHA2 vshasigmad Vector SHA-512 Sigma Doubleword
VX 4 0x10000682 306 V.SHA2 vshasigmaw Vector SHA-256 Sigma Word
VX 4 0x100001C4 248 V vsl Vector Shift Left
VX 4 0x10000104 289 V vslb Vector Shift Left Byte
VX 4 0x100005C4 289 V vsld Vector Shift Left Doubleword
VA 4 0x1000002C 248 V vsldoi Vector Shift Left Double by Octet Immediate
VX 4 0x10000144 289 V vslh Vector Shift Left Halfword
VX 4 0x1000040C 248 V vslo Vector Shift Left by Octet
VX 4 0x10000184 289 V vslw Vector Shift Left Word
VX 4 0x1000020C 245 V vspltb Vector Splat Byte
VX 4 0x1000024C 245 V vsplth Vector Splat Halfword
VX 4 0x1000030C 246 V vspltisb Vector Splat Immediate Signed Byte
VX 4 0x1000034C 246 V vspltish Vector Splat Immediate Signed Halfword
VX 4 0x1000038C 246 V vspltisw Vector Splat Immediate Signed Word
VX 4 0x1000028C 245 V vspltw Vector Splat Word
VX 4 0x100002C4 249 V vsr Vector Shift Right
VX 4 0x10000304 291 V vsrab Vector Shift Right Algebraic Byte
VX 4 0x100003C4 291 V vsrad Vector Shift Right Algebraic Doubleword
VX 4 0x10000344 291 V vsrah Vector Shift Right Algebraic Halfword
VX 4 0x10000384 291 V vsraw Vector Shift Right Algebraic Word
VX 4 0x10000204 290 V vsrb Vector Shift Right Byte
VX 4 0x100006C4 290 V vsrd Vector Shift Right Doubleword
VX 4 0x10000244 290 V vsrh Vector Shift Right Halfword
VX 4 0x1000044C 249 V vsro Vector Shift Right by Octet
VX 4 0x10000284 290 V vsrw Vector Shift Right Word

VX 4 0x10000540 260 V vsubcuq Vector Subtract & write Carry Unsigned 
Quadword

VX 4 0x10000580 256 V vsubcuw Vector Subtract and Write Carry-Out Unsigned 
Word

VA 4 0x1000003F 260 V vsubecuq Vector Subtract Extended & write Carry 
Unsigned Quadword

VA 4 0x1000003E 260 V vsubeuqm Vector Subtract Extended Unsigned 
Quadword Modulo

VX 4 0x1000004A 292 V vsubfp Vector Subtract Single-Precision
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Version 2.07 B
VX 4 0x10000700 256 V vsubsbs Vector Subtract Signed Byte Saturate
VX 4 0x10000740 256 V vsubshs Vector Subtract Signed Halfword Saturate
VX 4 0x10000780 257 V vsubsws Vector Subtract Signed Word Saturate
VX 4 0x10000400 258 V vsububm Vector Subtract Unsigned Byte Modulo
VX 4 0x10000600 259 V vsububs Vector Subtract Unsigned Byte Saturate
VX 4 0x100004C0 258 V vsubudm Vector Subtract Unsigned Doubleword Modulo
VX 4 0x10000440 258 V vsubuhm Vector Subtract Unsigned Halfword Modulo
VX 4 0x10000640 258 V vsubuhs Vector Subtract Unsigned Halfword Saturate
VX 4 0x10000500 260 V vsubuqm Vector Subtract Unsigned Quadword Modulo
VX 4 0x10000480 258 V vsubuwm Vector Subtract Unsigned Word Modulo
VX 4 0x10000680 259 V vsubuws Vector Subtract Unsigned Word Saturate
VX 4 0x10000688 271 V vsum2sws Vector Sum across Half Signed Word Saturate

VX 4 0x10000708 272 V vsum4sbs Vector Sum across Quarter Signed Byte 
Saturate

VX 4 0x10000648 272 V vsum4shs Vector Sum across Quarter Signed Halfword 
Saturate

VX 4 0x10000608 273 V vsum4ubs Vector Sum across Quarter Unsigned Byte 
Saturate

VX 4 0x10000788 271 V vsumsws Vector Sum across Signed Word Saturate
VX 4 0x1000034E 238 V vupkhpx Vector Unpack High Pixel
VX 4 0x1000020E 241 V vupkhsb Vector Unpack High Signed Byte
VX 4 0x1000024E 241 V vupkhsh Vector Unpack High Signed Halfword
VX 4 0x1000064E 241 V vupkhsw Vector Unpack High Signed Word
VX 4 0x100003CE 240 V vupklpx Vector Unpack Low Pixel
VX 4 0x1000028E 241 V vupklsb Vector Unpack Low Signed Byte
VX 4 0x100002CE 241 V vupklsh Vector Unpack Low Signed Halfword
VX 4 0x100006CE 241 V vupklsw Vector Unpack Low Signed Word
VX 4 0x100004C4 287 V vxor Vector Logical XOR
X 31 0x7C00007C 791 WT wait Wait for Interrupt
X 31 0x7C000106 P 1056 E wrtee Write External Enable
X 31 0x7C000146 P 1057 E wrteei Write External Enable Immediate
X 26 0x68000000 B xnop Executed No Operation
X 31 0x7C000278 SR 85 B xor[.] XOR
D 26 0x68000000 84 B xori XOR Immediate
D 27 0x6C000000 84 B xoris XOR Immediate Shifted

XX2 60 0xF0000564 398 VSX xsabsdp VSX Scalar Absolute Value Double-Precision
XX3 60 0xF0000100 399 VSX xsadddp VSX Scalar Add Double-Precision
XX3 60 0xF0000000 404 VSX xsaddsp VSX Scalar Add Single-Precision

XX3 60 0xF0000158 406 VSX xscmpodp VSX Scalar Compare Ordered 
Double-Precision

XX3 60 0xF0000118 408 VSX xscmpudp VSX Scalar Compare Unordered 
Double-Precision

XX3 60 0xF0000580 410 VSX xscpsgndp VSX Scalar Copy Sign Double-Precision

XX2 60 0xF0000424 411 VSX xscvdpsp VSX Scalar Convert Double-Precision to 
Single-Precision

XX2 60 0xF000042C 412 VSX xscvdpspn VSX Scalar Convert Double-Precision to 
Single-Precision format Non-signalling

XX2 60 0xF0000560 421 VSX xscvdpsxds VSX Scalar Convert Double-Precision to 
Signed Fixed-Point Doubleword Saturate

XX2 60 0xF0000160 412 VSX xscvdpsxws VSX Scalar Convert Double-Precision to 
Signed Fixed-Point Word Saturate

XX2 60 0xF0000520 415 VSX xscvdpuxds VSX Scalar Convert Double-Precision to 
Unsigned Fixed-Point Doubleword Saturate

XX2 60 0xF0000120 417 VSX xscvdpuxws VSX Scalar Convert Double-Precision to 
Unsigned Fixed-Point Word Saturate
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Version 2.07 B
XX2 60 0xF0000524 419 VSX xscvspdp VSX Scalar Convert Single-Precision to 
Double-Precision (p=1)

XX2 60 0xF000052C 421 VSX xscvspdpn Scalar Convert Single-Precision to 
Double-Precision format Non-signalling

XX2 60 0xF00005E0 422 VSX xscvsxddp VSX Scalar Convert Signed Fixed-Point 
Doubleword to Double-Precision

XX2 60 0xF00004E0 422 VSX xscvsxdsp VSX Scalar Convert Signed Fixed-Point 
Doubleword to Single-Precision

XX2 60 0xF00005A0 423 VSX xscvuxddp VSX Scalar Convert Unsigned Fixed-Point 
Doubleword to Double-Precision

XX2 60 0xF00004A0 423 VSX xscvuxdsp VSX Scalar Convert Unsigned Fixed-Point 
Doubleword to Single-Precision

XX3 60 0xF00001C0 424 VSX xsdivdp VSX Scalar Divide Double-Precision
XX3 60 0xF00000C0 426 VSX xsdivsp VSX Scalar Divide Single-Precision

XX3 60 0xF0000108 428 VSX xsmaddadp VSX Scalar Multiply-Add Type-A 
Double-Precision

XX3 60 0xF0000008 431 VSX xsmaddasp VSX Scalar Multiply-Add Type-A 
Single-Precision

XX3 60 0xF0000148 428 VSX xsmaddmdp VSX Scalar Multiply-Add Type-M 
Double-Precision

XX3 60 0xF0000048 431 VSX xsmaddmsp VSX Scalar Multiply-Add Type-M 
Single-Precision

XX3 60 0xF0000500 434 VSX xsmaxdp VSX Scalar Maximum Double-Precision
XX3 60 0xF0000540 436 VSX xsmindp VSX Scalar Minimum Double-Precision

XX3 60 0xF0000188 438 VSX xsmsubadp VSX Scalar Multiply-Subtract Type-A 
Double-Precision

XX3 60 0xF0000088 441 VSX xsmsubasp VSX Scalar Multiply-Subtract Type-A 
Single-Precision

XX3 60 0xF00001C8 438 VSX xsmsubmdp VSX Scalar Multiply-Subtract Type-M 
Double-Precision

XX3 60 0xF00000C8 441 VSX xsmsubmsp VSX Scalar Multiply-Subtract Type-M 
Single-Precision

XX3 60 0xF0000180 444 VSX xsmuldp VSX Scalar Multiply Double-Precision
XX3 60 0xF0000080 446 VSX xsmulsp VSX Scalar Multiply Single-Precision

XX2 60 0xF00005A4 448 VSX xsnabsdp VSX Scalar Negative Absolute Value 
Double-Precision

XX2 60 0xF00005E4 448 VSX xsnegdp VSX Scalar Negate Double-Precision

XX3 60 0xF0000508 449 VSX xsnmaddadp VSX Scalar Negative Multiply-Add Type-A 
Double-Precision

XX3 60 0xF0000408 454 VSX xsnmaddasp VSX Scalar Negative Multiply-Add Type-A 
Single-Precision

XX3 60 0xF0000548 449 VSX xsnmaddmdp VSX Scalar Negative Multiply-Add Type-M 
Double-Precision

XX3 60 0xF0000448 454 VSX xsnmaddmsp VSX Scalar Negative Multiply-Add Type-M 
Single-Precision

XX3 60 0xF0000588 457 VSX xsnmsubadp VSX Scalar Negative Multiply-Subtract Type-A 
Double-Precision

XX3 60 0xF0000488 460 VSX xsnmsubasp VSX Scalar Negative Multiply-Subtract Type-A 
Single-Precision

XX3 60 0xF00005C8 457 VSX xsnmsubmdp VSX Scalar Negative Multiply-Subtract 
Type-M Double-Precision

XX3 60 0xF00004C8 460 VSX xsnmsubmsp VSX Scalar Negative Multiply-Subtract 
Type-M Single-Precision

XX2 60 0xF0000124 463 VSX xsrdpi VSX Scalar Round to Double-Precision 
Integer

XX2 60 0xF00001AC 464 VSX xsrdpic VSX Scalar Round to Double-Precision 
Integer using Current rounding mode
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XX2 60 0xF00001E4 465 VSX xsrdpim VSX Scalar Round to Double-Precision 
Integer toward -Infinity

XX2 60 0xF00001A4 465 VSX xsrdpip VSX Scalar Round to Double-Precision 
Integer toward +Infinity

XX2 60 0xF0000164 466 VSX xsrdpiz VSX Scalar Round to Double-Precision 
Integer toward Zero

XX1 60 0xF0000168 467 VSX xsredp VSX Scalar Reciprocal Estimate 
Double-Precision

XX2 60 0xF0000068 468 VSX xsresp VSX Scalar Reciprocal Estimate 
Single-Precision

XX2 60 0xF0000464 469 VSX xsrsp VSX Scalar Round to Single-Precision

XX2 60 0xF0000128 470 VSX xsrsqrtedp VSX Scalar Reciprocal Square Root Estimate 
Double-Precision

XX2 60 0xF0000028 471 VSX xsrsqrtesp VSX Scalar Reciprocal Square Root Estimate 
Single-Precision

XX2 60 0xF000012C 472 VSX xssqrtdp VSX Scalar Square Root Double-Precision
XX2 60 0xF000002C 473 VSX xssqrtsp VSX Scalar Square Root Single-Precision
XX3 60 0xF0000140 474 VSX xssubdp VSX Scalar Subtract Double-Precision
XX3 60 0xF0000040 476 VSX xssubsp VSX Scalar Subtract Single-Precision

XX3 60 0xF00001E8 478 VSX xstdivdp VSX Scalar Test for software Divide 
Double-Precision

XX2 60 0xF00001A8 479 VSX xstsqrtdp VSX Scalar Test for software Square Root 
Double-Precision

XX2 60 0xF0000764 479 VSX xvabsdp VSX Vector Absolute Value Double-Precision
XX2 60 0xF0000664 480 VSX xvabssp VSX Vector Absolute Value Single-Precision
XX3 60 0xF0000300 481 VSX xvadddp VSX Vector Add Double-Precision
XX3 60 0xF0000200 485 VSX xvaddsp VSX Vector Add Single-Precision

XX3 60 0xF0000318 487 VSX xvcmpeqdp VSX Vector Compare Equal To 
Double-Precision

XX3 60 0xF0000718 487 VSX xvcmpeqdp. VSX Vector Compare Equal To 
Double-Precision & record CR6

XX3 60 0xF0000218 488 VSX xvcmpeqsp VSX Vector Compare Equal To 
Single-Precision

XX3 60 0xF0000618 488 VSX xvcmpeqsp. VSX Vector Compare Equal To 
Single-Precision & record CR6

XX3 60 0xF0000398 489 VSX xvcmpgedp VSX Vector Compare Greater Than or Equal 
To Double-Precision

XX3 60 0xF0000798 489 VSX xvcmpgedp. VSX Vector Compare Greater Than or Equal 
To Double-Precision & record CR6

XX3 60 0xF0000298 490 VSX xvcmpgesp VSX Vector Compare Greater Than or Equal 
To Single-Precision

XX3 60 0xF0000698 490 VSX xvcmpgesp. VSX Vector Compare Greater Than or Equal 
To Single-Precision & record CR6

XX3 60 0xF0000358 491 VSX xvcmpgtdp VSX Vector Compare Greater Than 
Double-Precision

XX3 60 0xF0000758 491 VSX xvcmpgtdp. VSX Vector Compare Greater Than 
Double-Precision & record CR6

XX3 60 0xF0000258 492 VSX xvcmpgtsp VSX Vector Compare Greater Than 
Single-Precision

XX3 60 0xF0000658 492 VSX xvcmpgtsp. VSX Vector Compare Greater Than 
Single-Precision & record CR6

XX3 60 0xF0000780 493 VSX xvcpsgndp VSX Vector Copy Sign Double-Precision
XX3 60 0xF0000680 493 VSX xvcpsgnsp VSX Vector Copy Sign Single-Precision

XX2 60 0xF0000624 494 VSX xvcvdpsp VSX Vector Convert Double-Precision to 
Single-Precision

XX2 60 0xF0000760 495 VSX xvcvdpsxds VSX Vector Convert Double-Precision to 
Signed Fixed-Point Doubleword Saturate
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XX2 60 0xF0000360 497 VSX xvcvdpsxws VSX Vector Convert Double-Precision to 
Signed Fixed-Point Word Saturate

XX2 60 0xF0000720 499 VSX xvcvdpuxds VSX Vector Convert Double-Precision to 
Unsigned Fixed-Point Doubleword Saturate

XX2 60 0xF0000320 501 VSX xvcvdpuxws VSX Vector Convert Double-Precision to 
Unsigned Fixed-Point Word Saturate

XX2 60 0xF0000724 503 VSX xvcvspdp VSX Vector Convert Single-Precision to 
Double-Precision

XX2 60 0xF0000660 504 VSX xvcvspsxds VSX Vector Convert Single-Precision to 
Signed Fixed-Point Doubleword Saturate

XX2 60 0xF0000260 506 VSX xvcvspsxws VSX Vector Convert Single-Precision to 
Signed Fixed-Point Word Saturate

XX2 60 0xF0000620 508 VSX xvcvspuxds VSX Vector Convert Single-Precision to 
Unsigned Fixed-Point Doubleword Saturate

XX2 60 0xF0000220 510 VSX xvcvspuxws VSX Vector Convert Single-Precision to 
Unsigned Fixed-Point Word Saturate

XX2 60 0xF00007E0 512 VSX xvcvsxddp VSX Vector Convert Signed Fixed-Point 
Doubleword to Double-Precision

XX2 60 0xF00006E0 512 VSX xvcvsxdsp VSX Vector Convert Signed Fixed-Point 
Doubleword to Single-Precision

XX2 60 0xF00003E0 513 VSX xvcvsxwdp VSX Vector Convert Signed Fixed-Point Word 
to Double-Precision

XX2 60 0xF00002E0 513 VSX xvcvsxwsp VSX Vector Convert Signed Fixed-Point Word 
to Single-Precision

XX2 60 0xF00007A0 514 VSX xvcvuxddp VSX Vector Convert Unsigned Fixed-Point 
Doubleword to Double-Precision

XX2 60 0xF00006A0 514 VSX xvcvuxdsp VSX Vector Convert Unsigned Fixed-Point 
Doubleword to Single-Precision

XX2 60 0xF00003A0 515 VSX xvcvuxwdp VSX Vector Convert Unsigned Fixed-Point 
Word to Double-Precision

XX2 60 0xF00002A0 515 VSX xvcvuxwsp VSX Vector Convert Unsigned Fixed-Point 
Word to Single-Precision

XX3 60 0xF00003C0 516 VSX xvdivdp VSX Vector Divide Double-Precision
XX3 60 0xF00002C0 518 VSX xvdivsp VSX Vector Divide Single-Precision

XX3 60 0xF0000308 520 VSX xvmaddadp VSX Vector Multiply-Add Type-A 
Double-Precision

XX3 60 0xF0000208 520 VSX xvmaddasp VSX Vector Multiply-Add Type-A 
Single-Precision

XX3 60 0xF0000348 523 VSX xvmaddmdp VSX Vector Multiply-Add Type-M 
Double-Precision

XX3 60 0xF0000248 523 VSX xvmaddmsp VSX Vector Multiply-Add Type-M 
Single-Precision

XX3 60 0xF0000700 526 VSX xvmaxdp VSX Vector Maximum Double-Precision
XX3 60 0xF0000600 528 VSX xvmaxsp VSX Vector Maximum Single-Precision
XX3 60 0xF0000740 530 VSX xvmindp VSX Vector Minimum Double-Precision
XX3 60 0xF0000640 532 VSX xvminsp VSX Vector Minimum Single-Precision

XX3 60 0xF0000388 534 VSX xvmsubadp VSX Vector Multiply-Subtract Type-A 
Double-Precision

XX3 60 0xF0000288 534 VSX xvmsubasp VSX Vector Multiply-Subtract Type-A 
Single-Precision

XX3 60 0xF00003C8 537 VSX xvmsubmdp VSX Vector Multiply-Subtract Type-M 
Double-Precision

XX3 60 0xF00002C8 537 VSX xvmsubmsp VSX Vector Multiply-Subtract Type-M 
Single-Precision

XX3 60 0xF0000380 540 VSX xvmuldp VSX Vector Multiply Double-Precision
XX3 60 0xF0000280 542 VSX xvmulsp VSX Vector Multiply Single-Precision

XX2 60 0xF00007A4 544 VSX xvnabsdp VSX Vector Negative Absolute Value 
Double-Precision
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XX2 60 0xF00006A4 544 VSX xvnabssp VSX Vector Negative Absolute Value 
Single-Precision

XX2 60 0xF00007E4 545 VSX xvnegdp VSX Vector Negate Double-Precision
XX2 60 0xF00006E4 545 VSX xvnegsp VSX Vector Negate Single-Precision

XX3 60 0xF0000708 546 VSX xvnmaddadp VSX Vector Negative Multiply-Add Type-A 
Double-Precision

XX3 60 0xF0000608 546 VSX xvnmaddasp VSX Vector Negative Multiply-Add Type-A 
Single-Precision

XX3 60 0xF0000748 551 VSX xvnmaddmdp VSX Vector Negative Multiply-Add Type-M 
Double-Precision

XX3 60 0xF0000648 551 VSX xvnmaddmsp VSX Vector Negative Multiply-Add Type-M 
Single-Precision

XX3 60 0xF0000788 554 VSX xvnmsubadp VSX Vector Negative Multiply-Subtract Type-A 
Double-Precision

XX3 60 0xF0000688 554 VSX xvnmsubasp VSX Vector Negative Multiply-Subtract Type-A 
Single-Precision

XX3 60 0xF00007C8 557 VSX xvnmsubmdp VSX Vector Negative Multiply-Subtract 
Type-M Double-Precision

XX3 60 0xF00006C8 557 VSX xvnmsubmsp VSX Vector Negative Multiply-Subtract 
Type-M Single-Precision

XX2 60 0xF0000324 560 VSX xvrdpi VSX Vector Round to Double-Precision 
Integer

XX2 60 0xF00003AC 560 VSX xvrdpic VSX Vector Round to Double-Precision 
Integer using Current rounding mode

XX2 60 0xF00003E4 561 VSX xvrdpim VSX Vector Round to Double-Precision 
Integer toward -Infinity

XX2 60 0xF00003A4 561 VSX xvrdpip VSX Vector Round to Double-Precision 
Integer toward +Infinity

XX2 60 0xF0000364 562 VSX xvrdpiz VSX Vector Round to Double-Precision 
Integer toward Zero

XX2 60 0xF0000368 563 VSX xvredp VSX Vector Reciprocal Estimate 
Double-Precision

XX2 60 0xF0000268 564 VSX xvresp VSX Vector Reciprocal Estimate 
Single-Precision

XX2 60 0xF0000224 565 VSX xvrspi VSX Vector Round to Single-Precision Integer

XX2 60 0xF00002AC 565 VSX xvrspic VSX Vector Round to Single-Precision Integer 
using Current rounding mode

XX2 60 0xF00002E4 566 VSX xvrspim VSX Vector Round to Single-Precision Integer 
toward -Infinity

XX2 60 0xF00002A4 566 VSX xvrspip VSX Vector Round to Single-Precision Integer 
toward +Infinity

XX2 60 0xF0000264 567 VSX xvrspiz VSX Vector Round to Single-Precision Integer 
toward Zero

XX2 60 0xF0000328 567 VSX xvrsqrtedp VSX Vector Reciprocal Square Root Estimate 
Double-Precision

XX2 60 0xF0000228 569 VSX xvrsqrtesp VSX Vector Reciprocal Square Root Estimate 
Single-Precision

XX2 60 0xF000032C 570 VSX xvsqrtdp VSX Vector Square Root Double-Precision
XX2 60 0xF000022C 571 VSX xvsqrtsp VSX Vector Square Root Single-Precision
XX3 60 0xF0000340 572 VSX xvsubdp VSX Vector Subtract Double-Precision
XX3 60 0xF0000240 574 VSX xvsubsp VSX Vector Subtract Single-Precision

XX3 60 0xF00003E8 576 VSX xvtdivdp VSX Vector Test for software Divide 
Double-Precision

XX3 60 0xF00002E8 577 VSX xvtdivsp VSX Vector Test for software Divide 
Single-Precision

XX2 60 0xF00003A8 578 VSX xvtsqrtdp VSX Vector Test for software Square Root 
Double-Precision
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1 See the key to the mode dependency and privilege columns on page 1484 and the key to the category column in 
Section 1.3.5 of Book I.

XX2 60 0xF00002A8 578 VSX xvtsqrtsp VSX Vector Test for software Square Root 
Single-Precision

XX3 60 0xF0000410 579 VSX xxland VSX Logical AND
XX3 60 0xF0000450 579 VSX xxlandc VSX Logical AND with Complement
XX3 60 0xF00005D0 580 VSX xxleqv VSX Logical Equivalence
XX3 60 0xF0000590 580 VSX xxlnand VSX Logical NAND
XX3 60 0xF0000510 581 VSX xxlnor VSX Logical NOR
XX3 60 0xF0000490 582 VSX xxlor VSX Logical OR
XX3 60 0xF0000550 581 VSX xxlorc VSX Logical OR with Complement
XX3 60 0xF00004D0 582 VSX xxlxor VSX Logical XOR
XX3 60 0xF0000090 583 VSX xxmrghw VSX Merge High Word
XX3 60 0xF0000190 583 VSX xxmrglw VSX Merge Low Word
XX3 60 0xF0000050 584 VSX xxpermdi VSX Permute Doubleword Immediate
XX4 60 0xF0000030 584 VSX xxsel VSX Select
XX3 60 0xF0000010 585 VSX xxsldwi VSX Shift Left Double by Word Immediate
XX2 60 0xF0000290 585 VSX xxspltw VSX Splat Word
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Mode Dependency and Privilege Abbreviations
Except as described below and in Section 1.10.3, “Effective Address Calculation”, in Book I, all instructions are inde-
pendent of whether the processor is in 32-bit or 64-bit mode.

Key to Mode Dependency Column 

Key to Privilege Column 

Mode Dep. Description
CT If the instruction tests the Count Register, it tests the low-order 32 bits in 32-bit mode and all 64 bits in

64-bit mode.
SR The setting of status registers (such as XER and CR0) is mode-dependent.
32 The instruction can be executed only in 32-bit mode.
64 The instruction can be executed only in 64-bit mode.

Priv. Description
P Denotes a privileged instruction.
O Denotes an instruction that is treated as privileged or nonprivileged (or hypervisor, for mtspr), depend-

ing on the SPR or PMR number.
H Denotes an instruction that can be executed only in hypervisor state <S,E.HV>

PH Denotes a hypervisor privileged instruction if Category Embedded.Hypervisor is implemented; otherwise
denotes a privileged instruction.

M Denotes an instruction that is treated as privileged or nonprivileged, depending on the value of the UCLE
bit in the MSR
Power ISA™ - Book Appendices1484
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Index

Numerics
2 846
3 846
32-bit mode 891

A
a bit 34
AA field 17
address 23

effective 26
effective address 889, 1073
real 889, 1076

address compare 889, 953, 961
address translation 905, 1084

32-bit mode 891
EA to VA 891
esid to vsid 891
overview 895
PTE

page table entry 900, 905, 1089
Reference bit 905
RPN

real page number 898
VA to RA 898
VPN

virtual page number 898
address wrap 889, 1076
addresses

accessed by processor 895
implicit accesses 895
interrupt vectors 895
with defined uses 895

addressing mode
D-mode 1267

A-form 16
aliasing 742
Alignment 23
Alignment interrupt 1170
assembler language

extended mnemonics 709, 1017, 1245
mnemonics 709, 1017, 1245
symbols 709, 1017, 1245

atomic operation 744
atomicity

single-copy 737
Auxiliary Processor 4
Auxiliary Processor Unavailable interrupt 1173

B
BA field 17
BA instruction field 1263
BB field 17
BC field 17
BD field 18
BD instruction field 1263
BE

See Machine State Register
BF field 18

BF instruction field 1264
BFA field 18
BFA instruction field 1264
B-form 14
BH field 18
BI field 18, 20
block 736
BO field 18, 34
boundedly undefined 4
Bridge 925

Segment Registers 925
SR 925

brinc 594
BT field 18
bytes 3

C
C 115
CA 46, 804
cache management instructions 761
cache model 737
cache parameters 759
Caching Inhibited 738
Change bit 905
CIA 7
Come-From Address Register 881, 1361
consistency 742
context

definition 841, 1024
synchronization 843, 1026

Control Register 872
Count Register 881, 1050, 1274, 1361
CR 30
Critical Input interrupt 1165
Critical Save/Restore Register 1 1147
CSRR1 1147
CTR 32, 1274
CTRL

See Control Register
Current Instruction Address 863, 1040, 1278

D
D field 18
D instruction field 1264
DABR interrupt 980
DABR(X)

See Data Breakpoint Register (Extension)
DAR

See Data Address Register
Data 1066
data access 889, 1076
Data Address Breakpoint Register (Extension) 855, 980, 

1012
data address compare 953, 961
Data Address Register 881, 937, 938, 954, 957, 962, 1361
data cache instructions 61, 763
Data Exception Address Register 1148
data exception address register 1148
Data Segment interrupt 954
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data storage 735
Data Storage interrupt 953, 961, 1166
Data Storage Interrupt Status Register 881, 938, 953, 957, 

961, 1361
Data TLB Error interrupt 1176
DC 804
dcba instruction 770, 1118
dcbf instruction 773
dcbst instruction 751, 773, 953, 961
dcbt instruction 770, 1063, 1122
dcbtls 1123
dcbtst instruction 771, 1066, 1122
dcbz instruction 772, 917, 953, 957, 961, 1067, 1118
DEAR 1148
Debug Interrupt 1178
DEC

See Decrementer
decimal carries 804
Decrementer 881, 974, 975, 1050, 1199, 1200, 1208, 1361
Decrementer Interrupt 1173
Decrementer interrupt 887, 959
defined instructions 21
denormalization 119, 329
denormalized number 118, 328
D-form 14
D-mode addressing mode 1267
double-precision 119
doublewords 3
DQ field 18
DQ-form 14
DR

See Machine State Register
DS 804
DS field 18
DS-form 14
DSISR

See Data Storage Interrupt Status Register

E
E (Enable bit) 1003
EA 26
eciwx instruction 825, 826, 953, 961, 1003
ecowx instruction 825, 826, 953, 961, 1003
EE

See Machine State Register
effective address 26, 889, 895, 1073

size 891
translation 896

Effective Address Overflow 961
eieio instruction 742, 790, 1092
emulation assist 842, 1025
Endianness 740
EQ 30, 31, 804
ESR 1150, 1151
evabs 594
evaddiw 594
evaddsmiaaw 594
evaddssiaaw 595
evlwhex 603
exception 1145

alignment exception 1170
critical input exception 1165
data storage exception 1166
external input exception 1170
illegal instruction exception 1171
instruction storage exception 1168
instruction TLB miss exception 1177
machine check exception 1165
privileged instruction exception 1172
program exception 1171
system call exception 1173, 1183, 1184
trap exception 1172

exception priorities 1190
system call instruction 1191
trap instructions 1191

Exception Syndrome Register 1150, 1151
exception syndrome register 1150, 1151
exception vector prefix register 1148, 1149
Exceptions 1145
exceptions

address compare 889, 953, 961
definition 841, 1024
Effective Address Overflow 961
page fault 889, 904, 953, 961, 1075
protection 889, 1075
segment fault 889
storage 889, 1075

execution synchronization 844, 1026
extended mnemonics 827
External Access Register 881, 953, 961, 1003, 1012, 1050, 

1362
External Control 825
External Control instructions

eciwx 826
ecowx 826

External Input interrupt 1170
External interrupt 887, 956

F
FE 31, 116, 323
FE0

See Machine State Register
FE1

See Machine State Register
FEX 115
FG 31, 116, 323
FI 115
Fixed-Interval Timer interrupt 1174
Fixed-Point Exception Register 881, 1050, 1361
FL 31, 116, 323
FLM field 18
floating-point

denormalization 119, 329
double-precision 119
exceptions 113, 122, 326

inexact 126, 354
invalid operation 124, 341
overflow 125, 349
underflow 126, 351
zero divide 124, 347

execution models 127, 335
normalization 119, 329
number

denormalized 118, 328
infinity 118, 328
normalized 118, 328
not a number 118, 328
zero 118, 328

rounding 121, 333
sign 119, 329
single-precision 119

Floating-Point Unavailable interrupt 959, 964, 965, 1172
forward progress 747
FP

See Machine State Register
FPCC 115, 323
FPR 114
FPRF 115
FPSCR 114, 321

C 115
FE 116, 323
FEX 115
FG 116, 323
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FI 115
FL 116, 323
FPCC 115, 323
FPRF 115
FR 115
FU 116
FX 114, 321
NI 116, 324
OE 116, 324
OX 115, 321
RN 116, 324
UE 116, 324
UX 115
VE 116, 323
VX 115, 321
VXCVI 116, 323
VXIDI 115, 322
VXIMZ 115
VXISI 115, 322
VXSNAN 115, 322
VXSOFT 116
VXSQRT 116, 323
VXVC 115
VXZDZ 115, 322
XE 116
XX 115
ZE 116
ZX 115

FR 115
FRA field 18, 19
FRB field 18
FRC field 19
FRS field 19
FRT field 19
FU 31, 116
FX 114, 321
FXCC 804
FXM field 19
FXM instruction field 1264

G
GPR 45
GT 30, 31, 804
Guarded 739

H
halfwords 3
hardware

definition 842, 1025
hardware description language 6
hashed page table

size 901
HDEC

See Hypervisor Decrementer
HDICE

See Logical Partitioning Control Register
HEIR

See Hypervisor Emulated Instruction Register
hrfid instruction 857, 969
HRMOR

See Hypervisor Real Mode Offset Register
HSPRGn

See software-use SPRs
HV

See Machine State Register
hypervisor 845, 1031
Hypervisor Decrementer 881, 975, 1012, 1362
Hypervisor Decrementer interrupt 959
Hypervisor Emulated Instruction Register 882, 938, 1362
Hypervisor Machine Status Save Restore Register

See HSRR0, HSRR1
Hypervisor Machine Status Save Restore Register 0 937
Hypervisor Real Mode Offset Register 757, 848, 849, 1012

I
icbi instruction 751, 762, 953, 961
icbt instruction 762
I-form 14
ILE

See Logical Partitioning Control Register
illegal instructions 21
implicit branch 889, 1075
imprecise interrupt 944, 1157
inexact 126, 354
infinity 118, 328
in-order operations 890, 1076
instruction 953, 961

field
BA 1263
BD 1263
BF 1264
BFA 1264
D 1264
FXM 1264
L 1264
LK 1264
Rc 1264
SH 1264, 1269
SI 1264
UI 1264
WS 1265

fields 17–??
AA 17
BA 17
BB 17
BC 17
BD 18
BF 18
BFA 18
BH 18
BI 18, 20
BO 18
BT 18
D 18
DQ 18
DS 18
FLM 18
FRA 18, 19
FRB 18
FRC 19
FRS 19
FRT 19
FXM 19
L 19
LEV 19
LI 19
LK 19
MB 19
ME 19
NB 19
OE 19
PMRN 19
RA 19
RB 19, 20
Rc 20
RS 20
RT 20
SH 20
SI 20
SPR 20
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SR 20
TBR 20
TH 20
TO 20
U 20
UI 20

formats 13–??
A-form 16
B-form 14
D-form 14
DQ-form 14
DS-form 14
I-form 14
MD-form 16
MDS-form 16
M-form 16
SC-form 14
VA-form 16
VX-form 17
XFL-form 16
X-form 15
XFX-form 15
XL-form 15
XO-form 16
XS-form 16

interrupt control 1278
mtmsr 1055
partially executed 1186
rfci 1280

instruction cache instructions 762
instruction fetch 889, 1075

effective address 889, 1075
implicit branch 889, 1075

Instruction Fields 1263
instruction restart 756
Instruction Segment interrupt 955, 963
instruction storage 735
Instruction Storage interrupt 955, 1168
Instruction TLB Error Interrupt 1177
instruction-caused interrupt 944
Instructions

brinc 594
dcbtls 1123
evabs 594
evaddiw 594
evaddsmiaaw 594
evaddssiaaw 595
evlwhex 603

instructions
classes 21
dcba 770, 1118
dcbf 773
dcbst 751, 773, 953, 961
dcbt 770, 1063, 1122
dcbtst 771, 1066, 1122
dcbz 772, 917, 957, 1067, 1118
defined 21

forms 22
eciwx 825, 826, 953, 961, 1003
ecowx 825, 826, 953, 961, 1003
eieio 742, 790, 1092
hrfid 857, 969
icbi 751, 762, 953, 961
icbt 762
illegal 21
invalid forms 22
isync 751, 776
ldarx 744, 782, 784, 953, 961
lookaside buffer 918

lq 58
lwa 957
lwarx 744, 777, 778, 953, 961
lwaux 957
lwsync 786
mbar 790
mfmsr 857, 888, 1056
mfspr 885, 1054
mfsr 927
mfsrin 927
mftb 814
mtmsr 857, 886, 969
mtmsrd 857, 887, 969

address wrap 889, 1076
mtspr 884, 1053
mtsr 926
mtsrin 926
optional

See optional instructions
preferred forms 22
ptesync 786, 844, 1092
reserved 21
rfci 1041
rfid 751, 857, 864, 865, 947, 969
rfmci 1042
rfscv 969
sc 822, 823, 824, 863, 867, 960, 1040
slbia 920, 923
slbie 919
slbmfee 923
slbmfev 922
slbmte 921
stdcx. 744, 953, 961
storage control 759, 795, 917, 1118
stq 59
stwcx. 744, 780, 781, 782, 785, 953, 961
sync 751, 786, 844, 905
tlbia 904, 932
tlbie 904, 928, 933, 935, 1093
tlbiel 930
tlbsync 933, 1092
wrtee 1056
wrteei 1057

interrupt 1145
alignment interrupt 1170
DABR 980
Data Segment 954
Data Storage 953, 961
data storage interrupt 1166
Decrementer 887, 959
definition 842, 1024, 1025
External 887, 956
external input interrupt 1170
Floating-Point Unavailable 959, 964, 965
Hypervisor Decrementer 959
imprecise 944, 1157
instruction

partially executed 1186
Instruction Segment 955, 963
Instruction Storage 955, 1168
instruction storage interrupt 1168
instruction TLB miss interrupt 1177
instruction-caused 944
Machine Check 951
machine check interrupt 1165
masking 1187

guidelines for system software 1189
new MSR 948
ordering 1187, 1189

guidelines for system software 1189
overview 937
precise 944, 1157
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priorities 968
processing 945
Program 957
program interrupt 1171

illegal instruction exception 1171
privileged instruction exception 1172
trap exception 1172

recoverable 947
synchronization 944
System Call 960
system call interrupt 1173, 1183, 1184
System Reset 950
system-caused 944
type

Alignment 1170
Auxiliary Processor Unavailable 1173
Critical Input 1165
Data Storage 1166
Data TLB Error 1176
Debug 1178
Decrementer 1173
External Input 1170
Fixed-Interval Timer 1174
Floating-Point Unavailable 1172
Instruction TLB Error 1177
Machine Check 1165
Program interrupt 1171
System Call 1173, 1183, 1184
Watchdog Timer 1175

vector 945, 950
interrupt and exception handling registers

DEAR 1148
ESR 1150, 1151
ivpr 1148, 1149

interrupt classes
asynchronous 1156
critical,non-critical 1157
machine check 1157
synchronous 1156

interrupt control instructions 1278
mtmsr 1055
rfci 1280

interrupt processing 1158
interrupt vector 1158

interrupt vector 1158
Interrupt Vector Offset Register 36 1051, 1363
Interrupt Vector Offset Register 37 1051, 1363
Interrupt Vector Offset Registers 1151, 1152
Interrupt Vector Prefix Register 1148, 1149
Interrupts 1145
invalid instruction forms 22
invalid operation 124, 341
IR

See Machine State Register
ISL

See Logical Partitioning Control Register
isync instruction 751, 776
IVORs 1151, 1152
IVPR 1148, 1149
ivpr 1148, 1149

K
K bits 908
key, storage 908

L
dcbf 953, 961
instructions

dcbf 953, 961
L field 19

L instruction field 1264
language used for instruction operation description 6
ldarx instruction 744, 782, 784, 953, 961
LE

See Machine State Register
LEV field 19
LI field 19
Link Register 881, 1050, 1274, 1361
LK field 19
LK instruction field 1264
Logical Partition Identification Register 849
Logical Partitioning 845, 1031
Logical Partitioning Control Register 759, 845, 882, 918, 

1012, 1362
HDICE Hypervisor Decrementer Interrupt Conditionally 

Enable 848, 856, 886, 887, 959, 960, 1013
ILEInterrupt Little-Endian 846, 949
ISL Ignore Large Page Specification 846
ISL Ignore SLB Large Page Specification 846
LPES Logical Partitioning Environment Selector 848, 856
RMI Real Mode Caching Inhibited Bit 848
RMLS Real Mode Offset Selector 845, 846, 1015
VC 1015
VC Virtualization Control 845
VPM Virtualized Partition Memory 845
VRMASD 1015
VRMASD Virtual Real Mode Area Segment Descriptor 846

lookaside buffer 918
LPAR (see Logical Partitioning) 845, 1031
LPCR

See Logical Partitioning Control Register
LPES

See Logical Partitioning Control Register
LPIDR

See Logical Partition Identification Register
lq instruction 58
LR 32, 1274
LT 30, 31, 804
lwa instruction 957
lwarx instruction 744, 777, 778, 953, 961
lwaux instruction 957
lwsync instruction 786

M
Machine 1035
Machine Check 1157
Machine Check interrupt 951, 1165
Machine State Register 857, 863, 886, 887, 888, 945, 947, 

948, 1035, 1056
BEBranch Trace Enable 858
DRData Relocate 859
EEExternal Interrupt Enable 858, 886, 887
FE0FP Exception Mode 858
FE1FP Exception Mode 859
FPFP Available 858
HVHypervisor State 857
IRInstruction Relocate 859
LELittle-Endian Mode 859
MEMachine Check Enable 858
PMMPerformance Monitor Mark 859
PRProblem State 858
RIRecoverable Interrupt 859, 886, 887
SESingle-Step Trace Enable 858
SFSixty Four Bit mode 759, 760, 857, 889, 1076
VECVector Avaialable 858

Machine Status Save Restore Register
See SRR0, SRR1

Machine Status Save Restore Register 0 937, 945, 947
Machine Status Save Restore Register 1 945, 947, 958
main storage 735
MB field 19
mbar instruction 790
MD-form 16
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MDS-form 16
ME

See Machine State Register
ME field 19
memory barrier 742
Memory Coherence Required 739
mfmsr instruction 857, 888, 1056
M-form 16
mfspr instruction 885, 1054
mfsr instruction 927
mfsrin instruction 927
mftb instruction 814
Mnemonics 1261
mnemonics

extended 709, 1017, 1245
mode change 889, 1076
move to machine state register 1055
MSR

See Machine State Register
mtmsr 1055
mtmsr instruction 857, 886, 969
mtmsrd instruction 857, 887, 969
mtspr instruction 884, 1053
mtsr instruction 926
mtsrin instruction 926

N
NB field 19
Next Instruction Address 863, 864, 1040, 1041, 1042, 1043, 

1278, 1281
NI 116, 324
NIA 7
no-op 83
normalization 119, 329
normalized number 118, 328
not a number 118, 328

O
OE 116, 324
OE field 19
optional instructions 918

slbia 920, 923
slbie 919
tlbia 932
tlbie 928
tlbiel 930
tlbsync 933

out-of-order operations 890, 1076
OV 45, 804
overflow 125, 349
OX 115, 321

P
page 736

size 891
page fault 889, 904, 953, 961, 1075
page table

search 902
update 1092

page table entry 900, 905, 1089
Change bit 905
PP bits 908
Reference bit 905
update 935, 1092, 1093

partially executed instructions 1186
partition 845, 1031
performed 736
PID 1103
PMM

See Machine State Register
PMRN field 19

PP bits 908
PR

See Machine State Register
precise interrupt 944, 1157
preferred instruction forms 22
priority of interrupts 968
Process ID Register 1103
Processor Utilization of Resources Register 881, 1362
Processor Version Register 871, 1045
Program interrupt 957, 1171
program order 735, 736
Program Priority Register 757, 881, 883, 1052, 1361, 1364
protection boundary 908, 957
protection domain 908
PTE 902

See also page table entry
PTEG 902
ptesync instruction 786, 844, 1092
PVR

See Processor Version Register

Q
quadwords 3

R
RA field 19
RB field 19, 20
RC bits 905
Rc field 20
Rc instruction field 1264
real address 895
Real Mode Offset Register 848, 856, 1006, 1012, 1031
real page

definition 841, 1024
real page number 900, 1089
recoverable interrupt 947
reference and change recording 905
Reference bit 905
register

CSRR1 1147
CTR 1274
DEAR 1148
ESR 1150, 1151
IVORs 1151, 1152
IVPR 1148, 1149
ivpr 1148, 1149
LR 1274
PID 1103
SRR0 1145, 1146
SRR1 1145, 1146

register transfer level language 6
Registers

implementation-specific
MMCR1 1254, 1255

supervisor-level
MMCR1 1254, 1255

registers
CFAR

Come-From Address Register 881, 1361
Condition Register 30
Count Register 32
CTR

Count Register 881, 1050, 1361
CTRL

Control Register 872
DABR(X)

Data Address Breakpoint Register (Extension) 855,
980, 1012

DAR
Data Address Register 881, 937, 938, 954, 957,

962, 1361
DEC
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Decrementer 881, 974, 975, 1050, 1199, 1200,
1208, 1361

DSISR
Data Storage Interrupt Status Register 881, 938,

953, 957, 961, 1361
EAR

External Access Register 881, 953, 961, 1003,
1012, 1050, 1362

Fixed-Point Exception Register 45
Floating-Point Registers 114
Floating-Point Status and Control Register 114, 321
General Purpose Registers 45
HDEC

Hypervisor Decrementer 881, 975, 1012, 1362
HEIR

Hypervisor Emulated Instruction Register 882, 938,
1362

HRMOR
Hypervisor Real Mode Offset Register 757, 848,

849, 1012
HSPRGn

software-use SPRs 874
HSRR0

Hypervisor Machine Status Save Restore Register
0 937

IVOR36
Interrupt Vector Offset Register 36 1051, 1363

IVOR37
Interrupt Vector Offset Register 37 1051, 1363

Link Register 32
LPCR

Logical Partitioning Control Register 759, 845, 882,
918, 1012, 1362

LPIDR
Logical Partition Identification Register 849

LR
Link Register 881, 1050, 1361

MSR
Machine State Register 857, 863, 886, 887, 888,

945, 947, 948, 1035, 1056
PPR

Program Prioirty Register 757, 881, 883, 1052,
1361, 1364

PURR
Processor Utilization of Resources Register 881,

1362
PVR

Processor Version Register 871, 1045
RMOR

Real Mode Offset Register 848, 856, 1006, 1012,
1031

SDR1
Storage Description Register 1 881, 1361, 1362
Storage DescriptionRegister 1 1012

SPRGn
software-use SPRs 881, 1050, 1361

SPRs
Special Purpose Registers 880

SRR0
Machine Status Save Restore Register 0 937, 945,

947
SRR1

Machine Status Save Restore Register 1 945, 947,
958

TB
Time Base 973, 1197

TBL
Time Base Lower 881, 973, 1050, 1197, 1362

TBU
Time Base Upper 881, 973, 1050, 1197, 1362

Time Base 813, 817, 821
XER

Fixed-Point Exception Register 857, 860, 881,
1035, 1036, 1037, 1050, 1221, 1222,
1361

relocation
data 889, 1076

reserved field 5, 842
reserved instructions 21
return from critical interrupt 1280
rfci 1280
rfci instruction 1041
rfid instruction 751, 857, 864, 865, 947, 969
rfmci instruction 1042
rfscv instruction 969
RI

See Machine State Register
RID (Resource ID) 1003
RMI

See Logical Partitioning Control Register
RMLS

See Logical Partitioning Control Register
RMOR

See Real Mode Offset Register
RN 116, 324
rounding 121, 333
RS field 20
RT field 20
RTL 6

S
Save/Restore Register 0 1145, 1146
Save/Restore Register 1 1145, 1146
sc instruction 822, 823, 824, 863, 867, 960, 1040
SC-form 14
SE

See Machine State Register
segment

size 891
type 891

Segment Lookaside Buffer
See SLB

Segment Registers 925
Segment Table

bridge 925
sequential execution model 29

definition 842, 1024
SF

See Machine State Register
SH field 20
SH instruction field 1264, 1269
SI field 20
SI instruction field 1264
sign 119, 329
single-copy atomicity 737
single-precision 119
SLB 896, 918

entry 897
slbia instruction 920, 923
slbie instruction 919
slbmfee instruction 923
slbmfev instruction 922
slbmte instruction 921
SO 30, 31, 45, 804
software-use SPRs 881, 1050, 1361
Special Purpose Registers 880
speculative operations 890, 1076
split field notation 14
SPR field 20
SR 925
SR field 20
SRR0 1145, 1146
SRR1 1145, 1146
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stdcx. instruction 744, 953, 961
storage

access order 742
accessed by processor 895
atomic operation 744
attributes

Endianness 740
implicit accesses 895
instruction restart 756
interrupt vectors 895
N 902
No-execute 902
order 742
ordering 742, 786, 790
protection

translation disabled 913
reservation 745
shared 742
with defined uses 895

storage access 735
definitions

program order 735, 736
floating-point 131, 356

storage access ordering 831
storage address 23
storage control

instructions 917, 1118
storage control attributes 738
storage control instructions 759, 795
Storage Description Register 1 881, 1012, 1361, 1362
storage key 908
storage location 735
storage operations

in-order 890, 1076
out-of-order 890, 1076
speculative 890, 1076

storage protection 908
string instruction 1096
TLB management 1124

stq instruction 59
string instruction 1096
stwcx. instruction 744, 780, 781, 782, 785, 953, 961
symbols 709, 1017, 1245
sync instruction 751, 786, 844, 905
synchronization 843, 1026, 1092

context 843, 1026
execution 844, 1026
interrupts 944

Synchronize 742
Synchronous 1156
system call instruction 1191
System Call interrupt 960, 1173, 1183, 1184
System Reset interrupt 950
system-caused interrupt 944

T
t bit 34
table update 1092
TB 813, 817, 821
TBL 813, 817, 821
TBR field 20
TGCC 804
TH field 20
Time Base 813, 817, 821, 973, 1197
Time Base Lower 881, 973, 1050, 1197, 1362
Time Base Upper 881, 973, 1050, 1197, 1362
TLB 904, 918, 1077
TLB management 1124
tlbia instruction 904, 932
tlbie instruction 904, 928, 933, 935, 1093
tlbiel instruction 930
tlbsync instruction 933, 1092

TO field 20
Translation Lookaside Buffer 1077
translation lookaside buffer 904
trap instructions 1191
trap interrupt

definition 842, 1024

U
U field 20
UE 116, 324
UI field 20
UI instruction field 1264
UMMCR1 (user monitor mode control register 1) 1255
undefined 7

boundedly 4
underflow 126, 351
UX 115

V
VA-form 16
VC

See Logical Partitioning Control Register
VE 116, 323
VEC

See Machine State Register
virtual address 895, 898

generation 896
size 891

virtual page number 900, 1089
virtual storage 736
VPM

See Logical Partitioning Control Register
VRMASD

See Logical Partitioning Control Register
VX 115, 321
VXCVI 116, 323
VX-form 17
VXIDI 115, 322
VXIMZ 115
VXISI 115, 322
VXSNAN 115, 322
VXSOFT 116
VXSQRT 116, 323
VXVC 115
VXZDZ 115, 322

W
Watchdog Timer interrupt 1175
words 3
Write Through Required 738
wrtee instruction 1056
wrteei instruction 1057
WS instruction field 1265

X
XE 116
XER 45, 857, 860, 1035, 1036, 1037, 1221, 1222
XFL-form 16
X-form 15
XFX-form 15
XL-form 15
XO-form 16
XS-form 16
XX 115

Z
z bit 34
ZE 116
zero 118, 328
zero divide 124, 347
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