verilator debug

pd
openpowerwtf 3 years ago
parent 8f03a1f46f
commit 519e1dbb86

@ -1,173 +0,0 @@
// simple verilator top
// uses a2owb with sim mem interface

#define TRACING

#include <cstddef>
#include <iostream>
#include <iomanip>

#include "verilated.h"
#include "Vc.h"

#ifdef TRACING
#include "verilated_vcd_c.h"
VerilatedVcdC *t;
#else
unsigned int t = 0;
#endif

/*
#include "uart/uartsim.h"
*/

Vc* m;

vluint64_t main_time = 0; // in units of timeprecision used in verilog or --timescale-override
// what is it? it changed to 941621251 after calling loadmem()

double sc_time_stamp() { // $time in verilog
return main_time;
}

const int resetCycle = 10;
const int threadRunCycle = 200;
const int runCycles = 1000;
const int hbCycles = 500;
const int threads = 1; // needs a more realistic a2l2 data return to work in smt

int mem[16384][4]; // 16K QW

void loadmem(void) {
int adr;
mem[0x0000/4] = 0x48000400;
adr = 0x400/4;

mem[adr++] = threads == 1 ? 0x38200001 : 0x38200003;
mem[adr++] = 0x7C366BA6;
mem[adr++] = 0x7C366BA6;
mem[adr++] = 0x7C3E6AA6;
mem[adr++] = 0x4C00012C;
mem[adr++] = 0x2C010000;
mem[adr++] = 0x38200660;
mem[adr++] = 0x41820008;
mem[adr++] = 0x38210100;
mem[adr++] = 0x7C2903A6;
mem[adr++] = 0x4E800420;

}

// nclk = (clk,reset,clk2x,clk4x,-,-)

int main(int argc, char **argv) {
using namespace std;

loadmem();

cout << setfill('0');

Verilated::commandArgs(argc, argv);
m = new Vc;

#ifdef TRACING
Verilated::traceEverOn(true);
t = new VerilatedVcdC;
m->trace(t, 99);
t->open("wtf.vcd");
cout << "Tracing enabled." << endl;
#endif

bool resetDone = false;
unsigned int threadStop = 0x3;

unsigned int tick = 0;
unsigned int cycle = 1;
unsigned int readPending = 0;
unsigned int readAddr = 0;
unsigned int readTag = 0;
unsigned int readTID = 0;
unsigned int countReads = 0;

m->nclk = 0x3C; // run 2x,4x = 1x
cout << setw(8) << cycle << "Resetting..." << endl;

m->an_ac_pm_thread_stop = threadStop;
cout << setw(8) << cycle << "Thread stop=" << threadStop << endl;

// can skip 4x with new gpr array
// 1x=4/4 2x=2/2 4x=1/1
// 1 1 1 7
// 1 1 0 6
// 1 0 1 5
// 1 0 0 4
// 0 1 1 3
// 0 1 0 2
// 0 0 1 1
// 0 0 0 0
// (insert reset)
//const int clocks[8] = {11, 0, 11, 0, 11, 0, 11, 0}; // 2x,4x == 1x
//const int clocks[8] = {11, 10, 9, 8, 3, 2, 1, 0}; // 1x, 2x, 4x
//const int ticks1x = 8;
const int clocks[4] = {10, 8, 2, 0}; // 1x, 2x
const int ticks1x = 4;

while (!Verilated::gotFinish()) {

if (!resetDone && (cycle > resetCycle)) {
m->nclk &= 0x2F;
cout << setw(8) << cycle << "Releasing reset." << endl;
resetDone = true;
}

if (threadStop && (cycle > threadRunCycle)) {
threadStop = 0x0;
m->an_ac_pm_thread_stop = threadStop;
cout << setw(8) << cycle << "Thread stop=" << threadStop << endl;
}

m->nclk = (m->nclk & 0x10) | (clocks[tick % 8] << 2);
tick++;
m->eval();

// bus is 1x clock
if ((tick % ticks1x) == 0) {

/*
cout << setw(8) << cycle << " an_ac_rsp: data="<< hex << uppercase << setw(8) << m->an_ac_reld_data[3]
<< hex << uppercase << setw(8) << m->an_ac_reld_data[2]
<< hex << uppercase << setw(8) << m->an_ac_reld_data[1]
<< hex << uppercase << setw(8) << m->an_ac_reld_data[0]
<< dec << nouppercase << endl;
*/

}

// finish clock stuff
if ((tick % ticks1x) == 0) {
cycle++;
if ((cycle % hbCycles) == 0) {
cout << setw(8) << cycle << " ...tick..." << endl;
}
}
#ifdef TRACING
t->dump(tick);
t->flush();
#endif

// check for fails

// hit limit
if (cycle > runCycles) {
break;
}

}

#ifdef TRACING
t->close();
#endif
m->final();

exit(EXIT_SUCCESS);

}

@ -160,7 +160,7 @@ int main(int argc, char **argv) {
cout << setw(8) << cycle << "Thread stop=" << threadStop << endl;
}

m->nclk = (m->nclk & 0x10) | (clocks[tick % 8] << 2);
m->nclk = (m->nclk & 0x10) | (clocks[tick % ticks1x] << 2);
tick++;
m->eval();


@ -0,0 +1,305 @@
// simple verilator top
// uses a2owb with sim mem interface

#define TRACING

#include <cstddef>
#include <iostream>
#include <fstream>
#include <iomanip>

#include "verilated.h"
#include "Va2owb.h"

// internal nets
#include "Va2owb___024root.h"
#include "Va2owb_a2owb.h"
#include "Va2owb_a2l2wb.h"

#ifdef TRACING
#include "verilated_vcd_c.h"
VerilatedVcdC *t;
#else
unsigned int t = 0;
#endif

/*
#include "uart/uartsim.h"
*/

Va2owb* m;

vluint64_t main_time = 0; // in units of timeprecision used in verilog or --timescale-override
// what is it? it changed to 941621251 after calling loadmem()

double sc_time_stamp() { // $time in verilog
return main_time;
}

const int resetCycle = 10;
const int threadRunCycle = 25;
const int runCycles = 500;
const int hbCycles = 500;
const int threads = 1;

// Cythonize this and use it for cocotb too...

class Memory {
std::unordered_map<unsigned int, unsigned int> mem;
public:
bool le;
bool logStores;
int defaultVal;
Memory();
void loadFile(std::string filename, unsigned int adr=0, bool le=false, std::string format="ascii");
int read(unsigned int adr);
void write(unsigned int adr, unsigned int dat);
void write(unsigned int adr, unsigned int be, unsigned int dat);
};

Memory::Memory() {

this->defaultVal = 0;
this->le = false;
this->logStores = true;

}

void Memory::loadFile(std::string filename, unsigned int adr, bool le, std::string format) {

unsigned int dat;
std::ifstream f;
f.open(filename, std::fstream::in);
// "ascii"
//while (f.peek()!=EOF) {
//f >> std::hex >> dat;
// f >> dat;
while (f >> std::hex >> dat) {
this->write(adr, dat);
adr += 4;
}

}

// adr is word-aligned byte address
int Memory::read(unsigned int adr) {
if (this->mem.find(adr) != this->mem.end()) {
return this->mem[adr];
} else {
return this->defaultVal;
}
}

// adr is word-aligned byte address
void Memory::write(unsigned int adr, unsigned int dat) {
unsigned int startDat = this->read(adr);
this->mem[adr] = dat;
if (this->logStores) {
std::cout << std::setw(8) << std::hex << " * Mem Update @" << adr << " " << startDat << "->" << dat << std::endl;
}
}

void Memory::write(unsigned int adr, unsigned int be, unsigned int dat) {
if (be == 0) return;

int mask, startDat;
if (be >= 8) {
be = be - 8;
mask = 0xFF000000;
} else {
mask = 0;
}
if (be >= 4) {
be = be - 4;
mask |= 0x00FF0000;
}
if (be >= 2) {
be = be - 2;
mask |= 0x0000FF00;
}
if (be = 1) {
mask |= 0x000000FF;
}

startDat = this->read(adr);
this->mem[adr] = (startDat & ~mask) | (dat & mask);
if (this->logStores) {
std::cout << std::setw(8) << std::hex << " * Mem Update @" << adr << " " << startDat << "->" << dat << std::endl;
}

}

Memory mem;

int main(int argc, char **argv) {
using namespace std;

cout << setfill('0');

Verilated::commandArgs(argc, argv);
m = new Va2owb;

#ifdef TRACING
Verilated::traceEverOn(true);
t = new VerilatedVcdC;
m->trace(t, 99);
t->open("a2onode.vcd");
cout << "Tracing enabled." << endl;
#endif

bool resetDone = false;
unsigned int threadStop = 0x3;

unsigned int tick = 0;
unsigned int cycle = 1;
unsigned int readPending = 0;
unsigned int readAddr = 0;
unsigned int readTag = 0;
unsigned int readTID = 0;
unsigned int countReads = 0;

//unsigned int iu0Comp = m->rootp->a2owb->c0->iu_lq_i0_completed;
//unsigned int iu0Comp = m->rootp->a2owb__DOT__c0__DOT__lq0__DOT__lsq__DOT__odq__DOT__iu_lq_i0_completed_itag_int;
/*
iu0CompIFAR = sim.a2o.root.iuq0.iuq_cpl_top0.iuq_cpl0.cp2_i0_ifar
iu1Comp = sim.a2o.root.iu_lq_i1_completed
iu1CompIFAR = sim.a2o.root.iuq0.iuq_cpl_top0.iuq_cpl0.cp2_i1_ifar
iuCompFlushIFAR = sim.a2o.root.cp_t0_flush_ifar
cp3NIA = sim.a2o.root.iuq0.iuq_cpl_top0.iuq_cpl0.iuq_cpl_ctrl.cp3_nia_q # nia after last cycle's completions
*/

mem.write(0xFFFFFFFC, 0x48000002);
mem.loadFile("../mem/test3/rom.init");

m->nclk = 0x38;
cout << setw(8) << cycle << "Resetting..." << endl;

m->an_ac_pm_thread_stop = threadStop;
cout << setw(8) << cycle << "Thread stop=" << threadStop << endl;

const int clocks[4] = {0xA, 0x8, 0x2, 0x0}; // 1x, 2x
const int ticks1x = 4;
//const int clocks[8] = {11, 10, 9, 8, 3, 2, 1, 0}; // 1x, 2x, 4x
//const int ticks1x = 8;

while (!Verilated::gotFinish()) {

if (!resetDone && (cycle > resetCycle)) {
m->nclk &= 0x2F;
cout << setw(8) << cycle << "Releasing reset." << endl;
resetDone = true;
}

if (threadStop && (cycle > threadRunCycle)) {
threadStop = 0x0;
m->an_ac_pm_thread_stop = threadStop;
cout << setw(8) << cycle << "Thread stop=" << threadStop << endl;
}

m->nclk = (m->nclk & 0x10) | (clocks[tick % ticks1x] << 2);
tick++;
m->eval();

// bus is 1x clock
if ((tick % ticks1x) == 0) {

/*
cout << setw(8) << cycle << " an_ac_rsp: data="<< hex << uppercase << setw(8) << m->an_ac_reld_data[3]
<< hex << uppercase << setw(8) << m->an_ac_reld_data[2]
<< hex << uppercase << setw(8) << m->an_ac_reld_data[1]
<< hex << uppercase << setw(8) << m->an_ac_reld_data[0]
<< dec << nouppercase << endl;
*/

/* 16B BE read/write interface and sparse mem

[0:31] mem_adr
[0:127] mem_dat
mem_wr_val
[0:15] mem_wr_be
[0:127] mem_wr_dat


addr = dut.mem_adr.value.integer
w0 = sim.mem.read(addr)
w1 = sim.mem.read(addr+4)
w2 = sim.mem.read(addr+8)
w3 = sim.mem.read(addr+12)
v = cocotb.binary.BinaryValue()
v.assign(f'{w0:0>32b}{w1:0>32b}{w2:0>32b}{w3:0>32b}')
dut.mem_dat.value = v.value

if dut.mem_wr_val.value:
addr = dut.mem_adr.value.integer
dat = hex(dut.mem_wr_dat, 32)
be = f'{dut.mem_wr_be.value.integer:016b}'
for i in range(4):
sim.mem.write(addr, dat[i*8:i*8+8], be[i*4:i*4+4])
addr += 4
*/
// update read dat
unsigned int adr = m->mem_adr;
m->mem_dat[3] = mem.read(adr);
adr += 4;
m->mem_dat[2] = mem.read(adr);
adr += 4;
m->mem_dat[1] = mem.read(adr);
adr += 4;
m->mem_dat[0] = mem.read(adr);

// update mem[] if write
unsigned int mem_we = m->mem_wr_val;
unsigned int mem_be = m->mem_wr_be;
//unsigned int mem_datw[8] = m->mem_wr_dat;

// check can access - ok
//m->rootp->a2owb->ac_an_req = 1;
//m->rootp->a2owb->ac_an_req = 0;
//m->rootp->a2owb->n0->cmdseq_q = 0;
/*
if (m->ac_an_req) {
readAddr = m->ac_an_req_ra;
readTag = m->ac_an_req_ld_core_tag;
readTID = m->ac_an_req_thread;
readPending = cycle + 3;
cout << setw(8) << cycle << " ac_an_req: T" << readTID << " ra=" << hex << uppercase << setw(8) << readAddr << dec << nouppercase << endl;
m->an_ac_req_ld_pop = 1;
}
*/

}

if (m->rootp->a2owb->ac_an_req == 1) {
cout << dec << setw(8) << cycle << "A2L2 Req RA=" << hex << m->rootp->a2owb->ac_an_ra << endl;
}
)

// finish clock stuff
if ((tick % ticks1x) == 0) {
cycle++;
if ((cycle % hbCycles) == 0) {
cout << dec << setw(8) << cycle << " ...tick..." << endl;
}
}
#ifdef TRACING
t->dump(tick);
t->flush();
#endif

// check for fails

// hit limit
if (cycle > runCycles) {
break;
}

}

#ifdef TRACING
t->close();
#endif
m->final();

exit(EXIT_SUCCESS);

}

@ -0,0 +1 @@
../../verilog
Loading…
Cancel
Save