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Chapter 4

Data-Level Parallelism (DLP) in Vector, SIMD, 
and GPU Architectures

Part 2:  Advanced Vector Architectures

Computer Architecture
A Quantitative Approach, Sixth Edition

“We call these algorithms data parallel algorithms because their 
parallelism comes from simultaneous operations across large sets 
of data, rather than from multiple thread of control.”

- W. Daniel Hillis and Guy L. Steele
”Data Parallel Algorithms,” Comm. ACM (1986)

“If you were plowing a field, which would you rather use, two
strong oxen or 1024 chickens?”

- Seymour Cray, Father of the Supercomputer
(arguing for two powerful vector processors

versus many simple processors)
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DAXPY (Y = a * X + Y)

LD F0,a
ADDI R4,Rx,#512 ;last address to load 

loop: LD F2, 0(Rx)   ;load X(i)
MULTD F2,F0,F2 ;a*X(i)
LD F4, 0(Ry) ;load Y(i)
ADDD F4,F2, F4 ;a*X(i) + Y(i)
SD F4,0(Ry) ;store into Y(i)
ADDI Rx,Rx,#8 ;increment index to X
ADDI Ry,Ry,#8 ;increment index to Y
SUB R20,R4,Rx ;compute bound
BNZ R20,loop ;check if done

LD     F0,a ;load scalar a
LV     V1,Rx ;load vector X
MULTS V2,F0,V1 ;vector-scalar mult.
LV V3,Ry ;load vector Y
ADDV V4,V2,V3 ;add
SV Ry,V4 ;store the result

Assuming vectors X, Y are 
length 64

Scalar vs. Vector

578 (2+9*64) vs.
321 (1+5*64) ops (1.8X)

578 (2+9*64) vs.
6 instructions (96X)

64 operation vectors + 
no loop overhead

also 64X fewer pipeline 
hazards



Vector Execution Time

• Execution time depends on several factors:
– Length of operand vectors
– Structural hazards
– Data dependencies
– Pipeline depth à start-up latency (short vs. long vectors?)

• VMIPS functional units consume one element per clock 
cycle

– Execution time is approximately the vector length

• Convoy
– Set of vector instructions that could potentially execute 

together

Vector Architectures



Vector Inefficiency

• Must wait for last element of result to be written before 
starting dependent instruction
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Vector Startup
• Vector startup penalty

– Functional unit latency (time thru pipeline)
– Dead time or recovery time (time before another vector instruction 

can start down pipeline)

Vector Architectures
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Dead Time and Short Vectors
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Chimes

• Chime
– Unit of time to execute one convoy (or a vector operation)
– m convoys executes in m chimes
– For vector length of n, requires m x n clock cycles

• When does this estimation become more accurate?  Less accurate? 
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Chaining

• Sequences with read-after-write dependency hazards 
can be in the same convoy via chaining 

• Chaining
– Allows a vector operation to start as soon as the individual 

elements of its vector source operand become available
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Vector Chaining

• Vector version of register bypassing
– Introduced with Cray 1



Vector Chaining

• Without chaining, must wait for last element of result to 
be written before starting dependent instruction

• With chaining, can start dependent instruction as soon 
as first result appears



Unchained vs. Chained

• Timing diagram for a sequence of dependent vector 
operations ADDV and MULV



Example
LV V1,Rx ;load vector X
MULVS.D V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y
ADDVV.D V4,V2,V3 ;add two vectors
SV Ry,V4 ;store the sum

Convoys:
1 LV MULVS.D
2 LV ADDVV.D
3 SV

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires 64 x 3 = 192 clock cycles
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Convoy Time
• Show the time that each convoy can begin and the total # of cycles 

needed. 
• Vector Start-Up Overhead

• Answer in terms of convoys, vector length n, and no convoy overlap
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Convoy Time vs. Chime Approx

• How does the time compare to the chime approximation 
for a vector of length 64?

– Tricky Question:  When is the vector sequence actually done? 
– The total time is given by the time until the last vector instruction in 

the last convoy completes. This is an approximation, and the start-up 
time of the last vector instruction may be seen in some sequences and 
not in others. 

– For simplicity, we always include it. The time per result for a vector of 
length 64 is 4 + (42/64) = 4.65 clock cycles, while the chime 
approximation would be 4. The execution time with start- up 
overhead is 1.16 times higher.



Challenges
• Start-up time

– Latency of vector functional unit
– Assume the same as Cray-1

• Floating-point add => 6 clock cycles
• Floating-point multiply => 7 clock cycles
• Floating-point divide => 20 clock cycles
• Vector load => 12 clock cycles

• Improvemeants
– > 1 element per clock cycle
– Non-64 wide vectors
– IF statements in vector code
– Memory system optimizations to support vector processors
– Multiple dimensional matrices
– Sparse matrices
– Programming a vector computer

Vector Architectures



Multiple Lanes
• Element n of vector register A is “hardwired” to element n

of vector register B
– Allows for multiple hardware lanes

Vector Architectures

Advantages?  Disadvantages?



Vector Instructions with 
Multiple Lanes and Chaining

• Can overlap execution of multiple vector instructions



Vector Length Register
• Vector length not known at compile time?
• Use Vector Length Register (VLR) <= max vector length
• Use strip mining for vectors over the maximum length:

low = 0;
VL = (n % MVL); /* find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { /* outer loop */

for (i = low; i < (low+VL); i=i+1) /* runs for length VL */
Y[i] = a * X[i] + Y[i] ;             /* main operation */

low = low + VL;                 /* start of next vector */
VL = MVL; /* reset the length to maximum vector length */

}
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Vector Mask Registers

• Consider the following code snippet
for (i = 0; i < 64; i=i+1)

if (X[i] != 0)
X[i] = X[i] – Y[i];

• Use vector mask register to “disable” elements
LV V1,Rx ;load vector X into V1
LV V2,Ry ;load vector Y
L.D F0,#0 ;load FP zero into F0
SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0
SUBVV.D V1,V1,V2 ;subtract under vector mask
SV Rx,V1 ;store the result in X

• GFLOPS rate decreases!
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This loop cannot 
normally be 
vectorized because 
of the conditional.



Memory Banks

• Memory system must be designed to support high 
bandwidth for vector loads and stores

• Spread accesses across multiple banks
– Control bank addresses independently
– Load or store non-sequential words
– Support multiple vector processors sharing the same memory

• Example:
– 32 processors, each generating 4 loads and 2 stores/cycle
– Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
– How many memory banks needed?
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