
1

Chapter 4

Data-Level Parallelism (DLP) in Vector, SIMD,
and GPU Architectures

Part 2: Advanced Vector Architectures

Computer Architecture
A Quantitative Approach, Sixth Edition

“We call these algorithms data parallel algorithms because their
parallelism comes from simultaneous operations across large sets
of data, rather than from multiple thread of control.”

- W. Daniel Hillis and Guy L. Steele
”Data Parallel Algorithms,” Comm. ACM (1986)

“If you were plowing a field, which would you rather use, two
strong oxen or 1024 chickens?”

- Seymour Cray, Father of the Supercomputer
(arguing for two powerful vector processors

versus many simple processors)

Acknowledgements

• Thanks to many sources for slide material
© 1990 Morgan Kaufmann Publishers, © 2001-present Elsevier

Computer Architecture: A Quantitative Approach by J. Hennessy & D. Patterson
© 1994 Morgan Kaufmann Publishers, © 2001-present Elsevier

Computer Organization and Design by D. Patterson & J. Hennessy
© 2002 K. Asinovic & Arvind, MIT

© 2002 J. Kubiatowicz, University of California at Berkeley
© 2006, © 2010 No Starch Press for Inside the Machine by J. Stokes

© 2007 W.-M. Hwu & D. Kirk, University of Illinois & NVIDIA

© 2007-2010 J. Owens, University of California at Davis
© 2010 CRC Press for Introduction to Concurrency in Programming Languages by M.

Sottile, T. Mattson, and C. Rasmussen
© 2017, IBM POWER9 Processor Architecture by Sadasivam et al., IBM

© 2016, © 2019 POWER9 Processor User’s Manual, IBM
© The OpenPOWER Foundation

© 2022, W. Feng, Virginia Tech

DAXPY (Y = a * X + Y)

LD F0,a
ADDI R4,Rx,#512 ;last address to load

loop: LD F2, 0(Rx) ;load X(i)
MULTD F2,F0,F2 ;a*X(i)
LD F4, 0(Ry) ;load Y(i)
ADDD F4,F2, F4 ;a*X(i) + Y(i)
SD F4,0(Ry) ;store into Y(i)
ADDI Rx,Rx,#8 ;increment index to X
ADDI Ry,Ry,#8 ;increment index to Y
SUB R20,R4,Rx ;compute bound
BNZ R20,loop ;check if done

LD F0,a ;load scalar a
LV V1,Rx ;load vector X
MULTS V2,F0,V1 ;vector-scalar mult.
LV V3,Ry ;load vector Y
ADDV V4,V2,V3 ;add
SV Ry,V4 ;store the result

Assuming vectors X, Y are
length 64

Scalar vs. Vector

578 (2+9*64) vs.
321 (1+5*64) ops (1.8X)

578 (2+9*64) vs.
6 instructions (96X)

64 operation vectors +
no loop overhead

also 64X fewer pipeline
hazards

Vector Execution Time

• Execution time depends on several factors:
– Length of operand vectors
– Structural hazards
– Data dependencies
– Pipeline depth à start-up latency (short vs. long vectors?)

• VMIPS functional units consume one element per clock
cycle

– Execution time is approximately the vector length

• Convoy
– Set of vector instructions that could potentially execute

together

Vector Architectures

Vector Inefficiency

• Must wait for last element of result to be written before
starting dependent instruction

Vector Architectures

Vector Startup
• Vector startup penalty

– Functional unit latency (time thru pipeline)
– Dead time or recovery time (time before another vector instruction

can start down pipeline)

Vector Architectures

Vector Execution Time

• Execution time depends on several factors:
– Length of operand vectors
– Structural hazards
– Data dependencies
– Pipeline depth à start-up latency (short vs. long vectors?)

• VMIPS functional units consume one element per clock
cycle

– Execution time is approximately the vector length

• Convoy
– Set of vector instructions that could potentially execute

together

Vector Architectures

Dead Time and Short Vectors

Vector Architectures

Chimes

• Chime
– Unit of time to execute one convoy (or a vector operation)
– m convoys executes in m chimes
– For vector length of n, requires m x n clock cycles

• When does this estimation become more accurate? Less accurate?

Vector Architectures

Chaining

• Sequences with read-after-write dependency hazards
can be in the same convoy via chaining

• Chaining
– Allows a vector operation to start as soon as the individual

elements of its vector source operand become available

Vector Architectures

Vector Chaining

• Vector version of register bypassing
– Introduced with Cray 1

Vector Chaining

• Without chaining, must wait for last element of result to
be written before starting dependent instruction

• With chaining, can start dependent instruction as soon
as first result appears

Unchained vs. Chained

• Timing diagram for a sequence of dependent vector
operations ADDV and MULV

Example
LV V1,Rx ;load vector X
MULVS.D V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y
ADDVV.D V4,V2,V3 ;add two vectors
SV Ry,V4 ;store the sum

Convoys:
1 LV MULVS.D
2 LV ADDVV.D
3 SV

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires 64 x 3 = 192 clock cycles

Vector Architectures

Convoy Time
• Show the time that each convoy can begin and the total # of cycles

needed.
• Vector Start-Up Overhead

• Answer in terms of convoys, vector length n, and no convoy overlap

Vector Architectures

Convoy Time vs. Chime Approx

• How does the time compare to the chime approximation
for a vector of length 64?

– Tricky Question: When is the vector sequence actually done?
– The total time is given by the time until the last vector instruction in

the last convoy completes. This is an approximation, and the start-up
time of the last vector instruction may be seen in some sequences and
not in others.

– For simplicity, we always include it. The time per result for a vector of
length 64 is 4 + (42/64) = 4.65 clock cycles, while the chime
approximation would be 4. The execution time with start- up
overhead is 1.16 times higher.

Challenges
• Start-up time

– Latency of vector functional unit
– Assume the same as Cray-1

• Floating-point add => 6 clock cycles
• Floating-point multiply => 7 clock cycles
• Floating-point divide => 20 clock cycles
• Vector load => 12 clock cycles

• Improvemeants
– > 1 element per clock cycle
– Non-64 wide vectors
– IF statements in vector code
– Memory system optimizations to support vector processors
– Multiple dimensional matrices
– Sparse matrices
– Programming a vector computer

Vector Architectures

Multiple Lanes
• Element n of vector register A is “hardwired” to element n

of vector register B
– Allows for multiple hardware lanes

Vector Architectures

Advantages? Disadvantages?

Vector Instructions with
Multiple Lanes and Chaining

• Can overlap execution of multiple vector instructions

Vector Length Register
• Vector length not known at compile time?
• Use Vector Length Register (VLR) <= max vector length
• Use strip mining for vectors over the maximum length:

low = 0;
VL = (n % MVL); /* find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { /* outer loop */

for (i = low; i < (low+VL); i=i+1) /* runs for length VL */
Y[i] = a * X[i] + Y[i] ; /* main operation */

low = low + VL; /* start of next vector */
VL = MVL; /* reset the length to maximum vector length */

}

Vector Architectures

Vector Mask Registers

• Consider the following code snippet
for (i = 0; i < 64; i=i+1)

if (X[i] != 0)
X[i] = X[i] – Y[i];

• Use vector mask register to “disable” elements
LV V1,Rx ;load vector X into V1
LV V2,Ry ;load vector Y
L.D F0,#0 ;load FP zero into F0
SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0
SUBVV.D V1,V1,V2 ;subtract under vector mask
SV Rx,V1 ;store the result in X

• GFLOPS rate decreases!

Vector Architectures

This loop cannot
normally be
vectorized because
of the conditional.

Memory Banks

• Memory system must be designed to support high
bandwidth for vector loads and stores

• Spread accesses across multiple banks
– Control bank addresses independently
– Load or store non-sequential words
– Support multiple vector processors sharing the same memory

• Example:
– 32 processors, each generating 4 loads and 2 stores/cycle
– Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
– How many memory banks needed?

Vector Architectures

