i Chapter 4

COMPUTER
ARCHITECTURE

Data-Level Parallelism (DLP) in Vector, SIMD,
and GPU Architectures

Part 2: Advanced Vector Architectures

“We call these algorithms data parallel algorithms because their
parallelism comes from simultaneous operations across large sets
of data, rather than from muiltiple thread of control.”
- W. Daniel Hillis and Guy L. Steele
”Data Parallel Algorithms,” Comm. ACM (1986)

“If you were plowing a field, which would you rather use, two
strong oxen or 1024 chickens?”
- Seymour Cray, Father of the Supercomputer
(arguing for two powerful vector processors
versus many simple processors)



Acknowledgements

e Thanks to many sources for slide material

© 1990 Morgan Kaufmann Publishers, © 2001-present Elsevier
Computer Architecture: A Quantitative Approach by J. Hennessy & D. Patterson

© 1994 Morgan Kaufmann Publishers, © 2001-present Elsevier
Computer Organization and Design by D. Patterson & J. Hennessy

© 2002 K. Asinovic & Arvind, MIT

© 2002 J. Kubiatowicz, University of California at Berkeley

© 2006, © 2010 No Starch Press for Inside the Machine by J. Stokes
© 2007 W.-M. Hwu & D. Kirk, University of lllinois & NVIDIA

© 2007-2010 J. Owens, University of California at Davis

© 2010 CRC Press for Introduction to Concurrency in Programming Languages by M.
Sottile, T. Mattson, and C. Rasmussen

© 2017, IBM POWERQ Processor Architecture by Sadasivam et al., IBM
© 2016, © 2019 POWER9 Processor User’s Manual, IBM

© The OpenPOWER Foundation

© 2022, W. Feng, Virginia Tech



DAXPY (Y =2« X+Y)

Assuming vectors X, Y are
length 64

Scalar vs. Vector

loop:

|

LD Fo,a

ADDI  R4,Rx,#512
LD Q,&(Bx)
MULTD F2,Fo,F2
LD F4, o(Ry)
ADDD FA,EQ
SD l54,0(Ry)
ADDI Rx,Rx,#8
ADDI Ry,Ry,#8
SUB R20,R4,Rx
BNZ R20,loop

LD
LV
‘ MULTS
LV
ADDV
SV
;last address to load
;load X(i)
;a*X(i)
;load Y(i)

;a*X(i) + Y(i)

;store into Y(i)
sincrement index to X
sincrement indexto Y
;compute bound
;check if done

Fo,a
V1,Rx

;load scalar a

;load vector X

V2,Fo,V1 ;vector-scalar mult.

V3,Ry

;load vector Y

V4,V2,V3 ;add

Ry,V4

;store the result

578 (2+9%64) vs.
321 (145%64) ops (1.8X)

578 (2+9%64) vs.
6 instructions (96X)

64 operation vectors +
no loop overhead

also 64X fewer pipeline
hazards



Vector Execution Time

e Execution time depends on several factors:
— Length of operand vectors
— Structural hazards
— Data dependencies
— Pipeline depth = start-up latency (short vs. long vectors?)

e VMIPS functional units consume one element per clock
cycle
— Execution time is approximately the vector length

e Convoy

— Set of vector instructions that could potentially execute
together

S8.1N108)IY2Jy JOJOSA



Vector Inefficiency

e Must wait for last element of result to be written before
starting dependent instruction

Time — -m-“

S8.1N108)IY2Jy JOJOSA



Vector Startup

e Vector startup penalty
— Functional unit latency (time thru pipeline)
— Dead time or recovery time (time before another vector instruction
can start down pipeline)

Functional Unit Latency

R| X | X | X | W
'R X[ X | X w~ First Vector| Instruction
R| X | X | X W‘
R|IX | X | X|W
R|X| X | X |W
Dead| Time
R|X| X | X | W
R|X | X | X | W
R| X | X | X W‘
Dead Time | R | x| x| x w' Second Veqtor Instruction
R|X|[X|X|W

S81NJ08)IY2Jy JOJOSA



Vector Execution Time

e Execution time depends on several factors:
— Length of operand vectors
— Structural hazards
— Data dependencies
— Pipeline depth = start-up latency (short vs. long vectors?)

e VMIPS functional units consume one element per clock
cycle
— Execution time is approximately the vector length

e Convoy

— Set of vector instructions that could potentially execute
together

S8.1N108)IY2Jy JOJOSA



Dead Time and Short Vectors

O|0(0|0|0|®|®
O|10(0|0]|®|®|®

4 cycles dead time

64 cycles active

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94%
with 128 element vectors

No dead ti °
o dead time ,.

TO, Eight lanes
No dead time

100% efficiency with 8 element
vectors

S81NJ08)IY2Jy JOJOSA



Chimes

e Chime
— Unit of time to execute one convoy
— m convoys executes in m chimes

— For vector length of n, requires m x n clock cycles
e \WWhen does this estimation become more accurate? Less accurate?

S8.1N108)IY2Jy JOJOSA



Chaining

e Sequences with read-after-write dependency hazards
can be in the same convoy via chaining

e Chaining

— Allows a vector operation to start as soon as the individual
elements of its vector source operand become available

S8.1N108)IY2Jy JOJOSA



Vector Chaining

e Vector version of register bypassing
— Introduced with Cray 1

LV vl

N

MULV v3,vl,v2
ADDV VS,\‘VB, v4

=<

Load
Unit

Memory

N <

W<
H <

n <

Chain

._

/o
=
EI
S




Vector Chaining

e Without chaining, must wait for last element of result to
be written before starting dependent instruction

Time — Add

o With chaining, can start dependent instruction as soon
as first result appears




Unchained vs. Chained

7 64 6 64

Unchained m | Total = 141
MULV ADDV
|7 64 |
| |
Chained MULV
6 64
I } Total =77
ADDV

e Timing diagram for a sequence of dependent vector
operations ADDV and MULV



Example
LV

MULVS.D

LV

ADDVV.D

SV

Convoys:

1 LV

2 LV

3 SV

V1,Rx ; Load vector X
vV2,V1,F0O ;vector-scalar multiply
V3,Ry ; load vector Y
V4,V2,V3 ;add two vectors
Ry, V4 ;store the sum
MULVS.D
ADDVV.D

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5

For 64 element vectors, requires 64 x 3 =192 clock cycles

S81NJ08}IY2JY JOJOBA



Convoy Time

e Show the time that each convoy can begin and the total # of cycles
needed.

e Vector Start-Up Overhead

S81NJ08)IY2Jy JOJOSA

Unit Start-up overhead (cycles)
Load and store unit 12
Multiply unit 7
Add unit 6

e Answerin terms of convoys, vector length n, and no convoy overlap

Convoy Starting time First-result time Last-result time
1. LV 0 12 11 +n
2. MULVS.D LV 12+n 12+n+12 23 +2n
3. ADDV.D 24 +2n 24+2n+6 29 + 3n

4.5V 30 + 3n 30+ 3n+12 41 +4n




Convoy Time vs. Chime Approx

e How does the time compare to the chime approximation
for a vector of length 642

— Tricky Question: When is the vector sequence actually done?

— The total time is given by the time until the last vector instruction in
the last convoy completes. This is an approximation, and the start-up
time of the last vector instruction may be seen in some sequences and
not in others.

— For simplicity, we always include it. The time per result for a vector of
length 64 is 4 + (42/64) = 4.65 clock cycles, while the chime
approximation would be 4. The execution time with start- up
overhead is 1.16 times higher.



Challenges

e Start-up time

Latency of vector functional unit

— Assume the same as Cray-1

e Floating-point add => 6 clock cycles

e Floating-point multiply => 7 clock cycles
e Floating-point divide => 20 clock cycles
e Vectorload =>12 clock cycles

* Improvemeants

> 1 element per clock cycle

Non-64 wide vectors

IF statements in vector code

Memory system optimizations to support vector processors
Multiple dimensional matrices

Sparse matrices

Programming a vector computer

S8.1N108)IY2Jy JOJOSA



Multiple Lanes

Element n of vector register A is “hardwired” to element n

S8.1N108)IY2Jy JOJOSA

-

o

of vector register B

— Allows for multiple hardware lanes

EYER] B T
A[8) n[e)
ar71l |B(m
Al6) B[e)
ars1| |s1s5)
ar41| |nra)
a3 |33
Al2) 3(2) Al8) BlE] Al9) B(9)
All) B[1) Al4) Bla]| |A[S) B{5]| [A[6) BIeJ [A[7) B[

ot

’
Elemefit group

G

Lane O Lane 1 Lane 2 Lane 3
e Y aYa ™
FP add FP add FP add FP add
pipe 0 pipe 1 pipe 2 pipe 3
Y Y i Y
i Y
Vector Vector Vector Vector
registers: registers: registers: registers:
elements elements elements elements
0,4,8, ... 1,509, ... 2,610, ... 3,711, ...
W
| i
FP mul. FP mul. FP mul. FP mul.
pipe 0 pipe 1 pipe 2 pipe 3
N N AN )
Vector load-store unit

Advantages? Disadvantages?



Vector Instructions with
Multiple Lanes and Chaining

e Can overlap execution of multiple vector instructions

r Load Unit Multiply Unit Add Unit
M}/‘oooooq-‘—'-k]
olololojo[e™ul fATaTalala
time olo|o|eo|o|e|e|dlalalalalaliadd fmn[am(nE(mm
loag JO|0/0000/0 AAlAla|aAjAjAlllmmmp|mm(mim
o[ofo[ofo[¢="Na[a[a[a[a[alsls/n/m/m/m/EEE
ololo|o]o|drenAalalalalalsaNe|n/an|na(nm
olo|olololo[o[blalalalalalladd /R EE EE(E](@
ololo|o|ol|olo|olalalalalalalalf|m|m|e|e|en|e|m
Alalalalalalalalnojen|eae(m
. FIEEIEEEEE
Instruction

issue

Complete 24 operations/cycle while issuing 1 short instruction/
cycle



Vector Length Register

e Vector length not known at compile time?
e Use Vector Length Register (VLR) <= max vector length

e Use strip mining for vectors over the maximum length:
low = 0;

VL = (n % MVL);

for (7 = 0; j <= (n/MVL); j=3+1) {
for (1 = low; 1 < (low+VL); 1=1+1) /* runs for length VL

}

Y[1] = a * X[1] + Y[1] ;

low = low + VL;
/* reset the length to maximum vector length

VL = MVL;

Value of |

Range of i

0 1

2

3

/* find odd-size piece using modulo op %

/* outer loop

/* main operation
/¥ start of next vector

nMVL

0 m

(m-1) (m-1)
+ MVL

(m+MVL) (m+2xMVL) ...

(m-1)
+ 2 xMVL

(m-1)
+3x MVL

(n-MVL)

(n-1)

*/
*/
*/
*/
*/
*/

S8.1N108)IY2Jy JOJOSA



Vector Mask Registers

Consider the following code snippet This loop cannot

for (1 = 0; 1 < 64; 1=1+1) normally be

if (X[1] != @) vectorized because

X[i] = X[1i] - Y[i]; of the conditional.

Use vector mask register to “disable” elements
LV V1,Rx ;load vector X into V1
LV VZ2,Ry ; Load vector Y
L.D FO,#0 ;load FP zero into FO
SNEVS.D V1,F0O ;sets WM(1) to 1 if V1(1)!=F0O
SUBVV.D v1i,v1,V2 ;subtract under vector mask
SV Rx,V1 ;store the result in X

GFLOPS rate decreases!

S81NJ08}IY2JY JOJOBA



Memory Banks

e Memory system must be designed to support high
bandwidth for vector loads and stores

e Spread accesses across multiple banks
— Control bank addresses independently
— Load or store non-sequential words
— Support multiple vector processors sharing the same memory

e Example:
— 32 processors, each generating 4 loads and 2 stores/cycle
— Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
— How many memory banks needed?

S81NJ08}IY2JY JOJOBA



