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Chapter 4

Data-Level Parallelism (DLP) in Vector, SIMD, 
and GPU Architectures

Part 1:  Introduction & Vector Architectures

Computer Architecture
A Quantitative Approach, Sixth Edition

“We call these algorithms data parallel algorithms because their 
parallelism comes from simultaneous operations across large sets 
of data, rather than from multiple thread of control.”

- W. Daniel Hillis and Guy L. Steele
”Data Parallel Algorithms,” Comm. ACM (1986)

“If you were plowing a field, which would you rather use, two
strong oxen or 1024 chickens?”

- Seymour Cray, Father of the Supercomputer
(arguing for two powerful vector processors

versus many simple processors)
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What We Know

• What new techniques have we learned that make …
… control go fast?
… datapath go fast?

Processor

Control

Datapath



Flynn’s Classification Scheme

• SISD – single instruction, single data stream
– uniprocessors

• SIMD – single instruction, multiple data streams
– single control unit broadcasting operations to multiple datapaths

• MISD – multiple instruction, single data stream
– no such machine 

(though some people put vector machines in this category)

• MIMD – multiple instructions, multiple data streams
– a.k.a multiprocessors (SMPs, MPPs, clusters, NOWs)



Continuum of Granularity
• “Coarse”

– Each processor is more powerful
– Usually fewer processors
– Communication is more expensive between processors
– Processors are more loosely coupled
– Tend toward MIMD

• “Fine”
– Each processor is less powerful
– Usually more processors
– Communication is cheaper between processors
– Processors are more tightly coupled
– Tend toward SIMD

“If you were plowing a field, which would you rather use? 
Two strong oxen or 1024 chickens?”

- Seymour Cray



The Road Ahead

• What’s Up?
– Chapter 4:  Data-level parallelism (DLP). Fine-grained parallelism. 

• Vector & stream processors 
• SIMD extensions:  MMX à SSE
• Graphics processing units (GPUs)

• What We Just Completed
– Chapter 5:  Thread-level parallelism (TLP). Coarse-grained 

parallelism.
• Multicore
• Multiprocessors
• Clusters



Introduction to SIMD

• SIMD architectures can exploit significant data-level 
parallelism for

– Matrix-oriented scientific computing
– Media-oriented image and sound processors

• SIMD is more energy efficient than MIMD
– Only needs to fetch one instruction per data operation
– Makes SIMD attractive for personal mobile devices

• SIMD allows programmer to continue to think 
sequentially

Introduction



SIMD Parallelism

• Vector architectures (VMIPS, Motorola AltiVec)
• SIMD extensions (MMX à SSE à AVX)
• Graphics processing units (GPUs)

• For x86 processors
– Expect two additional cores per chip per year
– Expect SIMD width to double every four years
– Expect potential speedup from SIMD to be twice that from 

MIMD

Introduction
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Seymour Cray
The Father of Supercomputing
An American electrical engineer and supercomputer architect who designed a 
series of computers that were the fastest in the world for decades..

• “Anyone can build a fast CPU. The trick is to build a fast 
system.”

• When asked what kind of CAD tools he used for the 
Cray-1, Cray said that he liked “#3 pencils with quadrille 
pads.”

• When he was told that Apple Computer had just bought 
a Cray to help design the next Apple Macintosh, Cray 
commented that he had just bought a Macintosh to 
design the next Cray.

• In 70s–80s, Supercomputer ≡ Vector Machine

Introduction



Scalar vs. Vector

• “The basic unit of SIMD is the vector, which is why SIMD 
computing is also known as vector processing.  A vector is 
nothing more than a row of individual numbers or 
scalars.”

SIMD Architectures by Jon “Hannibal” Stokes
http://arstechnica.com/articles/paedia/cpu/simd.ars

Representing Vectors
• Multiple items within same data word
• Multiple data words

Introduction



Vector Code Example

• What are the advantages of vector code?



Vector Instruction Set

• Compact
– one short instruction encodes N operations

• Expressive … tells hardware that these N operations:
– are independent
– use the same functional unit
– access disjoint registers
– access registers in the same pattern as previous instructions
– access a contiguous block of memory (unit-stride load/store), or
– access memory in a known pattern (strided load/store)

• Scalable
– can run same object code on more parallel pipelines or lanes

Vector Architectures



Vector Arithmetic

• Use deep pipeline (=> fast 
clock) to execute element 
operations

• Simplifies control of deep 
pipeline because elements in 
vector are independent (=> 
no hazards!) 

Vector Architectures



Vector Instruction

Vector Architectures



Vector Memory-Memory vs. Vector Register Machines

• Vector memory-memory instructions hold all vector operands 
in main memory

• The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71), 
were memory-memory machines

Vector Architectures



Vector Memory-Memory vs. Vector Register Machines

• Vector memory-memory architectures (VMMA) require 
greater main memory bandwidth.  Why?

• VMMAs make it difficult to overlap execution of 
multiple vector operations.  Why?

• VMMAs incur greater startup latency.
– Scalar code was faster on CDC Star-100 for vectors < 100 

elements.
– For Cray-1, vector/scalar breakeven point was around 2 

elements.

• Apart from CDC follow-ons (Cyber-205, ETA-10) all major 
vector machines since Cray-1 have had vector register 
architectures.

– We ignore vector memory-memory from now on.

Vector Architectures



Vector Register Architectures

• Basic idea
– Read sets of data elements 

into “vector registers”
– Operate on those registers
– Disperse the results back into 

memory

• Registers are controlled by 
compiler

– Used to hide memory latency
– Leverage memory bandwidth
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Vector Architectures

VMIPS
(next slide)



VMIPS
• Example architecture:  VMIPS

– Loosely based on Cray-1
– Vector registers

• Each register holds a 64-element, 64 bits/element vector
• Register file has 16 read ports and 8 write ports

– Vector functional units
• Fully pipelined
• Data and control hazards are detected

– Vector load-store unit
• Fully pipelined
• One word per clock cycle after initial latency

– Scalar registers
• 32 general-purpose registers
• 32 floating-point registers

Vector Architectures



VMIPS Instructions

• ADDVV.D:  add two vectors
• ADDVS.D:  add vector to a scalar
• LV/SV:  vector load and vector store from address

• Example:  DAXPY
L.D F0,a ; load scalar a
LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4,V2,V3 ; add
SV Ry,V4 ; store the result

• Requires 6 instructions vs. almost 600 for MIPS

Vector Architectures



Vector Execution Time

• Execution time depends on three factors:
– Length of operand vectors
– Structural hazards
– Data dependencies

• VMIPS functional units consume one element per clock 
cycle

– Execution time is approximately the vector length

• Convoy
– Set of vector instructions that could potentially execute 

together

Vector Architectures


