
1

Chapter 3

Instruction-Level Parallelism and Its
Exploitation

Part 2: Pipelining Scheduling and Compiler
Optimizations

Computer Architecture
A Quantitative Approach, Sixth Edition

“Who’s first?”
“America.”
“Who’s second?”
“Sir, there is no second.”

-Dialog between two observers of the sailing race
later named “The America’s Cup” and run every few
years -- the inspiration for John Cocke’s naming of the
IBM research processor as “America.” This processor
was the precursor to the RS/6000 series and the first
superscalar microprocessor.

Acknowledgements

• Thanks to many sources for slide material
© 1990 Morgan Kaufmann Publishers, © 2001-present Elsevier

Computer Architecture: A Quantitative Approach by J. Hennessy & D. Patterson
© 1994 Morgan Kaufmann Publishers, © 2001-present Elsevier

Computer Organization and Design by D. Patterson & J. Hennessy
© 2002 K. Asinovic & Arvind, MIT

© 2002 J. Kubiatowicz, University of California at Berkeley
© 2006, © 2010 No Starch Press for Inside the Machine by J. Stokes

© 2007 W.-M. Hwu & D. Kirk, University of Illinois & NVIDIA

© 2007-2010 J. Owens, University of California at Davis
© 2010 CRC Press for Introduction to Concurrency in Programming Languages by M.

Sottile, T. Mattson, and C. Rasmussen
© 2017, IBM POWER9 Processor Architecture by Sadasivam et al., IBM

© 2016, © 2019 POWER9 Processor User’s Manual, IBM
© The OpenPOWER Foundation

© 2022, W. Feng, Virginia Tech

Compiler Techniques for Exposing ILP

• Pipeline Scheduling
– Separate dependent instruction from the source instruction by

the pipeline latency of the source instruction

• Example:
for (i=999; i>=0; i=i-1)
x[i] = x[i] + s;

Separation

Pipeline Stalls
Loop: L.D F0,0(R1) ; F0=array element

stall
ADD.D F4,F0,F2 ; add scalar in F2
stall
stall
S.D F4,0(R1) ; store result
DADDUI R1,R1,#-8 ; decrement pointer
stall (assume integer load latency is 1)
BNE R1,R2,Loop

Separation

Pipeline Scheduling

Scheduled Code
Loop: L.D F0,0(R1)

DADDUI R1,R1,#-8
ADD.D F4,F0,F2
stall
stall
S.D F4,8(R1)
BNE R1,R2,Loop

Loop: L.D F0,0(R1) 1
stall 2

ADD.D F4,F0,F2 3

stall 4

stall 5

S.D F4,0(R1) 6

DADDUI R1,R1,#-8 7

stall (assume integer load latency is 1) 8

BNE R1,R2,Loop 9

How long for 4 iterations? 8? 12? 16?

Cycle Issued?

Separation

Loop Unrolling (w/o Pipeline Scheduling)
• Loop Unrolling

– Unroll by a factor of 4 (assume # elements is divisible by 4)
– Eliminate unnecessary instructions

Loop: L.D F0,0(R1) 1
ADD.D F4,F0,F2 3

S.D F4,0(R1) 6 ;drop DADDUI & BNE
L.D F6,-8(R1) 7
ADD.D F8,F6,F2 9

S.D F8,-8(R1) 12 ;drop DADDUI & BNE
L.D F10,-16(R1) 13
ADD.D F12,F10,F2 15

S.D F12,-16(R1) 18 ;drop DADDUI & BNE
L.D F14,-24(R1) 19
ADD.D F16,F14,F2 21
S.D F16,-24(R1) 24

DADDUI R1,R1,#-32 25
BNE R1,R2,Loop 27

Note: # of live registers
vs. original loop

How long for 4 iterations? 8? 12? 16?

Cycle Issued?

Separation

Loop Unrolling WITH Pipeline Scheduling

• Pipeline schedule the unrolled loop
Loop: L.D F0,0(R1) 1

L.D F6,-8(R1) 2
L.D F10,-16(R1) 3
L.D F14,-24(R1) 4

ADD.D F4,F0,F2 5
ADD.D F8,F6,F2 6
ADD.D F12,F10,F2 7
ADD.D F16,F14,F2 8

S.D F4,0(R1) 9
S.D F8,-8(R1) 10
DADDUI R1,R1,#-32 11

S.D F12,16(R1) 12
S.D F16,8(R1) 13
BNE R1,R2,Loop 14

How long for 4 iterations? 8? 12? 16?

Cycle Issued?

Separation

Can you identify the
name dependences and
data dependences?

Loop Unrolling with Unknown # of Iterations

• Unknown number of loop iterations?
– Assume n = number of iterations
– Goal: Loop unroll and make k copies of the loop body
– Approach: Generate a pair of consecutive loops (instead of a

single unrolled loop)
• First executes n mod k times
• Second executes n / k times

Algorithmic Summary

• Loop Unrolling and Pipeline Scheduling
Key Requirement: Must understand how one instruction depends on
another and how the instructions can be changed or reordered given
dependences.

– Determine that loop unrolling useful by identifying loop iterations
as independent (except for loop maintenance code)

– Use different registers to avoid unnecessary constraints that are
forced by using same registers for different computations (e.g.,
name dependences)

– Eliminate extra test and branch instructions and
adjust loop termination and iteration code

– Determine loads and stores in unrolled loop that can be
interchanged by observing that loads and stores from different
iterations are independent

– Schedule the code, preserving any dependences needed to yield
the same result as the original code.

Limitations of Loop Unrolling

• Less overhead “amortizable” with each unroll
– Example: Generated sufficient parallelism among instructions

that loop could be scheduled with no stall cycles.

• Code size limitations
– Memory is cheap, so why is this a problem?

• Compiler limitations
– What happens to hardware resource usage via aggressive

unrolling and pipeline scheduling?

Branching Hurts Performance

• Due to the need to enforce control dependences
through hazards and stalls (or “bubbles”).

Methods to reduce performance loss due to branches:
1. Loop unrolling is one way to reduce # of branch hazards.

See previous slides.
2. Predict how branches will behave.

• As # of instructions in flight has increased, the importance of
more accurate branch prediction grows.

Recall:

Five-Stage Pipelined Processor
1. Instruction Fetch (IF)

– Send PC to memory & fetch current instruction from memory
– Update PC to next sequential PC (e.g., 4 for 32-bit architecture)

2. Instruction Decode (ID) / Register Fetch
– Decode instruction and read source registers in parallel

• Why is this possible? “Fixed-field decoding”

– Do EQUALITY test on registers during read for possible branch
• Sign-extend the offset field of instruction, if needed
• Compute possible branch target address (by adding offset to PC)

Recall:

Five-Stage Pipelined Processor
3. Execute (EXE) / Effective Address

– EXE on operands from previous cycle
• Memory Reference
• Register-Register ALU instruction
• Register-Immediate ALU instruction

4. Memory Access (MEM)
– LOAD: Memory read using effective address calculated
– STORE: Memory write data from register read to effective addr

5. Write Back (WB)
– Register-Register ALU instruction or LOAD instruction

Reducing the Impact of Branches
1. Baseline: Freeze or flush the pipeline

– Hold or delete any instruction after the branch until branch
destination known.

Untaken branch instr IF ID EXE MEM WB
Instr i+1 IF ID EXE MEM WB
Instr i+2 IF ID EXE MEM WB
Instr i+3 IF ID EXE MEM WB
Instr i+4 IF ID EXE MEM WB

Taken branch instr IF ID EXE MEM WB
Instr i+1 IF idle idle idle idle
Branch target IF ID EXE MEM WB
Branch target + 1 IF ID EXE MEM WB
Branch target + 2 IF ID EXE MEM WB

2. Slightly better but more complex … treat every branch as
not taken. Trick: Do not change processor state until branch
outcome definitively known.

Reducing the Impact of Branches
3. Delayed Branch

branch instr
“sequential successor” à branch delay slot
branch target if taken

where “sequential successor” executes whether or not branch is taken

Untaken branch instr IF ID EXE MEM WB
Branch delay instr (i+1) IF ID EXE MEM WB
Instr i+2 IF ID EXE MEM WB
Instr i+3 IF ID EXE MEM WB
Instr i+4 IF ID EXE MEM WB

Taken branch instr IF ID EXE MEM WB
Branch delay instr (i+1) IF ID EXE MEM WB
Branch target IF ID EXE MEM WB
Branch target + 1 IF ID EXE MEM WB
Branch target + 2 IF ID EXE MEM WB

The behavior of a delayed branch is the same whether branch is
taken or not!

Job of the compiler is to make
“sequential successor” valid and useful

Scheduling Branch Delay Slot

Performance of Branch Schemes

• Assuming ideal CPI of 1, then the effective pipeline speed
up with branch penalties

Pipeline depth
Pipeline speedup =

1 + Pipeline stall cycles from branches

Pipeline stall cycles from branches
= Branch frequency x Branch penalty

Advanced Techniques for Reducing the
Impact of Branches

1. Static Branch Prediction
– Observation: The behavior of branches is often biomodally

distributed, i.e., an individual branch is often highly biased
toward taken or untaken.

– See next slide.

2. Dynamic Branch Prediction
– Basic 2-bit Predictor
– Correlating Predictor
– Local Predictor
– Tournament Predictor

Static Branch Prediction

• Profile the code
• Observation

– Branch behavior often
bimodally distributed, i.e.,
individual branch highly biased
to taken or untaken

• Experimental Setup
– Same input data used for runs

and for collecting profile

• Rigged?
– Changing the input so that the

profile is for a different run
leads to only a small change in
accuracy

Success of Branch Prediction
Using Static Branch Prediction

Dynamic Branch Prediction (1-bit)

• Branch-Prediction Buffer or Branch-History Table
– Small memory indexed by the lower portion of the address of

the branch instruction.
• Contains a bit for whether a branch was recently taken or not
• Useful only to reduce the branch delay when it is longer than the

time to compute the possible target PCs

• Potential Issue?
– Yes: Don’t know if prediction is correct as it may have been put

there by another branch that has the same low-order address
bits.

– No: Prediction is a hint that is assumed to be correct, and
fetching begins in predicted direction. If hint is wrong,
prediction bit is inverted and stored back.

Branch Prediction
• Basic 2-bit Predictor

– For each branch:
• Predict taken or not taken
• If the prediction is wrong two consecutive times, change prediction

• Correlating Predictor
– Multiple 2-bit predictors for each branch
– One for each possible combination of outcomes of preceding n

branches

• Local Predictor
– Multiple 2-bit predictors for each branch
– One for each possible combination of outcomes for the last n

occurrences of this branch

• Tournament Predictor
– Combine correlating predictor with local predictor

Branch Prediction
• Basic 2-bit Predictor

– For each branch:
• Predict taken or not taken
• If the prediction is wrong two consecutive times, change prediction

Prediction Accuracy

• Two-bit prediction buffer w/ 4096 entries
– 82% to nearly 100% accuracy
– Misprediction rate of ~ 0% to 18%
– 4K-entry buffer considered small (2005)

Example: Branch Prediction
Example

if (aa==2)
aa=0;

if (bb==2)
bb=0;

if (aa!=bb)
...

Example in MIPS
DADDIU R3,R1,#-2
BNEZ R3,L1 ; branch b1 (aa!=2)
DADD R1,R0,R0 ; aa=0

L1: DADDIU R3,R2,#-2
BNEZ R3,L2 ; branch b2 (bb!=2)
DADD R2,R0,R0 ; bb=0

L2: DSUBU R3,R1,R2 ; R3=aa-bb
BEQZ R3,L3 ; branch b3 (aa==bb)

• Code Fragment: SPEC eqntott
– Key Observation

• Behavior of branch b3 is correlated with
behavior of branches b1 and b2.

Branch Prediction
• Basic 2-bit Predictor

– For each branch:
• Predict taken or not taken
• If the prediction is wrong two consecutive times, change prediction

• Correlating Predictor
– Multiple 2-bit predictors for each branch
– One for each possible combination of outcomes of preceding n

branches

• Local Predictor
– Multiple 2-bit predictors for each branch
– One for each possible combination of outcomes for the last n

occurrences of this branch

• Tournament Predictor
– Combine correlating predictor with local predictor

Correlating Predictor

•Description:
• (m,n): Uses behavior of last m branches to choose from 2m

branch predictors, each of which is an n-bit predictor for a single
branch.

•Hardware required?
• # of bits in an (m,n) predictor?

• 2m x n x # prediction entries selected by branch address.

• Global history of the most recent m branches?
• Use m-bit shift register to record.

•Example
• (2,2) buffer with 64 total entries: 4 low-order address bits of

branch and 2 global bits representing behavior of two most
recently executed branches form a 6-bit index that can be used
to index the 64 entries.

Example: Correlating Predictor
• How many bits are in the (0,2)

branch predictor with 4k
entries?
20 x 2 x 4k = 8k bits

• How many entries are in the
(2,2) predictor with the same
number of bits?
22 x 2 x # entries = 8k bits
entries = 1k

Branch Prediction
• Basic 2-bit Predictor

– For each branch:
• Predict taken or not taken
• If the prediction is wrong two consecutive times, change prediction

• Correlating Predictor
– Multiple 2-bit predictors for each branch
– One for each possible combination of outcomes of preceding n

branches

• Local Predictor
– Multiple 2-bit predictors for each branch
– One for each possible combination of outcomes for the last n

occurrences of this branch

• Tournament Predictor
– Combine correlating predictor with local predictor

Branch Prediction Performance

Branch predictor performance on SPEC89

A 2-level predictor. Top: Local history table contains 1024 10-bit entries, where each
entry has 10 most recent branch outcomes for that entry. (Bottom: If a branch is
alternately taken & untaken, history entry contains alternating 0s and 1s.)

Misprediction Rates
for Intel Core i7 Branch Predictor
• Slightly higher on average for the integer benchmarks

than for the FP (4% versus 3%)

