
1

Chapter 1

Fundamentals of Quantitative Design and
Analysis

Part 2: Trends, Constraints, and Wisdom

Computer Architecture
A Quantitative Approach, Sixth Edition

“I think it’s fair to say that personal computers have become the
most empowering tool we’ve ever created. They’re tools of
communication they’re tools of creativity, and they can be shaped
by their user.” – Bill Gates, February 2004

Acknowledgements

• Thanks to many sources for slide material
© 1990 Morgan Kaufmann Publishers, © 2001-present Elsevier

Computer Architecture: A Quantitative Approach by J. Hennessy & D. Patterson

© 1994 Morgan Kaufmann Publishers, © 2001-present Elsevier
Computer Organization and Design by D. Patterson & J. Hennessy

© 2002 K. Asinovic & Arvind, MIT

© 2002 J. Kubiatowicz, University of California at Berkeley

© 2006, © 2010 No Starch Press for Inside the Machine by J. Stokes

© 2007 W.-M. Hwu & D. Kirk, University of Illinois & NVIDIA

© 2007-2010 J. Owens, University of California at Davis

© 2010 CRC Press for Introduction to Concurrency in Programming Languages by M.
Sottile, T. Mattson, and C. Rasmussen

© 2017, IBM POWER9 Processor Architecture by Sadasivam et al., IBM

© 2016, © 2019 POWER9 Processor User’s Manual, IBM

© The OpenPOWER Foundation

Technology

• In the mid-1980s, the single-chip processor (32-bit) and
the single-board computer emerged.

Workstations, PCs, etc. have
been riding this wave since.

DRAM Chip Capacity
1980 64 kB
1983 256 kB
1986 1 MB
1989 4 MB
1992 16 MB
1996 64 MB
1999 256 MB
2002 1 GB
2005 4 GB

Technology Rates of …

• Processor
– Logic Capacity: ~30% per year
– Clock Rate: ~20% per year (2003-2011);

~10% per year (2011-2015); ~3% per year (2015-now) … why?

• Memory
– DRAM Capacity: ~60% per year (4x every 3 years)
– Memory Speed: ~10% per year
– Cost Per Bit: Improves ~25% per year

• Disk
– Capacity: ~60% per year
– Total Use of Data: ~100% per 9 months!

• Network
– Bandwidth: 100%+ per year

Execution Time

• Time = Clock Speed * CPI * Instruction Count
= seconds/cycle * cycles/instr * instrs/program
= seconds/program

• Execution time is the only reliable measure of computer
performance.

What is Amdahl’s Law?

• Speedup due to enhancement E

• Suppose enhancement E accelerates a fraction F of the
computation by a factor of S

Just How Fast is “Fast”?

• New CPU comes out that is a whopping 10x faster
• Assume an I/O-bound server where 60% of time waits for

I/O

• Don’t get “wow”-ed by 10x faster. It’s only 1.56x faster in
this case.

If we build a new architecture,
how do we tell how good it is?

Basis of Architectural Evaluation
Approach Pros Cons

Actual Target Workload

• Representative • Very specific
• Non-portable
• Difficult to run or measure
• Hard to identify cause

Full Application
Benchmarks

• Portable
• Widely used
• Improvements useful in

reality

• Less representative

Small “kernel”
benchmarks

• Easy to run
• Early in design cycle

• Easy to “fool”

Microbenchmarks • Identify peak capability &
potential bottlenecks

• “Peak”may be a long way from
application performance

Dwarfs* à Motifs
(e.g., OpenDwarfs)

? ?

* See “The Landscape of Parallel Computing Research: A View from Berkeley,” December 2006.

Evaluating Instructions
• Design-Time Metrics à Productivity

– Can it be implemented? In how much time? At what cost?
– Can it be programmed? Ease of compilation?

• Static Metrics à Efficiency
– How many bytes does the program occupy in memory?

• Dynamic Metrics à Efficiency/Performance
– How many instructions are executed?
– How many bytes does the processor fetch to execute the

program?
– How many clocks are required per instruction?
– How “lean” a clock is practical?

• Best Metric for Computer Architecture?
– Time to execute the program!

CPI

Instr.
Count

Cycle
Time

RISC “Revolution”

• Questions
– How did this “revolution” come about?
– What happened to the revolution?

• x86 instruction set architecture (ISA)

single-issue, five-stage
pipelined, 32-bit
microprocessors.

RISC: MIPS Instruction Set
• 32-bit fixed format inst

(3 formats)

• 32 32-bit GPR (R0 contains
zero); 32 FP registers (and
HI LO)

– partitioned by software
convention

• 3-address, reg-reg
arithmetic instr.

• Single address mode for
load/store:
base+displacement

– no indirection, scaled

• 16-bit immediate

• Simple branch conditions
– compare against zero or

two registers for =,≠
– no integer condition codes

• Delayed branch
– execute instruction after a

branch (or jump) even if
the branch is taken

– compiler can fill branch
delay slot ~50% of the time

RISC Philosophy

• Instructions all same size
• Small number of opcodes (small

opcode space)
• Opcode in same place for every

instruction
• Simple memory addressing
• Instructions that manipulate

data don’t manipulate memory,
and vice versa

• Minimize memory references by
providing ample registers

• Implications to pipelining?

What is pipelining?

Pipelining Review

• Pipelining does NOT help latency
of a single task, it helps
throughput of entire workload

• Pipeline rate limited by slowest
pipeline stage

• Multiple tasks run simultaneously
using different resources

• Potential speedup =
number of pipe stages

• Unbalanced lengths of pipe
stages reduces speedup

• Time to “fill” pipeline and time to
“drain” it reduces speedup

• Stall for dependencies

Conventional Pipelined Execution

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

time

program
flow

Pipelined Architecture
In

st
ru

ct
io

n
O

rd
er

Time (Clock Cycles)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

IF ID EX WBMEM

IF ID EX WBMEM

IF ID EX WBMEM

IF ID EX WBMEM

Cycle 8

Why MIPS is “Awesome”
• All MIPS instructions same length
• Source registers located in same place for

every instruction
• Overlap register fetch & instruction decode
• Simple memory operations
• MIPS: execute calculates memory address, memory

load/store in next stage
• X86: can operate on result of load: execute calculates

memory address, memory load/store in next stage, THEN
ALU stage afterwards

• All instructions aligned in memory — one access for each
instruction

Limits to Pipelining

• Hazards prevent next instruction from executing during
its designated clock cycle

– Structural hazards: Two instructions attempt to use the same
hardware to do two different things at once

– Data hazards: Instruction depends on result of prior instruction
still in the pipeline

– Control hazards: This is caused by the delay between the
fetching of instructions and decisions about changes in control
flow (branches and jumps).

Focus on the Common Case

• Common sense guides computer design
• In making a design trade-off, favor the frequent case over

the infrequent case, e.g.,
– Instruction fetch and decode unit used more frequently than

multiplier, so optimize it first
– If database server has 50 disks/processor, storage dependability

dominates system dependability, so optimize it first

• Frequent case is often simpler and can be done faster than
the infrequent case, e.g.,

– Overflow is rare when adding two numbers, so improve
performance by optimizing common case of no overflow

• What is the frequent case and how much performance
improved by making case faster?

– Amdahl’s Law

What is the memory hierarchy?
(Why does a memory hierarchy exist?)

Why Care about Memory?

CPU 60% per year
OR 2x per 1.5 years

DRAM 9% per year
OR 2x per 10 years

Gap grows by 50%
à MEMORY WALL

POWER WALL

Memory Levels
Capacity

Access-Time Cost

CPU Registers
100s bytes (B)

< 2 ns

Cache
kB SRAM
2-100 ns

$0.01-$0.001/bit

Main Memory
GB DRAM

100 ns – 1000 ns
$0.01-$0.001/bit

Disk
TB

10 ms – 40 ms
$0.001-$0.0001/bit

Tape
“infinite”
sec – min

$0.000001/bit

Tape

Disk

Memory

Cache

Registers faster

larger

instr. operands

blocks

pages

files

Staging
Transfer Unit

program/compiler
1-8 bytes

cache controller
8-128 bytes

OS
512-4k+ bytes

user/operator
MB – GB

Memory Hierarchy

• The Principle of Locality
– Program access a relatively small portion of the address space

at any instant of time
• Temporal Locality: Locality in Time
• Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses
– Compulsory Misses: cannot avoid

• Example: cold start misses

– Conflict Misses: increase cache size and/or associativity
– Capacity Misses: increase cache size

Cost of Fabrication

• Rock’s Law: Cost of fabs double every 4 years
• $3B for fab in 2008-2009

– Rise of fabless design houses (AMD now fabless)
– Rise of for-hire fabs (TSMC, etc.)
– $3B fab means $6B in revenue is required

Wisdom: Where is Computer
Architecture Going?

Looking to the Future

Power
• Old Conventional Wisdom (CW)

– Power is free, but transistors are expensive.

• New CW is the “Power Wall”
– Power is expensive, but transistors are free. We can put more

transistors on a chip than we have power to turn on.

• A 240-Node Cluster in Five Sq. Ft.
• Each Node

– 1-GHz Transmeta TM5800 CPU w/ High-Performance Code-
Morphing Software running Linux 2.4.x

– 640-MB RAM, 20-GB hard disk, 100-Mb/s Ethernet

• Total
– 240 Gflops peak (LINPACK: 101 Gflops in March 2002.)

– 150 GB of RAM (expandable to 276 GB)

– 4.8 TB of storage (expandable to 38.4 TB)

– Power Consumption: Only 3.2 kW (diskless)

• Reliability & Availability
– No unscheduled downtime in 24-month lifetime.

• Environment: A dusty 85-90°F warehouse!

Green Destiny Supercomputer
(circa December 2001 – February 2002)

Featured in The New York Times, BBC News, and CNN.
Now in the Computer History Museum.

Equivalent LINPACK to a
256-CPU SGI Origin 2000

(On the TOP500 List at the time)

Green Destiny: Low-Power Supercomputer

Green Destiny “Imitation”: Traditional Supercomputer

Only Difference? The Processors

March 2007

Compute vs. Memory

• Old CW
– Multiply is slow, but load and store from/to memory is fast.

• New CW
– The Memory Wall.
– Load and store is slow, but multiply is fast.

• Modern microprocessors can take 100 clock cycles to access
dynamic random-access memory (DRAM), but even floating-point
multiplies may take only four clock cycles.

Evolution of Computation

• 20 years ago: computation expensive, wires free
– To first order: ignore wire delay

• Light moves 1 foot/ns in vacuum
– Wires are also getting thinner
– Wire delay now significant even on chip!

• Moore’s Law implies
– Computation gets cheaper
– Speed of light doesn’t change
– Compute don’t communicate!

Intel Finally “Gets It”…

Intel Developer Forum, September 2004
• “What Intel announced at this IDF was no less than a

total rethinking of their approach to microprocessors.”
• Performance improvement from Moore’s Law

performance scaling will come not from increases not in
MHz ratings but in machine width.

– Power wall
– Threading
– MIPS/watt instead of MIPS

• Datasets are growing in size and so are the network
pipes that connect those datasets.

– Intel claimed “doubling of digital data every 18 months”
– More integration?

http://arstechnica.com/articles/paedia
/cpu/intel-future.ars/1

Instruction Level

• Old CW: We can reveal more instruction-level parallelism
(ILP) via compilers and architecture innovation.

– Examples from the past include branch prediction, out-of-order
execution, speculation, and Very Long Instruction Word (VLIW)
systems.

– This CW will be approximately the first 5 weeks of the semester.

• New CW is the “ILP wall”: There are diminishing returns
on finding more ILP.

Trends

ILP

Uniprocessor

• Old CW
Uniprocessor performance
doubles every 18 months.

• New CW
Power Wall + Memory Wall +
ILP Wall = Brick Wall.

In 2006, performance is a factor of three
below the traditional doubling every 18
months that we enjoyed between 1986
and 2002.

The doubling of uniprocessor
performance may now take 20 years.

On the Evolution of Computer Architecture Wisdom

• Old CW: Don’t bother parallelizing your application, as you
can just wait a little while and run it on a much faster
sequential computer.
New CW: It will be a very long wait for a faster sequential
computer.

• Old CW: Increasing clock frequency is the primary method
of improving processor performance.
New CW: Increasing parallelism is the primary method of
improving processor performance.

• Old CW: Less than linear scaling for a multiprocessor
application is failure.
New CW: Given the switch to parallel computing, any
speedup via parallelism is a success.

