
1

Chapter 2

Memory Hierarchy Design

Part 1:  The Basics

Computer Architecture
A Quantitative Approach, Sixth Edition

“Ideally one would desire an indefinitely large memory capacity 
such that any particular … word would be immediately available. 
… We are … forced to recognize the possibility of constructing a 
hierarchy of memories, each of which has greater capacity than 
the preceding but which is less quickly accessible.” 

– A. W. Burks, H. H. Goldstine, and J. von Neumann, 
Preliminary Discussion of the Logical Design of an 
Electronic Computing Instrument (1946)



Acknowledgements

• Thanks to many sources for slide material
© 1990 Morgan Kaufmann Publishers, © 2001-present Elsevier

Computer Architecture: A Quantitative Approach by J. Hennessy & D. Patterson
© 1994 Morgan Kaufmann Publishers, © 2001-present Elsevier 

Computer Organization and Design by D. Patterson & J. Hennessy
© 2002 K. Asinovic & Arvind, MIT

© 2002 J. Kubiatowicz, University of California at Berkeley 
© 2006, © 2010 No Starch Press for Inside the Machine by J. Stokes

© 2007 W.-M. Hwu & D. Kirk, University of Illinois & NVIDIA

© 2007-2010 J. Owens, University of California at Davis
© 2010 CRC Press for Introduction to Concurrency in Programming Languages by M. 

Sottile, T. Mattson, and C. Rasmussen
© 2017, IBM POWER9 Processor Architecture by Sadasivam et al., IBM

© 2016, © 2019 POWER9 Processor User’s Manual, IBM
© The OpenPOWER Foundation



Introduction
• What do programmers want?

– Unlimited amounts of memory with low latency

• Problem:
Fast memory more expensive per bit than slower memory

• Solution: Organize memory system into a hierarchy
– Entire addressable memory available in largest, slowest memory
– Incrementally smaller and faster memories, each containing a 

subset of the memory below it, proceed in steps up toward the 
processor

• Outcome: Deliver illusion of a fast & large memory to CPU
– How? Temporal locality and spatial locality ensure that nearly all 

references can be found in smaller memories



Memory Hierarchy

CPU
Registers

L1
$

L2
$

L3
$

Memory

Disk Storage
Memory

bus
I/O
bus

CPU
Registers

L1
$

L2
$

Memory

FLASH Memory
Memory

bus
I/O
bus

Register
reference

Key:  $ = cache

Level 1 $
reference

Level 2 $
reference

Level 3 $
reference

Memory
reference

Disk memory
reference

Register
reference

Level 1 $
reference

Level 2 $
reference

Memory
reference

FLASH memory
reference

Size:
Speed:

1000 bytes
0.3 ns

64 kB
1 ns

256 kB
3-10 ns

8-16 MB
20-30 ns

8-16 GB
80-100 ns

1-8 TB
5,000,000-10,000,000 ns

Size:
Speed:

500 bytes
0.3 ns

64 kB
2 ns

256 kB
10-20 ns

4-6 GB
80-100 ns

256-512 GB
25,000-50,000 ns



Cache: Multicore Feature of Interest 

• Introduced in the 1960s as a way to overcome the 
“memory wall”

Consequence:  Processor outruns memory, leading to decreased utilization

Memory speeds did not advance as 
fast as the speed of functional units.  



Idle Time

• What happens when you go out to main memory?  
Idle time. 

– Decreased utilization = less work per unit time 
– Idle time = time doing nothing = $$$ wasted

• Overcoming the “Memory Wall” 
– Caches were not the sole fix for idle time.
– Early Days: Preemptive multitasking and time sharing were 

actually the dominant methods.
... but every program inevitably must go out to memory
... not always enough jobs to swap in while others wait for memory
… also, do you really want to be preempted every time you fetch data? 

– So, caches important (for now :-) …



Memory Hierarchy Design

• Memory hierarchy design becomes more crucial with 
recent multi-core processors

– Aggregate peak bandwidth grows with # cores:
• Intel Core i7 can generate two references per core per clock
• Four cores and 3.2 GHz clock

– How much memory bandwidth needed?
– Hint: 64-bit data references & 128-bit instruction references

• DRAM bandwidth is only 25 GB/s (circa 2011-2012)

– How to bridge the gap? 
• Multi-port, pipelined caches
• Two levels of cache per core
• Shared third-level cache on chip



Caches:  An Overview

• Traditional Single-Level Memory

• Multiple Memory Levels



Caches:  In Action

• Access a location in memory 
• Copy the location and its neighbors into the faster 

memories closer to the CPU.



Caches:  In Action

• Access a location in memory 
• Copy the location and its neighbors into the faster 

memories closer to the CPU.



Caches:  In Action

• Access a location in memory 
• Copy the location and its neighbors into the faster 

memories closer to the CPU.



Caches:  In Action

• Access a location in memory 
• Copy the location and its neighbors into the faster 

memories closer to the CPU.



Caches:  In Action

• Access a location in memory 
• Copy the location and its neighbors into the faster 

memories closer to the CPU.



Caches:  In Action

• Access a location in memory 
• Copy the location and its neighbors into the faster 

memories closer to the CPU.



Caches:  In Action

• Next time you access memory, if you already pulled the 
address into one of the cache levels in a previous 
access, the value is provided from the cache.



Caches:  In Action

• Next time you access memory, if you already pulled the 
address into one of the cache levels in a previous 
access, the value is provided from the cache.



Caches:  In Action

• Next time you access memory, if you already pulled the 
address into one of the cache levels in a previous 
access, the value is provided from the cache.



Caches:  In Action

• Next time you access memory, if you already pulled the 
address into one of the cache levels in a previous 
access, the value is provided from the cache.



Caches:  In Action

• Next time you access memory, if you already pulled the 
address into one of the cache levels in a previous 
access, the value is provided from the cache.



Why Do Caches Work?  Locality

• Spatial and Temporal
– Locations near each other in space (address) are highly likely to 

be accessed near each other in time.  

• Cost?
– A high cost for one access but amortize this out with faster 

accesses afterwards. 

• Burden?
– The machine makes sure that memory is kept consistent.  If a 

part of cache must be reused, the cache system writes the data 
back to main memory before overwriting it with new data.

– Hardware cache design deals with managing mappings 
between the different levels and deciding when to write back 
down the hierarchy.



Caches:  Memory Consistency?

• What happens when you modify something in memory?



Caches:  Memory Consistency?

• What happens when you modify something in memory?



Caches:  Memory Consistency?

• What happens when you modify something in memory?
• Writes to memory become cheap.  Only go to slow 

memories when needed.  Called write-back memory.



Caches:  Memory Consistency?

• Eventually written values must make it back to the main 
store. 

• When?
– Typically, when a cache block is replaced due to a cache miss, 

where new data must take the place of old. 

• The programmer does NOT see this.  
– Hardware takes care of all this … but things can go wrong very 

quickly when you modify this model.  
• Example:  Cell Broadband Engine, Tilera, and so on.



Common Memory Models

• Shared Memory Architecture
• Distributed Memory Architecture



Memory Models:  Shared Memory

• Before
– Only one processor has access to modify memory.

• How do we avoid problems when multiple cache 
hierarchies see the same memory? 



Caching Issues

• Assume two processors load
locations that are neighbors, 
so data is replicated in the local processor caches. 

• Now, let one processor modify a value.  
• The memory view is now inconsistent.  One processor sees 

one version of memory, the other sees a different version. 
• How do we resolve this in hardware such that the 

advantages of caches are still seen by application 
developers in terms of performance while ensuring a 
consistent (or coherent) view of memory?



Caching Issues



Caching Issues



Caching Issues



Caching Issues



Caching:  Memory Consistency?

• Easy to see “memory consistency” problem if we 
restrict each cache hierarchy to being isolated from the 
others, only sharing main memory.

• Key insight
– Make this inconsistency “go away” by making the caches aware 

of each other.



What is Memory Coherence?

• Definition (Courtesy: “Parallel Computer Architecture” by Culler and Singh)

1. Operations issued by any particular process occur in the order 
in which they were issued to the memory system by that 
process. 

2. The value returned by each read operation is the value written 
by the last write to that location in the serial order. 

• Assumption:  The above requires a hypothetical ordering for all 
read/write operations by all processes into a total order that is 
consistent with the results of the overall execution. 

• Sequential Consistency (SC)
– The memory coherence hardware assists in enforcing SC.  



Implicit Properties of Coherence

• The key to solving the cache-coherence problem is the 
hardware implementation of a cache-coherence 
protocol. 

• A cache-coherence protocol takes advantage of two 
hardware features

1. State annotations for each cache block (often just a couple 
bits per block). 

2. Exclusive access to the bus by any accessing process.



Bus Properties

• All processors on the bus see the same activity.
• Every cache controller sees bus activity in the same order. 
• Serialization at the bus level results from the phases that 

compose a bus transaction: 
– Bus arbitration: The bus arbiter grants exclusive access to issue 

commands onto the bus.  
– Command/address: The operation to perform (“Read”, “Write”), 

and the address.  
– Data: The data is then transferred.



Granularity

• Cache coherence applies at the block level. 
• Recall that when you access a location in memory, that 

location and its neighbors are pulled into the cache(s).  
These are blocks.

Note: To simplify the discussion, we will only consider a 
single level of cache.  The same ideas translate to 
deeper cache hierarchies.



Cache Coherency via the Bus

• Key Idea:  Bus Snooping
– All CPUs on the bus can see activity on the bus regardless of if 

they initiated it. 



Cache Coherency via the Bus

• Key Idea:  Bus Snooping
– All CPUs on the bus can see activity on the bus regardless of if 

they initiated it. 



Cache Coherency via the Bus

• Key Idea:  Bus Snooping
– All CPUs on the bus can see activity on the bus regardless of if 

they initiated it. 



Cache Coherency via the Bus

• Key Idea:  Bus Snooping
– All CPUs on the bus can see activity on the bus regardless of if 

they initiated it. 



Invalidation vs. Update

• A cache controller snoops and sees a write to a location 
that it has a now-outdated copy of.  

– What does it do? 

• Invalidation
– Mark cache block as invalid, so when CPU accesses it again, a 

miss will result and the updated data from main memory will be 
loaded.  Requires one bit per block to implement.

• Update
– See the write and update the caches with the value observed 

being written to main memory.



CACHING:  UNDER THE COVERS



Performance and Power

• High-end microprocessors have > 10 MB on-chip cache
– Consumes large amount of area and power budget



AMD Opteron Rev. H Quad-Core

Where are the caches?



IBM: Power9

Source: IBM



Intel Skylake



Memory Hierarchy:  Algorithm

• When a word is not found in the cache, a miss 
occurs
– Fetch word from lower level in hierarchy, requiring a 

higher latency reference
– Lower level may be another cache or the main 

memory
– Also fetch the other words contained within the 

block
• Takes advantage of spatial locality

– Place block into cache in any location within its set, 
determined by address

• block address MOD number of sets



When to Write Blocks:  
Strategies to Write to the Cache 

• Write-Back
Only update lower levels of hierarchy when an updated 
block is replaced

– On a write miss, the CPU reads the entire block from memory 
where the write address is, updates the value in cache, and marks 
the block as modified (aka dirty). 

• Write-Through 
Immediately update lower levels of hierarchy

– When the processor writes, even to a block in cache, a bus write 
is generated. 

– Both strategies use write buffer to make writes asynchronous

• Write-back is more efficient with respect to bandwidth 
usage on the bus, and hence, ubiquitously adopted.



Where to Write Blocks:  
Associativity

How is the cache organized?
– n-way set associative, where 

n = # of blocks per set
Direct-mapped cache (1-way set associative)
à one block per set

Fully associative cache 
(n-way set associative) 
à n blocks in one set

block address MOD number of sets

Tag Index Offset
xx 000 00
xx 001 00
xx 010 00
xx 011 00
xx 100 00
xx 101 00
xx 110 00
xx 111 00

Tag Index Offset
xxx 00 00
xxx 01 00
xxx 10 00
xxx 11 00

block 
address

block 
address



Where to Write Blocks:

Associativity

Index Valid      Tag Data

0
1
2

…
…
…

1023

DataHit

Address (showing bit positions)
31 30 ….      12 11 ….    2 1  0 Byte 

offset
20 10

=
20 32

Tag Index



Where to Write Blocks: 
Associativity

52

Index V      Tag          Data

0
1
2
…
…

256

Address (showing bit positions)
31 30 …..      12 11 …    2 1  0

Byte 
offset22 8

V    Tag       Data V     Tag       Data V     Tag       Data

Hit

4-to-1 MUX

Data

= == == ==22
32



How to Evaluate Cache Organization:
Miss Rate

• Miss Rate
– Fraction of cache access that result in a miss

• Causes of Misses
– Compulsory

• First reference to a block

– Capacity
• Blocks discarded and later retrieved

– Conflict
• Program makes repeated references to multiple addresses 

from different blocks that map to the same location in the 
cache



• Note:  Speculative and multithreaded processors may 
execute other instructions during a miss

– Reduces performance impact of misses

Other Metrics?



Basic Cache Optimizations

• Larger block size
– Reduces compulsory misses
– Increases capacity and conflict misses, increases miss penalty

• Larger total cache capacity to reduce miss rate
– Increases hit time, increases power consumption

• Higher associativity
– Reduces conflict misses
– Increases hit time, increases power consumption

• Higher number of cache levels
– Reduces overall memory access time, increases complexity

• Giving priority to read misses over writes
– Reduces miss penalty, increases complexity

• Avoiding address translation in cache indexing
– Reduces hit time


