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Chapter 1

Fundamentals of Quantitative Design and 
Analysis

Part 3: Benchmarking & Technology Trends

Computer Architecture
A Quantitative Approach, Sixth Edition

“I think it’s fair to say that personal computers have become the 
most empowering tool we’ve ever created. They’re tools of 
communication they’re tools of creativity, and they can be shaped 
by their user.” – Bill Gates, February 2004 
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Outline

• Benchmarks
• Technology

– In a power-constrained world, we can’t keep increasing 
performance by increasing clock speed.

• Architectural Trends
– Microarchitectures have historically increased performance by 

increasing ILP and pipeline depth. Today, we can’t keep 
increasing performance at historical levels by these methods.

• Bandwidth vs. Latency



What makes a good benchmark?

What do you want to avoid in creating 
benchmarks?



SPEC 
Benchmarks



SPEC Discussion

• From SPECx to SPECy, why would we remove a 
benchmark of one type and add a benchmark of the same 
type?

• Can a particular problem be solved in more than one way? 
Example:  Solving a system of equations.

– Should a benchmark reflect “solve the problem using this 
particular algorithm” or “solve the problem using any algorithm”?



3DMark06 Benchmark

• Historically, becomes more CPU-bound over time
• Graphics (4) and CPU (2) benchmarks in 3DMark06



TPC-C Benchmark

“The difficulty in designing TPC benchmarks lies in reducing 
the diversity of operations found in a production application, 
while retaining its essential performance characteristics, 
namely, the level of system utilization and the complexity of 
its operations.”

Overview of the TPC Benchmark C:
The Order-Entry Benchmark

By Francois Raab, Walt Kohler, Amitabh Shah



TPC-C Overview

• n Warehouses
– Each warehouse, 10 sales districts, terminal per sales district
– Each sales district, 3000 customers

• New Order
– 10 items, 10% chance from another warehouse

• Other Transactions
– Payment, order status, delivery, stock query

• TPC-C Measures
– Orders per second (tpmC)
– Price-performance ($/tpmC)



More Benchmark Suites … Really?

• BabelStream, GPU-STREAM, 
STREAM

• ECP Proxy Apps
• FinanceBench
• Hetero-Mark
• Mantevo
• NPB-OCL
• OpenDwarfs
• Pannotia
• Parboil
• Polybench
• Rodinia
• SHOC
• ViennaCL

• An Automated Framework for Characterizing and 
Subsetting GPGPU Workloads.
V. Adhinarayanan, W. Feng.
In Proc. of the IEEE Int’l Symp, on Performance Analysis 
of Systems and Software (ISPASS), Uppsala, Sweden, 
April 2016.

Paper (PDF) Citations: [ BibTeX XML PlainText ]

Potential for 
– Many research artifacts that extend the above.
– Many M.S. and even Ph.D. theses. 

https://github.com/UoB-HPC/BabelStream
https://github.com/pfultz2/GPU-STREAM
https://github.com/jeffhammond/STREAM
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://github.com/cavazos-lab/FinanceBench
https://github.com/NUCAR-DEV/Hetero-Mark
https://mantevo.github.io/
http://aces.snu.ac.kr/software/snu-npb/
https://github.com/vtsynergy/OpenDwarfs
https://github.com/pannotia/pannotia
http://impact.crhc.illinois.edu/parboil/parboil.aspx
https://github.com/Meinersbur/polybench/tree/master/polybench-code
http://rodinia.cs.virginia.edu/doku.php
https://github.com/vetter/shoc
https://github.com/romanlarionov/viennacl-benchmark
http://synergy.cs.vt.edu/pubs/papers/adhinarayanan-ispass16-subsetting.pdf
http://synergy.cs.vt.edu/pubs/bibtex/adhinarayanan-ispass16-subsetting.bib
http://synergy.cs.vt.edu/exportpub.php?format=xml&key=adhinarayanan-ispass16-subsetting
http://synergy.cs.vt.edu/exportpub.php?format=plaintext&key=adhinarayanan-ispass16-subsetting
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Technology

• As technology improves, what gets 
faster/bigger/better? 

– Gate delay
– Chip size
– Number of pins
– Pin bandwidth
– Memory bandwidth
– Memory latency



VLSI Capability (2011)

[Courtesy: Bill Dally]



Today’s VLSI Capability

1. Exploits Ample 
Computation!

[Courtesy: Bill Dally]



Today’s VLSI Capability

1. Exploits Ample 
Computation!

2. Requires Efficient 
Communication!

[Courtesy: Bill Dally]



“The complexity for minimum component costs 
has increased at a rate of roughly a factor of two 
per year (see graph on next page). Certainly, over 
the short term this rate can be expected to 
continue, if not to increase. Over the longer term, 
the rate of increase is a bit more uncertain, 
although there is no reason to believe it will not 
remain nearly constant for at least 10 years. That 
means by 1975, the number of components per 
integrated circuit for minimum cost will be 
65,000. I believe that such a large circuit can be 
built on a single wafer.”

“Cramming More Components onto Integrated Circuits” by 
Gordon E. Moore, Electronics, Vol. 38, No. 8, April 19, 1965.

Moore’s Law



Intel Historical Data



Semiconductor Scaling Rates
• From Digital Systems Engineering, Dally and Poulton, 1998

Parameter Current 
Value

Yearly 
Factor

Years to Double 
(Half)

Moore’s Law (grids on a die)** 1 B 1.49 1.75

Gate Delay 150 ps 0.87 (5)

Capability (grids / gate delay) 1.71 1.3

Device-length wire delay 1.00

Die-length wire delay / gate delay 1.71 1.3

Pins per package 750 1.11 7

Aggregate off-chip bandwidth 1.28 3
** Ignores multi-layer metal, 8-layers in 2001



International Technology Roadmap for Semiconductors



10-Year GPU Projection (2004–14)

• Transistors (NV40): 
222M/2237M

• Clock speed (NV40, MHz): 
475/1890

– Capability: 105B/4228B

• Memory bandwidth
(NV40, GB/s): 35/322

• Memory latency (RAS, ns): 
40/23

• Power/chip (maximum, W): 
158/198 (then flat?)

• Take-home point: Capability > 
mem bw > mem latency

Source:  Owens, “Streaming Architectures and 
Technology Trends,” GPU Gems 2, March 2005.



Technology Theme

In a power-constrained world, we cannot 
keep increasing performance by increasing 
clock speed.



Process Generations

• Let’s assume one process generation to the next 
makes new transistors 0.7 times the size of the old 
transistors (“linear shrink”)
– Recent example: 65 nm to 45 nm = 0.692
– What is this “feature size”? 
– How does this relate to Moore’s Law?



Historical Scaling (0.7x)

• Power = Ceff [device] × # devices × voltage2× freq
– Not talking about wires, leakage, etc.

• With process shrink, assuming constant die size: 
– Change in Ceff: 
– Change in number of devices:
– Change in frequency: 
– Plug that all together:



Historical Scaling (0.7x)

• Power = Ceff [device] × # devices × voltage2× freq
– Not talking about wires, leakage, etc.

• With process shrink, assuming constant die size:  
– Change in Ceff:  0.7x

– Change in number of devices:  1/(0.7× 0.7) = 2x
– Change in frequency:  1/0.7x = 1.4x
– Plug that all together:  2x



Historical Scaling (0.7x)

• Power = Ceff [device] × # devices × voltage2× freq
– Not talking about wires, leakage, etc.

• With process shrink: 
– Change in Ceff: 
– Change in number of devices:
– Change in frequency: 
– What else do we need to change to get constant power?
– Plug that all together:



Historical Scaling (0.7x)

• Power = Ceff [device] × # devices × voltage2× freq
– Not talking about wires, leakage, etc.

• With process shrink: 
– Change in Ceff:  0.7x

– Change in number of devices:  1/(0.7× 0.7) = 2x
– Change in frequency:  1/0.7x = 1.4x

– Change in voltage squared:  (0.7× 0.7)x = 0.5x
– Plug that all together:  1x (constant power draw)



Historical Scaling Result

• Constant power from generation to generation
• What is our increase of (potential) performance from 

generation to generation?
– 2x devices × 1.4x frequency = 2.8x performance at same power

Dennard’s Law:
As the dimensions of a device go down, 
so does its power consumption. 



Scaling by the Mid-2000s?

• For 0.7x transistor scaling:
– Ceff continues to scale (0.7x)
– Device density continues to scale (2x)
– Voltage does not scale as much (0.95x)
– Frequency increases only by 1.2x

• Result: 2.4x performance, 1.5x power

Dennard’s Law:
As the dimensions of a device go down, 
so does its power consumption. 
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Architectural Trends

• Microarchitectures have historically increased 
performance by increasing ILP and pipeline depth.

• We have not been able to continue increasing  
performance at these historical levels by these 
methods.



Why Do Processors Get Faster?

• Define “faster” as “more instructions per second”
• Neglecting software improvements …
• 3 reasons:

– More parallelism (or more work per pipeline stage)
• Fewer clocks/instruction

– Deeper pipelines
• Fewer gates/clock

– Transistors get faster (Moore’s Law)
• Fewer ps/gate



Limits to Instruction-Level Parallelism

[David Wall, Limits of Instruction-Level 
Parallelism, WRL Research Report 93/6]



Clock Scaling: Historical & Projected

• “The Optimal Logic Depth Per Pipeline Stage is 6 to 8 FO4 Inverter 
Delays” (ISCA02) [courtesy Steve Keckler]



Microprocessor Scaling is Slowing 

[courtesy of Bill Dally]



Future Potential is Large

• At the right-hand turn: 30:1
• 5 years: 1000:1

[courtesy of Bill Dally]



Summary

• Microprocessors have historically increased 
performance by
– Increasing clock speed
– Increasing pipeline depth
– Increasing instruction-level parallelism (work per clock)

• We CANNOT continue improving performance by 
doing any of these things anymore.



Outline

• Benchmarks
• Technology

– In a power-constrained world, we can’t keep increasing 
performance by increasing clock speed.

• Architectural Trends
– Microarchitectures have historically increased performance by 

increasing ILP and pipeline depth. Today, we can’t keep 
increasing performance at historical levels by these methods.

• Bandwidth vs. Latency



Bandwidth vs. Latency



Technology Rates of …

• Processor
– Logic Capacity:  ~30% per year
– Clock Rate:  ~20% per year (2003-2011); 

~10% per year (2011-2015); ~3% per year (2015-now)

• Memory
– DRAM Capacity:  ~60% per year (4x every 3 years)
– Memory Speed:  ~10% per year
– Cost Per Bit:  Improves ~25% per year

• Disk
– Capacity:  ~60% per year
– Total Use of Data:  ~100% per 9 months!

• Network
– Bandwidth:  100%+ per year



Disk Trends
• MapReduce is a programming model for processing vast amounts 

of data. One of the reasons that it works so well is because it 
exploits a sweet spot of modern disk drive technology trends. In 
essence MapReduce works by repeatedly sorting and merging data 
that is streamed to and from disk at the transfer rate of the disk. 
Contrast this to accessing data from a relational database that 
operates at the seek rate of the disk (seeking is the process of 
moving the disk's head to a particular place on the disk to read or 
write data).

• So why is this interesting? Well, look at the trends in seek time and 
transfer rate. Seek time has grown at about 5% a year, whereas 
transfer rate at about 20%. Seek time is growing more slowly than 
transfer rate—so it pays to use a model that operates at the 
transfer rate, which is what MapReduce does. 

• http://www.lexemetech.com/2008/03/disks-have-become-
tapes.html

http://www.lexemetech.com/2008/03/disks-have-become-tapes.html


Disk Trends

• The general point summed up by Jim Gray in an 
interview in ACM Queue from 2003:

... programmers have to start thinking of the disk as a sequential 
device rather than a random access device.

• Or the more pithy …
“Disks have become tapes.” (Quoted by David DeWitt.)

• http://www.lexemetech.com/2008/03/disks-have-
become-tapes.html

http://www.lexemetech.com/2008/03/disks-have-become-tapes.html


Tracking Technology: 
Performance Trends
• Drill down on four technologies

– Disks; Memory; Network; Processors
– ~1980 Archaic (Nostalgic) vs. ~2000 Modern (Newer)

• Performance milestones in each technology

• Compare “Bandwidth vs. Latency” improvements in 
performance over time

• Define
– Bandwidth: number of events per unit time

• e.g., Mbits / second over network, MB / second from disk

– Latency: elapsed time for a single event
• e.g., one-way network delay in microseconds, 

average disk access time in milliseconds

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014



Disks
Archaic (Nostalgic) vs. Modern (Newer)

• CDC Wren I, 1983
• 3600 RPM
• 0.03 GBytes capacity
• Tracks/Inch: 800 
• Bits/Inch: 9550 
• Three 5.25” platters

• Bandwidth: 0.6 MBytes/sec
• Latency: 48.3 ms
• Cache: none

• Seagate 373453, 2003
• 15000 RPM (4X)
• 73.4 GBytes (2500X)
• Tracks/Inch: 64000 (80X)
• Bits/Inch: 533,000 (60X)
• Four 2.5” platters

(in 3.5” form factor)

• BW: 86 MB/sec (140X)
• Latency:  5.7 ms (8X)
• Cache: 8 MB

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014



Disk Latency vs. Bandwidth

• Disk: 3600, 5400, 7200, 
10000, 15000 RPM (8x, 
143x)

– latency = simple operation 
w/o contention

– bandwidth (BW) = best case

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014



Memory:
Archaic (Nostalgic) vs. Modern (Newer)

• 1980 DRAM 
(asynchronous)

• 0.06 Mbits/chip
• 64,000 xtors, 35 mm2

• 16b data bus/module, 16 pins/chip

• 13 Mbytes/sec
• Latency: 225 ns
• (No block transfer)

• 2000 Double Data Rate Synchr. 
(clocked) DRAM

• 256 Mb/chip (4000X)
• 256M xtors, 204 mm2

• 64b data bus / DIMM, 66 pins/chip
(4X)

• 1600 MB/sec (120X)
• Latency: 52 ns (4X)
• Block transfers (page mode)

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014



Latency Lags Bandwidth 
(last ~20 years)

• Memory Module: 16-bit 
plain DRAM, Page Mode 
DRAM, 32b, 64b, SDRAM, 
DDR SDRAM (4x,120x)

– latency = simple operation 
w/o contention

– bandwidth (BW) = best case

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014



LANs 
Archaic (Nostalgic) vs. Modern (Newer)

• Ethernet 802.3 (1978)
• 10 Mbits/s 

link speed 
• Latency: 3000 μsec
• Shared media
• Coaxial cable

• Ethernet 802.3ae (2003)
• 10,000 Mbits/s (1000X)

link speed 
• Latency: 190 μsec (15X)
• Switched media
• Category 5 copper wire

Copper, 1mm thick, 
twisted to avoid antenna effect

Twisted Pair:

“Cat 5” is four twisted pairs in a bundle

Copper core
Insulator

Braided outer conductor
Plastic Covering

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014



Latency Lags Bandwidth 
(last ~20 years)

• Ethernet: 10Mb, 100Mb, 
1000Mb, 10000 Mb/s 
(16x,1000x)

– latency = simple operation 
w/o contention

– bandwidth (BW) = best case

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014.



CPUs
Archaic (Nostalgic) v. Modern (Newer)

• 1982 Intel 80286 
• 12.5 MHz
• 2 MIPS (peak)
• Latency 320 ns
• 134,000 xtors, 47 mm2

• 16-bit data bus, 68 pins
• Microcode interpreter, 

separate FPU chip
• (no caches) 

• 2001 Intel Pentium 4 
• 1500 MHz (120X)
• 4500 MIPS (peak) (2250X)
• Latency 15 ns (20X)
• 42,000,000 xtors, 217 mm2

• 64-bit data bus, 423 pins
• 3-way superscalar, dynamic 

translate to RISC, 
superpipelined (22 stages), 
out-of-order execution

• On-chip 8 KB data caches, 
96 KB instr. trace  cache, 
256 KB L2 cache



Latency Lags Bandwidth 
(last ~20 years)

• Processor: ‘286, ‘386, ‘486, 
Pentium, Pentium Pro, 
Pentium 4 (21x,2250x)

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014



Latency Lags Bandwidth

RULE OF THUMB

• In the time that bandwidth doubles, latency improves 
by no more than a factor of 1.2 to 1.4 

… and capacity improves faster than bandwidth

• Stated alternatively
– Bandwidth improves by more than the square of the 

improvement in latency

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014



6 Reasons Latency Lags BW

• Moore’s Law helps BW more than latency 
– Faster transistors, more transistors, more pins help bandwidth

• MPU Transistors: 0.130 vs.   42 M xtors (300X)
• DRAM Transistors: 0.064 vs. 256 M xtors (4000X)
• MPU Pins: 68  vs. 423 pins (6X) 
• DRAM Pins: 16  vs.   66 pins (4X) 

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014.



6 Reasons Latency Lags BW

• Moore’s Law helps BW more than latency 
– Smaller, faster transistors but communicate 

over (relatively) longer lines: limits latency improvements
• Feature size: 1.5 to 3 vs. 0.18 micron (8X,17X) 
• MPU Die Size: 35 vs. 204 mm2 (ratio sqrt ⇒ 2X) 
• DRAM Die Size: 47 vs. 217 mm2 (ratio sqrt ⇒ 2X) 

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014.



6 Reasons Latency Lags BW 

• Distance limits latency 
– Size of DRAM block ⇒ long bit and word lines  ⇒ most of DRAM 

access time
– Speed of light and computers on network
– 1. & 2. explains linear latency vs. square BW?

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014.



6 Reasons Latency Lags BW 

• Bandwidth easier to sell (“bigger = better”)
– Example

• 10 Gbits/s Ethernet (“10 Gig”) vs. 10 μsec latency Ethernet

– 4400 MB/s DIMM (“PC4400”) vs. 50 ns latency
– Even if just marketing, customers now trained
– Since bandwidth sells, more resources thrown at bandwidth, 

which further tips the balance

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014.



6 Reasons Latency Lags BW 

• Latency helps BW, but not vice versa 
– Spinning disk faster improves both bandwidth and rotational 

latency 
• 3600 RPM ⇒ 15000 RPM = 4.2X
• Average rotational latency: 8.3 ms ⇒ 2.0 ms
• Things being equal, also helps BW by 4.2X

– Lower DRAM latency ⇒ More access/second (higher 
bandwidth)

– Higher linear density helps disk BW  (and capacity), but not disk 
latency

• 9,550 BPI ⇒ 533,000 BPI ⇒ 60X in BW

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014.



6 Reasons Latency Lags BW 

• Bandwidth hurts latency
– Queues help bandwidth, hurt latency (Queuing Theory)
– Adding chips to widen a memory module increases bandwidth 

but higher fan-out on address lines may increase latency 

• Operating system overhead hurts latency more than 
bandwidth

– Long messages amortize overhead; overhead bigger part of 
short messages

D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, October 2014.



Summary of Technology Trends
• For disk, LAN, memory, and microprocessor, bandwidth 

improves by square of latency improvement
– In the time that bandwidth doubles, latency improves by no more 

than 1.2X to 1.4X

• Lag probably even larger in real systems, as bandwidth 
gains multiplied by replicated components

– Multiple processors in a cluster or even in a chip
– Multiple disks in a disk array
– Multiple memory modules in a large memory 
– Simultaneous communication in switched LAN 

• HW and SW developers should innovate assuming 
“Latency Lags Bandwidth”

– If everything improves at the same rate, then nothing really 
changes.  When rates vary, require real innovation


