
1

Chapter 1

Fundamentals of Quantitative Design and
Analysis

Part 1: Overview

Computer Architecture
A Quantitative Approach, Sixth Edition

“I think it’s fair to say that personal computers have become the
most empowering tool we’ve ever created. They’re tools of
communication they’re tools of creativity, and they can be shaped
by their user.” – Bill Gates, February 2004

Acknowledgements

• Thanks to many sources for slide material
© 1990 Morgan Kaufmann Publishers, © 2001-present Elsevier

Computer Architecture: A Quantitative Approach by J. Hennessy & D. Patterson

© 1994 Morgan Kaufmann Publishers, © 2001-present Elsevier
Computer Organization and Design by D. Patterson & J. Hennessy

© 2002 K. Asinovic & Arvind, MIT

© 2002 J. Kubiatowicz, University of California at Berkeley

© 2006, © 2010 No Starch Press for Inside the Machine by J. Stokes

© 2007 W.-M. Hwu & D. Kirk, University of Illinois & NVIDIA

© 2007-2010 J. Owens, University of California at Davis

© 2010 CRC Press for Introduction to Concurrency in Programming Languages by M.
Sottile, T. Mattson, and C. Rasmussen

© 2017, IBM POWER9 Processor Architecture by Sadasivam et al., IBM

© 2016, © 2019 POWER9 Processor User’s Manual, IBM

© The OpenPOWER Foundation

Computer Technology
• Performance Improvements

– Improvements in semiconductor technology
• Feature size and clock speed

– Improvements in computer architectures
• Enabled by HLL compilers and UNIX
• RISC (Reduced Instruction Set Architecture)

– Invented by John Cocke @ IBM (early 1970s)
» Resulted in general-purpose IBM 801
» Led to the RISC architectural revolution

in 1980s (Patterson & Hennessy)

• End Result
– Lightweight computers
– Productivity-based managed/interpreted

programming languages

Introduction10 µm – 1971
6 µm – 1974
3 µm – 1977
1.5 µm – 1982
1 µm – 1985
800 nm – 1989
600 nm – 1994
350 nm – 1995
250 nm – 1997
180 nm – 1999
130 nm – 2001
90 nm – 2004
65 nm – 2006
45 nm – 2008
32 nm – 2010
22 nm – 2012
14 nm – 2014
10 nm – 2016–2017
7 nm – 2018–2019
5 nm – 2020–2021

Introduction

How to Improve Performance

• Increase instructions per clock cycle.
• Increase throughput or work

completed per unit time.
• Lower latencies intrinsic in the

system that limit the above metrics.

Im
proving Perform

ance

Serial Code
Stream

Identify and
Isolate Parallel
Tasks

Parallelize
Serial Code
Stream

Parallel Code
Streams

tim
e

How To Increase Instructions Per Clock Cycle?

• Pipelining
– Breakdown complex instructions into a set of smaller steps that

are executed in order like a factory assembly line.

Source: Matthew Sottile

Im
proving Perform

ance

Pipelining: Analogy
• Pipelining laundry overlaps execution

– Parallelism improves performance

Non-stop speedup:
2n / (0.5n + 1.5) ≈ 4

Four loads:
• serial throughput:

0.5 load/hour
• pipelined throughput:

1.14 load/hour
• speedup:

8 / 3.5 ≈ 2.3

One load = 2 hours

Im
proving Perform

ance

Pipelining: Evolution

• Increase # of steps, thus decreasing complexity of each
step and allowing each step to complete faster.

• Fine-grained steps reduce the difference between times
in each stage for instructions of differing complexity.

• If all instructions use the same pipeline, each instruction
takes effectively the same amount of time to complete.

Im
proving Perform

ance

instruction

Pipelining in Practice

• A fully saturated pipeline can ideally yield one
completed instruction per cycle.

• As pipelines get deeper and deeper, more important
than ever to avoid bubbles or pipeline flushes that
result in an increase in average cycles per instruction.

Im
proving Perform

ance

IFA IDA EXA MEMA WBA
IFB IDB EXB

IFC IDC

IFD
IFx IDx EXx MEMx WBx

IFy IDy EXy MEMy WBy

time

program
flow

Branch taken.
Flush the pipeline.

PROGRAM
instr A
instr B
instr C
instr D
instr E
instr F

:
instr W
instr X
instr Y

branch instruction

Pipelining Requires ILP

• Why does pipelining work?
• Instruction-level parallelism (ILP)

– Non-trivial portions of program code are composed of
sequences of instructions that can be reordered and executed in
parallel without impacting the output of the program.

• The pipeline allows multiple instructions to be “in-flight”
at any given time.

Im
proving Perform

ance

mov ax, 4
mov bx, 5
add cx, ex, ex
mul dx, ex, ex
bne cx, dx, label

The MHz Race …

• Industry got away with
increases in pipeline depth
and related hardware
complexity (see Intel CPU
Trends slide) to ramp-up
processor clock speeds.

• “Houston … we have a problem …”
– Power and cooling are design constraints of equal importance to

performance now.
• Cooling: amount of cooling necessary, type of cooling, packaging.
• Power: battery requirements, electric bills.

Im
proving Perform

ance

Power Density

Im
proving Perform

ance

1

10

100

1000

1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ

I386 – 1 watt
I486 – 2 watts

Pentium – 14 watts

Pentium Pro – 30 watts
Pentium II – 35 watts

Pentium III – 35 watts

Chip Maximum
Power in watts/cm2

Surpassed
Heating Plate

Not too long to reach

Nuclear Reactor

Year

Pentium 4 – 75 watts

1985 1995 2001

Itanium – 130 watts

Source: Fred Pollack, Intel. New Microprocessor Challenges in the Coming Generations of CMOS Technologies, MICRO32 and Transmeta

Projection:
Rocket Nozzle

Power

• Power is really a function of …
– Die size

• More transistors and wires to feed

– Frequency f
• How often do you need to feed them

– Voltage V
• At what level do you need to feed them

• Pipelining: A double-edged sword
– Better Performance (Maybe) and Higher Power Consumption

• Increase # of small steps to realize an instruction.
More small steps = deeper pipeline = higher f and V, thus enabling
better performance but …

• Better performance only if pipeline can be kept full. Difficult to do
as pipelines get deeper.

Im
proving Perform

ance

Frequency, Voltage, and Power

Im
proving Perform

ance

Solutions to Power & Cooling

• Reduce component count (transistors and wires)
– Reduce complexity, e.g., ARM and Transmeta CPUs

• Shrink components
– Moore’s Law: An observation that the number of transistors on

a chip doubles every year while costs are halved.
– Caveat: The End of Moore’s Law?

• 2019: Intel @ 10nm. AMD & Apple @ 7nm.
– Further shrinking has gotten more complicated.
– No transistor shrink from Intel between 2014-2019.

• Reduce leakage of transistors
• Manage power intelligently via software

– Example: C. Hsu & W. Feng, “A Power-Aware Run-Time System for
High-Performance Computing,” ACM/IEEE SC 2005, November 2005.

Im
proving Perform

ance

Recall: Pipelining Requires ILP

• Why does pipelining work?
• Instruction-level parallelism (ILP)

– Non-trivial portions of program code are composed of
sequences of instructions that can be reordered and executed in
parallel without impacting the output of the program.

• The pipeline allows multiple instructions to be “in-flight”
at any given time.

Im
proving Perform

ance

mov ax, 4
mov bx, 5
add cx, ex, ex
mul dx, ex, ex
bne cx, dx, label

Trends

ILP

https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png

Trends

https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png

Key to Performance: ILP?
• Smaller steps = deeper pipeline = more ILP = higher f

but …
– Hardware much more complex
– Hardware runs hotter
– Deeper pipelines and better ILP identification has gotten harder

and more costly à diminishing returns

• Solution? Other forms of parallelism
– Data-level parallelism (DLP)

• Vector architectures and graphics processing units (GPUs)

– Thread-level parallelism (TLP)
• Multicore

– Request-level parallelism (RLP)

A change in technology direction that forces a fundamental rethinking
of how to continue boosting performance.

Trends

Single-Processor Performance

Commodity RISC

Commodity multi-core

Multi-core

Trends

Current Trends in Architecture

• Cannot continue to rely only on instruction-level
parallelism (ILP)

– Single-processor performance improvement ended in 2003
– The “power wall” is rearing its ugly head

• New models for performance
– Data-level parallelism (DLP)

• Vector architectures and graphics processing units (GPUs)

– Thread-level parallelism (TLP)
• Multicore

– Request-level parallelism (RLP)

• Consequence
– Explicit restructuring of an application

Trends

Why Multicore?

• The MHz race ran out of steam
– The “free ride” is over
– Trade-off between raw performance and practical physical

implementation and utilization.
• Power consumption an increasingly “hot” issue

… enough to nearly fry an egg.

• Result
– Virtually impossible to buy a non-multicore processor in any

computer now.

D
efining Com

puter Architecture

What is Multicore?

• A multicore chip is a single silicon die containing
multiple fully functional sequential processor cores tied
together to form a small parallel computer.

Source: Intel Corporation

D
efining Com

puter Architecture

Source: IBM

A Closer Look at Multicore

• Multicore Highlighted
– Intel Core 2 processor on a

larger silicon wafer.

• Anatomy
– Two cores of Intel Core 2

processor separated by a
red line.

– Cache is the very regular
portion. Light colored.

– Functional units are up
above. Dark colored.

D
efining Com

puter Architecture

A Closer Look at Multicore

D
efining Com

puter Architecture

IBM Power7 IBM Power9

Multicore: Solution to Power & Performance

• Multicore Recipe
– Stop increasing the complexity of single cores.
– Replicate simpler cores on a die and exploit thread-level

parallelism (TLP).
– Reduce clock rates as pipelines do not have to be so deep, thus

reducing power requirements.

• Hyperthreading NOT?!
– Many units in the CPU are shared between the “virtual cores”

that hyperthreading provides, limiting performance seen in
practice.

– Hyperthreaded processor (i.e., two-way simultaneous
multithreading) still suffers from the complexity problem,
leading to higher power and cooling requirements.

D
efining Com

puter Architecture

Don’t Be Misled!

• Pipelining is here to stay.
– At a certain granularity, blocks of instructions in typical

programs exhibit a good degree of ILP.

• New CPUs still improve pipelining and related single-
threaded performance improvements.

… but it’s not the focus anymore.

D
efining Com

puter Architecture

Trends

ILP

https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png

Trends

https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png

Defining Computer Architecture

• “Old” View of Computer Architecture:
– Instruction set architecture (ISA) design
– Decisions regarding

• registers, memory addressing, addressing modes, instruction
operands, available operations, control flow instructions,
instruction encoding

• “Real” Computer Architecture
– Specific requirements of the target machine
– Design to maximize performance within constraints: cost,

power, and availability
• Includes ISA, microarchitecture, hardware

D
efining Com

puter Architecture

Power and Energy

• Problem: Get power in, get power out
• Thermal Design Power (TDP)

– Characterizes sustained power consumption
– Used as target for power supply and cooling system
– Lower than peak power, higher than average power

consumption

• Clock rate can be reduced dynamically to limit power
consumption

– P a CV2f, where C is capacitance being switched per clock cycle,
V is supply voltage of processor, and f is switching frequency

• Energy per task is often a better measurement

Trends

Dynamic Energy and Power

• Dynamic energy
– Transistor switch from 0 à 1 or 1 à 0
– ½ x capacitive load x voltage2

• Dynamic power
– ½ x capacitive load x voltage2 x frequency switched

• Reducing clock rate reduces power, not energy

Trends

Power

• Intel 80386 ~ 2 W
• 3.3-GHz Intel Core i7 ~ 130 W

Trends

• Heat must be
dissipated from
1.5 x 1.5 cm chip

• This is the limit of
what can be
cooled by air

Reducing Power

• Techniques for Reducing Dynamic Power
– Do nothing well
– Dynamic voltage-frequency scaling (2005)

• C. Hsu and W. Feng, “A Power-Aware Run-Time System for High-
Performance Computing,” ACM/IEEE SC, Nov. 2005.

– Low-power state for DRAM and disks
– Overclocking and turning off cores

• Intel Turbo mode (2008)

– Power capping via RAPL (2012-2013)

• A technique available on Intel processors
• B. Subramaniam and W. Feng, “Towards Energy-

Proportional Computing for Enterprise Server
Workloads,” In 3rd ACM/SPEC International
Conference on Performance Engineering (ICPE),
Best Paper Award, April 2013.

Trends

Severe Underutilization in Data Centers

Average CPU utilization
of 5000 servers over a

six-month period

Source: L. A. Barroso et al., The Case for Energy-Proportional Computing, IEEE Computer, 2007

Trends

• Consume power proportional to utilization (or load level)

Trends

Power Efficiency at Different Levels of Utilization

• Near energy-proportional power consumption at high levels
of utilization

Trends

B. Subramaniam and W. Feng, “Towards Energy-Proportional Computing for Enterprise Server Workloads,”
In 3rd ACM/SPEC International Conference on Performance Engineering (ICPE), April 2013.

Static Power

• Static power consumption
– Currentstatic x Voltage
– Scales with number of transistors
– How to reduce? Power gating

Trends

Bandwidth and Latency

• Bandwidth or throughput
– Total work done in a given time
– 10,000-25,000x improvement for processors
– 300-1200x improvement for memory and disks

• Latency or response time
– Time between start and completion of an event
– 30-80x improvement for processors
– 6-8x improvement for memory and disks

Trends

Bandwidth
and Latency

Log-log plot of bandwidth and latency milestones

Trends

Transistors and Wires

• Feature Size
– Minimum size of transistor or wire in x or y dimension
– 40 years of shrinking

• 10 microns in 1971 to 0.032 microns (32 nm) in 2011

– Further shrinking slowing & getting more complicated
• No transistor shrink from Intel 2014-2019! @ 14nm.
• 2019: Intel @ 10nm while AMD & Apple @ 7nm.
• 2020: IBM @ 7nm for POWER10 à DOE supercomputers:

Sierra (LLNL) and Summit (ORNL)

– Transistor performance scales linearly
• Wire delay does not improve with feature size

– Integration density scales quadratically

Trends

10 µm – 1971
6 µm – 1974
3 µm – 1977
1.5 µm – 1982
1 µm – 1985
800 nm – 1989
600 nm – 1994
350 nm – 1995
250 nm – 1997
180 nm – 1999
130 nm – 2001
90 nm – 2004
65 nm – 2006
45 nm – 2008
32 nm – 2010
22 nm – 2012
14 nm – 2014
10 nm – 2016–2017
7 nm – 2018–2019
5 nm – 2020–2021

Case Study for Transistors & Wires: IBM POWER
Feature POWER7+ POWER8 POWER9 POWER10

Year 2012 2014 2017 2020

Terminology 32 nm 22 nm 14 nm 7 nm

Die Size 567 mm2 649 mm2 693 mm2 602 mm2

Transistors 2.1B 4.2B 8.0B 18.0B

Max. Cores 8 12 12 / 24 15 / 30

Max. SMT
Threads/Core

4 8 8 / 4 8 / 4

Max. Threads 32 96 96 120

Max. Frequency 4.0 GHz 4.15 GHz 4.4 GHz 4.0 GHz

L2 Cache 256 kB / core 512 kB / core 512 kB shared 512 kB / core

L3 Cache 80 MB 96 MB 120 MB 120 MB

Memory Support DDR3 DDR3, DDR4 DDR4 DDR3-DDR5,
GDDR6, HBM

I/O Bus GC++ PCIe Gen3 PCIe Gen4 PCIe Gen5

Trends in Cost

• Cost driven down by learning curve
– Yield

• DRAM: price closely tracks cost

• Microprocessors: price depends on volume
– 10% less for each doubling of volume

Trends

Integrated Circuit Cost

• Integrated Circuit

• Bose-Einstein formula:

• Defects per unit area = 0.016-0.057 defects per cm2 (2010)

• N = process-complexity factor = 11.5-15.5 (40 nm, 2010)

Trends

Dependability

• Module Reliability
– Mean time to failure (MTTF)
– Mean time to repair (MTTR)
– Mean time between failures (MTBF) = MTTF + MTTR
– Availability = MTTF / MTBF

Trends

Recall: Defining Computer Architecture

• “Old” View of Computer Architecture:
– Instruction set architecture (ISA) design
– Decisions regarding

• registers, memory addressing, addressing modes, instruction
operands, available operations, control flow instructions,
instruction encoding

• “Real” Computer Architecture
– Specific requirements of the target machine
– Design to maximize performance within constraints: cost, power,

and availability
– Includes ISA, microarchitecture, hardware

D
efining Com

puter Architecture

Principles of Computer Design

• Take Advantage of Parallelism
– e.g., multiple processors, disks, memory banks, pipelining,

multiple functional units

• Principle of Locality
– Reuse of data and instructions

• Focus on the Common Case
– Amdahl’s Law

Principles

Principles of Computer Design

• Equation for Processor Performance

Principles

Principles of Computer Design

• Different instruction types having different CPIs

Principles

Recall: Defining Computer Architecture

• “Old” View of Computer Architecture:
– Instruction set architecture (ISA) design
– Decisions regarding

• registers, memory addressing, addressing modes, instruction
operands, available operations, control flow instructions,
instruction encoding

• “Real” Computer Architecture
– Specific requirements of the target machine
– Design to maximize performance within constraints: cost, power,

and availability
– Includes ISA, microarchitecture, hardware

D
efining Com

puter Architecture

What about models
for cost, power, and
availability?

Classes of Computers

• Personal Mobile Device (PMD)
– Examples: Smartphones & tablet computers
– Emphasis: Energy efficiency and real-time performance

• Desktop Computing
– Emphasis: Price-performance ratio

• Servers
– Emphasis: Availability, scalability, throughput

• Clusters / Warehouse-Scale Computers
– Used for “Software as a Service (SaaS)”
– Emphasis: Availability and price-performance
– Sub-class: Supercomputers

• Emphasis: Floating-point performance and fast internal networks

Classes of Com
puters

Flynn’s Taxonomy (1966)

Classification of Computer Architectures
• Single instruction stream, single data stream (SISD)
• Single instruction stream, multiple data streams (SIMD)

– Vector architectures
– Multimedia extensions
– Graphics processor units

• Multiple instruction streams, single data stream (MISD)
– No commercial implementation

• Multiple instruction streams, multiple data streams (MIMD)
– Tightly-coupled MIMD
– Loosely-coupled MIMD

Classes of Com
puters

Additional Reading Assignments

• Brian Hayes, “Computing in a Parallel Universe,”
American Scientist, November-December 2007.
https://www.americanscientist.org/article/computing-in-
a-parallel-universe

• Herb Sutter, “The Free Lunch Is Over: A Fundamental
Turn Toward Concurrency in Software,” Dr. Dobb's
Journal, 30(3), March 2005.
http://gotw.ca/publications/concurrency-ddj.htm

https://www.americanscientist.org/article/computing-in-a-parallel-universe
http://gotw.ca/publications/concurrency-ddj.htm

