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Chapter 1

Fundamentals of Quantitative Design and 
Analysis

Part 1:  Overview

Computer Architecture
A Quantitative Approach, Sixth Edition

“I think it’s fair to say that personal computers have become the 
most empowering tool we’ve ever created. They’re tools of 
communication they’re tools of creativity, and they can be shaped 
by their user.” – Bill Gates, February 2004 
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Computer Technology
• Performance Improvements

– Improvements in semiconductor technology
• Feature size and clock speed

– Improvements in computer architectures
• Enabled by HLL compilers and UNIX
• RISC (Reduced Instruction Set Architecture)

– Invented by John Cocke @ IBM (early 1970s)
» Resulted in general-purpose IBM 801
» Led to the RISC architectural revolution 

in 1980s (Patterson & Hennessy)

• End Result
– Lightweight computers
– Productivity-based managed/interpreted 

programming languages

Introduction10 µm – 1971
6 µm – 1974
3 µm – 1977
1.5 µm – 1982
1 µm – 1985
800 nm – 1989
600 nm – 1994
350 nm – 1995
250 nm – 1997
180 nm – 1999
130 nm – 2001
90 nm – 2004
65 nm – 2006
45 nm – 2008
32 nm – 2010
22 nm – 2012
14 nm – 2014
10 nm – 2016–2017
7 nm  – 2018–2019
5 nm – 2020–2021



Introduction



How to Improve Performance

• Increase instructions per clock cycle. 
• Increase throughput or work 

completed per unit time. 
• Lower latencies intrinsic in the 

system that limit the above metrics.
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How To Increase Instructions Per Clock Cycle?

• Pipelining
– Breakdown complex instructions into a set of smaller steps that 

are executed in order like a factory assembly line.

Source:  Matthew Sottile
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Pipelining: Analogy
• Pipelining laundry overlaps execution

– Parallelism improves performance

Non-stop speedup:
2n / (0.5n + 1.5) ≈ 4

Four loads:
• serial throughput:  

0.5 load/hour
• pipelined throughput:

1.14 load/hour
• speedup:

8 / 3.5 ≈ 2.3

One load = 2 hours
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Pipelining: Evolution

• Increase # of steps, thus decreasing complexity of each 
step and allowing each step to complete faster. 

• Fine-grained steps reduce the difference between times 
in each stage for instructions of differing complexity.

• If all instructions use the same pipeline, each instruction 
takes effectively the same amount of time to complete.
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Pipelining in Practice

• A fully saturated pipeline can ideally yield one 
completed instruction per cycle.

• As pipelines get deeper and deeper, more important 
than ever to avoid bubbles or pipeline flushes that 
result in an increase in average cycles per instruction. 
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Pipelining Requires ILP

• Why does pipelining work?   
• Instruction-level parallelism (ILP)

– Non-trivial portions of program code are composed of 
sequences of instructions that can be reordered and executed in 
parallel without impacting the output of the program. 

• The pipeline allows multiple instructions to be “in-flight”
at any given time.
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The MHz Race …

• Industry got away with
increases in pipeline depth 
and related hardware 
complexity (see Intel CPU 
Trends slide) to ramp-up
processor clock speeds.

• “Houston … we have a problem …”
– Power and cooling are design constraints of equal importance to 

performance now.
• Cooling: amount of cooling necessary, type of cooling, packaging. 
• Power: battery requirements, electric bills.
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Power Density 
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Source: Fred Pollack, Intel.  New Microprocessor Challenges in the Coming Generations of CMOS Technologies, MICRO32 and Transmeta
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Power

• Power is really a function of …
– Die size

• More transistors and wires to feed 

– Frequency f  
• How often do you need to feed them

– Voltage V  
• At what level do you need to feed them

• Pipelining:  A double-edged sword
– Better Performance (Maybe) and Higher Power Consumption

• Increase # of small steps to realize an instruction.  
More small steps = deeper pipeline = higher f and V, thus enabling 
better performance but …

• Better performance only if pipeline can be kept full.  Difficult to do 
as pipelines get deeper.
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Frequency, Voltage, and Power

Im
proving Perform

ance



Solutions to Power & Cooling

• Reduce component count (transistors and wires)
– Reduce complexity, e.g., ARM and Transmeta CPUs 

• Shrink components
– Moore’s Law: An observation that the number of transistors on 

a chip doubles every year while costs are halved.
– Caveat: The End of Moore’s Law?

• 2019:  Intel @ 10nm. AMD & Apple @ 7nm.
– Further shrinking has gotten more complicated.
– No transistor shrink from Intel between 2014-2019.

• Reduce leakage of transistors
• Manage power intelligently via software

– Example:  C. Hsu & W. Feng, “A Power-Aware Run-Time System for 
High-Performance Computing,” ACM/IEEE SC 2005, November 2005. 
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Recall:  Pipelining Requires ILP

• Why does pipelining work?   
• Instruction-level parallelism (ILP)

– Non-trivial portions of program code are composed of 
sequences of instructions that can be reordered and executed in 
parallel without impacting the output of the program. 

• The pipeline allows multiple instructions to be “in-flight”
at any given time.
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Trends 

ILP



https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png

Trends 

https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png


Key to Performance:  ILP?
• Smaller steps = deeper pipeline = more ILP = higher f

but …
– Hardware much more complex 
– Hardware runs hotter
– Deeper pipelines and better ILP identification has gotten harder 

and more costly à diminishing returns

• Solution?  Other forms of parallelism
– Data-level parallelism (DLP)

• Vector architectures and graphics processing units (GPUs)

– Thread-level parallelism (TLP)
• Multicore

– Request-level parallelism (RLP)

A change in technology direction that forces a fundamental rethinking 
of how to continue boosting performance.

Trends 



Single-Processor Performance

Commodity RISC

Commodity multi-core

Multi-core

Trends 



Current Trends in Architecture

• Cannot continue to rely only on instruction-level 
parallelism (ILP)

– Single-processor performance improvement ended in 2003
– The “power wall” is rearing its ugly head

• New models for performance
– Data-level parallelism (DLP)

• Vector architectures and graphics processing units (GPUs)

– Thread-level parallelism (TLP)
• Multicore

– Request-level parallelism (RLP)

• Consequence
– Explicit restructuring of an application

Trends 



Why Multicore?

• The MHz race ran out of steam
– The “free ride” is over 
– Trade-off between raw performance and practical physical 

implementation and utilization.
• Power consumption an increasingly “hot” issue 

… enough to nearly fry an egg.

• Result
– Virtually impossible to buy a non-multicore processor in any 

computer now.
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What is Multicore?

• A multicore chip is a single silicon die containing 
multiple fully functional sequential processor cores tied 
together to form a small parallel computer.

Source:  Intel Corporation
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A Closer Look at Multicore

• Multicore Highlighted
– Intel Core 2 processor on a 

larger silicon wafer.

• Anatomy
– Two cores of Intel Core 2 

processor separated by a 
red line.  

– Cache is the very regular 
portion.  Light colored.

– Functional units are up 
above.  Dark colored.
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A Closer Look at Multicore
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Multicore: Solution to Power & Performance

• Multicore Recipe
– Stop increasing the complexity of single cores.
– Replicate simpler cores on a die and exploit thread-level 

parallelism (TLP).  
– Reduce clock rates as pipelines do not have to be so deep, thus 

reducing power requirements.

• Hyperthreading NOT?!  
– Many units in the CPU are shared between the “virtual cores”

that hyperthreading provides, limiting performance seen in 
practice.  

– Hyperthreaded processor (i.e., two-way simultaneous 
multithreading) still suffers from the complexity problem, 
leading to higher power and cooling requirements.
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Don’t Be Misled!

• Pipelining is here to stay.
– At a certain granularity, blocks of instructions in typical 

programs exhibit a good degree of ILP. 

• New CPUs still improve pipelining and related single-
threaded performance improvements. 

… but it’s not the focus anymore.

D
efining Com

puter Architecture



Trends 

ILP



https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png
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Defining Computer Architecture

• “Old” View of Computer Architecture:
– Instruction set architecture (ISA) design
– Decisions regarding

• registers, memory addressing, addressing modes, instruction 
operands, available operations, control flow instructions, 
instruction encoding

• “Real” Computer Architecture
– Specific requirements of the target machine
– Design to maximize performance within constraints: cost, 

power, and availability
• Includes ISA, microarchitecture, hardware
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Power and Energy

• Problem:  Get power in, get power out
• Thermal Design Power (TDP)

– Characterizes sustained power consumption
– Used as target for power supply and cooling system
– Lower than peak power, higher than average power 

consumption

• Clock rate can be reduced dynamically to limit power 
consumption

– P a CV2f, where C is capacitance being switched per clock cycle, 
V is supply voltage of processor, and f is switching frequency 

• Energy per task is often a better measurement

Trends 



Dynamic Energy and Power

• Dynamic energy
– Transistor switch from 0 à 1 or 1 à 0
– ½ x capacitive load x voltage2

• Dynamic power
– ½ x capacitive load x voltage2 x frequency switched

• Reducing clock rate reduces power, not energy

Trends 



Power

• Intel 80386 ~ 2 W
• 3.3-GHz Intel Core i7 ~ 130 W

Trends 

• Heat must be 
dissipated from 
1.5 x 1.5 cm chip

• This is the limit of 
what can be 
cooled by air



Reducing Power

• Techniques for Reducing Dynamic Power
– Do nothing well
– Dynamic voltage-frequency scaling (2005)

• C. Hsu and W. Feng, “A Power-Aware Run-Time System for High-
Performance Computing,” ACM/IEEE SC, Nov. 2005. 

– Low-power state for DRAM and disks
– Overclocking and turning off cores

• Intel Turbo mode (2008)

– Power capping via RAPL (2012-2013)

• A technique available on Intel processors
• B. Subramaniam and W. Feng, “Towards Energy-

Proportional Computing for Enterprise Server
Workloads,” In 3rd ACM/SPEC International 
Conference on Performance Engineering (ICPE), 
Best Paper Award, April 2013.

Trends 



Severe Underutilization in Data Centers

Average CPU utilization 
of 5000 servers over a 

six-month period 

Source: L. A. Barroso et al., The Case for Energy-Proportional Computing, IEEE Computer, 2007

Trends 



• Consume power proportional to utilization (or load level)

Trends 



Power Efficiency at Different Levels of Utilization  

• Near energy-proportional power consumption at high levels 
of utilization

Trends 

B. Subramaniam and W. Feng, “Towards Energy-Proportional Computing for Enterprise Server Workloads,” 
In 3rd ACM/SPEC International Conference on Performance Engineering (ICPE), April 2013.



Static Power

• Static power consumption
– Currentstatic x Voltage
– Scales with number of transistors
– How to reduce?  Power gating

Trends 



Bandwidth and Latency

• Bandwidth or throughput
– Total work done in a given time
– 10,000-25,000x improvement for processors
– 300-1200x improvement for memory and disks

• Latency or response time
– Time between start and completion of an event
– 30-80x improvement for processors
– 6-8x improvement for memory and disks

Trends 



Bandwidth 
and Latency

Log-log plot of bandwidth and latency milestones

Trends 



Transistors and Wires

• Feature Size
– Minimum size of transistor or wire in x or y dimension
– 40 years of shrinking

• 10 microns in 1971 to 0.032 microns (32 nm) in 2011

– Further shrinking slowing & getting more complicated
• No transistor shrink from Intel 2014-2019!  @ 14nm.
• 2019:  Intel @ 10nm while AMD & Apple @ 7nm.
• 2020:  IBM @ 7nm for POWER10 à DOE supercomputers: 

Sierra (LLNL) and Summit (ORNL)

– Transistor performance scales linearly
• Wire delay does not improve with feature size

– Integration density scales quadratically

Trends 
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Case Study for Transistors & Wires:  IBM POWER
Feature POWER7+ POWER8 POWER9 POWER10

Year 2012 2014 2017 2020

Terminology 32 nm 22 nm 14 nm 7 nm

Die Size 567 mm2 649 mm2 693 mm2 602 mm2

# Transistors 2.1B 4.2B 8.0B 18.0B

Max. Cores 8 12 12 / 24 15 / 30

Max. SMT 
Threads/Core

4 8 8 / 4 8 / 4

Max. Threads 32 96 96 120

Max. Frequency 4.0 GHz 4.15 GHz 4.4 GHz 4.0 GHz

L2 Cache 256 kB / core 512 kB / core 512 kB shared 512 kB / core

L3 Cache 80 MB 96 MB 120 MB 120 MB 

Memory Support DDR3 DDR3, DDR4 DDR4 DDR3-DDR5, 
GDDR6, HBM

I/O Bus GC++ PCIe Gen3 PCIe Gen4 PCIe Gen5



Trends in Cost

• Cost driven down by learning curve
– Yield

• DRAM:  price closely tracks cost

• Microprocessors:  price depends on volume
– 10% less for each doubling of volume

Trends 



Integrated Circuit Cost

• Integrated Circuit

• Bose-Einstein formula:

• Defects per unit area = 0.016-0.057 defects per cm2 (2010)

• N = process-complexity factor = 11.5-15.5 (40 nm, 2010)

Trends 



Dependability

• Module Reliability
– Mean time to failure (MTTF)
– Mean time to repair (MTTR)
– Mean time between failures (MTBF) = MTTF + MTTR
– Availability = MTTF / MTBF

Trends 



Recall:  Defining Computer Architecture

• “Old” View of Computer Architecture:
– Instruction set architecture (ISA) design
– Decisions regarding

• registers, memory addressing, addressing modes, instruction 
operands, available operations, control flow instructions, 
instruction encoding

• “Real” Computer Architecture
– Specific requirements of the target machine
– Design to maximize performance within constraints: cost, power, 

and availability
– Includes ISA, microarchitecture, hardware
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Principles of Computer Design

• Take Advantage of Parallelism
– e.g., multiple processors, disks, memory banks, pipelining, 

multiple functional units

• Principle of Locality
– Reuse of data and instructions

• Focus on the Common Case
– Amdahl’s Law

Principles



Principles of Computer Design

• Equation for Processor Performance

Principles



Principles of Computer Design

• Different instruction types having different CPIs

Principles



Recall:  Defining Computer Architecture

• “Old” View of Computer Architecture:
– Instruction set architecture (ISA) design
– Decisions regarding

• registers, memory addressing, addressing modes, instruction 
operands, available operations, control flow instructions, 
instruction encoding

• “Real” Computer Architecture
– Specific requirements of the target machine
– Design to maximize performance within constraints: cost, power, 

and availability
– Includes ISA, microarchitecture, hardware
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Classes of Computers

• Personal Mobile Device (PMD)
– Examples:  Smartphones & tablet computers
– Emphasis:  Energy efficiency and real-time performance

• Desktop Computing
– Emphasis:  Price-performance ratio

• Servers
– Emphasis:  Availability, scalability, throughput

• Clusters / Warehouse-Scale Computers
– Used for “Software as a Service (SaaS)”
– Emphasis:  Availability and price-performance
– Sub-class:  Supercomputers 

• Emphasis:  Floating-point performance and fast internal networks

Classes of Com
puters



Flynn’s Taxonomy (1966)

Classification of Computer Architectures
• Single instruction stream, single data stream (SISD)
• Single instruction stream, multiple data streams (SIMD)

– Vector architectures
– Multimedia extensions
– Graphics processor units

• Multiple instruction streams, single data stream (MISD)
– No commercial implementation

• Multiple instruction streams, multiple data streams (MIMD)
– Tightly-coupled MIMD
– Loosely-coupled MIMD

Classes of Com
puters



Additional Reading Assignments

• Brian Hayes, “Computing in a Parallel Universe,”
American Scientist, November-December 2007. 
https://www.americanscientist.org/article/computing-in-
a-parallel-universe

• Herb Sutter, “The Free Lunch Is Over: A Fundamental 
Turn Toward Concurrency in Software,” Dr. Dobb's 
Journal, 30(3), March 2005. 
http://gotw.ca/publications/concurrency-ddj.htm

https://www.americanscientist.org/article/computing-in-a-parallel-universe
http://gotw.ca/publications/concurrency-ddj.htm

